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Quantifying climate change impacts on hydropower production under CMIP6 
multi-model ensemble projections using SWAT model
Emrah Yalcin

Department of Civil Engineering, Kirsehir Ahi Evran University, Kirsehir, Turkey

ABSTRACT
This study assesses the effects of climate change on hydropower production in the most threatened 
highlands region of the Euphrates-Tigris Basin, with the case of the Dipni Project. This evaluation is based 
on the precipitation and temperature predictions of the multi-model ensembles produced by analysing 
the simulations of 24 global circulation models (GCMs) from the Coupled Model Intercomparison Project 
Phase 6 (CMIP6). The Soil and Water Assessment Tool (SWAT) model is utilized to estimate the future 
inflow rates of the Dipni reservoir under the Shared Socio-economic Pathway (SSP) scenarios of SSP245 
and SSP585. The 25-year reservoir operations conducted in the past and three future periods indicate 
possible decreases of up to 10.1% and 21.5% in the annual energy production under the SSP245 and 
SSP585 scenarios, respectively. The results show the need to take adaptive measures against the 
projected impacts of climate change to achieve the targeted return for the coming decades.
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1 Introduction

The threat of climate change is accelerating with the contin
uous emission of greenhouse gases and subsequent changes in 
the magnitude and seasonal variations of temperature and 
precipitation patterns in many parts of the globe (IPCC 
2021). This acceleration heightens concerns about future 
water availability, particularly in regions where the water sup
ply is currently dominated by melting snow (Stewart 2009, 
Hasson 2016, Nazeer et al. 2022). The climate change projec
tions foresee an increasing trend in surface temperatures that 
will lead to significant changes in the seasonality of streamflow 
regimes of high-altitude basins in which snowmelt is the major 
runoff contributor (Barnett et al. 2005, Adam et al. 2009). In 
a warmer climate, less precipitation falls as snow in winter, and 
the melting of winter snow occurs earlier in spring. Thus, even 
without any changes in precipitation intensity, the peak runoff 
period shifts to winter and early spring, away from the months 
when the demand is highest (Barnett et al. 2005).

Dam construction is a long-standing strategy to supply 
water and hydroelectricity by regulating the temporal and 
spatial variations in the natural flow of rivers (Nilsson et al. 
2005). The water-storage potential of a dam project is investi
gated generally using the historical streamflow records of 
representative stream-gauging stations located in or near the 
project catchment area, and all critical decisions on the project 
feasibility, optimum design of dam components, and determi
nation of operational rules are taken based on these historical 
measurements. However, the system performance of dams, 
especially in mountainous areas, highly depends on the hydro
logical regime experiencing substantial alteration associated 
with changing climate (Duratorre et al. 2020, Wen et al. 
2021, Qin et al. 2022, Xiang et al. 2022). Hence, it is 

economically and technically crucial to assess the water supply 
and hydropower generation capabilities of dam projects, 
designed for an operational lifetime of at least 50 years, using 
the streamflow predictions attained under future climate con
ditions instead of past flow records (van Vliet et al. 2016, 
Ehsani et al. 2017, Turner et al. 2017).

The Euphrates-Tigris River Basin, shared among Turkey, 
Syria, Iraq, and Iran, is one of the most important transbound
ary basins in the world both politically and economically. The 
basin, hosting two important snow-fed rivers originating in 
Turkey, plays a critical role for the shared countries in not only 
hydropower generation but also water supply for irrigation 
and domestic use (Daggupati et al. 2017). While the riparian 
countries have been continuing their dam construction plans 
in relation to their own national interests without inter- 
cooperation for decades, the Eastern Mediterranean and 
Middle East region, covering the Euphrates-Tigris Basin 
wholly, has become a prominent climate change hotspot, 
warming almost two times more rapidly than the global 
mean (Giorgi 2006, Lelieveld et al. 2012, Zittis et al. 2022). 
Bozkurt and Sen (2013) assessed the effects of climate change 
in the Euphrates-Tigris Basin. Their results indicate that the 
northern highlands of the basin within the borders of Turkey 
are anticipated to experience more adverse direct effects of 
climate change compared to the territories of the other ripar
ian countries, and a significant decline (by 26–57%) in the 
annual total surface runoff is expected for the river network 
lying in Turkey by the end of the present century. Özdoğan 
(2011) analysed the effects of projected climate change on the 
amount of water stored in snowpack in the mountains of the 
Euphrates-Tigris Basin. This study reports substantial 
decreases (between 10% and 60%) in the available snow 
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water, particularly later in the present century. Şen (2019) 
performed river flow projections up to the year 2050 for the 
upper portion of the Tigris Basin within the territories of 
Turkey. The results indicate a possible decrease by about 
30% in the streamflow rates after 2040.

Despite the expected major changes in the future stream
flow regime of the Euphrates-Tigris Basin, shown by these and 
several other studies (e.g. Nohara et al. 2006, Kitoh et al. 2008, 
Chenoweth et al. 2011), Turkey continues to increase the 
hydropower capacity on the Euphrates and Tigris Rivers and 
their tributaries through new dams and run-of-river type 
hydropower plants that are all designed without considering 
climate change impacts. Hence, the Turkish hydropower sec
tor should assess the connection between water resources and 
energy generation under future climate conditions (Wasti et al. 
2022). To the best of the knowledge, there is no study in the 
literature investigating the effects of potential climate change 

scenarios upon the energy production of the planned or oper
ating hydropower schemes within the Turkey portion covering 
the most threatened highlands region of the basin. There are 
similar gaps in the literature for the dams of the other riparian 
countries. This paper aims to address this gap by quantifying 
the impacts of projected climate change on the energy produc
tion capacity of the Dipni Dam and Hydroelectric Power Plant 
(HEPP) Project planned in the source region of the Tigris 
River (Fig. 1). Construction on the Dipni Project, whose fea
sibility was examined in 2008, has not started yet (EN-SU 
2008).

For this purpose, simulations of daily precipitation, max
imum temperature, and minimum temperature of 24 global 
circulation models (GCMs) from the latest published Coupled 
Model Intercomparison Project Phase 6 (CMIP6) are statisti
cally downscaled using linear scaling and distribution mapping 
methods. By evaluating the best-performing GCMs and bias 

Figure 1. Map of the study area layout.
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correction methods against the meteorological station records, 
multi-model ensemble mean predictions are produced for each 
climate variable under the CMIP6 historical experiment and 
the medium- and high-forcing Shared Socio-economic 
Pathway (SSP) scenarios SSP245 and SSP585 (O`Neill et al. 
2016). Soil and Water Assessment Tool (SWAT) is preferred as 
the hydrological model to simulate streamflow under the his
torical and future climate scenarios due to its snow hydrology 
performance (Troin and Caya 2014). The SWAT model of the 
Dipni Basin, calibrated and validated against the historical 
streamflow records, is utilized to produce monthly inflow 
estimates for the Dipni reservoir for the future period of 
2025–2099. Moreover, although lake evaporation does not 
constitute a major component of the reservoir water budget, 
the forthcoming changes in the monthly net evaporation rates 
are also taken into consideration to demonstrate the projected 
impacts of the warming climate on the basin. To make 
a realistic and fair comparison, a monthly reservoir operation 
algorithm is prepared based on the topographic and technical 
characteristics and reservoir operation policy specified in the 
project feasibility report (EN-SU 2008). The near-, mid-, and 
long-term potential impacts of climate change on the hydro
power production of the Dipni Project are analysed in the 25- 

year periods of 2025–2049, 2050–2074, and 2075–2099, respec
tively. A flowchart of the methodology applied in this study is 
depicted in Fig. 2.

2 Materials and methods

2.1 Overview of the study area

The Dipni Dam and HEPP Project is located within the bor
ders of Diyarbakir province in the Southeastern Anatolia 
Region of Turkey, as presented in Fig. 1. The Dipni Project is 
planned with a total reservoir volume of 949 hm3 at elevations 
of 850 to 715 m of Berkilin Creek, between latitudes 38°25’ and 
38°31’N and longitudes 40°10’ and 40°29’E (EN-SU 2008). 
Berkilin Creek is one of the upstream branches of the Tigris 
River, the second-longest river in western Asia (after the 
Euphrates). There is no other water resource scheme located 
upstream of the Dipni Project, and the Dicle Dam reservoir, 
with a maximum water level of 710 m, lies just downstream of 
the Dipni power plant (Yalcin and Tigrek 2019). The dam is 
designed to be a roller-compacted concrete type 107 m in 
height from the thalweg elevation of 746 m. The maximum 
and minimum water levels of the Dipni reservoir are 850 m 

Figure 2. Flowchart of the applied methodology.
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and 820 m, respectively. The spillway capacity of the dam is 
designated to be 4093 m3/s. The plan is to transfer the water 
stored in the Dipni reservoir (with an active storage capacity of 
740 hm3) to the power plant through a circular energy tunnel 
4 m in diameter and 4600 m in length with a 0.001 m/m bed 
slope, and a penstock 3.6 m in diameter and 150 m in length. 
The tail water level of the power plant is considered to be 
715 m. The power plant is optimized for a design discharge 
of 25 m3/s with two units of Francis-type turbines that corre
sponds to a total installed power capacity of 29 MW (EN-SU 
2008).

Berkilin Creek drains an area of 1275 km2 along the 76 km 
flow route from its source to the Dipni Dam location, as 
illustrated in Fig. 1. The flows of Berkilin Creek were measured 
at the Cayustu stream-gauging station (SGS) (Station ID: 
E26A032), located at an altitude 57 m downstream from the 
Dipni Dam axis, for the period from October 1988 to 
September 1997 (Fig. 1). The Cayustu SGS, operated by the 
General Directorate of Electrical Power Resources Survey and 
Development Administration (EIE), has a drainage area of 
1503.6 km2, and its nine years of flow data, with a mean 
value of 28.2 m3/s, is not a long enough period to calibrate 
and validate the hydrological model that will be generated (DSI 
2022). Therefore, the flow measurements of the Cayonu SGS 
(Station ID: E26A017) located on the Tigris River, approxi
mately 28 km upstream of the conjunction of the Tigris River 
and Berkilin Creek, are utilized to provide a longer historical 
flow dataset for use in the hydrological modelling and reser
voir operation studies (Fig. 1). The Cayonu SGS, also operated 
by EIE, drains an area of 1186 km2 and has uninterrupted flow 
measurements with a mean value of 24.3 m3/s in the period 
from October 1971 to September 1997 (DSI 2022). Using the 
relationship between the monthly mean flow measurements of 
the Cayustu and Cayonu stations, producing a high Pearson’s 
correlation value of 0.96, a 25-year representative monthly 
flow dataset for the 1972–1996 period is determined for the 
Cayustu station, with a mean flow rate of 31.1 m3/s. The 
extended runoff rates of the Cayustu station are brought to 
the dam location using the catchment area ratio between the 
Cayustu station and Dipni Dam. Accordingly, the mean his
torical flow rate at the Dipni Dam location is computed as 
26.3 m3/s.

In this study, all climate analyses of the Dipni Basin, having 
an average altitude of 1283 m, are based on the measurements 
of the Bingol meteorological station (MS) (Station ID: 17203), 
operated by the Turkish State Meteorological Service (MGM) 
at an altitude of 1139 m (Fig. 1). Although the project is within 
the borders of Diyarbakir province, the climatic characteristics 
of the Dipni Basin differ from the measurements at the 
Diyarbakir MS (Station ID: 17280) located at 674 m elevation. 
The main portion of the Dipni Basin is at the foot of the 
Southeast Taurus Mountain Range, which blocks cold winds 
from the north, and the basin is less affected by the desert 
climate in the south compared to Diyarbakir province (FPGA 
1968). There are other stations inside or near the studied basin 
(e.g. Aricak, Hani, Lice, and Yayla); however, the Bingol MS is 
the only representative station that has the long-term precipi
tation, maximum and minimum temperature, wind speed, 
relative humidity, and solar radiation measurements required 

to constitute the hydrological model for the extended historical 
flow period (MGM 2022b). According to the Bingol MS 
records in the 1961–2021 observation period, the annual aver
age temperature is 12.2°C, the annual total precipitation aver
age is 943.6 mm, the annual average number of snow-covered 
days is 72.5, and the monthly average snow depths are between 
6.6 and 38.5 cm. The snow cover, which can reach up to 2 m 
thick, starts to decrease from mid-March onwards due to a rise 
in temperature (MGM 2022c).

