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Abstract
The present investigation examined the impact of pomegranate (Punica granatum L.) juice on trace elements, minerals, 
and oxidative stress in relation to the potential harm inflicted by aluminum chloride (AlCl3) in rats. Rats were split into four 
groups at random for this purpose: control (C), pomegranate juice (PJ), aluminum chloride (A), and PJ + A. For 30 days, PJ 
was orally administered by gavage at a rate of 4 mL/kg every other day, whereas AlCl3 was administered intraperitoneally 
at 8.3 mg/kg. Spectrophotometric analysis was used to measure the levels of malondialdehyde (MDA), glutathione (GSH), 
superoxide dismutase (SOD), and catalase (CAT) enzyme activity in various tissues. In addition, high-resolution continuum 
source flame atomic absorption spectrometry (HR-CS FAAS) was used to determine the amounts of the elements Al, Cu, 
Fe, Mn, Zn, Ca, and Mg in the tissues. It was discovered that when PJ therapy was applied to all tissues, the antioxidant 
enzymes SOD and CAT activity increased, the GSH level rose, and the MDA level, a sign of lipid peroxidation, decreased. 
Al and Ca levels increased in the A group relative to the C group in all tissues, whereas they decreased in the A + PJ group 
relative to the A group. Group A exhibited a proportionate increase in Fe levels in the liver and renal tissues compared with 
group C. Furthermore, the A group’s brain tissue had a higher Fe level than the C group’s. The A + PJ group’s brain tissue 
had a lower Fe level than the A group’s. Our findings demonstrate that PJ therapy greatly decreased Al buildup and oxidative 
stress in tissues while controlling variations in trace element levels. In addition, it is concluded that PJ might have value as 
a strong chelating agent to prevent Al poisoning.
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Introduction

Heavy metals such as aluminum (Al) are widely present 
in our environment due to the rise in industrial activity, 
and the possible effects of these metals on human health 
are a subject of great interest [1]. The metallic element 
Al is widely distributed across the crust of the Earth [2]. 
Because Al is used so extensively in modern life from 
refining crude oil to purifying drinking water, food items, 
pharmaceuticals, medications, cosmetics, and electrical 
insulators, it is nearly difficult to completely avoid expo-
sure to the metal [3, 4]. Estimates indicate that the aver-
age weekly consumption of Al is between 70 and 140 mg. 
Despite the extremely low (less than 1%) absorption rate 
from the gastrointestinal tract, Al steadily builds up in crit-
ical tissues such as the liver, brain, kidneys, heart, bones, 
and blood. Histopathologic (structural tissue changes) 
and serologic (blood-related) abnormalities may result 
from this buildup over time [5–8]. Al has been included 
in the Agency for Toxic Substances and Disease Registry 
(ATSDR) priority list of dangerous substances [9].

Additionally, at high concentrations, transition metals 
may produce excess nitrogen and oxygen free radicals. The 
body produces free radicals, which are more likely to react 
in the vicinity of their formation. The incapacity of the cell 
defense mechanisms to prevent oxidative damage to sub-
cellular systems will occur if these reactive species are not 
neutralized. Similar to other transition metals, aluminum 
chloride (AlCl3) can change the numbers of non-enzymatic 
antioxidants and their activity [10–12]. As a result, oxida-
tive stress regarded as one of the main macromolecular 
damages can result from Al poisoning [13]. This increases 
the generation of free radicals, modifies sugar metabo-
lism, and specifically impairs noradrenergic and choliner-
gic neurotransmission, which causes damage to neurons 
[6–14]. In addition, there is a chance that exposure to Al 
compounds will worsen hepatotoxicity, nephrotoxicity, 
and inflammation [15]. According to Lentini et al. [16], 
only a minor portion of the Al that builds up in the human 
body through the skin comes from tainted food and drink. 
Nephrotoxicity and renal failure result from the kidneys 
quickly eliminating most this Al. Al-Kahtani et al. [17] 
have reported that oxidative stress and apoptosis in rats are 
caused by Al buildup in liver tissue. In addition, Yu et al. 
[18] observed that Al buildup inhibits neurotransmitter 
synthesis and release, leading to an imbalance in metal 
homeostasis.

