
Deep Reinforcement Learning Current Control of
Permanent Magnet Synchronous Machines
Tobias Schindler∗†, Lara Broghammer†, Petros Karamanakos‡, Armin Dietz†, Ralph Kennel∗

∗Chair of Electrical Drive Systems and Power Electronics, Technical University of Munich, Germany
†Institute ELSYS, Technische Hochschule Nuremberg, Germany

‡Faculty of Information Technology and Communication Sciences, Tampere University, Finland
Email: tobias.schindler@th-nuernberg.de

Abstract—This paper presents a current control approach for
permanent magnet synchronous machines (PMSMs) using the
deep reinforcement learning algorithm deep deterministic policy
gradient (DDPG). The proposed method is designed by examining
different training setups regarding the reward function, the
observation vector, and the actor neural network. In doing so,
the impact of the different design factors on the steady-state
and dynamic behavior of the system is assessed, thus facilitating
the selection of the setup that results in the most favorable
performance. Moreover, to provide the necessary insight into
the controller design, the entire path from training the agent
in simulation, through testing the control in a controller-in-
the-loop (CIL) environment, to deployment on the test bench
is described. Subsequently, experimental results are provided,
which show the efficacy of the presented algorithm over a wide
range of operating points. Finally, in an attempt to promote open
science and expedite the use of deep reinforcement learning in
power electronic systems, the trained agents, including the CIL
model, are rendered openly available and accessible such that
reproducibility of the presented approach is possible.

Index Terms—Open science, current control, permanent mag-
net synchronous machine (PMSM), power electronics, deep rein-
forcement learning, deep deterministic policy gradient (DDPG)

I. INTRODUCTION

Energy-efficient operation as well as fast dynamic behavior
during transients are important aspects of variable speed
drives, such as permanent magnet synchronous motor (PMSM)
drives. The control method mostly used with PMSM drive
systems that enables—at least to some extent—such a desired
operation is field-oriented control (FOC). The popularity of
FOC stems from the fact that it is designed in a rotating
(dq) reference frame that facilitates the adoption of linear con-
trollers, such as simple proportional-integral (PI) controllers,
and it thus greatly simplifies the controller design and analysis.

Although FOC has been shown to be reasonably effective,
alternatives have been considered in recent years that can
further improve the drive system performance. Among those,
model predictive control (MPC) has yielded promising results,
which attracted the interest of industry [1]. Since MPC is
formulated as a (constrained) optimization problem, it allows
for design flexibility and can be tailored to the needs and

Funded by Bundesministerium für Bildung und Forschung (BMBF, German
Federal Ministry of Education and Research) - KI-Power (16ME0146K).

characteristics of the system in question. To do so, the opti-
mization problem underlying MPC is designed such that the
control action belongs to either a continuous-control set (i.e.,
it is a real-valued variable), or a finite-control set (i.e., it is
an integer-valued variable).

Another emerging control technique comes from the field
of machine learning, with deep reinforcement learning (DRL)
particularly receiving a lot of attention. As shown, e.g., in [2],
[3], different DRL algorithms have been adopted and refined
to address various control problems. While DRL algorithms
feature many distinguishable characteristics, when control of
power electronic systems is of interest, they can be classified
into two categories depending on the nature of the control
action. More specifically, similarly to MPC, the control action
belongs to either a finite- or a continuous-control set. Finite-
control set DRL algorithms, such as the deep Q-network
(DQN) algorithm [4], have been employed, e.g., for the direct
current control of PMSM drives [5], and fault detection in
electrical drives [6].

As for the second group, algorithms with a continuous-
control set, such as the deep deterministic policy gradient
(DDPG) algorithm [7], have also been successfully applied to
the current control of PMSM drives. For example, [8] provides
a simulation-based proof of concept, wherein the feasibility of
DRL algorithms within the context of motor control is shown.
To this aim, an actor-critic algorithm is tested, while different
neural network configurations are investigated along with the
influence of the discount factor on the control performance.
Moreover, a two-step training setup for DDPG-based current
control is introduced in [9]. The agent is first pre-trained in
simulation and then trained on the test bench by coupling
the real-time controller to a workstation. Additionally, [9]
shows measurements of the trained controller at a fixed speed,
compares performance to state-of-the-art control algorithms,
and discusses the used hyperparameters. Finally, [10] uses
cascaded simulation-trained DDPG agents for current and
speed control, the performance of which is tested in a software-
in-the-loop environment.

