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Abstract

In this paper, we establish the necessary and sufficient conditions for the boundedness
of fractional maximal operator M,, and the fractional maximal commutators M}, ,, in
Orlicz L®(X) and generalized Orlicz—Morrey spaces M ®#(X) on spaces of homo-
geneous type X = (X, d, () in the sense of Coifman-Weiss.

Keywords Orlicz space - Generalized Orlicz—Morrey space - Fractional maximal
operator - Commutator - Spaces of homogeneous type

Mathematics subject classification 42B20 - 42B25 - 42B35

1 Introduction

In order to extend the traditional Euclidean space to build a general underlying struc-
ture for the real harmonic analysis, the notion of spaces of homogeneous type was
introduced by Coifman and Weiss [1].
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Let X = (X, d, ) be a space of homogeneous type, i.e. X is a topological space
endowed with a quasi-distance d and a positive measure w such that

d(x,y)>0andd(x,y) =0ifand only if x =y,
d(x,y) =d(y, x),
d(x,y) < Ki(d(x,z2) +d(z,y)), (1.1)

the balls B(x,r) = {y € X : d(x,y) < r}, r > 0, form a basis of neighborhoods of
the point x, u is defined on a o -algebra of subsets of X which contains the balls, and

0 < u(B(x,2r)) < Ky u(B(x,r)) < oo, (1.2)

where K; > 1 (i = 1,2) are constants independent of x, y,z € X and r > 0. As
usual, the dilation of a ball B = B(x, r) will be denoted by AB = B(x, Ar) for every
A > 0.

In the sequel, we always assume that 1 (X) = oo, the space of compactly supported
continuous function is dense in L' (X, 1) and that X is Q-homogeneous (Q > 0), i.e.

K;'r9 < w(B(x, 1) < K3r9, (1.3)

where K3 > 1 is a constant independent of x and r. The n-dimensional Euclidean
space R" is n-homogeneous.

In [2], the generalized Orlicz—-Morrey space was introduced to unify Orlicz and
generalized Morrey spaces. Other definitions of generalized Orlicz—-Morrey spaces
can be found in [3,4]. Spanne and Adams type boundedness of fractional maximal
operator M, and its commutators M, o in generalized Orlicz—-Morrey spaces on the n-
dimensional Euclidean space R” was investigated in [5-7]. Moreover, the boundedness
of My and M}, ,, in Orlicz spaces on R” was characterized in [8]. The purpose of this
paper is to extend these Euclidean results to the spaces of homogeneous type setting.

The structure of the remaining part of the present paper is as follows: Sect. 2 provides
the definitions and some preliminaries on Young functions and Orlicz spaces. We
shall give necessary and sufficient conditions for the boundedness of M, and M}, ,, in
Orlicz spaces L®(X) in Sect. 3. In Sect. 4, we investigate the structure of generalized
Orlicz-Morrey spaces defined on spaces of homogeneous type M®¢(X). We give
characterizations for the Spanne and Adams type boundedness of M, and Mj o in
M®P9(X) in Sects. 5 and 6, respectively.

At the end of this section, we make some conventions. By A < B we mean that
A < CB with some positive constant C independent of appropriate quantities. If
A < Band B < A, we write A = B and say that A and B are equivalent.

2 Preliminaries

We recall the definition of Young functions.



Characterization of the boundedness of fractional maximal operator... Page30of30 63

Definition 2.1 A function ® : [0, c0) — [0, oc] is called a Young function if ® is
convex, left-continuous, lim, . 49 ®(r) = ®(0) = 0 and lim, oo P (r) =

From the convexity and ®(0) = 0 it follows that any Young function is increasing.
If there exists s € (0, co) such that ®(s) = oo, then ®(r) = oo forr > s.
Let Y be the set of all Young functions & such that

0<®d(r)<oo for 0O0<r<oo.

If ® € ), then ® is absolutely continuous on every closed interval in [0, co) and
bijective from [0, co) to itself.

Let X = (X, d, n) be a space of homogeneous type. For a measurable set Q2 C X,
a measurable function f andt > 0,let m(R2, f, 1) = u({fx € Q: |f(x)| > t}). In
the case 2 = X, we shortly denote it by m(f, ).

The Orlicz spaces and weak Orlicz spaces on spaces of homogeneous type are
defined as follows.

Definition 2.2 For a Young function &,

Lq)(X) = {f S LI]OC(X) : / D (el f(x)])du(x) < oo for some & > 0},
X
||f||L<I>E||f||L¢(X)=inf{)»>01/ (lf( )|>d (x )<1}
X

WL‘D(X) = {f € LIIOC(X) : sup <I>(r)m<r, sf) < oo for some € > 0} ,

r>0

”f”WL<I> = ”f”WLq)(X) = inf {)\. >0 : sup@(t)m(%, t) < ]}

t>0

We note that || fllw,e < [IfllLe

sup ®(HOm(Q, £, 1) =suptm(Q, f, &~ (t))—suptm(Q o(fD, 1)

>0 >0
and

] f
O ———— )d 1, () Q, —, <1, 2.1
fg (IIfIIch(Q)) vl spowm Flwiew )=t e

where || fliLe@) = I f xellpe and || fllwro @) = 1 Xallwre-
For a Young function ® and 0 < s < oo, let

O () =inf{r >0: d(r) >s} (inf@ = o00).
If ® € Y, then ®~! is the usual inverse function of ®. We note that

Q@ '(r) <r<® ' (@@F) for0<r < oo (2.2)
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We also note that for ® € ) we have

1

P a— 2.3
o ((E)) >

Ixellwee = lIxplle =

where E is a p-measurable set in X with u(E) < oo and yx, is the characteristic
function of E. Indeed,

1
[ xpll e = inf K>0:/¢<—)du(y)§1}
E A
o 1 ~1 —1
= inf A>O.X§<I> (M(E) )}

=inf{A>0:1>

!
s ol (B’

s e =inf 13> 0: sup @ (%) Wlr € X2, (0] > 1)) < 1}
>

=inf {A > 0: sup ¢<%>u({xeX:|XE(x)|>t})§l}

O<r<l

= inf A>O:CI><%) fl,L(E)_l}

. . 1
_ 1
o (wE) )

A Young function @ is said to satisfy the A,-condition, denoted by & € A, if
OQ2r) <kd(r) forr >0
forsomek > 1. If ® € Ay, then ® € ).
A Young function @ is said to satisfy the V;-condition, denoted also by ® € Vj,
if
D(r) < ! D (kr) >0
r) = 2% r), r =V,

for some k > 1. _
For a Young function ®, the complementary function ®(r) is defined by

sup{rs — ®(s) : s € [0,00)} , r € [0, 00),
(%) , T =00.

d(r) = {
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The complementary function ® is also a Young function and O =@ If D(r) =
rthena(r)—0f0r0<r<1anda>(r) ooforr>11f1<p<oo
1/p+ 1/p) =1and ®(r) = r?/p, then <I>(r) =7 /p. If®(r) =e¢" —r — 1, then
<I>(r) = (1 4+r)log(1 +r) — r. Note that ® € V; if and only if P e Aj. It is known
that

r<® o ') <2r  forr>0. (2.4)

Note that by the convexity of ® and concavity of ®~! we have the following
properties

d(at) <ad@), if 0<a <1 d O Nar) > ad (), if 0<a<1
O(at) > ad(@), if o>1 o Nat) <ad (), if a>1.