2.2 Selection of the multi-model ensembles of CMIP6 
GCMs

Daily precipitation, maximum temperature, and minimum 
temperature datasets simulated by 24 CMIP6 GCMs as part 
of the CMIP6 historical experiment and future emission sce
narios of SSP245 and SSP585 are retrieved from the Earth 
System Grid Federation (ESGF) website (ESGF 2022). The 
past data covers the period 1961–2014, and the future data 
includes the years 2025–2099. In order to provide consistency 
and perform a fair comparison of the GCMs’ performances, 
the GCM selection is based on the time scale (daily) and 
availability of the considered SSP scenarios under the first 
ensemble member with a variant label of r1i1p1f1 (i.e. realiza
tion [r1], initialization [i1], physics [p1], and forcing [f1] 
indices) (Bağçaci et al. 2021, Sun et al. 2022). The model IDs, 
modelling centres, and spatial resolutions of the selected 
GCMs are detailed in Table 1. The climate datasets, down
loaded from the ESGF database in NetCDF file format, with 
different grid sizes are resampled into a regular 0.5° × 0.5° 
longitude and latitude mesh for the border coordinates of 
Turkey using the first-order conservative remapping method 
(Jones 1999), to have a common spatial resolution for facilitat
ing fair comparisons. The open-source Climate Data 
Operators (CDO) software developed and provided by the 
Max Planck Institute for Meteorology (Schulzweida 2021) is 
utilized within the Cygwin terminal (Cygwin 2022) for all 
merging, manipulating, interpolating, and spatial clipping pro
cesses applied to the CMIP6 model datasets.

Bias correction is essential to adjust GCM predictions 
against possible systematic errors to match certain observed 
climate characteristics (e.g. distribution, sequencing, and mag
nitude) prior to utilization in hydrological modelling studies 
(Tan et al. 2020). In this study, two statistical downscaling 
methods, namely linear scaling and distribution mapping, are 
employed separately to perform bias correction of the GCM 
outputs for the location of the Bingol MS with respect to the 
daily measured data of the 1961–2014 period (MGM 2022b). 
For this process, the open-source Climate Model Data for 
Hydrologic Modelling (CMhyd) tool (Rathjens et al. 2016) is 
utilized to reduce statistical biases in the daily precipitation 
and temperature outputs of the analysed CMIP6 GCMs at the 
point scale. Hence, while analysing the reliability of the bias- 
corrected GCM outputs, it will also be possible to evaluate the 
regionally dependent skills of linear scaling and distribution 
mapping methods for the studied area (Chen et al. 2013).

The performances of the bias-corrected historical simula
tions of the 24 CMIP6 GCMs are evaluated on a monthly basis 
in the 1961–2014 period using four performance measures, 
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namely the modified index of agreement (md) (Legates and 
McCabe 1999), normalized root mean square error (nRMSE) 
(Almeida et al. 2015), Kling-Gupta efficiency metric (KGE) 
(Gupta et al. 2009), and fractions skill score (FSS) (Roberts and 
Lean 2008). According to the calculated performance metrics 
for the bias-corrected monthly total precipitation, monthly 
mean maximum temperature, and monthly mean minimum 
temperature rates, the GCMs are ranked from best to worst 
based on each performance measure for each climate variable 
separately. Then, a comprehensive rating metric (RM) (Chen 
et al. 2011) is utilized to rank the GCMs in descending order 
according to their performance for each climate variable by 
considering all four performance measures. While the rank
ings determined for the GCMs for the precipitation variable 
are directly used in deriving a multi-model ensemble mean for 
precipitation predictions, the comprehensive RM values of the 
GCMs obtained for the maximum and minimum temperature 
variables are combined to derive the overall ranking of the 
GCMs for temperature predictions. Thus, two individual GCM 
rankings for precipitation and temperature predictions are 
obtained for each considered bias correction method.

The review of the literature reveals that using only one GCM is 
not appropriate to assess the uncertainties associated with the 
future climate (Weigel et al. 2010, Miao et al. 2012, Kim et al. 

2016). Therefore, to reduce the uncertainties arising from GCM 
structure, assumptions, approximations, initial conditions, and 
parametrization, the use of a small ensemble of 3 to 10 better- 
performing GCMs is preferred to using the single best-perform 
ing one (Kim et al. 2016, Ahmed et al. 2019). Although there is no 
consensus on the selection of the optimum number of GCMs to 
generate a multi-model ensemble, in this study, the ensembles of 
the top four GCMs are considered according to the GCM rank
ings obtained for precipitation and temperature predictions sepa
rately (Ahmed et al. 2019, Bağçaci et al. 2021). The mean daily 
time series of multi-model ensembles for the CMIP6 historical 
experiment and future scenarios of SSP245 and SSP585 are cal
culated according to the simple mean technique by just averaging 
the daily bias-corrected simulations of the four top-ranked GCMs 
for each climate variable (Ahmed et al. 2019). The use of multi- 
model ensembles instead of one GCM is validated by comparing 
the monthly-based performance metrics of the multi-model 
ensemble means and individual GCMs for each climate variable. 
Finally, by comparing the performance measures of the multi- 
model ensemble means observed using the linear scaling and 
distribution mapping methods for each climate variable, the best- 
performing multi-model ensembles are determined for use in the 
SWAT model analyses. For convenience, in the rest of the text, the 
multi-model ensemble mean predictions for the location of the 

Table 1. Description of the CMIP6 GCMs considered in this study.

Model ID Institution
Horizontal resolution 
(longitude × latitude) References

ACCESS-CM2 Commonwealth Scientific and Industrial Research Organization (CSIRO), 
Australia 
Australian Research Council Centre of Excellence for Climate System 
Science (ARCCSS), Australia

1.875° × 1.25° Dix et al. (2019a, 2019b)

ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research Organization (CSIRO), 
Australia

1.875° × 1.25° Ziehn et al. (2019a, 2019b)

BCC-CSM2-MR Beijing Climate Center (BCC), China 1.125° × (1.112–1.121)° Wu et al. (2018), Xin et al. (2019)
CanESM5 Canadian Centre for Climate Modelling and Analysis (CCCma), Canada 2.8125° × (2.767–2.791)° Swart et al. (2019a, 2019b)
CMCC-ESM2 Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Italy 1.25° × 0.9424084° Lovato et al. (2021a, 2021b)
EC-Earth3 EC – Earth Consortium, Europe 0.703125° × (0.696–0.702)° EC-Earth (2019a, 2019b)
EC-Earth3-CC EC– Earth Consortium, Europe 0.703125° × (0.696–0.702)° EC-Earth (2021a, 2021b)
EC-Earth3-Veg EC – Earth Consortium, Europe 0.703125° × (0.696–0.702)° EC-Earth (2019c, 2019d)
EC-Earth3-Veg-LR EC – Earth Consortium, Europe 1.125° × (1.112–1.121)° EC-Earth (2020a, 2020b)
FGOALS-g3 Chinese Academy of Sciences (CAS), China 2° × (2.025–5.181)° Li (2019a, 2019b)
GFDL-CM4 National Oceanic and Atmospheric Administration – Geophysical Fluid 

Dynamics Laboratory (NOAA-GFDL), USA
1.25° × 1° Guo et al. (2018a, 2018b)

GFDL-ESM4 National Oceanic and Atmospheric Administration – Geophysical Fluid 
Dynamics Laboratory (NOAA-GFDL), USA

1.25° × 1° John et al. (2018), Krasting et al. 
(2018)

INM-CM4-8 Institute for Numerical Mathematics (INM), Russia 2° × 1.5° Volodin et al. (2019a, 2019b)
INM-CM5-0 Institute for Numerical Mathematics (INM), Russia 2° × 1.5° Volodin et al. (2019c, 2019d)
IPSL-CM6A-LR Institut Pierre Simon Laplace (IPSL), France 2.5° × 1.267606° Boucher et al. (2018, 2019)
KIOST-ESM Korea Institute of Ocean Science and Technology (KIOST), Korea for precipitation datasets 

1.875° × 1.875° 
for temperature datasets 

1.875° × 1.894737°

Kim et al. (2019a, 2019b)

MIROC6 Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 
Japan 
Atmosphere and Ocean Research Institute – The University of Tokyo 
(AORI), Japan 
National Institute for Environmental Studies (NIES), Japan 
RIKEN Center for Computational Science (R-CCS), Japan

1.40625° × (1.389–1.401)° Tatebe and Watanabe (2018), 
Shiogama et al. (2019)

MPI-ESM1-2-HR Max Planck Institute for Meteorology (MPI-M), Germany 
Deutsches Klimarechenzentrum (DKRZ), Germany

0.9375° × (0.927–0.935)° Jungclaus et al. (2019), Schupfner 
et al. (2019)

MPI-ESM1-2-LR Max Planck Institute for Meteorology (MPI-M), Germany 1.875° × (1.850–1.865)° Wieners et al. (2019a, 2019b)
MRI-ESM2-0 Meteorological Research Institute (MRI), Japan 1.125° × (1.112–1.121)° Yukimoto et al. (2019a, 2019b)
NESM3 Nanjing University of Information Science and Technology (NUIST), China 1.875° × (1.850–1.865)° Cao (2019), Cao and Wang (2019)
NorESM2-LM NorESM Climate Modeling Consortium, Norway 2.5° × 1.894737° Seland et al. (2019a, 2019b)
NorESM2-MM NorESM Climate Modeling Consortium, Norway 1.25° × 0.9424084° Bentsen et al. (2019a, 2019b)
TaiESM1 Research Center for Environmental Changes – Academia Sinica (AS-RCEC), 

Taiwan
1.25° × 0.9424084° Lee and Liang (2020a, 2020b)
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Bingol MS are referred to as “CMIP6 historical” for the historical 
1972–1996 period and “CMIP6 SSP245” and “CMIP6 SSP585” 
for the future 2025–2099 period.

2.3 Construction of SWAT model

SWAT is a physically based semi-distributed river basin model 
developed by the United States Department of Agriculture – 
Agricultural Research Service (USDA-ARS) (Neitsch et al. 
2011, Arnold et al. 2013). In this study, the SWAT model of 
the Dipni Basin is constructed within ArcSWAT 2012 (revi
sion 664) using three main types of physiographic data, namely 
a digital elevation model (DEM), land use/land cover (LULC) 

map, and soil map, as presented in Fig. 3. The global coverage 
public domain database of the Shuttle Radar Topography 
Mission (SRTM) is used to obtain void-filled digital terrain 
elevation data at a resolution of 1 arc-second (i.e. approxi
mately 30 m) (USGS 2014). The dominant land cover types in 
the basin are extracted in grid format from the Global Land 
Cover 2000 (GLC2000) version 2.0 dataset at 1 km spatial 
resolution (EC-JRC 2006). The grid-based watershed soil char
acteristics are derived from the Digital Soil Map of the World 
(DSMW) version 3.6 at a scale of 1:5 million (FAO 2007).

The daily climatic variables required by SWAT to simulate 
hydrological processes on a monthly basis are precipitation 
(mm), maximum and minimum air temperature (°C), solar 

Figure 3. Steps of the SWAT model setup: (a) DEM, (b) watershed delineation, (c) land cover classes, (d) soil types, and (e) slope classes.

1920 E. YALCIN



radiation (MJ/m2), wind speed (m/s), and relative humidity. In 
order to simulate the monthly inflow rates of the Dipni reser
voir in the mentioned extended historical flow period of 1972– 
1996, the daily weather records of the Bingol station for the 
analysis period from 1 January 1968 to 31 December 1996, 
including four years of model warm-up period (i.e. 1968– 
1971), are inputted into the model together with the monthly 
weather statistics and geographic position information (in 
terms of latitude, longitude, and elevation) of the station 
(MGM 2022b).