In this paper, a current control algorithm based on DDPG—
referred to as DDPG-CC in the sequel—is developed for
PMSM drives, as depicted in Fig. 1. The concept of this
method, which is based on approaches discussed in [8]–[10],
is summarized first. Subsequently, the entire design and testing

VSISVM
Voltage
limitation

DDPG-
CC

PMSM

abc

dqidq

i∗dq
u∗
dq u∗

dq,lim

Gate
signals

ϑ

ωm

Vdc

ia ib ic

Fig. 1: Block diagram of the proposed DDPG-CC method.

chain are introduced. Specifically, the training of the agent in
simulation is discussed, and the relevant trained DDPG-CC
agents are presented. Following, the controller testing in a
controller-in-the-loop (CIL) environment based on [11] is
described. To this end, the DDPG-CC method is implemented
on the real-time open-source control platform UltraZohm
[12]. In the last step of the development chain, the control
performance of the proposed control algorithm is assessed
in a real-world setting, and the test bench measurements are
compared with the corresponding simulation and CIL results.
Finally, in addition to the aforementioned implementation, the
use of an open-source platform in combination with CIL is
explored, which facilitates the reproduction of the results by
other researchers, thus supporting open science.

Regarding the last point, this paper aims to promote open
science not only by means of the employed open-source
framework but by essentially introducing a methodology that
enables the reproduction of RL-based control methods for
electric drives. To this aim, the presented DDPG-CC is in-
vestigated over a wide range of operating points and possible
configurations are explored. A combination of random search
and fixing hyperparameters based on the existing literature is
applied to train suitable agents for each configuration. Hence,
this systematic approach aspires to facilitate the comparison
of different configurations and to provide insights into which
design choices achieve favorable performance.

II. DDPG-CC ALGORITHM FOR PMSM DRIVE SYSTEMS

The proposed current control algorithm is designed in an
orthogonal reference (dq) frame that rotates with the syn-
chronous angular speed. It is developed for a PMSM drive
system consisting of a two-level voltage source inverter (VSI)
and a PMSM, as shown in Fig. 1. The discrete-time DDPG
agent controls the plant based on measurements and derived
quantities such that the absolute current reference tracking
error on the d- and q-axis, defined as

ed(k) = id(k)
∗ − id(k) , (1a)

eq(k) = iq(k)
∗ − iq(k) , (1b)

is minimized. To this end, the controller manipulates the volt-
age reference, i.e., the control action of the DDPG-CC is cho-
sen to be a(k) =

�
v∗d(k) v∗q (k)

�⊤
. The specific configuration

of DDPG-CC offers multiple degrees of freedom, such as the
choice of observations, reward function, hyperparameters, and
training procedure. A subset of the possible configurations is
discussed in the following.

A. Model of the PMSM Drive System

In this paper, all DDPG-CC configurations are trained using
the same simplified PMSM model described by

dψd

dt
= vd(t)−R1id(t) + ωelψq(t) (2a)

dψq

dt
= vq(t)−R1iq(t)− ωelψd(t) , (2b)

ψd(t) = ψPM + Ldid(t) , (2c)
ψq(t) = Lqiq(t) (2d)

with the stator resistance R1, the inductances Ld and Lq , the
flux-linkage of the stator ψdq and of the permanent magnets
ψPM as well as the stator voltage vdq and stator current idq
in the dq-plane. The electrical speed ωel = ωmp is given
by the rotational speed ωm and the number of pole pairs p.
The inverter of the drive system is fed by a constant dc-link
voltage Vdc, which imposes limitations on the available voltage
on the d- and q-axis. To ensure operation in the extended
linear modulation region, i.e., modulation index m ≤ 2/

√
3,

the voltage reference given by the action a(k) is limited
to v∗

dq,lim(k) according to [13] and fed into a space vector
modulation (SVM) stage. This implies that the amplitude
of the applied voltage is bounded by ∥v∗

dq∥2 ≤ Vmax with
Vmax = Vdc/

√
3. The environment for the training of the

DDPG-CC is formed by the aforementioned plant model (2)
in the dq-plane combined with the limitation of the voltage
output.

