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A B S T R A C T   

Chemical looping process (CLP) is a novel carbon capture technology for biomass valorization. Low-cost and 
robust oxygen carrier (OC) is crucial for industrialization of CLP. However, ash in solid fuels will unavoidably 
deposit on OC and even react with OC, leading to severe agglomeration and sintering which could not only 
degrade the full functionality of OC but also make the complete separation of ash and OC challenging. In order to 
holistically elucidate the ash chemistry in CLP, this review has systematically analyzed the effect of ash com
positions in biomass on CLP efficiency, the impact of ash components on physicochemical properties and oxygen 
transfer capacity of OC, as well as the melting and agglomeration behaviors of ash components. Specifically, both 
inhibition and enhancement effects of various ash components have been illustrated. Particularly, the influence 
of alkali and alkaline earth metals in biomass ash on agglomeration of OC has been analyzed in detail. Four 
mechanisms are summarized to explain the agglomeration and melting process, including coating-induced, 
melting-induced, ash deposition-melting, the layer joint and bridge joint mechanisms. Ultimately, strategies 
are proposed to effectively mitigate adverse impacts of ash and recycle useful metals for industry use and re- 
synthesis of OC. To promote future development of CLP, perspectives are provided to guide the novel design 
of next generation OC in terms of structural and compositional optimization.   

1. Introduction 

Chemical looping process (CLP) is a novel carbon capture technology 
where the oxygen for combustion is supplied by a continuous redox 
reaction of the oxygen carriers (OCs) between fuel reactor and air 
reactor, so the technology inherently captures CO2 with a low energy 
penalty and low NOx emissions [1]. OCs, typically composed of various 
transitional metal oxides, supply oxygen for fuel oxidation (Eq. (1)), and 
then regenerate themselves in the air (Eq. (2)) to achieve cyclic 
operation. 

Fuel+MexOy→CO2 +H2O+MexOy− 1 (1)  

Air+MexOy− 1→MexOy +O2depletedair (2) 

Solid fuels generally used for CLP include coal [2], petroleum coke 
[3], solid wastes (e.g., biomass [4] and sewage sludge [5]). CLP can be 
further divided into in-situ gasification chemical looping combustion 
(CLC) and chemical looping oxygen uncoupling. Previous studies have 
proven that gasification is a rate-limiting step for CLP reactions [6], and 
hence, highly reactive solid fuels are vital. Biomass [7] gradually be
comes a research hotspot in this regard, which has advantages of lower 
cost, higher reserves and the net negative CO2 emissions [8]. To date, 
CLP targeting biomass management, such as biomass chemical looping 
gasification (BCLG) and biomass chemical looping reforming, have been 
developed for sustainable biomass valorization. 

In the face of large scale BCLG, low-cost OCs are preferred. However, 
complete separation of biomass/coal ash and the OC is difficult. Ash 
deposition on OCs can lead to agglomeration and sintering which could 
degrade the full functionality of OCs. As a result, partial OCs is disposed 
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of along with the ash. The typical composition of biomass and coal ash 
contains Al2O3, SiO2, Fe2O3, CaO, MgO, K2O, Na2O, TiO2, etc., as shown 
in Table 1. Biomass ash contains alkali and alkaline earth metals 
(AAEMs) which are more prone to cause corrosion, agglomeration 
anomalies and OC deactivation [9]. The deposition of ash on OCs is not 
entirely detrimental, because some ash contents, such as Fe2O3, CaSO4, 
can somewhat improve the reactivity of OCs. The severity of reduced 
active sites of OCs depends on operating temperature, fluidization ve
locity, particle size, etc. [10]. 

Ash is a complex solid matrix and varies in components and char
acteristics depending on the origin and nature of feedstocks. Fig. 1 
demonstrates interactions of various ash elements with OC. The pres
ence of ash could either have inhibition effect resulting from ash 
melting/agglomeration or enhancement effect ascribing to its role as 
catalyst or perovskites, closely depending on the composition. So far, 
research on interactions between ash contents and OCs is relatively 
scattered among individual studies, with a shortage of systematical 
summary and comparative analysis of findings and data integration. To 
fill this knowledge gap, the physicochemical interactions between OCs 
and ash shall be well understood via analyzing the system performance, 
such as the oxygen transfer capacity (OTC) and mechanical properties of 
OCs, gas yield, and carbon conversion efficiency, etc. A holistic review 
on the ash chemistry is incredibly beneficial to minimize negative im
pacts caused by ashes through necessary process control, and concom
itantly explore potential synergies between specific OCs and certain ash 
components to achieve sustainable application of CLP at large scale. 

2. Effect of ash composition on process efficiency 

At present, a large part of the database about the effect of ash on OCs 
is based on the interaction of coal ash with OCs. However, with the 
increasing potential of global warming, more research has been focused 
on the use of biomass-based solid waste through CLC or CLG processes. 
These studies accumulate useful knowledge to expand know-how of 
interactions between various ashes and OCs. 

The interaction between different ashes and OCs may cause contro
versial effects [15]. For instance, Azis et al. [16] concluded that adding 
coal gasification ash to ilmenite reduced the reactivity of OCs, whereas 
the addition of lignite combustion ash has significantly increased the 
ilmenite reactivity. The ash components attached to the particle surface 
can affect the reduction rate of OC, as gas diffusion is impeded by a layer 
of ash shell. Thus, lower gas conversion was obtained when the OC 
reactivity is lowered. On the other hand, the attached ash components 
may catalyze certain reactions or even function as OCs. Besides, ash 
components may react with OCs to form new compounds that can in
crease or decrease OTC. Notably, the gas environment in the CLC fuel 
reactor is different from that in a normal combustion chamber due to 
limited free oxygen, therefore, the reduction potential is higher. This 
may result in different ash conversion processes as compared to the 
normal combustion. In this regard, when examining the interaction 
between OCs and ashes, a reduction environment with gasification 
products (e.g., CO and H2) is preferred. Besides, many studies indicate 
that coal fly ash (FA) has limited impact on OCs [17]. 

2.1. Inhibition effect 

Ash content and composition vary greatly according to the fuel 
oxidation used in the process of chemical looping combustion of 
biomass. The ash contains inorganic matter that remains after the fuel is 
combusted. The most common elements in biomass ash are calcium, 
potassium, silicon, magnesium, aluminium, sulphur, iron, phosphorous, 
chlorine, sodium and trace elements [18]. During biomass combustion, 
silicon may react with calcium to form calcium silicate that adheres to 
the surface of the bedding to form a coating. Depending on the 
composition and physical state of the ash, scaling, slagging and corro
sion related problems may occur. Potassium is the main alkali source in 
biomass ash, which will cause more problems in the biomass reaction 
process. In biomass fuels with high chlorine content, potassium is easy to 
react with chlorine to form gaseous potassium chloride. Such substances 
are often the cause of corrosion and structure in boiler channels. When 
potassium reacts with a fluidized bed, viscous ash compounds form on 
the surface of the particles. This causes particles to clump together into 
larger clumps. 

In addition to caking, ash in biomass fuels is more likely to signifi
cantly inhibit gas production, oxygen conversion efficiency and fuel 
combustion efficiency, which is attributed to ash inactivation of OC. Ash 
components attached to the particle surface may affect oxidation and 
reduction rates of OC. Ash adhering to OC surface may diffuse and 
penetrate into particles, resulting in volume expansion and cracking of 
OC particles, hindering gas diffusion, and thus reducing reaction rate 
[19]. On the other hand, the reaction of the attached ash component 
with the OC to form new compounds may reduce the OTC. The forma
tion of iron silicates during the cycle of CuFe2O4 ferrioxite carriers using 
hydrogen as fuel reduced the OTC of CuFe2O4 [20]. Effect of different 
ash contents on CLC has also been examined in fluidized bed reactor 
[16]. In the presence of 23 % of the ash load, SiO2, an inert/inactivated 
substance in the ash, hindered the gas–solid reaction of ilmenite. When 
Cu-based OC was mixed with coal ash, solid conversion during oxygen 
decoupling was reduced [21]. 

