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Abstract
Accurate estimation of site productivity is essential for forest projections and scenario modelling. We present and evaluate

models to predict site index (SI) and whether a site is productive (potential total stem volume production ≥ 1 m3·ha−1·year−1)
in a wall-to-wall high-resolution (16 m × 16 m) SI map for Norway. We investigate whether remotely sensed data improve
predictions. We also study the advantages and disadvantages of using boosted regression trees (BRT), a machine-learning algo-
rithm, to create high-accuracy SI maps. We use climatic and topographical data, soil parent material, a land resource map, and
depth to water, together with Sentinel-2 satellite images and airborne laser scanning metrics, as predictor variables. We use
the SI observed at more than 10 000 National Forest Inventory (NFI) sample plots throughout Norway to fit BRT models and
validate the models using 5822 independent temporary plots from the NFI. We benchmark our results against SI estimates
from forest monitoring inventories. We find that the SI from BRT has root mean squared error (RMSE) ranging from 2.3 m
(hardwoods) to 3.6 m (spruce) when tested against independent validation data from the NFI temporary plots. These RMSEs are
similar or marginally better than an evaluation of SI estimates from operational forest management plans where SI normally
stems from manual photo interpretation.
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Introduction
Site productivity is a key variable in most forest man-

agement decisions such as species selection, stand density,
or number and timing of thinnings. Forest site productiv-
ity is the production that can be realized at a certain site
with a given genotype and a specified management regime
(Skovsgaard and Vanclay 2008). Site productivity is, therefore,
the combined effect of climate, soil quality, and management
on the growth of a fixed genotype on a site. The most widely
used indicator for site productivity is site index (SI), which
is defined as the average height of the dominant trees of a
site at a certain age. Note that SI is a proxy for site productiv-
ity, and expresses the potential height growth, whereas the
productivity is also affected by additional factors, which SI is
assumed to be independent of, such as density. SI as a proxy
for productivity has many challenges in cases such as uneven-
aged stands or mixed-species stands (Berrill and O’Hara 2014)
but is still the most widely used measure of productivity in
operational forest management in Fennoscandia and is used
in the vast majority of operational forest management plan-
ning systems.

Operational forest management is usually based on infor-
mation from forest management inventories (FMIs), which
are spatially explicit inventories carried out for management
of individual forest properties. Although SI from FMIs ful-
fill the need of the individual forest properties, they cannot

be used to do planning for larger areas, e.g., municipality
or region, since (1) FMIs are not available for all forest area
(Lindgren et al. 2021), (2) they are not useful for distinguish-
ing between unproductive and productive areas, since FMIs
are only available for productive forest, (3) they cannot be
used to estimate productivity of nonforested areas, (4) they
estimate SI only for the current dominant species, and thus
offer no information about SI of other currently or potentially
coexisting species, which is crucial information for projec-
tions and scenario modelling. To overcome these drawbacks,
a wall-to-wall map of productivity is needed.

There are several alternative methodologies to produce
a wall-to-wall productivity map. Productivity could be esti-
mated using canopy height growth estimated from bitem-
poral airborne laser scanning (ALS) data, or digital aerial
photogrammetry (DAP) and existing SI curves (see Tompalski
et al. (2021) for a review of ALS and DAP for estimating for-
est attributes, including SI). However, this approach shares
most of the drawbacks described above: bitemporal ALS/DAP
is not available for all forest areas, cannot be used to esti-
mate productivity of nonforested areas, and it can only be
used to estimate SI for the current dominant species. It also
has the drawback of being hard to use if there has been
some disturbance (harvest or mortality of dominant trees) in
the period in between the laser acquisitions. Alternatively,
SI can be estimated using proxy variables such as climate
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(Weiskittel et al. 2011; González-Rodríguez and Diéguez-
Aranda 2021), soil characteristics (Sabatia and Burkhart 2014;
Antón-Fernández et al. 2016; Barrio-Anta et al. 2020), topo-
graphic variables (Huang et al. 2017), satellite data, and/or
lithology (Watt et al. 2010; Rahimzadeh-Bajgiran et al. 2020).
Since these proxy variables are usually available for large ar-
eas and not limited to productive or managed forest or by
the species currently growing in the area, the SI derived from
them can potentially overcome the drawbacks outlined above
for the current FMIs.

While the use of biophysical variables and remotely sensed
data for productivity mapping has a relatively long history
(e.g., Latta et al. 2009), and bitemporal ALS data have been
used to predict and map SI in operational forest invento-
ries (Noordermeer et al. 2020), using ALS-derived variables,
such as the height of the 95th percentile of the point cloud,
to produce SI maps for large regions has not been, to our
knowledge, yet tested. Height ALS-derived variables could po-
tentially help improve the SI predictions (Tompalski et al.
2015), particularly in stands with high SI, since mature high-
SI stands will reach heights that are unlikely to be reached
by a low-SI stand, or in complex, heterogeneous forest stands
(Tompalski et al. 2015). However, this could pose a problem
in recently felled areas, since tree heights would be low but
SI could be high, especially because stands with high SI are
more likely to be felled (shorter rotations) than stands with
low SI. This could lead to larger uncertainties in the estimated
SI in recently felled areas and it could also lead to underpre-
diction of SI. The same potential risk is applicable to other re-
motely sensed data, since the lack of vegetation after felling
could bias the estimation of SI in those areas.