B. Control Algorithm Configurations

DDPG-CC determines the action a(k) based on the obser-
vation vector o(k), which consists of measurements of the
system state as well as derived quantities. The inputs of the
observation are normalized to their respective rated values
(e.g., Ir, ωm,r), while the voltage v∗

dq,lim is normalized based
on Vmax.

Two variations of the observation are investigated. The first
version of the observation vector

o1(k) =




ed(k)
eq(k)R
ed(k) · fcR
eq(k) · fc
id(k)
iq(k)

v∗d,lim(k − 1)

v∗q,lim(k − 1)

ωm(k)




(3)

features the integral of the current tracking error on the d-
and q-axis, which is implemented in the discrete-time domain
using the forward Euler method. The integration is stopped
if the voltage vector limitation is active, i.e.,v∗

dq ̸= v∗
dq,lim

(clamping). Furthermore, the result of the integration is scaled
by the sampling frequency fc of the DDPG-CC. In contrast
to this, the alternative observation vector

o2(k) =




ed(k)
eq(k)
id(k)
iq(k)

v∗d,lim(k − 1)

v∗q,lim(k − 1)

ωm(k)




(4)

does not utilize the aforementioned integral of the tracking
error; otherwise, it replicates (3).

The developed DDPG-CC method aims to track the stator
current along its reference. During training, the agent aims to
maximize a given reward function r(k). Similarly to the ob-
servation, two variations of the reward function are examined,
which are designed in line with the different objective function
formulations in MPC [1]. Specifically, the reference tracking
error in the reward function is based on either the ℓ1-norm,
resulting in the function

r1(k) =

�
−∥edq(k)∥1, for i1(k) ≤ Imax

−∥edq(k)∥1 − i1(k), for i1(k) > Imax
,

(5)
or the squared ℓ2-norm, giving rise to the reward function

r2(k) =

�
−∥edq(k)∥22, for i1(k) ≤ Imax

−∥edq(k)∥22 − i1(k), for i1(k) > Imax
.

(6)
Regardless of the employed norm, however, the amplitude of
the phase current i1(k) = ∥idq(k)∥2 is not allowed to exceed
the maximum allowed current of the machine Imax. To ensure
this, the agent receives a linearly increasing penalty in (5) and
(6) to prevent damage to the system.

DDPG requires four neural networks: one for the actor, one
for the critic, and a target network for each [7]. However,
only the actor neural network is required for control after
the training. Therefore, even though the number of hidden
layers as well as of neurons of the critic and actor affects the
computational burden during training, the neural network of
the actor is the one that has a direct impact on the real-time
requirements of the algorithm. To elucidate this point, the four
different DDPG-CC configurations resulting by combining the
different reward functions (i.e., (5) or (6)) with the possible
observation vectors (i.e., (3) or (4)) are examined in Table I
along with three different actor networks.

C. Training

The training is conducted using the Matlab 2022b Rein-
forcement Learning Toolbox [14]. The plant model is imple-
mented in Simulink based on (2), and the duration of one
training episode is set to τq = Lq/Rs. At the beginning of each

TABLE I: Trained DDPG-CC configurations with different
actor neural networks, reward functions, and observations.

Configuration Layer Neurons Reward Observation
1.1 1 64 r1 o1

1.2 3 64 r1 o1

1.3 1 128 r1 o1

2.1 1 64 r1 o2

2.2 3 64 r1 o2

2.3 1 128 r1 o2

3.1 1 64 r2 o1

3.2 3 64 r2 o1

3.3 1 128 r2 o1

4.1 1 64 r2 o2

4.2 3 64 r2 o2

4.3 1 128 r2 o2

episode, random values for the set-points i∗d and i∗q as well as
for the rotational speed ωm are set within the safe operating
limits of the machine and held constant for the entire episode.
An ideal plant model is used during training, i.e., no parameter
variations of the machine are considered. The voltage vector
limitation is implemented in the training environment, while
the SVM and the VSI are neglected. The training is performed
on three workstations with AMD Ryzen Threadripper Pro
3995WX (2x) and 3975WX (1x) CPUs. Training 512 agents
for 500,000 samples per agent in parallel takes approximately
10 h.