2.2. Enhancement effect 

During the CLG process, the presence of ash has also demonstrated 
some beneficial effects. Different ash components may catalyze or form 
specific structures that can enhance the performance of OCs and 
chemical reactions. Some ash species, such as Fe2O3, CaSO4, can act as 
OCs. Bao et al. [22] operated the CLC process using coal ash and iron ore 
with CO in a fluidized bed reactor. Si-containing species reacted with Fe 
to form Fe2SiO4 and retarded their reactivity. However, Ca-containing 
ash increased the reactivity because sintering and agglomeration were 
negligible. Dan et al. [23] showed that CuO can easily react with ash 

Nomenclature 

3DOM OC three dimensional ordered macroporous oxygen 
carrier 

AAEMs alkali and alkaline earth metals 
BCLG biomass chemical looping gasification 
CLC chemical looping combustion 
CLG chemical looping gasification 
CLP chemical looping process 
FA fly ash 
FBC fluidized bed combustor 
OC oxygen carrier 
OTC oxygen transfer capacity 
SSA sewage sludge ash  

Table 1 
Typical ash compositions in biomass and coal [11–14].  

Ash components Biomass (wt.%) Coal (wt.%) 

SiO2 22–36 10–54 
Al2O3 5–15 24–58 
Fe2O3 3–9 6–12 
CaO 9–43 3.9–17 
TiO2 0.3–1.2 0.5–1.9 
K2O 10–25 1.6–3.8 
MgO 6–14 0.5–6 
Na2O 0.4–3 0.1–0.8 
P2O5 3–7 0.1–0.5  
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species (i.e., Fe2O3 and Al2O3) to form CuAl2O4 and CuFe2O4. The 
presence of Ca restricted formation of Cu-Al and Cu-Si complex. Simi
larly, the presence of CaO in coal ash inhibited the reaction of CuO and 
Al2O3 by forming CaAl2SiO8 [24], thus alleviating the deactivation of 
CuO. Furthermore, CaO was used as a catalyst for tar cracking [25]. 
However, CaO has limited lifespan due to its low melting point and is
sues associated with sintering and carbon deposition [8]. Xu et al. [26] 
performed CLG using pine sawdust as fuel and sewage sludge ash (SSA) 
as OC. SSA promoted the fuel conversion owing to the presence of Fe2O3 
in SSA. The interaction was tested for five consecutive cycles using a 
“pine sawdust to SSA” ratio of 1:1 at 700 ◦C. The carbon conversion 
efficiency and syngas yield in the fifth cycle was found to be higher than 
that in the first cycle. In addition to the presence of Ca in ash, the 
presence of transition metals in bottom ash had several advantages of 
acting as OC and providing high thermal stability [27]. The magnetic 
fraction was separated from ash constituents and evaluated. The 

reduction rate and OTC of the extracted magnetic constituent was 
similar to those of synthetic Fe2O3, suggesting that incineration bottom 
ash could serve as a cost-effective OC for CLP. 

Table 2 summarizes the effect of ash on the reactivity of OCs in CLP. 
Most components of ash have negative effects on CLP, while only a few 
components of ash can effectively promote CLP reactions, such as Ca- 
and Fe-containing compounds. Previous studies have shown that the 
presence of Ca in ash can improve the efficiency of water–air conversion, 
and calcium sulfate itself can act as OC. Meanwhile, the presence of Ca 
can limit the formation of other compounds and effectively mitigate 
deactivation of iron and copper-based OCs. In CLC process, Fe2O3 in ash 
plays a pivotal role in promoting the oxidation–reduction reaction of 
OC, because it could function as an active OC with a higher oxygen 
carrying capacity than pure OC. 

Fig. 1. Potential interactions of ash elements with OC.  

Table 2 
Effect of ash on the reactivity of OCs in CLP.  

Feedstock Key ingredients 
in ash 

OC Operating parameters Performance References 

Sewage sludge K2O, CaO Iron ore Fluidized bed reactor, 
T: 900 ◦C  

• Gasification rate is maximum in the 14th 
cycle  

• OC reactivity increased due to the presence 
of K in ash  

• Formation of KFe11O17 occurred in 20th 
cycle  

• Sintering and spheroidization occurred 
beyond 25th cycle 

[28] 

Rape stalk K2O, CaO in RSA Iron ore with 5–40 % rape stalk 
ash (RSA) 

Fluidized bed reactor, 
T: 900 ◦C  

• Iron ore with 20 % RSA demonstrated best 
fluidization characteristics 

• K in ash weakens the Fe-O bond, which re
sults in release of lattice oxygen from OC 

[29] 

Biomass ash component Ca, K,Si Hemtatite (Fe2O3), hausmannite 
(Mn3O4), ilmenite (Fe2TiO5) 

Fixed bed tubular 
reactor, T: 900 ◦C  

• K2CO3 and SiO2 formed complexes and 
caused agglomeration  

• Interaction of ilmenite with ash was found 
to be minimum 

[9] 

Syngas Fe2O3, CaSO4 Incinerated bottom ash Fixed bed tubular 
reactor, T: 850 ◦C  

• Showed satisfactory stability till 10 cycles; 
demonstration strong durability of ash  

• 95 % combustion efficiency was achieved  
• Fresh and reduced OC revealed similar XRD 

patterns 

[27] 

Anthracite coal CaSO4, Al2O3, 
SiO2, Fe2O3, 

CuO@TiO2-Al2O3 Fluidized bed reactor, 
T: 900 ◦C  

• Presence of CaO in ash prevented the 
formation of CuSO4  

• Agglomeration occurred due to CaAl2SiO7 

[30] 

Bituminous Colombian coal FeTiO3, Fe3O4, 
TiO2 

Ilmenite Fluidized bed reactor, 
T: 820–950 ◦C  

• At higher temperatures, gasification and 
combustion reactions are faster and 
promoted  

• The oxygen demand of gases from 5 % to 15 
% 

[31] 

Anthracite, low volatile 
bituminous, medium 
volatile bituminous and 
lignite 

CuO Spray-dried, 60 % 
CuO 

Interconnected 
fluidized reactors 
T: 860–950 ◦C  

• Coal is completely burned into CO2 and H2O  
• The carbon capture efficiency increased 

with fuel reactor temperature 

[32]  
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3. Interaction between OC and ash components 

3.1. Physical and chemical characteristics of OC 

OC support is another indispensable constituent in CLC. The main 
function of this support is to provide mechanical strength to enhance its 
redox stability and agglomeration resistance of OC. OC support material 
is usually inert with porous structure to allow the diffusion of reactant 
gases [33]. Synthetic inert materials, such as SiO2, Al2O3, TiO2, MgO, 
ZrO2, have been used as support for multiple cycles. Al2O3 is generally 
preferred over others due to its high mechanical strength and melting 
point [34]. FA is characterized with high contents of Al2O3, SiO2, MgO 
and TiO2. Thus, coal FA was tested as a cost-effective support to OCs. 
Furthermore, Fe2O3 in FA could act as an active OC, while Na and K were 
promoters for OC [35]. Na in NaCl or Na2CO3 also has an ability to 
reduce SO2 and NO emissions, thereby improving the sulfur fixation in 
the fuel reactor [36]. Table 3 compares main physical and chemical 
characteristics of pure OCs and OCs after interaction with ash compo
nents. Aishya et al. [37] first tested the potential of FA as support with 
50 % metal loading of CuO, Fe2O3 and NiO at 800 ◦C. It was observed 
that FA enhanced the thermal stability of OC, while unsupported CuO- 
based OC was easily agglomerated during the reduction process. 
Similar enhanced thermal stability was also presented by Skulimowska 
et al. [38] for a supported CuO-based OC during 42 consecutive cycles 
without sintering issue. FA is found to be superior to Al2O3 due to its role 
in hindering carbon deposition [33], thereby enhancing the durability of 
OC. CH4 conversion of 94–100 % was achieved with minor deactivation 
after 10 cycles at 800–850 ◦C. Thus, FA is proved to be an environ
mentally friendly and cost-effective support to OC during long term 
operation. The melting temperature of ash components is in the 

