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Abstract
In this paper, we establish the necessary and sufficient conditions for the boundedness
of fractional maximal operator Mα and the fractional maximal commutators Mb,α in
Orlicz L�(X) and generalized Orlicz–Morrey spaces M�,ϕ(X) on spaces of homo-
geneous type X = (X , d, μ) in the sense of Coifman-Weiss.

Keywords Orlicz space · Generalized Orlicz–Morrey space · Fractional maximal
operator · Commutator · Spaces of homogeneous type

Mathematics subject classification 42B20 · 42B25 · 42B35

1 Introduction

In order to extend the traditional Euclidean space to build a general underlying struc-
ture for the real harmonic analysis, the notion of spaces of homogeneous type was
introduced by Coifman and Weiss [1].
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Let X = (X , d, μ) be a space of homogeneous type, i.e. X is a topological space
endowed with a quasi-distance d and a positive measure μ such that

d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,

d(x, y) = d(y, x),

d(x, y) ≤ K1(d(x, z) + d(z, y)), (1.1)

the balls B(x, r) = {y ∈ X : d(x, y) < r}, r > 0, form a basis of neighborhoods of
the point x , μ is defined on a σ -algebra of subsets of X which contains the balls, and

0 < μ(B(x, 2r)) ≤ K2 μ(B(x, r)) < ∞, (1.2)

where Ki ≥ 1 (i = 1, 2) are constants independent of x, y, z ∈ X and r > 0. As
usual, the dilation of a ball B = B(x, r) will be denoted by λB = B(x, λr) for every
λ > 0.

In the sequel, we always assume thatμ(X) = ∞, the space of compactly supported
continuous function is dense in L1(X , μ) and that X is Q-homogeneous (Q > 0), i.e.

K−1
3 r Q ≤ μ(B(x, r)) ≤ K3r

Q, (1.3)

where K3 ≥ 1 is a constant independent of x and r . The n-dimensional Euclidean
space R

n is n-homogeneous.
In [2], the generalized Orlicz–Morrey space was introduced to unify Orlicz and

generalized Morrey spaces. Other definitions of generalized Orlicz–Morrey spaces
can be found in [3,4]. Spanne and Adams type boundedness of fractional maximal
operator Mα and its commutators Mb,α in generalized Orlicz–Morrey spaces on the n-
dimensional Euclidean spaceR

n was investigated in [5–7].Moreover, the boundedness
of Mα and Mb,α in Orlicz spaces on R

n was characterized in [8]. The purpose of this
paper is to extend these Euclidean results to the spaces of homogeneous type setting.

The structure of the remaining part of the present paper is as follows: Sect. 2 provides
the definitions and some preliminaries on Young functions and Orlicz spaces. We
shall give necessary and sufficient conditions for the boundedness of Mα and Mb,α in
Orlicz spaces L�(X) in Sect. 3. In Sect. 4, we investigate the structure of generalized
Orlicz–Morrey spaces defined on spaces of homogeneous type M�,ϕ(X). We give
characterizations for the Spanne and Adams type boundedness of Mα and Mb,α in
M�,ϕ(X) in Sects. 5 and 6, respectively.

At the end of this section, we make some conventions. By A � B we mean that
A ≤ CB with some positive constant C independent of appropriate quantities. If
A � B and B � A, we write A ≈ B and say that A and B are equivalent.

2 Preliminaries

We recall the definition of Young functions.
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Definition 2.1 A function � : [0,∞) → [0,∞] is called a Young function if � is
convex, left-continuous, limr→+0 �(r) = �(0) = 0 and limr→∞ �(r) = ∞.

From the convexity and �(0) = 0 it follows that any Young function is increasing.
If there exists s ∈ (0,∞) such that �(s) = ∞, then �(r) = ∞ for r ≥ s.

Let Y be the set of all Young functions � such that

0 < �(r) < ∞ for 0 < r < ∞.

If � ∈ Y , then � is absolutely continuous on every closed interval in [0,∞) and
bijective from [0,∞) to itself.

Let X = (X , d, μ) be a space of homogeneous type. For a measurable set � ⊂ X ,
a measurable function f and t > 0, let m(�, f , t) = μ({x ∈ � : | f (x)| > t}). In
the case � = X , we shortly denote it by m( f , t).

The Orlicz spaces and weak Orlicz spaces on spaces of homogeneous type are
defined as follows.

Definition 2.2 For a Young function �,

L�(X) =
{
f ∈ L1

loc(X) :
∫
X

�(ε| f (x)|)dμ(x) < ∞ for some ε > 0

}
,

‖ f ‖L� ≡ ‖ f ‖L�(X) = inf

{
λ > 0 :

∫
X

�
( | f (x)|

λ

)
dμ(x) ≤ 1

}
,

WL�(X) =
{
f ∈ L1

loc(X) : sup
r>0

�(r)m
(
r , ε f

)
< ∞ for some ε > 0

}
,

‖ f ‖WL� ≡ ‖ f ‖WL�(X) = inf
{
λ > 0 : sup

t>0
�(t)m

( f

λ
, t

)
≤ 1

}
.

We note that ‖ f ‖WL� ≤ ‖ f ‖L� ,

sup
t>0

�(t)m(�, f , t) = sup
t>0

t m(�, f , �−1(t)) = sup
t>0

t m(�, �(| f |), t)

and
∫

�

�
( | f (x)|
‖ f ‖L�(�)

)
dx ≤ 1, sup

t>0
�(t)m

(
�,

f

‖ f ‖WL�(�)

, t
)

≤ 1, (2.1)

where ‖ f ‖L�(�) = ‖ f χ�‖L� and ‖ f ‖WL�(�) = ‖ f χ�‖WL� .
For a Young function � and 0 ≤ s ≤ ∞, let

�−1(s) = inf{r ≥ 0 : �(r) > s} (inf ∅ = ∞).

If � ∈ Y , then �−1 is the usual inverse function of �. We note that

�(�−1(r)) ≤ r ≤ �−1(�(r)) for 0 ≤ r < ∞. (2.2)
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We also note that for � ∈ Y we have

‖χE ‖WL� = ‖χE ‖L� = 1

�−1
(
μ(E)−1

) , (2.3)

where E is a μ-measurable set in X with μ(E) < ∞ and χE is the characteristic
function of E . Indeed,

‖χE ‖L� = inf

{
λ > 0 :

∫
E

�

(
1

λ

)
dμ(y) ≤ 1

}

= inf

{
λ > 0 : 1

λ
≤ �−1

(
μ(E)−1

)}

= inf

{
λ > 0 : λ ≥ 1

�−1
(
μ(E)−1

)
}

= 1

�−1
(
μ(E)−1

) ,

‖χE ‖WL� = inf

{
λ > 0 : sup

t>0
�

(
t

λ

)
μ({x ∈ X : |χE (x)| > t}) ≤ 1

}

= inf

{
λ > 0 : sup

0<t<1
�

(
t

λ

)
μ({x ∈ X : |χE (x)| > t}) ≤ 1

}

= inf

{
λ > 0 : �

(
1

λ

)
≤ μ(E)−1

}

= inf

{
λ > 0 : λ ≥ 1

�−1
(
μ(E)−1

)
}

= 1

�−1
(
μ(E)−1

) .

A Young function � is said to satisfy the 
2-condition, denoted by � ∈ 
2, if

�(2r) ≤ k�(r) for r > 0

for some k > 1. If � ∈ 
2, then � ∈ Y .
A Young function � is said to satisfy the ∇2-condition, denoted also by � ∈ ∇2,

if

�(r) ≤ 1

2k
�(kr), r ≥ 0,

for some k > 1.
For a Young function �, the complementary function �̃(r) is defined by

�̃(r) =
{
sup{rs − �(s) : s ∈ [0,∞)} , r ∈ [0,∞),

∞ , r = ∞.
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The complementary function �̃ is also a Young function and ˜̃� = �. If �(r) =
r , then �̃(r) = 0 for 0 ≤ r ≤ 1 and �̃(r) = ∞ for r > 1. If 1 < p < ∞,
1/p + 1/p′ = 1 and �(r) = r p/p, then �̃(r) = r p

′
/p′. If �(r) = er − r − 1, then

�̃(r) = (1 + r) log(1 + r) − r . Note that � ∈ ∇2 if and only if �̃ ∈ 
2. It is known
that

r ≤ �−1(r)�̃−1(r) ≤ 2r for r ≥ 0. (2.4)

Note that by the convexity of � and concavity of �−1 we have the following
properties

{
�(αt) ≤ α�(t), if 0 ≤ α ≤ 1
�(αt) ≥ α�(t), if α > 1

and

{
�−1(αt) ≥ α�−1(t), if 0 ≤ α ≤ 1
�−1(αt) ≤ α�−1(t), if α > 1.

(2.5)

Remark 2.3 Thanks to (1.3) and (2.5) we have

�−1(μ(B(x, r))−1) ≈ �−1(r−Q).

