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On the Witten index of 3d N = 2 unitary SQCD
with general CS levels

Cyril Closset and Osama Khlaif
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Edgbaston, Birmingham B15 2TT, United Kingdom

Abstract

We consider unitary SQCD, a three-dimensional N = 2 supersymmetric Chern-Simons-
matter theory consisting of one U(Nc)k,k+lNc

vector multiplet coupled to n f fundamental
and na antifundamental chiral multiplets, where k and l parameterise generic CS levels
for U(Nc) = (SU(Nc) × U(1))/ZNc

. We study the moduli space of vacua of this theory
with na = 0, for generic values of the parameters Nc, k, l, n f and with a non-zero Fayet-
Ilopoulos parameter turned on. We uncover a rich pattern of vacua including Higgs,
topological and hybrid phases. This allows us to derive a closed-form formula for the
flavoured Witten index of unitary SQCD for any n f ̸= na, generalising previously known
results for either l = 0 or n f = na. Finally, we analyse the vacuum structure of recently
proposed infrared-dual gauge theories and we match vacua across the dualities, thus
providing intricate new checks of those dualities. Incidentally, we also discuss a seem-
ingly new level/rank duality for pure CS theories with U(N)×U(N′) gauge group.
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1 Introduction

Supersymmetric quantum field theories often admit rich families of degenerate ground states
preserving supersymmetry – the vacuum moduli spaces. Given a supersymmetric theory T ,
many tools exist to characterise its moduli space of vacua, M[T ]. One such tool is the Witten
index, IW [1]. The index is essentially the Euler characteristic of the moduli space, appropri-
ately defined:

IW [T ] = χ (M[T ]) . (1.1)

In this work, we study the moduli space of vacua of the 3d N = 2 supersymmetric unitary
SQCD theory with generic CS levels. In particular, we compute its Witten index. This gener-
alises a number of previous results [2–5]. See also e.g. [6–17] for related works.

The Witten index is obtained as a trace of the fermion number operator (−1)F over the
Hilbert space of the theory compactified on a torus, and as such it only receives contributions
from the zero-energy states [1]. As written here, the index is only well-defined in the absence
of non-compact directions in moduli space – so that the ‘Euler characteristic’ (1.1) makes
sense. In this work, we are interested in 3d N = 2 field theories whose vacuum structure
depends continuously on a choice of ‘real masses’. The Witten index is then well-defined for
generic-enough real-mass deformations, and at the same time it is independent of the specific
choice of the masses [3]. In the geometric language, the mass deformation corresponds to an
‘equivariant’ deformation of M[T ], so that the index (1.1) remains well-defined. Equivalently,
we simply turn on fugacities for flavour symmetries when taking the trace over the Hilbert
space, hence IW [T ] is now called the flavoured Witten index:

IW [T ] = Tr
�

(−1)F yQF
�

, (1.2)

with y denoting the flavour fugacities for the flavour charges QF that commute with super-
symmetry.

Unitary SQCD[Nc , k, l, n f , na] is the 3d N = 2 supersymmetric gauge theory consisting
of a U(Nc)k,k+lNc

vector multiplet, where k and l parameterise the CS levels for the SU(Nc)
and U(1) factors, coupled to n f fundamental chiral multiplets and na antifundamental chi-
ral multiplets. In a previous work [5], we studied and clarified recently-proposed infrared
dualities [18, 19] which generalised well-known Seiberg-like [20] dualities from the l = 0
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case [21–23] to the general l ∈ Z case. In that work, we also computed the Witten index, in
principle, as the number of Bethe vacua of the theory compactified on a circle. However, the
Bethe vacua computation relied on Gröbner basis algorithms that are computationally inten-
sive, and they could not be used to give a closed-form formula for the index in general.

In this paper, we compute the index for unitary SQCD completely explicitly. Along the
way, we uncover an intricate structure of vacua at non-zero values of the Fayet-Iliopoulos (FI)
parameter. An explicit expression for the SQCD index was obtained in [5] only for the case
n f = na. Here we address the case n f ̸= na following a two-step strategy. First, we will show
that the index satisfies a recursion relation such that, for n f > na, the index is given by:

IW [Nc , k, l, n f , na] =
na
∑

j=0

�

na

j

�

IW [Nc − j, k, l, n f − na, 0] . (1.3)

Next, we will compute the index of SQCD with na = 0. This theory is very ‘geometric’ in nature
– in fact, for ‘small enough’ CS levels, the moduli space of vacua with positive FI parameters,
ξ > 0, is given by the Grassmannian manifold:

MHiggs = Gr(Nc , n f ) , (1.4)

and the index is then, literally, its Euler characteristic. In general, in addition to this Higgs
branch, there will be a rich structure of topological and hybrid Higgs-topological vacua, hence
the ‘moduli space’ M[T ] is really a union of ordinary Higgs branches and of ‘non-geometric’
vacua – namely, topological quantum field theories (TQFTs) in the guise of 3d N = 2 pure
Chern-Simons (CS) theories. Topological vacua of 3d N = 2 CS-matter theories [3] were
studied in closely related contexts in e.g. [16, 17]; 3d N = 1 versions of some of the non-
abelian topological and hybrid vacua discussed here also appear on domain walls of 4d N = 1
SQCD [24,25].

To carry out this computation, we will simply study the semi-classical vacuum equa-
tions [3]; those are the classical vacuum equations with one-loop corrections to the CS levels
and FI parameters. For generic n f and na, they take the form:

(σa −mi)Q
a
i = 0 , (−σa + em j) eQ

j
a = 0 ,

n f
∑

i=1

Q†i
a Qb

i −
na
∑

j=1

eQ†b
j
eQ j

a =
δa

b

2π
Fa(σ;ξ, m) ,

(1.5)

where mi , em j are real masses for the squarks Qi , eQ j , and Fa are specific linear functions. When
considering the case na = 0, we will then mainly focus on the case mi = 0 and ξ ̸= 0. (The real
masses mi correspond to SU(n f )-equivariant deformations of the Grassmannian (1.4) along
its isometries.) This allows us to fully determine the moduli space, except in the so-called
marginal case with |k| = n f

2 – in that case, whenever ξkl > 0, certain strongly-coupled vacua
are expected to contribute, as we will explain. In any event, we can compute the full Witten
index even in those cases.

As we vary the FI parameter from positive to negative values, the vacuum structure changes
dramatically but the Witten index is expected to remain the same [3], as indeed we confirm
by explicit computation when |k| ≠ n f

2 . For example, for particular choices of the CS levels
k and l, we could have a pure geometric Higgs branch (1.4) for ξ > 0, while we may obtain
a pure TQFT for ξ < 0. This observation generalises previous computations in the abelian
case [3]. It is also reminiscent of the standard Landau-Ginzburg/Calabi-Yau correspondence
for 2d GLSMs that flow to 2d SCFTs, which is also obtained by varying the (exactly marginal,
2d) FI parameter [26]. It would be interesting to explore this analogy further.

3
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Finally, we also consider the vacuum moduli spaces of the gauge theory that are conjectured
to be infrared dual to SQCD[Nc , k, l, n f , 0]. We find a perfect matching between vacua in the
two dual descriptions,1 which can be viewed as an intricate cross-check on those dualities.
Interestingly, the matching of the TQFT vacua between the two sides is only apparent, in
general, after taking into account certain infrared dualities for pure 3d N = 2 CS theories –
so-called level/rank dualities –, including some new level/rank dualities that we discuss below.
(Those new dualities follow implicitly from the general discussion in [27].)

The analysis presented here allows us to completely characterise the ‘geometric window’
for which a 3d GLSM to the Grassmannian Gr(Nc , n f ) exists – these are the theories without
any topological of hybrid vacua for ξ > 0. Those ‘Grassmannian theories’ have interesting
enumerative geometry interpretations [28–32] which we will revisit in future work [33].

This paper is organised as follows. In section 2, we first compute the Witten index of certain
unitary pure N = 2 CS theories, and we discuss their level/rank dualities. In section 3, we
recall the semi-classical description of 3dN = 2 SQCD[Nc , k, l, n f , na] and we give an overview
of the types of vacua that one can obtain in those theories (especially for na = 0); we also
review some well-known results in the abelian case. We then derive the recurrence relation
for the Witten index of SQCD[Nc , k, l, n f , na]. In section 4, we solve the semi-classical vacuum
equations for U(Nc)k,k+lNc

coupled to n f fundamental chiral multiplets. In section 5, we discuss
the matching of vacua implied by various 3d N = 2 infrared dualities. In appendix A, we
briefly discuss the non-supersymmetric versions of the level/rank dualities of section 2. Some
additional examples of matching across dualities are collected in appendix B. See also the
attached MATHEMATICA notebook, wherein all our results are implemented explicitly.

2 3d N = 2 pure Chern-Simons theories: Witten index and duali-
ties

In this section, we compute the Witten index of N = 2 supersymmetric pure Chern-Simons
theories with unitary gauge groups. We also introduce some level/rank dualities for those
theories, including an interesting duality for a U(N) × U(N ′) theory which will be useful in
later sections.

2.1 Witten index of CS theories with unitary gauge group

Consider the 3d N = 2 Chern-Simons theory:

U(N1)k1,k1+l1N1
× U(N2)k2,k2+l2N2

× · · · × U(Nn)kn,kn+lnNn
, (2.1)

where we allow all possible mixed CS levels ki j between different gauge groups, namely:

U(Ni)ki ,ki+li Ni
× U(N j

ki j

)k j ,k j+l j N j
, (2.2)

for i ̸= j. Let us first recall that we have the following decomposition into SU(N) and U(1)
factors:

U(N)k,k+lN
∼=

SU(N)k × U(1)N(k+lN)

ZN
. (2.3)

The N = 2 SU(N)k theory has a Witten index [2,34]:

IW [SU(N)k] =
�

|k| − 1
N − 1

�

, (2.4)

1At least for |k| ≠ n f
2 and l + sign(k) ̸= 0. The remaining special cases are left as challenges for the future.
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while for the U(N) theory we find [5]:

IW

�

U(N)k,k+lN

�

=
|k+ lN |

N

�

|k| − 1
N − 1

�

. (2.5)

The mixed Chern-Simons levels in (2.2) only involve the U(1) factors. In the normalisation
(2.3), this corresponds to:

U(1)Ni(ki+li Ni) × U(1
Ni N j ki j

)N j(k j+l j Ni) . (2.6)

Let us denote by K ≡ (Ki j) the matrix of CS levels for the abelian sector:

Ki j =

¨

Ni(ki + liNi) , if i = j ,

NiN jki j , if i ̸= j .
(2.7)

Index for the abelian theory. Recall that a U(1)K CS theory has a Witten index

IW [1, K] = |K | , (2.8)

which is of course a special case of (2.5). For any abelian CS theory with gauge group U(1)n

a matrix of CS levels K , the Witten index is the number of Bethe vacua, which is given by the
number of solutions to the system of equations:

qi(−x i)
Kii

∏

j ̸=i

x
Ki j

j = 1 , i = 1, · · · , n . (2.9)

Here qi is the fugacities for the topological symmetries and x i are the gauge variables, in the
conventions of [5,35]. Then, the Witten index is the absolute value of the determinant of the
CS level matrix K , which we write as:

IW [10 | K] = |det K | . (2.10)

This can be shown by a recursive argument on the number of U(1) factors.

Index for the non-abelian theory. Let us denote the Witten index of the general unitary CS
theory (2.1)-(2.2) by:

IW [N l |k]≡ IW









N1 l1 k1 k12 · · · k1n
N2 l2 k12 k2 · · · k2n
...

...
...

...
. . .

...
Nn ln k1n k2n · · · kn









. (2.11)

Then, given the above observations, we find that:

IW [N l |k] = |det K |
n
∏

i=1

1

N2
i

�

|ki| − 1
Ni − 1

�

, (2.12)

where K is defined as in (2.7). Of course, this reduces to (2.5) for n= 1.

2.2 Generalised N = 2 level/rank dualities

The U(N)k,k+lN N = 2 CS theory has a dual description [18]:

U(N)k,k+lN ←→ U(|k| − N)−k,−k+ε(k−N) × U(1
ε

)l+ε , (2.13)

5
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with ε≡ sign(k). Here the FI parameter on the electric (left-hand) side maps to an FI param-
eter for the U(1)l+ε factor on the magnetic (right-hand) side. In addition, on the magnetic
side, we also have the non-zero CS contact terms:

KRR =

¨

−(k− N)2 , if ε= 1 ,

N2 − 1 , if ε= −1 ,
Kg =

¨

−2k(k− N) , if ε= 1 ,

−2kN − 2 , if ε= −1 .
(2.14)

This is a special case of the Nii duality [18] which we further studied in [5]. It generalises
well-known level/rank dualities for pure CS theories [27], as can be shown by writing these
dualities in N = 0 language – for completeness, we discuss this in appendix A. Note that for
N = |k|, the dual description is abelian:

U(|k|)k,k+l|k| ←→ U(1)l+ε . (2.15)

Another interesting special case is for l = −ε, in which case the duality can be simplified to:

U(Nc)k,k+lN ←→ SU(|k| − N)−k . (2.16)

Correspondingly, the Witten index (2.5) specialises to:

IW [N −ε | k] =
�

|k| − 1
N D − 1

�

= IW

�

SU(N D)−k

�

, (2.17)

with N D = |k| − N .