(2.5)
Remark 2.3 Thanks to (1.3) and (2.5) we have
o~ (B, NHr e (9.
The following analogue of the Holder inequality is known,
/ | f(0)g)ldm(x) <2\ flliLellgley- (2.6)
X

When we prove our main estimates, we use the following lemma, which follows
from (2.6), (2.3) and (2.4).

Lemma 2.4 For a Young function ® and B = B(x,r), the following inequality is
valid

1/ s = 26B)YO" (B 1 f o .

3 Fractional maximal operator and its commutators in Orlicz spaces

For a Q-homogeneous space (X, d, i), let My, f be the fractional maximal function,
i.e.

My f (x) = sup :

SUP B, 1)) =/ /BW) [fDDldr(y), 0<a< .

In our definition, we consider balls that are centered at x, but we obtain a noncentered
maximal function by taking the supremum over all balls containing x. For doubling
measures, these maximal functions are comparable, and it does not matter which one
we choose. When o = 0 this reduces to the Hardy-Littlewood maximal operator and
we write M instead of M.

In order to prove our main theorem, we also need the following lemma.

Lemma 3.1 If By := B(xo, o), then M(Bo)% < My x B, (x) for every x € By.
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Proof For x € By, we get

B 1+ 3
Mo xB,(x) = sup u(B)”™"FC (B N By) > w(Bo)™ T w(By N Bo) = i(Bo)?.
B>x

O

We recall the boundedness property of M on Orlicz spaces since we use it later.
Theorem 3.2 [9] Let ® be a Young function.
(i) The operator M is bounded from L®(X) to WL®(X), and the inequality

IMfllwre < CollfllLe 3.1

holds with constant C independent of f.
(ii) The operator M is bounded on L®(X), and the inequality

IMfliLe < Collfll e (3.2)

holds with constant Cq independent of f if and only if ® € V,.

The following theorem in R” case for a more general case of generalized fractional
maximal operator was proved in [10]. Moreover, the results of [8] was given for more
general Young functions in [10]. The following theorem partially extends the results
of [10] to the spaces of homogeneous case. The proof method is essentially the same
as in [10].

Theorem 3.3 Let (X, d, 1) be Q—homogeneous, 0 < a < Q and ®, ¥V be Young
functions.

1. Assume that there exists a positive constant C such that, for allr > 0,
vl (r2)
o-!(r=0)’

Then, for any positive constant Cy, there exists a positive constant Cy such that,

forall f e L*(X) with f #0,

r¢<C (3.3)

Mf(x)

Maf () = Cll fllLe @ o @)
L®

)@em. (3.4)

Consequently, My is bounded from L®(X) to WLY(X). Moreover; if ® € Vy,
then My is bounded from L®(X) to LY (X).
2. Conversely, if My is bounded from L®(X) to WLY (X), then (3.3) holds.

Proof Let f € L®(X). We may assume that M f(x) > Oforall x € X.Forany x € X
and any ball B = B(z,r) > x, if

¢<M) _—
Coll fllze/ =
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then, by Lemma 2.4 and (3.3), we have

r
u(

/ FOdnG) S r & ¢ 2) [ £l o
B) Jp

M
SISl S (cb(ﬁ)) £z
L

Conversely, if

¢<M) <0
Coll fli e

then, choosing 7y > r such that

Mf(x) —0
S| ————) = ,
(Co||f||L<1>> ‘o

and using (3.3) and (2.2)
v (o(atris)) - v (o)

~ o1 Mf(x) ~ M (x) ’
@ (q’<cO|\f|\Lq>)) Coll /T, 0

which implies

-1 Mf (x)
v (¢<Co|\fI\Lq> )) 1

rll
d < ® d
M(B)/BIf(y)I w SIfllL MFG) M(B)/Blf(y)l w(y)
_ Mf(x)
~ (@) 11se

which shows (3.4).

e Let Cyp be asin (3.1). Then by (2.1), (3.1) and (3.4), we have

sup\l!(r)m(m ,) _ Suprm(\y< Mo f(x) )r>

r>0 Cl”f”Lq” r>0 Cl ”f”L<I>
Mf(x) Mf(x)
<suprm(®(———),r) <supd(r)ym(————,r) <1,
= ( (Collfllm) ) b e <||MfIIWL<I> )
ie.
Mo fllwre S M flpe. (3.5)

e Assume in addition that ® € V,. Let Cg be as in (3.2). By (2.1), (3.2) and (3.4),
we have
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My f(x) / ( M (x) )
v —)d O ———)d
fx <C1||f||L<D) SRS AT Al

M (x)
o ———)d 1,
S/X (IIMf||L¢> ) =

Mo fllLe S 1f e (3.6)

For the necessity, we can concentrate on the boundedness of M, from L®(X) to
W LY (X), since the boundedness of M,, from L% (X) to LY (X) is stronger than the
boundedness of M, from L®(X) to WLY (X). With this in mind, assume that M, is
bounded from L®(X) to WLY (X). Let By = B(xq, ro) and x € By. By Lemma 3.1,
we have rf < My xp,(x). Therefore, by (2.3), we have

~

1.e.

g ST (w(Bo) DI M xao lwrw sy S W (1 (Bo) ™I Maxsllw v

_ _ (g 9)
S ®B) Dllxslle S —— 5
db—l(ro )
Since this is true for every ro > 0, we are done. O

We can summarize Theorem 3.3 as following:

Corollary 3.4 Let (X,d, 1) be Q—homogeneous, 0 < o < Q and ®, ¥V be Young
functions. Then the condition (3.3) is necessary and sufficient for the boundedness of
My from L®(X) to WLY (X). Moreover, if ® € Va, the condition (3.3) is necessary
and sufficient for the boundedness of My from L®(X) to LY (X).

To compare, we formulate the following theorem proved in [11,12] and remark
below, where

_ F(y)
Inf(x) = /X dG.y)e< y)Q_adM(y), 0<a<O.

Theorem 3.5 Let (X, d, ) be Q—homogeneous, 0 < a < Q and ®, ¥ € Y. If

o0
/ 1! (z—Q) dr < reg! (r_Q) for0<r<oo, (37

r

holds, then the condition (3.3) is necessary and sufficient for the boundedness of 1,
from L®(X) to WLY (X). Moreover, if ® € Vy, the condition (3.3) is necessary and
sufficient for the boundedness of I, from L®(X) to LY (X).

