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Abstract

Previous work indicated that the incidence of travellers’ diarrhoea (TD) is higher in soldiers of

British origin, when compared to soldiers of Nepalese descent (Gurkhas). We hypothesise

that the composition of the gut microbiota may be a contributing factor in the risk of develop-

ing TD in soldiers of British origin. This study aimed to characterise the gut microbial compo-

sition of Gurkha and non-Gurkha soldiers of the British Army. Recruitment of 38 soldiers (n =

22 Gurkhas, n = 16 non-Gurkhas) and subsequent stool collection, enabled shotgun metage-

nomic sequencing-based analysis of the gut microbiota. The microbiota of Gurkhas had sig-

nificantly (P < 0.05) lower diversity, for both Shannon and Simpson diversity indices, using

species level markers than the gut microbiota of non-Gurkha soldiers. Non-metric Multidi-

mensional Scaling (NMDS) of the Bray-Curtis distance matrix revealed a significant differ-

ence in the composition of the gut microbiota between Gurkhas and non-Gurkha soldiers, at

both the species level (P = 0.0178) and the genus level (P = 0.0483). We found three genera

and eight species that were significantly enriched in the non-Gurkha group and one genus

(Haemophilus) and one species (Haemophilus parainfluenzae) which were enriched in the

Gurkha group. The difference in the microbiota composition between Gurkha soldiers and

soldiers of British origin may contribute to higher colonization resistance against diarrhoeal

pathogens in the former group. Our findings may enable further studies into interventions that

modulate the gut microbiota of soldiers to prevent TD during deployment.

Introduction

Travellers’ diarrhoea (TD), a gastroenteritis primarily mediated by bacteria, is a significant

issue for people visiting low and middle income countries [1], with research showing that mul-

tiple species and strains of bacteria can transiently or chronically colonise the lower intestinal

tract [2]. Although typically short in its duration (<2 weeks) and largely self-limiting, the

impact of travellers’ diarrhoea can be substantial, and patients can develop post-infectious

sequelae that lead to chronic illness (e.g. irritable bowel syndrome) [3, 4].
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The detrimental effects of TD on deploying British forces is well documented, as far back as

the Crusades [5]. Diarrhoeal disease remains a significant cause of Disease, Non-Battle Injury

for deployed troops. Self-reported travellers’ diarrhoeal rates were approximately 40% during

two separate Operation HERRICK (Afghanistan: 2002–2014) tours [6]. A large proportion of

soldiers suffering from travellers’ diarrhoea reported a reduction in the ability to work (~50%),

a quarter were incapacitated, and a small number required hospitalisation [7]. The average

“days off duty” with TD was 2.8, with an average of 4 days of underperforming per episode.

This resulted in an (extrapolated) aggregated 68,918 man-days lost to underperformance over

2 x 6 month deployments to Afghanistan [6].

Amongst members of the British Army, travellers’ diarrhoea primarily affects soldiers born

in the UK. However, in addition to British nationals, the British Army also recruits from other

countries, including British Gurkha soldiers originating from South Asia (primarily Nepal).

Gurkha soldiers have demonstrated a resistance to bacterial gastroenteritis during overseas

deployment, with the incidence of diarrhoeal episodes reduced when compared to non-Gur-

kha soldiers (11% and 40–60% respectively) [6]. The mechanisms underpinning this reduction

in incidence are unknown, however understanding this may provide important therapeutic

and prophylactic treatment options that could significantly mitigate the impact of travellers’

diarrhoea in a military context.

Research has shown that differences in the gut microbiota are associated with the incidence

of diarrhoeal episodes [8], and the composition of the gut microbiota can vary greatly depend-

ing on a variety of host factors, including diet, lifestyle and geographical origin [9–11]. A key

theme in gut microbiota research is assessing the impact that an individual’s microbiota can

have on the likelihood of developing disease, with many studies attempting to understand how

these factors are linked [12–15].

This study aimed to characterise the composition of soldiers’ gut microbiota, and to assess

whether there were any differences in composition between Gurkha and non-Gurkha soldiers.

Methods

Participant recruitment

This study was reviewed and received a favourable opinion from the Ministry of Defence

Research and Ethics Committee (MODREC) reference 2019/MODREC/21. All participants

were briefed on the study’s objectives and were provided with patient information leaflets

before signing consent forms. Samples were provided in private and returned to the study

team. Each individual was randomly allocated a study number from 1–38 and anonymised

data were further processed during the analysis. Exclusion criteria were any chronic underly-

ing medical condition, acute gastrointestinal upset (diarrhoea or vomiting), recent (<3

months) travel abroad, SARS-CoV-2 infection, or antibiotic use.