An almost trivial U(1)× U(1) theory. Consider the abelian theory:

U(1)l+ε × U(1
l

)l+ε′ , (2.18)

with ε,ε′ equal to 1 or −1, and l ∈ Z. The Witten index is given by

IW = |(l + ε)(l + ε′)− l2|= 1 , (2.19)

where the last equality holds if ε = −ε′, as we assume in the following. Then we have a
unique Bethe vacuum. The Bethe equations read q(x ′)l(−x)l+ε = 1, q′x l(−x ′)l+ε

′
= 1, with

the unique Bethe vacuum given by:

x = (−q)l+ε
′
(q′)−l , x ′ = q−l(−q′)l+ε . (2.20)

Here x , x ′ and q, q′ denote the gauge parameter and the topological symmetry fugacities
U(1)T × U(1)T ′ , respectively. Using the 3d A-model, we can derive (most of) the CS contact
terms that remain in the dual description. This gives us the elementary duality:

U(1)l+ε × U(1
l

)l+ε′ ←→

¨

KT T = l + ε′ , KT ′T ′ = l + ε ,

KT T ′ = −l , KRR = 1 ,
(2.21)

up to some gravitational CS level Kg which we did not fully determine (see appendix A). For
l = 0, this gives us two decoupled elementary dualities for U(1)±1 (see [5] for a recent review).

An U(N)× U(N ′) level/rank duality. The level/rank duality (2.13) has an interesting gen-
eralisation for a gauge group U(N)× U(N ′). Setting ε = sign(k), ε′ = sign(k′) and assuming
ε= −ε′, we find:

U(N)k,k+lN × U(N ′

l

)k′,k′+lN ′

←→ U(|k| − N)−k,−k+l(|k|−N) × U(|k′| − N ′

l

)−k′,−k′+l(|k′|−N ′) ,
(2.22)

6
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where the FI parameters of the dual theory are related to the original FI parameters τ,τ′ as:

τD = −τ+ lε(τ−τ′) , τ′D = −τ
′ + lε′(τ′ −τ) , (2.23)

as well the following CS contact terms for the topological symmetries:2

KT T = l + ε′ , KT ′T ′ = l + ε , KT T ′ = −l . (2.24)

This duality also implies the equality:

IW

�

Nc l k l
N ′c l l k′

�

= IW

�

|k| − Nc l −k l
|k′| − N ′c l l −k′

�

, (2.25)

if ε+ ε′ = 0. This indeed follows from the explicit expression (2.12) for the Witten index.
The duality (2.22) can be derived using (2.13) and (2.21). Indeed, applying the duality

(2.13) subsequently to each gauge group factor on the electric side of (2.22), one finds:

U(|k| − Nc)−k,−k+ε(|k|−Nc) × U(
ε

1 )l+ε × U(
l

1 )l+ε′ × U(|k′| − N ′c
ε′

)−k′,−k′+ε′(|k′|−N ′c )
. (2.26)

The U(1)× U(1) sector can be simplified thanks to the elementary duality (2.21). Due to the
mixed CS couplings, the effective FI parameters for the U(1)× U(1) gauge group are:

τeff = τ+ ε
|k|−N
∑

a=1

ua , τ′eff = τ
′ + ε′

|k′|−N ′
∑

a=1

u′a , (2.27)

where ua, u′a denote the gauge parameters of the non-abelian factors in (2.26). Applying the
duality (2.21) then leads to (2.22). It is simplest to check this using the 3d A-model – that
is, on the 2d Coulomb branch of the 2d N = (2,2) field theory description obtained by circle
compactification [5]. Let us denote by u and u′ the sums in (2.27), so that τeff = τ+ εu and
τ′eff = τ

′ + ε′u′. Then the relevant part of the twisted superpotential reads:3

W =
ε

2
u2 +

ε

2
u2 +Wmagn(u, u′) , (2.28)

where the first two terms are the ‘l CS levels’ for the non-abelian factors in (2.26), and
Wmagn(u, u′) is the superpotential for the abelian factor after applying (2.21), which reads:

Wmagn(u, u′) =
l + ε′

2
(τ+ εu)2 +

l + ε
2
(τ′ + ε′u′)2 − l(τ+ εu)(τ′ + ε′u′) . (2.29)

Expanding out (2.28) and using εε′ = −1, we recover the CS levels shown in (2.22) and
(2.24).

3 Witten index and semi-classical vacua of unitary SQCD

In this section, we further comment on the Witten index of the N = 2 SQCD theory that we
studied in [5]. We show that the Witten index for an arbitrary number of fundamental and
antifundamental chiral multiples can be derived from the Witten index for SQCD with only
fundamental multiplets, which we will study thoroughly in section 4.

2There are also non-zero contact terms KRR and Kg , which we do not keep track of here.
3Here, for simplicity of notation, we omit the terms linear in u, u′ that arise from the U(1) CS levels [35].
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Unitary SQCD[Nc , k, l, n f , na] is the 3d N = 2 gauge theory with the gauge group
U(Nc)k,k+lNc

coupled to n f fundamental chiral multiplets and to na antifundemental chiral
multiplets. Its physics is governed, in part, by the ‘chirality parameter’:

kc ≡
1
2
(n f − na) . (3.1)

We have k + kc ∈ Z and l ∈ Z for consistency – see [5] for more details on our conventions.
In [5], we computed the Witten index in the case n f = na ≡ N f :

IW [Nc , k, l, N f , N f ] =











N f +|l|Nc
N f

�N f
Nc

�

, if k = 0 ,

∑N f

j=0
|k+l(Nc− j)|

|k|

�

N f

j

��

|k|
Nc − j

�

, if k ̸= 0 .
(3.2)

For N f = 0 (with k ̸= 0, Nc = N), this reduces to (2.5).

3.1 Semiclassical vacuum moduli space

The flavoured Witten index (1.2) of any 3d N = 2 supersymmetric gauge theory captures the
number of vacua of that theory deformed by real masses m = − 1

2π log |y| associated with the
flavour symmetry. Whenever the mass deformation is generic enough to lift all non-compact
branches of the vacuum moduli space, the Witten index is well-defined. Moreover, it is inde-
pendent of the specific mass deformation chosen [3].

Let Qa
i and eQ j

a denote the fundamental and antifundamental scalars in the chiral multiplets
of SQCD[Nc , k, l, n f , na]. With generic mass deformations (including the FI parameter ξ) and
upon diagonalising the real adjoint scalar, σ→ diag(σa), the semi-classical vacuum equations
read:

(σa −mi)Q
a
i = 0 , i = 1, · · ·, n f ,

�

−σa + em j

�

eQ j
a = 0 , j = 1, · · ·, na ,

n f
∑

i=1

Q†i
a Qb

i −
na
∑

j=1

eQ†b
j
eQ j

a =
δa

b

2π
Fa(σ;ξ, m) ,

(3.3)

with a = 1, · · · , Nc (and no summation implied). The piecewise-linear functions Fa read:

Fa(σ;ξ, m) = ξ+ kσa + l
Nc
∑

b=1

σb +
1
2

n f
∑

i=1

|σa −mi| −
1
2

na
∑

j=1

| −σa + em j| . (3.4)

These include the contribution from one-loop shifts to the effective CS levels and FI pa-
rameter [3]. Here we use a convenient notation where mi , em j are U(n f ) × U(na) pa-
rameters, which includes part of the gauge symmetry – the actual flavour symmetry being
U(n f )× U(na)/U(1)∼= SU(n f )× SU(na)× U(1)A, plus the topological symmetry U(1)T .4

Solving the vacuum equations (3.3)-(3.4) with generic mass parameters, we expect to find
only discrete solutions – in that case, the number of vacua would give the Witten index (1.2).
This coupled system of equations is closely related to the Bethe equations studied in [5], and
it is similarly complicated. For our purpose, it will be more useful to consider particular limits
on the masses such that the index remains well-defined. Doing this, we will encounter three
types of (semi-classical) vacua:

4Here, we are not being particularly careful about the global form of the flavour group. In the case na = 0, on
which we focus in this work, the full SU(n f ) group acts as a symmetry.
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(i) The Higgs vacua are compact moduli spaces MH , including the case of discrete vacua.
Any such compact branch MH contributes to the Witten index through its Euler charac-
teristic,

χ(MH) ⊂ IW . (3.5)

In particular, we will often encounter MH the Grassmannian manifold Gr(p, n), which
contributes a binomial coefficient:

IW [Gr(p, n)] = χ (Gr(p, n)) =

�

n
p

�

. (3.6)

Higgs vacua correspond to having the scalars Q, eQ non-vanishing.

(ii) The topological vacua consist of pure N = 2 supersymmetric Chern-Simons theories; this
is equivalent to having a 3d topological quantum field theory (TQFT) in the infrared, as
the gauginos are massive. In this paper, we will only encounter CS theories with unitary
gauge groups. Such TQFT sectors contribute to the Witten index through the non-zero
index of the N = 2 CS theory,

IW [TQFT] ⊂ I , (3.7)

which we studied in section 2. Topological vacua arise at fixed non-zero values of the
fields σa so that all chiral multiplets are massive and can be integrated out, leaving
behind an effective pure CS theory.

(iii) The Coulomb vacua are semi-classical vacua that open up where (part of) the non-abelian
gauge symmetry is restored (with vanishing effective CS levels). In this case, we have
continuous solutions for σa ̸= 0 and the semi-classical analysis is usually not reliable
– some strong-coupling effect may modify the picture entirely [36]. Hence, when such
vacua arise, we will have to make some ad-hoc conjectures about the corresponding
contribution to the index:

IW [strongly-coupled vacua] ⊂ IW . (3.8)

Moreover, in general we may have hybrid vacua where some of these possibilities arise simulta-
neously. In particular we will find many Higgs-topological vacua. These are simply cases where
there is a residual TQFT at every point on the Higgs branch, which we may view as a trivial
fibration TQFT→Mhybrid→MH .5 We denote such vacua by MH×TQFT. Their contribution
to the Witten index is simply the product of the geometric and TQFT contributions,

IW [Mhybrid] = χ(MH)IW [TQFT] ⊂ IW . (3.9)

We will discuss all these cases more thoroughly in the next section.

3.2 U(1)k with n f chiral multiplets of charge +1: a review

Before tackling the non-abelian case, it will be useful to review the computation of the index
for a U(1)k gauge theory coupled to n f chiral multiplets of charges +1 [3]. Recall that the
CS level k is quantised as k +

n f
2 ∈ Z. We consider the case with zero mass for the chiral

5In a general gauge theory, we could have a non-trivial fibration because different subgroups of the gauge
group might survive at different points on the Higgs branch. Here, at each solution for the σ’s and Q’s, we have a
standard Higgs mechanism and the TQFT arises from gauge fields that do not couple at all to the chiral multiplets
that obtain a VEV, hence the fibration is trivial.
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multiplet, but we assume that the FI parameter is non-zero. In that case, the semi-classical
vacuum equations (3.3) become:

σQ i = 0 , i = 1, · · · , n f ,
n f
∑

i=1

Q†
i Q i =

1
2π

F(σ) , F(σ)≡ ξ+ kσ+
n f

2
|σ| .

(3.10)

Higgs vacua: The first equation in (3.10) implies that Higgs vacua may only arise at the origin
of the would-be Coulomb branch (σ = 0). Then, the Higgs branch is governed by the standard
D-term equation:

n f
∑

i=1

Q†
i Q i = ξ . (3.11)

There are no solutions for ξ < 0, so let us assume that ξ > 0, for now. Then, upon quotienting
by the U(1) gauge group, we have a standard Kähler quotient description of the projective
space CPn f −1. Its contribution to the total Witten index is thus:

IW, I

�

1, k, 0, n f , 0
�

= χ
�

CPn f −1
�

= n f . (3.12)

In anticipation of the next section, we call this a solution of type I. Note that this solution exists
for any value of k.

Topological vacua: These arise if Q = 0 and σ ̸= 0, in which case we need to find non-trivial
solutions to the equation:

F(σ) = ξ+
�

k+ sign(σ)
n f

2

�

σ = 0 . (3.13)

We shall call such solutions the type III solutions.6 Let us start with the non-marginal case,
that is with |k| ≠ n f

2 . Assuming that ξ > 0, we have two solutions (depending on the sign of
σ):







σ+ = − ξ

k+
nf
2

> 0 , iff k+
n f
2 < 0 ,

σ− = − ξ

k−
nf
2

< 0 , iff k− n f
2 > 0 .

(3.14)

We will use the notation σ± for solutions for σ such that σ+ > 0 and σ− < 0, respectively. We
then have the following effective abelian CS theories:

Mξ>0
III

�

1, k, 0, n f , 0
�

= Θ
�

−k−
n f

2

�

U(1)
k+

nf
2
⊕Θ

�

k−
n f

2

�

U(1)
k−

nf
2

. (3.15)

Here and in the following, we find it convenient to use the Heaviside step function:

Θ(x)≡

¨

1 , if x > 0 ,

0 , if x ≤ 0 ,
(3.16)

to keep track of constraints on the parameters. (In the present case, we have a TQFT contri-
bution U(1)

k±
nf
2

for k < − n f
2 and k >

n f
2 , respectively, and no TQFT if |k| < n f

2 . For |k| = n f
2 ,

there is a naive U(1)0 contribution which is lifted by the FI term.) As discussed around (2.8),
the Witten index for the U(1)K CS theory is equal to |K |, hence the vacua (3.15) contribute:

Iξ>0
W, III

�

1, k, 0, n f , 0
�

=

¨

|k| − n f
2 , if |k|> n f

2 ,

0 , if |k|< n f
2 ,

(3.17)

6In the non-abelian case, we will also find Higgs-topological vacua, which will be the type II solutions.
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to the total index of the abelian theory. We must also carefully treat the marginal cases,
k = ± n f

2 , in which case we find the solutions

σ± = ∓
ξ

n f
, iff ξ < 0 . (3.18)

Hence there are no topological solutions for ξ > 0.