The following analogue of the Hölder inequality is known,

∫
X

| f (x)g(x)|dμ(x) ≤ 2‖ f ‖L�‖g‖L�̃
. (2.6)

When we prove our main estimates, we use the following lemma, which follows
from (2.6), (2.3) and (2.4).

Lemma 2.4 For a Young function � and B = B(x, r), the following inequality is
valid

‖ f ‖L1(B) ≤ 2μ(B)�−1
(
μ(B)−1

)
‖ f ‖L�(B).

3 Fractional maximal operator and its commutators in Orlicz spaces

For a Q-homogeneous space (X , d, μ), let Mα f be the fractional maximal function,
i.e.

Mα f (x) = sup
r>0

1

μ(B(x, r))1−α/Q

∫
B(x,r)

| f (y)|dμ(y), 0 ≤ α < Q.

In our definition, we consider balls that are centered at x , but we obtain a noncentered
maximal function by taking the supremum over all balls containing x . For doubling
measures, these maximal functions are comparable, and it does not matter which one
we choose. When α = 0 this reduces to the Hardy-Littlewood maximal operator and
we write M instead of M0.

In order to prove our main theorem, we also need the following lemma.

Lemma 3.1 If B0 := B(x0, r0), then μ(B0)
α
Q � MαχB0(x) for every x ∈ B0.
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Proof For x ∈ B0, we get

MαχB0(x) � sup
B�x

μ(B)
−1+ α

Q μ(B ∩ B0) ≥ μ(B0)
−1+ α

Q μ(B0 ∩ B0) = μ(B0)
α
Q .

��
We recall the boundedness property of M on Orlicz spaces since we use it later.

Theorem 3.2 [9] Let � be a Young function.

(i) The operator M is bounded from L�(X) to W L�(X), and the inequality

‖M f ‖WL� ≤ C0‖ f ‖L� (3.1)

holds with constant C0 independent of f .
(ii) The operator M is bounded on L�(X), and the inequality

‖M f ‖L� ≤ C0‖ f ‖L� (3.2)

holds with constant C0 independent of f if and only if � ∈ ∇2.

The following theorem in R
n case for a more general case of generalized fractional

maximal operator was proved in [10]. Moreover, the results of [8] was given for more
general Young functions in [10]. The following theorem partially extends the results
of [10] to the spaces of homogeneous case. The proof method is essentially the same
as in [10].

Theorem 3.3 Let (X , d, μ) be Q−homogeneous, 0 < α < Q and �,� be Young
functions.

1. Assume that there exists a positive constant C such that, for all r > 0,

rα ≤ C
�−1

(
r−Q

)
�−1

(
r−Q

) . (3.3)

Then, for any positive constant C0, there exists a positive constant C1 such that,
for all f ∈ L�(X) with f �= 0,

Mα f (x) ≤ C1‖ f ‖L�(�−1 ◦ �)
( M f (x)

C0‖ f ‖L�

)
(x ∈ X). (3.4)

Consequently, Mα is bounded from L�(X) to W L�(X). Moreover, if � ∈ ∇2,
then Mα is bounded from L�(X) to L�(X).

2. Conversely, if Mα is bounded from L�(X) to W L�(X), then (3.3) holds.

Proof Let f ∈ L�(X). We may assume that M f (x) > 0 for all x ∈ X . For any x ∈ X
and any ball B = B(z, r) � x , if

�
( M f (x)

C0‖ f ‖L�

)
≥ r−Q,
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then, by Lemma 2.4 and (3.3), we have

rα

μ(B)

∫
B

| f (y)|dμ(y) � rα �−1(r−Q) ‖ f ‖L�

� �−1(r−Q) ‖ f ‖L� � �−1
(

�
( M f (x)

C0‖ f ‖L�

))
‖ f ‖L�.

Conversely, if

�
( M f (x)

C0‖ f ‖L�

)
≤ r−Q,

then, choosing t0 ≥ r such that

�
( M f (x)

C0‖ f ‖L�

)
= t−Q

0 ,

and using (3.3) and (2.2)

rα ≤ tα0 �
�−1

(
�

(
M f (x)

C0‖ f ‖L�

))

�−1
(
�

(
M f (x)

C0‖ f ‖L�

)) �
�−1

(
�

(
M f (x)

C0‖ f ‖L�

))
M f (x)

C0‖ f ‖L�

,

which implies

rα

μ(B)

∫
B

| f (y)|dμ(y) � ‖ f ‖L�

�−1
(
�

(
M f (x)

C0‖ f ‖L�

))
M f (x)

1

μ(B)

∫
B

| f (y)|dμ(y)

� �−1
(

�
( M f (x)

C0‖ f ‖L�

))
‖ f ‖L�,

which shows (3.4).

• Let C0 be as in (3.1). Then by (2.1), (3.1) and (3.4), we have

sup
r>0

�(r)m
( Mα f (x)

C1‖ f ‖L�

, r
)

= sup
r>0

r m
(
�

( Mα f (x)

C1‖ f ‖L�

)
, r

)

≤ sup
r>0

r m
(
�

( M f (x)

C0‖ f ‖L�

)
, r

)
≤ sup

r>0
�(r)m

( M f (x)

‖M f ‖WL�

, r
)

≤ 1,

i.e.
‖Mα f ‖WL� � ‖ f ‖L�. (3.5)

• Assume in addition that � ∈ ∇2. Let C0 be as in (3.2). By (2.1), (3.2) and (3.4),
we have
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∫
X

�

(
Mα f (x)

C1‖ f ‖L�

)
dμ(x) ≤

∫
X

�

(
M f (x)

C0‖ f ‖L�

)
dμ(x)

≤
∫
X

�

(
M f (x)

‖M f ‖L�

)
dμ(x) ≤ 1,

i.e.
‖Mα f ‖L� � ‖ f ‖L�. (3.6)

For the necessity, we can concentrate on the boundedness of Mα from L�(X) to
WL�(X), since the boundedness of Mα from L�(X) to L�(X) is stronger than the
boundedness of Mα from L�(X) to WL�(X). With this in mind, assume that Mα is
bounded from L�(X) to WL�(X). Let B0 = B(x0, r0) and x ∈ B0. By Lemma 3.1,
we have rα

0 � MαχB0(x). Therefore, by (2.3), we have

rα
0 � �−1(μ(B0)

−1)‖MαχB0‖WL�(B0) � �−1(μ(B0)
−1)‖MαχB0‖WL�

� �−1(μ(B0)
−1)‖χB0‖L� � �−1(r−Q

0 )

�−1(r−Q
0 )

.

Since this is true for every r0 > 0, we are done. ��
We can summarize Theorem 3.3 as following:

Corollary 3.4 Let (X , d, μ) be Q−homogeneous, 0 < α < Q and �,� be Young
functions. Then the condition (3.3) is necessary and sufficient for the boundedness of
Mα from L�(X) to W L�(X). Moreover, if � ∈ ∇2, the condition (3.3) is necessary
and sufficient for the boundedness of Mα from L�(X) to L�(X).

To compare, we formulate the following theorem proved in [11,12] and remark
below, where

Iα f (x) =
∫
X

f (y)

d(x, y)Q−α
dμ(y), 0 < α < Q.

Theorem 3.5 Let (X , d, μ) be Q−homogeneous, 0 < α < Q and �,� ∈ Y . If

∫ ∞

r
tα−1�−1

(
t−Q

)
dt � rα�−1

(
r−Q

)
for 0 < r < ∞, (3.7)

holds, then the condition (3.3) is necessary and sufficient for the boundedness of Iα
from L�(X) to W L�(X). Moreover, if � ∈ ∇2, the condition (3.3) is necessary and
sufficient for the boundedness of Iα from L�(X) to L�(X).

Remark 3.6 Although fractional maximal function Mα is pointwise dominated by the
Riesz potential Iα , and consequently, the results for the former could be derived from
the results for the latter, we consider them separately, because we are able to study the
fractional maximal operator under weaker assumptions than it derived from the results
for the potential operator. More precisely, we don’t need to regularity condition (3.7)
for the boundedness of fractional maximal operator.
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We recall that the space BMO(X) = {b ∈ L1
loc(X) : ‖b‖∗ < ∞} is defined by

the seminorm

‖b‖∗ := sup
x∈X , r>0

1

μ(B(x, r))

∫
B(x,r)

|b(y) − bB(x,r)|dμ(y) < ∞,

where bB(x,r) = 1
μ(B(x,r))

∫
B(x,r) b(y)dμ(y). We will need the following properties

of BMO-functions:

Lemma 3.7 [13, Lemma 7.1] Let b ∈ BMO(X).

∣∣bB(x,r) − bB(x,t)
∣∣ ≤ C‖b‖∗ ln

6t

r
for 0 < 2r < t, (3.8)

where C does not depend on b, x, r and t.

Lemma 3.8 [11, Lemma 4.7] Let b ∈ BMO(X) and � be a Young function with
� ∈ 
2. Then

‖b‖∗ ≈ sup
x∈X , r>0

�−1(r−Q) ∥∥b(·) − bB(x,r)
∥∥
L�(B(x,r)) .