following order: Al2O3 > MgO > CaO > P2O5 > Na2O > K2O. Thus, the 
presence of Al, Mg, Ca might elevate the melting point while P, Na and K 
can lead to sintering and agglomeration [11] due to their lower melting 
point. This issue can be solved either by separating the problematic ash 
components via adsorption processes or by adding inert species to 
elevate its melting point. To inhibit the sintering of OCs with the ash 
species, some OCs was fabricated into the form of ferrites and perov
skites which favored the resistance against sintering. CaO has excellent 
catalytic reactivity, however, when being used alone, it cannot sustain 
operating temperature above 900 ◦C [39]. However, this issue can be 
mitigated by mixing with iron and forming calcium ferrites (i.e., 
CaFe2O4, Ca2Fe2O5) [40]. Furthermore, calcium ferrites could facilitate 
H2 generation and reduce the tar formation [41]. Besides, MgO 
enhanced the oxygen release capacity of ferrites [42]. Cu-based metal 
oxides usually suffer from sintering and de-fluidization issues as a result 
of lower melting point. However, combining it with Fe2O3 will enhance 
its mechanical stability [43]. Bimetallic oxides with special structure 
(spinel and perovskites) can enhance the reactivity and thermal stabil
ity, thus shattering the boundedness of single metal oxide. Siriwardane 
et al. [44] investigated that CaFe2O4 and BaFe2O4 exhibited higher 
reactivity and selectivity with coal than syngas, thus making them 
suitable for CLG. Thus, bimetallic components resulting from the 
interaction of ash components with active OC may be beneficial due to 
the synergy. The reaction between OC and ash can not only enhance the 
physical and chemical characteristics of OC, but also cause detrimental 
effect to OC. The addition of SiO2-rich wheat straw ash led to a 
decreased reactivity of OC and caused serious particle sintering of OC 
[32]. SiO2, CaO and K2O in FA can inhibit the formation of low melting 
point of OC, and even cause the sintering and agglomeration of OC [45]. 

Eqs. (3) – (11) describe the interaction of Fe-based OCs with various 
ash components to form low melting point complex components. For
mation of these compounds are detrimental since they can agglomerate 
and retard the reaction rate in the CLC process. Since Eqs. (10) and (11) 
usually occur at 1200–1300 ◦C [47], formation of such complexes is 
negligible during the CLC process which is normally operated at tem
perature lower than 1000 ◦C. Moreover, intra-interaction of ash com
ponents makes this issue more complicated. In the heat transfer process, 
KCl, K2SO4 and Na2SO4 were detrimental since they started to melt at 
low temperature around 823–944 K [48–50], resulting in strong ash 
deposition. The mechanism of ash agglomeration into two sections: (a) 
coating-induced agglomeration and (b) melting-induced agglomeration 
[10]. The former occurred when ash species interact with bed materials, 
while the latter took place when silicon and alkali metals in ash produce 
eutectic melt. 

Fe2O3 + MgO→MgFe2O4 (3)  

Fe2O3 +K2O→K2Fe22O34/K2Fe10O16/K2Fe4O7 (4)  

Fe2O3 +K2O + Al2O3 + SiO2→KAlSi3O8 (5)  

Fe2O3 + CaO→CaFe2O4 (6)  

Fe2O3 + CaO + Al2O3→CaFeAl2O5/CaAl2Fe4O10 (7)  

Fe2O3 + Al2O3→FeAl2O4/Fe4Al6 (8)  

Fe2O3 + Al2O3 + SiO2→FeAl2O4/Fe4Al6/FeAl2SiO6 (9)  

Fe2O3 + SiO2→Fe2Si2O4 (10)  

Fe2O3 + Al2O3 + SiO2 + CaO→CaAl2Fe4O10/CaAl8Fe4O19/Ca2Al2SiO7

(11)  

3.2. Oxygen transfer capacity 

Based on the amount and distribution of active metal sites presented 

Table 3 
Comparison of physical and chemical characteristics of pure OC and OC after 
interaction with ash components.  

Pure OCs and main characteristics OC after interaction with ash 
components 

References 

CuO  • Easily agglomerated  • Enhanced thermal stability [37] 
Al2O3  • Carbon deposition  • Enhanced thermal stability  

• No sintering  
• Enhanced durability of OC  
• Improved CH4 conversion 

rate 

[38] 

Fe2O3  • Poor sulfur fixation 
in the fuel reactor  

• Reduced SO2 and NO 
emissions  

• Improved sulfur fixation 

[36] 

CaO  • Low operating 
temperature  

• High resistance against 
sintering  

• Enhanced oxygen release 
capacity  

• Facilitated H2 generation  
• Reduced tar formation 

[40] 

Cu-based 
OC  

• Lower melting point  
• Sintering and 

desulfurization  

• Enhanced reactivity and 
thermal stability  

• Enhanced mechanical 
stability 

[43] 

Iron ore  • High fuel conversion 
efficiency  

• SiO2-rich ash led to 
potassium silicates  

• Lower SiO2 ash promoted 
fuel conversion 

[32] 

Fe4Al6  • Sufficient oxygen- 
carrying capacity  

• High reactivity and 
durability  

• Inhibition effect by 
forming low-melting-point 
compounds  

• Enhancement effect 
through formation of 
specific structure  

• Neutral effect by 
integrating with OC 

[45] 

Fe2O3 

and 
Fe3O4  

• Better reaction 
activity  

• A “bridge” formation and 
increased agglomeration  

• Agglomeration and 
deactivation 

[46]  
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in OC, OC structure and their origin, OCs are classified into different 
groups, including mono-metal oxides, mixed metal oxides, natural ores, 
minerals and scrap oxides [51]. Understanding interactions between 
OCs and ashes is essential to prevent coagulation and backflow. 

Table 4 summaries the empirical OTC of different OCs in previous 
studies. Fe-based OCs have weak redox properties and low methane 
conversion, but Fe-based OCs are considered viable for CLC applications 
because they are inexpensive and environmentally benign. Subse
quently, the Fe-based OC showed two important properties, namely, 
high resistance to agglomeration and low tendency of carbon deposition. 
Thus, OC activity can be controlled and maintained. Fe-based OCs 
exhibit different oxidation states, such as Fe2O3, Fe3O4 and FeO. It is 
important to note that the conversion of Fe2O3 and Fe3O4 is only suitable 
for the oxidation of methane in interconnected fluidized bed reactors, 
which further promotes the production of syngas to avoid being reduced 
to FeO or metallic Fe. The OTC of Fe-based OC in CLC of coal can reach 
86 % of the theoretical value [52]. Due to good fluidization, Fe-based OC 
may not form agglomeration in the circulation process. 

In general, Cu-based OC has good reactivity and low temperature 
combustion characteristics. It has been reported that the OTC of Cu- 
based oxides may be lowered when they are in the form of a spinel- 
type structure. For example, a ratio of Al2O3 to CaO at 0.82 in OC 
resulted in an OTC of about 2.0 wt%, which was approximately their 
theoretical value, however, the OTC declined along an increasing redox 
cycles as the ratio was gradually increased to 9.44 [53]. On the other 
hand, due to the use of less Al, CuAl2O4 can be formed, so the OTC will 
be reduced as well. However, with the presence of calcium, the inter
action between Cu and Al can be well avoided. Despite limited study on 
the interaction of Ni-based OC with ash, recent research implied that ash 
did not have significant effect on the reactivity of Ni-based OC [61]. 

4. Melting and agglomeration behaviors 

Although some biomass ashes can catalyze and improve the CLG 
performance to a certain extent, the melting and agglomeration of OCs 
caused by biomass ash can seriously hinder the long-term stable oper
ation of CLG. Open literature has shown that some ash elements are 
transformed into low melting point substances at high temperature, and 
then adhere to other particles or react with other substances to form 
agglomerates. 

4.1. Aaems 

AAEMs usually represent K, Ca, Na and Mg in biomass because the 

amount of K, Na, Ca and Mg accounts for the vast majority of AAEMs. 
AAEMs are the most abundant trace elements in biomass ash which 
often have a certain catalytic effect in CLG [63]. Ca and Mg in biomass 
could effectively improve the gasification efficiency and reduce the re
action activation energy during CLG [64,65], while AAEMs could pro
mote the gasification reaction of pyrolysis coke [66]. 

However, AAEMs also have adverse effects on the reaction process. 
Under the action of Cl and S, AAEMs compounds usually exist in gaseous 
form in flue gas at high temperature [67], which is easy to condense on 
the heating surface and adhere to the FA to form slagging [68]. AAEMs 
in biomass is easy to react with Si to form eutectic compounds with low 
melting point, leading to the agglomeration of OC [69]. High contents of 
Fe2O3, CaO and MgO would reduce the ash melting point and sintering 
activation energy of ash particles, improving the sintering rate of ash 
particles [70]. AAEMs in biomass remained in the solid residue in the 
form of alkali metal oxide at high temperature, resulting in coking and 
slagging during reaction [71]. Meanwhile, a high content CaO would 
form a film to cover the OC and the film can protect the OC from 
agglomeration to some extent. 