Certain critical element absorption and metabolism may 
be impacted by Al exposure. Research has demonstrated 
that long-term exposure to Al can upset the equilibrium of 
the elements [18, 19]. Specifically, introducing Al into the 
body can upset the body equilibrium of these elements or 

make it more difficult to absorb vital elements, including 
iron (Fe), zinc (Zn), magnesium (Mg), selenium (Se), and 
copper (Cu). Trace elements are necessary for the human 
body to function properly and are crucial for metabolic 
reactions vital to life, such as protein synthesis, cell divi-
sion, and differentiation [20]. One of the key elements 
influencing significant pathophysiological mechanisms 
such as oxidative stress and inflammation is the disrup-
tion of trace element homeostasis [21]. Thus, preserving 
the body’s health and ability to function depends on the 
balanced management of trace elements.

Using antioxidants from natural sources is crucial for 
minimizing the harmful effects of Al. The study of tradi-
tional medicine is considered crucial to the creation of novel 
compounds and contemporary medications [22]. Because 
natural sources such as plants, fruits, and vegetables contain 
healing qualities, including anticoagulants, anticancers, and 
antioxidants, many people choose natural remedies [23, 24]. 
The juice of pomegranate (PJ), which is widely consumed, 
has a high content of polyphenolic components, including 
vitamin C, anthocyanins, punicalagin, ellagic acid, and gal-
lic acid [25]. Pomegranate has important bioactive proper-
ties such as anticancer, antiproliferative, antiapoptotic [26], 
HIV-I inhibition [27], antiinflammatory [28], cardioprotec-
tive effect [29], antihyperlipidemic [30], and antioxidant 
[31]. The application of plant extracts generated from poly-
phenols to mitigate the effects of Al exposure has been the 
subject of recent research. Hasan et al. investigated the pre-
ventive effect of blackberry juice (BBJ) on oxidative stress 
and neurological problems in rats exposed to sodium fluo-
ride (NaF) and AlCl3. They concluded that administering 
BBJ has a notable neuroprotective effect and might lessen 
oxidative stress. They did note, however, that serum levels 
of potassium (K) were dramatically elevated, whereas levels 
of sodium (Na), calcium (Ca), Cu, and Zn were significantly 
lowered [32]. Salem et al. demonstrated that plant polyphe-
nolic compounds of ellagic acid and ferulic acid improved 
histological changes, liver dysfunctions, dyslipidemia, liver 
malondialdehyde (MDA), and protein carbonyl content lev-
els; increased liver catalase (CAT), glutathione peroxidase 
(GPx), and superoxide dismutase (SOD) activity; increased 
glutathione (GSH) level; and increased Cu concentration 
while lowering liver Fe and Zn concentrations by reducing 
oxidative stress caused by γ radiation and AlCl3 [33]. Aque-
ous pomegranate (Punica granatum L.) extract was found by 
Ali and Saeed to mitigate gentamicin-induced kidney oxi-
dative damage [34]. Furthermore, El-Habibi [35] reported 
that the high phenolic content of PJ, along with the potential 
mechanism of action of scavenging and induction of various 
antioxidant enzymes, could be responsible for the improve-
ment in renal physiology of rats administered PJ while they 
were on adenine treatment.
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Few studies have examined kidney, liver, and brain tis-
sues collectively, despite numerous studies on the bioactive 
qualities of pomegranates, plants, and fruits with compara-
ble composition. Furthermore, there is not much research 
that concentrates on the homeostatic imbalance of trace 
elements in tissues. This study was designed to assess the 
potential protective effect of Punica granatum L. against 
AlCl3-induced oxidative stress and its effects on the homeo-
stasis of trace elements in tissues. This study was conducted 
considering the significance of protection against the harm-
ful effects of AlCl3 and to better understand the role and 
mechanism of natural products commonly consumed as 
inhibitors of oxidative stress.

Materials and Methods

Supply of Pomegranate Samples

Fresh pomegranate samples from Adiyaman in November 
2019 were washed, strained, and divided into two. Pome-
granate grains (white parts included) were broken down 
using a blender. It was kept in 1 mL Eppendorf tubes 
at − 20 °C until the study was conducted. The chemical con-
tent of pomegranate, a local product of Adıyaman province 
collected from the same region, was previously investigated 
by our researcher. The content of PJ used was determined 
as phenolic acid 490.75 mg/kg, anthocyanin 137.1 mg/L, 
ellagic acid 175 mg/100 g, total flavonoids 63 mg/kg, and 
total antioxidants 1530 mg/kg [36].