Given a measurable function b the operator Mb,α is defined by

Mb,α( f )(x) = sup
t>0

μ(B(x, t))−1+ α
Q

∫
B(x,t)

|b(x) − b(y)|| f (y)|dμ(y).

If α = 0, then Mb,0 ≡ Mb is called maximal commutator.
The known boundedness statements for the commutator operator Mb on Orlicz

spaces run as follows, see [14, Theorem 1.9 and Corollary 2.3]. Note that in [14] a
more general case of multilinear commutators was studied.

Theorem 3.9 Let � be a Young function with � ∈ 
2 ∩ ∇2 and b ∈ BMO(X). Then
Mb is bounded on L�(X) and the inequality

‖Mb f ‖L� ≤ C0‖b‖∗‖ f ‖L� (3.9)

holds with constant C0 independent of f .

The following lemma is the analogue of the Hedberg’s trick for [b, Iα], see [15, p.
506].

Lemma 3.10 [11, Lemma 5.5] If (X , d, μ) be Q−homogeneous, 0 < α < Q and
f , b ∈ L1

loc(X), then for all x ∈ X and r > 0 we get

∫
B(x,r)

| f (y)|
d(x, y)Q−α

|b(x) − b(y)|dμ(y) � rαMb f (x).

For proving our main results, we need the following estimate.
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Lemma 3.11 If b ∈ L1
loc(X) and B0 := B(x0, r0), then

rα
0 |b(x) − bB0 | � Mb,αχB0(x) for every x ∈ B0.

Proof It is well-known that

Mb,α f (x) � Mb,α f (x), (3.10)

where Mb,α( f )(x) = sup
B�x

μ(B)
−1+ α

Q
∫
B |b(x) − b(y)|| f (y)|dμ(y).

Now let x ∈ B0. By using (3.10), we get

Mb,αχB0(x) � Mb,α f (x) = sup
B�x

μ(B)
−1+ α

Q

∫
B

|b(x) − b(y)|χB0dμ(y)

= sup
B�x

|B|−1+ α
Q

∫
B∩B0

|b(x) − b(y)|dμ(y)

� μ(B0)
−1+ α

Q

∫
B0∩B0

|b(x) − b(y)|dμ(y)

�
∣∣μ(B0)

−1+ α
Q

∫
B0

(b(x) − b(y))dμ(y)
∣∣ = rα

0 |b(x) − bB0 |.

��
The following theorem gives necessary and sufficient conditions for the bounded-

ness of the operator Mb,α from L�(X) to L�(X).

Theorem 3.12 Let (X , d, μ) be Q−homogeneous, 0 < α < Q, b ∈ BMO(X) and
�,� be Young functions.

1. If � ∈ 
2 ∩ ∇2 and � ∈ 
2, then the condition

rα�−1(r−Q) + sup
r<t<∞

(
1 + ln

t

r

)
�−1(t−Q)

tα ≤ C�−1(r−Q)
(3.11)

for all r > 0, where C > 0 does not depend on r, is sufficient for the boundedness
of Mb,α from L�(X) to L�(X).

2. If � ∈ 
2, then the condition (3.3) is necessary for the boundedness of Mb,α from
L�(X) to L�(X).

3. Let � ∈ 
2 ∩ ∇2 and � ∈ 
2. If the condition

sup
r<t<∞

(
1 + ln

t

r

)
�−1(t−Q)

tα ≤ Crα�−1(r−Q)
(3.12)

holds for all r > 0, where C > 0 does not depend on r, then the condition (3.3)
is necessary and sufficient for the boundedness of Mb,α from L�(X) to L�(X).
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Proof (1) For arbitrary x0 ∈ X , set B = B(x0, r) for the ball centered at x0 and of
radius r . Write f = f1 + f2 with f1 = f χ2kB and f2 = f χ�

(2kB)

, where k is the

constant from the triangle inequality (1.1).

Let x be an arbitrary point in B. If B(x, t) ∩ { �
(2kB)} �= ∅, then t > r . Indeed, if

y ∈ B(x, t) ∩ { �
(2kB)}, then t > d(x, y) ≥ 1

k d(x0, y) − d(x0, x) > 2r − r = r .

On the other hand, B(x, t) ∩ { �
(2kB)} ⊂ B(x0, 2kt). Indeed, if y ∈ B(x, t) ∩

{ �
(2kB)}, then we get d(x0, y) ≤ kd(x, y) + kd(x0, x) < kt + kr < 2kt .
Hence by (1.3)

Mb,α( f2)(x) = sup
t>0

1

μ(B(x, t))1−
α
Q

∫
B(x,t)∩ �

(2kB)

|b(y) − b(x)|| f (y)|dμ(y)

≤ sup
t>r

1

μ(B(x, t))1−
α
Q

∫
B(x0,2kt)

|b(y) − b(x)|| f (y)|dμ(y)

� sup
t>2r

1

μ(B(x0, t))
1− α

Q

∫
B(x0,t)

|b(y) − b(x)|| f (y)|dμ(y).

Therefore, for all x ∈ B we have

Mb,α( f2)(x) � sup
t>2r

tα−Q
∫
B(x0,t)

|b(y) − b(x)|| f (y)|dμ(y)

� sup
t>2r

tα−Q
∫
B(x0,t)

|b(y) − bB(x0,t)|| f (y)|dμ(y)

+ sup
t>2r

tα−Q
∫
B(x0,t)

|bB(x0,t) − bB || f (y)|dμ(y)

+ sup
t>2r

tα−Q
∫
B(x0,t)

|bB − b(x)|| f (y)|dμ(y)

= J1 + J2 + J3.

Applying Hölder’s inequality, by (2.4), (3.8) and Lemmas 2.4 and 3.8 we get

J1 + J2 � sup
t>2r

tα−Q
∫
B(x0,t)

|b(y) − bB(x0,t)|| f (y)|dμ(y)

+ sup
t>2r

tα−Q |bB(x0,r) − bB(x0,t)|
∫
B(x0,t)

| f (y)|dμ(y)

� sup
t>2r

tα−Q
∥∥b(·) − bB(x0,t)

∥∥
L�̃(B(x0,t))

‖ f ‖L�(B(x0,t))

+ sup
t>2r

tα−Q |bB(x0,r) − bB(x0,t)|t Q�−1(μ(B(x0, t))
−1)‖ f ‖L�(B(x0,t))

� ‖b‖∗ sup
t>2r

�−1(μ(B(x0, t))
−1)tα

(
1 + ln

t

r

)
‖ f ‖L�(B(x0,t))

� ‖b‖∗ ‖ f ‖L� sup
t>2r

(
1 + ln

t

r

)
tα�−1(t−Q).
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Ageometric observation shows2kB ⊂ B(x, δ) for all x ∈ B, where δ = (2k+1)kr .
Using Lemma 3.10, we get

J0(x) := Mb,α( f1)(x) �
∫
2kB

|b(y) − b(x)|
d(x, y)Q−α

| f (y)|dμ(y)

�
∫
B(x,δ)

|b(y) − b(x)|
d(x, y)Q−α

| f (y)|dμ(y) � rαMb f (x). (3.13)

For all x ∈ B we get

J0(x) + J1 + J2 � ‖b‖∗rαMb f (x) + ‖b‖∗‖ f ‖L� sup
t>2r

(
1 + ln

t

r

)
tα�−1(t−Q).

Thus, by (3.11) we obtain

J0(x) + J1 + J2 � ‖b‖∗
(
Mb f (x)

�−1(r−Q)

�−1(r−Q)
+ �−1(r−Q)‖ f ‖L�

)
.

Choose r > 0 so that �−1(r−Q) = Mb f (x)
C0‖b‖∗‖ f ‖L�

. Then

�−1(r−Q)

�−1(r−Q)
=

(�−1 ◦ �)
(

Mb f (x)
C0‖b‖∗‖ f ‖L�

)
Mb f (x)

C0‖b‖∗‖ f ‖L�

.

Therefore, we get

J0(x) + J1 + J2 ≤ C1‖b‖∗‖ f ‖L�(�−1 ◦ �)
( Mb f (x)

C0‖b‖∗‖ f ‖L�

)
.