SI models based on biophysical variables have been devel-
oped using multiple statistical and machine-learning tech-
niques (e.g., Monserud et al. 2006; Watt et al. 2021), but
recently machine-learning algorithms are gaining popular-
ity due to their promising results in predictive performance
(e.g., Schratz et al. 2019; Barrio-Anta et al. 2020; Watt et al.
2021). Watt et al. (2021) compared several parametric, ma-
chine learning (ML), and geospatial models to map radiata
pine (Pinus radiata D. Don.) across New Zealand, and found
that the ML algorithms clearly outperformed both paramet-
ric and geospatial models. Sabatia and Burkhart (2014) eval-
uated random forest models and nonlinear least squares re-
gression models for predicting SI in loblolly pine (Pinus taeda
L.) plantations from biophysical variables and concluded that
the ML models had better fit and prediction statistics than
the parametric models but exhibited the potential to give il-
logical predictions under extrapolation. Sabatia and Burkhart
(2014) also found that SI predictions from both modelling ap-
proaches exhibited a regression towards the mean SI. Aertsen
et al. (2011) compared several statistical, ML, and hybrid tech-
niques for modelling SI in two contrasting ecoregions and
concluded that boosted regression trees (BRT), an ML algo-
rithm, was one of the most effective techniques. BRT method
shares the advantages of tree-based methods and has high
predictive performance (Elith et al. 2008). BRT has several
advantages over traditional regression techniques such as
multiple linear regression or generalized additive models: (1)
it is insensitive to outliers and multicollinearity, (2) it can

fit complex nonlinear relationships and is able to handle
discontinuities, such as ecological thresholds (Aertsen et al.
2010, 2011), (3) it can automatically handle the interactive
effects between predictors, (4) it can handle missing data,
(5) it can handle different types of predictor variables, and
(6) it does not require prior data transformation (Elith et al.
2008). BRT shares with other ML techniques the disadvantage
of being harder to interpret than traditional statistical mod-
els, and potentially more difficult to extrapolate (Sabatia and
Burkhart 2014).

The aim of this work was to create a wall-to-wall high-
resolution (16 m × 16 m) SI map for the forest area in Norway.
Our research objectives were (1) to examine the usefulness
of remotely sensed data, (2) to investigate whether including
such variables causes bias in recently felled areas, and (3) to
investigate the performance, advantages, and disadvantages
of BRT as a tool to create high-accuracy SI maps. The mod-
els are constructed using data from the Norwegian National
Forest Inventory (NFI).

Materials and methods

Data
The study area covers the forest area of Norway, which is

approximately 37% of the Norwegian land area. Climatic con-
ditions range between a mean annual temperature of −2 ◦C
and about 6 ◦C, and a mean annual precipitation from about
400 mm up to 1300 mm. The permanent NFI plots used here
cover the whole country from latitude 58.1◦N up to 71.1◦N
and longitude 4.6◦E up to 31◦E (Breidenbach et al. 2020).
There are three main dominant species in Norway: Norway
spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and
birch (Betula spp.). Although the largest fraction of the forest
area is dominated by broadleaves (42%), mainly birch, Nor-
way spruce (42%), and Scots pine (30%) form the majority of
biomass in Norway (Breidenbach et al. 2020).

In Norway, SI is defined as the average height of the 100
thickest trees per hectare at the reference age of 40 years
(Tveite and Braastad, 1981). SI data used to fit the mod-
els came from the permanent plots of the Norwegian NFI
(Breidenbach et al. 2020) measured between 2013 and 2017
(Table 1). The NFI plots are circular with a size of 250 m2 and
are systematically distributed on a 3 km × 3 km (Easting ×
Northing) grid in lowlands, a 3 km × 9 km grid in the moun-
tains excluding Finnmark, and a 9 km × 9 km grid in Finn-
mark. Larger relative spacing is used in the mountains and
in Finnmark due to the lower proportions of forests there
(Breidenbach et al. 2020). Tree measurements are performed
within the 250 m2 plots, on which the diameter at breast
height (DBH), species, status, and position are recorded for all
trees equal or larger than 5 cm in DBH. On a 1000 m2 area sur-
rounding each circular plot landscape and stand-level charac-
teristics such as SI, stand age, soil type, and land-use category
are assessed. The stand age is the biological age, and it is de-
termined from increment cores from one or two representa-
tive trees outside the 250 m2 plots and within the 1000 m2

circle. Note that this does not imply that the plots are even-
aged. Trees are selected to represent a typical dominant tree,
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Table 1. Number of plots in each of the SI classes and for unproductive stands (unprod.) for the three datasets used.

Permanent NFI Temporary NFI Temporary NFI plots in FMI stands

SI (m) Unprod. Spruce Pine Hardwoods Unprod. Spruce Pine Hardwoods Spruce Pine Hardwoods

6 229 383 409 45 215 271 12 36 9

8 522 976 928 104 515 653 20 337 8

11 659 700 549 169 428 578 71 348 83

14 773 368 230 238 252 273 195 192 183

17 564 150 137 234 75 97 251 35 80

20 270 29 64 194 14 52 205 3 19

23 120 2 14 146 5 99 1 5

26 11 29 1 6 1

Total 2492 3148 2608 2331 1234 1159 1500 1929 859 952 388

and should be one of the 10 thickest trees within the 10002

but should not be an outlier. Increment cores taken at breast
height are used to estimate tree age at breast height by count-
ing tree rings. Tree rings are usually measured in the field;
however, if the tree rings are difficult to measure, they are
taken back to the lab. Stand age is, in forests that consist of
either one or more than two layers, the basal-area weighted
age of all trees. In two-layered forests, age is the basal-area
weighted age of all trees in the overstory. In uneven-aged or
multilayered forests, SI and stand age are usually estimated
using two trees: one of the largest and oldest trees within
the 1000 m2, and one of the younger trees that is still grow-
ing relatively well, for example one that is about to reach
or has recently reached maturity age. SI is determined us-
ing Tveite and Braastad (1981) curves, which use stand age
at breast height and top height to determine SI. SI estima-
tion, particularly for uneven-aged and multilayered stands, is
relatively subjective, since the selection of the representative
trees and the estimation of stand age as basal-area weighted
age are subjectively done.

During the 6th NFI (1986–1993), SI was assessed for the
main species by selecting at least one tree outside the 250
m2 plots and within the 1000 m2 ha circle of the NFI. The
heights of those trees were recorded, and their correspond-
ing ages were estimated based on increment cores. The re-
sulting data were used to estimate the SI of the stand repre-
sented by the sample plot according to Tveite and Braastad
(1981), which places SI in eight classes: 6, 8, 11, 14, 17, 20,
23, and 26 m. We will call this SI estimated at the plot “ob-
served SI”, although it is estimated from the sampled trees.
SI is reevaluated for the main species of the plot at each cy-
cle of the Norwegian NFI. The current spatial distribution of
productive/unproductive plots and SI by species are available
in the Supplementary material (Figs. S1 and S2).

