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Exploring a Result by Ghilardi:
Projective Formulas vs. the Extension

Property
IRIS VAN DER GIESSEN1

Abstract: Ghilardi (1999, 2000) presents in his papers on unification in IPC
and several classical modal logics an important theorem that is used in the
study of admissible rules. The theorem connects the extension property of
Kripke models to projective formulas. In this paper, we investigate Ghilardi’s
bisimulation proof method used for classical modal logics and we present a
small simplification of the solution. Our investigation of the key elements of
Ghilardi’s proof provides an explanation of the close relationship between
bisimulation and the extension property via so-called extension structures.

Keywords: modal logic, extension property, projective formulas, admissible
rules

1 Introduction

In this paper we examine an important result established by Ghilardi that
provides a robust connection between projective formulas and the extension
property. This is a characterization of a syntactic property of formulas in
terms of a semantic property of Kripke models. Ghilardi first develops this
characterization for IPC (Ghilardi, 1999, Theorem 5 of Section 2). Later he
proves it for many well-known classical modal logics extending K4, among
them S4 and GL (Ghilardi, 2000, Theorem 2.2). He used this result in
the study of unification in logic. Ghilardi shows that unification in IPC
and several modal logics is finitary, which means that the set of ‘maximal’
unifiers is finite.

The purpose of this paper is to provide a new explanation of Ghilardi’s
proof of the connection between projectivity and the extension property.
We hope that our investigation will help researchers who are not familiar

1I would like to thank Rosalie Iemhoff, Amir Tabatabai and Raheleh Jalali for a lot of
helpful discussions. Support by the Netherlands Organisation for Scientific Research under
grant 639.073.807 is gratefully acknowledged.
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with the result. In his first paper, Ghilardi provides a strategy that works for
IPC. Here we are interested in the more general method that is based on
bisimulation which is used for classical modal logic. Among researchers,
the paper is considered to be both beautiful and difficult. The current paper
is an attempt to clarify the ideas of Ghilardi. We indicate the key elements
of Ghilardi’s proof which provides an explanation of the close relationship
between bisimulation and the extension property. We introduce so-called
extension structures to explain this relationship.

Surprisingly, our analysis reveals an additional benefit in terms of a
shortening of the solution. To prove projectivity from the extension property,
Ghilardi constructs a unifier that is a concatenation of substitutions. We will
argue that in the classical modal case, the concatenation of substitutions can
be shortened. We would like to stress that this is a minor simplification and
is still strongly based on Ghilardi’s proof strategy. This paper does not reveal
new big results, it rather provides a new explanation of Ghilardi’s proof and it
provides some examples, which will hopefully help the reader to understand
the result.

An important reason to investigate Ghilardi’s papers is that the equiva-
lence between projectivity and the extension property is a very useful tool in
the field of admissible rules. Admissible rules are those rules under which
the set of theorems of a logic is closed. More precisely, a rule A/B is said to
be admissible if every unifier of A is also a unifier for B. For example, the
rule �A/A is an admissible rule in many modal logics. Admissible rules are
interesting to study, because they give insight in the structure of the logic in
terms of consequence relations (see Iemhoff, 2016, for an introduction).

Projective formulas play an important role in the study of admissible rules.
Projective formulas are formulas A for which admissibility and derivability
are the same in the sense that rule A/B is admissible if and only if it is
derivable. It can be complicated to show that a certain formula is projective
directly from its definition. It is often easier to prove the extension property
of a class of Kripke models. Ghilardi’s result provides the useful semantic
characterization for projectivity in terms of the extension property.

Ghilardi’s result is successfully applied in constructing bases for admis-
sible rules. See for examples the papers of Iemhoff (2001), Jeřábek (2005)
and Iemhoff and Metcalfe (2009) for logics including K4,GL,S4 and IPC.
In addition, Ghilardi points out that an algorithm (provided in his papers)
computing the finitely many maximal unifiers yields a new solution to Fried-
man’s problem (Friedman, 1975): admissibility in IPC is decidable. This
was first proved by Rybakov (1984).
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Projective Formulas vs. the Extension Property

The paper is structured as follows. In Section 2 we introduce semantic
terminology, including the definitions of the extension property and bisim-
ulation. Section 3 treats the definition of projective formulas. Section 4
describes the key elements in Ghilardi’s method, introduces the notion of
extension structures and explains how the substitutions can be shortened. We
end with a short conclusion.