During BCLG, AAEMs in ash will react with OC or bed material to 
form alkali metal silicate with a low melting point. At high temperature, 
the molten silicate is easy to aggregate and adhere to other particles to 
form larger agglomerates. Stanislav et al. [72] analyzed the initial 
deformation temperature (DT) and hemispherical temperature (HT) of 
55 kinds of biomass ashes in the biomass ash chemical classification 
system. As shown in Figs. 2 and 3, DT and HT are high when the main 
components in biomass ash are CaO and MgO. On the contrary, DT and 
HT are low when the main components are Na2O and K2O. This is 
because Ca and Mg usually react with SiO2 in BCLG to produce silicate 
compounds with a high melting point. However, the K and Na tends to 
react with SiO2 and S to generate silicate compounds and sulfate com
pounds with a low melting point. These low melting point compounds 
tend to adhere to the surface of ash particles, increasing the adhesion of 
ash particles and forming agglomerations. However, most of Na (K) will 
be directly sublimated into gaseous Na (K) or released into the gas phase 
in the form of NaCl (KCl) during CLG [73], whereas only a few will be 
converted into silicate at high temperature. Moreover, Na in the gas 
phase has an obvious tendency to deposit, resulting in the agglomeration 

Table 4 
Oxygen transfer capacity (OTC) of the solid residues retrieved from fuel reactor 
and air reactor.  

Components Method OC-Ash OTC (wt. 
%) 

References 

Fe2O3/Fe3O4 Spray drying Fe2O3  6.94 [54] 
Fe2O3/FeO Spray drying Fe2O3  11.33 [55] 
Fe2O3/ 

MgFe2O4 

Impregnation Fe2O3-Mg  0.1166 [56] 

Fe2O3/CaFe2O4 Electric melting Fe2O3-Ca  0.222 [57] 
Fe2O3/Al2O3 Spray drying Fe2O3-Al  7.51 [54] 
Fe2O3/FeAl2O4 Impregnation Fe2O3- Al  0.1169 [56] 
Fe2O3/FeAl6 Impregnation Fe2O3- Al  3.3 [58] 
Fe2O3/Fe2Si2O4 Co-precipitation and 

coating 
Fe2O3- Si  3.5 [59] 

CaO/ 
Ca2Al2SiO7 

Combustion 
synthesis 

CaO-Al  0.76 [60] 

CuO/Cu2O Conventional 
sol–gel 

CuO/ 
Cu2O  

16.7 [61] 

NiO/Ni Spray drying NiO  5.0 [62] 

The “OC-Ash” denotes the OC and ash couple, e.g., Fe2O3-Mg being composed of 
Fe2O3 and MgO. 

Fig. 2. Areas of low (<1100 ◦C), medium (1100–1300 ◦C) and high (>1300 ◦C) 
initial deformation ash fusion temperatures for 55 varieties of biomass in the 
chemical classification system of biomass ash (wt.%) [14]. 
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of ash particles. 
As shown in Tables 5 and 6, with the increase of CaO content in 

biomass, the DT and HT of biomass are higher, indicating that the 
presence of Ca increases the melting point of biomass ash because of the 
formation of calcium silicate with a high melting point. Meanwhile, CaO 
will form a thin film under certain circumstances to cover the OC and 
inhibit agglomeration. With the increase of K2O and Na2O contents in 
biomass, the DT and HT of biomass are lower, indicating that the pres
ence of K and Na reduces the melting point of biomass ash as a result of 
the formation of K and Na silicates with a lower melting point. In 
addition, the MgO content has little effect on DT and HT of the biomass 
ash. 

Alkali silicate with low melting point is the main factor of agglom
eration in OC. Moreover, under the influence of AAEMs, the growth and 
combination of OC grains is also one of the factors affecting agglomer
ation. Because of the influence of Ca and Mg, the crystal size of OC 
particles increased gradually and then formed agglomeration to some 
extent [79]. The outward development of calcium sulfate crystal in the 

pores and on particle surface accelerated the blockage of pores [80], 
making the product crystal structure more compact and thus forming 
larger agglomerates. 

Interaction between alkali metals and alkaline earth metals is also 
one of the factors affecting agglomeration. Sand particles were 
completely embedded in the internal agglomerate, while the sand par
ticles were connected through limited contacting points in the outer part 
of the agglomerate [81]. Agglomerates were often shown as hollow 
structures. The interior of agglomerates was rich in K and Na, which 
showed an obvious melting phenomenon because of K and Na com
pounds which have a low melting point. On the contrary, Ca and Mg 
were concentrated outside the agglomerate, which showed non-molten 
or partially molten ash structure due to Ca- and Mg-bearing com
pounds with high melting point [82]. Consequently, the K- and Na- 
bearing compounds in ash firstly adhere to the surface of OC and 
gradually form a molten inner layer, while Ca and Mg are introduced to 
the surface of OC and form CaAl2Si2O8 and Mg4Al10Si2O23 with lower 
melting point with OC, forming the molten outer layer. 

4.2. Other elements 

Chlorine (Cl) is the most important non-alkali element in the process 
of biomass utilization, which can cause serious corrosions to the heat- 
exchangers surface. In addition, Cl promotes the migration of many 
inorganic substances, especially K and Na [74]. In most cases, Cl pro
motes the transport of AAEMs from the interior of biomass to the surface 
to form sulfate or silicate. At the same time, the presence of Cl also 
promotes the volatilization of AAEMs in gaseous form and the formation 
of adsorption particles. Therefore, controlling the Cl content in biomass 
ash is helpful to reduce the agglomeration caused by AAEMs. 

Si and S are essential elements for the conversion of AAEMs to low 
melting point silicates and sulfates. Hu et al. [83] found that Na, K, Ca, 
Mg, S and Si were enriched in the low temperature zone of the boiler, 
and their enrichment helped form sulfates which resulted in the 
agglomeration of ash particles. Low melting point compounds, e.g., 
K2SO4, NaCl and KCl, will deposit on the heat-exchange surface or 
adhere to the surface of ash particles, increasing the adhesion of ash 
particles. 

The presence of S will lead to the vulcanization of the OC, resulting in 
the reduction of the specific surface area and pore volume. At the same 
time, vulcanization will smooth the surface of OC and reduce the 
porosity. Iron ore had vulcanization reaction and produced FeS during 
the chemical looping reaction of sulfur-containing gas with iron ore as 
OC [84]. Ni3S2 with a low melting point was produced during the re
action between H2S and NiO [85], which led to liquid-phase sintering on 
the surface of OC and the deactivation of OC. 

Fig. 3. Areas of low (<1200 ◦C), medium (1200–1400 ◦C) and high (>1400 ◦C) 
hemispherical ash fusion temperatures for 60 varieties of biomass in the 
chemical classification system of biomass ash (wt.%) [14]. 

Table 5 
Ash fusion temperatures (FT, ◦C) and chemical ash composition (wt.%) from 105 varieties of biomass arranged into three initial deformation temperature ranges 
[72,74–78].  

DT range DT HT FT SiO2 CaO K2O MgO SO3 Na2O 

<1100          
Mean 916 1189 1247  33.01  13.04  30.00  5.98  4.28  2.14 
Minimum 700 975 1025  1.65  2.46  9.49  1.67  0.41  0.14 
Maximum 1074 1395 1400  77.20  44.32  63.90  14.10  25.74  19.88  

1100–1300          
Mean 1200 1287 1306  27.67  31.34  13.78  5.40  3.06  2.46 
Minimum 1100 1195 1210  4.48  2.41  0.23  1.10  0.01  0.12 
Maximum 1277 1519 1527  68.18  83.46  42.79  13.80  9.70  15.77  

>1300          
Mean 1421 1514 1527  23.81  47.89  8.33  5.89  2.04  1.50 
Minimum 1309 1380 1395  1.86  0.97  0.16  0.19  0.74  0.09 
Maximum 1565 1605 1620  94.48  77.31  23.40  14.57  3.77  4.84 

Mean, minimum and maximum represent the mean, minimum and maximum temperature in each temperature range, respectively. 
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In summary, most of these elements discussed are detrimental to 
OCs, such as easily causing agglomeration. Besides, corrosion resulting 
from sulfur and chlorine must be carefully considered when high sulfur 
and chlorine fuels are used in CLP. 