Animal Models and Experimental Protocol

In the experimental study, 28 adult Wistar albino male 
rats weighing 200–250 g were used. They were randomly 
divided into 4 groups (n = 7) to minimize selection bias. 
Experimental animals were obtained from Adıyaman Uni-
versity Experimental Animals Production, Application, and 
Research Center (ADYU DEHAM). The ethics committee’s 
decision on the experimental study was taken from the local 
ethics committee of Adiyaman University Animal Experi-
ments (Ethics Committee No: 2019/038). The animals were 
treated according to national and international laws and 
policies on the care and use of experimental animals. The 

animals were kept in special cages in groups of 4 before and 
during the experiment under standard conditions (22–24 °C 
constant temperature and ventilated rooms; 12 h daylight 
and 12 h dark photoperiod). The rats were fed a standard 
laboratory diet (RT-FR-01, DSA Agrifood Products INC, 
Kırıkkale, Turkey) and water ad libitum.

•	 Control group (C): Saline administration (1 mL) was per-
formed every other day for 30 days intraperitoneally (i.p).

•	 PJ group: PJ administration was performed by oral gav-
age at 4 mL/kg every other day for 30 days [37].

•	 AlCl3 group (A): AlCl3.6H2O was administered i.p. at 
8.3 mg/kg every other day for 30 days [38].

•	 AlCl3 + PJ group (A + PJ): AlCl3 was administered at 
8.3 mg/kg i.p., and PJ was administered at 4 mL/kg by 
oral gavage every other day for 30 days.

Collection of Tissue

At the end of the 30-day experiment, rats in all groups were 
decapitated under ketamine (75 mg/kg) + xylazine (10 mg/
kg) anesthesia, and liver, kidney, and brain tissues were 
removed. Tissues were kept at − 80 °C until the study was 
conducted.

Preparation of the Samples

Digestion of samples (0.4–0.5 g) for elemental analysis of 
liver, kidney, and brain tissues was performed using temper-
ature- and pressure-resistant polytetrafluorethylene (PTFE) 
containers in a microwave oven with a volume of 100 mL. 
Each sample was placed in PTFE containers, and solutions 
of 5 mL of nitric acid (65% HNO3, (w/w)), 1 mL of per-
chloric acid (72% HClO4 (w/w)), and 1 mL of hydrogen 
peroxide (30% H2O2 (w/w)) were added and left for 30 min 
to dissolve in the microwave digestion procedure. After the 
PTFE vessels were cooled to room temperature, the volume 
of the obtained clear mixture was completed to 10 mL with 
0.1 mol/L HNO3 solution. Microwave solubilization was 
applied again to the insoluble samples [39].

Tissue samples that became a clear solution were read in 
the Analytik Jena ContrAA 300 (GLE, Berlin, Germany) 
model high-resolution continuum source flame atomic 

Table 1   HR CS-FAAS device 
variables

Variables Al Cu Fe Mn Zn Ca Mg

Wavelength, nm 396.15 324.75 248.32 279.48 213.85 422.67 285.20
N2O-C2H2 flow rate, L/h 215 0 0 0 0 215 0
C2H2-air flow rate, L/h 55 55 60 80 60 50 70
Flame head height, mm 7 6 5 8 8 6 5
Evaluation pixels, pm 3 3 3 3 3 3 3
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absorption spectrometry (HR CS FAAS). HR-CS FAAS 
device variables are shown in Table 1, respectively.

To obtain the calibration graphs, metal stock solutions 
(Merck) with a concentration of 1000 mg/L were taken in 
certain volumes and completed to the appropriate volumes. 
The calibration variables obtained for the studied metals are 
shown in Table 2.