The full Witten index. Adding the contributions (3.12) and (3.17) in the regime ξ > 0, one
finds:

IW

�

U(1)k ⊕ n f □
�

=

¨

|k|+ n f
2 , if |k| ≥ n f

2 ,

n f , if |k|< n f
2 .

(3.19)

As already mentioned, the index is independent of the mass deformation as long as all non-
compact directions of the moduli space are lifted. If we now consider the case ξ < 0, there
are no Higgs vacua but we find the following topological vacua:







σ+ = − ξ

k+
nf
2

> 0 , iff k+
n f
2 > 0 ,

σ− = − ξ

k−
nf
2

< 0 , iff k− n f
2 < 0 ,

(3.20)

as well as the vacua (3.18) in the marginal cases. Hence we have:

Mξ<0
III

�

1, k, 0, n f , 0
�

= Θ
�

k+
n f

2

�

U(1)
k+

nf
2
⊕Θ

�

−k+
n f

2

�

U(1)
k−

nf
2

, (3.21)

which indeed reproduces (3.19).

3.3 Recursion relation for the flavoured Witten index

Let us now consider the Witten index of SQCD[Nc , k, l, n f , na] with n f ≥ na, without loss of
generality.7 The index with n f = na is given by (3.2), hence we shall focus on the ‘chiral’ case
n f > na (that is, kc > 0). We will show that the Witten index satisfies the recursion relation:

IW [Nc , k, l, n f , na] = IW [Nc , k, l, n f − 1, na − 1] + IW [Nc − 1, k, l, n f − 1, na − 1] . (3.22)

Derivation. Assuming that na > 0, consider the U(1)n f
× U(1)na

⊂ U(n f ) × U(na) flavour

symmetry under which the chiral multiplets Qn f
and eQna are charged, and let us turn on a

large mass m for the diagonal U(1) ⊂ U(1)n f
× U(1)na

. Then, the vacuum equations take the
form:

(σa −m)Qa
n f
= 0 , (−σa +m) eQna

a = 0 ,

σa Qa
i = 0 , i = 1, · · ·, n f − 1 , σa eQ

j
a = 0 , j = 1, · · ·, na − 1 ,

n f
∑

i=1

Q†i
a Qb

i −
na
∑

j=1

eQ†b
j
eQ j

a =
δa

b

2π
Fa(σ) , Fa(σ, m)≡ ξ+ (k+ sign(σa)kc)σa + l

Nc
∑

b=1

σb ,

(3.23)

with kc ≡
1
2(n f − na). More precisely, we assume that |mi|, |em j| ≪ |m| for i ̸= n f , j ̸= na,

so we may ignore those small masses for simplicity of notation. In this limit, the solutions
decomposes into two disjoint families. Firstly, we have the solutions with |σa| ≪ |m|, in which
case the vacuum equations correspond to the low-energy effective field theory:

U(Nc)k,k+lNc
coupled with (n f − 1) □⊕ (na − 1) □ . (3.24)

7This also gives us the result for na > n f since IW [Nc , k, l, n f , na] = IW [Nc , k, l, na, n f ].
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Indeed, the large real mass m allows us to integrate out the flavour pair Qn f
, eQna , and the CS

levels do not change in that particular limit. Secondly, we should consider potential solutions
with σNc

≈ m. In that limit, we Higgs the gauge group to:

U(Nc) −→ U(Nc − 1)k,k+lNc
× U(1

l

)keff
, (3.25)

At low energy, there are still n f − 1 fundamental chiral multiplets and na − 1 antifundamen-
tal chiral multiplets charged under the U(Nc − 1) factor, while the chiral multiplets Qa

n f
, eQna

a

(a < Nc) charged under U(Nc − 1) are integrated out as above. On the other hand, the fields
QNc

n f
, eQna

Nc
remain light, thus contributing one flavour (i.e. two chiral multiplets of charge ±1)

to the abelian sector. Moreover, integrating out all the massive fields leads to a shift of the
abelian CS level according to:

keff = k+ l + sign(σNc
)kc . (3.26)

We have σNc
= m + δ, with δ very small by assumption. Naively, we might think that the

U(1) sector in (3.25) would contribute non-trivially to the Witten index, as the Witten index
of a U(1)keff

theory with one flavour is 1+ |keff|. However, this includes |keff| topological vacua
which would arise at parametrically large values of δ; this would violate our assumption and
therefore we should not count those putative vacua [3]. As far as computing the Witten index
is concerned, therefore, the second class of solutions is isomorphic to the number of vacua for
the partially Higgsed theory:

U(Nc − 1)k,k+lNc
coupled with (n f − 1) □⊕ (na − 1) □ . (3.27)

In this way, we just derived the advertised recursion relation (3.22). It can be also be derived,
completely analogously, by looking at particular limits of the Bethe equations [5,37].

Witten index: the general case. Using the recursion relation (3.22) and assuming that
n f > na, we find the following explicit expression for the index:

IW [Nc , k, l, n f , na] =
na
∑

j=0

�

na

j

�

IW [Nc − j, k, l, n f − na, 0] . (3.28)

Thus, to compute IW [Nc , k, l, n f , na] in general, all we have left to do is to explicitly compute
IW [Nc , k, l, n f , 0], namely the Witten index for ‘chiral’ SQCD with only fundamental matter.
This is the theory we will study in the rest of this paper.

4 Witten Index for U(Nc)k,k+lNc
with n f fundamentals

Given the previous discussion, we now focus on the U(Nc)k,k+lNc
gauge theory with n f funda-

mental chiral multiplets. Setting the masses to zero and turning on a non-zero FI term, the
semi-classical vacuum equations (3.3)-(3.4) reduce to:

σa Qa
i = 0 , i = 1, · · ·, n f ,

n f
∑

i=1

Q†i
a Qb

i =
δa

b

2π
Fa(σ) , Fa(σ) = ξ+ kσa + l

Nc
∑

b=1

σb +
n f

2
|σa| ,

(4.1)

with a = 1, · · · , Nc . In the abelian case (Nc = 1), the solutions were discussed in section 3.2.
As we will now show, the structure of the vacuum with ξ ̸= 0 in the non-abelian case is rather
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intricate, especially for non-zero values of l. Let us first explain the general structure of the
solution, before discussing it in more details – to be pedagogical, we will first analyse the U(2)
theory in subsection 4.1 before giving the general U(Nc) result in subsection 4.2.

Higgs vacuum (Type I): the complex Grassmannian. The simplest solutions are for σa = 0,
∀a, which we call the Type I vacua. This corresponds to the solution to the D-term relation:

n f
∑

i=1

Q†i
a Qb

i =
δa

b

2π
ξ , (4.2)

modulo U(Nc) gauge transformations. For ξ > 0, this famously gives us the complex Grass-
mannian manifold Gr(Nc , n f ) (see e.g. [28]), while there are no solution for ξ < 0. We write
this vacuum and its contribution to the Witten index as:

MI = Θ(ξ)Gr(Nc , n f ) , IW, I = Θ(ξ)

�

n f
Nc

�

. (4.3)

For general values of the CS levels k, l, there will be many more topological and Higgs-
topological vacua, as well as some strongly-coupled vacua. As already mentioned in [5], the
geometric contribution (4.3) provides a lower bound for the Witten index. This is because all
other vacua that we find (at ξ > 0) are bosonic, as we will see, so they all contribute to the
index with a positive sign.

Higgs-topological (Type II) and topological vacua (Type III). All such vacua arise as so-
lutions with σa ̸= 0 for at least some σa ’s. Due to the residual gauge transformations that
permutes the σ’s, we only need to specify how many σ’s are zero and how many are non-zero.
We encounter the following four possibilities:

Type II,a: What we call Type II vacua are the solutions such that some but not all σ’s vanish.
We then pick σa = 0 for a = 1, · · · , Nc − p, and σa′ ̸= 0 for a′ = Nc − p + 1, · · · , Nc , for
0< p < Nc . In the Type II,a case, we choose the σa′ ’s to all have the same sign. We then
obtain a hybrid Higgs-topological vacuum Gr(Nc − p)×U(p), where U(p) denotes some
pure CS theory with gauge group U(p).

Type II,b: These are the Type II vacua such that, out of p + q > 0 non-zero σ’s, we choose
p of them to be positive and q of them to be negative, which would lead to a Higgs-
topological vacuum Gr(Nc − p− q)× U(p)× U(q). In the end, it will turn out that there
are no such vacua in our theory. We should note that some of these ‘Higgs-topological
vacua’ are actually ordinary Higgs vacua – this occurs whenever the TQFT sector is (dual
to) a trivial theory with a single state.

Type III,a: What we call Type III vacua are topological vacua, which arise when all the σ’s are
non-zero. Type III,a vacua corresponds to choosing all σa ’s to have the same sign, in
which case we obtain an effective U(Nc) CS theory.

Type III,b: For these vacua, we choose p of the σ’s to be positive, and Nc − p of them to be
negative, which then leaves us with an effective U(p)× U(Nc − p) CS theory.

Strongly-coupled vacua (Type IV). Finally, we have to address the logical possibility that
there might exist strongly-coupled vacua at small values of σ. By comparing our computa-
tion to the Bethe-vacua counting of [5], we find that such vacua arise whenever there ex-
ists Coulomb vacua in the semi-classical analysis (see section 3.1). Each such semi-classical
Coulomb branch corresponds to setting Nc − p σ’s to zero, and having an effective CS level 0
for some SU(p) ⊂ U(p) ⊆ U(Nc) unhiggsed subgroup that may appear at some values of the
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σ’s. The effective 3d N = 2 SU(p)0 gauge theory without matter does not have any stable vac-
uum [36]. However, we expect that, in those cases, there exists additional, strongly-coupled
supersymmetric vacua that survive near the origin of the Coulomb branch (which is otherwise
lifted non-perturbatively). These ‘true Type IV’ vacua are not captured by our analysis, but we
are nonetheless able to derive their contribution to the index in various ways (in particular
by computing the index for either sign of the FI parameter; see also section 5.3 for the dual
perspective).

4.1 U(2)k,k+2l with n f fundamentals

Let us first consider the U(2)k,k+2l gauge theory with n f fundamentals. We wish to solve the
vacuum equations:

σa Qa
i = 0 , a = 1, 2 , i = 1 , · · ·, n f ,

n f
∑

i=1

Q†i
a Qb

i =
δa

b

2π
Fa(σ) , Fa(σ) = ξ+ kσa + l(σ1 +σ2) +

n f

2
|σa| .

(4.4)

Let us now consider all possible solutions to these equations. The Type I solution is as discussed
above – we have a Grassmannian manifold Gr(2, n f ) if ξ > 0, which contributes:

IW, I[2, k, l, n f , 0] = Θ(ξ)

�

n f
2

�

= Θ(ξ)
n f (n f − 1)

2
. (4.5)

There are also many possible Higgs-topological and topological vacua, as well as potential
strongly-coupled vacua if |k|= n f

2 , as we will now discuss.

Type II vacua. If we assume that σ1 = 0 and σ2 ̸= 0 in (4.4), we have to solve the equations:

2π
n f
∑

i=1

Q†i
1 Q1

i = F1(σ) = ξ+ lσ2 > 0 , F2(σ) = ξ+
�

k+ l + sign(σ2)
n f

2

�

σ2 = 0 . (4.6)

Note the inequality F1(σ)> 0, which is necessary for the Higgs-branch CPn f −1 to exists, while
the solutions to F2(σ) = 0 correspond to TQFTs (U(1) CS theories). Let us first observe that
we cannot obtain any solution in the case k+ l + sign(σ1)

n f
2 = 0, since ξ ̸= 0 by assumption.

(Similar cases will appear repeatedly in the following analysis, and we will not discuss them
explicitly.) Now, at non-zero values on the real line σ2, we have two solutions analogous to
(3.14), namely:







σ+2 = −
ξ

k+l+
nf
2

> 0 , iff sign(ξ)
�

k+ l +
n f
2

�

< 0 and k+
n f
2 < 0 ,

σ−2 = −
ξ

k+l−
nf
2

< 0 , iff sign(ξ)
�

k+ l − n f
2

�

> 0 and k− n f
2 > 0 ,

(4.7)

where the other inequalities above arise from demanding the volume of the Higgs branch to
be positive.