Remark 3.6 Although fractional maximal function M, is pointwise dominated by the
Riesz potential /,, and consequently, the results for the former could be derived from
the results for the latter, we consider them separately, because we are able to study the
fractional maximal operator under weaker assumptions than it derived from the results
for the potential operator. More precisely, we don’t need to regularity condition (3.7)
for the boundedness of fractional maximal operator.
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We recall that the space BMO(X) = {b € LI]OC(X) : ||1b]l« < oo} is defined by
the seminorm

1
bl ;= sup ———— |b(y) — bpx.rldu(y) < oo,
T rexr0 B, 1) Jaien (er)

where bp(x ) = m f B(x.r) b(y)du(y). We will need the following properties
of BMO-functions:

Lemma3.7 [13, Lemma 7.1] Let b € BM O(X).
6t
|bB.r) — bBeny| < ClbllxIn — for 0<2r<t, (3.8)

where C does not depend on b, x, r and t.
Lemma 3.8 [11, Lemma 4.7] Let b € BMO(X) and ® be a Young function with
® € Ay. Then

Iblle & sup @7 (r @) [bC) = b Loy

xeX,r>0

Given a measurable function b the operator M}, , is defined by
Mp.o(f)(x) = sup u(B(x, 1))~ *0 / 1b(x) = bWILf NN (y).
>0 B(x.1)

If @ =0, then M}, o = M} is called maximal commutator.

The known boundedness statements for the commutator operator M; on Orlicz
spaces run as follows, see [14, Theorem 1.9 and Corollary 2.3]. Note that in [14] a
more general case of multilinear commutators was studied.

Theorem 3.9 Let @ be a Young function with ® € Ay N Vy andb € BM O (X). Then
My, is bounded on L®(X) and the inequality

IMpfliLe < Collbll«ll fllLe (3.9

holds with constant C independent of f.

The following lemma is the analogue of the Hedberg’s trick for [b, 1], see [15, p.
506].

Lemma3.10 [11, Lemma 5.5] If (X, d, u) be Q—homogeneous, 0 < a < Q and
f.be LIIOC(X), then for all x € X andr > 0 we get

VLT .
/B(“) d(x, y)@—« [b(x) —bWdpn(y) Sr¥Mp f(x).

For proving our main results, we need the following estimate.
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Lemma3.11 Ifb € L] (X) and By := B(xo, ro), then
ro 1b(x) — bpy| S Mp.o xBy(x) forevery x € By.

Proof 1t is well-known that
Mpo f(x) S Mpo f(x), (3.10)

where My, (f)(x) = sup u(B) 1€ [ [b(x) = b f (0)ld ().
B>x
Now let x € By. By using (3.10), we get

Mo x5y (%) 2 Mo f(x) = sup u(B) "0 /B |b(x) — b(y)|xByd 1 (y)

B>x

— sup [B]"+D / 1b(r) — (Y Idu(y)
BNBy

B>x

> u(By) o fB 1) = b()ldp(y)
0N By

2 (Bt E /3 (b(x) = b()du(y)| = r§1b(x) = bpl.
0

O

The following theorem gives necessary and sufficient conditions for the bounded-
ness of the operator M}, o, from L®(X) to LY(X).

Theorem 3.12 Let (X, d, ) be Q—homogeneous, 0 < a < Q, b € BMO(X) and
@, U be Young functions.

1. If ® € Ay N Vyand W € Ay, then the condition

r*® ' (r ) + sup <1+1n§)q)_l(f_g)f“ <cv'(r 9 @an

r<t<oo

forallr > 0, where C > 0 does not depend on r, is sufficient for the boundedness
of My from L®(X) to LY (X).

2. If ¥ € Ay, then the condition (3.3) is necessary for the boundedness of My o from
L®(X) to LY (X).

3. Let ® € Ay N Vyand WV € Aj. If the condition

sup (1+1n ;)CD_I(t_Q)t“ <Creo~!(r9) (3.12)

r<t<oo

holds for all r > 0, where C > 0 does not depend on r, then the condition (3.3)
is necessary and sufficient for the boundedness of My, o from L®(X) to LY (X).
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Proof (1) For arbitrary xo € X, set B = B(xp, r) for the ball centered at xg and of
radius r. Write f = f1 + f» with fi = fx,, and fo = fXB(ZkB), where k is the
constant from the triangle inequality (1.1).
Let x be an arbitrary point in B. If B(x, 1) N {C(2kB)} # (), then ¢t > r. Indeed, if
yeBx,t)N {C(ZkB)}, thent > d(x, y) > %d(xo, y) —d(xg,x) >2r —r =r.
On the other hand, B(x,t) N {C(ZkB)} C B(xg, 2kt). Indeed, if y € B(x,1) N

{B(ZkB)}, then we get d(xg, y) < kd(x,y) + kd(xg, x) < kt + kr < 2kt.
Hence by (1.3)

1
Mp o (f2)(x) = sup ————— / o 1) =D D)d(y)
>0 w(B(x,t)) ¢ JB(x,nN"(Q2kB)
1
< sup —1_1/ 1b(y) = bEOIIf (MId(y)
t>r u(B(x,t)) 2 JB(xo,2kt)
1
< sup —1_1/ 1b(y) = bEOIf D ().
1>2r w(B(xp,1)) 2 JBxo.1)

Therefore, for all x € B we have

Mp.o(f2)(x) S sup 1%~ /3( )Ib(y) — b f(Wdpu(y)
X0,t

t>2r

< sup t“_Q/ [b(y) = Dol f (D dp(y)
B(xo,1)

t>2r

t>2r

+ sup fa_Q/ DB (xo.y — DB (M) dp(y)
B(xo,1)

+ sup 122 / Ibs — b F D)
B(xo,1)

t>2r

=Ji+h+ J5.

Applying Holder’s inequality, by (2.4), (3.8) and Lemmas 2.4 and 3.8 we get

Ji+ 12 S sup t""Q/ [b(Y) — Dol f M du(y)
B(xo,1)

t>2r
+ sup 1" CIbprg.r) — PBxo)] LFOD)di(y)
t>2r B(xo,t)

< suzp %9 Hb(~) — DB(xp,1) ||L<5(B(X0,,)) I F Lo (Bxo1))
t>2r

+ sup 1 C1bggr) — bBon 122 (B0, )Y F Il Lo Bxor))

t>2r

_ _ t
S bl sup © (B o, 1)~ (1410 = )1l (50000

t>2r

t 1,
S b I £l go sup (1+1n;)t°‘<b ().

t>2r
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A geometric observation shows 2k B C B(x, §) forallx € B,where§ = 2k+1)kr.
Using Lemma 3.10, we get

b —b
Jox) i= Mp.a(fi)(x) < / 1PG) = DL, e 1)

up d(x,y)@—«

b(y)—b
s [ B Ou0) £ M ). G
B(x.6) d(x,y)

For all x € B we get

! —1,,—
Jo) + 1 + 2 S 1Bl My () + 6]l £l o sup (1410 =)0~ (=),

t>2r

Thus, by (3.11) we obtain

‘I'_l(r_Q) —1,.-0
Jo(x) + J1 + 12 S I« be(x)—cb—l(r—Q) +WT TN SfliLe ) -
Choose r > 0 so that @~ (r—2) = %. Then
A

—1 My f(x)
ylp=0) (YT o®) (Co\lb\l*llfllgb)

o-1(r-2) Mp f(x)
Collbll«ll 1l o

Therefore, we get

My f (x) )

Jo(x) + J1 4+ J2 < Cilbllll fll o (W1 o d’)(m
nipars

Let C¢ be as in (3.9). Consequently by Theorem 3.9 and (2.1) we have

Jox)+ J1 + )2 f < My f(x) )
v —— = \d S| —mmm— | d
/B ( CrlblLl 1o ) mO = |\ Gotbna e )

My f ()
o ——)d 1,
S/X (ubenL«») ) =

o) + Ji + Ll v gy S 11l fll Lo (3.14)

By Lemma 3.8, Lemma 2.4 and condition (3.11), we also get

i.e.