The weather generator within SWAT uses the monthly 
weather statistics to generate representative daily values for 
missing variables or to fill gaps in the measured data. These 
statistics are of great importance in simulating flow rates based 
on only the precipitation and temperature variables of the 
CMIP6 historical experiment and future scenarios of SSP245 
and SSP585 in the absence of solar radiation, wind speed, and 
relative humidity data. Hence, in order to catch long-term 
trends not reflecting short-term fluctuations, the monthly sta
tistical parameters of the Bingol MS are determined for the 
entire measurement period (i.e. 1961–2021). All monthly 
weather statistics, except the ones for half-hour rainfall and 
dew point temperature, are calculated with the WGNmaker4.1. 
xlsm Microsoft Excel macro (Boisrame 2011). The monthly 
maximum half-hour rainfall rates of the Bingol MS are com
puted by multiplying the monthly maximum daily precipita
tion records with the half-hour pluviograph coefficient of the 
station (MGM 2022a). The monthly average daily dew point 
temperatures are calculated with the DOS-based dew02.exe 
program (Liersch 2003) using the daily maximum and mini
mum temperature and daily percent relative humidity mea
surements of the station.

The last step of the model construction is generating eleva
tion bands for the sub-basins to account for orographic effects 
on both precipitation and temperature in each sub-basin and, 
hence, to model snowpack and snowmelt processes separately 
for each individual elevation band (Arnold et al. 2013). In this 
context, using the DOS-based stand-alone Make_ELEV_BAND 
program (Abbaspour 2015a), five elevation bands are defined 
for all sub-basins, except where the maximum relief is too small 
to take into account changes in precipitation and temperature 
due to altitude.

2.4 SWAT model calibration and streamflow predictions

Before analysing the possible impacts of climate change on the 
inflow rates of the Dipni Dam, the developed SWAT model is 
calibrated and validated against the 25-year monthly runoff 
time series of the extended historical flow period using the 
measured climate data. The first 17 years of the 1972–1996 per
iod are considered the calibration period, and the flow data for 
the remaining eight years are utilized to verify the calibrated 
model. The sensitivity, calibration, validation, and uncertainty 
analyses are conducted within the public domain SWAT 
Calibration and Uncertainty Procedures (SWAT-CUP) soft
ware package (Abbaspour 2015a) using the Sequential 
Uncertainty Fitting Version 2 (SUFI-2) algorithm 
(Abbaspour et al. 2004, 2007) as the optimization procedure. 
In the SUFI-2 algorithm, all uncertainties arising from input 

data, modelling parameters, and conceptual model are mapped 
onto the parameter ranges in an iterative process, and model 
output uncertainty is quantified by the 95% prediction uncer
tainty (95PPU) in terms of P factor and R factor. While the 
P factor is the fraction of the observed flow data captured 
within the 95PPU band, the R factor, denoting the degree of 
uncertainty, is the ratio of the average width of the 95PPU 
band to the standard deviation of the observed flows. Due to 
a trade-off between these two indices, a larger P factor can only 
be achieved with a larger R factor. In order to establish 
a balance between these two indices, SUFI-2 should be iterated 
a few times, starting with wide parameter ranges and then 
narrowing these ranges at each iteration in accordance with 
the objective function value until an optimum set of parameter 
ranges is obtained (Abbaspour et al. 2015b). In this study, 
Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe 1970) is 
preferred as the objective function of the SUFI-2 algorithm.

Model calibration is conducted in three stages to avoid 
parameter interaction and identifiability problems. In the 
first stage, the precipitation (PLAPS) and temperature 
(TLAPS) lapse rate parameters are calibrated and fixed to 
their best simulation values. Secondly, the same procedure is 
applied for the sensitive snow-related parameters. At last, 
other sensitive parameters related to groundwater, soil, 
hydrological response unit, management, and main channel 
are calibrated under the pre-fixed values of the location- 
specific parameters. At each phase of the calibration process, 
the sensitivity of each parameter is analysed separately 
through a single iteration with 50 simulations, and then 
a combined iteration composed of 500 simulations is per
formed for the sensitive parameters and their initial ranges 
identified in these one-at-a-time analyses. These combined 
iterations are repeated until acceptable P factor, R factor, 
and NSE values are reached. Accordingly, the parameter 
ranges of the final iteration are taken as the calibrated 
parameter ranges, and the parameter set providing the best 
simulation (i.e. the simulation with the highest NSE value 
against the inputted historical flow data) of the final itera
tion is referred to as the best-performing parameter values. 
After accomplishing the model calibration process for the 
1972–1988 period, the calibrated parameter ranges are vali
dated against the monthly mean inflow rates of the Dipni 
reservoir for the period from 1989 to 1996 by executing 
a single combined iteration of 500 simulations using the 
calibrated parameter ranges. More detailed information on 
the applied calibration procedure can be found in 
Abbaspour et al. (2004, 2007, 2015b) and Yalcin (2019).

The best simulation results attained in the model calibra
tion and validation stages belong to the simulation with the 
highest objective function value against the inputted historical 
flow data. Hence, it is not realistic to take into account the best 
simulation results to evaluate whether the flow forecasting 
performance of the SWAT model is adequate in the absence 
of flow records. Therefore, in order to assess the flow predic
tion performance of the calibrated SWAT model, two flow 
forecasting approaches, namely best simulation estimates and 
50% uncertainty level median values of the 95PPU band 
(M95PPU), are considered (Lemann et al. 2017, Farsani et al. 
2019, Yalcin 2019). While best simulation estimates are 
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obtained with a single run using the best-performing para
meter set of the calibration period, M95PPU values are 
attained with a single combined iteration using the calibrated 
parameter ranges. The usability of these approaches is evalu
ated for the validation period in terms of the statistics br2, 
NSE, percent bias (PBIAS), and RSR. br2 is defined as the 
coefficient of determination (r2) multiplied by the slope of 
the linear regression line (b) forcing the intercept through 
zero, and RSR equals the ratio of the root mean square error 
to the standard deviation of the observed data.

After verification of these two flow forecasting approaches 
for the validation period, the calibrated SWAT model is simu
lated for the years 1972 to 1996 to attain the monthly best 
simulation estimates and M95PPU values for the whole 
extended historical flow period. Then, the calibrated model 
simulations are re-performed in 25-year periods using the pre
cipitation and temperature predictions of CMIP6 historical and 
the future scenarios of CMIP6 SSP245 and CMIP6 SSP585 to 
obtain the monthly mean inflow estimates of the Dipni reservoir 
under both flow forecasting approaches for the historical 1972– 
1996 period and the near-, mid-, and far-future periods of 2025– 
2049, 2050–2074, and 2075–2099, respectively.

2.5 Lake evaporation under changing climate conditions

The monthly net evaporation rates of the Dipni reservoir are 
calculated based on the correlation relationship between the 
long-term (i.e. the 1961–2021 period) mean monthly total eva
poration and temperature records of the Bingol MS (MGM 
2022c). To make a consistent comparison between the evapora
tion rates calculated using the station records and multi-model 
ensemble mean predictions, the average of the maximum and 
minimum temperature values is considered as the mean tem
perature (Usul 2009). Assuming a 0.5°C decrease in temperature 
per 100 m increase in altitude, the mean monthly temperature 
records observed at the Bingol MS in the 1972–1996 period are 
transformed into the maximum water level of the Dipni reser
voir. Then, the monthly total evaporation quantities corre
sponding to these transformed temperatures are calculated 
according to the correlation between the temperature and eva
poration records of the Bingol station. Next, the computed 
evaporation values are multiplied by the pan coefficient (0.7) 
to convert the pan evaporation values into actual evaporation 
rates from the lake surface (Usul 2009). Finally, the monthly net 
evaporation rates per unit area are determined by subtracting 
the mean monthly precipitation records of the Bingol station in 
the 1972–1996 period from the calculated actual evaporation 
rates. This procedure, applied to the observation-based histor
ical lake evaporation values, is repeated seven times, using the 
precipitation and temperature predictions of CMIP6 historical 
and the future scenarios of CMIP6 SSP245 and CMIP6 SSP585 
to calculate monthly net evaporation rates for the historical and 
near-, mid-, and far-future periods, respectively.

2.6 Reservoir operation scheme

An operation algorithm is written in Visual Basic for 
Applications in Excel software to conduct the reservoir opera
tions. The operation studies are performed on a monthly basis 

in accordance with a reservoir operation policy that guarantees 
maximum firm power in 95% of the operation period and 
maximizes secondary power unrestricted up to the installed 
capacity (EN-SU 2008). The topographical and technical fea
tures of the Dipni Project (EN-SU 2008) together with the 
monthly environmental water supplies, referred to as non- 
power releases, are the fixed inputs of the operation algorithm. 
The topographical features are described through the use of 
volume–area and elevation curves. The technical data include 
the maximum and minimum operation levels, tailwater level, 
design discharge, penstock and energy tunnel characteristics 
(number, diameter, and length), number and type of turbines, 
turbine efficiency curve, and spillway capacity. The monthly 
mean inflow values and mean monthly evaporation rates from 
the reservoir water surface are the changing input datasets of 
the reservoir operations repeated for each of the analysed 
climate conditions over the 25-year historical and future time 
periods. The monthly environmental water requirements for 
the continuity of the natural ecosystem due to the energy 
tunnel structure involved in the project are accepted as 10% 
of the historical mean monthly flow rates on the Dipni Dam 
axis in the last 10 years (i.e. 1987–1996) of the SGS measure
ments (Yalcin and Tigrek 2019).

For all reservoir operations, the initial reservoir storage is 
set to be equal to the total reservoir capacity, and for the 
ending storage, the algorithm is constrained to turbine all 
available water in the active storage in line with the power 
plant capacity. Accordingly, the operation studies are per
formed 11 times using the observed and estimated (both 
M9599U values and best simulation estimates) inflow datasets 
under the historical and future climate conditions to assess 
climate change impacts not only on the firm and secondary 
energy productions of the Dipni HEPP but also on the spillway 
releases, firm discharge, and regulation ratio of the project.

3 Results and discussion

3.1 Accuracy analysis of the CMIP6 multi-model 
ensemble mean predictions

In the present study, four statistical performance metrics – md, 
nRMSE, KGE, and FSS – are used to assess the accuracy of the 
bias-corrected monthly time series of the precipitation, max
imum temperature, and minimum temperature variables 
simulated by the 24 GCMs under the CMIP6 historical experi
ment in replicating the mean and variability of the observed 
records of the Bingol MS for the 1961–2014 period. Tables 2 
and 3 show the performance metrics for each GCM in simulat
ing the precipitation and temperature variables after applying 
bias correction with linear scaling and distribution mapping, 
respectively. While values closest to 1 indicate the best GCM 
performance for the statistics of md, KGE, and FSS, the GCM 
with an nRMSE value nearest to 0 has the best performance in 
terms of nRMSE for the considered climate variable. The ranks 
attained by the GCMs corresponding to these four metrics are 
used to calculate the RM values of each GCM for each climate 
variable. The RM values of the GCMs obtained for the max
imum and minimum temperature variables are combined to 
derive the overall ranking of the GCMs for temperature 
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predictions. The rankings of the GCMs determined separately 
for the precipitation and temperature variables are presented 
in parentheses in Tables 2 and 3 for the use of linear scaling 
and distribution mapping, respectively.

The top-four ranked GCMs are selected as the members of 
the ensembles to be produced for each of the precipitation and 
temperature variables. The best-performing bias correction 
method and, hence, multi-model ensembles are determined 
by comparing the statistical performance metrics of the multi- 
model ensemble means observed using the linear scaling and 
distribution mapping methods for each climate variable, as 
detailed in Table 4. The statistical comparisons show that the 
best performing bias correction method is linear scaling for the 
precipitation variable and distribution mapping for the tem
perature variables. Accordingly, the members of the multi- 
model ensemble are GFDL-CM4, TaiESM1, CanESM5, and 
IPSL-CM6A-LR GCMs for the precipitation variable and 
NorESM2-LM, GFDL-CM4, MRI-ESM2-0, and BCC-CSM2- 
MR for the maximum and minimum temperature variables 
(Table 4). Similar to the findings of Ahmed et al. (2019), 
Bağçaci et al. (2021), Siqueira et al. (2021), and Seker and 
Gumus (2022) analysing the CMIP6 model performances for 
the cases of Pakistan, Turkey, a Brazilian Cerrado basin, and 
the Mediterranean Region of Turkey, respectively, the precipi
tation predictions of the multi-model ensemble do not have 
a highly close agreement with the observed records of the 
Bingol MS, contrary to the temperature predictions. 
Nevertheless, the statistical performances of the multi-model 
ensemble means (in Table 4) are higher than the individual 
performance metrics of each GCM for each climate variable 
(in Tables 2 and 3).