This gives us the second component of the moduli space of vacua of the U(2) theory:

MII[2, k, l, n f , 0] = Θ
�

−k−
n f

2

�

Θ
�

ξ
�

−k− l −
n f

2

��

CPn f −1 × U(1)
k+l+

nf
2

⊕Θ
�

k−
n f

2

�

Θ
�

ξ
�

k+ l −
n f

2

��

CPn f −1 × U(1)
k+l−

nf
2

,
(4.8)

which contributes to the Witten index as:

IW, II[2, k, l, n f , 0] = Θ
�

−k−
n f

2

�

Θ
�

ξ
�

−k− l −
n f

2

��

n f

�

�

�k+ l +
n f

2

�

�

�

+Θ
�

k−
n f

2

�

Θ
�

ξ
�

k+ l −
n f

2

��

n f

�

�

�k+ l −
n f

2

�

�

� .
(4.9)
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Type III vacua. Next, we consider the topological vacua. For the Type III,a solutions, we
choose σ1,σ2 to be of the same sign. It then turns out that σ1 = σ2, and we find the two
solutions:







σ1 = σ2 = σ+ ≡ −
ξ

k+2ℓ+
nf
2

> 0 , if sign(ξ)
�

k+ 2ℓ+
n f
2

�

< 0 ,

σ1 = σ2 = σ− ≡ −
ξ

k+2ℓ−
nf
2

< 0 , if sign(ξ)
�

k+ 2ℓ− n f
2

�

> 0 ,
(4.10)

which correspond to the following topological vacua:

MIII,a[2, k, l, n f , 0] =

Θ
�

ξ
�

−k− 2l −
n f

2

��

U(2)
k+

nf
2 ,k+

nf
2 +2l

⊕Θ
�

ξ
�

k+ 2l −
n f

2

��

U(2)
k−

nf
2 ,k−

nf
2 +2l

.
(4.11)

These vacua contribute to the Witten index according to (2.5), namely:

IW, III,a[2, k, l, n f , 0] =

Θ
�

ξ
�

−k− 2l −
n f

2

��

IW

�

2 l k+
n f

2

�

+Θ
�

ξ
�

k+ 2l −
n f

2

��

IW

�

2 l k− n f

2

�

,

(4.12)
where we used the notation (2.11). We may also have Type III,b vacua with σ1 > 0 and
σ2 < 0, in which case the vacuum equations (4.4) reduce to:

F(σ1) = ξ+
�

k+
n f

2

�

σ1 + l(σ1 +σ2) = 0 ,

F(σ1) = ξ+
�

k−
n f

2

�

σ1 + l(σ1 +σ2) = 0 ,
(4.13)

which have a unique solution:

σ1 = −ξ
k− n f

2
�

k+
n f
2

� �

k− n f
2

�

+ 2kl
> 0 , σ2 = −ξ

k+
n f
2

�

k+
n f
2

� �

k− n f
2

�

+ 2kl
< 0 . (4.14)

The inequalities constraining the appearance of this solution can be simplified to:

|k|<
n f

2
, ξ

�

k2 + 2kl −
1
4

n2
f

�

> 0 . (4.15)

Thus we have the vacua:

MIII,b[2, k, l, n f , 0] =

Θ
�n f

2
− |k|

�

Θ

�

ξ

�

k2 + 2kl −
1
4

n2
f

��

U(1)
k+l+

nf
2
× U(1

l

)
k+l−

nf
2

. (4.16)

Using the result (2.10) for abelian CS theories, we have the index contribution:

IW, III,b

�

2, k, l, n f , 0
�

=

Θ
�n f

2
− |k|

�

Θ

�

ξ

�

k2 + 2kl −
1
4

n2
f

��

IW

�

1 0 k+ l +
n f

2 l
1 0 l k+ l − n f

2

�

.
(4.17)

Type IV vacua. Finally, we have to be careful about the ‘marginal case’ |k|= n f
2 , in which case

we can have continuous Coulomb branch solutions. Consider first the case k =
n f
2 . We have a

Type IV,a solution corresponding to F1(σ) = F2(σ) = 0 with σ1 < 0, σ2 < 0:

σ1 +σ2 = −
ξ

l
< 0 , iff ξl > 0 . (4.18)
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Table 1: Witten index for U(2)k,k+2l with n f = 4 fundamentals, for some values of
k, l. The case with the minimal value IW = 6 are given in bold. The contributions
from Type IV vacua when ξ > 0 are shown in red.

k\l −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

0 15 14 13 12 11 10 9 8 7 6 6 6 7 8 9 10 11 12 13 14 15
1 23 21 19 17 15 13 11 9 7 6 6 6 7 9 11 13 15 17 19 21 23

2 30 27 24 21 18 15 12 9 6 6 6
6 6 6 6 6 6 6 6 6 6
+3 +6 +9 +12 +15 +18 +21 +24 +27 +30

3 36 32 28 24 20 16 12 8 6 6 10 14 18 22 26 30 34 38 42 46 50
4 41 36 31 26 21 16 11 6 6 10 15 20 25 30 35 40 45 50 55 60 65
5 45 39 33 27 21 15 9 6 10 15 21 27 33 39 45 51 57 63 69 75 81
6 48 41 34 27 20 13 6 10 14 21 28 35 42 49 56 63 70 77 84 91 98
7 50 42 34 26 18 10 10 14 20 28 36 44 52 60 68 76 84 92 100 108 116
8 51 42 33 24 15 10 14 18 27 36 45 54 63 72 81 90 99 108 117 126 135
9 51 41 31 21 15 14 18 25 35 45 55 65 75 85 95 105 115 125 135 145 155

10 50 39 28 21 14 18 22 33 44 55 66 77 88 99 110 121 132 143 154 165 176

An analogous solution exists in the case k = − n f
2 if ξl < 0. In either case, we find some

continuous ‘SU(2) Coulomb branch’ spanned by σ1 − σ2 ∈ R. This would naively render
the Witten index ill-defined. Here, however, we effectively have an SU(2)0 gauge theory at
low energy, thus we expect this Coulomb branch to be lifted non-perturbatively [36]. There
remains the possibility that some strongly-coupled vacua could survive near σ1 = σ2 = 0, and
we will thus make a conjecture for their contribution to the Witten index.

In fact, for any fixed CS level l ∈ Z, the Type IV vacua only arise for one sign of ξ. Hence,
at any given value of the CS levels, we can simply consider the appropriate sign for ξ in order
to compute the Witten index in terms of the vacua of Type I, II and III only. Since the index
should be the same for either sign of ξ, this allows us to derive the necessary contribution
from Type IV vacua:

IW, IV

�

2, k, l, n f , 0
�

= δ
k,

nf
2
Θ(ξl) |l|(n f − 1) +δ

k,−
nf
2
Θ(−ξl) |l|(n f − 1) . (4.19)

On the other hand, we can only speculate on the nature of the corresponding vacua MIV – see
also the discussion in section 5.3.

The full Witten index. Summing up all the above contributions, the final answer reads:

IW

�

2, k, l, n f , 0
�

= IW, I

�

2, k, l, n f , 0
�

+ IW, II

�

2, k, l, n f , 0
�

+ IW, III,a

�

2, k, l, n f , 0
�

+ IW, III,b

�

2, k, l, n f , 0
�

+ IW, IV

�

2, k, l, n f , 0
�

.
(4.20)

This explicit formula can be compared to the numerical counting of Bethe vacua using Gröbner
basis methods [5], and we find perfect agreement. As an example, consider the U(2)k,k+2l
theory with 4 fundamentals. Picking ξ > 0, the Type I vacua contributes χ(Gr(2, 4)) = 6 and
we then have a number of Type II, III, IV vacua, as well as some Type IV vacua for k = 2, as
indicated in the table 1. This exactly reproduces table 2 of [5].

Preliminary comments on the phase transition at ξ = 0. While the index is the same for
ξ > 0 and ξ < 0, the structure of the vacuum changes in intricate ways as we change the sign
of the FI parameter. As mentioned in the introduction, this is an interesting 3d analogue of
the 2d CY/LG correspondence. From our analysis above, we have an explicit form of the full
vacuum moduli space M for each sign of ξ (except when Type IV vacua arise). We show some
examples of this in table 2. For instance, looking at the first line with (k, l) = (0,10), for ξ > 0
we have a Higgs and a topological vacuum, which contribute to the Witten index as:

IW [Gr(2, 4)] + IW

�

U(2)−2,18

�

= 6+ 9= 15 , (4.21)
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Table 2: Moduli spaces of vacua for U(2) theory coupled with 4 fundamental mul-
tiplets and different values of the levels k and l. We include both phases of ξ, the
positive and negative one.

k l ξ > 0 phase ξ < 0 phase

0 10 Gr(2,4)⊕ U(2)−2,18 U(2)2,22 ⊕ U(1)12 × U(1
10

)8

1 3 Gr(2,4)⊕ U(1)6 × U(1
3

)2 U(2)3,9

3 −2 Gr(2, 4) CP3 × U(1)−1 ⊕ U(2)5,1

4 7 Gr(2,4)⊕CP3 × U(1)9 ⊕ U(2)2,16 U(2)6,20

5 −6 Gr(2,4)⊕ U(2)7,−5 CP3 × U(1)−3 ⊕ U(2)3,−9

6 −4 Gr(2, 4) U(2)4,−4

7 −9 Gr(2,4)⊕ U(2)9,−9 CPn f −1 × U(1)−4 ⊕ U(2)5,−13

8 8 Gr(2,4)⊕CP3 × U(1)14 ⊕ U(2)6,22 U(2)10,26

9 10 Gr(2,4)⊕CP3 × U(1)17 ⊕ U(2)7,77 U(2)11,31

10 5 Gr(2,4)⊕CP3 × U(1)13 ⊕ U(2)8,18 U(2)12,22

while the ξ < 0 phase consists of two topological vacua:

IW

�

U(2)2,22

�

+ IW



U(1)12 × U(1
10

)8



= 11+ 4= 15 . (4.22)

Note also that, for general values of (k, l), we can have hybrid Higgs-topological vacua for
either sign of ξ, while the pure Higgs branch only exists for ξ > 0.

4.2 U(Nc)k,k+lNc
with n f fundamentals

Let us now discuss the complete solutions to (4.1) in the general case. Following the general
discussion above, the Type I solution is given by (4.3). Let us now discuss all the other classes
of solutions.

Type II vacua. Let us take the first Nc − p σa ’s to be vanishing, and the last p to be nonzero.
In this case, we have the following set of equations (4.1):

n f
∑

i=1

Q†i
a Qb

i =
δb

a

2π

 

ξ+ l
Nc
∑

a′=Nc−p+1

σa′

!

, a, b = 1, · · · , Nc − p ,

Fa′(σ) = ξ+
�

k+
n f

2

�

σa′ + l
Nc
∑

b′=Nc−p+1

σb′ = 0 , a′ = Nc − p+ 1, · · · , Nc .
(4.23)

Let us first assume that all the non-vanishing σ’s are positive and that k+
n f
2 ̸= 0. In that case,

the second line in (4.23) implies that all the non-vanishing σ’s are equal:

σNc−p+1 = σNc−p+2 = · · ·= σNc
≡ σ+ , (4.24)
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so that (4.23) reduces to:

n f
∑

i=1

Q†i
a Qb

i =
δb

a

2π

�

ξ+ plσ+
�

, a, b = 1, · · · , Nc − p ,

F+(σ)≡ ξ+
�

k+ pl +
n f

2

�

σ+ = 0 .
(4.25)

We then have a single Higgs-topological vacuum with the solution:

σ+ = −
ξ

k+ pl +
n f
2

> 0 , iff sign(ξ)
�

k+ pl +
n f

2

�

< 0 and k+
n f

2
< 0 , (4.26)

cooresponding to a low-energy effective CS theory U(p)
k+

nf
2 ,k+

nf
2 +pl

at every point on the

Higgs branch Gr(Nc − p, n f ) that arises from solving the first set of equations in (4.25). The
last inequality in (4.26) comes from requiring that the volume of the Grassmannian manifold
is positive.

There is also a similar solution where all the the non-vanishing eigenvalues are chosen to
be negative (they are then equal as long as k− n f

2 ̸= 0), with:

σ− = −
ξ

k+ pl − n f
2

< 0 , iff sign(ξ)
�

k+ pl −
n f

2

�

> 0 and k−
n f

2
> 0 . (4.27)

In summary, choosing all possible values of p, we have the following Type II,a vacua:

MII

�

Nc , k, l, n f , 0
�

=

Θ
�

−k−
n f

2

�
Nc−1
⊕

p=1

Θ
�

ξ
�

−k− pl −
n f

2

��

Gr(Nc − p, n f )× U(p)
k+

nf
2 ,k+

nf
2 +pl

⊕Θ
�

k−
n f

2

�
Nc−1
⊕

p=1

Θ
�

ξ
�

k+ pl −
n f

2

��

Gr(Nc − p, n f )× U(p)
k−

nf
2 ,k−

nf
2 +pl

. (4.28)

They contribute to the index as:

IW, II

�

Nc , k, l, n f , 0
�

=

Θ
�

−k−
n f

2

�

Nc−1
∑

p=1

Θ
�

ξ
�

−k− pl −
n f

2

��

�

n f

Nc − p

�

IW

�

p l k+
n f
2

�

+Θ
�

k−
n f

2

�

Nc−1
∑

p=1

Θ
�

ξ
�

k+ pl −
n f

2

��

�

n f

Nc − p

�

IW

�

p l k− n f
2

�

.

(4.29)

As we mentioned at the begining of this section, one should also consider the possibility of
having some of the non-vanishing σ’s to be positive and the other being negative. In this case,
we would get Type II,b vacua Gr(Nc − p − q, n f ) × U(p) × U(q). It turns out, however, that
in this case the conditions for the TQFTs to appear and for the Grassmannian variety to be of
positive size are not mutually compatible, thus there are no such vacua.