D. Hyperparameters

Most hyperparameters of the DDPG agent are fixed to
values derived from the DRL literature, see Table II. A random
search over the hyperparameters critic learn rate, actor learn
rate, exploration standard deviation, and exploration decay
is performed. To this end, a random sample of 512 agents
for each configuration listed in Table I is drawn from the
defined ranges of the hyperparameters and trained according
to the method outlined in this section. Exploration of DDPG
is accomplished by adding noise according to the Ornstein-
Uhlenbeck (OU) process to the output action of the agent
during training [7]. The search space for the standard deviation
of the OU noise is based on the bounds of v∗

dq , while
the half-life of the exploration noise decay is based on the
total number of samples. Note that a limitation to comparing
hyperparameters is their dependency on the implementation
details. For example, the Matlab implementation of the OU
exploration noise does not reset after each episode as opposed
to the original DDPG description in [7].

III. IMPLEMENTATION

Before testing the performance of the proposed DDPG-CC
method—initially in a CIL environment and subsequently in a
real-world setting—implementation details are provided. As
discussed before, the agent is solely trained in simulation.
Thus, only the actor, consisting of the actor neural network,
the observation vector including normalization, and the output
scaling, is required for real-time operation.

TABLE II: Parameters of used hyperparameters and comparison to literature.

Parameter Value [7] [15] [16] [9] [17]
Minibatch size 64 64 64 64 128 16
Experience buffer length 500,000 1,000,000 5,000 - 5,000 5,000
Training samples 500,000 2,500,000 120,000 - 250,000 1,800,000
L2 regularization actor & critic 0.01 1 · 10−2 - - 1 · 10−2 -
Target network update frequency actor & critic 1 1 1,000 - 1,000 -
Target smooth factor 1 · 10−3 1 · 10−3 1 · 10−2 - - -
Discount factor 0.9 0.99 0.9 0.9 0.9 0.9
Learn rate critic 1 · 10−6 - 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−4 1 · 10−4

Learn rate actor 1 · 10−6 - 1 · 10−3 1 · 10−4 1 · 10−4 1 · 10−4 1 · 10−6 1 · 10−4

Exploration standard deviation 1 %− 10 % · Vmax 0.2 0.3 1.5 0.2 -
Exploration decay 0.1 %− 20 % of samples 0.15 - 1 · 10−5 - -
Actor hidden layer 1 or 3 2 2 1 1 3
Actor neurons 64 or 128 400/300 300/600 25 100 200/200/10
Critic hidden layer 3 2 2 2 3 2
Critic neurons 128/128/128 400/300 200/200 50/25 75 200/10
Critic hidden layer activation function ReLu ReLu ReLu ReLu leaky ReLu ReLu
Actor hidden layer activation function ReLu ReLu ReLu ReLu leaky ReLu ReLu

A. UltraZohm

The UltraZohm is an open-source rapid control prototyping
(RCP) system, presented in detail in [12]. It is built around
the Xilinx Zynq UltraScale+ MPSoC, which offers four ARM-
A53 processors (APU), two ARM-R5 processors (RPU), and
programmable logic (PL). The actor of the DDPG-CC is
implemented in the RPU of the UltraZohm. The configurations
1.2, 2.2, 3.2, and 4.2 use a neural network with three hidden
layers for the actor, which is implemented in the PL as
described in [18] to keep the calculation time within the real-
time limits.

B. CIL Environment

RCP systems reduce the implementation effort of complex
control algorithms, and thus facilitate the pivotal—and often
error-prone—step of testing on the target platform. This step
is particularly important as the correctness and real-time capa-
bility of the implementation must be ensured. In this direction,
an intermediate CIL step on the target improves testing before
controlling the real plant [11]. Testing the controller in the
CIL environment can provide sufficient test coverage, which is
hard to achieve without the CIL step, as testing then only relies
on comparisons of the control behavior to pre-computed data
(e.g., based on offline simulations). Moreover, by testing the
algorithm in a CIL environment over the full operating range,
its evaluation in a real-world setting is greatly simplified, as the
controller can be used without any implementation changes.
This procedure is crucial for DRL-based control approaches
as, unlike conventional controllers, there are no obvious sim-
plifications for performing plausibility checks, such as using
slow controller parameters during the first commissioning.