4.3. Mechanism of melting and agglomeration process 

At present, there are generally four mechanisms or methods to 
explain the agglomeration and melting process: (1) coating-induced, (2) 
melting-induced, (3) ash deposition-melting mechanism, (4) layer joint 
and bridge joint mechanisms. 

4.3.1. Coating- and melting-induced agglomeration 
Fig. 4 shows agglomeration in CLG based on the coating-induced and 

melt-induced mechanisms. The coating-induced agglomeration is 
described as follows: the ash produced by biomass combustion is 
deposited on the bed particles, and then reacts with the small particles 
attached to the bed material, the condensed alkali metal molecules and 
gaseous alkali metal molecules to form a coating [10]. The melting- 

induced agglomeration is induced by the collision between larger 
molten ash particles and bed particles. Despite some difference, the two 
mechanisms are not contradictive. Under normal conditions, the active 
metal components are evenly dispersed on OC. At high temperature, 
alkali silicate with low melting point formed from the reaction of alkali 
metals (e.g., K and Na) with OC will cover OC and lead to agglomeration 
[81]. Billen et al. [86] reported that agglomeration during the com
bustion of phosphorus enriched poultry litter in a fluidized bed 
combustor (FBC). Both coating and melting induced agglomeration 
occurred. P2O5 and CaO formed a thermodynamically stable Ca3(PO4)2 
in the ash. This reduced the amount of calcium silicates in the ash and 
resulted in K/Ca silicate mixtures exhibiting a lower melting point. On 
the other hand, in-bed agglomeration is caused by the presence of un
stable low melting HPO4

2- and H2PO4
- salts present in the fuel. In the hot 

FBC, these salts may melt, possibly causing bed particles to stick 
together, which may subsequently react with calcium salts in bed ash to 
form stable Ca3(PO4)2 solid bridges between multiple particles. Mean
while, the ash in the molten state will adhere to the OC and form large 
aggregates, making the OC inactive [63]. According to Section 4.1, it can 

Table 6 
Ash fusion temperatures (FT, ◦C) and chemical ash composition (wt.%) for 60 varieties of biomass arranged into three hemispherical temperature ranges [72,74–78].  

HT range DT HT FT SiO2 CaO K2O MgO SO3 Na2O 

<1200  
Mean 966 1101 1161  41.88  11.45  25.25  4.52  2.90  1.07 
Minimum 700 975 1000  7.87  2.98  0.23  1.67  0.83  0.16 
Maximum 1180 1195 1280  66.25  26.81  53.38  14.10  5.17  3.52  

1200–1400  
Mean 1113 1284 1306  25.69  26.41  20.58  6.09  3.83  2.83 
Minimum 775 1205 1208  0.02  2.41  3.16  1.10  0.01  0.12 
Maximum 1320 1395 1400  77.20  57.74  63.90  13.80  25.74  19.88  

>1400  
Mean 1392 1520 1531  23.29  48.02  7.89  5.51  2.07  1.49 
Minimum 1100 1440 1472  1.86  0.97  0.16  0.19  0.74  0.09 
Maximum 1565 1605 1620  94.48  83.46  23.40  14.57  3.77  4.84  

Fig. 4. Agglomeration in CLG based on the coating-induced and melt-induced mechanisms [10]: (1) biomass ash colliding with OC and (2) molten biomass ash 
sticking to OC. 
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be deduced that the melting-induced inactivation occurs earlier and will 
be more fatal than the coating-induced inactivation in CLG. 

4.3.2. Ash deposition-melting mechanism 
Biomass ash is deposited on the surface of bed particles during the 

combustion process, and then gradually embeds into molten particles to 
form agglomerates [87]. At present, there are two opposite versions of 
this mechanism. On the one hand, the alkali-rich elements released from 
biomass, especially K, are easy to form fine particles or vapor. They 
collide and react with silicon and silicates, forming alkali silicate and 
alkali aluminosilicate, which can increase the viscosity of biomass par
ticles. On the other hand, in biomass combustion, the alkaline chloride 
released from biomass is transformed into alkaline sulfate to form 
nucleated potassium sulfate and adsorb gaseous KCl. Agglomeration is 
more favorable when fuel ash contains a high fraction of low-melting 
point compounds (K, Na) and a low fraction of high-melting point 
compounds (Ca, Mg) [81]. In addition, the initial fuel ash composition 
near the eutectic composition of the low melting point appears to 
enhance agglomeration. The aggregates examined by scanning electron 
microscope showed a hollow structure with an inner region rich in K and 
Na, and an outer region where extensive melting was evident and the 
sand grains were attached by only a limited number of molten necks. 

This mechanism is shown in Fig. 5. When the reaction temperature is 
higher than 800 ◦C, potassium substances will be released into the gas 
phase. Then complex physical transformation and chemical reaction 
take place. KCl vapor is the most stable potassium containing substance 
in the gas phase. When the temperature is higher than the melting point 
of KCl, the gas phase accounts for the main share. When the reaction 
temperature is 700–800 ◦C, K mainly exists in the form of KCl vapor, KCl 
fine particles, potassium sulfate fine particles, potassium silicate or po
tassium aluminum silicate [88,89]. KCl vapor nucleates uniformly to 
produce fine KCl particles that can also adhere to the FA particles, 
making FA particles more viscous. Meanwhile, potassium sulfate mainly 
exists in the form of fine particles. KCl vapor can also condense on 
nucleated potassium sulfate. Under this condition, the initial agglom
eration layer is induced by non-uniform condensation of KCl vapor, and 
the thermal migration and diffusion of fine particles of KCl and potas
sium sulfate. In addition, the melting degree of the initial agglomeration 
layer increases with the increasing temperature. When the temperature 
is lower than 700 ◦C, KCl mainly exists in the form of fine particles which 
will deposit on nucleated potassium sulfate and FA particles through 

thermal migration and diffusion. Besides, these fine particles can be used 
as a binder between ashes. Under this condition, the initial agglomera
tion layer is mainly formed by the thermal migration and diffusion of 
fine particles of KCl and potassium sulfate [87]. 

4.3.3. Layer joint and bridge joint mechanisms 
Although the formation of silicate between AAEMs and Si is the main 

factor of agglomeration, the growth and combination of grains are also 
the factors affecting agglomeration and melting. Therefore, the layer 
joint and bridge joint mechanisms are proposed in Fig. 6 [91]. 

The layer joint refers to the fact that the adjacent particles share the 
silicate layer to form the neck, producing large particles. In the process 
of biomass utilization, most of Na and K will be directly sublimated into 
gaseous Na/K or released into the gas phase in the form of KCl and NaCl 
[92]. The remaining Na and K will be transformed into silicate and 
sulfide with low melting point at high temperature, which will deposit or 
adhere to the surface of ash particles, increasing the adhesion of ash 
particles [93]. The bridge joint is formed by the collision between grains 
due to the excessive growth of grains [94], which will induce agglom
eration. In the process of agglomeration induced by sulfation reaction, 
the excessive growth of grains leads to the formation of calcium sulfate 
necks. At the same time, a bridge structure is formed to connect the two 
particles into a weakly connected aggregate. In a laboratory scale bubble 
fluidized bed reactor, the product layer developed rapidly during the 
initial stage of sulfation and the product layer thickness was in micron 
scale [91], which may be responsible for the formation of interlayer 
connections. The bridge joint was found to be formed owing to the island 
overgrowth of the CaSO4 crystal. The layer and bridge connections were 
verified in a fixed bed reactor. The orientation and mis-orientation 
growth of the bridge and layer connections were confirmed through 
transmission electron microscopy studies. 

5. Strategies to mitigate the adverse impact of ash 

5.1. Introduction of different gasifying agents 

Traditional fuel combustion produces abundant pollutants, including 
SO2 and NOx. The gasifying agents usually take the material containing 
carbon as the raw material to convert fuel into combustible gas com
ponents, to improve the fuel heat utilization rate and reduce the adverse 
effect of ash on combustion. Gasifying agents affect the carbon 

Fig. 5. Condensation mechanisms of potassium species during biomass combustion [90].  
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conversion efficiency, the composition and heating value of product gas, 
and the physical and chemical properties of gasification biochar. The 
most common gasifying agent in CLG is H2O, CO2 or a mixture of both, 
while CO2 and H2O lead to different char gasification kinetics [95]. Char 
gasification under CO2 atmosphere mainly generates micropores in the 
char matrix, whereas H2O favors the formation of mesopores. This could 
result in different rates of char gasification and thus the release of ash 
components from char, leading to different concentrations of ash com
pounds in the reacting environment. As the interaction between OCs and 
ash is closely associated with the concentration of ash components, 
different reaction rates can be expected. Thus, the type of gasifying 
agents could lead to various extents of interaction between OCs and ash 
components. 