A total of 38 soldiers were recruited from 3 barracks across England, which were catego-

rised according to their reported ethnicity and country of birth. A total of 22 non-UK born

Gurkhas were recruited. 12 UK born non-Gurkhas were recruited, and 4 soldiers were born in

non-UK countries, but were not Gurkhas. The group defined as ‘Gurkha’ comprises soldiers

that are first generation Gurkhas born outside of the UK, and ‘non-Gurkha’ are all those who

do not meet this criterion. Thirty-seven of the participants were male, the one female was part

of the ‘non-UK, non-Gurkha’ group.

Sample collection

Volunteers were provided with the OMNIgene Gut OMR-200 collection kit (DNA Genotek,

Ontario, Canada) for self-directed collection. Participants were asked to collect a single sample
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of faecal material, which was subsequently placed inside a collection tube containing a stabili-

sation buffer and a metal ball-bearing that rapidly homogenised the sample. Homogenised and

stabilised samples were cryopreserved at -80˚C for long-term storage.

DNA extraction

Faecal samples were thawed, and 200 mg of material was processed using the FastDNA Spin

Kit for Soil (MP Biomedicals, California, USA). Samples were aliquoted into tubes containing

ceramic beads of varying size, processed using a FastPrep-24 5G bead beating machine (MP

Biomedicals, California, USA), and subsequently treated following the protocol of the Fas-

tDNA Spin Kit for Soil.

In addition to the volunteer samples, the ZymoBiomics Fecal Reference with TruMatrix

Technology (Zymo Research, California, USA) was included as a positive control. This was

included to control for the consistency and composition of faecal material, and contained a

defined bacterial composition. A DNA extraction was also performed on 100 μL of the stabili-

sation buffer from an unused OMNIGene Gut OMR-200 kit as a negative control, allowing for

the detection of contamination from the sampling, extraction kits or procedures. Samples

were processed in two batches. A single positive and negative control was included per batch.

DNA sequencing

In addition to the controls prepared during the DNA extraction, a no-template negative con-

trol (dH2O), and a PhiX positive control were included in the library preparation and sequenc-

ing processes. Samples and controls were prepared using the standard Illumina DNA Prep

protocol (Illumina, California, USA). Libraries were quantified using a Qubit 4 Fluorometer

(Thermofisher Scientific, Massachusetts, USA) and normalised to 100 ng in 30 μL by diluting

with nuclease-free water (negative controls contained no detectable DNA and were not

diluted). The concentration used was the lowest recommended for this protocol to reduce the

risk of inhibiting tagmentation.

Following preparation, the pooled libraries were run on a 2200 Tapestation (Agilent) with a

D1000 screentape to obtain an average library size of 571 base pairs (bp) at a concentration of

12 nM. This concentration was diluted to 4 nM as per the recommendations for the library

and the final concentration was confirmed using the NEBNext Library Quant Kit for Illumina

(New England Biolabs, Massachusetts, USA).

The prepared libraries were initially run on an Illumina MiSeq to assess their quality and

equimolarity. The final 4 nM library was denatured and diluted as per Protocol A of the MiSeq

System guide. A final concentration of 15 pM was loaded onto the cartridge to optimise cluster

density and was run using a 500-cycle kit and flow cell with version 2 reagents (Illumina, Cali-

fornia, USA).

Following this run, a small number of indices were identified that required adjustment for

equimolarity. Following this adjustment, the library was denatured and diluted using the

HiSeq Guide (Protocol A: Standard Normalisation Method). The denatured library was

diluted to a final concentration of 8 pM and loaded onto the HiSeq 2500 system. The HiSeq

was run in rapid run mode with version 2 reagents of the Rapid SBS Kit and Rapid PE Cluster

Kit for 500 cycles (Illumina, California, USA). HiSeq bcl files were converted to fastq files

using bcl2fastq (V. 2.19.0).