2 Kripke semantics and the extension property

Following Ghilardi (2000), we consider classical modal logics that are sound
and complete with regard to finite Kripke models. We consider the modal lan-
guage with constant⊥, propositional variables p, q, . . . , connectives ∧,∨,→
and modal operator �. We often use the term atoms to mean propositional
variables. If A is a formula, ¬A,♦A and �A are defined as A→ ⊥,¬�¬A
and A ∧ �A, respectively. F (p1, . . . , pm) denotes the set of all formulas
built from proposition letters p1, . . . , pm. We consider normal modal log-
ics L, which is a set of formulas containing all classical tautologies,K-axiom
�(A → B) → �A → �B, and is closed under modus ponens (if A in L
and A→ B in L, then B in L), uniform substitution and necessitation (if A
in L then also �A in L). Following Ghilardi, we write A `L B to mean that
A→ B ∈ L. We are interested in normal extensions of K4.

We deal with Kripke models that are defined on the basis of a finite
transitive frame, which are structures (W,R) where W is a finite set of
worlds equipped with a transitive relation R. We assume that those frames
have a minimal element ρ, called a root, satisfying ρRw for each w 6= ρ.
This minimal element does not have to be unique, but from now on we work
with pointed frames (W,R, ρ) where the root is specifically specified. The
cluster cl(w) of a point w is the equivalence class of w under the equivalence
relation ∼R defined as

w ∼R v iff wR+v and vR+w,

where R+ stands for the relation R ∪ id. Note that for irreflexive frames,
#cl(w) = 1 for all w ∈W . We also define the relation

wR>v iff wRv and not vRw.

A Kripke model is a triple (W,R, V ) where (W,R) is a frame and V is the
valuation, which is a function V : W × Atoms → {0, 1}. We use letters
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K,M to indicate Kripke models. We usually implicitly restrict the domain
of the valuation to atoms which play a role in question and say that K is a
model over atoms {p1, . . . , pm} if the domain is restricted to those atoms.
We often write w ∈ K to mean w ∈ W when K = (W,R, V ). We write
K(w) := {p | V (w, p) = 1}, the set of all atoms that hold in w. We extend
the valuation to a forcing relation  as usual:

K,w  p iff V (w, p) = 1,
K,w  ⊥ never,
K,w  A ∧B iff K,w  A and K,w  B,
K,w  A ∨B iff K,w  A or K,w  B,
K,w  A→ B iff K,w  A implies K,w  B,
K,w  �A iff for all v such that wRv; K, v  A.

We write K |= A to mean K,w  A for every w ∈ K and say that K
satisfies A. Since we consider rooted transitive models, K, ρ  �A if and
only if K |= �A. We denote Kv for the submodel of K generated by v. We
let v be the root of Kv . We say that model K almost satisfies A if Kw |= A
for all w except for w ∈ cl(ρ).

A frame is said to be an L-frame if for every modelK based on that frame
and every formula A ∈ L, we have that K |= A. We call K an L-model if
K is based on an L-frame. We write ModL to be the set of all L-models and
ModL(A) to be the set of all L-models that satisfy A in the root.

Ghilardi makes two assumptions about the logic L. For the purpose of
this paper we only have to require the first assumption, which is completeness
with respect to the described finite models:

Assumption 1 For all formulas A,B, we have A `L B if and only if
ModL(A) ⊆ ModL(B).

Ghilardi’s second assumption is needed for the unification results (Ghi-
lardi, 1999, 2000). This assumption is known as L being extensible, where
the construction of attaching a new root to L-frames again yields an L-frame.
This assumption is also crucial in the field of admissible rules (Iemhoff &
Metcalfe, 2009; Jeřábek, 2005). Examples of logics satisfying these assump-
tions are K4, S4, GL and S4.Grz.

A variant of an L-model K is an L-model K ′, such that they have the
same frame and their valuation agree on all worlds except for possibly worlds
w ∈ cl(ρ).
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Projective Formulas vs. the Extension Property

Definition 1 A class K of L-models over {p1, . . . , pn} is said to have the
extension property if for every L-model K, if Kw ∈ K for each w /∈ cl(ρ),
then there is a variant K ′ of K such that K ′ ∈ K.

We are interested in the extension property of classes ModL(�A). The
extension property states that we can turn models that almost satisfy �A into
a model of �A. In Section 4, we will see that there is a close relationship
between the extension property and bisimulation. Here we only give the
definitions.

Definition 2 Let K,M be Kripke models. The notion for two models
K,M together with points k ∈ K and m ∈M being n-bisimilar is defined
recursively and we denote it by Kk ∼n Mm.

Kk ∼0 Mm iff K(k) =M(m) (k and m satisfy the same atoms).
Kk ∼n+1 Mm iff K(k) =M(m) and for all k′ such that kRk′ there

exists an m′ such that mRm′ and Kk′ ∼n Mm′ ,
and vice versa.