5.1.1. General minerals 
Some ash minerals can lead to various problems (e.g., bed sintering, 

bed agglomeration) in the combustor/gasifier, whereas other minerals, 
including Ca, K and Na, will greatly catalyze the char gasification [96]. 
However, the use of CO2, H2O or a mixture of both has shown little effect 
on the speciation of ash minerals. Taking Chinese bituminous coal ash as 
an example, it was found the main phases in ash (i.e., quartz and he
matite) were kept the same and small changes were among anhydrite, 
cristobalite and mullite. However, the formation of cristobalite from 
quartz in the coal ash was substantially enhanced with the variation of 
temperature [97]. Another finding is the synergistic effect of calcium 
carbonate on char gasification with the mixture of H2O and CO2 [98]. As 
the carbonate was decomposed to CaO on the surface of coal, the oxide 
acts as a role of simultaneously attracting H2O and CO2. This then ac
celerates the reaction of carbon with H2O and CO2, demonstrating 
higher char gasification rate. Similarly, the combined SiO2-Al2O3 phase 
of ash exhibited a synergistic effect on the reaction between CO and 
Fe2O3. Calculation based on density function theory suggested different 
frontier orbital energy as a result of the synergy to promote the reaction 
between CO and Fe2O3 [99]. 

5.1.2. Sulfur 
Gas-phase sulfur evolution largely depends on the gas composition in 

the reacting environment. The formation of carbonyl sulfide can be 
promoted by CO at a wide temperature range, while this is also observed 
with CO2 at temperatures higher than 600 ◦C. Nevertheless, when the 
reacting temperature is lower than 600 ◦C, CO2 inhibits the evolution of 
sulfur-containing gases, which is the same case for CH4. However, CH4 
can promote the formation of H2S at temperature above 800 ◦C. H2 can 
improve the formation of H2S and inhibit the formation of other sulfu
rous gases [100]. Using H2O as gasification agent, favorable interme
diate conformations were introduced immediately, which has 
advantageous effect on sulfur binding, whereas CO2 agent could weaken 
sulfur-CaO surface bonds, thus lessening the sulfur retention [101]. In 

the case of CLC/CLG process, there are some research activities focusing 
on the sulfur-OC interaction, including theoretical studies based on 
thermodynamics simulations with gaseous fuels and gaseous sulfur 
[102,103]. Ni-based OC is one of the most easily deactivated OCs 
because the formed NiSx phase could cover the OC surface and thus 
lower the reactivity of OC [104,105]. Cu-based OC can be deactivated 
caused by the formation of Cu2S [106,107]. Fe-based OC showed a 
resistant property against sulfur in some studies [108,109], but could 
form FeS in the other research [110]. Nonetheless, further studies 
indicated that the formation rate of FeS can be slowed down under CO2- 
rich environment [111]. Additionally, CO2 facilitated more SO2 release 
with less sulfur transfer to OC [111]. 

5.1.3. Alkalis 
In biomass fuels and municipal wastes, alkali (especially K and Na) 

content could be high. The alkali can catalyze the char gasification and 
thus lead to faster biomass conversion. Nevertheless, the high alkali 
content is also a cause for bed agglomeration in fluidized bed combus
tion. The impregnation of K+ or Na+ in an ilmenite OC has shown great 
improvement on the activity with CO [112]. However, the release 
behavior of K and Na was not sensitive to gasification agents and Ca 
release was promoted with more H2O in the reaction atmosphere [113]. 
Since biomass fuels are widely applied towards negative CO2 emissions 
through biomass-based CLC/CLG, K and Na in ash have been intensively 
investigated in recent years. Fig. 7 depicts different mechanisms of 
agglomerate formation with K and Na. When steam was used as gasifi
cation agent, its increasing concentration in the reaction environment 
had a positive effect on the release of K, which may be ascribed to 
facilitated conversion of K2CO3 to KOH (g) [114]. In this case, more gas 
phase alkalis were detected in the CLC/CLG process with straw pellets 
biomass fuel. However, most of alkalis were retained in the LD-slag OC. 
Different behaviors of K and Na have been revealed to lead to bed 
agglomeration using a braunite manganese ore as OC [115]. K exhibits 
earlier onset of agglomeration and defluidization as compared to Na. In 
addition, K and Na presented different mechanisms of agglomerates 
formation. As shown in Fig. 7, K tends to react with Fe and Mn in the 
braunite and then led to molten-derived agglomeration. On the con
trary, Na did not react with braunite, but firstly led to sticky layer on the 
particles and then the sticky-layer derived agglomeration [115]. 

5.2. Pretreatment of feedstocks 

5.2.1. Removing the components causing agglomeration 
As a common phenomenon, agglomeration seriously affects the 

efficient utilization of biomass during chemical looping gasification 
[116,117]. In order to mitigate the agglomeration, the pretreatment 
using water washing, pickling, etc., has been conducted to remove 
certain ash components (e.g., K, Ca, Mg, Na, P, Si, S, Cl) in biomass 

Fig. 6. The (a) layer joint and (b) bridge joint mechanisms of agglomeration [91].  
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[118–120]. 
Water washing refers to rinsing, soaking and stirring biomass with 

water for a specific time to achieve ash removal. Compared with raw 
biomass, the ash melting point of the washed biomass is higher, while 
the possibility of scaling in the reactor is less [121]. Water washing can 
effectively remove the ash from biomass and significantly improve the 
ash resistance against melting [122]. In order to investigate the effect of 
ash removal by water washing, the conditions in water washing have 
been extensively explored. Generally, the ash removal rate slightly 
changed with the increase of temperature [122]. Washing effectively 
reduced the contents of N, Cl, Ca, Mg and K in sorghum [123]. Partic
ularly, the increase of applied water led to a reduced alkali content in 
ash. The removal of S, K and P in cassava straw can be improved by 
prolonging the washing time [124], whereas the temperature of water 
washing had a significant impact on the removal rate of ash in biomass 
[125]. Besides, the ash removal rate increased dramatically with the 
increase of water temperature, resulting in a distinct decrease of K and 
SiO2 contents in six types of biomass [126]. 

However, some studies indicate that water washing can only remove 
the majority of soluble salts but few insoluble salts in biomass ash 
[127,128]. Generally, the effect of insoluble salts in biomass on 
agglomeration cannot be ignored. Compared with water washing, 
pickling can effectively remove the insoluble salts. Pickling refers to 
washing biomass with a certain concentration of acid solutions (e.g., 
nitric acid, sulfuric acid, hydrofluoric acid and hydrochloric acid) [129]. 
Pickling by HCl, HF and HCl + HF as agents can remarkably remove 
AAEMs in rape straw, especially with HCl [130]. Specifically, sulfuric 
acid could effectively remove 97.3 % of AAEMs, 98.4 % of chlorine and 
88.8 % of phosphorus [131]. On the contrary, only 6.8 % of AAEMs and 
88.0 % of chloride were removed after water washing. Furthermore, the 
agglomeration and slagging rate were substantially decreased after 
pickling pretreatment. In addition, nitric acid pickling achieved 95 % 
removal of AAEMs [125,132]. After nitric acid pickling, the agglomer
ation of pickling sample was slighter, and the grain size of main com
pounds was smaller than that of the original sample. 

In addition to water washing and pickling, the ash in biomass can be 
removed by chemical fractionation, ultrasonic pretreatment and 
demineralization pretreatment. Chemical fractionation is a method of 
gradually separating components from biomass [133]. The first step is to 
soak the fuel in water and dissolve water-soluble compounds, such as 
alkali metal salts. In the second step, organically associated sodium, 
calcium and magnesium are replaced by ammonium ions and released 
into the liquid phase. In the third step, acid soluble compounds, such as 
carbonate and sulfate, are removed by hydrochloric acid. Alkali com
pounds that can affect the carbon deposition and ash agglomeration are 
easily leached by water and separated for analysis. Unextracted 

compounds by these two solvents are considered inert during combus
tion and will not significantly affect the combustion behavior. Ultrasonic 
pretreatment is a new method for material pretreatment with a fre
quency between 20 kHz and 1 MHz [134]. Ultrasonic pretreatment 
drastically reduced S and other ash components in municipal solid waste 
[135], effectively reducing the vulcanization process. Demineralization 
pretreatment can be achieved by uniformly stirring in an autoclave 
reactor with acetic acid solution and crude biomass [136], during which 
AAEMs, Cl, S and P can be removed from biomass to mitigate the 
emission of fine particles. 