Homogenization of Samples

For the determination of MDA, GSH, SOD, and CAT, tis-
sue homogenization was performed with a Potter–Elvehjem 
glass homogenizer using an ice-cooled 0.1 M K-phosphate 
buffer containing 0.15 M KCl, 1 mM EDTA, and 1 mM DTT 
in a 1:4 ratio of total tissue weight (w/v). After homoge-
nization, the homogenates were transferred to Eppendorf 
tubes and centrifuged for 20 min at 16,000 g at 4 °C (Sigma 
2-16 K, St. Louis, Missouri). After this process, the super-
natant fraction was removed, and analyses were performed 
on these samples.

Determination of Malondialdehyde (MDA)

MDA levels were measured according to the method devel-
oped by Buege and Aust [40]. A total of 1 mL of the sample 
and 2 mL of trichloroacetic acid (TCA)-thiobarbituric acid 
(TBA)-hydrochloric acid (HCl) reagent [0.37% TBA, 15% 
TCA, and 0.24 N HCl] (in a ratio of 1:1:1) were transferred 
to the test tubes. The tubes were placed in boiling water for 
15 min and then cooled. The tubes were then centrifuged 
at 5000 rpm for 10 min. The readings of the supernatants 
were obtained spectrophotometrically at 532 nm. The MDA 
level was calculated using a molar absorption coefficient of 
1.56 × 105 1/mol cm.

Superoxide Dismutase (SOD) Activity

The SOD test was performed using an indirect method based 
on the SOD inhibitory effect of epinephrine autoxidation on 
the initial rate [41]. After 0.2 mL of the sample and 2.5 mL 

of carbonate buffer (0.05 M, pH 10.2) were transferred into 
the test tube, 0.3 mL of freshly prepared epinephrine was 
added. Absorbance was recorded every 30 s for 2 min using 
a spectrophotometer at 480 nm.

Glutathione (GSH) Analysis

Ellman [42] described a method to determine the GSH level. 
A total of 0.5 mL of the sample was transferred into the test 
tube and centrifuged after adding 2 mL of 10% TCA. Then, 
1 mL of supernatant, 0.5 mL of Ellman reagent, and 3 mL of 
phosphate buffer were added. Absorbance values were read 
and recorded at 412 nm using a spectrophotometer.

Catalase (CAT) Activity

Claiborne [43] method was used to determine CAT activ-
ity. CAT divides H2O2 directly into H20 and O2. As a result 
of the reaction of 2 mL of H2O2 solution and 1 mL of the 
sample, absorbance values were read at 360 nm for 70 s. The 
degradation of H2O2 was calculated using the molar absorp-
tion coefficient Ɛ = 34.9 1/mol cm.

Statistical Assessment

Data were expressed as mean ± standard deviation (SD). 
One-way analysis of variance (ANOVA) followed by Tuk-
ey’s HSD test was applied using SPSS (20.0 software) to 
calculate the differences between groups; p values of < 0.05 
and < 0.001 were considered statistically significant.

Results

Metal levels in the liver, brain, and kidney tissues of rats 
exposed to AlCI3 are shown in Tables 3, 4, and 5. When 
liver tissue trace element and mineral levels were exam-
ined (Table 3), there was no statistical difference among 
Cu levels in all groups. Manganese (Mn) levels in the A 
and A + PJ groups decreased compared with those in the 
C group (p < 0.05, p < 0.001). It was observed that the Ca 
level increased in the A group compared with the C group 
(p < 0.001), whereas the Ca level in the A + PJ group 
decreased compared with the A group (p < 0.001). Al level 
increased significantly in the A group compared with the C 
group (p < 0.001). It was observed that the Al level of the 
A + PJ group decreased compared with that of the A group 
(p < 0.001).

Trace element and mineral levels in kidney tissue are 
shown in Table 4. When the A group was compared with 
the C group, it was observed that the Cu level increased 
(p < 0.01).

Table 2   Calibration curves by equation

Metal Calibration equation (mg/L) Correlation 
coefficient 
(R2)

Al y = 0.0015638x − 0.0002724 0.998439679
Cu y = 0.0965943x + 0.0006576 0.998346131
Fe y = 0.0352571x + 0.0020019 0.998499348
Mn y = 0.113278x + 0.0044163 0.996893854
Ca y = 0.1231887x + 0.0116040 0.990439556
Zn y = 0.1870560x + 0.0308181 0.964975492
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It was found that the Cu level decreased in the A + PJ 
group compared with the A group (p < 0.05). There was 
no statistical difference between the Fe, Mn, and Zn levels 
of all groups (p > 0.05). The Ca level was higher in the A 
group than in the C and A + PJ groups (p < 0.05, p < 0.001). 
The mg level of the A + PJ group increased significantly 
compared with that of the C group (p < 0.001). When the A 
group was compared with the C group, it was found that the 
Al level increased (p < 0.05). It was determined that the Al 
level of the A + PJ group decreased significantly compared 
with that of the A group (p < 0.001).