A total of 10 579 NFI permanent plots were used, 8087 of
which were in productive forest and 2492 in unproductive
forest plots. SI is only estimated for productive forest, that
is, for forest with a potential for minimum annual volume
increase of 1 m3 per hectare, and only for the main species.
Following the convention of forest management in Norway,
tree species are classified into three groups: spruce, pine, and
broadleaves (Tomter et al. 2010). The main species is defined
as the one with the largest proportion of basal area. In young

stands, it is defined as the species with the largest proportion
of basal area after precommercial thinning. All broadleaves
use the SI curves for birch.

We had two independent datasets to benchmark the
SI models (Table 1; Fig. 1). We used 5822 temporary NFI
plots measured during the period 2008–2018 as a validation
dataset. SI at the temporary plots is assessed following the
same criteria as is followed for permanent NFI plots. We in-
cluded only temporary and permanent NFI plots that fell en-
tirely within a single stand. Temporary plots are measured
by county every 15 years. Since we used the last available 10
years, some counties are not represented in our dataset. As
an additional benchmark, we used the SI from the FMIs (SI-
FMI), which are used for operational forest management, to
assess the quality of the SI estimations. SI for FMIs in Norway
is currently typically derived through photo interpretation
and existing stand age information, existing local SI maps,
or a combination of the two (Bollandsås et al. 2019). FMIs do
not have the same coverage as the temporary plots, and only
2856 of the 5822 temporary NFI plots fell into a stand with
an FMI. We used only those 2856 temporary NFI plots when
benchmarking our results against SI-FMI.

In our analysis, we included variables that have been pre-
viously found useful to predict SI and that could correlate to
SI, including climatic, geographic, soil parent material, and
topographic variables, but also a land resource map (Table 2).
We restricted the variables to those that were available for
all of Norway, except the depth to water (DTW), which is only
available for parts of the country determined by the avail-
ability of a detailed terrain model at the time of creation of
the DTW dataset. We also tested ALS-derived variables such
as crown cover and height, and Sentinel-2 data. Table 2 de-
scribes the variables used, their sources, and resolution. Table
S1 presents further details on the variables.

The Norwegian national land resource map (Ahlstrøm et al.
2014), AR5, includes land information on soil conditions, veg-
etation, site productivity (low, medium, high, very high), and
tree species groups. AR5 is based on extensive field invento-
ries and aerial image interpretation carried out in the 1960s
and 1970s, before the first permanent NFI was established in
1986 (Breidenbach et al. 2020). AR5 uses a qualitative clas-
sification of site productivity, while forest planning is done
based on the quantitative SI classification used by the NFI; it
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Fig. 1. Approximate location of permanent (left) and temporary (right) NFI plots. Temporary NFI plots within stands with an
FMI are in blue. Base map image for Norway from Kartverket (https://www.kartverket.no).

Table 2. Description of the explanatory variables, their sources, and resolution.

Variable type Description Source Resolution

Climatic 30-year downscaled monthly average
temperature and precipitation

Norwegian Meteorological
Institute (Lussana et al. 2019)

1 km

Land resource map AR5 Land information on soil conditions,
vegetation, site productivity, and tree
species groups

Ahlstrøm et al. (2014) 1:5000

Parent material Soil parent material Geological survey of Norway
(Norges Geologiske
Undersøkelse 2021)

1:20.000, 1:50.000 and 250.000,
and parts of Finnmark
1:500.000

Topographical variables Slope, altitude Derived from the 10 m
resolution national digital
terrain model provided by the
Norwegian Mapping Authority

10 m

Depth to water (DTW) Vertical distance to groundwater table.
DTW takes into account the terrain
slope, but not soils or parent material

NIBIO DTW map 1 m

Geographical Distance to coast Based on a 100 m resolution
map produced by The
Norwegian Water Resources
and Energy Directorate

100 m

Latitude, longitude 16 m

Sentinel-2 Bands B2, B3, B4, B5, B6, B7, B8, B8A,
B11, and B12, and the Normalized
Difference Vegetation Index (NDVI)
based on bands B4 and B8

Breidenbach et al. (2021) B2, B3, B4, and B8 10 m. B5, B6,
B7, B8A, B11 and B12 20 m

ALS A national ALS campaign: metrics
derived from the heights of the first
return ALS echoes (mean and
percentiles), and the spatial
distribution of echoes (crown cover)

Base information of the forest
resource map SR16 (Hauglin
et al. 2021)

16 m

is based on 50 years old data, and does not cover all forest
land in Norway (e.g., drained mires).

Slope and altitude were extracted from a 10 m resolution
national digital terrain model provided by the Norwegian
Mapping Authority. Distance to coast is based on a 100 m

resolution map produced by the Norwegian Water Resources
and Energy Directorate. Temperature and precipitation were
extracted from the SeNorge_2018 dataset produced by the
Norwegian Meteorological Institute (Lussana et al. 2019). All
meteorological data were available at 1 km × 1 km spatial
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resolution and daily time steps, which were aggregated to
monthly means. Within each 1 km × 1 km pixel, the alti-
tude range can be large, particularly in mountainous areas.
To account for differences in temperature within each 1 km
× 1 km pixel, we corrected temperature with altitude by ad-
justing with 0.65 ◦C per 100 m altitude difference between
the 1 km × 1 km grid and the plot altitude (Skaugen et al.
2003).

A combination of bands in the visible and near-infrared,
NIR, (B2–B8A) and short-wave infrared, SWIR, (B11 and B12)
spectrum have been found useful to estimate canopy biophys-
ical variables in a boreal forest (Majasalmi and Rautiainen
2016) and elsewhere (e.g., Wang et al. 2018; Rahimzadeh-
Bajgiran et al. 2020). Therefore, we used data from the bands
B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12 from a level
2A mosaic of Sentinel-2 satellite images (Table 2). Based on
bands B4 and B8, we also calculated the Normalized Differ-
ence Vegetation Index (NDVI). The mosaic consisted of im-
agery acquired under leaf-on conditions during July 2018 and
was obtained using the Sentinel-2 Global Mosaic web ser-
vice (Breidenbach et al. 2021). Sentinel-2 delivers 13 spectral
bands ranging from 10 to 60 m pixel size. Its blue (B2), green
(B3), red (B4), and near-infrared (B8) bands have a 10 m reso-
lution. Its red-edge (B5), NIR (B6, B7, and B8A) and SWIR (B11
and B12) have a ground sampling distance of 20 m.