The mean monthly, seasonal, and annual total precipita
tion, maximum temperature, and minimum temperature pre
dictions of the multi-model ensembles under the CMIP6 
historical experiment are compared with the means of the 
observed records of the Bingol MS for the historical 1972– 

1996 period and the 25-year means of the future periods 
attained under the emission scenarios of SSP245 and SSP585, 
as presented in Fig. 4. While the mean annual total precipita
tion, maximum temperature and minimum temperature rates 
of the historical records are 960.5 mm, 18.2°C, and 6.4°C, 
respectively, these means are determined in turn to be 
937.2 mm, 18.1°C, and 6.2°C for the CMIP6 historical predic
tions (Fig. 4(a) and (b)). Under the SSP245 scenario, the mean 
annual total precipitation amount of the 2050–2075 period is 
2.6% less than the mean of the CMIP6 historical predictions, 
and the differences in the mean precipitation amounts between 
the historical period and the near- and far-future periods are 
less than 1%. The mean annual maximum and minimum 
temperature differences between the historical and future per
iods gradually increase up to 4.6°C and 3.1°C, respectively 
(Fig. 4(b, c, e, g)). Under the SSP585 emission scenario, while 
there are no sharp differences in the mean annual total pre
cipitation amounts between the historical period and near- 
and mid-future periods, the mean annual total precipitation 
amount of the 2075–2099 period is 9.2% less than the mean of 
the CMIP6 historical predictions. In addition, there is 
a gradual decrease in the mean autumn total precipitation 
amounts of the future periods, from 4.8% in 2025–2049 to 
25.9% in 2075–2099 compared to the autumn mean of the 
CMIP6 historical predictions. The mean annual maximum 
and minimum temperature increases are more pronounced 
under the SSP585 scenario than in the SSP245. The gradual 
increases in the mean annual maximum and minimum tem
peratures reach 7.3°C and 5.3°C, respectively, in the 2075– 
2099 period (Fig. 4(b, d, f, h)).

3.2 Evaluation of the SWAT model performance

In the first and second steps of the model calibration process, 
two lapse rate parameters and six snow-related parameters, 
identified as sensitive according to the one-at-a-time 

Table 4. Performance metrics of the multi-model ensemble means and selection of the best-performing bias correction method.

Climate variable Bias correction method Selected GCMs md nRMSE KGE FSS

Precipitation Linear scaling GFDL-CM4 0.656 0.118 0.593 0.849
TaiESM1
CanESM5
IPSL-CM6A-LR

Distribution mapping TaiESM1 0.647 0.122 0.590 0.839
GFDL-CM4
CMCC-ESM2
IPSL-CM6A-LR

Maximum temperature Linear scaling INM-CM5-0 0.911 0.056 0.977 0.994
GFDL-ESM4
INM-CM4-8
NorESM2-LM

Distribution mapping NorESM2-LM 0.913 0.056 0.980 0.994
GFDL-CM4
MRI-ESM2-0
BCC-CSM2-MR

Minimum temperature Linear scaling INM-CM5-0 0.900 0.058 0.967 0.982
GFDL-ESM4
INM-CM4-8
NorESM2-LM

Distribution mapping NorESM2-LM 0.899 0.058 0.968 0.982
GFDL-CM4
MRI-ESM2-0
BCC-CSM2-MR
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Figure 4. Comparison of the mean monthly, seasonal, and annual total precipitation and maximum/minimum temperature records of the Bingol station with the CMIP6 
multi-model ensemble mean predictions: (a) observed climate data for the 1972–1996 period, (b) CMIP6 historical for the 1972–1996 period, (c) CMIP6 SSP245 for the 
2025–2049 period, (d) CMIP6 SSP585 for the 2025–2049 period, (e) CMIP6 SSP245 for the 2050–2074 period, (f) CMIP6 SSP585 for the 2050–2074 period, (g) CMIP6 
SSP245 for the 2075–2099 period, and (h) CMIP6 SSP585 for the 2075–2099 period.
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sensitivity analyses, are fitted and then fixed to their best- 
performing parameter values, respectively. At the last step of 
the model calibration, a total of 11 sensitive modelling para
meters related to groundwater, soil, hydrological response 
unit, management, and main channel are adjusted by repeating 
combined iterations two times. The parameters included in the 
three-stage calibration process are listed, starting from the 
most sensitive one for each step with their calibrated ranges 
and best-performing values, in Table 5. The observed and 
simulated monthly inflow rates of the Dipni reservoir in the 
calibration period of 1972–1988 are presented in Fig. 5(a). 
A P factor value of 0.88 and an R factor value of 1.03 are 
achieved for the calibrated parameter ranges, and the objective 
function NSE, br2, PBIAS, and RSR statistics of the best simu
lation of the final combined iteration are found to be 0.83, 0.72, 
3.03%, and 0.41, respectively, as detailed in Table 6.

The balance of R and P factors, which is recommended to be 
established with a minimum P factor value of 0.7 and an 
R factor value of around 1, is achieved by capturing a higher 
percentage of the observed data at approximately the same 
band thickness (Abbaspour et al. 2015b). According to 
Moriasi et al. (2007), an NSE value between 0.75 and 1, 
a PBIAS value less than ± 10%, and an RSR value less than 
0.5 are collectively adequate to categorize the model calibra
tion as very good in terms of monthly streamflow simulations. 
In addition, even though the slope of the linear regression line 
between the observed and simulated flow rates is slightly lower 
than the targeted value of around 1, the obtained value of 0.84 
for the r2 statistic, for which values greater than 0.6 are accep
table, is sufficient to support the conclusion that the calibrated 
model performance is very good (Santhi et al. 2001).

The monthly inflow simulations, obtained by executing the 
SWAT model with a single combined iteration using the cali
brated parameter ranges in the validation period of 1989–1996, 

are presented in Fig. 5(b). The simulation statistics of the valida
tion period are given in Table 6. For the model validation, the 
calibrated parameter ranges provide a P factor value of 0.96 and 
an R factor value of 1.11, indicating the strength of the model 
calibration. The statistics of NSE, PBIAS, and RSR of the best 
simulation of the validation period are similar to the ones 
attained for the calibration period. Hence, the model perfor
mance in the validation period can be categorized as very good, 
as in the case of the calibration (Moriasi et al. 2007). However, 
the performance of the validation is not as good as that of the 
calibration in terms of the br2 statistic. The decrease in br2 from 
0.72 to 0.59 is due to the declined slope of the linear regression 
line with the underestimated peak flows for some months of the 
validation period, as shown in Fig. 5(b). When the usability of 
the best-performing parameter set of the calibration in forecast
ing streamflow rates is analysed for the validation period, the 
statistical performance of the best simulation estimates is found 
to be similar to that of the best simulation of the validation, as 
detailed in Table 6. Moreover, when the forecasting perfor
mance of the calibrated SWAT model in terms of the 
M95PPU values is evaluated for both the calibration and valida
tion periods (Fig. 5(a) and (b)), the model performance is found 
to be sufficient for all quantitative statistics (Table 6).

After verifying the forecasting performance of the cali
brated SWAT model in terms of the best simulation 
estimates and M95PPU values, the effects of the utilized 
weather data are analysed for the whole historical period 
of 1972–1996 by comparing the SWAT model simulations 
performed with the observed weather data and CMIP6 
historical predictions, as shown in Figs. 5(c) and 6(a), 
and Figs. 5(d) and 6(b), respectively. Due to the inability 
to obtain a close correlation between the precipitation 
records of the Bingol station and the CMIP6 historical 
precipitation predictions and the use of daily solar 

Table 5. List of calibrated parameters.

Sensitive parametera
Calibrated parameter  

range
Best-performing  
parameter value

Step 1: Calibration of precipitation and temperature lapse rates and fixing them to their best simulation values
- Temperature lapse rate (°C/km), v__TLAPS.sub −3.26b

- Precipitation lapse rate (mm H2O/km), v__PLAPS.sub −8.82

Step 2: Calibration of sensitive snow-related parameters and fixing them to their best simulation values
- Snowfall temperature (°C), v__SFTMP.bsn −0.17
- Melt factor for snow on 21 December (mm H2O/°C-day), v__SMFMN.bsn 1.474
- Snow melt base temperature (°C), v__SMTMP.bsn 0.03
- Snow pack temperature lag factor, v__TIMP.bsn 0.167
- Minimum snow water content that corresponds to 100% snow cover (mm H2O), v__SNOCOVMX.bsn 17.1
- Melt factor for snow on 21 June (mm H2O/°C-day), v__SMFMX.bsn 4.501

Step 3: Calibration of other sensitive modelling parameters
- Baseflow alpha factor (1/days), v__ALPHA_BF.gw [0, 0.573] 0.093
- Depth from soil surface to bottom of layer (mm), r__SOL_Z().sol [−0.7, 0.887] −0.178
- Effective hydraulic conductivity in main channel alluvium (mm/h), v__CH_K2.rte [−0.01, 323.295] 101.831
- Moist bulk density (mg/m3 or g/cm3), r__SOL_BD().sol [0.075, 0.666] 0.424
- Initial SCS runoff curve number for moisture condition II, r__CN2.mgt [−0.07, 0.043] 0.011
- Threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O), v__GWQMN.gw [642.009, 3547.991] 2202.521
- Deep aquifer percolation fraction, v__RCHRG_DP.gw [0, 0.618] 0.165
- Available water capacity of the soil layer (mm H2O/ mm soil), r__SOL_AWC().sol [4.101, 9.204] 8.74
- Groundwater delay time (days), v__GW_DELAY.gw [71.7, 357.3] 113.683
- Groundwater revap coefficient, v__GW_REVAP.gw [0.086, 0.2] 0.195
- Saturated hydraulic conductivity (mm/h), r__SOL_K().sol [−0.99, 146.589] 72.652

aThe qualifier (v__) refers to the substitution of a parameter with a value from the given range, while (r__) refers to a relative change in the parameter for which the 
current value is multiplied by 1 plus a factor in the given range. 

bThe fixed values indicate that a parameter is fitted and then fixed.
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Figure 5. SWAT model simulation outputs: (a) calibrated model simulation for the 1972–1988 period, (b) calibrated model simulation for the validation period of 1989– 
1996, (c) calibrated model estimates for the 1972–1996 period obtained using the observed climate data, and (d) calibrated model estimates for the 1972–1996 period 
obtained using the CMIP6 historical predictions.
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radiation, wind speed, and relative humidity rates pro
duced by the SWAT weather generator, the monthly 
streamflow estimates obtained with the CMIP6 historical 
predictions are not as successful as the ones attained using 
the observed weather data. The underestimations in the 
peak flow rates simulated with the CMIP6 historical pre
dictions are more pronounced than the ones simulated 
using the observed weather data. Nevertheless, as seen in 
the time series plots of Fig. 5(c) and (d), they are not 
systematic or specific to any month or season throughout 
the period. This increase in random underestimations 
could be explained as the loss of information on peak 
precipitation rates in averaging the bias corrected preci
pitation data of the best-performing top-four GCMs to 
produce the multi-model ensemble mean. The mean 
monthly, seasonal, and annual inflow estimates obtained 
with the CMIP6 historical predictions are relatively simi
lar to the means of the observed inflows and the means of 
the estimates attained using the observed weather data 
(Fig. 6(a) and (b)). While the mean annual observed 
inflow rate of the Dipni reservoir is computed as 
26.3 m3/s, the SWAT model simulations conducted with 
the observed weather data and CMIP6 historical predic
tions result in inflow rates of 26.1 and 24.4 m3/s for the 
best simulation estimates and 24.4 and 23.4 m3/s for the 
M95PPU values, respectively. Hence, the calibrated model 
estimates obtained using the CMIP6 historical predictions 
are appropriate for use as the baseline scenario to com
pare with the streamflow estimates attained under the 
future emission scenarios of SSP245 and SSP585.