Trace element and mineral levels in brain tissue are 
shown in Table 5. No statistical difference existed between 
Cu, Mg, and Zn levels of all groups. The Ca level in the 

A group was found to be higher than in the C and A + PJ 
groups (p < 0.05, p < 0.001). It was observed that the Al level 
increased significantly in the A group compared with the C 
group (p < 0.001). It was determined that the Al level of the 
A + PJ group decreased significantly compared with that of 
the A group (p < 0.05). It was observed that the Mn level 
of the A + PJ and A groups decreased compared with that 
of the C group (p < 0.05). It was found that the Fe level of 
the C group showed a significant increase in the A group 
(p < 0.05). It was found that the Fe level of the PJ and A + PJ 
groups decreased significantly compared with that of the A 
group (p < 0.05).

The manifested AlCl3-induced oxidative stress in 
liver, kidney, and brain tissues was caused by significant 

Table 3   Liver tissue element 
concentrations (mean ± SD, 
µg/g) after PJ administration 
during AlCl3 exposure

Comparison with the A group: x, p < 0.05; y, p < 0.01; z, p < 0.001
Comparison with the C group: a, p < 0.05; b, p < 0.01; c, p < 0.001

Elements/group C PJ A A + PJ

Al 22.15 ± 3.01 24.21 ± 4.15z 88.57 ± 8.25c 60.41 ± 7.15cz

Cu 1.43 ± 0.03 1.41 ± 0.03 1.57 ± 0.05 1.50 ± 0.07
Fe 43.20 ± 2.17 41.50 ± 1.74 46.01 ± 2.43 40.53 ± 1.18
Mn 0.71 ± 0.02 0.76 ± 0.01 0.64 ± 0.01c 0.69 ± 0.02a

Ca 93.61 ± 2.78 84.25 ± 7.05z 139.60 ± 4.12c 99.46 ± 3.25z

Mg 177.78 ± 4.87 184.94 ± 6.24 202.52 ± 9.93 191.18 ± 12.37
Zn 35.12 ± 1.37 35.14 ± 1.61 33.84 ± 1.97 35.42 ± 1.79

Table 4   Kidney tissue element 
concentrations (mean ± SD, 
µg/g) after PJ administration 
during AlCl3 exposure

Comparison with the A group: x, p < 0.05; y, p < 0.01; z, p < 0.001
Comparison with the C group: a, p < 0.05; b, p < 0.01; c, p < 0.001

Elements/group C PJ A A + PJ

Al 7.62 ± 0.27 8.67 ± 0.56 14.51 ± 0.42a 6.44 ± 0.19z

Cu 5.42 ± 0.48 6.00 ± 0.39 7.95 ± 0.17b 6.56 ± 0.64x

Fe 38.34 ± 3.09 39.38 ± 2.55 41.39 ± 1.26 43.05 ± 1.33
Mn 0.43 ± 0.03 0.45 ± 0.02 0.37 ± 0.02 0.48 ± 0.03
Ca 95.21 ± 5.71 94.05 ± 4.16x 124.86 ± 7.46a 63.12 ± 9.59az

Mg 97.14 ± 2.16 102.48 ± 4.20 145.24 ± 10.16c 121.96 ± 6.88
Zn 21.32 ± 1.31 21.70 ± 1.21 23.65 ± 1.13 23.85 ± 1.19

Table 5   Brain tissue element 
concentrations (mean ± SD, 
µg/g) after PJ administration 
during AlCl3 exposure

Comparison with the A group: x, p < 0.05; y, p < 0.01; z, p < 0.001
Comparison with the C group: a, p < 0.05; b, p < 0.01; c, p < 0.001