Let C0 be as in (3.9). Consequently by Theorem 3.9 and (2.1) we have

∫
B

�

(
J0(x) + J1 + J2
C1‖b‖∗‖ f ‖L�

)
dμ(x) ≤

∫
B

�

(
Mb f (x)

C0‖b‖∗‖ f ‖L�

)
dμ(x)

≤
∫
X

�

(
Mb f (x)

‖Mb f ‖L�

)
dμ(x) ≤ 1,

i.e.
‖J0(·) + J1 + J2‖L�(B) � ‖b‖∗‖ f ‖L�. (3.14)

By Lemma 3.8, Lemma 2.4 and condition (3.11), we also get

‖J3‖L�(B) =
∥∥∥∥∥supt>2r

1

μ(B(x0, t))
1− α

Q

∫
B(x0,t)

|b(·) − bB || f (y)|dμ(y)

∥∥∥∥∥
L�(B)

≈ ‖b(·) − bB‖L�(B) sup
t>2r

tα−Q
∫
B(x0,t)

| f (y)|dμ(y)
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� ‖b‖∗
1

�−1
(
μ(B)−1

) sup
t>2r

�−1(μ(B(x0, t))
−1)tα‖ f ‖L�(B(x0,t))

� ‖b‖∗
1

�−1
(
μ(B)−1

)‖ f ‖L� sup
t>2r

tα�−1(μ(B(x0, t))
−1)

� ‖b‖∗ ‖ f ‖L�.

Consequently, we have
‖J3‖L�(B) � ‖b‖∗ ‖ f ‖L�. (3.15)

Combining (3.14) and (3.15), we get

‖Mb,α f ‖L�(B) � ‖b‖∗‖ f ‖L�. (3.16)

By taking supremum over B in (3.16), we get

‖Mb,α f ‖L� � ‖b‖∗‖ f ‖L�,

since the constants in (3.16) don’t depend on x0 and r .
(2)We shall now prove the second part. Let B0 = B(x0, r0) and x ∈ B0. By Lemma

3.11, we have rα
0 |b(x) − bB0 | � Mb,αχB0(x). Therefore, by Lemma 3.8 and (2.3)

rα
0 �

‖Mb,αχB0‖L�(B0)

‖b(·) − bB0‖L�(B0)
� �−1(μ(B0)

−1)‖Mb,αχB0‖L�(B0)

� �−1(μ(B0)
−1)‖Mb,αχB0‖L� � �−1(μ(B0)

−1)‖χB0‖L� � �−1(r−Q
0 )

�−1(r−Q
0 )

.

Since this is true for every r0 > 0, we are done.
(3) The third statement of the theorem follows from the first and second parts of

the theorem. ��
The following theorem shows that b ∈ BMO(X) is necessary for the boundedness

of Mb,α from L�(X) to L�(X).

Theorem 3.13 Let (X , d, μ) be Q−homogeneous, 0 ≤ α < Q, b ∈ L1
loc(X), �,�

be Young functions. Assume that there exists a positive constant C such that, for all
r > 0,

rα ≥ C
�−1

(
r−Q

)
�−1

(
r−Q

) . (3.17)

Then the condition b ∈ BMO(X) is necessary for the boundedness of Mb,α from
L�(X) to L�(X).

Proof Suppose that Mb,α is bounded from L�(X) to L�(X). Choose any ball B =
B(x, r) in X , by Lemma 2.4, (2.3) and (3.17) we have
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1

μ(B)

∫
B

|b(y) − bB |dμ(y) = 1

μ(B)

∫
B

∣∣∣ 1

μ(B)

∫
B
(b(y) − b(z))dμ(z)

∣∣∣dμ(y)

≤ 1

μ(B)2

∫
B

∫
B

|b(y) − b(z)|dμ(y)dμ(z)

= 1

μ(B)
1+ α

Q

∫
B

1

μ(B)
1− α

Q∫
B

|b(y) − b(z)|χB (z)dμ(z)dμ(y)

≤ 1

μ(B)
1+ α

Q

∫
B
Mb,α

(
χB

)
(y)dμ(y)

� 1

μ(B)
α
Q

�−1(μ(B)−1)‖Mb,αχB‖L�

� 1

μ(B)
α
Q

�−1(μ(B)−1)‖χB‖L��r−α �−1(r−Q)

�−1(r−Q)
�1.

Thus b ∈ BMO(X). ��
By Theorems 3.12 and 3.13 we have the following characterization of BMO(X).

Theorem 3.14 Let (X , d, μ) be Q−homogeneous, 0 < α < Q, b ∈ L1
loc(X), � ∈


2 ∩ ∇2 and � ∈ 
2 and �−1(t) ≈ �−1(t)t−
α
Q . If the condition (3.12) holds, then

the condition b ∈ BMO(X) is necessary and sufficient for the boundedness of Mb,α

from L�(X) to L�(X).

For comparison, we formulate the following theorem, which was proved in [11],
and make a remark, where the commutator generated by b ∈ L1

loc(X) and the operator
Iα is defined by

[b, Iα] f (x) =
∫
X

b(x) − b(y)

d(x, y)Q−α
f (y)dμ(y), 0 < α < Q

and the operator |b, Iα| is defined by

|b, Iα| f (x) =
∫
X

|b(x) − b(y)|
d(x, y)Q−α

f (y)dμ(y), 0 < α < Q.

Theorem 3.15 Let (X , d, μ) be Q−homogeneous, 0 < α < Q, b ∈ BMO(X) and
�,� ∈ Y .

1. If � ∈ 
2 ∩ ∇2 and � ∈ 
2, then the condition

rα�−1(r−Q) +
∫ ∞

r

(
1 + ln

t

r

)
�−1(t−Q)

tα
dt

t
≤ C�−1(r−Q)

(3.18)

for all r > 0, where C > 0 does not depend on r, is sufficient for the boundedness
of [b, Iα] from L�(X) to L�(X).
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2. If � ∈ 
2, then the condition (3.3) is necessary for the boundedness of |b, Iα|
from L�(X) to L�(X).

3. Let � ∈ 
2 ∩ ∇2 and � ∈ 
2. If the condition

∫ ∞

r

(
1 + ln

t

r

)
�−1(t−Q)

tα
dt

t
≤ Crα�−1(r−Q)

(3.19)

holds for all r > 0, where C > 0 does not depend on r, then the condition (3.3)
is necessary and sufficient for the boundedness of |b, Iα| from L�(X) to L�(X).

Remark 3.16 Although Mb,α is pointwise dominated by |b, Iα|, and consequently, the
results for the former could be derived from the results for the latter, we consider
them separately, because we are able to study the boundedness of Mb,α under weaker
assumptions than it derived from the results for the operator |b, Iα|. More precisely,
integral condition (3.19) imply the supremal condition (3.12). Indeed, by (2.4) we
have

�−1(s−Q)
≈ �−1(s−Q)

sQ
∫ ∞

s

dt

t Q+1 �
∫ ∞

s
�−1(t−Q)dt

t
.

It follows from this inequality

rα�−1(r−Q)
�

∫ ∞

r

(
1 + ln

t

r

)
tα �−1(t−Q)dt

t

�
∫ ∞

s

(
1 + ln

t

r

)
tα �−1(t−Q)dt

t

� sα
(
1 + ln

s

r

) ∫ ∞

s
�−1(t−Q)dt

t

�
(
1 + ln

s

r

)
�−1(s−Q)

sα,

where we took s ∈ (r ,∞) arbitrarily, so that

sup
s>r

(
1 + ln

s

r

)
�−1(s−Q)

sα � rα�−1(r−Q)
.

The commutators generated by a suitable function b and the operatorMα is formally
defined by

[b, Mα] f = Mα(b f ) − bMα( f ).

The following relations between [b, Mα] and Mb,α are valid (see, for example,
[16]) :

Let b be any non-negative locally integrable function. Then for all x ∈ X

∣∣[b, Mα] f (x)∣∣ = ∣∣b(x)Mα f (x) − Mα(b f )(x)
∣∣

= ∣∣Mα(b(x) f )(x) − Mα(b f )(x)
∣∣

≤ Mα(|b(x) − b| f )(x) ≤ Mb,α( f )(x)
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holds for all f ∈ L1
loc(X).

If b is any locally integrable function on X , then

|[b, Mα] f (x)| ≤ Mb,α( f )(x) + 2b−(x)Mα f (x), x ∈ X (3.20)

holds for all f ∈ L1
loc(X), where

b−(x) =
{
0 , if b(x) ≥ 0

|b(x)|, if b(x) < 0

and b+(x) = |b(x)| − b−(x).
By (3.20) and Theorems 3.3 and 3.12 we get the following corollary.

Corollary 3.17 Let 0 < α < Q, b ∈ BMO(X), b− ∈ L∞(X) and �,� be Young
functions with � ∈ 
2 ∩ ∇2 and � ∈ 
2. Let also the condition (3.11) is satisfied.
Then the operator [b, Mα] is bounded from L�(X) to L�(X).

4 Generalized Orlicz–Morrey spaces

The generalized Orlicz–Morrey spaces and the weak generalized Orlicz–Morrey
spaces on spaces of homogeneous type are defined as follows.