Note that Kk ∼l Mm implies Kk ∼n Mm for all l ≥ n. For each n, ∼n
is an equivalence relation. We denote the equivalence classes by [Kk]n. For
fixed n, the number of equivalence classes is bounded.

Proposition 1 Consider models over {p1, . . . , pm}. Define N(0) := 2m

and N(n + 1) := 2N(n)+m. The number N of possible ∼n equivalence
classes is smaller or equal to N(n).

Proof. See (Visser, 1996).

The modal degree d(A) of a formula A is defined inductively as follows:
d(⊥) = d(p) = 0, for atoms p, d(A1∧A2) = d(A1∨A2) = d(A1 → A2) =
max{d(A1), d(A2)} and d(�A) = d(A)+1. The relation between bisimilar
models and modal degree is explained in the following theorem.

Theorem 1 Let K,M be models over {p1, . . . , pm}. We have Kk ∼n Mm

if and only if for each formula B with atoms in {p1, . . . , pm} with d(B) ≤ n
we have K, k  B ⇔M,m  B.

Proof. See (Ghilardi, 2000).
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3 Projective formulas

In this section we introduce substitutions and the notion of projective formula.
This can also be read in (Ghilardi, 2000), but we use other notation. A
substitution is a function σ : {p1, . . . , pm} → F (q1, . . . , ql). This function
can be extended to a function with domain F (p1, . . . , pm) by

σ(A(p1, . . . , pm)) = A(σ(x1)/x1, . . . , σ(xm)/xm).

From now on, we identify σ with this extension. The composition of
σ : F (p1, . . . , pm)→ F (q1, . . . , ql) and τ : F (q1, . . . , ql)→ F (r1, . . . , rk)
is defined by τσ(p) = τ(σ(p)).

A unifier for a formula A built from atoms p1, . . . , pm is a substitution
σ : F (p1, . . . , pm)→ F (q1, . . . , ql) such that

`L σ(A).

We are only interested in unifiers where domain and codomain are the same.

Definition 3 A formula of the form �A with proposition letters p1, . . . , pm
is projective in L if there exists a unifier σ for it such that

�A `L p↔ σ(p) (1)

for all proposition letters pi. We call σ a projective unifier.

Using the substitution axiom, it is easy to prove that condition (1) is
equivalent to

�A `L B ↔ σ(B) (2)

for all formulas B in proposition letters {p1, . . . , pm}.
Ghilardi builds suitable substitutions adopting this property in the follow-

ing way. Let {p1, . . . , pm} be the atoms occurring in A. Let a be a subset
of those atoms; the substitution σa : F (p1, . . . , pm) → F (p1, . . . , pm) is
defined as:

σ�A
a (p) =

{
�A→ p if p ∈ a,
�A ∧ p if p /∈ a.

From now, we omit the superscript and just write σa when �A is clear from
the context. It is easy to see that �A `L σa(p) ↔ p. We sometimes call
those substitutions simple. Ghilardi defines substitution θ := σa1 · · ·σas
where a1, . . . , as is any fixed ordering on the subsets of {p1, . . . , pm}. Since
the simple substitutions are closed under condition (2), we know that θ also
satisfies condition (2).
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Projective Formulas vs. the Extension Property

4 Connecting projectivity to the extension property

In this section we investigate the important theorem that connects projectivity
to the extension property. Recall that L is a logic extending K4 that satisfies
the finite model property (Assumption 1).

Theorem 2 (Ghilardi, 2000) Formula �A is projective in L if and only if
ModL(�A) has the extension property.

We are interested in the difficult direction of this theorem, which is from
right to left. For a proof for the other direction we refer to (Ghilardi, 2000).
We give an analysis of Ghilardi’s proof and we will identify key elements of
his method.

We fix some notation that we use in the rest of the paper. Let �A be
a formula with atoms from {p1, . . . , pm}. Assume that ModL(�A) has
the extension property. Suppose that d(A) ≤ n. Let N be the number of
different equivalence classes of n-bisimilar models and let N ′ be the number
for (n− 1)-bisimilar models. The goal is to prove that �A is projective.

In short, Ghilardi proves that θ2N is a projective unifier for �A. Number
N belongs to n-bisimilar equivalence classes, but we will show that it suffices
to use (n−1)-bisimilar classes. NumberN ′ is smaller than N , so this results
in the shorter concatenation θ2N

′
. If we carefully read the proof of Theorem 3,

we actually conclude that θ2(N
′+1) is the projective unifier for �A.