ALS metrics were calculated from point cloud data ac-
quired in a national scanning campaign from 2010 to 2019
by the Norwegian Mapping Authority. The first return echoes
were used, and six metrics were calculated from the above-
ground heights of these echoes: the mean and the heights cor-
responding to the 25th, 50th, 75th, 90th, and 95th percentiles
(Hauglin et al. 2021). We also used two metrics describing
crown cover at 5 and 10 m above ground. These were de-
rived by calculating the proportion of subvolumes with and
without presence of laser echoes. The calculations of crown
cover are further described by Schumacher et al. (2022). The
ALS data were acquired over a period of 10 years, but no
measures were taken to harmonize these data. The main
reason was that there is no straightforward way to account
for the varying acquisition time of metrics such as crown
cover.

All variables were scaled to the 16 m × 16 m grid of the Nor-
wegian forest resources map SR16 (Astrup et al. 2019; Hauglin
et al. 2021). SR16 is based on empirical models fit using NFI
sample plots with an area of 250 m2. A cell edge length of
16 m was chosen because it is the closest integer to create a
squared cell that resembles the size of an NFI plot (250 m2).

Modelling SI and productivity
SI is defined as the average height of dominant trees of a

certain species at a certain age. SI is, as such, a continuous
variable. However, in Norway, SI is assessed according to cat-
egories defined by intervals. For example, a stand is classified
as SI 8 if the height of the dominant trees at age 40 is between
6.5 and 9.5 m. The estimated SI is then an interval variable, an
ordinal variable where the difference between two values is
meaningful. Therefore, we decided to model SI as an ordinal
variable.

The problem of modelling an ordinal variable can be trans-
formed into a series of binary classification problems. Fol-
lowing the approach suggested by Frank and Hall (2001), we
transform a k-class ordinal regression problem to a k-1 binary
classification problem. In terms of SI classes

Pr (SI = 6) = 1 − Pr (SI > 6)

Pr (SI = 8) = Pr (SI > 6) − Pr (SI > 8)

Pr (SI = 11) = Pr (SI > 8) − Pr (SI > 11)

...

Pr (SI = 20) = Pr (SI > 17) − Pr (SI > 20)

Pr (SI = 23) = Pr (SI > 20)

(1)

We fitted models for Pr(SI > 6), Pr(SI > 8),..., Pr(SI > 20) for
the three main species in Norway: Norway spruce, Scots pine,
and birch. We used these models to calculate the probabili-
ties that a given site has SI classes 6, 8,..., 23, that is, Pr(SI = 6),
Pr(SI = 8),..., Pr(SI = 23) following eq. 1. See Fig. 2 for a schema
of the general approach we took to model SI. Not enough
data were available to fit models for SI > 20 for pine and
birch.

Applying the above approach results in a predicted prob-
ability for each SI class and species at each prediction unit
(p.u.). A p.u. is a temporary NFI plot in the case of validation
or a pixel in the case of mapping.

These probabilities can be used to assign an SI class to each
p.u. for each of the three species modelled. One way to do
this would be to calculate the mean predicted value (̂yi) for
observation i as the expected value of a discrete uniform dis-
tribution (Casella and Berger 2002, p. 86)

ŷi =
K∑

k=1

SIk × P̂r (SIK |xi )(2)

where P̂r (SIK |xi ) is the probability of observing SIk as pre-
dicted by the BRT models (eq. 1).

However, this results in underrepresentation of SI classes
at the extremes of the range, mostly SI classes 6, 23, and 20,
and overrepresentation of the SI classes at the center of the
range. This regression to the mean has been reported previ-
ously (Sabatia and Burkhart 2014). To overcome this problem,
we took a different approach, which we outline in Fig. 2. (1)
We calculated the expected frequencies of each SI class by
adding the probabilities for all p.u. for each SI class, that is,
Ns in Fig. 2 where s = (6, 8,..., 23). (2) Then, we selected an
SI class s, (3) we ordered the p.u. according to their probabil-
ity of belonging to that SI class, and (4) we assigned the SI
class s to the Ns p.u. with the highest probability of belong-
ing to that class. (5) We repeat the process for all SI classes
excluding from step (4) the p.u. that already has an SI class
assigned. The order in which we selected SI classes in step
(2) affected our results. Therefore, we tested several options,
including starting by the lowest SI, the highest SI, or by the
extremes (lowest and highest first). The option that resulted
in the best performance measures in the fitting dataset was
the extremes option, where we select for step (2) first the
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Fig. 2. Workflow to calculate SI from the binary models. s indicates an SI class; p.u. are prediction units.

lowest SI class, then the highest, then the second lowest, and
so on. We refer to the resulting SI as SI-BRT.

To produce an SI map for the forest area in Norway, we
fitted a model to predict whether a site is productive or un-
productive (model of productive site), and, on the productive
sites, we fitted models for SI (SI models). We fitted the model
of productive site and the SI models twice, once with ALS-
derived and remotely sensed variables (full models) and once
without these variables (simple models).

We modelled whether a site is productive or not with a lo-
gistic regression BRT model that models the probability that
a plot falls within a productive forest, y = 1 conditional on
plot covariates X, i.e., P (y = 1|X ).