Given the above, a plant model is implemented in the PL of
the UltraZohm, and the DDPG-CC is implemented in the PS
and PL in line with [11]. The plant model is equivalent to the
model based on (2) used for training. Thus, a correct real-
time implementation should give matching results between
simulation and CIL.

C. Reproducibility and Open Science

Reproducing and, in turn, extending the results of other
researchers is a vital process in the scientific community.
However, this process can be cumbersome for motor control
applications. First, implementation details of algorithms may
exist that are not included in publications due to space limita-
tions, unconscious implementation decisions, or the fact that
releasing source code is not a common practice in the field.
Second, suitable measurement equipment, control hardware,
power electronics, electrical machines, and several peripherals
are required. In addition to the discussed practical benefits
of using a CIL approach, it also serves as an enabler for
open science. There are fewer equipment requirements for
conducting CIL tests compared to full test bench setups,
lowering the associated costs and enabling the reproduction
of research results.

In accordance with the outlined ideas, the implementation
of the trained DDPG-CC agents, the CIL test, and the FOC
benchmark are released within the UltraZohm open-source
project. Thus, any researcher with access to a Xilinx Ultra-
Scale+ MPSoC device, e.g., a development kit, can reproduce
the results with manageable effort and without requiring the
used PMSM and a compatible inverter. Hence, it can be
claimed that this approach simplifies the reproduction of
research results and reduces the required resources to do so.
However, it is important to note that such an approach does
not imply that independent implementation and reproduction
of research results in the laboratory should be overlooked; on
the contrary, ideally, this should be the ultimate goal when
assessing a control algorithm.

IV. PERFORMANCE ASSESSMENT

In this section, the performance of the developed control
strategy is assessed. The parameters of the used PMSM are
listed in Table III. The evaluation of the agents for each
configuration is done in multiple steps. First, the best agent of
each configuration is determined by simulation. Second, the
best agent of each configuration is tested in CIL to ensure

TABLE III: Parameters of the used PMSM (Heidrive HMD06-
005), inverter, and controller.

Parameter Symbol Value
d-axis inductance Ld 1.13mH
q-axis inductance Lq 1.42mH
Resistance Rs 543mΩ
PM flux linkage ψPM 16.9mVs
Pole pairs p 3
Rated dc-link Vdc,r 48V
Rated current Ir 4.2A
Maximum current Imax 10.8A
Rated speed nr 3.000min−1

Rated torque Tr 0.48Nm
Rated power Pr 150W
Control frequency fc 10 kHz
Switching frequency fPWM 10 kHz

TABLE IV: Simulation results of the best agents for each
configuration.

Config. Q̄ITAE t̄r t̄set P̄O ē(∞)
FOC 16.8ms 0.28ms 13.9ms 15% < 1mA
1.1 20.0ms 0.15ms 15.1ms 24% < 1mA
1.2 19.6ms 0.24ms 14.7ms 26% < 1mA
1.3 18.6ms 0.25ms 14.6ms 21% < 1mA
2.1 202.4ms 0.12ms 13.5ms 15% 52mA
2.2 191.4ms 0.09ms 13.5ms 83% 49mA
2.3 196.6ms 0.09ms 13.5ms 29% 50mA
3.1 21.4ms 0.14ms 15.1ms 58% < 1mA
3.2 25.4ms 0.40ms 15.5ms 52% < 1mA
3.3 21.1ms 0.11ms 15.0ms 73% < 1mA
4.1 237.9ms 0.08ms 14.1ms 292% 62mA
4.2 241.4ms 0.12ms 13.6ms 107% 63mA
4.3 225.5ms 0.13ms 13.6ms 37% 59mA

safe operation before, lastly, the suitable agents are deployed
to the test bench and evaluated.