Sequence analysis

Reads were processed using fastp (V. 0.23.2; [16]) under default parameters to remove adapter

content and perform quality-based trimming of reads. Read quality was assessed using FastQC
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(V. 0.11.5; https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and MultiQC (V. 1.6;

[17]). Following quality trimming, the median number of bases per sample was 2.19 Gb, with

the majority of samples at or close to equimolar ratio (S1 Fig). The mean read length was 246.1

bp (SD = 9.965). All negative controls yielded a total of 0 megabases. Prior to read upload,

human reads were removed from all samples using bbmap (V. 38.06; [18]) and the hg19

human reference genome.

Microbial abundance was analysed using a marker-based method implemented in MetaPh-

lAn3 (V. 3.0.14; [19]), in conjunction with the CHOCOPhlAn marker database (v. 30). Further

analysis and data visualisation was conducted using R (V. 4.1.2) and the gplots, ggplot2, ggfor-

tify, ggrepel, ggpubr, showtext, dplyr, tidyverse, reshape2, and viridis packages.

Statistical analysis

Statistical analyses were also performed in R using the adonis, diversity and metaMDS func-

tions from the vegan package. An association analysis between taxa (species- and genus-level)

and group (Gurkha and non-Gurkha) was performed using MaAsLin2 (V. 1.4.0; [20]).

Results

Prevotella and Bacteroides are highly abundant in the British soldier’s gut

microbiota

The gut microbiota samples of British soldiers contained a total of 41 unique genera with a rel-

ative abundance greater than 1% (Fig 1) in at least one of the samples. The most widespread of

these genera were Bacteroides, Blautia, Dorea, Eubacterium and Roseburia which were present

in all samples. The genus Anaerotruncus was the least widespread and was found in only one

sample. Prevotella was the most abundant genus in the faecal samples with a median relative

Fig 1. Genus level composition of British soldier’s gut microbiota. The composition of British soldier’s gut microbiome samples at the

genus level. The size of the circle represents the relative abundance of the genus in a sample and the colour represents, Gurkha (blue) or

Non-Gurkha (gold). Only genera that had a relative abundance greater than 1% in one or more samples were included.

https://doi.org/10.1371/journal.pone.0292645.g001
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abundance of 17% (Interquartile Range [IQR]: 0% to 59%). The genus Bacteroides was also

highly abundant in the samples with a median relative abundance of 14% (IQR: 1% to 31%).

All other genera composing the gut microbiota were found at median relative abundances less

than 10% in all samples.

Gut microbiota of Gurkha soldiers is less diverse than the gut microbiota of

non-Gurkhas

Diversity in the composition of the gut microbiota in Gurkha and non-Gurkhas were quanti-

fied using Shannon and Simpson diversity indices. Using species-level markers, the gut micro-

biota of Gurkhas had a significantly lower diversity (P < 0.05, for both indices) than the gut

microbiota of non-Gurkha soldiers (Fig 2). However, on the genus level there was no signifi-

cant difference in diversity (P = 0.084 for Shannon diversity; P = 0.16 for Simpson diversity)

between both groups (S2 Fig).

The gut microbiota composition is significantly different between Gurkha

soldiers and non-Gurkha soldiers

To further asses the differences in the gut microbiota between both groups we used non-metric

Multidimensional Scaling (NMDS) of the Bray-Curtis distance matrix generated from species-

Fig 2. Diversity analysis of species-level markers. A. Shannon diversity. B. Simpson diversity in Gurkha and non-Gurkha

soldiers using species-level markers. Statistical analysis was performed using the Wilcoxon rank-sum test.

https://doi.org/10.1371/journal.pone.0292645.g002
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level and genus-level abundance (Fig 3). This revealed a significant difference in the composi-

tion of the gut microbiota between Gurkhas and non-Gurkha soldiers, at both the species level

(P = 0.0178) and the genus level (P = 0.0483). Participant age and base of collection were non-

Fig 3. Microbiota composition analysis of Gurkhas and non-Gurkhas. Non-metric Multidimensional Scaling

(NMDS) distribution of the Bray-Curtis distance matrix generated from species-level abundance (panel A) and genus-

level abundance (panel B) is shown. Statistical testing of the differences in microbiota composition between the two

groups (panel A, P = 0.0178; panel B, P = 0.0483) was performed by running 10,000 instances of a permutational

multivariate analysis of variance (PERMANOVA). Stress: panel A: 0.19, panel B: 0.2. 50% confidence interval ellipses

are indicated. The ZymoBiomics Fecal Reference with TruMatrix Technology (Zymo Research, California, USA) was

included as a positive control.

https://doi.org/10.1371/journal.pone.0292645.g003
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significant factors at the species level (P = 0.1369, 0.2128) and the genus level (P = 0.1829,

0.2878).