Modelling approach
The objective of this work was to produce a high-resolution

(16 m × 16 m) SI Map for Norway and test whether the vari-
ables derived from remotely sensed data improved the SI es-
timations. Since our focus is on prediction, we selected an
ML algorithm because of their generally higher prediction
power, particularly when large datasets are available (Elith
et al. 2008; Aertsen et al. 2011; Watt et al. 2021). Among
the ML algorithms, we selected BRT, an ensemble method
for fitting statistical models that can accommodate any type
of variable (continuous, categorical, also missing and nonin-
dependent data) and can deal with highly correlated inde-
pendent variables. BRT identifies important predictor vari-
ables and enable complex functions and their interactions
to be modelled without making assumptions about the type
of functions or interactions (Elith et al. 2008). Model fitting
and validation were performed using the R Package dismo

(Hijmans et al. 2020) version 1.3-5, which uses gbm package
(Greenwell et al. 2020) in R version 4.1.3 (R Core Team 2020).

BRT is an ensemble method, which draws on techniques
from both statistical and ML traditions. It combines the ad-
vantages of regression trees (models that relate a response
to their predictors by recursive binary splits) and boosting
(a method for combining many simple models to improve
predictive performance). Elith et al. (2008) offers a compre-
hensive and accessible introduction to BRT, while Ridgeway
(2007) provides mathematical details.

BRT offers several options to help with the interpretability
of the results. The main one is the relative importance. The
relative importance is a measure of the influence of input
variables. It is calculated by averaging the number of times
a variable is selected for splitting, weighted by the squared
improvement to the BRT model, as a result of each split, and
it is then scaled so the values sum up to 100 (Friedman 2001).

Hyperparameter tuning
BRT uses a sequential model fitting approach that allows re-

gression trees to be added until the data are completely over-
fitted. Then, it uses regularization to avoid the reduction in
generality derived from overfitting. Regularization methods
(Elith et al. 2008; Hastie et al. 2009) balance model fit and
predictive performance. In BRT, regularization is achieved
through shrinking that is applied to each new tree as it is
fitted. Analytically, BRT regularization involves jointly op-
timizing the number of regression trees (nt), learning rate
(lr), and tree complexity (tc). tc——the number of nodes in a
tree——controls the maximum level of interactions that can be
quantified. The lr, also known as the shrinkage parameter,
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determines the contribution of each tree as it is added to
the model. Decreasing (slowing) lr increases the nt required,
and in general a smaller lr (and larger nt) are preferable, con-
ditional on the number of observations and time available
for computation. Ridgeway (2007) recommends selecting lr as
small as possible while still able to fit the model in a reason-
able amount of time. Ridgeway (2007) proposes values of lr be-
tween 0.01 and 0.001. A smaller lr will always give improved
predictive performance (Ridgeway 2007), but at a computa-
tional cost, both in terms of storage and CPU time. In BRT,
stochasticity is controlled through a “bag fraction” that spec-
ifies the proportion of data to be selected at each step. The
optimal nt is automatically calculated in the dismo package.

The dismo package uses cross-validation as described in
Hastie et al. (2009) to first determine the optimal nt, then
fits a final model to all the data. The first step in the cross-
validation is to divide the dataset randomly into n subsets
(we chose n = 10), then n different training sets each com-
prising a unique combination of n − 1 subsets for fitting and
one testing subset are defined. Then, for each training set a
BRT model is fitted and their predictive performance mea-
sured on their respective testing subset. The mean predictive
performance is used to select the optimal nt. The code and a
more detailed description of the cross-validation method are
available in Elith et al. (2008).

To select the rest of the hyperparameters, we tested for all
models all combinations of the following learning rates, tree
complexities, and bag fractions: learning rate (0.01, 0.005,
0.001), tree complexity (1, 2, 5, 10), and bag fraction (0.5, 0.6,
0.75). From these combinations, we selected the models with
the lowest deviance, a measure of loss of predictive perfor-
mance (Elith et al. 2008).

Variable selection
The dataset used to fit the models included 54 variables,

some of which contributed more to the model than others.
We used the methodology suggested in Elith et al. (2008),
which uses methods analogous to backward selection in re-
gression, to simplify the predictor set in our models, al-
though it is generally not necessary to drop unimportant
variables in BRT (Elith et al. 2008). The number of predictors
dropped ranged from 0 for spruce SI 8 and birch SI 6, and 49
for pine SI 17 for the final models.

Evaluation of the models and SI-BRT
performance

Individual models’ predictive performance was evaluated
in terms of discrimination. Discrimination addresses how
well the model can distinguish between, for example, a site
with an SI > 8 and an SI ≤ 8. We evaluated goodness of fit
with calibration measures. Calibration is the extent to which
the predictive probabilities agree with the observed frequen-
cies. The model’s predictive discrimination was evaluated us-
ing the probability of concordance, c or c-index (Harrell et al.
1982, 1984), also known as the area under a receiver oper-
ating characteristic curve (Hanley and McNeil 1982). The c-
index takes values from 0.5 to 1, where a value of 0.5 indi-
cates random predictions, and a value of 1 indicates perfect

separation. A c-index larger than 0.8 indicates a model with
excellent discrimination (Hosmer and Lemeshow 2000). We
used the calibration slope (Cox 1958) to evaluate the miscal-
ibration. Ideally, for the model being evaluated, the calibra-
tion equation would have a slope of 1 and an intercept of
zero (Miller et al. 1991). Lack of calibration was tested with a
χ2 test with two degrees of freedom (H0: intercept = 0, slope
= 1).

We evaluated the accuracy of SI-BRT on the validation
dataset both graphically and numerically. As a summary mea-
sure for accuracy, we estimated the root mean squared error
(RMSE; eq. 3), and the relative RMSE (rRMSE; eq. 3) for the pro-
ductive forest in the validation dataset, and the mean abso-
lute error (MAE; eq. 3). The RMSE combines bias and variance.
As a measure of systematic tendency, we estimated bias as the
average difference between the SI in the validation dataset
and the predictions of the models for the main species of the
plot (eq. 3).

We calculated RMSE, rRMSE, MAE, and bias as follows:

RMSE =
√∑n

i=1(Pi − Oi )
2

n

rRMSE = RMSE

Ō

MAE =
∑n

i=1|Pi − Oi|
n

Bias = Ō − P̄

(3)

where P are predicted values, O observed values, n number of
observations, and Ō and P̄ are the mean observed values and
the mean predicted values, respectively.