Type III vacua. Taking all the σ’s to be non-zero, we obtain various topological vacua. For
instance, if all the σa ’s are assumed to be positive, then from (4.1) we have:

Fa(σ) = ξ+
�

k+
n f

2

�

σa + l
Nc
∑

b=1

σb = 0 , a = 1, · · · , Nc . (4.30)
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Any such solution has σ1 = · · ·= σNc
≡ σ+ (assuming k+

n f
2 ̸= 0), and we find:

σ+ = −
ξ

k+ lNc +
n f
2

> 0 , iff sign(ξ)
�

k+ lNc +
n f

2

�

< 0 . (4.31)

Similarly, for σa < 0 (and assuming k− n f
2 ̸= 0), we obtain a solution:

σ− = −
ξ

k+ lNc −
n f
2

, iff sign(ξ)
�

k+ lNc −
n f

2

�

> 0 . (4.32)

These two solutions exhausts the Type III,a vacua, which are given by:

MIII,a[Nc , k, l, n f , 0] = Θ
�

ξ
�

−k− lNc −
n f

2

��

U(Nc)k+ nf
2 ,k+

nf
2 +lNc

⊕ Θ
�

ξ
�

k+ lNc −
n f

2

��

U(Nc)k− nf
2 ,k−

nf
2 +lNc

,
(4.33)

which contribute to the Witten index as:

IW, III,a[Nc , k, l, n f , 0] = Θ
�

ξ
�

−k− lNc −
n f

2

��

IW

�

Nc l k+
n f
2

�

+ Θ
�

ξ
�

k+ lNc −
n f

2

��

IW

�

Nc l k− n f
2

�

.
(4.34)

As for the Type III,b solutions, they are the solutions to the following equations:

Fa(σ) = ξ+
�

k+
n f

2

�

σa + l
Nc
∑

b=1

σb = 0 , a = 1, · · · , p ,

Fa′(σ) = ξ+
�

k−
n f

2

�

σa′ + l
Nc
∑

b

σb = 0 , a′ = p+ 1, · · · , Nc ,

(4.35)

where we took the first p σ’s to be of positive sign and the rest to be negative. It again follows
that σa = σ+ and σa′ = σ− (assuming |k| ̸= n f

2 ), so that (4.35) simplifies to:

ξ+
�

k+ pl +
n f

2

�

σ+ + (Nc − p)lσ− = 0 ,

ξ+
�

k+ (Nc − p)l −
n f

2

�

σ− + plσ+ = 0 ,
(4.36)

and we have the unique solution:

σ+ = −
ξ
�

k− n f
2

�

L(p, Nc , k, l, n f )
> 0 and σ− = −

ξ
�

k+
n f
2

�

L(p, Nc , k, l, n f )
< 0 , (4.37)

where we defined the quantity:

L(p, Nc , k, l, n f )≡
�

k+ pl +
n f

2

��

k+ (Nc − p)l −
n f

2

�

− p(Nc − p)l2 . (4.38)

Then, the corresponding Type III,b topological vacua are:

MIII,b[Nc , k, l, n f , 0] = Θ
�n f

2
− |k|

�
Nc−1
⊕

p=1

Θ
�

ξL(p, Nc , k, l, n f )
�

U(p)k+ nf
2 ,k+

nf
2 +pl × U(Nc − p

l

)
k−

nf
2 ,k−

nf
2 +(Nc−p)l

, (4.39)
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Table 3: Witten index for U(5)k,k+5l with n f = 7 fundamentals, for some values of
k, l. The case with the minimal value IW = 21 are given in bold. The contributions
from Type IV vacua when ξ > 0 are shown in red.

k\l −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
1
2 34 32 30 28 26 24 22 21 21 21 21 24 27 30 33 36 39
3
2 42 38 34 30 26 23 22 21 21 21 21 23 27 31 35 39 43
5
2 55 50 45 40 35 30 25 21 21 21 21 21 26 31 36 41 46

7
2 120 105 90 75 60 45 30 21 21

21 21 21 21 21 21 21 21
+15 +30 +45 +60 +75 +90 +105 +120

9
2 245 210 175 140 105 70 35 21 56 91 126 161 196 231 266 301 336
11
2 455 385 315 245 175 105 35 56 126 196 266 336 406 476 546 616 686
13
2 777 651 525 399 273 147 56 126 252 378 504 630 756 882 1008 1134 1260
15
2 1239 1029 819 609 399 224 91 252 462 672 882 1092 1302 1512 1722 1932 2142
17
2 1869 1539 1209 879 584 289 196 462 792 1122 1452 1782 2112 2442 2772 3102 3432
19
2 2694 2199 1704 1244 784 324 336 792 1287 1782 2277 2772 3267 3762 4257 4752 5247
21
2 3739 3024 2344 1664 984 409 616 1287 2002 2717 3432 4147 4862 5577 6292 7007 7722

and their contributions to the index read:

IW, III,b

�

Nc , k, l, n f , 0
�

=

Θ
�n f

2
− |k|

�

Nc−1
∑

p=1

Θ
�

ξL(p, Nc , k, l, n f )
�

IW

�

p l k+
n f

2 l
Nc − p l l k− n f

2

�

, (4.40)

in terms of the CS index (2.12).

Type IV vacua. When |k| = n f
2 , semi-classical Coulomb-branch directions open up, render-

ing our analysis non-reliable. We expect that the actual ‘Type IV’ vacua are strongly-coupled
vacua. As we discussed around (4.19) in the U(2) theory case, we can always calculate the
contribution of these (conjectured) vacua to the total Witten index by comparing to the Wit-
ten index computed with the opposite sign of FI parameter (which does not have any Type IV
contributions). In this way, we find the following contributions, in general:

IW,IV[Nc , k, l, n f , 0] = δ
k,

nf
2
Θ(ξl)|l|

�

n f − 1
Nc − 1

�

+δ
k,−

nf
2
Θ(−ξl)|l|

�

n f − 1
Nc − 1

�

. (4.41)

It would be interesting to better understand the physics of these strongly-coupled vacua, but
this is left for future work.

The full Witten index. Putting all the above contributions together, we have now computed
the full Witten index:

IW

�

Nc , k, l, n f , 0
�

= IW, I

�

Nc , k, l, n f , 0
�

+ IW, II

�

Nc , k, l, n f , 0
�

+ IW, III,a

�

Nc , k, l, n f , 0
�

+ IW, III,b

�

Nc , k, l, n f , 0
�

+ IW, IV

�

Nc , k, l, n f , 0
�

.
(4.42)

For the reader’s convenience, this formula for the index is implemented in a MATHEMATICA [38]
notebook attached to this paper. This result can be compared to the Bethe vacua counting, and
one finds perfect agreement for all the cases that we checked.8

Example: U(5) gauge theory with n f = 7. Similarly to our discussion of the U(2) theory
with 4 fundamentals in subsection 4.1, let us compute the index explicitly in this example –
this is shown in table 3. We can also consider the explicit form of the vacua for this theory with

8Our explicit formula gives us the index for any choice of the parameters, while the Bethe vacua counting is
limited, in practice, to relatively low values of the parameters due to the slowless of Gröbner bases algorithms.
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Table 4: Moduli spaces of vacua for U(5)k,k+5l with n f = 7 fundamental chiral mul-
tiplets, at some values of k and l and for either sign of ξ.

k l ξ > 0 phase ξ < 0 phase
1
2 8 Gr(5,7)⊕ U(2)4,36 × U(3

8

)−3,21 U(3)4,28 × U(2
8

)−3,13 ⊕ U(4)4,36 × U(1
8

)5

3
2 3 Gr(5,7)⊕ U(3)5,14 × U(2

3

)−2,4 U(5)5,20 ⊕ U(4)5,17 × U(1
3

)1

5
2 2 Gr(5,7) U(5)6,16 ⊕ U(4)6,14 × U(1

2

)1

9
2 5 Gr(5,7)⊕Gr(4,7)× U(1)6 U(5)8,33
11
2 −3 Gr(5,7)⊕ U(5)9,−6 Gr(4,7)× U(1)−1 ⊕Gr(3, 7)× U(2)2,−4

either choice of sign for ξ, for any given value of the CS levels k and l, as shown in table 4. For
examples, we see that in the case (k, l) = (5

2 , 2), we have a pure Higgs branch in the positive-ξ
region and topological vacua on the other side. The index matches on both sides according to:

IW

�

U(5)6,16

�

+ IW



U(4)6,14 × U(1
2

)1



= 16+ 5= 21= χ (Gr(5,7)) . (4.43)

Similar considerations hold for all the other examples shown, and examples of arbitrary com-
plexity can be generated using the attached MATHEMATICA notebook.

5 3d N = 2 IR dualities: matching the moduli spaces

Unitary SQCD enjoys an infrared dual description akin to Seiberg duality. The details of the
dual theory – also called the ‘magnetic’ theory, as opposed to the original ‘electric’ theory – de-
pend crucially on the parameters k, l and kc [18,19,21–23] – see [5] for a detailed discussion.
In the previous section, we worked out the vacuum moduli space of SQCD[Nc , k, l, n f , 0] with
vanishing SU(n f ) masses but with non-zero FI parameter. Thus, as an interesting consistency
check of our computation, it is natural to ask whether the same result is indeed reproduced
in the magnetic theory. Alternatively, the results of this section can be viewed as new detailed
checks of the recently proposed dualities for l ̸= 0 [5, 18, 19]. Therefore, in this section, we
study the vacua of the Seiberg-like dual to U(Nc)k,k+lNc

with n f fundamentals and ξ ̸= 0. Note

that kc =
n f
2 > 0, and we then have the dual rank

N D
c ≡

¨

|k|+ n f
2 − Nc , if |k| ≥ n f

2 ,

n f − Nc , if |k| ≤ n f
2 .

(5.1)

Let us use the notation ε≡ sign(k). We have three cases to consider in turn:

(i) Minimally-chiral case, for |k|> n f
2 . We then have a magnetic theory with gauge group:

U(N D
c )−k,−k+εN D

c
× U(1

ε

)l+ε , (5.2)

and with n f antifundamental chiral multiplets eqi coupled to the U(N D
c ) factor. The U(1)

and U(N D
c ) factors are coupled together by a mixed CS term at level ε= ±1.
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(ii) Maximally-chiral case, for |k|< n f
2 . In this case, the magnetic theory is simply:

U(N D
c )−k,−k+lN D

c
, (5.3)

coupled to the same n f antifundamental matter fields.

(ii) Marginally-chiral case, for |k|= n f
2 . In this last case, we have the dual gauge group:

U(N D
c )−k,−k+ 1

2εN D
c
× U(1

1
2ε

)l+ 1
2ε

, (5.4)

and the same n f antifundamental chiral multiplets, but we also have an additional chiral
multiplet charged under both U(1) ⊂ U(N D

c ) and the second U(1).

For l = 0, these dualities can be simplified further and one recovers the well-known cases
studied in [23]. For |k| > n f

2 and l + ε = 0, we can integrate out the U(1)0 gauge field in
(5.2) and we essentially obtain a SU(N D

c )−k theory with n f antifundamentals – this interesting
special case will have to be considered separately.

5.1 The minimally-chiral dual theory – |k|> n f

2

In the case |k|> n f
2 , we have the Nii-Amariti-Rota duality [18,19]:

U(Nc)k,k+lNc
⊕ n f □ ←→ U(N D

c )−k,−k+εN D
c
× U(1

ε

)l+ε ⊕ n f □0 . (5.5)

To study the matching of the moduli spaces and of the Witten index across this duality, we first
need to analyse the semi-classical vacuum equations for the magnetic theory in (5.5). To write
down these equations, we need to recall that the FI parameter of the electric theory is mapped
to the FI parameter of the U(1)l+ε theory. (There is no independent topological symmetry for
U(N D

c ) because the mixed CS level is ε= 1 or −1.) We then have:

−σaeq
i
a = 0 , i = 1, · · · , n f , a = 1, · · · , N D

c ,

−
n f
∑

i=1

eq†a
i eq

i
b =
δa

b

2π



−kσa + ε
N D

c
∑

b=1

σb −
n f

2
|σa|+ εσ̃



 ,

ξ+ ε
N D

c
∑

c=1

σc + (l + ε)σ̃ = 0 ,

(5.6)

where, as in the electric theory, we are taking all matter fields to be massless. Here, σb and σ̃
are the real scalars associated with U(N D

c ) and with the U(1)l+ε factor, respectively.

5.1.1 Dual theory for l + ε ̸= 0

Let us first assume that l + ε ̸= 0. Then, we can use the last equation in (5.6) to eliminate eσ
from the computation:

σ̃ = −
ξ

l + ε
−
ε

l + ε

N D
c
∑

b=1

σb . (5.7)
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Substituting this back into (5.6), we find:

−σaeq
i
a = 0 , i = 1, · · · , n f , a = 1, · · · , N D

c ,
n f
∑

i=1

eq†a
i eq

i
b =
δa

b

2π
ε

l + ε
Fa(σ) ,

Fa(σ)≡ ξ+
�

k̃− l + sign(σa)
ñ f

2

�

σa − l
N D

c
∑

b ̸=a

σb ,

(5.8)

where we conveniently defined the parameters:

k̃ ≡ εk (l + ε) and ñ f ≡ εn f (l + ε) . (5.9)

Note that, while we apparently eliminated the U(1)l+ε factor from the description, this does
not mean that it disappears at low energy at this level of the discussion.

We see that the equations (5.8) are very similar to (4.1), therefore we can follow the same
strategy to solve them. We will also use a similar typology (Type ID, IID, ...). The way vacua
are matched across duality may be quite complicated, as we will see. Of course, we know
that Higgs vacua should match to Higgs vacua, topological vacua to topological vacua, and
indeed they are, but the infrared duality of the larger SQCD theory descends to a geometric
and level/rank duality in each vacuum, of the general form:

Gr(p, n f )× {TQFT} ←→ Gr(n f − p, n f )× {level/rank-dual TQFT} . (5.10)

The TQFTs on each side are matched precisely through the 3d N = 2 level/rank dualities
discussed in section 2.