The future inflow rates of the Dipni reservoir are forecasted 
in terms of both best simulation estimates and M95PPU values 
by performing the calibrated model simulations under the cli
mate conditions of the SSP245 and SSP585 emission scenarios. 
The monthly flow estimates simulated using the CMIP6 SSP245 
and CMIP6 SSP585 predictions are demonstrated within box- 
and-whisker plots in Fig. 6(c, e, g) and in Fig. 6(d, f, h) for the 
periods of 2025–2049, 2050–2074, and 2075–2099, respectively. 
The future flow estimates obtained for each forecasting 
approach are analysed in 25-year periods and intercompared 
by considering the estimates attained under the CMIP6 histor
ical experiment as the baseline scenario, shown in Fig. 6(b). 
Accordingly, under the SSP245 scenario, while there are no 
significant differences in terms of the average annual inflow 
estimates between the historical and future periods, a gradual 
increase in the winter averages and a gradual decrease in the 
flows of the spring months are observed over the future period. 
The mean annual flow rates in terms of the best simulation 

estimates and M95PPU values are 1.4%, 6.3%, and 5.7% less, 
and 2.0%, 6.4%, and 5.5% less, than the means of the historical 
period for the near-, mid-, and far-future periods, respectively. 
In terms of the best simulation estimates, while the mean flow 
rate in the spring season is decreased by 12.7% for the 2025– 
2049 period and 27.8% for the 2075–2099 period, the mean flow 
rate in the winter months is increased by 17.8% and 28.4%, 
respectively, in the same periods. Similar percentages are 
attained for the spring and winter means of the M95PPU values 
(Fig. 6(b, c, e, g)). Under the SSP585 scenario, the mean annual 
flow rates decrease gradually by up to 17.6% and 18.1% in the 
2075–2099 period for the best simulation estimates and 
M95PPU values, respectively. For both flow forecasting 
approaches, gradual increases are observed in the autumn and 
spring averages. While the mean flow rates of the winter months 
in terms of the best simulation estimates and M95PPU values for 
the 2025–2049 period are 26.9% and 28.2% higher than the 
means in the historical period, respectively, they are 18.6% and 
27.8% higher in turn for the 2075–2099 period (Fig. 6(b, d, f, h)). 
For both emission scenarios, the estimated flows in the snow 
accumulation months of January and February are much higher 
than the flows in the historical period, while the estimated flows 
for March and April, when the accumulated snow melts, are 
much less than the flows in the historical period. Since the future 
climate of the Dipni Basin tends to bring winter rain with rising 
temperatures, it could be said that precipitation will not fall as 
snow in the future winters as much as in the past.

3.3 Impacts of climate change on hydropower generation

There is a strong correlation, with an r2 value of 0.97, between 
the long-term mean monthly total evaporation and tempera
ture records of the Bingol MS, as presented in Fig. 7(a). By 
considering this relation to calculate monthly lake evaporation 
rates, the annual net evaporation amounts of the Dipni reser
voir in the 1972–1996 period are computed as 531.8 and 
526.8 mm, respectively, based on the station records and 
CMIP6 historical predictions (Fig. 7(b)). Under the SSP245 
scenario, the annual net evaporation amounts increase to 
640.2, 685.9, and 684.8 mm for the periods 2025–2049, 2050– 
2074, and 2075–2099, respectively (Fig. 7(c)). The increases are 
more pronounced under the SSP585 scenario, and amounts of 
660.6, 727.2, and 818.0 mm are computed in turn for the same 
periods (Fig. 7(d)). Although the volume of water evaporated 
from the lake surface constitutes a small part of the total water 
budget of the Dipni reservoir, possible increases of up to about 
55% in the annual net evaporation amount show the effects of 

Table 6. List of the statistical performance indices obtained for the calibration and validation periods.

Model prediction bR2 b NSE PBIAS (%) RSR
Mean_sim  

(Mean_obs)
StdDev_sim  

(StdDev_obs)

Calibration period (1972–1988)
Best simulation 0.72 0.86 0.83 3.03 0.41 26.73 (27.56) 27.95 (29.78)
M95PPU 0.67 0.81 0.82 9.49 0.43 24.95 (27.56) 26.57 (29.78)

Validation period (1989–1996)
Best simulation 0.59 0.74 0.79 −2.24 0.46 24.30 (23.77) 22.43 (26.77)
M95PPU 0.56 0.74 0.76 2.59 0.49 23.15 (23.77) 22.51 (26.77)
Best simulation estimates 0.62 0.79 0.78 −4.13 0.47 24.75 (23.77) 23.94 (26.77)
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Figure 6. Mean monthly, seasonal, and annual flow estimates at the Dipni Dam location obtained through the SWAT model simulations using (a) observed climate data 
for the 1972–1996 period, (b) CMIP6 historical for the 1972–1996 period, (c) CMIP6 SSP245 for the 2025–2049 period, (d) CMIP6 SSP585 for the 2025–2049 period, (e) 
CMIP6 SSP245 for the 2050–2074 period, (f) CMIP6 SSP585 for the 2050–2074 period, (g) CMIP6 SSP245 for the 2075–2099 period, and (h) CMIP6 SSP585 for the 2075– 
2099 period.
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increasing temperatures and decreasing precipitation trends in 
the Dipni Basin.

The results of the 25-year reservoir operations con
ducted in the past and three future periods, with the 
changing inputs of monthly flow estimates and lake eva
poration rates, are summarized in Table 7. Accordingly, 
for the historical period, the mean annual total energy 
production is determined to be 202.7 GWh/year using 
the lake evaporations based on the observed climate data 
and the observed inflows as the inputs of the operation 
algorithm. The use of the best simulation estimates and 
M95PPU values simulated with the observed climate data 
instead of the observed inflows in the operation algorithm 
results in total energy production values of 208.5 and 
195.5 GWh/year, respectively. When the inflow estimates 
and lake evaporation values determined based on the 
CMIP historical predictions are utilized as the inputs of 
the operation algorithm, the mean annual total energy 
productions are computed as 199.3 and 192.6 GWh/year 
using the best simulation estimates and M955PPU values, 
respectively. In addition, it is observed that the under
estimated peak flows of the SWAT model simulations 
result in significant decreases in the number and amount 
of spillway releases. Nevertheless, similar firm discharges, 
power releases, and firm and secondary energy produc
tions could be obtained in all reservoir operations of the 
historical period, as detailed in Table 7. Since the Dipni 

Dam is not yet in operation, the reservoir operation 
results obtained using the inflow and lake evaporation 
estimates based on the CMIP historical predictions are 
used as the historical baseline scenario for comparisons 
with the operation results of the future periods.

According to the reservoir operations conducted under 
the SSP245 scenario, a major decrease in the amount of 
energy produced is attained for the mid-future period. In 
this period, the energy produced is 8.9% and 10.1% less 
than the energy production obtained under the CMIP6 
historical experiment, based on the use of the best simu
lation estimates and M95PPU values, respectively 
(Table 7). Under the SSP585 scenario, the energy produc
tion of the Dipni HEPP declines abruptly after the near- 
future period. While the energy production 
values decrease by 9.4% and 11.2% in the 2050–2074 per
iod, with the use of the best simulation estimates and 
M95PPU values, respectively, the decrease ratios are 
found to be 20.1% and 21.5% in turn for the 2075– 
2099 period (Table 7). In the feasibility report for the 
Dipni Project, the total energy production is declared as 
204.2 GWh/year, with 199.6 GWh/year of firm energy and 
4.6 GWh/year of secondary energy (EN-SU 2008). 
Regardless of which future scenario or which flow fore
casting approach is evaluated, it is undoubtedly clear that 
the expected economic benefit from the Dipni Project, 
which is economically and technically designed by 

Figure 7. (a) Correlation between the mean monthly total evaporation and temperature records of the Bingol station, and comparison of the monthly net evaporation 
rates of the Dipni reservoir calculated using (b) observed climate data and CMIP6 historical predictions, (c) CMIP6 historical and CMIP6 SSP245 predictions, and (d) 
CMIP6 historical and CMIP6 SSP585 predictions.
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optimizing the installed power capacity based on the his
torical flow observations, cannot be met in the future due 
to the changing climate conditions in the basin.

4 Summary and conclusions

This study investigates how global warming affects streamflow, 
lake evaporation, and hydropower production in the most 
threatened highlands region of the Euphrates-Tigris Basin, 
using the example of the Dipni Dam and HEPP Project. The 
results of this assessment can be summarized in six main 
points: (1) the mean annual maximum and minimum tem
perature rates gradually increase by up to 4.6 and 3.1°C under 
the SSP245 scenario and up to 7.3 and 5.3°C under the SSP585 
scenario, through the future period; (2) the mean annual total 
precipitation amount decreases by 2.6% in the mid-future 
period under the SSP245 scenario and 9.2% in the far-future 
period under the SSP585 scenario; (3) while the projected 
changes in the future precipitation and temperature rates 
result in decrease by about a 6% in the mean annual inflow 
rate of the Dipni reservoir after the near-future period under 
the SSP245 scenario, a gradual decrease reaching about 18% in 
the far-future period is observed for the mean annual inflow 
rate under the SSP585 scenario; (4) the gradual increases in the 
winter flows and gradual decreases in the flows of the spring 
months through the future period show the impact of the 
warming climate on the hydrological regime of this snow-fed 
basin for both emission scenarios; (5) possible increases of up 
to about 30% and 55%, respectively, under the SSP245 and 
SSP585 emission scenarios are detected in the annual net 
evaporation amount of the Dipni reservoir; (6) all these pro
jected changes in the hydro-climatic regime of the Dipni Basin 
result in possible decreases of up to 10.1% and 21.5% in the 
total energy production of the project under the SSP245 and 
SSP585 scenarios, respectively.

The results of the operation studies conducted indicate the 
need for adaptive measures against the changing climate. 
While there are no significant changes in terms of regulation 
ratio and secondary energy production through the future 
period, considerable decreases are determined in the firm 
discharge rate and, hence, firm energy production, particularly 
for the SSP585 scenario after the first half of the century. Due 
to the underestimation problem in the peak flow simulations 
of the SWAT model, consistent outcomes could not be 
obtained in terms of the spillway usage statistics. For this 
purpose, further work should be undertaken to increase the 
performance of the precipitation predictions of the multi- 
model ensemble by trying different bias correction methods 
and averaging approaches in producing ensemble means (Kim 
et al. 2016, Tumsa 2022). To conclude, there is a clear need to 
inform the riparian countries about changing hydro-climatic 
conditions and their impacts on hydropower production, and 
it is thought that the results of this assessment will help 
increase awareness about the necessity of implementing effec
tive adaptation measures in the Euphrates-Tigris Basin.

Disclosure statement

No potential conflict of interest was reported by the author.

ORCID

Emrah Yalcin http://orcid.org/0000-0002-3742-8866

References

Abbaspour, K.C., et al., 2007. Modelling hydrology and water quality in 
the pre-alpine/alpine Thur watershed using SWAT. Journal of 
Hydrology, 333 (2–4), 413–430. doi:10.1016/j.jhydrol.2006.09.014.

Abbaspour, K.C., 2015a. SWAT-CUP2: SWAT calibration and uncertainty 
programs - a user manual. Duebendorf, Switzerland: Eawag - Swiss 
Federal Institute of Aquatic Science and Technology.

Abbaspour, K.C., et al., 2015b. A continental-scale hydrology and water 
quality model for Europe: calibration and uncertainty of a 
high-resolution large-scale SWAT model. Journal of Hydrology, 524, 
733–752. doi:10.1016/j.jhydrol.2015.03.027.

Abbaspour, K.C., Johnson, C.A., and van Genuchten, M.T., 2004. 
Estimating uncertain flow and transport parameters using 
a sequential uncertainty fitting procedure. Vadose Zone Journal, 
3 (4), 1340–1352. doi:10.2136/vzj2004.1340.