Results

Full model and simple model performance
In this section, we compare the performance of the full

and simple models. Hyperparameters for the models are pre-
sented in Tables S2 and S3. Mean discrimination (c-index)
from the 10-fold cross-validation used to select nt and de-
viance are presented in Fig. 3. All calibration tests had a p
value of 0.29 or higher indicating that there was no lack of
goodness of fit. All models had a discrimination of 0.81 or
above. Full models had an equal or higher discrimination and
equal or lower deviance than the simple models, for both
the model of productive site and the SI models. In general,
pine models had the lowest discrimination. For all species,
the model for SI > 6 had worse discrimination than the rest.

In terms of RMSE, the full models had consistently, in both
the fitting and the validation datasets, better results than the
simple models (Fig. 4; Table 3), while in terms of bias the sim-
ple model outperforms the full model for spruce and pine in
the validation dataset. Full models correctly classified 86.8%
of the plots, while the simple models classified 79.4% of the
plots correctly. Full models incorrectly classified 11.1% of the
plots as productive and 3.1 % as unproductive, while simple
models incorrectly classified 14.6% as productive and 6.1% as
unproductive. For the productivity full model, in the valida-
tion dataset 85.9% of the plots were correctly classified, 3.1%
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Fig. 3. Comparison of performance in the fitting dataset for the simple (light grey) and full (dark grey) models in terms of
discrimination and deviance.

were classified as productive when where actually unproduc-
tive, and 11.1% were classified as unproductive while on pro-
ductive sites.

The rRMSE when predicting for the fitting dataset, that is,
the NFI permanent dataset (Table 3), ranges from 11.6% for
birch to 17.4% for pine, while the bias ranges from 0.01 for
pine and spruce to −0.02 for birch. When we compare the
SI estimates of our models with the observed SI in the NFI
temporary validation dataset, SI-BRT estimates have higher
rRMSE and larger bias for all species (Table 3) than for the
fitting dataset. With respect to bias when predicting in the
validation dataset, both simple and full models tended to un-
derpredict spruce and pine. However, both rRMSE and bias
for the subset of the fitting dataset that are in municipalities
where there is at least one plot in the validation dataset have
similar values as in the validation dataset (Table 5).

Recently harvested and nonforested areas with small or
zero height and little crown cover could potentially have bi-
ased SI estimations. We calculated RMSE for the simple, full
models, and FMI for the validation dataset plots that had the
90th percentile (h90) less than 2 m and crown cover at 5 m

(cc5) less than 10%. The results presented in Table 4 show that
the full models did not perform systematically worse or bet-
ter than the simple models, and that both simple and full
models performed similarly or worse than the FMI SI esti-
mates. For spruce, the best rRMSE is given by the full models
(21.0%) followed by the simple models and the SI from the
FMIs (21.39%). For pine and birch, the best results are given
by the FMI (25.7% and 23.4%, respectively) followed by the full
models for pine (30.7%), and by the simple models for birch
(31.0%).

The relative importance of the predictor variables for all
the models is presented in Figs. S3–S5 for full models and
in Figs. S6–S8 for the simple models. In general, the variables
with relative high importance in the simple models remained
so in the full models, albeit with lower relative importance.
The variables with the highest relative importance were AR5
site productivity (AR5 for. prod.), and temperatures during
the growing season (April–July). For the productivity mod-
els, AR5 site productivity (AR5 for. prod.), and crown cover
at 5 m (full models), cc5, were the variables with the high-
est relative importance. For the spruce models, the variables
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Fig. 4. Root mean square error (RMSE) and mean absolute error (MAE) for SI from the forest management inventories (SI-
FMI) and for the predicted SI-BRT from the final (full) models for a subset of the NFI temporary dataset where FMI data were
available.

Table 3. Performance measures for SI-BRT for the NFI permanent and temporary datasets.

NFI permanent NFI temporary

Species RMSE (m) rRMSE (%) Bias (m) RMSE (m) rRMSE (%) Bias (m)

Spruce 1.94 14.65 0.01 3.59 22.77 0.33

Full models Pine 1.74 17.37 0.01 2.78 27.43 0.25

Birch 1.14 11.55 − 0.02 2.30 22.37 0.04

Spruce 2.72 20.59 0.02 4.04 25.63 0.21

Simple models Pine 2.36 23.58 0.00 3.27 32.19 0.12

Birch 1.83 18.54 0.00 2.51 24.43 − 0.07
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Table 4. Performance measures for SI-BRT for the subset of the validation dataset where the 90th
percentile (h90) is less than 2 m and crown cover at 5 m (cc5) less than 10% by stand composition for
the FMI, full models, and simple models.

FMI Full models Simple models

Species rRMSE Bias rRMSE Bias RMSE Bias Number of plots

Spruce 21.39 0.55 21.00 0.18 21.39 0.36 33

Pine 25.72 − 0.18 30.71 1.09 33.88 − 0.45 11

Birch 23.44 − 2.38 32.20 − 1.69 30.95 − 2.15 13

Table 5. Performance measures for SI-BRT for the NFI perma-
nent plots (fitting dataset) that are in municipalities that have
at least one plot in the validation dataset.

Species rRMSE (m) Bias (m)

Spruce 22.61 0.34

Pine 26.94 0.26

Birch 22.04 − 0.05

with higher contribution were AR5 site productivity (AR5 for.
prod.), and temperature in April and May. For pine, the vari-
ables with higher contribution were AR5 site productivity
(AR5 for. prod.), the ALS heights, S2-NDVI, S2-B12 (only for
full models), and temperature in May and July. For birch, AR5
site productivity, temperature in May, June, and July, and for
the full models height of the 95th percentile, longitude, and
crown cover at 10 m (cc10) were the variables with the highest
relative importance. We found that the most useful Sentinel-
2-derived variable was NDVI (S2_NDVI).

Not all models had interactions (tc of 1 in Tables S2 and
S3). The two models for the higher SI for spruce (SI classes
17 and 20) and the models for SI classes 6 and 14 for pine
had no interactions in both the full and the simple mod-
els. The most important interactions included, for all mod-
els with interactions, the variable with the highest relative
importance.