Elements/group C PJ A A + PJ

Al 28.00 ± 2.00 26.00 ± 3.00z 50.01 ± 4.00c 38.01 ± 3.00ax

Cu 1.25 ± 0.06 1.19 ± 0.09 1.10 ± 0.10 1.15 ± 0.09
Fe 15.01 ± 0.50 17.00 ± 0.50x 22.07 ± 1.21a 16.02 ± 0.30x

Mn 0.33 ± 0.01 0.30 ± 0.02x 0.25 ± 0.01a 0.26 ± 0.01a

Ca 40.00 ± 4.00 45.00 ± 3.00z 75.01 ± 6.00c 59.01 ± 5.00ax

Mg 140.00 ± 8.00 160.00 ± 7.00 155.00 ± 9.00 145.00 ± 6.00
Zn 9.00 ± 0.50 10.00 ± 0.20 10.02 ± 0.05 11.00 ± 0.80
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(p < 0.001) increases in the levels of MDA concurrently 
with a significant (p < 0.001) decrease in GSH contents and 
inhibition of antioxidant enzyme activities compared with 
the C group.

Treatment with PJ significantly improved these changes 
in GSH levels (brain (p < 0.01), liver and kidney (p < 0.001), 
and antioxidant enzyme activities (p < 0.001) and decreased 
MDA levels, as shown in Figs. 1 and 2 (p < 0.001).

In addition, PJ application alone improved the GSH 
content and antioxidant enzyme activities of liver, kidney, 
and brain tissues compared with group C, while decreasing 
MDA levels (p < 0.001).

Discussion

Al is easily absorbed by living organisms through their skin, 
digestion, and breathing. Al builds up in the kidneys, brain, 
heart, and other organs as it enters the body. Al exposure can 
directly result in mineral level disruptions that lead to electro-
lyte imbalance, particularly in target organs such as the liver 
and brain [44–47]. It has been noted that each mineral tested 
may contribute differently to the pathological consequences 
of Al-induced toxicity because of the variety of mineral dis-
tribution and organ-specific functions [48]. Nevertheless, 
data assessing the correlation between Al exposure and the 

SOD: Superoxide dismutase, CAT: Catalase 
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Fig. 1   Analysis of variance and Tukey HSD results (mean ± SD) of 
antioxidant enzyme activities (SOD, CAT) in liver, kidney, and brain 
tissues following PJ administration during AlCl3 exposure (n = 7). 

Values are presented as mean ± SD, representing significant differ-
ence compared with group A: x, p < 0.05; y, p < 0.01; and z, p < 0.001 
and group C: a, p < 0.05; b, p < 0.01; and c, p < 0.001, respectively



Alleviation of Aluminum‑Induced Oxidative Stress, Trace Element, and Mineral Levels in Rat…

1 3

simultaneous concentrations of these elements in three dis-
tinct tissues are currently lacking. To this end, the effects 
of PJ on the homeostasis of trace elements in tissues were 
investigated to assess any potential defenses against oxidative 
stress caused by AlCl3.

The findings demonstrate that the AlCl3 treatment 
increased lipid peroxidation levels and reduced antioxidant 
enzyme activity in tissues compared with the C group. This 
suggests that oxidative damage is increasing. The AlCl3 
therapy likewise affected the concentrations of other metal 
ions in tissues simultaneously.

As necessary cofactors for antioxidant enzymes such as 
SOD (Cu, Zn, Mn) and CAT (Fe, Mn), trace metals, includ-
ing Cu, Zn, Fe, Mn, and Mg, can lessen or repair oxidative 
damage [49].

It is well known that Al causes oxidative stress by exhib-
iting pro-oxidant characteristics that reduce the activity of 
antioxidant enzymes such as SOD, CAT, and GSH-Px. The 
ionic radius of the Al3+ ion is particularly similar to Fe3+. 
Therefore, the appearance of Al3+ at Fe3+ sites is possible. 
Al is bound by the protein transferrin, known as the Fe3+ 
transporter, thereby reducing Fe2+ binding. This can lead to 

MDA: Malondialdehyde, GSH: Glutathione 
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Fig. 2   Analysis of variance and Tukey HSD results (mean ± SD) of 
oxidative stress markers (MDA and GSH) in liver, kidney, and brain 
tissues following PJ administration during AlCl3 exposure (n = 7). 