5.2.2. Replacing the elements causing agglomeration 
Although a few AAEMs have certain effects on agglomeration in CLG, 

other AAEMs with catalytic effect are also removed along with the 
process of ash removal from biomass. Actually, the substitution of 
exogenous AAEMs for their inherent AAEMs in biomass can effectively 
maintain its catalytic effect and reduce its impact on agglomeration 
[67]. 

AAEMs are often added by impregnation. Impregnation method is to 
immerse biomass in a salt solution containing specific metal ions, and 
then the metal ions in the solution are penetrated into the internal 
structure of biomass through capillary pressure [14]. The existing form 
of alkali metal will affect its catalytic reactivity. For instance, the effect 
of acetate metal salt on reaction temperature and product is significantly 
greater than that of chloride metal salt [131]. During pyrolysis, addition 
of acetate metal could divide cellulose pyrolysis into two stages and 
increase H2 content in the pyrolysis gas, while introduction of chloride 
metal reduced H2 yield [66]. Due to slight agglomeration, gasification 
efficiency in the presence of calcium acetate was higher than that of 
calcium chloride where Cl played an important role in agglomeration 
[71]. Although AAEMs in biomass are the main cause of agglomeration, 
a single metal addition in biomass will promote the reaction and miti
gate the agglomeration after the removal of original AAEMs. For 
example, a high content of CaO would react with CO2 in the reaction gas 
to form a layer of CaCO3 film that covered the biomass surface to 
mitigate agglomeration [137]. Furthermore, the gasification efficiency 
of Mg-loaded biomass was increased by elevating Mg concentration, 
however, the grain growth rate was still relatively slow. When 6.6 times 
of original Mg amount was added, efficient gasification without severe 
agglomeration could be expected [64]. 

5.3. Recycle valuable components from OCs 

Due to attrition as well as discharge along with ash, there is a loss of 
OC during the circulation in CLC system. Thus, a makeup of fresh OC is 
needed, which contributes to additional OC cost for CLC system, e.g., an 

Fig. 7. Different mechanisms of agglomerate formation with K and Na.  
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estimated cost of 175–225 €/ton in the case of ilmenite and manganese 
ore [138]. The cost will be much higher in the case of synthetic OC 
which usually involves more expensive precursors, inert support or 
other chemicals. As stated before, it is inevitable that OC can interact 
with ash components, especially S, K and Na. In the case of long-time 
exposure to alkalis or sulfur in the fuel reactor, the OC reactivity may 
decrease and become unsuitable for CLG process. These OCs must be 
discharged from the fuel reactor, thereby increasing the system cost. As 
depicted in Fig. 8, metals combined with spent OCs can be recycled for 
industrial use or reproduction of OCs in CLG or CLC to lower/compen
sate this induced cost. Leaching with water or strong acid is a common 
technique to recover valuable metals (e.g., vanadium) or Fe, Cu, Mn for 
fabrication of synthetic OCs or modification of natural ores with 
enhanced properties. 

5.3.1. Leaching valuable metals for industrial use 
Leaching useful metals from fuel ash was studied to some extent. 

Removal of calcium was reported to increase the recoverability of 
aluminum from coal ash [139]. Mineral carbonation reaction can 
decrease the leachability of Zn, Cu, Pb, Ni, As, Hg, Cd, Cr, Cl, and SO4

2-, as 
well as reduce the solvent pH from 12 to about 9 [140]. Diluted acetic 
acid can leach out K but retain Ca in biomass [141]. Thus, there will be 
more possibilities and opportunities by integrating leaching technology 
into CLP. 

During CLC/CLG process, OC can interact with ash to accumulate 
value-added metals after a long-term operation. Some of the accumu
lated elements are extractable via water/acid leaching. Preliminary 
research work has been done to recover vanadium from LD-slag OC from 
CLC in a 12 MWth boiler located at Chalmers University of Technology. 
Continuous leaching was examined using sulphuric acid with or without 
microwave treatment. After microwave treatment, leaching efficiency 
was elevated from 22.1 % to 49.1 %. This opens up the possible reuti
lization of value-added elements from industrial process and sustainable 
disposal of OCs from CLP. 

5.3.2. Leaching active metals for OC re-synthesis 
In general, active metals (e.g., Fe, Mn, Cu) in OC are more leachable 

than the ash components, such as quartz, corundum and aluminosili
cates, thus there are possibilities to recover useful metals (e.g., Fe, Cu, 
Mn) and semi-metal oxides (e.g., silica) via OC leaching. Strong acid is 
used to leach these metals for promising reuse in OC synthesis for CLC/ 
CLG process. Nonetheless, limited research has been implemented 
owing to appropriate selection of effective leaching agent for recovery of 
valuable components from the mineral matrix of spent OC. Meanwhile, 

the property of leaching agent is crucial for the re-synthesis of OC. For 
example, the precipitation of active metal oxide should be possible 
during the pH swing process [142]. Copper leaching with HNO3 was 
previously investigated for the spent Cu-Al OC in a 10 kWth CLC unit to 
reveal the feasibility for the synthesis of new OC [143]. Residual 
alumina after the leaching of Cu-Al OC can be recycled to produce high- 
strength ceramic spheres that can be used as high-performance filters for 
industrial process. Similarly, the feasibility was also confirmed for a C28 
calcium manganite-based OC prepared from spray drying [144]. 

5.4. Novel design of OCs 

Functionality of OC is crucial for the success of CLG process. In order 
to promote the development of CLG technology, structural and compo
sitional optimization of OC is essential to remarkably enhance the ac
tivity and durability of OC. 

5.4.1. Structural optimization 
Grain growth will block the pore structure of OC during reactions, 

which is one of the main causes for bed agglomeration and OC deacti
vation. In addition, a higher temperature will lead to the collapse of pore 
structure of OC, decreasing the specific surface area of OC and gener
ating lower melting point compounds. This will degrade the reaction 
performance of OC. Construction of OC with developed pore structure 
and high structural stability is an effective solution to agglomeration in 
CLG. 

Three dimensional ordered macroporous OC (3DOM OC) is a kind of 
macroporous OC with pore diameter above 50 nm. Because of its unique 
structure with uniform macropore diameter, ordered arrangement of 
pores and small window communication between macropores, an in
ternal cross-linked three-dimensional macropore network can be 
formed, leading to higher specific surface area and larger pore volume. 
The commonly used colloidal microsphere materials mainly include 
polystyrene, polymethylmethacrylate and SiO2 [145,146]. In addition, 
the preparation methods of microspheres include suspension polymeri
zation, lotion polymerization, dispersion polymerization, precipitation 
polymerization, soap free lotion polymerization, seed expansion and 
distillation precipitation polymerization [142,147]. Colloidal crystal 
templates usually combine microspheres by self-assembly (e.g., centri
fugation, gravity sedimentation, vertical deposition, etc.) [148]. 3DOM 
OC has been revealed to possess a higher porosity and order according to 
scanning electron microscope, transmission electron microscope and 
photonic stop band properties [149]. As compared to pure Fe2O3 OC, the 
as-prepared 3DOM Fe2O3 OC exhibited an increase of 7.1 % and 0.29 

Fig. 8. Recycle and reuse routes of spent OCs.  
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%/min for the maximum weight loss and the maximum weight loss rate, 
respectively, in gasification stage [150]. 

Molecular sieves, typical ordered mesoporous materials, demon
strate high specific surface area. Besides, their mesoporous structure can 
enhance the dispersion of active metals and increase the diffusion of 
reactants [151]. Molecular sieve materials include HY, ZSM-5, SAPO-34, 
MCM-41 and 5A, etc. [152–154]. OC prepared by molecular sieves could 
exhibit high activity, high selectivity and high stability. For instance, 
5Ni/MCM-41 significantly improved H2 and CO production from gasi
fication of cassava roots with conversion efficiency of carbon and 
hydrogen of 80.17 % and 27.39 %, respectively, and 10 wt% decrease of 
liquid yield [155]. Ni/SBA-16 showed a stronger reduction, oxidation 
and anti-agglomeration ability [156]. 