1
sup ————— [ b = ball £l
t>2r w(B(xg,t)) 2 JB(xo,1)

~ |Ib(:) — bpll v (p) sup t“_Q/ | fD)Ndu(y)
B(x0,1)

t>2r

131l v gy =

LY(B)
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<Ibly ——mMM g q)*l B ot —1 1
S bl iy S8 © B0 0D oy

< - - ° o m—1 -1
S 1611« v (uB) ) (FALY? t53£f @~ (n(B(xo, 1))
S bl £l

Consequently, we have
130w gy S BN 111l Lo (3.15)

Combining (3.14) and (3.15), we get

IMp.o fllweg) S 1PN fllzo- (3.16)

By taking supremum over B in (3.16), we get

IMpo flipe S BN e,

since the constants in (3.16) don’t depend on x( and r.
(2) We shall now prove the second part. Let By = B(xg, r9) and x € Bg. By Lemma
3.11, we have r§ |b(x) — bpy| S Mp o xB,(x). Therefore, by Lemma 3.8 and (2.3)

r3< ||Mb,aXBo||LW(BO)
D) = bByliLw sy

ST (1 (Bo) ™) I Mo xBo Il v (y)
< —1 —1 < —1 —1 < v
ST B IMpaxslle S 9T (B Dlxsole S

Since this is true for every ro > 0, we are done.
(3) The third statement of the theorem follows from the first and second parts of
the theorem. |

The following theorem shows that b € BM O (X) is necessary for the boundedness
of My o from L®(X) to LY (X).

Theorem 3.13 Let (X, d, u) be Q—homogeneous, 0 < o < Q, b € Ll (X), &, ¥

loc
be Young functions. Assume that there exists a positive constant C such that, for all

r>0,
o s}
=)

Then the condition b € BM O(X) is necessary for the boundedness of My, o from
L®(X) to LY (X).

o

r (3.17)

Proof Suppose that M}, , is bounded from L®(X) to LY (X). Choose any ball B =
B(x,r)in X, by Lemma 2.4, (2.3) and (3.17) we have
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(B)/ [b(y) — bpldu(y) = b)) = b(2))du(z)|du(y)

u(B)/B‘u(B)
/ / 1b(y) — b()du(y)du ()
BYJB

M(B)2

1 1
CuB)'te /B ju(B)' =0
fB [b(y) — b(D)| x5 (@D)d()dn(y)

W/ My g XB)(y)dM()’)
"w

W (B Y IMp o x5l v

A

w(B)°

_ _ w9
1 1 ®< a - 0~ T
M(B)Q‘lf (B NMixpllpesr o T(—0)~

A

Thus b € BMO(X). o

By Theorems 3.12 and 3.13 we have the following characterization of BM O (X).

Theorem 3.14 Let (X,d, ) be Q— homogeneous 0<a<0Qbe LIOC(X), D e

ANVaand W € Ay and V1 (1) = &1 (1)t~ 2. If the condition (3.12) holds, then
the condition b € BM O(X) is necessary and sufficient for the boundedness of My, o
from L®(X) to LY (X).

For comparison, we formulate the following theorem, which was proved in [11],
and make a remark, where the commutator generated by b € Llloc(X ) and the operator
1, is defined by

b
b, I 1f () =/ ) =50 ¢ (auty),  0<a<0

x d(x, )Q «
and the operator |b, 1| is defined by

|b(x) — b(y)|

1D, I f(x) = dGy0 e

fdu(y), 0<a<Q.

Theorem 3.15 Let (X, d, u) be Q—homogeneous, 0 < a < Q, b € BMO(X) and
O, Ve ).

1. If® € AyNVyand VW € Ay, then the condition

ra¢_1(r-g)+/°°(1+1n§)q>—1(z el <col(0) G

forallr > 0, where C > 0 does not depend on r, is sufficient for the boundedness
of [b, 1] from L®(X) to LY (X).
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2. If W € Ay, then the condition (3.3) is necessary for the boundedness of |b, 1|
from L®(X) to LY (X).
3. Let ® € Ay N Vyand WV € Aj. If the condition

(0.¢]
/ (1+1n i)dfl(t_Q)t“? < Crio 1 (r Q) (3.19)
. r

holds for all r > 0, where C > 0 does not depend on r, then the condition (3.3)
is necessary and sufficient for the boundedness of |b, Iy | from L®(X) to LY (X).

Remark 3.16 Although M} , is pointwise dominated by |b, I, |, and consequently, the
results for the former could be derived from the results for the latter, we consider
them separately, because we are able to study the boundedness of M} , under weaker
assumptions than it derived from the results for the operator |b, I|. More precisely,
integral condition (3.19) imply the supremal condition (3.12). Indeed, by (2.4) we
have

© dt

(-0} ~ -1 (5-2) 42 < [T o1\
dD(s )~<I> (s )s StQTNSCD(t )—

t

It follows from this inequality
> t dr
a1 (r0) 5/ (14101 ) e (70
- r
> t dr
Z/ (14m=) o7 ()=
s r t
o0 dt
2s*(1+1n 5)/ o (170 =
r/ Jg t
= (1 +In i)dfl(s*Q)s“,
r
where we took s € (r, 0o) arbitrarily, so that

sup (1 +1In ;)CD*I(s’Q)s“ <o (rm9).

S>r

The commutators generated by a suitable function b and the operator My, is formally
defined by

(b, Mol f = Mo (Df) — bMu(f).

The following relations between [b, My] and M}, are valid (see, for example,
[16]):

Let b be any non-negative locally integrable function. Then for all x € X

|[b, Mo 1 (x)| = |b(x)Mq f (x) — Mo (bf)(x)]
= |Mo(b(x) )(x) = Mo (bf)(x)]
< Mo (1b(x) = b f)(x) < Mp,o(f)(x)
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holds for all f € L} (X).

loc
If b is any locally integrable function on X, then

I[b, Mo 1f (X)| < Mpo(f)(x) +2b7 ()Mo f(x), x€X (3.20)

holds for all f € Ll (X), where

loc

b (x) = 0, %fb(x)zO
[b(x)|, ifb(x) <0

and bT (x) = |b(x)] — b~ (x).
By (3.20) and Theorems 3.3 and 3.12 we get the following corollary.