A. Simulation

Each trained agent is simulated with the same set of
set-point changes for i∗dq at fixed rotational speeds n ∈
{0, 500, 1000, 2000, 3000}min−1. The unit jump and ten arbi-
trary set-point changes are simulated for each rotational speed
with the simulation time tsim = 15τq . To extract the agent
with the best performance over a wide operating range, the
ITAE criteria of the d- and q-axis current is calculated by

QITAE =
1

2

� Z tsim

0

|ed(t)| · t dt+
Z tsim

0

|eq(t)| · t dt
�
. (7)

The arithmetic mean of (7) over all simulated speeds yields
the mean performance metric Q̄ITAE. In the same manner, the
rise time t̄r, settling time t̄set, percentage overshoot (P̄O), and
steady-state error ē(∞) are calculated.

Table IV lists the best-performing agents for each configu-
ration according to Q̄ITAE. The simulation results show that
agents using the observation (3) perform better in terms of
Q̄ITAE compared with those based on (4). Furthermore, all
agents that use (4) exhibit a noticeable steady-state error. As
for the reward functions, there are no significant differences
between the agents trained with the two functions (see (5) and
(6)), albeit the agents yield different trade-offs with respect

Power supply

VSI Controlled PMSMUltraZohm

Prime mover

Encoder

Fig. 2: Test bench setup.

to the chosen performance metrics. Finally, for benchmark
purposes, the performance of FOC is also shown in Table IV.1

B. CIL and Test Bench Measurements

Experimental studies are carried out to investigate the
performance of the developed DDPG-CC method while the
PMSM is coupled to a speed-controlled prime mover. Fig. 2
shows the laboratory setup used for the experimental tests.
The validation profile of Section IV-A with arbitrary set-
point changes for i∗dq is extended by nine additional set-points
to assess the performance of the trained agents in the CIL
environment and on the test bench.

Fig. 3 shows the CIL and measurement results of the
best agent in configuration 2.1. The agent shows a steady-
state error, as indicated in Table IV, which increases with
increasing rotational speed. This error appears in both the
CIL and experimental results. Nevertheless, the steady-state
error in the d-axis is distinctly bigger in the experimental
results compared to the CIL ones. This indicates that due to
the lack of an integrating element in the examined config-
uration, any minor parameter mismatch, effects that are not
modeled (e.g., iron loss resistance), and slight misalignment
of the dq-frame between the training model and real machine
cannot be compensated. For example, when the operating point
depicted in Fig. 3b (n = 3000min−1) is concerned, FOC
applies ud ≈ −0.4V to counteract the aforementioned effects.
However, agents using observation (4) cannot compensate for
these effects in the conducted tests.

On the other hand, no steady-state error is expected for
agents that use (3), as this observation introduces an inte-
grating element. This is experimentally confirmed at different
speeds, see, e.g., the best agent in configuration 1.1 that is
depicted in Fig. 4. The best agents of configurations 1.1, 1.2,
1.3, 3.1, 3.2, and 3.3 track the validation profile with varying
performance. Table V lists QITAE for all measured speeds as
well as the arithmetic mean over all operating points Q̄ITAE.
As can be seen, configurations 1.1 and 3.1 have comparable
performance with respect to Q̄ITAE. However, this is not the
case for all operating points.

1The developed FOC is tuned according to the modulus optimum method,
including a decoupling network, while all small time constants of the system
are lumped into the time constant τσ = 1.5 · f−1

C .

0 0.2 0.4 0.6
−4

−2

0

Time (s)

(a) Stator current id in A (CIL).

0 0.2 0.4 0.6
−4

−2

0

Time (s)

(b) Stator current id in A (experiment).

0 0.2 0.4 0.6

0

2

4

Time (s)

(c) Stator current iq in A (experiment).

Fig. 3: Validation profile with current reference of best agent in configuration 2.1 at n = 3000min−1 (red) and n = 500min−1

(blue).

0 0.2 0.4 0.6
−4

−2

0

2

4

Time (s)

(a) n = 1000min−1.

0 0.2 0.4 0.6
−4

−2

0

2

4

Time (s)

(b) n = 2000min−1.