The first ingredient in the proof makes a bridge between substitutions
in syntax and semantic operations in models. Ghilardi gives the following
definition of the semantic operator σ∗ on models based on substitution σ:

σ∗(K), w  p ⇐⇒ K,w  σ(p).

Note that σ∗ only changes the valuation in the model. From now on we
abuse terminology and call σ∗ a substitution on models. This is a first step to
connect the extension property to projectivity because the first is a property
of semantics and the latter of syntax. We give some properties of σ∗.

Lemma 1 Let A be a formula and let σ be a substitution. For every Kripke
model K, we have

(i) σ∗(K) |= A iff K |= σ(A),
(ii) and for every substitution τ , (τσ)∗(K) = σ∗(τ∗(K)).

Point (ii) shows that the order of substitutions σ and τ reverses.

7
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Ghilardi defines the useful substitutions σa, which we already defined in
Section 3. We already saw that they are closed under condition (2), a key
condition for �A being projective. Now we only have to search for a suitable
combination of those σa’s and prove that this is a unifier for �A. However,
finding the right concatenation is the hard part of the proof.

The extension property will guide us in the right direction for finding
the correct concatenation of σa’s. The method consists of several steps. We
start with two relatively simple lemmas. For proofs see (Ghilardi, 2000,
Lemma 2.1 and 2.3).

Lemma 2 Let �A be a formula with atoms in {p1, . . . , pm} and let K be
an L-model. Suppose a ⊆ {p1, . . . , pm}. We have

(i) (σ∗a(K))(w) = K(w) if Kw |= �A,
(ii) (σ∗a(K))(w) = a if Kw 6|= �A, and

(iii) σ∗aσ
∗
a = σ∗a.

In words, the first two points of the lemma say that the atoms forced in a
world w stay the same (in case Kw |= �A), or become exactly the atoms in
a (in case Kw 6|= �A).

Lemma 3 Let �A be a formula with atoms in {p1, . . . , pm} and suppose
that ModL(�A) has the extension property. Let K be a model that almost
satisfies �A. Then there is a set a ⊆ {p1, . . . , pm} such that σ∗a(K) |= �A.

We combine the ingredients so far and sketch a proof idea to find a unifier
for �A. We will see that this naive idea is not sufficient and that we need
more. For simplicity, one can think of models without any clusters. We want
to find a unifier θ that is a concatenation of σa’s. In other words, we want to
show that `L θ(�A). Using the completeness theorem and Lemma 1, we
want to show that θ∗(K) |= �A for each L-model K. Let K be an L-model.
We start at the leafs of the model and work our way down to the root. In
each step we want to apply a σa that gives us a model in which more nodes
validate �A. Consider a world w that almost satisfies �A, i.e., K,w 6 �A
and K, v  �A for all wR>v. By Lemma 3 there is a valuation a such that
w satisfies the atoms from a and σ∗a(K), w  �A. We pick σa and apply it
to our model. This strategy sounds promising, because we can go through
all the nodes and apply a substitution that works for that node. Define θ on
the basis of all those substitutions to yield θ∗(K) |= �A. The big problem
is that the definition of our θ depends on K, so we cannot define a good
sequence of σ’s that works for all models K. Doing induction on the depth
of the model will not solve the problem, because the depth is not bounded.

8
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The key idea is to connect the extension property to bisimulation of
models. Ghilardi defines θ := σa1 · · ·σas where a1, . . . , as is any fixed
ordering on the subsets of {p1, . . . , pm}. He shows that θ2N is a projective
unifier, where N is the number of the different n-bisimilar models. Ghilardi
defines four important ingredients: frontier points, a rank, homogeneous
models and the minimal rank (the last is our terminology).

• fK [�A] := {w ∈ K | Kw 6|= �A and ∀v(wR>v ⇒ Kv |= �A)} is
the set of frontier points.

• The rank of a model K is defined as

r(K) := #{[Kw]n | ρRw and Kw |= �A}.

• Model K is homogeneous if r(Kw) = r(Kv) for each w, v with
K,w 6 �A and K, v 6 �A.

• µ(K) := min{r(Kw) | Kw 6|= �A}, which we call the minimal rank.

Frontier points are the points w such that Kw almost satisfies �A. As
observed above, for each frontier point we can use the extension property
(Lemma 3) to find a σa such that �A becomes true in that frontier point. For
different frontier points there can be different σa’s that work. However, after
one application of θ, all frontier points are turned into points that satisfy �A.
The next step is to find the new frontier points and apply θ again. Ghilardi
shows that after two applications of θ, the minimal rank grows strictly. One
θ covers irreflexive nodes and the other θ reflexive nodes. The minimal rank
is bounded by N , therefore K |= θ2N (�A) for all models K.