Definition 4.1 Let X = (X , d, μ) be a space of homogeneous type, ϕ(r) be a positive
measurable function on (0,∞) and � any Young function. We denote by M�,ϕ(X)

the generalized Orlicz–Morrey space, the space of all functions f ∈ L�
loc(X) with

finite quasinorm

‖ f ‖M�,ϕ ≡ ‖ f ‖M�,ϕ(X) = sup
x∈X ,r>0

ϕ(r)−1�−1(μ(B(x, r))−1)‖ f ‖L�(B(x,r)),

where L�
loc(X) is defined as the set of all functions f such that f χB ∈ L�(X) for all

balls B ⊂ X .
Also by WM�,ϕ(X) we denote the weak generalized Orlicz–Morrey space of all

functions f ∈ WL�
loc(X) for which

‖ f ‖WM�,ϕ ≡ ‖ f ‖WM�,ϕ(X) = sup
x∈X ,r>0

ϕ(r)−1�−1(μ(B(x, r))−1)‖ f ‖WL�(B(x,r)) < ∞,

where WL�
loc(X) is defined as the set of all functions f such that f χB ∈ WL�(X)

for all balls B ⊂ X .

If �(r) = r p, 1 ≤ p < ∞, thenM�,ϕ(X) coincides with the generalized Morrey
space Mp,ϕ(X) equipped with the norm

‖ f ‖Mp,ϕ := sup
x∈X ,r>0

ϕ(r)−1μ(B(x, r))−
1
p ‖ f ‖L p(B(x,r)).
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If ϕ(r) = �−1(r−Q), then M�,ϕ(X) coincides with the Orlicz space L�(X).
A function ϕ : (0,∞) → (0,∞) is said to be almost increasing (resp. almost

decreasing) if there exists a constant C > 0 such that

ϕ(r) ≤ Cϕ(s) (resp. ϕ(r) ≥ Cϕ(s)) for r ≤ s. (4.1)

For a Young function�, we denote byG� the set of all ϕ : (0,∞) → (0,∞) functions
such that ϕ(t)

�−1(t−Q)
is almost increasing and ϕ(t)

�−1(t−Q)t Q
is almost decreasing. Note that

ϕ ∈ G� implies doubling condition of ϕ.
An observation similar to the one made by Nakai [17, p. 446] it can be assumed

that ϕ ∈ G� in the definition of M�,ϕ(X). See [18, Section 5] for more details.
As the following lemma shows, G� is useful:

Lemma 4.2 [11] Let B0 := B(x0, r0). If ϕ ∈ G� is almost decreasing, then there exists
C > 0 such that

1

ϕ(r0)
≤ ‖χB0‖WM�,ϕ ≤ ‖χB0‖M�,ϕ ≤ C

ϕ(r0)
,

where C is the constant from (4.1).

We need the following boundedness properties of M and Mb to prove our main
results.

Theorem 4.3 [11] Let (X , d, μ) be Q−homogeneous.

1. Let ϕ ∈ G� be almost decreasing. Then the maximal operator M is bounded from
M�,ϕ(X) toWM�,ϕ(X).

2. Let � ∈ ∇2 and ϕ ∈ G� be almost decreasing. Then the maximal operator M is
bounded onM�,ϕ(X).

Theorem 4.4 [11] Let (X , d, μ) be Q−homogeneous, � be a Young function with
� ∈ 
2 ∩ ∇2, b ∈ BMO(X) and the function ϕ ∈ G� be almost decreasing and
satisfies the condition

sup
r<t<∞

(
1 + ln

t

r

)
ϕ(t) ≤ C ϕ(r), (4.2)

where C does not depend on r. Then the operator Mb is bounded on M�,ϕ(X).

5 Fractional maximal operator in generalized Orlicz–Morrey spaces

5.1 Spanne-type result

We use the following lemma:

Lemma 5.1 Let (X , d, μ) be Q−homogeneous, 0 < α < Q,�,� be Young functions.
Assume that the condition (3.3) is fulfilled. Then for all f ∈ L�

loc(X) and B = B(x, r),
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‖Mα f ‖WL�(B) � 1

�−1
(
r−Q

) sup
t>r

�−1(t−Q) ‖ f ‖L�(B(x,t)). (5.1)

Moreover if we assume � ∈ ∇2, the following inequality is also valid:

‖Mα f ‖L�(B) � 1

�−1
(
r−Q

) sup
t>r

�−1(t−Q) ‖ f ‖L�(B(x,t)). (5.2)

Proof Let� ∈ ∇2.Weput f = f1+ f2,where f1 = f χB(x,2kr) and f2 = f χ �B(x,2kr)
,

where k is the constant from the triangle inequality (1.1).
Estimation of Mα f1: By Theorem 3.3 we have

‖Mα f1‖L�(B) ≤ ‖Mα f1‖L�(X) � ‖ f1‖L�(X) = ‖ f ‖L�(B(x,2kr)).

By using the monotonicity of the functions ‖ f ‖L�(B(x,t)), �−1
(
t
)
with respect to t

and doubling property of �−1 we get,

1

�−1
(
r−Q

) sup
t>2kr

�−1(t−Q)‖ f ‖L�(B(x,t))

≥ ‖ f ‖L�(B(x,2kr))

�−1
(
r−Q

) sup
t>2kr

�−1(t−Q)
� ‖ f ‖L�(B(x,2kr)).

(5.3)

Consequently we have

‖Mα f1‖L�(B) � 1

�−1
(
r−Q

) sup
t>r

�−1(t−Q)‖ f ‖L�(B(x,t)). (5.4)

Estimation of Mα f2: Let y be an arbitrary point from B. If B(y, t)∩ �
(B(x, 2kr)) �=

∅, then t > r . Indeed, if z ∈ B(y, t) ∩ �
(B(x, 2kr)), then t > d(y, z) ≥ 1

k d(x, z) −
d(x, y) > 2r − r = r .

On the other hand, B(y, t) ∩ �
(B(x, 2kr)) ⊂ B(x, 2kt). Indeed, if z ∈ B(y, t) ∩

�
(B(x, 2kr)), then we get d(x, z) ≤ kd(y, z) + kd(x, y) < kt + kr < 2kt .
Therefore,

Mα f2(y) = sup
t>0

tα

μ(B(y, t))

∫
B(y,t)∩ �

(B(x,2kr))
| f (z)|dμ(z)

≤ sup
t>r

tα

μ(B(y, t))

∫
B(x,2kt)

| f (z)|dμ(z)

� sup
t>r

tα

μ(B(y, 2kt))

∫
B(x,2kt)

| f (z)|dμ(z)

≈ sup
t>2kr

tα

μ(B(y, t))

∫
B(x,t)

| f (z)|dμ(z).
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Hence by Lemma 2.4 and (3.3)

Mα f2(y) � sup
t>r

�−1(t−Q)‖ f ‖L�(B(x,t)). (5.5)

Thus the function Mα f2(y), with fixed x and r , is dominated by the expression not
depending on y. Then we integrate the obtained estimate for Mα f2(y) in y over B,
we get

‖Mα f2‖L�(B) � 1

�−1
(
r−Q

) sup
t>r

�−1(t−Q)‖ f ‖L�(B(x,t)). (5.6)

Gathering the estimates (5.4) and (5.6) we arrive at (5.2).
Let now � be an arbitrary Young function. It is obvious that

‖Mα f ‖WL�(B) ≤ ‖Mα f1‖WL�(B) + ‖Mα f2‖WL�(B).

By the boundedness of the operator Mα from L�(X) to WL�(X), provided by The-
orem 3.3, we have

‖Mα f1‖WL�(B) � ‖ f ‖L�(B(x,2kr)).

By using (5.3), (5.5) and (2.3) we arrive at (5.1). ��
The following theorem gives a necessary and sufficient condition for Spanne-type

boundedness of the operator Mα from M�,ϕ1(X) to M�,ϕ2(X): We notice that the
requirement is the same as the Orlicz spaces.

Theorem 5.2 (Spanne-type result) Let (X , d, μ) be Q−homogeneous,�,� be Young
functions, and let ϕ1 ∈ G� and ϕ2 ∈ G� .

1. Assume that the condition (3.3) is satisfied. Then the condition

sup
r<t<∞

ϕ1(t)
�−1

(
t−Q

)
�−1

(
t−Q

) ≤ C ϕ2(r), (5.7)

for all r > 0, where C > 0 does not depend on r, is sufficient for the boundedness
of Mα from M�,ϕ1(X) to WM�,ϕ2(X). Moreover, if � ∈ ∇2, then the condition
(5.7) is sufficient for the boundedness of Mα fromM�,ϕ1(X) toM�,ϕ2(X).

2. Let ϕ1 be almost decreasing. Then the condition

ϕ1(r)r
α ≤ Cϕ2(r), (5.8)

for all r > 0, where C > 0 does not depend on r, is necessary for the boundedness
of Mα from M�,ϕ1(X) toWM�,ϕ2(X) and hence M�,ϕ1(X) toM�,ϕ2(X).

3. Let ϕ1 be almost decreasing. Assume that conditions (3.3) and

sup
r<t<∞

ϕ1(t)
�−1

(
t−Q

)
�−1

(
t−Q

) ≤ C ϕ1(r)r
α,
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for all r > 0, where C > 0 does not depend on r, are satisfied. Then the condition
(5.8) is necessary and sufficient for the boundedness of Mα from M�,ϕ1(X) to
WM�,ϕ2(X). Moreover, if � ∈ ∇2, then the condition (5.8) is necessary and
sufficient for the boundedness of Mα from M�,ϕ1(X) toM�,ϕ2(X).