Corollary3.17 Let 0 < o < Q, b € BMO(X), b~ € L*®(X) and ©, V¥ be Young
functions with ® € Ay N Vo and ¥ € Aj. Let also the condition (3.11) is satisfied.
Then the operator [b, My ] is bounded from L®(X) to LY (X).

4 Generalized Orlicz-Morrey spaces

The generalized Orlicz—-Morrey spaces and the weak generalized Orlicz—Morrey
spaces on spaces of homogeneous type are defined as follows.

Definition 4.1 Let X = (X, d, n) be a space of homogeneous type, ¢(r) be a positive
measurable function on (0, co) and ® any Young function. We denote by M ®¢(X)
the generalized Orlicz—Morrey space, the space of all functions f € Lfgc(X ) with
finite quasinorm

sup @) 'O (B, 1) DI F e Bery)
xeX,r>0

||f||j\/l<l>-<47 = ||f||,/\/l<1>,w(x) =
where Llcgc (X) is defined as the set of all functions f such that fx, € L®(X) for all
balls B C X.

Also by WM®¥(X) we denote the weak generalized Orlicz-Morrey space of all
functions f € WLI?;C(X ) for which

£ lwptoe = 1 llwapeen = sup o) @7 B M) DI lwre o) < 00
xeX,r>0

where WL%C(X) is defined as the set of all functions f such that fx, € WL®(X)
for all balls B C X.

If®d()=r", 1< p < oo,then Md”‘p(X ) coincides with the generalized Morrey
space MP?(X) equipped with the norm

_ 1
I f e i= sup @) (B, m) P fllLr By
xeX,r>0
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If o(r) = @1 (r=2), then M®¥(X) coincides with the Orlicz space L®(X).
A function ¢ : (0,00) — (0, c0) is said to be almost increasing (resp. almost
decreasing) if there exists a constant C > 0 such that

p(r) = Co(s)  (resp. ¢(r) = Co(s)) forr <s. 4.1

For a Young function @, we denote by Gg the setof all ¢ : (0, 00) — (0, 0o) functions
such that % is almost increasing and o= o is almost decreasing. Note that
¢ € Gg implies doubling condition of ¢.

An observation similar to the one made by Nakai [17, p. 446] it can be assumed
that ¢ € Gg in the definition of M®¥(X). See [18, Section 5] for more details.

As the following lemma shows, Gg is useful:

Lemma4.2 [11] Let By := B(xo, r0). If ¢ € Go is almost decreasing, then there exists
C > 0 such that

< xBollwatoe =< lxBoll poe <

<
@(ro) — @(ro)’

where C is the constant from (4.1).

We need the following boundedness properties of M and M}, to prove our main
results.

Theorem 4.3 [11] Let (X, d, ) be Q—homogeneous.

1. Let ¢ € Gg be almost decreasing. Then the maximal operator M is bounded from
MP(X) to WMP#(X).

2. Let ® € Vy and ¢ € Gg be almost decreasing. Then the maximal operator M is
bounded on M®¢(X).

Theorem 4.4 [11] Let (X, d, ) be Q—homogeneous, ® be a Young function with
® € Ay NV, b € BMO(X) and the function ¢ € Gg be almost decreasing and
satisfies the condition

sp (1+1n f;)w(r) < Cor). 4.2)

r<t<oo

where C does not depend on r. Then the operator My, is bounded on M® % (X).

5 Fractional maximal operator in generalized Orlicz-Morrey spaces
5.1 Spanne-type result

We use the following lemma:

Lemma 5.1 Let (X, d, ) be Q—homogeneous, 0 < o < Q, ®, ¥ be Young functions.
Assume that the condition (3.3) is fulfilled. Then forall f € LgC(X) and B = B(x, r),
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t>r

Mo fllwrv s < m sup W (1) 1 f Il Lo By (5.1
Moreover if we assume ® € Vs, the following inequality is also valid:

1 —1y—
IMeflvin) S Goigay 0¥ N0 I ooy (5.2)

\I’_l(}’ t>r
Proof Let® € V. Weput f = f1+ fo, where fi = fxp.2kr and fo = fxc

where k is the constant from the triangle inequality (1.1).
Estimation of M, f1: By Theorem 3.3 we have

B(x,2kr)’

Mo fill Loy < 1Mo fillpvxy S WfillLexy = 1 f Lo B 2ir)-

By using the monotonicity of the functions || f{l e gy 1)), y! (t) with respect to ¢
and doubling property of W~! we get,

- - \I—’_l -0
Ty e A G

I f 1l B x,26r) “1/-0 5.3)
=T w9 t>2£’r‘1’ (7°) Z 1F Lo Box 2k -
Consequently we have
Mo fill Loy S qu% sup W (7€) £l (e (5.4)
(r Q) t>r

Estimation of My, f>: Let y be an arbitrary point from B.If B(y, )N E(B (x, 2kr)) #
g, then t > r. Indeed, if z € B(y, 1) N (B(x, 2kr)), then t > d(y,2) > Ld(x, ) —
dix,y)>2r—r=r.

On the other hand, B(y,t) N E(B(x, 2kr)) C B(x,2kt). Indeed, if z € B(y,t) N

C(B(x, 2kr)), then we get d(x, z) < kd(y,z) + kd(x, y) < kt + kr < 2kt.
Therefore,

o

My f2(y) = sup ———
“ >0 LB, 1) JB(y.0n B, 2kr)

| f(2)|du(z)

|f(2)]d(z)

< sup —————
t>r w(B(y, 1)) B(x,2kt)
tO(
Ssup ————
t>r W(B(y, 2kt)) JB(x.2kr)

o

t
~ _ d .
S0 B Ja 1D

|f (@)ldu(z)
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Hence by Lemma 2.4 and (3.3)

Mo f2(y) S sup D F I Lo B (5.5)
>r

Thus the function My, f>(y), with fixed x and r, is dominated by the expression not
depending on y. Then we integrate the obtained estimate for M, f>(y) in y over B,
we get
_ sup W (1)1 F Il Lo sy (5.6)
\I’_I(F_Q) t>r (B.0)
Gathering the estimates (5.4) and (5.6) we arrive at (5.2).

Let now @ be an arbitrary Young function. It is obvious that

Mo f2llpv sy S

Mo fllwre )y < 1Mo fillwry ) + 1Mo f2llwry )

By the boundedness of the operator M, from L®(X) to WLY (X), provided by The-
orem 3.3, we have

1Mo fillwey gy S W FNLe B2k
By using (5.3), (5.5) and (2.3) we arrive at (5.1). ]

The following theorem gives a necessary and sufficient condition for Spanne-type
boundedness of the operator M, from M®#1(X) to M¥¥2(X): We notice that the
requirement is the same as the Orlicz spaces.

Theorem 5.2 (Spanne-type result) Let (X, d, ) be Q—homogeneous, ©, ¥ be Young
functions, and let 1 € Go and @2 € Gy.