Type ID. This is the vacuum with σa = 0, ∀a. We are left with the D-term equation:

n f
∑

i=1

eq†a
i eq

i
b =
δa

b

2π
ξ

1+ εl
, (5.11)

which gives us the Grassmannian Gr(N D
c , n f ) if the effective FI term is positive. In addition,

(5.7) implies that σ̃ obtains a non-zero value, and we then have a U(1)l+ε that survives at low
energy. Hence we have a Higgs-topological vacuum:

Mmin
ID [Nc , k, l, n f , 0] = Θ(ξ(1+ εl)) Gr(N D

c , n f )× U(1)l+ε , (5.12)

which contributes to the Witten index as:

Imin
W, I[Nc , k, l, n f , 0] = Θ(ξ(1+ εl)) |l + ε|

�

n f

N D
c

�

. (5.13)

Type IID. Consider taking 1 ≤ p ≤ N D
c − 1 of the σ’s to be positive while the remaining ones

vanish. Then (5.8) implies that all the non-zero eigenvalues are equal, and the equations
simplify to:

−σ+eqi
a = 0 , i = 1, · · · , n f , a = 1, · · · , p ,

n f
∑

i=1

eq†b
i eq

i
b =

1
1+ εl

�

ξ− plσ+
�

> 0 , b ,= 1, · · · , N D
c − p ,

ξ+

�

k̃− pl +
ñ f

2

�

σ+ = 0 .

(5.14)
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A hybrid Higgs-topological solution exists in the window:

sign(ξ)

�

pl − k̃−
ñ f

2

�

> 0 , and k+
n f

2
< 0 , (5.15)

where the first condition follows from σ+ > 0 and the second follows from the positivity of
the size of the Grassmannian Higgs branch. A similar solution exists where we take the p
non-vanishing σ’s to be negative, in the window:

sign(ξ)

�

k̃− pl −
ñ f

2

�

> 0 , and k−
n f

2
> 0 . (5.16)

The U(1)l+ε also survives at low energy, and we then find the branches of hybrid vacua:

Mmin
IID [Nc , k, l, n f , 0] =

Θ
�

−k−
n f

2

�

N D
c −1
⊕

p=1

Θ

�

ξ

�

−k̃+ pl −
ñ f

2

��

Gr(N D
c − p, n f )× U(p)−k−

nf
2 ,−k−

nf
2 +εp

× U(1

ε

)l+ε

⊕Θ
�

k−
n f

2

�

N D
c −1
⊕

p=1

Θ

�

ξ

�

k̃− pl −
ñ f

2

��

Gr(N D
c − p, n f )× U(p)−k+

nf
2 ,−k+

nf
2 +εp

× U(1

ε

)l+ε .

(5.17)

We see that they contribute to the index as:

Imin
W, IID[Nc , k, l, n f , 0] =

Θ
�

−k−
n f

2

�

N D
c −1
∑

p=1

Θ

�

ξ

�

−k̃+ pl −
ñ f

2

��

�

n f

N D
c − p

�

IW

�

p ε −k− n f

2 ε
1 0 ε l + ε

�

+Θ
�

k−
n f

2

�

N D
c −1
∑

p=1

Θ

�

ξ

�

k̃− pl −
ñ f

2

��

�

n f

N D
c − p

�

IW

�

p ε −k+
n f

2 ε
1 0 ε l + ε

�

,

(5.18)

using (2.12) again for the TQFT contributions.

Type IIID. The third type of solutions correspond to topological vacua. In the analysis of the
electric theory, we had solutions of Type III,a and III,b. In the present case, it turns out that
only the analogue of Type III,a exists, where all the eigenvalues σa are taken to have the same
sign. In the case where they are all positive, we have σa = σ+ > 0 that solves:

ξ+

�

k̃− lN D
c +

ñ f

2

�

σ+ = 0 , sign(ξ)

�

k̃− lN D
c +

ñ f

2

�

< 0 , (5.19)

which exists only in the window indicated. Similarly, there is a solution σa = σ− < 0. In total,
we find the vacua:

Mmin
IIID [Nc , k, l, n f , 0] =

Θ

�

ξ

�

−k̃+ lN D
c −

ñ f

2

��

U(N D
c )−k−

nf
2 ,−k−

nf
2 +εN D

c
× U(1

ε

)l+ε

⊕Θ
�

ξ

�

k̃− lN D
c −

ñ f

2

��

U(N D
c )−k+

nf
2 ,−k+

nf
2 +εN D

c
× U(1

ε

)l+ε ,

(5.20)
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Table 5: Matching moduli spaces of vacua across the minimally-chiral duality with
ξ > 0.

Nc k l n f Electric Side Magnetic Side

3 4 10 6 Gr(3, 6)⊕Gr(2,6)× U(1)11 Gr(3,6)× U(1)0 × U(1
1

)11 ⊕Gr(4, 6)× U(1)11

5 9
2 0 7 Gr(5, 7)⊕Gr(4,6)× U(1)1 Gr(2,7)× U(1)0 × U(1

1

)1 ⊕Gr(3, 7)× U(1)1

5 −9
2 2 7 Gr(5,7)⊕ U(5)−8,5 Gr(2,7)⊕ U(1)0 × U(1

−1

)1 ⊕ U(3)8,5 × U(1
−1

)1

6 5 −4 8 Gr(6,8)⊕ U(6)9,−15 Gr(2,8)× U(1)0 × U(1
1

)−3 ⊕ U(3)−9,−6 × U(1
1

)−3

Table 6: Matching moduli spaces of vacua across the minimally-chiral duality with
ξ < 0.

Nc k l n f Electric Side Magnetic Side

3 4 10 6 U(3)7,37 U(4)−7,−3 × U(1
1

)11

5 9
2 0 7 U(5)8,8 U(3)−8,−5 × U(1

1

)1

5 −9
2 2 7 Gr(4,7)⊕ U(1)1 Gr(3,7)⊕ U(1)1

6 5 −4 8 Gr(5, 8)× U(1)−3 Gr(3, 8)× U(1)−3

which contribute to the index as:

Imin
W, IIID[Nc , k, l, n f , 0] = Θ

�

ξ

�

−k̃+ lN D
c −

ñ f

2

��

IW

�

N D
c ε −k− n f

2 ε

1 0 ε l + ε

�

⊕Θ
�

ξ

�

k̃− lN D
c −

ñ f

2

��

IW

�

N D
c ε −k+

n f
2 ε

1 0 ε l + ε

�

.

(5.21)

Full Witten index. One can check that there are no more solutions, so that the full Witten
index of the minimally-chiral dual theory takes the form:

Imin
W [Nc , k, l, n f , 0] = Imin

W, ID[Nc , k, l, n f , 0] + Imin
W, IID[Nc , k, l, n f , 0]

+ Imin
W, IIID[Nc , k, l, n f , 0] .

(5.22)

Matching across the duality. Using these results, one can check that the moduli spaces match
exactly between the electric and magnetic description, for either sign of the FI parameter, as
predicted by the duality 5.5. For instance, in the case ξ > 0, the electric theory vacua always
include the pure Higgs branch 4.3. The dual description is simply through the Grassmannian
duality:

Gr(Nc , n f ) ←→ Gr(n f − Nc , n f ) . (5.23)

The left-hand-side Higgs branch arises as a Type IID vacuum with a TQFT that happens to be
trivial (with Witten index IW = 1), namely the vacua in (5.17) with p = |k| − n f

2 .
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Here, let us simply display this general matching in some examples for ξ > 0 (table 5)
and ξ < 0 (table 6) . More examples are listed in appendix B, and more can be gen-
erated using the MATHEMATICA notebook attached. For instance, looking at the last case,
(Nc , k, l, n f ) = (6,5,−4,8), in table 5, we see that the matching of the vacua follows from
the dualities:

Gr(6, 8) ←→ Gr(2,8)× U(1)0 × U(1
1

)−3 ,

U(6)9,−15 ←→ U(3)−9,−6 × U(1
1

)−3 .
(5.24)

Here, the TQFT on the right-hand-side of the first line has a single state, and on the second line
we have an instance of the level/rank duality (2.13) (here for (N , k, l) = (6,9,−4)). Similar
matching holds for every component of the moduli space for every theory.

5.1.2 Dual theory for l + ε= 0

We must treat separately the case |k|> n f
2 with l+ε= 0. In this case, we have a U(1)0 coupled

to the trace of the U(N D
c ) vector multiplet by a BF term, and integrating it out imposes:

tr
�

AU(N D
c )
�

= −εAT ,
N D

c
∑

b=1

σb = −εξ . (5.25)

This gets rid of the U(1) ⊂ U(N D
c ), and the duality (5.5) becomes:

U(Nc)k,k−εNc
⊕ n f □ ←→ SU(N D

c )−k ⊕ n f □ . (5.26)

In this formulation, the topological symmetry of the electric theory maps to the baryonic sym-
metry of the SU(N D

c ) magnetic dual theory. (A closely related non-supersymmetric duality
was first discussed in [39].)

This magnetic theory has the same moduli space of vacua as some SU(nc)k theory coupled
to n f fundamental chiral multiplets (this is just a CP transformation):

SU(nc)k ⊕ n f □ . (5.27)

We leave a more detailed analysis of this theory for the motivated reader. Here, we simply
conjecture an explicit formula for its flavoured Witten index:

IW

�

SU(nc)k ⊕ n f □
�

=

�

|k|+ n f
2 − 1

nc − 1

�

, if |k|>
n f

2
. (5.28)

Of course, this reduces to the known result (2.4) for the pure CS theory if n f = 0. We checked
that, for nc = N D

c = |k|+
n f
2 − Nc , this indeed matches with the index computed by the com-

plicated formula (4.42) in the electric theory. For nc = 2, the formula (5.28) was derived
in [3].

5.2 The maximally-chiral dual theory – |k|< n f

2

In the maximally-chiral case with k <
n f
2 , we have the duality [5]:

U(Nc)k, k+lNc
⊕ n f ←→ U(N D

c )−k,−k+lN D
c
⊕ n f , (5.29)
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with N D
c ≡ n f − Nc . The semi-classical equations for the magnetic theory take the form:

−σaeq
i
a = 0 , i = 1, · · · , n f , a = 1, · · · , N D

c

−
n f
∑

i=1

eq†a
i eq

i
b =
δa

b

2π



−ξ− kσa −
n f

2
|σa|+ l

N D
c
∑

c=1

σc



 .
(5.30)

The sign in front of the FI term is due to the fact that the topological current flips sign across
this duality [5]. We then see that the analysis of the solutions will be completely similar to
the one for the electric theory, after taking into account that we effectively changed the sign
of l relative to k, and that we have to integrate out matter fields according to the effective
real mass −σa. Here we denote the types of vacua by ID, IID,..., not to be confused with the
minimally-chiral case discussed above.

Type ID vacua: The Higgs branch. Taking all the σ’s to vanish, we have the usual Higgs
branch equation that gives us the Grassmannian:

Mmax
ID
= Θ(ξ)Gr

�

N D
c , n f

�

, Imax
W, ID

= Θ(ξ)

�

n f
N D

c

�

. (5.31)

Note that this exactly matches the Higgs branch vacuum (4.3) in the electric theory, due to the
Grassmannian duality Gr(Nc , n f )∼= Gr(n f − Nc , n f ).

Type IID vacua. There are no Type IID vacua in this magnetic theory because of the constraint
|k| ̸= n f

2 , as we can see already from the computation in (4.28).

Type IIID vacua. As in the electric theory, we have the Type III,aD solutions when all the σ’s
are of the same sign. They give us:

Mmax
III,aD
[Nc , k, l, n f , 0] = Θ

�

ξ
�

−k+ N D
c l −

n f

2

��

U(N D
c )−k−

nf
2 ,−k−

nf
2 +N D

c l

⊕Θ
�

ξ
�

k− N D
c l −

n f

2

��

U(N D
c )−k+

nf
2 ,−k+

nf
2 +N D

c l
,

(5.32)

and contribute to the index as:

Imax
W, III,aD

[Nc , k, l, n f , 0] = Θ
�

ξ
�

−k+ N D
c l −

n f

2

��

IW

�

N D
c l −k− n f

2

�

+Θ
�

ξ
�

k− N D
c l −

n f

2

��

IW

�

N D
c l −k+

n f
2

�

.
(5.33)

Finally, we can also have Type III,bD solutions that give us the topological vacua:

Mmax
III,bD
[Nc , k, l, n f , 0] =

N D
c −1
⊕

p=1

Θ
�

ξL(p, N D
c , k,−l, n f )

�

U(p)−k−
nf
2 ,−k−

nf
2 +l p

× U(N D
c − p

l

)−k+
nf
2 ,−k+

nf
2 +l(N D

c −p)
,

(5.34)

with the quadratic function L defined in (4.38), which contribute to the index as:

Imax
W, III,bD

[Nc , k, l, n f , 0] =

N D
c −1
∑

p=1

Θ
�

ξL(p, N D
c , k,−l, n f )

�

IW

�

p l −k− n f

2 l
N D

c − p l l −k+
n f

2

�

.
(5.35)
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Table 7: Matching moduli spaces of vacua across the maximally-chiral duality with
ξ > 0.