Proof 1. By (5.1) and (5.7) we have

‖Mα f ‖WM�,ϕ2 � sup
x∈X ,r>0

ϕ2(r)
−1 sup

r<t<∞
‖ f ‖L�(B(x,t)) �−1(t−Q)

� sup
x∈X ,r>0

ϕ2(r)
−1 sup

r<t<∞
ϕ1(t)

�−1
(
t−Q

)
�−1

(
t−Q

)‖ f ‖M�,ϕ1

� ‖ f ‖M�,ϕ1 .

Simply replace WL�(B) with L�(B) and WM�,ϕ2(X) with M�,ϕ2(X) for the
strong estimate.
2. We will now prove the necessity. Let B0 = B(x0, t0) and x ∈ B0. By Lemma
3.1 we have tα0 � MαχB0(x). Therefore, by (2.3) and Lemma 4.2, we have

tα0 � �−1(μ(B0)
−1)‖MαχB0‖WL�(B0) � ϕ2(t0)‖MαχB0‖WM�,ϕ2

� ϕ2(t0)‖χB0‖M�,ϕ1 � ϕ2(t0)

ϕ1(t0)
.

Since this is true for every t0 > 0, we are done.
3. The third statement of the theorem follows from the first and second parts of
the theorem. ��

5.2 Adams-type result

The following theorem is one of our main results.

Theorem 5.3 Let (X , d, μ) be Q−homogeneous, 0 < α < Q,� be a Young function,
ϕ ∈ G� be almost decreasing β ∈ (0, 1), η(t) ≡ ϕ(t)β and �(t) ≡ �(t1/β).

1. If � ∈ ∇2, then the condition

tαϕ(t) ≤ Cϕ(t)β, (5.9)

for all t > 0, where C > 0 does not depend on t, is sufficient for the boundedness
of Mα from M�,ϕ(X) toM�,η(X).

2. The condition (5.9) is necessary for the boundedness of Mα from M�,ϕ(X) to
M�,η(X).

3. Let � ∈ ∇2. Then, the condition (5.9) is necessary and sufficient for the bounded-
ness of Mα fromM�,ϕ(X) toM�,η(X).

Proof For arbitrary ball B = B(x, r) we represent f as

f = f1 + f2, f1 = f χB, f2 = f − f1, r > 0,
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so that

Mα f (x) ≤ Mα f1(x) + Mα f2(x).

Meanwhile by Lemma 2.4,

Mα f2(x) = sup
t>0

tα

μ(B(x, t))

∫
B(x,t)∩{X\B(x,r)}

| f (z)|dμ(z)

≤ sup
r<t<∞

tα

μ(B(x, t))

∫
B(x,t)

| f (z)|dμ(z)

� sup
r<t<∞

tα �−1(μ(B(x, t))−1) ‖ f ‖L�(B(x,t)).

Consequently from Hedberg’s trick [15] and the last inequality, we have

Mα f (x) � rαM f (x) + sup
r<t<∞

�−1(t−Q)tα‖ f ‖L�(B(x,t))

� rαM f (x) + ‖ f ‖M�,ϕ sup
r<t<∞

tαϕ(t).

Thus, using the technique in [19, p. 6492], by (5.9) we obtain

Mα f (x) � min{ϕ(r)β−1M f (x), ϕ(r)β‖ f ‖M�,ϕ }
� sup

s>0
min{sβ−1M f (x), sβ‖ f ‖M�,ϕ }

= (M f (x))β ‖ f ‖1−β

M�,ϕ ,

where we have used that the supremum is achieved when the minimum parts are
balanced. Hence for every x ∈ X we have

Mα f (x) � (M f (x))β ‖ f ‖1−β

M�,ϕ . (5.10)

Note that from (2.1) we get

∫
B

�

⎛
⎝ (M f (x))β

‖M f ‖β

L�(B)

⎞
⎠ dμ(x) =

∫
B

�

(
M f (x)

‖M f ‖L�(B)

)
dμ(x) ≤ 1.

Thus ‖(M f )β‖L�(B) ≤ ‖M f ‖β

L�(B)
. From this fact and using (5.10) and the bound-

edness of the maximal operator, we get, for all balls B,

η(r)−1�−1(r−Q)‖Mα f ‖L�(B) � η(r)−1�−1(r−Q)‖M f ‖β

L�(B)
‖ f ‖1−β

M�,ϕ

=
(
ϕ(r)−1�−1(r−Q)‖M f ‖L�(B)

)β ‖ f ‖1−β

M�,ϕ � ‖ f ‖M�,ϕ .
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By taking the supremum with respect to B, we get the desired result.
We shall now prove the necessary part. Let B0 = B(x0, t0) and x ∈ B0. By Lemma

3.1 we have tα0 � MαχB0(x). Therefore, by (2.3) and Lemma 4.2

tα0 � �−1(t−Q
0 )‖MαχB0‖L�(B0) � η(t0)‖MαχB0‖M�,η

� η(t0)‖χB0‖M�,ϕ � η(t0)

ϕ(t0)
� ϕ(t0)

β−1.

Since this is true for every t0 > 0, we are done. The third statement of the theorem
follows from the first and second parts of the theorem. ��
Remark 5.4 As observed in Remark 3.6, we can compare Theorem 5.3 with [11, The-
orem 6.1].

The following result is the weak version of Theorem 5.3.

Theorem 5.5 Let (X , d, μ) be Q−homogeneous, 0 < α < Q,� be a Young function,
ϕ ∈ G� be almost decreasing, β ∈ (0, 1), η(t) ≡ ϕ(t)β and �(t) ≡ �(t1/β). The
condition (5.9) is necessary and sufficient for the boundedness of Mα fromM�,ϕ(X)

to WM�,η(X).

Proof By using the inequality (5.10) we have

‖Mα f ‖WL�(B) � ‖(M f )β‖WL�(B) ‖ f ‖1−β

M�,ϕ ,

where B = B(x, r).
Note that from (2.1) we get

sup
t>0

�

⎛
⎝ tβ

‖M f ‖β

WL�(B)

⎞
⎠m((M f )β, tβ) = sup

t>0
�

(
t

‖M f ‖WL�(B)

)
m(M f , t) ≤ 1.

Thus ‖(M f )β‖WL�(B) ≤ ‖M f ‖β

WL�(B)
. Consequently by using the weak bounded-

ness of the maximal operator, we get

η(r)−1�−1(μ(B)−1)‖Mα f ‖WL�(B) � η(r)−1�−1(μ(B)−1)‖M f ‖β

WL�(B)
‖ f ‖1−β

M�,ϕ

=
(
ϕ(r)−1�−1(μ(B)−1)‖M f ‖WL�(B)

)β ‖ f ‖1−β

M�,ϕ � ‖ f ‖M�,ϕ .

By taking the supremum with respect to all B, we get the desired result.
We will now prove the necessity. Let B0 = B(x0, t0) and x ∈ B0. By Lemma 3.1

we have tα0 � MαχB0(x). Therefore, by (2.3) and Lemma 4.2

tα0 � �−1(μ(B0)
−1)‖MαχB0‖WL�(B0) � η(t0)‖MαχB0‖WM�,η

� η(t0)‖χB0‖M�,ϕ � η(t0)

ϕ(t0)
= ϕ(t0)

β−1.

Since this is true for every t0 > 0, we are done. ��
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6 Commutators of fractional maximal operator in generalized
Orlicz–Morrey spaces

6.1 Spanne-type result

The following lemma is valid.

Lemma 6.1 Let (X , d, μ) be Q−homogeneous, 0 < α < Q and b ∈ BMO(X). Let
� ∈ 
2 ∩ ∇2 and � ∈ 
2 and the condition (3.11) holds, then the inequality

‖Mb,α f ‖L�(B(x0,r)) � ‖b‖∗
�−1

(
r−Q

) sup
t>2r

(
1 + ln

t

r

)
�−1(t−Q)‖ f ‖L�(B(x0,t))

holds for any ball B(x0, r) and for all f ∈ L�
loc(X).

Proof For arbitrary x0 ∈ X , set B = B(x0, r) for the ball centered at x0 and of radius
r . Write f = f1 + f2 with f1 = f χ2kB and f2 = f χ�

(2kB)

, where k is the constant

from the triangle inequality (1.1). Hence

∥∥Mb,α f
∥∥
L�(B)

≤ ∥∥Mb,α f1
∥∥
L�(B)

+ ∥∥Mb,α f2
∥∥
L�(B)

.

From the boundedness of Mb,α from L�(X) to L�(X) (see, Theorem 3.12) it follows
that

‖Mb,α f1‖L�(B) ≤ ‖Mb,α f1‖L�(X)

� ‖b‖∗ ‖ f1‖L�(X) = ‖b‖∗ ‖ f ‖L�(2kB).