0 0.2 0.4 0.6
−4

−2

0

2

4

Time (s)

(c) n = 3000min−1.

Fig. 4: Validation profile of best agent in configuration 1.1 with stator current iq (red) and iq (blue) in A.

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

0

0.5

1

Time (ms)

Fig. 5: Comparison of a step-up set-point change of current
iq in A between the best agent in configuration 1.3 (red) and
FOC (blue) at n = 2000min−1.

Finally, the transient performance of the best agent in
configuration 1.3 is tested and compared with that of FOC, see
Figs. 5 and 6. With regards to the step-up change in the current
set-point in the q-axis (Fig. 5), the developed DDPG-CC

9.8 10 10.2 10.4 10.6 10.8 11 11.2 11.4

0

1

2

3

Time (ms)

Fig. 6: Comparison of a step-down set-point change of current
iq in A between the best agent in configuration 1.3 (red) and
FOC (blue) at n = 2000min−1.

method achieves better performance compared with FOC, even
though the agent does not outperform the reference FOC with
respect to Q̄ITAE. On the other hand, for the step-down iq
set-point change in Fig. 6, FOC is able to regulate iq along

TABLE V: QITAE of the measured validation profile at
different rotational speeds.

FOC 1.1 1.2 1.3 3.1 3.2 3.3
500min−1 83 s 86 s 93 s 99 s 84 s 132 s 118 s
1000min−1 89 s 89 s 98 s 101 s 85 s 130 s 117 s
2000min−1 101 s 99 s 115 s 114 s 98 s 138 s 120 s
3000min−1 115 s 110 s 132 s 141 s 116 s 140 s 131 s
Q̄ITAE 97 s 96 s 110 s 114 s 96 s 135 s 122 s

its reference with shorter rise time and less overshoot.

V. CONCLUSION

This paper investigated a DRL-based current control scheme
for PMSM drives. To this aim, different setups regarding the
reward function, observation vectors, and the actor neural net-
work were first examined. As shown, the use of the integrated
error in the observation vector achieves a tracking error-free
behavior. At the same time, it equips the trained agent with
the tools required to compensate for unmodeled dynamics
and model mismatches, thus rendering these agents suitable
for a wide range of operating points. In contrast, designing
the reward function based on the squared ℓ2-norm or the ℓ1-
norm does not seem to have a significant impact on the actor.
Likewise, utilizing a larger neural network for the actor does
not lead to clearly improved behavior.

Overall, the presented method for training, implementation,
CIL testing, and real-world experiments highlighted the possi-
bility of applying DRL to control problems in the area of vari-
able speed drives. This was verified with the presented results,
which demonstrated the efficacy of the presented algorithm
over a wide range of operating points as well as the possibility
of using agents trained exclusively in simulation for control in
a real-world setting. Finally, this work opted to promote open
science by employing an open-source prototyping system in
combination with a CIL-based verification approach. In doing
so, obstacles in reproducing research results can be potentially
bypassed with less effort and hardware requirements.

For future research, it can be investigated how to improve
the control performance over the whole operating range.
Reward shaping is one possibility to define the requirements of
the controller more precisely, and it can potentially allow for
the inclusion of secondary control goals. Moreover, dropping
the limitation of a fixed neural network architecture of the
critic for the experiments—as it was done in this work—might
lead to improved agent performance. To this end, recurrent
neural networks could be used.

ACKNOWLEDGMENT

The authors would like to thank Dennis Hufnagel, the main
author of the open-source FOC implementation which is used
as a reference in this paper, for his support.

REFERENCES

[1] P. Karamanakos, E. Liegmann, T. Geyer, and R. Kennel, “Model
predictive control of power electronic systems: methods, results, and
challenges,” IEEE Open Journal of Industry Applications, vol. 1, pp.
95–114, 2020.