Figure 1 sketches the idea of the frontier points in a model. Each curved
line represents the set of frontier points, which lowers after two applications
of θ∗. There are at most N steps of θ∗θ∗ in the picture.

...

θ∗θ∗

...

θ∗θ∗

Figure 1: Lines of frontier points.
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We keep the same idea in mind, but we propose to change the definition of
the rank and give another approach for the homogeneous models. Those
elements are highly based on Ghilardi’s method. With our investigation, we
want to address the important role of the frontier points and the link between
bisimilar models and the extension property. The idea is to identify different
so-called extension structures in the extension property of Mod(�A). Those
extension structures are identified using bisimulation. In turn, each extension
structure will correspond to a simple substitution σa which are again the
building blocks for θ. We will see that 2(N ′+1) applications of θ is enough,
where again N ′ is the number of different (n− 1)-bisimulation equivalence
classes.

Before we explore the new method, we give some examples to see that in
many cases a short substitution suffices to act as a projective unifier for �A
and that this depends on the nature of the extension property of Mod(�A).

Example 1 Let A be of the form p→ B for some formula B and atom p.
Formula �A has the extension property, because for each model K that
almost satisfies �A, we can find a variant K ′ in which no atom is forced in
the root. This works independently of the shape of K. So K ′ |= �A. This
means that σ∗∅(K) |= �A for each K, so σ∅ is a projective unifier of �A.

Also for box-free formulas with the extension property, one σ suffices as
projective unifier. In general, if the extension property does not depend on
the models above the root, one σ suffices.

Example 2 Consider formula A = (�p→ p) ∧ (p→ �p). For simplicity,
we work with tree-like models. There are multiple cases of the extension
property. If all nodes above the root satisfy p, extend it with a node where
p also holds. This is illustrated below in the first two pictures, where in the
first picture there are no submodels above the root. Note that A is true for
each reflexive leaf in the tree. If there is at least one node in which p does
not hold, extend the models with a node where p does not hold, illustrated in
the last two models.

p p

p

p

p

p

6 p

6 p 6 p

6 p

p

p

6 p
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Projective Formulas vs. the Extension Property

We want to know which sequence of σ’s turns each model into a model that
satisfies �A. Let K be a model. We can first apply σ∗p that belongs to the
left two pictures. By Lemma 2, if Kw |= �A, then the atoms forced in w in
model σ∗p(K) stay the same, and if Kw 6|= �A, then the only atom forced
in w is p. Moreover, for each world w in σ∗p(K) such that σ∗p(Kw) 6|= �A
we have that there is at least one node v above w such that σ∗p(Kv) 6|= p. So
all these nodes belong to the third or fourth picture. Now we can take σ∗∅ to
conclude σ∗∅σ

∗
p(K) |= �A. Hence, σpσ∅ is a projective unifier for �A.

Example 3 Formula B = (�¬p→ ¬p)∧ (¬p→ �¬p) is the substitution
instance of A from the previous example where ¬p is substituted for p. The
corresponding extensions are now as follows:

6 p p

p

p

p

p

6 p

6 p 6 p

p

p

p

6 p

Now we see that σ∗pσ
∗
∅ turns each model in a model that satisfies �B. There-

fore σ∅σp is a projective unifier for �B. Note that here the σ’s depend on B,
so now σp means σ�B

p .

The examples illustrate that the set a of atoms forced in the extended root
depends on the structure of the models above it. In addition, we distinguish
between the extended root being reflexive or irreflexive. This results in
different extension structures defined in Definition 4.

We will formalise our method. Recall that we work with formula �A
with atoms from {p1, . . . , pm} and d(A) ≤ n. Let N ′ be the number of
(n− 1)-bisimilar equivalent models. Let us introduce our ingredients.

• We keep the same notion of frontier points.
• Define the bisimulation set of K as

B(K) = {[Kw]n−1 | ρRw and Kw |= �A}.

• The rank r(K) is the cardinality of B(K).
• We call a frontier point w B-minimal in K, if r(Kw) ≤ r(Kv), for all

other frontier points v in K.

11
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The bisimulation set of K is a subset of the set of all equivalence classes of
(n− 1)-bisimilar models that satisfy �A. Because we work with transitive
models, we have the following important fact: B(K) ⊆ B(σ∗a(K)) for every
a ⊆ {p1, . . . , pm}. And so r(K) ≤ r(σ∗a(K)). The rank is bounded by N ′.