As we proceed in Theroem 3.12, for all x ∈ B we have

Mb,α( f2)(x) � sup
t>2r

1

μ(B(x0, t))
1− α

Q

∫
B(x0,t)

|b(y) − b(x)|| f (y)|dμ(y). (6.1)

Then

‖Mb,α f2‖L�(B) �
∥∥∥∥∥supt>2r

1

μ(B(x0, t))
1− α

Q

∫
B(x0,t)

|b(y) − b(·)|| f (y)|dμ(y)

∥∥∥∥∥
L�(B)

�
∥∥∥∥∥supt>2r

1

μ(B(x0, t))
1− α

Q

∫
B(x0,t)

|b(y) − bB || f (y)|dμ(y)

∥∥∥∥∥
L�(B)

+
∥∥∥∥∥supt>2r

1

μ(B(x0, t))
1− α

Q

∫
B(x0,t)

|b(·) − bB || f (y)|dμ(y)

∥∥∥∥∥
L�(B)

= J1 + J2.
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Let us estimate J1.

J1 = 1

�−1
(
r−Q

) sup
t>2r

1

μ(B(x0, t))
1− α

Q

∫
B(x0,t)

|b(y) − bB || f (y)|dμ(y)

≈
1

�−1
(
r−Q

) sup
t>2r

tα−Q
∫
B(x0,t)

|b(y) − bB || f (y)|dμ(y).

Applying Hölder’s inequality, by Lemma 3.8 and (3.8) we get

J1 � 1

�−1
(
r−Q

) sup
t>2r

tα−Q
∫
B(x0,t)

|b(y) − bB(x0,t)|| f (y)|dμ(y)

+ 1

�−1
(
r−Q

) sup
t>2r

tα−Q |bB(x0,r) − bB(x0,t)|
∫
B(x0,t)

| f (y)|dμ(y)

� 1

�−1
(
r−Q

) sup
t>2r

tα−Q
∥∥b(·) − bB(x0,t)

∥∥
L�̃(B(x0,t))

‖ f ‖L�(B(x0,t))

+ 1

�−1
(
r−Q

) sup
t>2r

tα−Q |bB(x0,r) − bB(x0,t)|t Q�−1(t−Q)‖ f ‖L�(B(x0,t))

� ‖b‖∗
1

�−1
(
r−Q

) sup
t>2r

�−1(t−Q)(
1 + ln

t

r

)
‖ f ‖L�(B(x0,t)).

In order to estimate J2 note that

J2 ≈ ‖b(·) − bB‖L�(B) sup
t>2r

tα−Q
∫
B(x0,t)

| f (y)|dμ(y)

� ‖b‖∗
1

�−1
(
r−Q

) sup
t>2r

�−1(t−Q)‖ f ‖L�(B(x0,t)).

Summing up J1 and J2 we get

‖Mb,α f2‖L�(B) � ‖b‖∗
1

�−1
(
r−Q

) sup
t>2r

�−1(t−Q)(
1+ln

t

r

)
‖ f ‖L�(B(x0,t)). (6.2)

Finally,

‖Mb,α f ‖L�(B) � ‖b‖∗ ‖ f ‖L�(2kB)

+ ‖b‖∗
�−1

(
r−Q

) sup
t>2r

�−1(t−Q)(
1 + ln

t

r

)
‖ f ‖L�(B(x0,t)),

and the statement of Lemma 6.1 follows by (5.3). ��
The following theorem gives a necessary and sufficient condition for Spanne-type

boundedness of the operator Mb,α fromM�,ϕ1(X) toM�,ϕ2(X). We notice that the
requirement is the same as for Orlicz spaces.
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Theorem 6.2 (Spanne-type result) Let (X , d, μ) be Q−homogeneous, 0 < α < Q
and b ∈ BMO(X), �,� be Young functions, and let ϕ1 ∈ G� and ϕ2 ∈ G� .

1. Assume that � ∈ 
2 ∩ ∇2 and � ∈ 
2 and the condition (3.11) is satisfied. Then
the condition

sup
r<t<∞

ϕ1(t)
(
1 + ln

t

r

)�−1
(
t−Q

)
�−1

(
t−Q

) ≤ C ϕ2(r), (6.3)

for all r > 0, where C > 0 does not depend on r, is sufficient for the boundedness
of Mb,α from M�,ϕ1(X) toM�,ϕ2(X).

2. Let ϕ1 be almost decreasing and � ∈ 
2. Then the condition (5.8) is necessary
for the boundedness of Mb,α from M�,ϕ1(X) toM�,ϕ2(X).

3. Let ϕ1 be almost decreasing, � ∈ 
2 ∩ ∇2 and � ∈ 
2. Assume that conditions
(3.11) and

sup
r<t<∞

ϕ1(t)
(
1 + ln

t

r

)�−1
(
t−Q

)
�−1

(
t−Q

) ≤ C ϕ1(r)r
α, (6.4)

for all r > 0, where C > 0 does not depend on r, are satisfied. Then the condition
(5.8) is necessary and sufficient for the boundedness of Mb,α from M�,ϕ1(X) to
M�,ϕ2(X).

Proof 1. By (6.1) and (6.3) we have

‖Mb,α f ‖M�,ϕ2 � sup
x∈X ,r>0

ϕ2(r)
−1 sup

r<t<∞

(
1 + ln

t

r

)
‖ f ‖L�(B(x,t)) �−1(t−Q)

� sup
x∈X ,r>0

ϕ2(r)
−1 sup

r<t<∞
ϕ1(t)

(
1 + ln

t

r

)�−1
(
t−Q

)
�−1

(
t−Q

)‖ f ‖M�,ϕ1

� ‖ f ‖M�,ϕ1 .

2. We will now prove the necessity. Let B0 = B(x0, r0) and x ∈ B0. By Lemma
3.11we have rα

0 |b(x)−bB0 | � Mb,αχB0(x). Therefore, by Lemma3.8 andLemma
4.2

rα
0 �

‖Mb,αχB0‖L�(B0)

‖b(·) − bB0‖L�(B0)
� 1

‖b‖∗
‖Mb,αχB0‖L�(B0)�

−1(μ(B0)
−1)

� 1

‖b‖∗
ϕ2(r0)‖Mb,αχB0‖M�,ϕ2 � ϕ2(r0)‖χB0‖M�,ϕ1 � ϕ2(r0)

ϕ1(r0)
.

Since this is true for every r0 > 0, we are done.
3. The third statement of the theorem follows from the first and second parts of
the theorem.

��
By (3.20) and Theorems 5.2 and 6.2 we get the following corollary.

Corollary 6.3 Let 0 < α < Q, � ∈ 
2 ∩ ∇2, � ∈ 
2, ϕ1 ∈ G�, ϕ2 ∈ G� ,
b ∈ BMO(X) and b− ∈ L∞(X). Let also the conditions (3.11) and (6.3) are satisfied.
Then the operator [b, Mα] is bounded fromM�,ϕ1(X) toM�,ϕ2(X).
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The following theorem shows that b ∈ BMO(X) is necessary for the boundedness
of Mb,α from M�,ϕ1(X) toM�,ϕ2(X).

Theorem 6.4 Let (X , d, μ) be Q−homogeneous, 0 ≤ α < Q, b ∈ L1
loc(X), �,� be

Young functions, ϕ1 ∈ G� is almost decreasing and ϕ2 ∈ G� . Assume that there exists
a positive constant C such that, for all r > 0,

ϕ1(r)r
α ≥ Cϕ2(r). (6.5)

Then the condition b ∈ BMO(X) is necessary for the boundedness of Mb,α from
M�,ϕ1(X) toM�,ϕ2(X).

Proof Suppose that Mb,α is bounded fromM�,ϕ1(X) toM�,ϕ2(X). Choose any ball
B = B(x, r) in X , by Lemmas 2.4 and 4.2 and (6.5) we have

1

μ(B)

∫
B

|b(y) − bB |dμ(y)

≤ 1

μ(B)
1+ α

Q

∫
B

1

μ(B)
1− α

Q

∫
B

|b(y) − b(z)|χB (z)dμ(z)dμ(y)

≤ 1

μ(B)
1+ α

Q

∫
B
Mb,α

(
χB

)
(y)dμ(y) � 1

μ(B)
α
Q

�−1(μ(B)−1)‖Mb,αχB‖L�

� ϕ2(r)

μ(B)
α
Q

‖Mb,αχB‖M�,ϕ2 � ϕ2(r)

rα
‖χB‖M�,ϕ1 � ϕ2(r)

ϕ1(r)rα
� 1.

Thus b ∈ BMO(X). ��
By Theorems 6.2 and 6.4 we have the following characterization of BMO(X).

Theorem 6.5 Let (X , d, μ) be Q−homogeneous, 0 < α < Q, b ∈ L1
loc(X), � ∈


2∩∇2,� ∈ 
2, ϕ1 ∈ G� is almost decreasing and ϕ2 ∈ G� . Assume that conditions
(3.11), (6.4) andϕ1(r)rα

≈ ϕ2(r) hold. Then the condition b ∈ BMO(X) is necessary
and sufficient for the boundedness of Mb,α from M�,ϕ1(X) toM�,ϕ2(X).