Adam, J.C., Hamlet, A.F., and Lettenmaier, D.P., 2009. Implications of 
global climate change for snowmelt hydrology in the twenty‐1st cen
tury. Hydrological Processes, 23 (7), 962–972. doi:10.1002/hyp.7201.

Ahmed, K., et al., 2019. Selection of multi-model ensemble of general 
circulation models for the simulation of precipitation and maximum 
and minimum temperature based on spatial assessment metrics. 
Hydrology and Earth System Sciences, 23 (11), 4803–4824. doi:10. 
5194/hess-23-4803-2019.

Almeida, M.P., Perpiñán, O., and Narvarte, L., 2015. PV power forecast 
using a nonparametric PV model. Solar Energy, 115, 354–368. doi:10. 
1016/j.solener.2015.03.006

Arnold, J.G., et al., 2013. SWAT 2012 input/output documentation. Texas: 
Texas Water Resources Institute.

Bağçaci, S.Ç., et al., 2021. Intercomparison of the expected change in the 
temperature and the precipitation retrieved from CMIP6 and CMIP5 
climate projections: a Mediterranean hot spot case, Turkey. 
Atmospheric Research, 256, 105576. doi:10.1016/j.atmosres.2021. 
105576.

Barnett, T.P., Adam, J.C., and Lettenmaier, D.P., 2005. Potential impacts 
of a warming climate on water availability in snow-dominated regions. 
Nature, 438, 303–309. doi:10.1038/nature04141

Bentsen, M., et al., 2019a. NCC NorESM2-MM model output prepared for 
CMIP6 CMIP historical. Earth System Grid Federation. doi:10.22033/ 
ESGF/CMIP6.8040.

Bentsen, M., et al., 2019b. NCC NorESM2-MM model output prepared for 
CMIP6 ScenarioMIP ssp245 and ScenarioMIP ssp585. Earth System 
Grid Federation. doi:10.22033/ESGF/CMIP6.608.

Boisrame, G., 2011. WGNmaker4.1.xlsm Microsoft Excel macro [online]. 
Available from: https://swat.tamu.edu/software/ [Accessed 2 July 
2022].

Boucher, O., et al., 2018. IPSL IPSL-CM6A-LR model output prepared for 
CMIP6 CMIP historical. Earth System Grid Federation. doi:10.22033/ 
ESGF/CMIP6.5195.

Boucher, O., et al., 2019. IPSL IPSL-CM6A-LR model output prepared for 
CMIP6 ScenarioMIP ssp245 and ScenarioMIP ssp585. Earth System 
Grid Federation. doi:10.22033/ESGF/CMIP6.1532.

Bozkurt, D. and Sen, O.L., 2013. Climate change impacts in the 
Euphrates-Tigris Basin based on different model and scenario 
simulations. Journal of Hydrology, 480, 149–161. doi:10.1016/j.jhy 
drol.2012.12.021

Cao, J., 2019. NUIST NESMv3 model output prepared for CMIP6 
ScenarioMIP ssp245 and ScenarioMIP ssp585. Earth System Grid 
Federation. doi:10.22033/ESGF/CMIP6.2027.

Cao, J. and Wang, B., 2019. NUIST NESMv3 model output prepared for 
CMIP6 CMIP historical. Earth System Grid Federation. doi:10.22033/ 
ESGF/CMIP6.8769.

Chen, J., et al., 2013. Finding appropriate bias correction methods in 
downscaling precipitation for hydrologic impact studies over North 
America. Water Resources Research, 49 (7), 4187–4205. doi:10.1002/ 
wrcr.20331.

HYDROLOGICAL SCIENCES JOURNAL 1933

https://doi.org/10.1016/j.jhydrol.2006.09.014
https://doi.org/10.1016/j.jhydrol.2015.03.027
https://doi.org/10.2136/vzj2004.1340
https://doi.org/10.1002/hyp.7201
https://doi.org/10.5194/hess-23-4803-2019
https://doi.org/10.5194/hess-23-4803-2019
https://doi.org/10.1016/j.solener.2015.03.006
https://doi.org/10.1016/j.solener.2015.03.006
https://doi.org/10.1016/j.atmosres.2021.105576
https://doi.org/10.1016/j.atmosres.2021.105576
https://doi.org/10.1038/nature04141
https://doi.org/10.22033/ESGF/CMIP6.8040
https://doi.org/10.22033/ESGF/CMIP6.8040
https://doi.org/10.22033/ESGF/CMIP6.608
https://swat.tamu.edu/software/
https://doi.org/10.22033/ESGF/CMIP6.5195
https://doi.org/10.22033/ESGF/CMIP6.5195
https://doi.org/10.22033/ESGF/CMIP6.1532
https://doi.org/10.1016/j.jhydrol.2012.12.021
https://doi.org/10.1016/j.jhydrol.2012.12.021
https://doi.org/10.22033/ESGF/CMIP6.2027
https://doi.org/10.22033/ESGF/CMIP6.8769
https://doi.org/10.22033/ESGF/CMIP6.8769
https://doi.org/10.1002/wrcr.20331
https://doi.org/10.1002/wrcr.20331


Chen, W., Jiang, Z., and Li, L., 2011. Probabilistic projections of climate 
change over China under the SRES A1B scenario using 28 AOGCMs. 
Journal of Climate, 24 (17), 4741–4756. doi:10.1175/2011JCLI4102.1.

Chenoweth, J., et al., 2011. Impact of climate change on the water 
resources of the eastern Mediterranean and Middle East region: mod
eled 21st century changes and implications. Water Resources Research, 
47 (6), W06506. doi:10.1029/2010WR010269.

Cygwin, 2022. Cygwin user’s guide [online]. Available from: https://www. 
cygwin.com/cygwin-ug-net/cygwin-ug-net.pdf [Accessed 20 May 
2022].

Daggupati, P., et al., 2017. Spatial and temporal patterns of precipitation 
and stream flow variations in Tigris-Euphrates river basin. 
Environmental Monitoring and Assessment, 189 (2), 50. doi:10.1007/ 
s10661-016-5752-y.

Dix, M., et al., 2019a. CSIRO-ARCCSSACCESS-CM2 model output pre
pared for CMIP6 CMIP historical. Earth System Grid Federation. 
doi:10.22033/ESGF/CMIP6.4271.

Dix, M., et al., 2019b. CSIRO-ARCCSSACCESS-CM2 model output pre
pared for CMIP6 ScenarioMIP ssp245 and ScenarioMIP ssp585. Earth 
System Grid Federation. doi:10.22033/ESGF/CMIP6.2285.

DSI (General Directorate of State Hydraulic Works), 2022. Electrical 
power resources survey and development administration (EIE) - flow 
gauging yearbooks (1935-2011). Ankara: General Directorate of State 
Hydraulic Works.

Duratorre, T., et al., 2020. Hydropower potential in the Alps under 
climate change scenarios: the Chavonne Plant, Val D’Aosta. Water, 
12 (7), 2011. doi:10.3390/w12072011.

EC-Earth (EC-Earth Consortium), 2019a. EC-Earth-Consortium 
EC-Earth3 model output prepared for CMIP6 CMIP historical. Earth 
System Grid Federation. doi:10.22033/ESGF/CMIP6.4700.

EC-Earth (EC-Earth Consortium), 2019b. EC-Earth-Consortium 
EC-Earth3 model output prepared for CMIP6 ScenarioMIP ssp245 and 
ScenarioMIP ssp585. Earth System Grid Federation. doi:10.22033/ 
ESGF/CMIP6.251.

EC-Earth (EC-Earth Consortium), 2019c. EC-Earth-Consortium 
EC-Earth3-Veg model output prepared for CMIP6 CMIP historical. 
Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.4706.

EC-Earth (EC-Earth Consortium), 2019d. EC-Earth-Consortium 
EC-Earth3-Veg model output prepared for CMIP6 ScenarioMIP ssp245 
and ScenarioMIP ssp585. Earth System Grid Federation. doi:10.22033/ 
ESGF/CMIP6.727.

EC-Earth (EC-Earth Consortium), 2020a. EC-Earth-Consortium 
EC-Earth3-Veg-LR model output prepared for CMIP6 CMIP historical. 
Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.4707.

EC-Earth (EC-Earth Consortium), 2020b. EC-Earth-Consortium 
EC-Earth3-Veg-LR model output prepared for CMIP6 ScenarioMIP 
ssp245 and ScenarioMIP ssp585. Earth System Grid Federation. 
doi:10.22033/ESGF/CMIP6.728.

EC-Earth (EC-Earth Consortium), 2021a. EC-Earth-Consortium 
EC-Earth-3-CC model output prepared for CMIP6 CMIP historical. 
Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.4702.

EC-Earth (EC-Earth Consortium), 2021b. EC-Earth-Consortium 
EC-Earth-3-CC model output prepared for CMIP6 ScenarioMIP 
ssp245 and ScenarioMIP ssp585. Earth System Grid Federation. 
doi:10.22033/ESGF/CMIP6.15327.

EC-JRC (European Commission - Joint Research Centre), 2006. The 
Global Land Cover 2000 (GLC2000) products [online]. Available 
from: https://forobs.jrc.ec.europa.eu/products/glc2000/products.php 
[Accessed 28 June 2022].

Ehsani, N., et al., 2017. Reservoir operations under climate change: 
storage capacity options to mitigate risk. Journal of Hydrology, 555, 
435–446. doi:10.1016/j.jhydrol.2017.09.008.

EN-SU (EN-SU Engineering and Consultancy Limited Company), 2008. 
The Dipni Dam and HEPP project feasibility report. Ankara: EN-SU 
Engineering and Consultancy Limited Company.

ESGF (Earth System Grid Federation), 2022. WCRP coupled model inter
comparison project (Phase 6) [online]. Available from: https://esgf- 
node.llnl.gov/projects/cmip6/ [Accessed 15 May 2022].

FAO (Food and Agriculture Organization of the United Nations), 2007. 
Digital Soil Map of the World (DSMW) [online]. Available from: 

https://www.fao.org/geonetwork/srv/en/metadata.show?id=14116 
[Accessed 28 June 2022].

Farsani, I.F., et al., 2019. Assessment of the impact of climate change on 
spatiotemporal variability of blue and green water resources under 
CMIP3 and CMIP5 models in a highly mountainous watershed. 
Theoretical and Applied Climatology, 136, 169–184. doi:10.1007/ 
s00704-018-2474-9.

FPGA (Euphrates Planning Group Authority), 1968. The Tigris Basin 
reconnaissance report. Ankara: General Directorate of State Hydraulic 
Works - Euphrates Planning Group Authority.

Giorgi, F., 2006. Climate change hot-spots. Geophysical Research Letters, 
33 (8), L08707. doi:10.1029/2006GL025734.

Guo, H., et al., 2018a. NOAA-GFDLGFDL-CM4 model output prepared for 
CMIP6 CMIP historical. Earth System Grid Federation. doi:10.22033/ 
ESGF/CMIP6.8594.

Guo, H., et al., 2018b. NOAA-GFDLGFDL-CM4 model output prepared 
for CMIP6 ScenarioMIP ssp245 and ScenarioMIP ssp585. Earth System 
Grid Federation. doi:10.22033/ESGF/CMIP6.9242.

Gupta, H.V., et al., 2009. Decomposition of the mean squared error and 
NSE performance criteria: implications for improving hydrological 
modelling. Journal of Hydrology, 377 (1–2), 80–91. doi:10.1016/j.jhy 
drol.2009.08.003.

Hasson, S.U., 2016. Future water availability from Hindukush-Karakoram- 
Himalaya upper Indus Basin under conflicting climate change scenarios. 
Climate, 4 (3), 40. doi:10.3390/cli4030040.

IPCC (Intergovernmental Panel on Climate Change), 2021. Summary for 
policymakers. In: V. Masson-Delmotte, et al., eds. Climate change 
2021: the physical science basis. Contribution of working group I to the 
IPCC sixth assessment report. Cambridge and New York: Cambridge 
University Press, 3–32.