Example 4 Consider Example 2 and Example 3. The box-depth of formulas
A and B is 1. So the different bisimulation sets depend on 0-bisimulation.
Therefore we have to look at the atoms that are forced in the nodes above
the root. There are four bisimulation sets which we write as ∅, {p}, {6 p} and
{p, 6 p}. They correspond from left to right to the pictures in the examples.

The applied substitution in the examples is the same for reflexive and
irreflexive roots, but this is not the case in general.

Definition 4 Let K be an L-model almost satisfying �A and suppose that
ModL(�A) has the extension property. The extension structure of K (with
respect to �A) is the pair (B(K), ·) of its bisimulation set and · = i if the
root of K is irreflexive and · = r if the root is reflexive.

Each bisimulation set may define two extension structures, depending
on the (ir)reflexivity of the root. The following lemma shows that the same
substitutions work for models with the same extension structure. We will see
that each extension structure gives rise to a corresponding substitution.

Lemma 4 Let K1,K2 be two models that almost satisfy �A. Assume that
they have the same extension structure. Then for each a, σ∗a(K1) |= �A if
and only if σ∗a(K2) |= �A.

Proof. Let ρ1 and ρ2 be the roots of K1 and K2. The models have the same
extension structure, so B(K1) = B(K2) and ρ1 and ρ2 are both irreflexive
or reflexive. By Lemma 2.3 of (Ghilardi, 2000), it is enough to consider
models Ki with cl(ρi) being a singleton. Suppose σ∗a(K1) |= �A. We will
show that σ∗a(K1) ∼n σ∗a(K2). From this it follows from Theorem 1 that
σ∗a(K2) |= A, since σ∗a(K1) |= A and d(A) ≤ n. Then also σ∗a(K2) |= �A,
hence σ∗a(K2) |= �A.

Now we prove σ∗a(K1) ∼n σ∗a(K2). We have σ∗a(K1) ∼0 σ
∗
a(K2) by

Lemma 2 (ii). First assume that ρ1 and ρ2 are irreflexive. Suppose ρ1R1w.
Root ρ1 is irreflexive so w 6= ρ1 and therefore K1,w |= �A. So

[K1,w]n−1 ∈ B(K1) = B(K2).

Hence there is a v such that ρ2R2v, K2,v |= �A and K2,v ∼n−1 K1,w.
By Lemma 2 (i) we have σ∗a(K2,v) = K2,v and σ∗a(K1,w) = K1,w and so

12
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σ∗a(K2,v) ∼n−1 σ∗a(K1,w). The other direction is analogous. Therefore
σ∗a(K1) ∼n σ∗a(K2).

Now suppose that ρ1 and ρ2 are reflexive. We show by induction
σ∗a(K1) ∼k σ∗a(K2), for k = 0, . . . , n. We have σ∗a(K1) ∼0 σ∗a(K2)
by Lemma 2 (ii). Take w such that ρ1R1w. If w 6= ρ1 do the same as in
the irreflexive case. If w = ρ1, define v = ρ2. By induction hypothesis
we have σ∗a(K1) ∼k−1 σ∗a(K2). Now pick v such that ρ2R2v. This case is
symmetric of the previous one, so we can apply a similar argument. Hence
σ∗a(K1) ∼k σ∗a(K2) for each k = 0, . . . , n.

Note that there can be multiple substitutions that can correspond to an
extension structure, but there is at least one by Lemma 3. For each extension
structure we fix such a substitution and call it the corresponding substitution
to that extension structure. Note that different extension structures can be
identified by the same substitution σa. We write σi and σr denoting the
corresponding substitutions to the irreflexive and, respectively, reflexive
extension structure of some bisimulation set.

Lemma 5 shows the connection between extensions of reflexive and
irreflexive nodes under certain criteria. Informally, the substitution σr cor-
responding to a reflexive extension also works for the irreflexive extension
with the same bisimulation set under these criteria.

Lemma 5 Let K1,K2 be two models, with roots ρ1, ρ2, that almost satisfy
�A. Let ρ1 be reflexive and ρ2 irreflexive. Suppose B(K1) = B(K2). If
σ∗a(K1) |= �A and B(K1) = B(σ∗a(K1)), then also σ∗a(K2) |= �A.

Proof. Similarly to the proof of the previous lemma, we will show that
σ∗a(K1) ∼n σ∗a(K2). From this it follows that σ∗a(K2) |= �A.

By Lemma 2.3 of (Ghilardi, 2000), it is enough to consider models Ki

with cl(ρi) being a singleton. We have σ∗a(K1) ∼0 σ
∗
a(K2) by Lemma 2 (ii).