1. Assume that the condition (3.3) is satisfied. Then the condition

YO0 ot (57
r), .
GO
forallr > 0, where C > 0 does not depend on r, is sufficient for the boundedness
of My from M®91(X) to WMY-92(X). Moreover, if ® € V5, then the condition
(5.7) is sufficient for the boundedness of Mg, from M®¥1(X) to M¥-92(X).
2. Let @1 be almost decreasing. Then the condition

sup ¢1(7)

r<t<oo

e1(Nr® < Cea(r), (5.8)

forallr > 0, where C > 0 does not depend on r, is necessary for the boundedness
of My from M®# (X) to WMY92(X) and hence M® %1 (X) to M¥-92(X).
3. Let @1 be almost decreasing. Assume that conditions (3.3) and

w-l(=¢
sup @i(f)

< Co(r)r?,
r<t<oo (Dfl(lfQ) =Co
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forallr > 0, where C > 0 does not depend on r, are satisfied. Then the condition
(5.8) is necessary and sufficient for the boundedness of Mg from M®91(X) to
WMY-92(X). Moreover, if ® € Vy, then the condition (5.8) is necessary and
sufficient for the boundedness of My, from M® %1 (X) to MY-92(X).

Proof 1. By (5.1) and (5.7) we have

1Mo fllwpqvn S sup @)™ sup | fllLosn ¥ (9)

xeX,r>0 r<t<00

< sup @) sup wl(t)wllflwwl
xeX,r>0 r<t<oo chl(th)

S I -

Simply replace WLY (B) with LY (B) and WMY-¢2(X) with M¥-#2(X) for the
strong estimate.

2. We will now prove the necessity. Let By = B(xp, #p) and x € By. By Lemma
3.1 we have ¢ < My x B, (x). Therefore, by (2.3) and Lemma 4.2, we have

1§ S W (Bo) DI Maxsyllw v sy S 0201 Ma Xl pqw.sn

@2(1o)
< < 2
S @2 xBol peer S .

0 I M P91 o1 (to)

Since this is true for every ¢y > 0, we are done.
3. The third statement of the theorem follows from the first and second parts of
the theorem. O

5.2 Adams-type result

The following theorem is one of our main results.

Theorem 5.3 Let (X, d, ) be Q—homogeneous, 0 < a < Q, ® be a Young function,
¢ € Go be almost decreasing B € (0, 1), n(t) = ¢()? and V(1) = & (1'/P).

1. If ® € Vy, then the condition
(1) < Co(t)P, (5.9)

forallt > 0, where C > 0 does not depend on t, is sufficient for the boundedness
of My, from M®¢(X) to MY"1(X).

2. The condition (5.9) is necessary for the boundedness of My from M®¥(X) to
MY (X).

3. Let ® € V. Then, the condition (5.9) is necessary and sufficient for the bounded-
ness of My from M®9(X) to M¥1(X).

Proof For arbitrary ball B = B(x, r) we represent f as

f=hHa+rhHh hH=fxs fH=f—-f, r>0,
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so that
Mo f(x) < Mg f1(x) + Mg f2(x).
Meanwhile by Lemma 2.4,
P
My f2(x) = WP B ) B (X B) |f(2)]d(z)
< sup _r |f (@)dp(z)

r<t<oco (B (x,1)) B(x,t)
< sup O (uBE,O) ) f Lo B

r<t<oo

Consequently from Hedberg’s trick [15] and the last inequality, we have

Mo f@) SreMFG) + sup @' ™D fll o0

r<t<oo

SrOMFx) + I fllpee sup %@(r).

r<t<oo

Thus, using the technique in [19, p. 6492], by (5.9) we obtain

Mo f(x) S minfo(r)P M), ()P I Fllpgos )
< supmin{s? T Mf (x), 5P| f I ppo )
s>0

= (MF)P IS e

where we have used that the supremum is achieved when the minimum parts are
balanced. Hence for every x € X we have

My () S (MF NP ILF o (5.10)

Note that from (2.1) we get

B
[o (L2 ) i~ [ 0 (M) du(r) < 1.
B IMfl}op, B Mfli e

Thus ||(Mf)/3 lLwp) < ||Mf||€¢(8). From this fact and using (5.10) and the bound-

edness of the maximal operator, we get, for all balls B,

— — — — — — 1-
)W T Mo Fllw gy S 0T T T ONME N o ) 1o

B -
= (¢ 'O T OIMS o)) I ey S IF Iagse:
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By taking the supremum with respect to B, we get the desired result.
We shall now prove the necessary part. Let By = B(xo, tp) and x € By. By Lemma
3.1 we have < My x B, (x). Therefore, by (2.3) and Lemma 4.2

~

1 STy O Moyl Lo sy) S 10 1M X8y | pgon
ﬁ(o)

S n)lxsolmes S 05 < el
Since this is true for every #p > 0, we are done. The third statement of the theorem
follows from the first and second parts of the theorem. O

Remark 5.4 As observed in Remark 3.6, we can compare Theorem 5.3 with [11, The-
orem 6.1].

The following result is the weak version of Theorem 5.3.
Theorem 5.5 Let (X, d, u) be Q—homogeneous, 0 < a < Q, ® be a Young function,
¢ € Go be almost decreasing, B € (0, 1), n(t) = () and V() = ©(t'/P). The
condition (5.9) is necessary and sufficient for the boundedness of Mg, from M®¥ (X)
to WMY-1(X).

Proof By using the inequality (5.10) we have

17
1Mo f v sy S NP oy 1 1o

where B = B(x,r).
Note that from (2.1) we get

(B
supW | ———— | m((Mf)P,1#) = sup @

p T | m(Mf,1) < 1.
10 ||Mf||WLq,(B) 10 (IIMfIIWLm(B)>

Thus [[(Mf)P WLY(B) = ||Mf||ﬁ,L¢(B). Consequently by using the weak bounded-

ness of the maximal operator, we get

()~ B ) IMa fllwrw s S 00T B THIME N o 1 o
B -
= (¢ 'O B VIMS o) 171y S 1 1aes-

By taking the supremum with respect to all B, we get the desired result.
We will now prove the necessity. Let By = B(xp, 7o) and x € By. By Lemma 3.1
we have 7§ < Mg x B, (x). Therefore, by (2.3) and Lemma 4.2
1§ S W ((Bo) I IMaxBy llwrw sy S 100) | M XBo llw aqven
n(f)

S @) 1 xBy e S W (to)ﬂfl.

Since this is true for every 79 > 0, we are done. O
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6 Commutators of fractional maximal operator in generalized
Orlicz-Morrey spaces

6.1 Spanne-type result

The following lemma is valid.