John, J.G., et al., 2018. NOAA-GFDLGFDL-ESM4 model output prepared 
for CMIP6 ScenarioMIP ssp245 and ScenarioMIP ssp585. Earth System 
Grid Federation. doi:10.22033/ESGF/CMIP6.1414.

Jones, P.W., 1999. First- and second-order conservative remapping 
schemes for grids in spherical coordinates. Monthly Weather Review, 
127 (9), 2204–2210. doi:10.1175/1520-0493(1999)127<2204: 
FASOCR>2.0.CO;2.

Jungclaus, J., et al., 2019. MPI-M MPI-ESM1.2-HR model output prepared 
for CMIP6 CMIP historical. Earth System Grid Federation. doi:10. 
22033/ESGF/CMIP6.6594.

Kim, J., Ivanov, V.Y., and Fatichi, S., 2016. Climate change and uncer
tainty assessment over a hydroclimatic transect of Michigan. Stochastic 
Environmental Research and Risk Assessment, 30, 923–944. doi:10. 
1007/s00477-015-1097-2

Kim, Y.H., et al., 2019a. KIOST KIOST-ESM model output prepared for 
CMIP6 CMIP historical. Earth System Grid Federation. doi:10.22033/ 
ESGF/CMIP6.5296.

Kim, Y.H., et al., 2019b. KIOST KIOST-ESM model output prepared for 
CMIP6 ScenarioMIP ssp245 and ScenarioMIP ssp585. Earth System 
Grid Federation. doi:10.22033/ESGF/CMIP6.11241.

Kitoh, A., Yatagai, A., and Alpert, P., 2008. First super-high-resolution 
model projection that the ancient “Fertile Crescent” will disappear in 
this century. Hydrological Research Letters, 2, 1–4. doi:10.3178/hrl.2.1.

Krasting, J.P., et al., 2018. NOAA-GFDLGFDL-ESM4 model output pre
pared for CMIP6 CMIP historical. Earth System Grid Federation. 
doi:10.22033/ESGF/CMIP6.8597.

Lee, W.-L. and Liang, H.-C., 2020a. AS-RCEC TaiESM1.0 model output 
prepared for CMIP6 CMIP historical. Earth System Grid Federation. 
doi:10.22033/ESGF/CMIP6.9755.

Lee, W.-L. and Liang, H.-C., 2020b. AS-RCEC TaiESM1.0 model output 
prepared for CMIP6 ScenarioMIP ssp245 and ScenarioMIP ssp585. 
Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.9688.

Legates, D.R. and McCabe, G.J., 1999. Evaluating the use of “goodness-of- 
fit” measures in hydrologic and hydroclimatic model validation. Water 
Resources Research, 35 (1), 233–241. doi:10.1029/1998WR900018.

Lelieveld, J., et al., 2012. Climate change and impacts in the Eastern 
Mediterranean and the Middle East. Climatic Change, 114 (3–4), 
667–687. doi:10.1007/s10584-012-0418-4.

Lemann, T., Roth, V., and Zeleke, G., 2017. Impact of precipitation and 
temperature changes on hydrological responses of small-scale 

1934 E. YALCIN

https://doi.org/10.1175/2011JCLI4102.1
https://doi.org/10.1029/2010WR010269
https://www.cygwin.com/cygwin-ug-net/cygwin-ug-net.pdf
https://www.cygwin.com/cygwin-ug-net/cygwin-ug-net.pdf
https://doi.org/10.1007/s10661-016-5752-y
https://doi.org/10.1007/s10661-016-5752-y
https://doi.org/10.22033/ESGF/CMIP6.4271
https://doi.org/10.22033/ESGF/CMIP6.2285
https://doi.org/10.3390/w12072011
https://doi.org/10.22033/ESGF/CMIP6.4700
https://doi.org/10.22033/ESGF/CMIP6.251
https://doi.org/10.22033/ESGF/CMIP6.251
https://doi.org/10.22033/ESGF/CMIP6.4706
https://doi.org/10.22033/ESGF/CMIP6.727
https://doi.org/10.22033/ESGF/CMIP6.727
https://doi.org/10.22033/ESGF/CMIP6.4707
https://doi.org/10.22033/ESGF/CMIP6.728
https://doi.org/10.22033/ESGF/CMIP6.4702
https://doi.org/10.22033/ESGF/CMIP6.15327
https://forobs.jrc.ec.europa.eu/products/glc2000/products.php
https://doi.org/10.1016/j.jhydrol.2017.09.008
https://esgf-node.llnl.gov/projects/cmip6/
https://esgf-node.llnl.gov/projects/cmip6/
https://www.fao.org/geonetwork/srv/en/metadata.show?id=14116
https://doi.org/10.1007/s00704-018-2474-9
https://doi.org/10.1007/s00704-018-2474-9
https://doi.org/10.1029/2006GL025734
https://doi.org/10.22033/ESGF/CMIP6.8594
https://doi.org/10.22033/ESGF/CMIP6.8594
https://doi.org/10.22033/ESGF/CMIP6.9242
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.3390/cli4030040
https://doi.org/10.22033/ESGF/CMIP6.1414
https://doi.org/10.1175/1520-0493(1999)127%3C2204:FASOCR%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1999)127%3C2204:FASOCR%3E2.0.CO;2
https://doi.org/10.22033/ESGF/CMIP6.6594
https://doi.org/10.22033/ESGF/CMIP6.6594
https://doi.org/10.1007/s00477-015-1097-2
https://doi.org/10.1007/s00477-015-1097-2
https://doi.org/10.22033/ESGF/CMIP6.5296
https://doi.org/10.22033/ESGF/CMIP6.5296
https://doi.org/10.22033/ESGF/CMIP6.11241
https://doi.org/10.3178/hrl.2.1
https://doi.org/10.22033/ESGF/CMIP6.8597
https://doi.org/10.22033/ESGF/CMIP6.9755
https://doi.org/10.22033/ESGF/CMIP6.9688
https://doi.org/10.1029/1998WR900018
https://doi.org/10.1007/s10584-012-0418-4


catchments in the Ethiopian Highlands. Hydrological Sciences Journal, 
62 (2), 270–282. doi:10.1080/02626667.2016.1217415.

Li, L., 2019a. CAS FGOALS-g3 model output prepared for CMIP6 CMIP 
historical. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6. 
3356.

Li, L., 2019b. CAS FGOALS-g3 model output prepared for CMIP6 
ScenarioMIP ssp245 and ScenarioMIP ssp585. Earth System Grid 
Federation. doi:10.22033/ESGF/CMIP6.2056.

Liersch, S., 2003. Dewpoint estimation programs: dew.exe and dew02.exe 
[online]. Available from: https://swat.tamu.edu/software/ [Accessed 2 
July 2022].

Lovato, T., Peano, D., and Butenschön, M., 2021a. CMCC CMCC-ESM2 
model output prepared for CMIP6 CMIP historical. Earth System Grid 
Federation. doi:10.22033/ESGF/CMIP6.13195.

Lovato, T., Peano, D., and Butenschön, M., 2021b. CMCC CMCC-ESM2 
model output prepared for CMIP6 ScenarioMIP ssp245 and 
ScenarioMIP ssp585. Earth System Grid Federation. doi:10.22033/ 
ESGF/CMIP6.13168.

MGM (Turkish State Meteorological Service), 2022a. Annual maximum 
precipitation records in standard times for the Bingol meteorological 
station. Ankara: Turkish State Meteorological Service.

MGM (Turkish State Meteorological Service), 2022b. Daily precipitation, 
maximum and minimum air temperature, solar radiation, wind speed, 
and relative humidity records of the Bingol meteorological station. 
Ankara: Turkish State Meteorological Service.

MGM (Turkish State Meteorological Service), 2022c. Long-term all para
meters bulletin for the Bingol meteorological station. Ankara: Turkish 
State Meteorological Service.

Miao, C., et al., 2012. On the applicability of temperature and precipita
tion data from CMIP3 for China. PLoS ONE, 7 (9), e44659. doi:10. 
1371/journal.pone.0044659.

Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic 
quantification of accuracy in watershed simulations. Transactions of 
the ASABE, 50 (3), 885–900. doi:10.13031/2013.23153.

Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through con
ceptual models part I - a discussion of principles. Journal of Hydrology, 
10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6.

Nazeer, A., et al., 2022. Changes in the hydro-climatic regime of the 
Hunza Basin in the Upper Indus under CMIP6 climate change 
projections. Scientific Reports, 12, 21442. doi:10.1038/s41598-022- 
25673-6.

Neitsch, S.L., et al., 2011. Soil and water assessment tool theoretical 
documentation version 2009. Texas: Texas Water Resources Institute.

Nilsson, C., et al., 2005. Fragmentation and flow regulation of the world’s 
large river systems. Science, 308 (5720), 405–408. doi:10.1126/science. 
1107887.

Nohara, D., et al., 2006. Impact of climate change on river discharge 
projected by multimodel ensemble. Journal of Hydrometeorology, 
7 (5), 1076–1089. doi:10.1175/JHM531.1.

O’Neill, B.C., et al., 2016. The scenario model intercomparison project 
(ScenarioMIP) for CMIP6. Geoscientific Model Development, 9 (9), 
3461–3482. doi:10.5194/gmd-9-3461-2016.

Özdoğan, M., 2011. Climate change impacts on snow water availability in 
the Euphrates-Tigris basin. Hydrology and Earth System Sciences, 
15 (9), 2789–2803. doi:10.5194/hess-15-2789-2011.

Qin, P., et al., 2022. Projected impacts of climate change on major dams in 
the Upper Yangtze River Basin. Climatic Change, 170 (1–2), 8. doi:10. 
1007/s10584-021-03303-w.

Rathjens, H., et al., 2016. CMhyd user manual: documentation for prepar
ing simulated climate change data for hydrologic impact studies 
[online]. Available from: https://swat.tamu.edu/media/115265/bias_ 
cor_man.pdf [Accessed 25 May 2022].

Roberts, N.M. and Lean, H.W., 2008. Scale-selective verification of rainfall 
accumulations from high-resolution forecasts of convective events. 
Monthly Weather Review, 136 (1), 78–97. doi:10.1175/2007MWR2123.1.

Santhi, C., et al., 2001. Validation of the SWAT model on a large river basin 
with point and nonpoint sources. Journal of the American Water 
Resources Association, 37 (5), 1169–1188. doi:10.1111/j.1752-1688.2001. 
tb03630.x.

Schulzweida, U., 2021. CDO user guide version 2.0.5. Hamburg: Max 
Planck Institute for Meteorology.

Schupfner, M., et al., 2019. DKRZ MPI-ESM1.2-HR model output pre
pared for CMIP6 ScenarioMIP ssp245 and ScenarioMIP ssp585. Earth 
System Grid Federation. doi:10.22033/ESGF/CMIP6.2450.

Seker, M. and Gumus, V., 2022. Projection of temperature and precipita
tion in the Mediterranean region through multi-model ensemble from 
CMIP6. Atmospheric Research, 280, 106440. doi:10.1016/j.atmosres. 
2022.106440

Seland, Ø., et al., 2019a. NCC NorESM2-LM model output prepared for 
CMIP6 CMIP historical. Earth System Grid Federation. doi:10.22033/ 
ESGF/CMIP6.8036.

Seland, Ø., et al., 2019b. NCC NorESM2-LM model output prepared for 
CMIP6 ScenarioMIP ssp245 and ScenarioMIP ssp585. Earth System 
Grid Federation. doi:10.22033/ESGF/CMIP6.604.

Şen, Z., 2019. Climate change expectations in the upper Tigris River basin, 
Turkey. Theoretical and Applied Climatology, 137, 1569–1585. doi:10. 
1007/s00704-018-2694-z.

Shiogama, H., Abe, M., and Tatebe, H., 2019. MIROC MIROC6 model 
output prepared for CMIP6 ScenarioMIP ssp245 and ScenarioMIP 
ssp585. Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.898.

Siqueira, P.P., et al., 2021. Effects of climate and land cover changes on 
water availability in a Brazilian Cerrado basin. Journal of Hydrology: 
Regional Studies, 37, 100931. doi:10.1016/j.ejrh.2021.100931.