We must show that for all w such that ρ1R1w there exists v such that ρ2R2v
and σ∗a(K1,w) ∼n−1 σ∗a(K2,v) and vice versa. First take w such that ρ1R1w.
If w 6= ρ1, we proceed in the same way as for the irreflexive case in the proof
of Lemma 4. If w = ρ1, we use the assumption σ∗a(K1) |= �A to see that

[σ∗a(K1)]n−1 ∈ B(σ∗a(K1)) = B(K1) = B(K2).

There is a v such that ρ2R2v, K2,v |= �A and K2,v ∼n−1 σ∗a(K1,ρ1). By
Lemma 2 (i), we have K2,v = σ∗a(K2,v) and so σ∗a(K2,v) ∼n−1 σ∗a(K1,ρ1).

Now pick v such that ρ2R2v. This case is easier than the previous one
and is left to the reader. Therefore σ∗a(K1) ∼n σ∗a(K2).

13



Iris van der Giessen

Now we present the key lemma. Recall that θ := σa1 · · ·σas where
a1, . . . , as is any fixed ordering on the subsets of {p1, . . . , pm}. The lemma
states that after two applications of θ∗, theB-minimal rank of the new frontier
points increases. Intuitively, one θ covers the corresponding irreflexive
substitutions σi’s and the other the corresponding reflexive substitutions σr’s.
In the following we use the notation θ∗j := σ∗ajσ

∗
aj−1
· · ·σ∗a1 , where we define

θ∗0 to be the empty substitution, i.e., θ∗0(K) = K for each model K.

Lemma 6 Let K be a model and let w be a B-minimal frontier point
in K. Then for each frontier point v in θ∗θ∗(K) below w we have that
B(Kw) ⊂ B(θ∗θ∗(Kv)). Consequently, r(Kw) < r(θ∗θ∗(Kv)).

Proof. LetK be a model withB-minimal frontier pointw. Let v be a frontier
point in θ∗θ∗(K) below w. Note that B(Kw) ⊆ B(θ∗θ∗(Kv)). Suppose
B(Kw) = B(θ∗θ∗(Kv)). We will prove that it implies θ∗θ∗(Kv) |= �A,
and so v cannot be a frontier point in model θ∗θ∗(K).

Observe that B(Kw) ⊆ B(Kv) ⊆ B(θ∗θ∗(Kv)), so B(Kw) = B(Kv).
Consider all v′ above v such thatKv′ 6|= �A (this includes w itself). Since w
is B-minimal and B(Kv′) ⊆ B(Kv), these v′’s satisfy B(Kw) = B(Kv′)
as well. Also note that for each such v′ and each index j we have

B(Kw) = B(Kv′) ⊆ B(θ∗j (Kv′)) ⊆ B(θ∗j θ
∗(Kv′)) ⊆ B(θ∗θ∗(Kv)).

Therefore, B(Kw) = B(θ∗j (Kv′)) = B(θ∗j θ
∗(Kv′)) for each j. We have

two cases: all v′ are irreflexive or there is at least one that is reflexive.
Let start with the first case. Here w is irreflexive. By Lemma 3 we have,

σ∗aj (Kw) |= �A for some j. Note that also θ∗j (Kw) |= �A. This σaj is
the irreflexive substitution σi corresponding to B(Kw). For each v′ above
v we will prove θ∗j (Kv′) |= �A. We proceed by induction on the maximal
length of sequences v′Rx1R . . . Rxk where xk is a frontier point in K. If
the length equals 1, then v′ is a frontier point in K. If θ∗j−1(Kv′) |= �A,
then also θ∗j (Kv′) |= �A by Lemma 2 (i). If θ∗j−1(Kv′) 6|= �A, we know
that v′ is a frontier point in θ∗j−1(K). Since B(Kw) = B(θ∗j−1(Kv′)), we
can apply Lemma 4 to conclude θ∗j (Kv′) |= �A. Suppose now the length
is l > 1. By induction hypothesis we know that v′ is an irreflexive point
for which all its successors satisfy �A in θ∗j (K). If θ∗j (Kv′) |= �A we
are done. If not, since B(Kw) = B(θ∗j (Kv′)) we know by Lemma 4 that
σ∗ajθ

∗
j (Kv′) |= �A. Hence, by Lemma 2 (iii), θ∗j (Kv′) |= �A. Therefore

by Lemma 2 (i), we have θ∗θ∗(Kv) |= �A.