Lemma 6.1 Let (X, d, n) be Q—homogeneous, 0 < o < Q and b € BM O(X). Let
D e AoNVyand W € Ay and the condition (3.11) holds, then the inequality

5] -
* __ sup (1 +1n- ) ! Q)||f||L<D(B(x0,z))

M, S o0\
IMpo fllLY (B0 S w-1(r=9) 2y,

holds for any ball B(xo, r) and for all f € L (X).

loc

Proof For arbitrary xo € X, set B = B(xg, r) for the ball centered at x( and of radius
r. Write f = fi + fo with fi = fx,, and f = fx, , where k is the constant
(2kB)

from the triangle inequality (1.1). Hence
”Mb D‘f“L‘I‘(B) ”Mb af1 “L‘I’(B) + ”Mb “f2||L‘I’(B)

From the boundedness of M}, , from L®(X)to LY (X) (see, Theorem 3.12) it follows
that

Mpo fill v gy < IMbo fillpwx)
S bl fill oy = 1Bl L fll Lo k)

As we proceed in Theroem 3.12, for all x € B we have

1
Mia (200 S stp ———— [ o) = b F D). ©6.1)
t>2r (B (xg, l)) B(xo,1)
Then
1
Mo ol S | sp ———— [ b = bOIFOdu(r)
t>2r /,L(B(XO t)) B(xo.1) LY(B)
1
S lswp———— [ o) = ball FIdR)
1>2r w(B(xp,1)) 2 JB(xo.1) LY(B)
1
tpswp —————— [ b6 = ball SO
1>2r w(B(xp,1)) 2 JB(xo.1) LY(B)

=Ji+ ).
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Let us estimate J;.

1 1
J1 = - b(y)—b d
1 V1 0) ,Si‘f, B )5 fB(W)I ) = bellfWMIdu(y)

R ————— sup t”_Q/ [b(y) — bl fMdu(y).
\p_l(r_Q) t>2r B(x0,1)

Applying Holder’s inequality, by Lemma 3.8 and (3.8) we get

)< sup 10 / 15 — bl f O di(y)
B(x0,1)

\p—l(r—Q) t>2r

+ ————~ sup t* Clbg(r.r) — bBxos |[ | f DI p(y)
\Ijil(riQ) t>2r to-n) (o0 B(xo,1)
< 1 p by —b
~ \I-’_l(}"—Q) lsllzl?«t ” Ok B(xo,t) H Lg(B(x0,1)) ”f”L‘D(B(X(),t))
Yoy b 1 Cbpiro.r) = beo.n 2O () IF Lo (g,
1>2r
1 —1(.— 1t
S 10l gy S0 ¥ O)(1+10 =) 1110 (5300

In order to estimate J, note that
Jo = ||b(-) — bpllpv gy sup f“*Q/ | fDldu(y)
t>2r B(xq,t)
< bl ——— sup W (10 £ o :
~ * \p—l(r—Q) oy L®(B(x0,1))
Summing up J; and J> we get

1 1 t
- (=@ -
1Mp,a f2ll v By S 1011 v 9) sup W (¢ )(1+ln r)”f”L“’(B(xo‘t)y (6.2)

t>2r

Finally,

1My fllLesy S Bl N fllLe 2xm)

(P “1(,—0 t
Bt 0) (141 ) ,
+q,71(rfg) sup () (I =)Ao o)
and the statement of Lemma 6.1 follows by (5.3). O

The following theorem gives a necessary and sufficient condition for Spanne-type
boundedness of the operator M), o from M®Pe1(X) to MY92(X). We notice that the
requirement is the same as for Orlicz spaces.
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Theorem 6.2 (Spanne-type result) Let (X, d, i) be Q—homogeneous, 0 < a < Q
andb € BMO(X), ®, ¥ be Young functions, and let ¢ € Go and ¢ € Gy.

1. Assume that ® € Ay NV and ¥ € Ay and the condition (3.11) is satisfied. Then
the condition

\v1(179)
rf?foo(pl(l)(l in ;)m = Coa(r), (6.3)

forallr > 0, where C > 0 does not depend on r, is sufficient for the boundedness
of My, o from MPe1(X) 1o MY-92(X).

2. Let @1 be almost decreasing and W € Aj. Then the condition (5.8) is necessary
for the boundedness of My o from M®¥1(X) to MY-#2(X).

3. Let @1 be almost decreasing, ® € Ay NV and W € As,. Assume that conditions
(3.11) and

w-l(=¢
sup gol(t)<l +In t) (t < Co (r)r?, (6.4)

r<t<oo o1 (liQ)
forallr > 0, where C > 0 does not depend on r, are satisfied. Then the condition

(5.8) is necessary and sufficient for the boundedness of My, o from M®¢1(X) to
MY (X).

Proof 1. By (6.1) and (6.3) we have

Mo flagven S sup @209 sup (1410 2)1 o ¥ ()

xeX,r>0 r<t<oo
S sw e sup go1<t>(1+1nt)w||fumm
™ xeX,r>0 r<t<co o l(t_Q)
5 ||f||/\/1d>vw1~

2. We will now prove the necessity. Let By = B(xg, ro) and x € By. By Lemma
3.11 wehaver§|b(x)—bpy| S Mp o xB,(x). Therefore, by Lemma 3.8 and Lemma
4.2

o < | Mo x B, ”L‘L‘(BO)

~ I M. xBoll v 5y ¥ " (1 (Bo)™")
° 16C) = bpyliLv sy ™ ||b||* @ ABORLY (Bo)

@2(ro)
@1(ro)

1
||b|| ———02(rO) 1M, X By pwn S 020 X Byl ppo0n S
*

Since this is true for every ro > 0, we are done.
3. The third statement of the theorem follows from the first and second parts of

the theorem.
O

By (3.20) and Theorems 5.2 and 6.2 we get the following corollary.

Corollary6.3 Let 0 < a < Q, ® € Ay NV, W € Ay, 91 € Go, 2 € Gy,
b e BMO(X)andb~ € L*®(X). Let also the conditions (3.11) and (6.3) are satisfied.
Then the operator [b, My is bounded from M® %1 (X) to M¥Y-#2(X).
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The following theorem shows that b € BM O (X) is necessary for the boundedness
of Mj o from M®#1(X) to M¥-92(X).

Theorem 6.4 Let (X, d, ) be Q—homogeneous, 0 <a < Q, b € Lloc(X)’ O, W be
Young functions, ¢1 € Go is almost decreasing and o2 € Gy. Assume that there exists
a positive constant C such that, for all r > 0,

P1(Nr* = Coa(r). (6.5)

Then the condition b € BM O(X) is necessary for the boundedness of My o from
MECL(X) to MY (X).

Proof Suppose that M}, , is bounded from M®#1 (X) to M¥#2(X). Choose any ball
B = B(x,r) in X, by Lemmas 2.4 and 4.2 and (6.5) we have

1
5 fB 1b(y) — baldu(y)
1
<
u(B)' 0

/ = / 1b(y) = b(2) % (2)dp(z)d i (y)
B u(B)

U w(B) HIIMpoxsl e

< —1+/ Mo (X)) S ——
w(B)'to n(B)e

©2(r) <ﬂ2(r) ©2(r)
T IMp o xBl pgren S Il pgo0r S -3
w(B) @ o1(r)r

N

Thus b € BM O (X). O

By Theorems 6.2 and 6.4 we have the following characterization of BM O (X).