6.2 Adams-type result

The following theorem gives a characterization for the boundedness of the operator
Mb,α on generalized Orlicz–Morrey spaces.

Theorem 6.6 Let (X , d, μ) be Q−homogeneous, 0 < α < Q, � ∈ 
2, ϕ ∈ G� be
almost decreasing, b ∈ BMO(X), β ∈ (0, 1), η(r) ≡ ϕ(r)β and �(r) ≡ �(r1/β).

1. If � ∈ ∇2 and ϕ(t) satisfies (4.2), then the condition

rαϕ(r) + sup
r<t<∞

(
1 + ln

t

r

)
ϕ(t)tα ≤ Cϕ(r)β (6.6)

for all r > 0, where C > 0 does not depend on r, is sufficient for the boundedness
of Mb,α from M�,ϕ(X) toM�,η(X).
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2. The condition (5.9) is necessary for the boundedness of Mb,α from M�,ϕ(X) to
M�,η(X).

3. Let � ∈ ∇2. If ϕ satisfies the condition

sup
r<t<∞

(
1 + ln

t

r

)
ϕ(t)tα ≤ Crαϕ(r) (6.7)

for all r > 0, where C > 0 does not depend on r, then the condition (5.9) is
necessary and sufficient for the boundedness of Mb,α fromM�,ϕ(X) toM�,η(X).

Proof For arbitrary x0 ∈ X , set B := B(x0, r) for the ball centered at x0 and of radius
r . Write f = f1 + f2 with f1 := f χ2kB and f2 := f χ�

(2kB)

, where k is the constant

from the triangle inequality (1.1).
If we proceed as in Theorem 3.12, for all x ∈ B we have

Mb,α( f2)(x) � J1 + J2 + J3,

where J1, J2 and J3 are same as in Theorem 3.12.
Applying Hölder’s inequality, by (2.4), (3.8), Lemma 3.8 and Lemma 2.4 we get

J1 + J2 � sup
t>2r

tα−Q
∫
B(x0,t)

|b(y) − bB(x0,t)|| f (y)|dμ(y)

+ sup
t>2r

tα−Q |bB(x0,r) − bB(x0,t)|
∫
B(x0,t)

| f (y)|dμ(y)

� sup
t>2r

tα−Q
∥∥b(·) − bB(x0,t)

∥∥
L�̃(B(x0,t))

‖ f ‖L�(B(x0,t))

+ sup
t>2r

tα−Q |bB(x0,r) − bB(x0,t)| t Q �−1(t−Q)‖ f ‖L�(B(x0,t))

� ‖b‖∗ sup
t>2r

�−1(t−Q) tα
(
1 + ln

t

r

)
‖ f ‖L�(B(x0,t))

� ‖b‖∗ ‖ f ‖M�,ϕ sup
t>2r

(
1 + ln

t

r

)
tαϕ(t).

Taking into account (3.13), for all x ∈ B we get

J0(x) + J1 + J2 � ‖b‖∗rαMb f (x)

+‖b‖∗‖ f ‖M�,ϕ sup
t>2r

(
1 + ln

t

r

)
tα ϕ(t).

Thus, by (6.6) we obtain

J0(x) + J1 + J2 � ‖b‖∗ min{ϕ(r)β−1Mb f (x), ϕ(r)β‖ f ‖M�,ϕ }
� ‖b‖∗ sup

s>0
min{sβ−1Mb f (x), s

β‖ f ‖M�,ϕ }

= ‖b‖∗(Mb f (x))
β ‖ f ‖1−β

M�,ϕ .
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Hence for every x ∈ B we have

J0(x) + J1 + J2 � ‖b‖∗(Mb f (x))
β ‖ f ‖1−β

M�,ϕ . (6.8)

By using the inequality (6.8) we have

‖J0(·) + J1 + J2‖L�(B) � ‖b‖∗‖(Mb f )
β‖L�(B) ‖ f ‖1−β

M�,ϕ .

Note that from (2.1) we get

∫
B

�

⎛
⎝ (Mb f (x))β

‖Mb f ‖β

L�(B)

⎞
⎠ dμ(x) =

∫
B

�

(
Mb f (x)

‖Mb f ‖L�(B)

)
dμ(x) ≤ 1.

Thus ‖(Mb f )β‖L�(B) = ‖Mb f ‖β

L�(B)
. Therefore, we have

‖J0(·) + J1 + J2‖L�(B) � ‖b‖∗‖Mb f ‖β

L�(B)
‖ f ‖1−β

M�,ϕ .

By Lemma 3.8, Lemma 2.4 and condition (6.6), we also get

‖J3‖L�(B) =
∥∥∥∥sup
t>2r

1

|B(x0, t)|1− α
n

∫
B(x0,t)

|b(·) − bB || f (y)|dμ(y)

∥∥∥∥
L�(B)

≈ ‖b(·) − bB‖L�(B) sup
t>2r

tα−n
∫
B(x0,t)

| f (y)|dμ(y)

� ‖b‖∗
�−1

(
μ(B)−1

) sup
t>2r

�−1(t−Q) tα ‖ f ‖L�(B(x0,t))

� ‖b‖∗
�−1

(
μ(B)−1

)‖ f ‖M�,ϕ sup
t>2r

tαϕ(t)

� ‖b‖∗
�−1

(
μ(B)−1

)‖ f ‖M�,ϕϕ(r)β .

Consequently by using Theorem 4.4, we get

‖Mb,α f ‖M�,η = sup
x0∈X ,r>0

η(r)−1�−1(μ(B)−1)‖Mb,α f ‖L�(B)

� ‖b‖∗‖ f ‖1−β

M�,ϕ

(
sup

x0∈X ,r>0
ϕ(r)−1�−1(μ(B)−1)‖Mb f ‖L�(B)

)β

+ ‖b‖∗‖ f ‖M�,ϕ

� ‖b‖∗‖ f ‖M�,ϕ .
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We shall now prove the second part. Let B0 = B(x0, r0) and x ∈ B0. By Lemma
3.11 we have rα

0 |b(x) − bB0 | � Mb,αχB0(x). Therefore, by Lemma 3.8 and Lemma
4.2

rα
0 �

‖Mb,αχB0‖L�(B0)

‖b(·) − bB0‖L�(B0)
� 1

‖b‖∗
‖Mb,αχB0‖L�(B0)�

−1(μ(B0)
−1)

� 1

‖b‖∗
η(r0)‖Mb,αχB0‖M�,η � η(r0)‖χB0‖M�,ϕ

� η(r0)

ϕ(r0)
� ϕ(r0)

β−1.

Since this is true for every r0 > 0, we are done.
The third statement of the theorem follows from the first and second parts of the

theorem. ��
Remark 6.7 As observed in Remark 3.16, we can compare Theorem 6.6 with [11,
Theorem 6.4].

By (3.20) and Theorems 5.3 and 6.6 we get the following corollary.

Corollary 6.8 Let (X , d, μ) be Q−homogeneous, 0 < α < Q, � ∈ 
2 ∩ ∇2, ϕ ∈ G�

be almost decreasing, b ∈ BMO(X), b− ∈ L∞(X), β ∈ (0, 1), η(r) ≡ ϕ(r)β and
�(r) ≡ �(r1/β). Let also conditions (4.2) and (6.6) are satisfied. Then the operator
[b, Mα] is bounded fromM�,ϕ(X) toM�,η(X).

Similar to Theorem 6.4 we can show that b ∈ BMO(X) is necessary for the
boundedness of Mb,α fromM�,ϕ(X) toM�,η(X). The details are omitted.

Theorem 6.9 Let (X , d, μ) be Q−homogeneous, 0 < α < Q, b ∈ L1
loc(X), �,�

be Young functions, ϕ ∈ G� is almost decreasing, β ∈ (0, 1), η(r) ≡ ϕ(r)β and
�(r) ≡ �(r1/β). Assume that there exists a positive constant C such that, for all
r > 0,

rαϕ(r) ≥ Cϕ(r)β .

Then the condition b ∈ BMO(X) is necessary for the boundedness of Mb,α from
M�,ϕ(X) toM�,η(X).

By Theorems 6.6 and 6.9 we have the following characterization of BMO(X).

Theorem 6.10 Let (X , d, μ) be Q−homogeneous, 0 < α < Q, b ∈ L1
loc(X), � ∈


2 ∩ ∇2, ϕ ∈ G� is almost decreasing and β ∈ (0, 1), η(r) ≡ ϕ(r)β and �(r) ≡
�(r1/β). Assume that conditions (6.7) and rαϕ(r) ≈ ϕ(r)β hold. Then the condition
b ∈ BMO(X) is necessary and sufficient for the boundedness of Mb,α fromM�,ϕ(X)

toM�,η(X).
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