14
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Now we turn to the second case. We consider model θ∗j (K), where
j is defined in such a way that σaj is the irreflexive substitution σi cor-
responding to B(Kw). In case there is no corresponding irreflexive sub-
stitution, we define j = 0. If θ∗j (Kv) |= �A we are done. If not, we
will see further in the proof that all frontier points in θ∗j (K) above v are
reflexive. Fix such a frontier point w′. Let σah be the corresponding re-
flexive substitution σr to B(Kw). Note that B(Kw) = B(θ∗j (Kw′)), so
σ∗ahθ

∗
j (Kw′) |= �A. We prove for all v′ above v that θ∗hθ

∗(Kv′) |= �A.
We do so by induction on the maximal length of v′Rx1 . . . xk−1Rxk where
xi’s do not belong to the same cluster and xk is a frontier point in θ∗j (K).
If the length equals 1, then v′ is a frontier point in θ∗j (K) (v′ may equal
w′). Frontier point v′ must be reflexive, because suppose v′ was irreflex-
ive. Recall that B(Kw) = B(θ∗j (Kv′)). By Lemma 4 and Lemma 2 (iii)
it would follow that θ∗j (Kv′) = σ∗ajθ

∗
j (Kv′) |= �A. And so v′ would not

be a frontier point in θ∗j (K). Thus v′ is reflexive. If θ∗h−1θ
∗(Kv′) |= �A,

we are done. If not, since B(θ∗j (Kw′)) = B(θ∗h−1θ
∗(Kv′)), we can ap-

ply Lemma 4 to conclude θ∗hθ
∗(Kv′) |= �A. Now suppose the length is

l > 1. By induction hypothesis, all the successors of v′ not in the cluster
of v′ satisfy �A in θ∗hθ

∗(K). Again, if θ∗hθ
∗(Kv′) |= �A, we are done. If

not, we have two cases. If v′ is reflexive we can apply Lemma 4, because
B(θ∗j (Kw′)) = B(θ∗hθ

∗(Kv′)). If v′ is irreflexive, we apply Lemma 5, be-
cause B(θ∗j (Kw′)) = B(θ∗hθ

∗(Kv′)) and B(θ∗j (Kw′)) = B(σ∗ahθ
∗
j (Kw′)).

In both cases we obtain σ∗ahθ
∗
hθ
∗(Kv′) |= �A, hence θ∗hθ

∗(Kv′) |= �A.
This concludes θ∗θ∗(Kv) |= �A.

Consider again Figure 1 illustrating the frontier lines. Lemma 6 shows
that the B-minimal rank of the frontier lines increases after each step of θ∗θ∗

in the picture. We show in the final theorem that there are at most N ′ + 1
of these steps. And so a concatenation of 2(N ′ + 1) θ’s forms a projective
unifier for �A. As mentioned before, Ghilardi uses 2N θ’s. From a close
look at the induction proof of Lemma 2.8 from (Ghilardi, 2000), we think
that he would conclude 2(N + 1) instead of 2N θ’s. The rank is indeed
bounded by N , but it may start at 0, which contributes to an extra application
of θ. However, this is not so important. We even think that a more clever
proof can show that 2N ′ applications is sufficient in our case.

Note that if d(A) = n = 0, and thus A is box-free, (n− 1)-bisimulation
is undefined. In that case one θ will suffice. More precisely, only one σa
will be enough, namely its classical propositional valuation making A true
(compare to Example 1).
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Theorem 3 (θ∗)2(N
′+1)(K) |= �A for all models K.

Proof. From Lemma 6 it follows with induction on l ≤ N ′, that the rank of
the B-minimal frontier points in (θ∗)2l is greater than or equal to l. Note
that the rank can be 0, so the B-minimal rank can start at 0. Since the rank is
bounded by N ′, we have that (θ∗)2(N

′+1)(K) does not contain any frontier
points. Therefore (θ∗)2(N

′+1)(K) |= �A.

5 Conclusion

This paper provides an extensive examination of Ghilardi’s proof method of
the connection between projective formulas and the extension property for
several modal logics extending K4. The result plays an important role in the
fields of unification and admissible rules. We provide an explanation of the
close relationship between bisimulation and the extension property on the
basis of extension structures.

It should be mentioned that the method only works for transitive models.
For instance, it follows from (Jeřábek, 2015) that it is not possible to establish
the same property for modal logic K. In terms of admissibility there are a lot
of open questions for K.

We hope that this study will give more insight into the beautiful work
of Ghilardi. It may clarify some aspects of Ghilardi’s work which may be
helpful for further research in the field of unification and admissibility. An
interesting direction would be to establish a similar result for intuitionistic
modal logics.
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Jeřábek, E. (2005). Admissible rules of modal logics. Journal of Logic and
Computation, 15(4), 411–431.
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