Theorem 6.5 Let (X, d, 1) be Q—homogeneous, 0 < o < Q, b € Lloc(X)’ (OIS
ANV, W € Ay, o1 € Go is almost decreasing and ¢y € Gy. Assume that conditions
3.11), (6.4) and @1 (r)r* = @, (r) hold. Then the conditionb € BM O (X) is necessary
and sufficient for the boundedness of My, o from M®¥1(X) to M¥-92(X).

6.2 Adams-type result

The following theorem gives a characterization for the boundedness of the operator
My, o on generalized Orlicz—-Morrey spaces.

Theorem 6.6 Let (X, d, u) be Q—homogeneous, 0 < a < Q, ® € Ay, ¢ € Gg be
almost decreasing, b € BMO(X), g € (0, 1), n(r) = go(r)/3 and V(r) = @(rl/ﬁ).

1. If ® € V; and ¢(t) satisfies (4.2), then the condition

t
r“o(r) + sup (1 +In ;)(p(t)t“ < C(p(r)ﬁ (6.6)

r<t<oo

forallr > 0, where C > 0 does not depend on r, is sufficient for the boundedness
of My, o from M®9(X) to MY (X).
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2. The condition (5.9) is necessary for the boundedness of My from M®¥(X) to
MYn(x).
3. Let ® € V. If ¢ satisfies the condition

sup (1 +1n ;)(p(t)t“ < Croo(r) (6.7)

r<t<oo

for all v > 0, where C > 0 does not depend on r, then the condition (5.9) is
necessary and sufficient for the boundedness of My, o from M 2.9(X) to MY1(X).

Proof For arbitrary xog € X, set B := B(xg, ) for the ball centered at xo and of radius
r. Write f = fi + f> with f1 := fxy, and f2 := fx, , where k is the constant
(2kB)

from the triangle inequality (1.1).
If we proceed as in Theorem 3.12, for all x € B we have

Mpo(2)(x) S T+ T2+ T3,

where Ji, J> and J3 are same as in Theorem 3.12.
Applying Holder’s inequality, by (2.4), (3.8), Lemma 3.8 and Lemma 2.4 we get

Ji+ 12 S sup t"‘_Q/ [b(¥) — bxo,n | f D (y)
B(xo,1)

t>2r

4 sup 1 Clbgeor) — bagon| f F O du(y)
B(xp,t)

t>2r

§ tsllzp [a—Q ||b() - bB(xo,t) ||L5(B(x0,t)) ”f”Lq’(B(xg,t))
>LZr

+ sup 1“"CIbp gy — PBon | 19 q)_l(t_Q)”f”Ld’(B(xo,t))

t>2r

_1,.— t
S bl sup @17 1 (110 = )1 £l o a0

t>2r

t
S Bl flagee sup (1410~ )rp(0).

t>2r

Taking into account (3.13), for all x € B we get

Jo(x) + Ji + J2 S N1bllr® My f (x)
t
Bl f o sup (141In—) 1 p(0).

t>2r

Thus, by (6.6) we obtain

Jo(x) + Ji + Jo S bl min{o ()P My £ (1), 0P || f I ppoe )
S 1161l sup min{sP = My, £ (x), sP1 1l pgoe )

s>0

= 161(Mp F )P 1 1oy
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Hence for every x € B we have

Jo@) + J1 + 2 S bl My FODP I F I - 6.8)

By using the inequality (6.8) we have

1—
1) + Iy + Jall v gy S IBI 1My PP o gy £ 1y

Note that from (2.1) we get
M, B M,
[o[Lr ) g~ [ (ﬁ) duw < 1.
B M5 £ 05, B \IMpfli e
Thus ||[(M}, )P lvp) = ||be||§q,(B). Therefore, we have

1—
10 + 1+ Tall vy S Wbl Mo 117 0y 1F 1

By Lemma 3.8, Lemma 2.4 and condition (6.6), we also get

131l v ) =

1
sup ————— / 16() — ballf DNIdu()
1>2r |B(xo, )" "7 JBxo0)

I6(-) = ballpv(p) sup IOHL/ | fDldu(y)
t>2r B(xq,t)

151 10y 0
S G S T e f e
W (u(B)) i e

LY (B)

Q

1511
S —7 a1 flmee sup t¥e(t)
\I—’_I(M(B)_l) MEY t>2r
1511

o nmix o B
S Ty e )

Consequently by using Theorem 4.4, we get

1Mo fllpqen = sup 0~ U (wB) HIMpofll e
xpeX,r>0

x0€X,r>0

B
Sllbll*llfllj;(ﬁ,¢< sup <ﬂ(r)_lCD_I(M(B)_I)HbeHL‘D(B))

+ 1Bl f I poe
S DI f  pges-
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We shall now prove the second part. Let By = B(xp, r9) and x € By. By Lemma
3.11 we have r{|b(x) — bpy| S Mp,q xB,(x). Therefore, by Lemma 3.8 and Lemma
4.2

| Mp.o xBoll v (By) 1
rg < ‘ C- < 1Mpc xBoll 1w 5y ¥ ™" (m(Bo) ™)
O~ Nb() = bpylivgy ~ bl AT B

1
S W’?(”O)”Mb,aXBo”M%n S o) | xBy I pe.e
*
n(ro) _
S —— Se@o)f
@(ro)

Since this is true for every ry > 0, we are done.
The third statement of the theorem follows from the first and second parts of the
theorem. =

Remark 6.7 As observed in Remark 3.16, we can compare Theorem 6.6 with [11,
Theorem 6.4].

By (3.20) and Theorems 5.3 and 6.6 we get the following corollary.

Corollary 6.8 Let (X, d, 1) be Q—homogeneous, 0 <a < Q, ® € Ay NVy, ¢ € Ggp
be almost decreasing, b € BMO(X), b~ € L*(X), B € (0, 1), n(r) = <p(r)/6 and
W(r) = O(r'/P). Let also conditions (4.2) and (6.6) are satisfied. Then the operator
(b, My is bounded from M®¢(X) to MY"1(X).

Similar to Theorem 6.4 we can show that b € BM O(X) is necessary for the
boundedness of M}, ,, from M®¥(X) to M¥7(X). The details are omitted.
Theorem 6.9 Let (X, d, ) be Q—homogeneous, 0 < a < Q, b € LIIOC(X), o, v
be Young functions, ¢ € Go is almost decreasing, B € (0, 1), n(r) = (p(r)ﬂ and
U(r) = &P, Assume that there exists a positive constant C such that, for all
r>0,

rp(r) = Co(r)F.

Then the condition b € BM O (X) is necessary for the boundedness of My o from
MP(X) to MY (X).

By Theorems 6.6 and 6.9 we have the following characterization of BM O (X).

Theorem 6.10 Let (X, d, ) be Q—homogeneous, 0 < o < Q, b € Llloc(X), D e
Ar N Vo, ¢ € Go is almost decreasing and B € (0, 1), n(r) = (p(r)ﬁ and ¥(r) =
& (rY/P). Assume that conditions (6.7) and rfo(r) = go(r)/S hold. Then the condition
b € BM O(X) is necessary and sufficient for the boundedness of My, , from MP#(X)

to MY1(X).
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