Stability and reusability of OCs should be improved to inhibit the 
leaching and agglomeration of noble metal OCs. A layer of shell was 
coated on the pre-synthesized nanoparticles to construct OC with cor
e–shell structure [157], which had an obvious inhibitory effect on metal 
sintering and agglomeration [158]. Methods to construct a core–shell 
structure mainly include deposition precipitation and one-pot method 
[158–160]. Ni@SiO2 prepared by deposition precipitation was found to 
demonstrate high specific surface area, small particle size and uniform 
metal dispersion, and the highest long-term stability [159]. Three-layer 
core–shell structure is further developed to strengthen the resistance to 
agglomeration under the action of double inert components. For 
example, Ni-SiO2@CeO showed stronger resistance to sintering and 
agglomeration of Ni particles as compared with Ni@SiO2 and Ni@CeO 
[160]. 

5.4.2. Compositional optimization 
Previously, monometallic OCs (e.g., Fe2O3, CuO, NiO2) have been 

widely applied in CLG. Due to their disadvantages of poor cyclic per
formance and serious agglomeration, bimetallic or polymetallic OCs 
have been extensively prepared and examined, such as loading inert 
carriers, the preparation of composite OCs and mixed OCs. 

At present, there are four common methods to load active compo
nents on inert carriers, i.e., mechanical mixing, co-precipitation, 
impregnation and sol–gel [161,162]. Mechanical mixing method is 
simple but the distribution of active components is uneven. In spite of 
complete distribution of active components on the surface of inert car
rier, impregnation has drawbacks in terms of long synthesis time and 
uncontrollable impregnation. Co-precipitation and sol–gel are advan
tageous methods for convenient OC preparation with superior loading 
effect. So far, common inert carriers are La2O3, CeO2, Al2O3, SiO2, MgO, 
ZnO, MgAl2O3, bentonite, limonite and kaolin [163–165]. The existence 
of inert carrier can effectively improve the dispersion of active compo
nents and mitigate the sintering problem. Some inert carriers also have a 
certain catalytic effect on the reaction. For example, MgO showed cat
alytic effect on tar removal [166,167]. The redox activity of ZnO is low, 
but it has the potential to enhance syngas production [165]. Fe2O3/ 
Al2O3 OC remained stable after ten redox cycles of CLG in terms of 
chemical properties, crystal size, specific surface area and pore structure 
[161,162]. After CaO was loaded on Fe2O3 OC, CaO could form a film to 
cover the surface of OC at high temperature, agglomeration was 
inhibited to a certain extent in spite of a decrease in reaction activity of 
OC [168]. In addition, when composite oxide was loaded on inert car
rier, OC containing inert carrier suggested a better recyclability [169]. 
Moreover, the addition of MgO improved the oxygen release capacity of 
Ca2Fe2O5 [42]. Meanwhile, loading active component on MgO increased 
the melting point of the reduced OC and inhibited the growth of 
Ca2Fe2O5 crystal size, leading to mitigated agglomeration. 

Two or more active metal oxides or nitrates can be mixed and 
calcined to prepare bimetallic or polymetallic OCs, such as NiFe2O4, 
CuFe2O4, MnFe2O4 and CoFeAlOx [20,170,171]. NiFe2O4 OC was pre
pared using high-temperature ball-milling assisted solid-state reaction 
[172] and showed stronger reaction performance and better stability 
than NiO and Fe2O3 after five redox cycles. Through thermogravimetric 

analysis of CuFe2O4, the reaction superiority and recoverability of 
CuFe2O4 was proved to be stronger after reaction [170]. CoFeAlOx is an 
OC during oxidative coupling of methane, in which the active phase of 
CoFe alloy and the parent spinel carrier were evenly mixed into the 
solid. Meanwhile, the dissolved CoFe alloy can be embedded in the 
scaffold of carrier after reduction [173]. After 20 redox cycles, it showed 
high reaction performance and excellent stability, indicating that 
controllable melting can significantly improve the high-temperature 
redox performance of OC. 

Doped OC demonstrates changes in crystal structure by doping ele
ments to form more oxygen vacancies, leading to improvement of ac
tivity and crystal melting point [25]. Co was doped into Ca2Fe2O5 to 
form Ca2Fe1.8Co0.2O5[25], which maintained high reaction performance 
and complete crystal structure after 10 redox cycles. Perovskite OC is 
also a kind of doped OC [174], which has strong lattice oxygen transport 
ability [175]. Especially, the alkaline earth metal doped with perovskite 
OC can effectively catalyze the reaction and avoid agglomeration during 
reaction [176]. Different types of perovskite OCs have been prepared by 
adjusting the ratio of Ba(NO3)2, Sr(NO3)2⋅4H2O, CO(NO3)2⋅6H2O and Fe 
(NO3)3⋅9H2O [177]. Ba0.5Sr0.5Co0.8Fe0.2O3-δ was found to be stable with 
only slight agglomeration after several redox cycles. 

6. Conclusions 

Influence of ash content in biomass and waste steams on CLP has 
been holistically summarized and analyzed. Certain elements in ash (e. 
g., Ca and Fe) can act as active OCs to enhance the performance of CLP to 
a certain extent. However, the majority of ash compositions and their 
physical states have adverse effects on CLP to deactivate OCs. AAEMs, 
such as K, Na, Ca and Mg, are converted into low melting point sub
stances at high temperature, resulting in particle agglomeration. In 
addition, alkali-rich elements released during biomass combustion tend 
to react with silicates, forming alkali-silicates and alkali- 
aluminosilicates that gradually accumulate as condensates within 
molten particles. Grain growth and aggregation also contribute to 
agglomeration and melting. To mitigate detrimental effects of ash 
components in biomass fuels, various strategies can be deployed. 
Different gasifying agents can be introduced to induce synergy with 
general minerals, gaseous sulfur and gaseous alkalis. Additionally, ash in 
biomass can be removed through washing, chemical fractionation, ul
trasonic pretreatment, and demineralization pretreatment. Importantly, 
removal of catalytic AAEMs should be avoided, while additional exog
enous AAEMs can preserve their catalytic effects. Moreover, valuable 
and active metals can be leached out and recycled from spent OC for 
industrial use and re-synthesis of new OC. Constructing OCs with well- 
developed pore structure and high stability offers an effective solution 
to address the agglomeration issue. Besides, novel bimetallic or poly
metallic OCs shall be designed to enhance reactivity and crystal melting 
points. Eventually, energy efficiency of biomass fuel would be remark
ably enhanced by addressing these challenges posed by ash to advance 
CLP-based sustainable energy system. 
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Ilmenite as oxygen carrier in a chemical looping combustion system with coal, 
Energy Procedia 4 (2011) 362–369. 

[32] H. Gu, L. Shen, Z. Zhong, Y. Zhou, W. Liu, X. Niu, H. Ge, S. Jiang, L. Wang, 
Interaction between biomass ash and iron ore oxygen carrier during chemical 
looping combustion, Chem Eng J 277 (2015) 70–78. 

[33] X. Huang, M. Fan, X. Wang, Y. Wang, M.D. Argyle, Y. Zhu, A cost-effective 
approach to realization of the efficient methane chemical-looping combustion by 
using coal fly ash as a support for oxygen carrier, Appl. Energy 230 (2018) 
393–402. 

[34] Z. Xu, H. Zhao, Y. Wei, C. Zheng, Self-assembly template combustion synthesis of 
a core–shell CuO@TiO2–Al2O3 hierarchical structure as an oxygen carrier for the 
chemical-looping processes, Combust. Flame 162 (2015) 3030–3045. 

[35] Y. Liu, S. Wang, R. Lohmann, N. Yu, C. Zhang, Y. Gao, J. Zhao, L. Ma, Source 
apportionment of gaseous and particulate PAHs from traffic emission using tunnel 
measurements in Shanghai, China, Atmos. Environ. 107 (2015) 129–136. 

[36] Z. Zhang, M. Tang, Z. Yang, J. Ma, L. Liu, B. Shen, SO2 and NO emissions during 
combustion of high-alkali coal over a wide temperature range: effect of Na species 
and contents, Fuel 309 (2022). 

[37] L. Aisyah, P.J. Ashman, C.W. Kwong, Performance of coal fly-ash based oxygen 
carrier for the chemical looping combustion of synthesis gas, Appl. Energy 109 
(2013) 44–50. 

[38] A. Skulimowska, L. Di Felice, N. Kamińska-Pietrzak, A. Celińska, M. Pławecka, 
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