Nc k l n f Electric Side Magnetic Side

3 0 10 6
Gr(3,6)⊕ U(3)−3,27 Gr(3,6)⊕ U(3)−3,27

⊕U(1)13 × U(2
10

)−3,17 ⊕U(1)13 × U(2
10

)−3,17

3 1 3 6 Gr(3,6)⊕ U(1)7 × U(2
3

)−2,4 Gr(3,6)⊕ U(3)−4,5

3 2 1 6 Gr(3, 6) Gr(3, 6)
5 5

2 0 7 Gr(5, 7) Gr(2, 7)
5 −3

2 2 7 Gr(5,7)⊕ U(5)−5,5 Gr(2,7)⊕ U(2)−2,2

6 2 -4 8
Gr(6,8)⊕ U(6)6,−18 Gr(2,8)⊕ U(2)2,−6

⊕U(5)6,−14 × U(1
−4

)−6 ⊕U(1)−10 × U(1
−4

)−2

Table 8: Matching moduli spaces of vacua across the maximally-chiral duality with
ξ < 0.

Nc k l n f Electric Side Magnetic Side

3 0 10 6 U(3)3,33 ⊕ U(1)7 × U(2
10

)3,23 U(3)3,33 ⊕ U(1)7 × U(2
10

)3,23

3 1 3 6 U(3)4,13 ⊕ U(2)4,10 × U(1
3

)1 U(1)−1 × U(2
3

)2,8 ⊕ U(2)−4,2 × U(1
3

)5

3 2 1 6 U(2)5,7 × U(1
1

)0 ⊕ U(3)5,8 U(3)−5,−2 ⊕ U(2)−5,−3 × U(1
1

)2

5 5
2 0 7 U(5)6,6 ⊕ U(4)6,6 × U(1)−1 U(1)−6 × U(1)1 ⊕ U(2)−6,−6

5 −3
2 2 7 U(1)4 × U(4

2

)−5,3 ⊕ U(2)2,6 × U(3
2

)−5,1 U(2)5,9 ⊕ U(1)0 × U(1
2

)7

6 2 −4 8 U(4)6,−10 × U(2
−4

)−2,−10 U(2)−6,−14

Full Witten index and matching across the duality. Adding the above contributions, the
Witten index is given by:

Imax
W [Nc , k, l, n f , 0] = Imax

W, ID
[Nc , k, l, n f , 0] + Imax

W, III,aD
[Nc , k, l, n f , 0]

+ Imax
W, III,bD

[Nc , k, l, n f , 0] .
(5.36)

It is not complicated to prove that the vacua match one-to-one across the duality. We display
some examples of dual vacua for ξ > 0 and ξ < 0 in table 7 and 8, respectively; see also
appendix B. In particular, note that if ξ < 0 we can only have topological vacua, in which case
the matching of the vacua follows from the level/rank duality (2.22).
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5.3 The marginally-chiral dual theory – |k|= n f

2

Finally, let us briefly discuss the case k = ε
n f
2 . We have the marginally-chiral duality [5,19]:

U(Nc)ε nf
2 ,ε

nf
2 +lNc

⊕ n f □

←→ U(n f − Nc)−ε nf
2 ,−ε

nf
2 +

1
2ε(n f −Nc)

× U(1

1
2ε

)l+ 1
2ε
⊕ n f □0 ⊕ det+1 . (5.37)

The dual theory involves the ‘baryon’ B that transforms in the determinant representation of
U(N D

c ) (N D
c ≡ n f − Nc) and has charge 1 under the additional U(1) factor. Let us choose

k =
n f
2 > 0 for definiteness. The semiclassical vacuum equations then read:

−σaeq
i
a = 0 , i = 1, · · · , n f , a = 1, · · · , N D

c ,




N D
c
∑

a=1

σa + σ̃



B = 0 ,

δa
b B†B−

n f
∑

i=1

eq†a
i eq

i
b =
δa

b

2π



−
n f

2
σa +

1
2

N D
c
∑

c=1

σc +
1
2
σ̃−

n f

2
|σa|+

1
2

�

�

�

�

�

�

N D
c
∑

c=1

σc + σ̃

�

�

�

�

�

�



 ,

B†B = 1
2π



ξ+
1
2

N D
c
∑

c=1

σc +
�

l +
1
2

�

σ̃+
1
2

�

�

�

�

�

�

N D
c
∑

c=1

σc + σ̃

�

�

�

�

�

�



 .

(5.38)

We will not attempt to solve these equations here. Instead, let us simply consider a very special
case for which these equations trivialise.

5.3.1 Special case N D
c = 0

If we choose n f = Nc = 2k in the electric theory, the dual theory is simply the abelian theory:

U(1)l+ 1
2
⊕B , (5.39)

which was discussed in section 3.2. We have the vacua:

Θ(ξ)CP0 ⊕Θ(−ξ(l + 1))U(1)l+1 ⊕Θ(ξl)U(1)l , (5.40)

and the index:

IW

h

n f ,
n f

2
, l, n f , 0

i

=
1
2
+

�

�

�

�

l +
1
2

�

�

�

�

=

¨

l + 1 , if l ≥ 0 ,

|l| , if l < 0 .
(5.41)

Let us compare this to the results of section 4.2. One directly sees that the various types of
vacua of the electric theory contribute as:

IW, I

h

n f ,
n f

2
, l, n f , 0

i

= Θ(ξ) ,

IW, III,a

h

n f ,
n f

2
, l, n f , 0

i

= Θ (−ξ(l + 1)) |l + 1| ,

IW, IV

h

n f ,
n f

2
, l, n f , 0

i

= Θ (ξl) |l| ,

(5.42)

with no contribution from the Type II and III,b vacua. Adding all the contributions as in (4.42),
this matches exactly with (5.41). We also see that, for N D

c = 0, the strongly-coupled vacua
(Type IV vacua) of the electric theory, whose existence we conjectured in section 4, correspond
to an ordinary topological vacua in the dual description – namely the U(1)l TQFT in (5.40).
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5.3.2 Case N D
c > 0

For k =
n f
2 and Nc = n f −Nc > 0, however, we find that the electric ‘Type IV’ vacua also reappear

as ‘quantum vacua’ in the magnetic description. In the electric description, as discussed in
section 4.2, we have the vacua:

Melec = Θ(ξ)Gr(Nc , n f ) ⊕Θ(−ξ(n f + lNc))U(Nc)n f ,n f +lNc
⊕Θ(ξl)MIV , (5.43)

where MIV denotes the ‘quantum vacua’. Looking at the magnetic description, it is useful to
write the equations (5.38) in terms of the effective real mass for the ‘baryon’ field B:

σB ≡
N D

c
∑

a=1

σa + σ̃ . (5.44)

We can then analyse the theory by moving along the σB line. The first obvious solution is for
σB = 0= σa, in which case we have the Higgs vacuum:

Θ(ξ)Gr(N D
c , n f ) , (5.45)

which obviously matches the first term in (5.43). For σB > 0, there is also a single solution
with σa > 0 that corresponds to the TQFT:

Θ(−ξ((l + 1)n f − lN D
c ))U(N

D
c )−n f ,−n f +N D

c
× U(1

1

)l+1 , (5.46)

which reproduces exactly the second vacuum in (5.43) (after a level/rank duality). Finally,
we find that, for any N D

c > 0, there is a continuous Coulomb-branch vacuum for σB < 0 and
σa < 0. Assuming σB < 0, we can integrate out B to obtain a decoupled U(1)l sector (with
the FI parameter ξ). This accounts for the factor Θ(ξ)|l| of the Witten index of the conjectured
Type-IV vacuum:

IW, IV = Θ(ξl) |l|
�

n f − 1
Nc − 1

�

= Θ(ξl) |l|
�

n f − 1

N D
c

�

, (5.47)

but we do not have a complete understanding of this vacuum in the magnetic theory.
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A N = 0 level/rank dualities

For completeness, here we present the N = 0 (non-supersymmetric) version of the level/rank
dualities between Chern-Simons theories discussed in the main text. They are obtained from
the N = 2 dualities by integrating out the gauginos in vector multiplets. Recall that the N = 2
supersymmetric CS interaction includes a term quadratic in the gauginos, which amounts to a
real mass:

mλ = −
k

4π
. (A.1)
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Hence, we have an infrared N = 0 description in which the CS levels are shifted according
to the sign of mλ. More generally, mλ is a non-trivial mass matrix, which we should then
diagonalise. We follow the conventions of [5] for the N = 2 CS contact terms, except that
here we denote by the letters k, l, · · · the N = 2 CS levels (for either the gauge or flavour
symmetries), and by the capital letters K , L, · · · all the N = 0 CS levels.

A.1 Level/rank dual for U(N)K ,K+LN

Consider the U(N)k,k+lN N = 2 supersymmetric pure CS theory. Without loss of generality,
consider:

k > 0 , K ≡ k− N ≥ 0 . (A.2)

The N = 2 version of the level/rank duality is a specialisation of the Nii duality [18],

N = 2 : U(N)k,k+lN ←→ U(k− N)−k,−N × U(1
1

)l+1 , (A.3)

with the non-zero N = 2 CS contact terms derived in [5], which amounts to having
κ
(e)
RR =

1
2 N2 = 1

2κ
(e)
g on the electric side, and κ(m)RR = −

1
2(k − N)2 and κ(m)g = N2 + 1 − k2

on the magnetic side. Integrating out the gaugino in the U(N) theory, we shift the CS levels
to K ≡ k − N and L ≡ l + 1, and K(e)RR = K(e)g = 0 in the IR. On the magnetic side, integrating
out the gauginos similarly shifts the CS level for the SU(K) part of the gauge group, so that
we have the level/rank duality:

N = 0 : U(N)K ,K+LN ←→ U(K)−N ,−N × U(1
1

)L , (A.4)

which was first described in [40]. By a straightforward computation, we can check that the
U(1)R symmetry decouples entirely, and we find the relative CS level Kg = −2kN . Similarly
to [27], we can write this as:

1
2π

AT ∧ Tr(FU(N)) ←→
1

2π
AT ∧ FU(1) − 2kNCSgrav , (A.5)

where we only wrote down terms that depend on background fields. Here the background
gauge field AT couples to the topological symmetry current on either side of the duality, which
is Tr(FU(N)) on the electric side, and FU(1) the field strength for the U(1) factor in U(K)×U(1)
on the magnetic side.9

For L = ±1, we can use the fact that U(1)±1 is an ‘almost trivial’ theory [27,41] to simplify
(A.4), and we arrive at the following dualities:

N = 0 : U(N)K ,K±N ←→ U(K)−N ,−N∓K , (A.7)

with:

1
2π

AT ∧ Tr(FU(N)) ←→ ∓
1

2π
AT ∧ Tr(FU(K)) ∓

1
4π

AT ∧ dAT − (2kN ± 2)CSgrav . (A.8)

9To derive this result starting from the N = 2 version of the duality, one must take into account the fact that
the abelian part of the magnetic gauge group is U(1)× U(1) with a non-trivial mass matrix

Mλ =
�

KN −K
−K −L

�

(A.6)

for the abelian gauginos. We use the fact that the two eigenvalues m± are such that m+ > 0 and m− < 0 if
K + LN > 0, while m± > 0 if K + LN < 0.
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For L = 1, this is a special case of the Giveon-Kutasov duality (the N = 2 duality
U(N)k ↔ U(k − N)−k) reduced to N = 0, while for L = −1 this duality was first derived
in [27].

Finally, for L = 0, we have U(1)0 theory coupled by a BF term to the U(K) factor in (A.4),
and the path integral over that gauge field imposes the constraint [41]:

Tr
�

AU(K)
�

= −AT , (A.9)

on the U(K) gauge field, which gives us to the standard level/rank duality:

N = 0 : U(N)K ,K ←→ SU(K)−N . (A.10)

More precisely, we truly have an SU(K) theory only when the background field AT is set to
zero, while having AT generic is important to keep track of the U(1)T symmetry across the
duality [27].

A.2 Level/rank duality for U(N)× U(N ′)

Let us also discuss the N = 0 version of the duality for the U(N)× U(N ′) theory derived in
section 2.2. First of all, we have the N = 0 abelian duality:

N = 0 : U(1)l+1 × U(1
l

)l−1 ←→

¨

KT T = l − 1 , KT ′T ′ = l + 1 ,

KT T ′ = −l , Kg = 2+ cg ,
(A.11)

where the magnetic theory is an empty theory with the contact terms as indicated for the
background gauge fields AT and A′T coupling to the topological symmetry currents F and F ′.
Here cg ∈ Z is a constant that we did not determine, although we know that cg = 0 when
l = 0. The N = 0 duality (A.11) directly follows from (2.21), taking into account the fact
that the gaugino mass matrix has eigenvalues m± = −l ±

p
l2 + 1. (Requiring that the U(1)R

symmetry consistenly decouples then fixes KRR in (2.21).)
Finally, we consider the U(N)k,k+lN × U(N ′)k′,k′+lN ′ N = 2 theory with mixed CS level l.

Let us fix k > 0 and k′ < 0, without loss of generality. Integrating out the gauginos, we obtain
the N = 0 levels:

U(N)K ,K+(l+1)N × U(N ′

l

)−K ′,−K ′+(l−1)N ′ , (A.12)

where we choose K ≥ 0 and K ′ ≥ 0 for simplicity of notation. Then, the N = 2 duality (2.22)
gives us the generalised level/rank duality:

N = 0 : U(N)K ,K+(l+1)N × U(N ′

l

)−K ′,−K ′+(l−1)N ′

←→ U(K)−N ,−N+(l−1)K × U(K ′

l

)N ′,N ′+(l+1)K ′ .
(A.13)

Of course, this can also be derived directly in the N = 0 context, starting from (A.4) and
following the same logic as in section 2.2.
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B Matching moduli spaces of vacua: more explicit examples

In this appendix, we give some specific examples of our main results for SQCD[Nc , k, l, n f , 0].
In particular, we display the intricate matching of the vacua across the maximally- and
minimally-chiral dualities.