Values are presented as mean ± SD, representing significant differ-
ence compared with group A: x, p < 0.05; y, p < 0.01; and z, p < 0.001 
and group C: a, p < 0.05; b, p < 0.01; and c, p < 0.001, respectively
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increased levels of free Fe2+ within the cell, which in turn 
leads to Fe2+ peroxidation. This affects membrane lipids and 
can therefore cause membrane damage [50, 51]. Numerous 
investigations have demonstrated a clear correlation between 
oxidative stress and AlCl3 [52–54]. The liver, kidney, and 
brain tissues of rats treated with AlCl3 in this study showed 
elevated MDA levels, indicating that the treatment may 
cause the production of free radicals that initiate lipid per-
oxidation. Our findings also showed that the injection of 
AlCl3 reduced GSH levels, SOD, and CAT activities. These 
results support the theory that peroxidation damage may be 
the source of elevated oxidative stress and impaired antioxi-
dant defense enzyme activity.

Research in the literature demonstrates that AlCl3 lowers 
GSH levels, increases MDA levels, and lowers SOD and 
CAT activity. These results corroborate our study findings 
[55–57]. According to our research, PJ therapy raised anti-
oxidant markers such as GSH, SOD, and CAT while lower-
ing MDA levels across the board in all tissues. The chelating 
ability of pomegranate polyphenols, which can sequester Al, 
reduce its bioavailability, and mitigate its harmful effects, 
is a possible mechanism for this action [55–58]. In addi-
tion, it has been determined that PJ functions as a powerful 
antioxidant in the detoxification of unsaturated fatty acids 
and free radicals because of its polyphenol and anthocyanin 
content [36, 59]. PJ maintains internal antioxidant balance 
and is associated with an increase in oxygenated respiration 
levels, particularly in response to increased energy demand 
from Al. This increase indicates its ability to reduce oxida-
tive stress by scavenging accumulated high levels of free 
radicals, which in turn exert a protective effect on tissues 
[56–58].

In high Al exposure, nutritional strategies containing 
trace elements are applied [20]. In this context, detailed 
information on tissue mineral levels is required to effectively 
manage Al toxicity. In general, the uptake, distribution, and 
accumulation of metals in tissues depend on several factors, 
such as the properties, forms, route of uptake, dose, dura-
tion of exposure, ligand binding ability, and cell type [60]. 
According to our results, AlCl3 accumulation occurred in the 
tissues as kidney < brain < liver, respectively.

PJ treatment significantly decreased Al accumulation 
in all three tissues. Reduction of Al levels may be the first 
protective mechanism of PJ against chronic tissue damage 
caused by Al exposure. Furthermore, the dietary intake of 
excess Al may affect the bioavailability of other trace ele-
ments such as Fe, Mg, Zn, and Ca, disrupting the overall 
metal homeostasis [8].

When we examined the elemental levels in liver tissue, 
we found a significant increase in Ca and a decrease in Mn 
levels in the Al exposure group compared with the C group. 
On the other hand, relatively less change was observed in 
Zn, Mg, Fe, and Cu levels.

The literature review reports that a rapid increase in Ca2+ 
concentration in the cell cytoplasm is usually observed under 
oxidative stress conditions [61–63]. Sun et al. [64] found 
that CCl4 treatment increased Ca content in the liver and 
mitochondria. The transient increase in cellular Ca concen-
tration is associated with cell death [65]. It is also likely that 
Ca metabolism is damaged by respiratory chain damage in 
mitochondria [66].

The element Mn plays an important role, especially by 
forming cofactors for antioxidant enzymes such as SOD and 
GPx [67]. In the present study, a significant decrease in Mn 
levels was observed in the liver of Al-exposed rats. This is 
thought to be due to increased antioxidant enzyme activity. 
In addition, it is also known that heavy metals such as Al, 
Cd, As, and Pb can replace Mn in antioxidant enzymes and 
reduce the activity of these enzymes [68]. Treatment with 
PJ restored Mn and Ca levels in the liver of Al-exposed rats. 
These results emphasize the potential protective effects of 
PJ on the restoration of antioxidant mineral levels. A pre-
vious study showed that a mineral mixture of Ca/P, Zn, 
and Fe replaces heavy metals in the body [69]. This report 
agrees with our current results because PJ also contains 
these minerals. These minerals may combine with antioxi-
dant enzymes in the body to reduce or eliminate the harmful 
effects of heavy metals [70, 71].