We selected the full models as the final models because
they had a better performance on both validation and model
fitting. The remainder of the results are focused on these final
models.

Final models
If we group the variables according to the variable types in

Table 2, the group with the highest relative importance, cal-
culated as the average of the sum of all relative importance
of the variables within each group for each model, was ALS
for pine (28.1%), land resource map AR5 for spruce (31.1%)
and the model of productive site (40.8%), while for birch it
was the climatic variables group (40.2%). For all the species,
the four groups with the highest relative importance were
land resource map AR5, climatic variables, ALS, and Sentinel-
2 variables. The sum of the relative importance of these four
variables add up to at least 82.0% (birch) of the relative im-
portance for all species, and up to 92.5% (spruce).

The frequency distribution of SI classes for the NFI tempo-
rary validation dataset (Fig. 5) is closely followed by SI-BRT.

For spruce, the SI-BRT overestimates the number of plots in
SI 14 and underestimates the number of plots in SI 11 and
>20.

With respect to stand composition, the highest rRMSE and
MAE occurred in spruce dominated stands, while the low-
est rRMSE and MAE occurred in birch dominated stands (Ta-
ble S4). With respect to maturity class (Table S5), the high-
est rRMSE is found in young forest (27.5%), while the lowest
rRMSE is found in older production forest (23.2 %).

For spruce and pine, the models can discriminate well be-
tween low and high SI, but within low/high SI classes they
cannot discriminate accurately to which SI class a plot be-
longs (Fig. S9). For birch, the models can distinguish better
among SI classes, at least for the lower ones.

In most instances, SI-BRT predictions outperform the SI
from FMIs, SI-FMI (Fig. 4). Only in SI classes 8, 11, and 14
for spruce, SI-FMI outperformed SI-BRT in terms of RMSE and
MAE. The SI predicted by the BRT models has lower RMSE
(SI-BRT 3.45 m, SI-FMI 3.82 m) and lower bias (SI-BRT 0.15
m, SI-FMI −0.18 m) than the SI-FMI. While the SI-FMI tends
to underpredict SI from the temporary NFI plots for spruce
(bias of 1.06 m), it tends to overpredict in pine and birch
dominated stands (bias of −0.33 and −1.81 m, respectively).
SI-BRT tends to underpredict SI for the same plots (bias of
0.51 m for spruce, 0.12 for pine), and overpredict for birch
(−0.35).

The validation dataset does not cover the same area as the
fitting dataset as some counties are missing due to their in-
ventories being older than 10 years. We recalculated RMSE
and bias for the fitting dataset for the municipalities where
validation data were available (6048 plots). Results (Table 5)
show that for these areas, the rRMSE values for the fit-
ting dataset are significantly higher than for the full fitting
dataset, and close to the rRMSE and bias for the full validation
dataset.

Discussion
We present two sets of models that can be used to produce a

high-resolution SI map for Norway, one with remotely sensed
data and one without. We fitted the models using BRT, an ML
technique with high prediction performance. The response
variables, SI and whether a site is productive or not, were ob-
served at 10 579 Norwegian NFI plots. We used available wall-
to-wall variables, including climatic, topographic, geographi-
cal variables, and remotely sensed data from the Copernicus
Sentinel-2 mission and ALS.
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Fig. 5. Histogram of observed (NFI) and estimated SI (SI-BRT) using the full models for the NFI temporary validation dataset.

The resulting SI-BRT and model of productive site can be
used to produce a wall-to-wall SI map for Norway. They can be
used to estimate productivity for all forest area (1). The model
of productive site can distinguish between unproductive and
productive sites (2). They can be used to estimate productiv-
ity of nonforested areas (3). They give SI estimates for the
three main species in Norway (4). However, since the models
use data from the current dominant species, such as the ALS-
derived variables and the Sentinel-2 variables, the estimates
for the other two species that are not currently the domi-
nant ones will likely have less accuracy than the estimates for
the current dominant species. For the nondominant species,
it is possible that the simple models (with no predictors re-
lated to current forest structure) outperform the full mod-
els (with predictors related to current forest structure), but
we do not have any data to test whether this is the case
or in general evaluate the predictions for the nondominant
species.

Adding remotely sensed data improved the SI models and
the model of productive site and did not result in biased esti-
mates in recently felled plots. However, it also did not im-
prove the estimates in plots with high SI. The largest im-
provement was in the model of productive site, where one
of the variables with the highest relative importance in the
full models was the ALS-derived variable cc5. When SI-BRT is
used to estimate productivity of nonforested areas, remotely
sensed data would be similar to that of recently felled areas.
Since SI-BRT is not biased in the case of recently felled areas,
we expect no bias in nonforested areas, although we expect
higher uncertainty.

The selected algorithm to fit the models, BRT, was easy to
use, and fitting the models was relatively straightforward.
Since BRT can fit complex nonlinear relationships, and it is
insensitive to multicollinearity, there was no need to trans-
form the variables, or to worry about collinearity. Therefore,

we were able to include as potential candidates a high num-
ber of variables, some of which were highly correlated, such
as temperature for all months. ML techniques, such as BRT,
are becoming widespread across the quantitative sciences
for prediction and forecasting, but there are many known
methodological pitfalls, being data leakage the predominant
one, which have led to exaggerated claims about their per-
formance (Greener et al. 2022; Kapoor and Narayanan 2022).
We present here the three arguments suggested by Kapoor
and Narayanan (2022) determining that our scientific results
that use ML methods do not suffer from data leakage. The
first argument being that our separation of training (fitting)
and testing (validation) data is clean. Our fitting and valida-
tion dataset came from different datasets that were imported,
prepared, and used in separate scripts and files. The datasets
did not have any duplicated data point. The second argument
is that each feature in the model is legitimate, that is, if the
models have access to features (variables), that should not
be legitimately available for use in the modelling exercise.
We used for both model fitting and model validation the
same wall-to-wall maps of all variables, which are the ones
that will be used in the production of the SI map for Nor-
way; therefore, all variables included in the model are legit-
imate. The third argument is that the test (validation) set is
drawn from the distribution of interest. Our fitting and vali-
dation datasets are independent and were collected indepen-
dently in separate campaigns, but following the same pro-
cedures and definitions. However, in our validation datasets,
some of the counties were missing because they were mea-
sured over 10 years ago and we deemed the data to be too
old to be included, especially because SI in Norway is chang-
ing (Antón-Fernández et al. 2016). This could have led to op-
timistic total RMSE since these counties have a larger repre-
sentation of spruce-dominated forest, which has the largest
rRMSE. On the other side, the counties missing have lower SI
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variability compared with the full country, and we argue that
this is the main reason behind the higher rRMSE in the val-
idation dataset. Given that the rRMSE and bias for the mu-
nicipalities included in the validation dataset show similar
results for both fitting and validation datasets (Table 5), we
believe that if we had had temporary NFI data covering the
whole country our validation results would look similar to
those reported in Table 5 for the fitting dataset.