[2] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz,
B. McGrew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray,
J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba,
“Learning dexterous in-hand manipulation,” 2018. [Online]. Available:
https://arxiv.org/abs/1808.00177

[3] J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese,
T. Ewalds, R. Hafner, A. Abdolmaleki, D. de las Casas, C. Donner,
L. Fritz, C. Galperti, A. Huber, J. Keeling, M. Tsimpoukelli, J. Kay,
A. Merle, J.-M. Moret, S. Noury, F. Pesamosca, D. Pfau, O. Sauter,
C. Sommariva, S. Coda, B. Duval, A. Fasoli, P. Kohli, K. Kavukcuoglu,
D. Hassabis, and M. Riedmiller, “Magnetic control of tokamak plasmas
through deep reinforcement learning,” pp. 414–419, 2022. [Online].
Available: https://doi.org/10.1038/s41586-021-04301-9

[4] V. Mnih, K. Kavukcuoglu, and D. e. a. Silver, “Human-level
control through deep reinforcement learning,” Nature, 2015. [Online].
Available: https://doi.org/10.1038/nature14236

[5] M. Schenke and O. Wallscheid, “A deep Q-learning direct torque
controller for permanent magnet synchronous motors,” IEEE Open
Journal of the Industrial Electronics Society, vol. 2, pp. 388–400, 2021.

[6] S. Attestog, J. S. L. Senanayaka, H. V. Khang, and K. G. Robbersmyr,
“Robust active learning multiple fault diagnosis of PMSM drives with
sensorless control under dynamic operations and imbalanced datasets,”
IEEE Transactions on Industrial Informatics, pp. 1–11, 2022.

[7] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning.” [Online]. Available: https://arxiv.org/pdf/1509.02971.pdf

[8] M. Schenke, W. Kirchgässner, and O. Wallscheid, “Controller design
for electrical drives by deep reinforcement learning: a proof of concept,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 7, pp. 4650–
4658, 2019.

[9] G. Book, A. Traue, P. Balakrishna, A. Brosch, M. Schenke, S. Hanke,
W. Kirchgässner, and O. Wallscheid, “Transferring online reinforcement
learning for electric motor control from simulation to real-world exper-
iments,” IEEE Open Journal of Power Electronics, vol. 2, pp. 187–201,
2021.

[10] S. Bhattacharjee, S. Halder, Y. Yan, A. Balamurali, L. V. Iyer, and
N. C. Kar, “Real-time SIL validation of a novel PMSM control based
on deep deterministic policy gradient scheme for electrified vehicles,”
IEEE Transactions on Power Electronics, vol. 37, no. 8, pp. 9000–9011,
2022.

[11] E. Liegmann, T. Schindler, P. Karamanakos, A. Dietz, and R. Kennel,
“Ultrazohm—an open-source rapid control prototyping platform for
power electronic systems,” in 2021 International Aegean Conference
on Electrical Machines and Power Electronics (ACEMP) & 2021
International Conference on Optimization of Electrical and Electronic
Equipment (OPTIM), 2021, pp. 445–450.

[12] S. Wendel, A. Geiger, E. Liegmann, D. Arancibia, E. Durán, T. Kreppel,
F. Rojas, F. Popp-Nowak, M. Diaz, A. Dietz, R. Kennel, and B. Wagner,
“UltraZohm— a powerful real-time computation platform for MPC and
multi-level inverters,” Quanzhou, China, 2019, pp. 1–6.

[13] P. Q. Nguyen and D. Jörg-Andreas, Vector control of three-phase AC
Machines. Springer, 2015.

[14] “Matlab documentation: deep deterministic policy gradient (DDPG)
agents,” https://de.mathworks.com/help/reinforcement-learning/ug/ddpg-
agents.html, accessed: 20220-12-08.

[15] S. Guo, X. Zhang, Y. Zheng, and Y. Du, “An autonomous path planning
model for unmanned ships based on deep reinforcement learning,”
Sensors, 2020.

[16] R. Siraskar, “Reinforcement learning for control of valves,” Machine
Learning with Applications, vol. 4, p. 100030, 2021.

[17] Y. Liu, Z. Jiang, S. Zhang, and S. Xu, “Deep reinforcement learning-
based beam tracking for low-latency services in vehicular networks,”
2020.

[18] T. Schindler and A. Dietz, “Real-time inference of neural networks
on FPGAs for motor control applications,” in 2020 10th International
Electric Drives Production Conference (EDPC), 2020, pp. 1–6.