To further characterise the differences in the composition of the gut microbiota, we used

MaAsLin 2 [20] to identify taxa that were specifically enriched in either of the two groups. We

found three genera and eight species that were significantly enriched in the non-Gurkha group

and one genus (Haemophilus) and one species (Haemophilus parainfluenzae) which were

enriched in the Gurkha group (Table 1).

Discussion

An individual’s microbiota can vary dramatically on a person-to-person basis, with a wide

array of influencing factors. Ethnicity has been identified as a factor in determining the com-

position of the gut microbiota, with populations of different ethnicities sharing the same geog-

raphy having notable differences in their composition of the gut microbiota [21, 22]. Many

factors, including differences in socioeconomic status, lifestyle, and environmental and dietary

factors, may explain how ethnicity can impact the composition of the gut microbiota between

different ethnic groups. We note that it is a limitation of our study that we did not collect data

on different potential drivers of microbiome composition.

In this pilot study, we observed significant differences in the gut microbiota of Gurkha sol-

diers and non-Gurkha soldiers in the British Army. Gurkhas had a lower diversity of their

microbiota and non-Gurkhas had significantly higher levels of several gut commensals from

the phyla Bacteroidetes and Firmicutes. The only taxon that was found to be enriched in the

Gurkha gut microbiota was Haemophilus parainfluenzae.
H. parainfluenzae is an opportunistic pathogen which is ubiquitously found in the human

upper respiratory tract [23], but is also commonly detected in the human gut microbiota [24].

The role of H. parainfluenzae in the gut is poorly characterised. Specific strains of H. parain-
fluenzae have been associated with gut inflammation and inflammatory bowel disease [25], but

its abundance is positively correlated with markers of nutritional and cardiometabolic health

[24]. Further studies may be needed to better characterise the function of H. parainfluenzae in

the gut microbiota.

Table 1. Summary of MaAsLin2-derived associations between taxa in the gut microbiota and the two groups of soldiers (Gurkha and non-Gurkha).

taxon (genus) coefficient standard error FDR-adjusted P-value

Asaccharobacter 1.05 0.29 0.0466

Parabacteroides 0.69 0.21 0.0466

Ruthenibacterium 0.60 0.19 0.0466

Haemophilus -0.62 0.19 0.0466

taxon (species)

Alistipes finegoldii 1.20 0.24 0.0023

Bacteroides faecis 0.76 0.17 0.0048

Firmicutes bacterium CAG 83 0.81 0.20 0.0111

Asaccharobacter celatus 1.05 0.29 0.0283

Bacteroides cellulosilyticus 0.51 0.14 0.0283

Parabacteroides distasonis 0.84 0.24 0.0283

Clostridium sp CAG 58 0.44 0.13 0.0357

Haemophilus parainfluenzae -0.79 0.24 0.0429

Ruthenibacterium lactatiformans 0.59 0.19 0.0455

The positive numbers under coefficient indicate taxa that are significantly (Benjamini-Hochberg adjusted P-value < 0.05) enriched in the non-Gurkha group, while

negative numbers indicate taxa that are enriched in the Gurkha group.

https://doi.org/10.1371/journal.pone.0292645.t001
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On the basis of the data reported here, we cannot determine whether the differences in the

gut microbiota between Gurkha and non-Gurkhas could be responsible for the differences in

the risk of traveller’s diarrhoea between both groups. While a higher gut microbiota diversity

is generally perceived as contributing to gut health [26], it is notable that in a study in 11

American soldiers the baseline microbiota diversity did not impact risk of diarrhoea upon

deployment in Central America [27].

Whilst the number of samples used in this initial study is low (n = 38), it is possible to

observe a split in the microbial composition of the microbiota of Gurkha versus non-Gurkha

soldiers. To fully characterise the gut microbiota’s role in providing resistance against travel-

ler’s diarrhoea in military personnel, observational studies of cohorts of soldiers during

deployment abroad will need to be performed. In addition, to better understand the drivers of

gut microbiota composition among ethnically diverse cohorts, additional information on diet

needs to be collected to determine the potential contribution of dietary factors in shaping the

gut microbiota.
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