Quantification and communication of uncertainty for indi-
vidual predictions is important to improve decision-making,
but it is often neglected in ML models (Kompa et al. 2021).
The R package we used to fit the models and make predic-
tions for the validation dataset does not have built-in mecha-
nisms to assess uncertainty, but we can use the probabilities
obtained for each SI class as an estimate of the uncertainty in
our predictions. The final SI map, which will be available at
http://kilden.nibio.no, will include the predicted SI class (SI-
BRT) and the probabilities for all SI classes from eq. 1.

Our final models perform similarly as or better than other
published SI models for Norway that require in situ infor-
mation. For example, Sharma et al. (2012) models had RMSE
of 2.04 (rRMSE 14.9%) and 1.95 (rRMSE 18.9%) m for spruce
and pine for their fitting dataset (15.2% for spruce and 17.2%
for pine in our models) using multiple linear regression with
climatic variables, year of stand origin, vegetation type, soil
depth, and topographical and geographical variables. They
also used Norwegian NFI data but included variables that are
only available at the NFI plots, such as soil depth and vegeta-
tion type. This impedes mapping, i.e., the wall-to-wall appli-
cation of the model. Antón-Fernández et al. (2016) also used
climatic variables, soil depth, and vegetation group to create
climate-sensitive SI models for Norway, with RMSE of 2.91
m for spruce, 2.47 m for pine, and 2.49 m for deciduous.
Antón-Fernández et al. (2016) also included soil depth and
vegetation type, which are only available at the NFI plots. We
included in our model soil parent material, which had a low
relative importance for all models. If detailed maps with in-
formation on soil depth and soil nutrient content were avail-
able for Norway, they would very likely improve our esti-
mates.

There are several studies outside of Norway that fit SI mod-
els for Norway spruce and/or Scots pine, but results are diffi-
cult to compare since their datasets are much smaller and
usually more homogeneous, and they use a different base
age for SI. For example, in the Western Carpathians, the best
model from Socha (2008) for Norway spruce has an RMSE
of 2.39 m (base age 100 years) and an rRMSE of 7.2% using
topographic features and soil parent material variables in a
dataset of 347 plots. Also, for Norway spruce in the Western
Carpathians, Bošeľa et al. (2013) had for their best model a
residual standard error of 3.46 m (base age 100 years), and a
relative residual standard error of 12.4%, using climate and
soil parameters for 201 NFI plots. In France, Seynave et al.
(2005) using climatic variables and soil characteristics such
as soil depth, nutritional variables, or topographic concavity
estimated on the field had an RMSE of 3.83 m for Norway
spruce for 1270 pure even-aged stands, and 4.16 for a larger
(2087 plots) dataset including uneven-aged and mixed stands.
For Scots pine, the best model from Aertsen et al. (2012), who

used variables estimated on the field, such as soil, forest floor,
and ecosystem predictors, has an RMSE of 2.41 m (base age
100 years) and an rRMSE of 10% using a dataset of 55 plots.

The number of plots in SI class 26 in the fitting dataset (NFI
permanent plots) was too small to fit a model for SI > 23 for
any of the species, and thus our models can only predict the
probability of SI > 20 for spruce and >17 for pine and birch.
A potential solution for spruce would be to use the combined
dataset of permanent and temporary NFI plots to fit a model
for SI > 23.

When we first attempted to model SI as a continuous vari-
able, the lowest and highest SI classes were underpredicted,
particularly SI class 6. This was likely due to the difficulty dis-
tinguishing between SI classes 6 and 8, and the fact that SI
is a truncated variable, that is, when top height is below 5 m
(lower limit of SI class 6), SI is not recorded and the stand
is classified as unproductive. This regression to the mean SI
was also observed by Sabatia and Burkhart (2014) when mod-
elling SI for loblolly pine. Modelling SI as an ordinal variable
allowed us to avoid this underestimation of SI 6 and other
underrepresented SI classes.

The high-resolution SI map derived from the BRT models
presented here outperforms for almost any combination of SI
and species the SI estimates from the FMIs. It has also the ad-
vantage over FMIs in that the SI-BRT is available for all the for-
est areas in Norway at no extra cost, and that the resolution
of the SI map derived from our models has a substand reso-
lution. High-resolution productivity maps, like the one pre-
sented here, can be used to do forest planning and manage-
ment at the substand level, enabling precision silviculture.

The SI map resulting from the models presented here can
be coupled with the available climate-sensitive SI models
(Antón-Fernández et al. 2016) to produce wall-to-wall SI pro-
jections for Norway under different climate change scenarios.

Conclusions
The models presented here have similar or better perfor-

mance than similar models for Norway that use locally mea-
sured variables. The exclusive use of variables that are avail-
able nationwide, and not only at plot sites, allows mapping
of SI and productivity (whether a plot/pixel is productive).
We tested and discussed the advantages and disadvantages
of using BRT and remotely sensed data compared with tra-
ditional regression approaches. We concluded that BRT pos-
sesses many interesting advantages and has high predictive
performance, and that using remotely sensed data improved
the models, albeit mostly for the productivity model and the
low SI models, and did not seem to be problematic in recently
felled stands. The selected methodology allowed for a distri-
bution of the SI classes that matched the predicted probabil-
ities of the classes, avoiding the underrepresentation of the
lowest and highest classes.
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