B.1 Crossing ξ= 0

Here are a few examples of phase transitions from ξ > 0 to ξ < 0, for various values of the
parameters [Nc , k, l, n f ]:

Nc k l n f ξ > 0 phase ξ < 0 phase

3 5
2 −5 7 Gr(3, 7)⊕ U(3)6,−9 U(2)6,−4 × U(1

−5

)−6

4 6 −3 8 Gr(4, 8)⊕ U(4)10,−2 Gr(3,8)× U(1)−1 ⊕Gr(2,8)× U(2)2,−4

5 11
2 0 9 Gr(5, 9)⊕Gr(4,9)× U(1)1 U(5)10,10

6 4 −2 10 Gr(6,10)⊕ U(6)9,−3 U(5)9,−1 × U(1
−2

)−3

7 3
2 -5 11

Gr(7,11)⊕ U(5)7,−18 × U(2
−5

)−4,−14 U(3)7,−8 × U(4
−5

)−4,−24

⊕ U(7)7,−28 ⊕ U(6)7,−23 × U(1
−5

)−9 ⊕ U(4)7,−13 × U(3
−5

)−4,−19

8 5 6 10 Gr(8,10)⊕Gr(7,10)× U(1)7 U(8)11,59

9 8 −7 14 Gr(9, 14)⊕ U(9)15,−48 Gr(8, 14)× U(1)−6

10 9 -4 12
Gr(10,12)⊕ U(10)15,−25 Gr(9,12)× U(1)−1 ⊕Gr(8,12)× U(2)3,−5

⊕ Gr(7,12)× U(3)3,−9

11 −9
2 -4 13

U(11)−11,−55 ⊕ U(1)−2 × U(10
−4

)−11,−51

Gr(11,13) ⊕ U(2)2,−6 × U(9
−4

)−11,−47

12 15
3 21 21

U(12)18,18 ⊕ U(9)18,18 × U(3
0

)−3,−3

Gr(12,21) ⊕U(10)18,18 × U(2
0

)−3,−3

⊕U(11)18,18 × U(1
0

)−3

30 1 0 32
U(15)17,17 × U(15

0

)−15,−15

Gr(30,32) ⊕U(16)17,17 × U(14
0

)−15,−15

⊕U(17)−17,−17 × U(13
0

)−15,−15
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B.2 Minimally-chiral duality for ξ > 0

Here we consider a few examples of the minimally-chiral duality with positive FI parameter:

Nc k l n f Electric Vacua Magnetic Vacua

3 9
2 -5 7

Gr(3, 7) Gr(4, 7)× U(1)0 × U(1
1

)−4

⊕ U(3)8,−7 ⊕ U(5)−8,−3 × U(1
1

)−4

4 7 -2 8
Gr(4, 8) Gr(4,8)× U(3)−3,0 × U(1

1

)−1

⊕ Gr(3,8)× U(1)1 ⊕ Gr(5, 8)× U(2)−3,−1 × U(1
1

)−1

5 −13
2 5 9

Gr(5, 9) Gr(4, 9)× U(2)2,0 × U(1
−1

)4

⊕ U(5)−11,14 ⊕ U(6)11,5 × U(1
−1

)4

6 6 -5 8
Gr(6, 8) Gr(2,8)× U(2)−2,0 × U(1

1

)−4

⊕ U(6)10,−20 ⊕ U(4)−10,−6 × U(1
1

)−4

11 12 0 12

Gr(11, 12) CP11 × U(6)−6,0 × U(1
1

)1

⊕ Gr(10,12)× U(1)6 ⊕ Gr(2, 12)× U(5)−6,−1 × U(1
1

)1

⊕ Gr(9,12)× U(2)6,6 ⊕ Gr(3, 12)× U(4)−6,−2 × U(1
1

)1

⊕ Gr(8,12)× U(3)6,6 ⊕ Gr(4, 12)× U(3)−6,−3 × U(1
1

)1

⊕ Gr(7,12)× U(4)6,6 ⊕ Gr(5, 12)× U(2)−6,−4 × U(1
1

)1

⊕ Gr(6,12)× U(5)6,6 ⊕ Gr(6, 12)× U(1)−5 × U(1
1

)1

⊕ Gr(5,12)× U(6)6,6 ⊕ Gr(7, 12)× U(1)1

12 23
2 -10 21

Gr(12, 21) Gr(9,21)× U(1)0 × U(1
1

)−9

⊕ U(12)22,−98 ⊕ U(10)−22,−12 × U(1
1

)−9

20 33
2 0 27

Gr(20, 27) Gr(7, 27)× U(3)−3,0 × U(1
1

)1

⊕ Gr(19,27)× U(1)3 ⊕ Gr(8, 27)× U(2)−3,−1 × U(1
1

)1

⊕ Gr(18, 27)× U(2)3,3 ⊕ Gr(9, 27)× U(1)−2 × U(1
1

)1

⊕ Gr(17, 27)× U(3)3,3 ⊕ Gr(10,27)× U(1)1
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B.3 Maximally-chiral duality for ξ > 0

Here consider we consider a few examples of the maximally-chiral duality with positive FI
parameter:

Nc k l n f Electric Vacua Magnetic Vacua

3 3
2 −5 7 Gr(3, 7)⊕ U(3)5,−10 Gr(4, 7)⊕ U(2)−5,−15 × U(2

−5

)2,−8

4 3 −7 8 Gr(4, 8)⊕ U(4)7,−21 Gr(4, 8)⊕ U(3)−7,−28 × U(1
−7

)−6

5 −3 −5 10 Gr(5, 10)⊕ U(2)2,−8 × U(3
−5

)−8,−23 Gr(5,10)⊕ U(5)8,−17

6 3 -12 10
Gr(6, 10) Gr(4, 10)
⊕ U(6)8,−64 ⊕ U(2)−8,−32 × U(2

−12

)2,−22

⊕ U(5)8,−52 × U(1
−12

)−14 ⊕ U(3)−8,−44 × U(1
−12

)−10

14 -7 4 20
Gr(14, 20) Gr(6, 20)
⊕ U(14)−17,39 ⊕ U(3)−3,9 × U(3

4

)17,29

⊕ U(1)7 × U(13
4

)−17,35 ⊕ U(2)−3,5 × U(4
4

)17,33

15 11
2 4 23 Gr(15,23)⊕ U(9)17,53 × U(6

4

)−6,18 Gr(8,23)⊕ U(8)−17,15

17 0 10 20 Gr(17, 20)⊕ U(7)10,80 × U(10
10

)−10,90 Gr(3,20)⊕ U(3)−10,20

20 13
2 -4 25

Gr(20, 25) Gr(5, 25)
⊕ U(17)19,−49 × U(3

−4

)−6,−18 ⊕ U(2)−19,−27 × U(3
−4

)6,−6

⊕ U(18)19,−53 × U(2
−4

)−6,−14 ⊕ U(1)−23 × U(4
−4

)6,−10

⊕ U(19)19,−57 × U(1
−4

)−10 ⊕ U(5)6,−14

23 19 -23 42
Gr(23, 42) Gr(19,42)
⊕ U(23)40,−489 ⊕ U(17)−40,−431 × U(2

−23

)2,−44

⊕ U(22)40,−466 × U(1
−23

)−25 ⊕ U(18)−40,−454 × U(1
−23

)−21

30 11
2 2 45 Gr(30,45)⊕ U(13)28,54 × U(17

2

)−17,17 Gr(15,45)⊕ U(15)−28,2

40 9 -3 46
Gr(40, 46) Gr(6, 46)

⊕ U(32)32,−64 × U(8
−3

)−14,−38 ⊕ U(6)14,−4
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B.4 Minimally-chiral duality for ξ < 0

Next, we consider we consider a few examples of the minimally-chiral duality with negative
FI parameter:

Nc k l n f Electric Vacua Magnetic Vacua

3 9
2 −5 7 Gr(2,7)× U(1)−4 Gr(5, 7)× U(1)−4

4 7 -2 8
Gr(2, 8)× U(2)3,−1 Gr(6,8)× U(1)−2 × U(1

1

)−1

⊕ CP7 × U(3)3,−3 ⊕ Gr(7, 8)× U(1)−1
⊕ U(4)11,3 ⊕ U(7)−11,−4 × U(1

1

)−1

5 −13
2 5 9

Gr(4,9)× U(1)3 ⊕ Gr(5, 9)× U(1)1 × U(1
−1

)4

⊕ Gr(3, 9)× U(2)−2,8 Gr(6,9)× U(1)4

6 6 -5 8
Gr(5,8)× U(1)−3 Gr(3,8)× U(1)−1 × U(1

1

)−4

⊕ Gr(4, 8)× U(2)2,−8 ⊕ Gr(4, 8)× U(1)−4

11 12 0 12 U(11)18,18 U(7)−18,−11 × U(1
1

)1

12 23
2 −10 21 Gr(11, 21)× U(1)−9 Gr(10, 21)× U(1)−9

14 14 -7 24
Gr(13, 24)× U(1)−5 Gr(11,24)× U(1)−1 × U(1

1

)−6

⊕ Gr(12, 24)× U(2)2,−12 ⊕ Gr(12, 24)× U(1)−6

23 29
2 -10 25

Gr(22, 25)× U(1)−8 Gr(3, 25)× U(1)−1 × U(1
1

)−9

⊕ Gr(21, 25)× U(2)2,−18 ⊕ Gr(4,25)× U(1)−9

37 53
2 -5 45

Gr(36, 45)× U(1)−1 Gr(9,45)× U(3)−4,−1 × U(1
1

)−4

⊕ Gr(35, 45)× U(2)4,−6 ⊕ Gr(10, 45)× U(2)−4,−2 × U(1
1

)−4

⊕ Gr(34, 45)× U(3)4,−11 ⊕ Gr(11, 45)× U(1)−3 × U(1
1

)−4

⊕ Gr(33, 45)× U(4)4,−16 ⊕ Gr(12, 45)× U(1)−4

40 -28 11 50
Gr(39,50)× U(1)8 Gr(11, 50)× U(2)3,1 × U(1

−1

)10

⊕ Gr(38, 50)× U(2)−3,19 ⊕ Gr(12, 50)× U(1)2 × U(1
−1

)10

⊕ Gr(37, 50)× U(3)−3,30 ⊕ Gr(13,50)× U(1)10

52 77
2 -3 73

Gr(51, 73)× U(1)−1 Gr(22,73)× U(1)−1 × U(1
1

)−2

⊕ Gr(50, 73)× U(2)2,−4 ⊕ Gr(23, 73)× U(1)−2
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B.5 Maximally-chiral duality for ξ < 0

Finally, here are a few examples of the maximally-chiral duality with negative FI parameter:

Nc k l n f Electric Vacua Magnetic Vacua

3 3
2 −5 7 U(1)0 × U(2

−5

)−2,−12 ⊕ U(2)5,−5 × U(1
−5

)−7 U(4)−5,−25 ⊕ U(3)−5,−20 × U(1
−5

)−3

4 3 −7 8 U(3)7,−14 × U(1
−7

)−8 U(4)−7,−35

5 -3 -5 10
U(5)−8,−33 U(2)−2,−12 × U(3

−5

)8,−7

⊕U(1)−3 × U(4
−5

)−8,−28 ⊕U(1)−7 × U(4
−5

)8,−12

6 3 −12 10 U(4)8,−40 × U(2
−12

)−2,−26 U(4)−8,−56

14 -7 4 20
U(2)3,11 × U(12

4

)−17,31 U(1)1 × U(5
4

)17,37

⊕ U(3)3,15 × U(11
4

)−17,27 ⊕ U(6)17,41

15 11
2 4 23

U(15)17,77 U(2)−17,−9 × U(6
4

)6,30

⊕ U(10)17,57 × U(5
4

)−6,14 ⊕ U(7)−17,11 × U(1
4

)10

⊕ U(11)17,61 × U(4
4

)−6,10 ⊕ U(6)−17,7 × U(2
4

)6,14

⊕ U(12)17,65 × U(3
4

)−6,6 ⊕ U(5)−17,3 × U(3
4

)6,18

⊕U(13)17,69 × U(2
4

)−6,2 ⊕ U(4)−17,−1 × U(4
4

)6,22

⊕ U(14)17,73 × U(1
4

)−2 ⊕ U(3)−17,−5 × U(5
4

)6,26

23 19 −23 42 U(21)40,−443 × U(2
−23

)−2,−48 U(19)−40,−477

29 14 0 30 U(29)29,29 ⊕ U(28)29,29 × U(1)−1 U(1)1 ⊕ U(1)−29

35 20 -3 50
U(30)45,−45 × U(5

−3

)−5,−20 U(15)−45,−90

⊕ U(31)× U(4
−3

)−5,−17 ⊕ U(14)−45,−87 × U(1
−3

)2

⊕ U(32)45,−51 × U(3
−3

)−5,−14 ⊕ U(13)−45,−84 × U(2
−3

)5,−1

43 -20 10 52
U(5)6,56 × U(38

10

)−46,334 U(1)4 × U(8
10

)46,126

⊕ U(6)6,66 × U(37
10

)−46,324 ⊕ U(9)46,136
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