When we examined the elemental levels in kidney tissue, 
we observed that Ca, Cu, and Mg levels were significantly 
increased, and Mn, Zn, and Fe levels were partially changed 
in the high-Al exposure group compared with the C group.

Al may replace Mg in the active sites of regulatory 
enzymes [72]. In addition, Al exposure did not affect hepatic 
Cu levels, which raises the possibility that Al may interfere 
with renal trace element levels in particular. Al and Cu may 
have a functional relationship according to their distribution 
in the kidney [73], but the exact mechanism is unclear.

The observed increase in renal Cu content in Al-treated 
rats appears to be consistent with previous data. Experimen-
tal animal studies have shown that Cu levels increase with 
oxidative stress [74]. Devipriya et al. [75] reported that Cu 
levels increased in an alcohol-fed rat group. The presence of 
excessive amounts of Cu in rats triggers increased oxidative 
damage to membrane lipids and DNA of liver and kidney tis-
sues and may ultimately cause degenerative disorders [38]. 
Moreover, our results support the increased MDA levels 
observed in the oxidative stress state.

When PJ was administered, the Ca and Cu levels were sig-
nificantly lower than those in the A group, although the Mg 
levels were relatively lower. The intake of PJ may mitigate 
any harm resulting from the disruption of element homeo-
stasis in the kidneys of rats exposed to AlCl3 by bringing 
the concentrations of Mg, Ca, and Cu back to normal. In a 
previous study, it was reported that Cu and Ca levels were 
altered by AlCl3 treatment [76]. The return of Cu to basal 
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levels is important for the maintenance of proper cell signal-
ing, cellular integrity, and antioxidative defense [77]. When 
resveratrol was administered to elderly rats loaded with Al 
and given therapy, Muselin et al. [78] found that the Mg 
content of the treatment group’s liver and renal tissues was 
significantly lower than that of the Al-treated group. These 
outcomes also support our findings.

Because of their high Fe content, high oxygen consump-
tion rate (20%), abundance of polyunsaturated fatty acids 
in cell membranes, and low anti-oxidative enzyme activity, 
brain tissues are especially vulnerable to oxidative damage 
[32].

Essential trace elements Fe and Ca were found to be 
higher in the brain tissues of rats in the A group of this 
study, but Mn levels were found to be lower. This could be 
because Al mimics Fe and modifies the expression of pro-
teins that bind Fe [6]. Moreover, oxidative stress, Ca release 
from intracellular reserves, and compromised mitochon-
drial function have all been linked to some studies that have 
demonstrated critical steps in the mechanisms causing Al-
induced neuronal cell death [79, 80]. Rats exposed to AlCl3 
had their brain elemental concentrations returned to normal 
after receiving PJ. This suggests that pomegranates can pre-
serve and control element homeostasis in brain tissue.

The findings of this study suggest that PJ supplementation 
may interact with metal ions, decreasing their absorption, 
changing their distribution and storage, and increasing their 
excretion in rats exposed to high doses of Al. This could 
aid in reducing oxidative events and adjusting the elemental 
balance.

Conclusion

The levels of Ca and Mn in the liver; Cu, Ca, and Mg in the 
kidney; and Fe, Mn, and Ca in the brain were the most sig-
nificant findings of PJ. Its capacity to scavenge free radicals 
was also established. PJ has a positive impact, as evidenced 
by the normalization of the imbalances in trace element con-
centrations observed in all organs of the PJ-treated group. 
This illustrates how the bioactive constituents of pomegran-
ate can control the cellular absorption, distribution, and 
excretion of elements. The data obtained from this study 
provide a theoretical basis for future research by revealing 
the regulatory role of pomegranate in elemental homeostasis 
and its antioxidant potential, in line with similar studies in 
the literature. In addition, further research is needed to elu-
cidate the mechanisms of action and synergistic effects of 
the phytochemicals contained in pomegranate. In the future, 
clinical trials should be conducted to understand the poten-
tial of pomegranate in the prevention of a wide range of 
pathological conditions and to support treatment strategies.
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