Stewart, I.T., 2009. Changes in snowpack and snowmelt runoff for key 
mountain regions. Hydrological Processes, 23 (1), 78–94. doi:10.1002/ 
hyp.7128.

Sun, C., et al., 2022. CMIP6 model simulation of concurrent continental 
warming holes in Eurasia and North America since 1990 and their 
relation to the Indo-Pacific SST warming. Global and Planetary 
Change, 213, 103824. doi:10.1016/j.gloplacha.2022.103824.

Swart, N.C., et al., 2019a. CCCma CanESM5 model output prepared for 
CMIP6 CMIP historical. Earth System Grid Federation. doi:10.22033/ 
ESGF/CMIP6.3610.

Swart, N.C., et al., 2019b. CCCma CanESM5 model output prepared for 
CMIP6 ScenarioMIP ssp245 and ScenarioMIP ssp585. Earth System 
Grid Federation. doi:10.22033/ESGF/CMIP6.1317.

Tan, M.L., et al., 2020. Southeast Asia HydrO-meteorological droughT 
(SEA-HOT) framework: a case study in the Kelantan River Basin, 
Malaysia. Atmospheric Research, 246, 105155. doi:10.1016/j.atmosres. 
2020.105155.

Tatebe, H. and Watanabe, M., 2018. MIROC MIROC6 model output 
prepared for CMIP6 CMIP historical. Earth System Grid Federation. 
doi:10.22033/ESGF/CMIP6.5603.

Troin, M. and Caya, D., 2014. Evaluating the SWAT’s snow hydrology 
over a Northern Quebec watershed. Hydrological Processes, 28 (4), 
1858–1873. doi:10.1002/hyp.9730.

Tumsa, B.C., 2022. Performance assessment of six bias correction meth
ods using observed and RCM data at upper Awash basin, Oromia, 
Ethiopia. Journal of Water and Climate Change, 13 (2), 664–683. 
doi:10.2166/wcc.2021.181.

Turner, S.W.D., Ng, J.Y., and Galelli, S., 2017. Examining global electricity 
supply vulnerability to climate change using a high-fidelity hydro
power dam model. Science of the Total Environment, 590-591, 
663–675. doi:10.1016/j.scitotenv.2017.03.022.

USGS (United States Geological Survey), 2014. Shuttle Radar Topography 
Mission (SRTM): 1 arc-second global elevation database [online]. 
Available from: https://earthexplorer.usgs.gov/ [Accessed 28 June 2022].

Usul, N., 2009. Engineering hydrology. Ankara: METU Press.
van Vliet, M.T.H., et al., 2016. Power-generation system vulnerabil

ity and adaptation to changes in climate and water 
resources. Nature Climate Change, 6, 375–380. doi:10.1038/ 
nclimate2903.

Volodin, E., et al., 2019a. INM INM-CM4-8 model output prepared for 
CMIP6 CMIP historical. Earth System Grid Federation. doi:10.22033/ 
ESGF/CMIP6.5069.

Volodin, E., et al., 2019b. INM INM-CM4-8 model output prepared for 
CMIP6 ScenarioMIP ssp245 and ScenarioMIP ssp585. Earth System 
Grid Federation. doi:10.22033/ESGF/CMIP6.12321.

HYDROLOGICAL SCIENCES JOURNAL 1935

https://doi.org/10.1080/02626667.2016.1217415
https://doi.org/10.22033/ESGF/CMIP6.3356
https://doi.org/10.22033/ESGF/CMIP6.3356
https://doi.org/10.22033/ESGF/CMIP6.2056
https://swat.tamu.edu/software/
https://doi.org/10.22033/ESGF/CMIP6.13195
https://doi.org/10.22033/ESGF/CMIP6.13168
https://doi.org/10.22033/ESGF/CMIP6.13168
https://doi.org/10.1371/journal.pone.0044659
https://doi.org/10.1371/journal.pone.0044659
https://doi.org/10.13031/2013.23153
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1038/s41598-022-25673-6
https://doi.org/10.1038/s41598-022-25673-6
https://doi.org/10.1126/science.1107887
https://doi.org/10.1126/science.1107887
https://doi.org/10.1175/JHM531.1
https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.5194/hess-15-2789-2011
https://doi.org/10.1007/s10584-021-03303-w
https://doi.org/10.1007/s10584-021-03303-w
https://swat.tamu.edu/media/115265/bias_cor_man.pdf
https://swat.tamu.edu/media/115265/bias_cor_man.pdf
https://doi.org/10.1175/2007MWR2123.1
https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
https://doi.org/10.22033/ESGF/CMIP6.2450
https://doi.org/10.1016/j.atmosres.2022.106440
https://doi.org/10.1016/j.atmosres.2022.106440
https://doi.org/10.22033/ESGF/CMIP6.8036
https://doi.org/10.22033/ESGF/CMIP6.8036
https://doi.org/10.22033/ESGF/CMIP6.604
https://doi.org/10.1007/s00704-018-2694-z
https://doi.org/10.1007/s00704-018-2694-z
https://doi.org/10.22033/ESGF/CMIP6.898
https://doi.org/10.1016/j.ejrh.2021.100931
https://doi.org/10.1002/hyp.7128
https://doi.org/10.1002/hyp.7128
https://doi.org/10.1016/j.gloplacha.2022.103824
https://doi.org/10.22033/ESGF/CMIP6.3610
https://doi.org/10.22033/ESGF/CMIP6.3610
https://doi.org/10.22033/ESGF/CMIP6.1317
https://doi.org/10.1016/j.atmosres.2020.105155
https://doi.org/10.1016/j.atmosres.2020.105155
https://doi.org/10.22033/ESGF/CMIP6.5603
https://doi.org/10.1002/hyp.9730
https://doi.org/10.2166/wcc.2021.181
https://doi.org/10.1016/j.scitotenv.2017.03.022
https://earthexplorer.usgs.gov/
https://doi.org/10.1038/nclimate2903
https://doi.org/10.1038/nclimate2903
https://doi.org/10.22033/ESGF/CMIP6.5069
https://doi.org/10.22033/ESGF/CMIP6.5069
https://doi.org/10.22033/ESGF/CMIP6.12321


Volodin, E., et al., 2019c. INM INM-CM5-0 model output prepared for 
CMIP6 CMIP historical. Earth System Grid Federation. doi:10.22033/ 
ESGF/CMIP6.5070.

Volodin, E., et al., 2019d. INM INM-CM5-0 model output prepared for 
CMIP6 ScenarioMIP ssp245 and ScenarioMIP ssp585. Earth System 
Grid Federation. doi:10.22033/ESGF/CMIP6.12322.

Wasti, A., et al., 2022. Climate change and the hydropower sector: a global 
review. Wiley Interdisciplinary Reviews: Climate Change, 13 (2), e757. 
doi:10.1002/wcc.757.

Weigel, A.P., et al., 2010. Risks of model weighting in multimodel climate 
projections. Journal of Climate, 23 (15), 4175–4191. doi:10.1175/ 
2010JCLI3594.1.

Wen, K., Gao, B., and Li, M., 2021. Quantifying the impact of future 
climate change on runoff in the Amur River Basin using a distributed 
hydrological model and CMIP6 GCM projections. Atmosphere, 
12 (12), 1560. doi:10.3390/atmos12121560.

Wieners, K.-H., et al., 2019a. MPI-M MPI-ESM1.2-LR model output pre
pared for CMIP6 CMIP historical. Earth System Grid Federation. 
doi:10.22033/ESGF/CMIP6.6595.

Wieners, K.-H., et al., 2019b. MPI-M MPI-ESM1.2-LR model output 
prepared for CMIP6 ScenarioMIP ssp245 and ScenarioMIP ssp585. 
Earth System Grid Federation. doi:10.22033/ESGF/CMIP6.793.

Wu, T., et al., 2018. BCC BCC-CSM2MR model output prepared for 
CMIP6 CMIP historical. Earth System Grid Federation. doi:10.22033/ 
ESGF/CMIP6.2948.

Xiang, Y., et al., 2022. Impact of climate change on the hydrological 
regime of the Yarkant River Basin, China: an assessment using three 

SSP scenarios of CMIP6 GCMs. Remote Sensing, 14 (1), 115. doi:10. 
3390/rs14010115.

Xin, X., et al., 2019. BCC BCC-CSM2MR model output prepared for 
CMIP6 ScenarioMIP ssp245 and ScenarioMIP ssp585. Earth System 
Grid Federation. doi:10.22033/ESGF/CMIP6.1732.

Yalcin, E., 2019. Estimation of irrigation return flow on monthly time 
resolution using SWAT model under limited data availability. 
Hydrological Sciences Journal, 64 (13), 1588–1604. doi:10.1080/ 
02626667.2019.1662025.

Yalcin, E. and Tigrek, S., 2019. The Tigris hydropower system operations: the 
need for an integrated approach. International Journal of Water Resources 
Development, 35 (1), 110–125. doi:10.1080/07900627.2017.1369867.

Yukimoto, S., et al., 2019a. MRI MRI-ESM2.0 model output prepared for 
CMIP6 CMIP historical. Earth System Grid Federation. doi:10.22033/ 
ESGF/CMIP6.6842.

Yukimoto, S., et al., 2019b. MRI MRI-ESM2.0 model output prepared for 
CMIP6 ScenarioMIP ssp245 and ScenarioMIP ssp585. Earth System 
Grid Federation. doi:10.22033/ESGF/CMIP6.638.

Ziehn, T., et al., 2019a. CSIRO ACCESS-ESM1.5 model output prepared for 
CMIP6 CMIP historical. Earth System Grid Federation. doi:10.22033/ 
ESGF/CMIP6.4272.

Ziehn, T., et al., 2019b. CSIRO ACCESS-ESM1.5 model output prepared for 
CMIP6 ScenarioMIP ssp245 and ScenarioMIP ssp585. Earth System 
Grid Federation. doi:10.22033/ESGF/CMIP6.2291.

Zittis, G., et al., 2022. Climate change and weather extremes in the Eastern 
Mediterranean and Middle East. Reviews of Geophysics, 60 (3), 
e2021RG000762. doi:10.1029/2021RG000762.

1936 E. YALCIN

https://doi.org/10.22033/ESGF/CMIP6.5070
https://doi.org/10.22033/ESGF/CMIP6.5070
https://doi.org/10.22033/ESGF/CMIP6.12322
https://doi.org/10.1002/wcc.757
https://doi.org/10.1175/2010JCLI3594.1
https://doi.org/10.1175/2010JCLI3594.1
https://doi.org/10.3390/atmos12121560
https://doi.org/10.22033/ESGF/CMIP6.6595
https://doi.org/10.22033/ESGF/CMIP6.793
https://doi.org/10.22033/ESGF/CMIP6.2948
https://doi.org/10.22033/ESGF/CMIP6.2948
https://doi.org/10.3390/rs14010115
https://doi.org/10.3390/rs14010115
https://doi.org/10.22033/ESGF/CMIP6.1732
https://doi.org/10.1080/02626667.2019.1662025
https://doi.org/10.1080/02626667.2019.1662025
https://doi.org/10.1080/07900627.2017.1369867
https://doi.org/10.22033/ESGF/CMIP6.6842
https://doi.org/10.22033/ESGF/CMIP6.6842
https://doi.org/10.22033/ESGF/CMIP6.638
https://doi.org/10.22033/ESGF/CMIP6.4272
https://doi.org/10.22033/ESGF/CMIP6.4272
https://doi.org/10.22033/ESGF/CMIP6.2291
https://doi.org/10.1029/2021RG000762

	Abstract
	1 Introduction
	2 Materials and methods
	2.1 Overview of the study area
	2.2 Selection of the multi-model ensembles of CMIP6 GCMs
	2.3 Construction of SWAT model
	2.4 SWAT model calibration and streamflow predictions
	2.5 Lake evaporation under changing climate conditions
	2.6 Reservoir operation scheme

	3 Results and discussion
	3.1 Accuracy analysis of the CMIP6 multi-model ensemble mean predictions
	3.2 Evaluation of the SWAT model performance
	3.3 Impacts of climate change on hydropower generation

	4 Summary and conclusions
	Disclosure statement
	ORCID
	References

