
PEKKA SILLBERG

Development of New Data Processing Model for
Data and Software Reusability

TAMPERE UNIVERSITY 2024

Tampere University

pekka sillberg

Development of New Data Processing Model for
Data and Software Reusability

academic dissertation

To be presented, with the permission of
the Faculty of Management and Business of Tampere University,
for public discussion in the auditorium 125

of the University Consortium of Pori, Pohjoisranta 11 A, Pori,
on 12 January 2024, at 12 o’clock.

academic dissertation

Tampere University, Faculty of Management and Business
Finland

Responsible
supervisor
and Custos

Professor
Kari Systä
Tampere University
Finland

Supervisors DSc (Tech)
Jari Soini
Tampere University
Finland

Professor Emeritus
Hannu Jaakkola
Tampere University
Finland

Pre-examiners Professor
Boštjan Brumen
University of Maribor
Slovenia

Professor
Ajantha Dahanayake
LUT University
Finland

Opponent Professor
Markku Tukiainen
University of Eastern Finland
Finland

The originality of this thesis has been checked using the Turnitin
OriginalityCheck service.

Copyright ©2024 author

ISBN 978-952-03-3215-0 (print)
ISBN 978-952-03-3216-7 (pdf)
https://urn.fi/URN:ISBN:978-952-03-3216-7

Carbon dioxide emissions from printing Tampere University
dissertations have been compensated.

PunaMusta Oy – Yliopistopaino
Joensuu 2023

https://urn.fi/URN:ISBN:978-952-03-3216-7

P R E FA C E

The thesis work was conducted at two universities and in numerous
faculties, which I cannot recall accurately due to numerous organiza-
tional changes. Throughout the entire doctoral project, I was employed
by Tampere University of Technology, and by its successor, Tampere
University, engaging in various and interesting research projects. Fi-
nancial support for this thesis was provided by the Satakunta Regional
Fund of the Finnish Cultural Foundation, and the High Technology
Foundation of Satakunta.

I had the privilege of being guided by professor Emeritus Hannu
Jaakkola, DSc (Tech) Jari Soini, and professor Kari Systä. Hannu, your
assistance, contribution, and mentorship go beyond any measurable
amount. I cannot imagine where I would be without your influence
on my journey so far. Jari, thank you for your endless patience and
support, as well as your ability to find time and resources for my
thesis work. Kari, you were always able to identify even the tiniest
inconsistencies and found ways to improve the clarity of the thesis.
Thank you all for believing in me. Additionally, I am very grateful to
professors Boštjan Brumen and Ajantha Dahanayake for their excellent
service as pre-examiners of this thesis.

I want to express my gratitude to my colleagues at Tampere Univer-
sity, co-authors, friends, and everyone else who got involved in my
lengthy project. I also want to acknowledge professor Sami Hyryn-
salmi, who briefly served as my responsible supervisor and provided
the tip to use this particular LATEX template1.

The importance of family cannot be emphasized too much. Thank
you all for remembering me. My parents remembered to ask me now
and then how the thesis work was going. My wife, Chalisa, who has
already earned her PhD, was the most important person in supporting
and cheering me up. Her parents were very kind in trusting that
I would finish the thesis someday. Special recognition goes to little
Pekko. Luckily for you, there happens to be at least one picture with a
car in this book.

Many things have changed, but one concrete landmark has remained
relatively stable over these years. That thing is the former cotton factory
Porin Puuvilla, located on the north bank of the Kokemäenjoki river in
the City of Pori. In fact, it turned out that Puuvilla has become quite
an integral and meaningful part of my life. Perhaps even a one-stop
service center: receiving a master’s degree, a workplace, a place for
health and dental care, a thriving shopping center, finding the love

1 classicthesis, https://ctan.org/pkg/classicthesis

iii

https://ctan.org/pkg/classicthesis

of my life and subsequently getting married, and now the upcoming
doctoral degree—what else Puuvilla could offer me in the future?

Pori, Finland, December 2023

Pekka Sillberg

In Memoriam Tampere University of Technology (TUT) 1965—2018

iv

A B S T R A C T

This thesis studies the challenges in improving the quality of data
processing in information intensive software applications, particularly
in the practices of software engineering involved in designing and
implementing a system model for the various needs of information
processing. The research builds upon the traditional methods found
in the software engineering literature to create a new data design
pattern style for a new data environment. At the same time, as the
amount of data keeps growing, the logical management of data (and
the various data sources) is becoming more important. Prior research
has shown that there is a need for maintainable and systematic ways
to manage the produced data more efficiently. How can and should
data be managed by the software? To address the aforementioned
question, a comprehensive solution will need to apply the disciplines
of data management and software engineering together.

The research in this thesis integrates the aforementioned features
together in one package, which includes features from software frame-
works, design patterns, and architectural styles. The research adopts
Design Science Research Methodology in carrying out the research
activities, and iteratively refines and evaluates the intermediate results.

The main contribution is the introduction of a conceptual and
generic data processing model, which is built on the metaphor of
a streaming water apparatus consisting of faucets, sinks, and drains.
The main point of the model is how the model treats all data sources
equally, and as simply and generically as possible. The generic data
source management of the model will be the key on improving the
reuse of source code as well as reuse of data. The secondary contribu-
tion is a solution derived from the model which provides a reference
architecture, definitions, and specifications to realize a generic and
reusable software framework.

The work is validated through several architectural iterations and
prototype implementations. The framework was implemented and
tested in an experimental prototype system with a few use cases.
Finally, the findings, and theoretical and practical prospects of the
model are discussed. The demonstrated proof-of-concept experiments
indicate that the proposed model is feasible solution for systematically
manageable data processing, and can improve the quality and reuse
of both software and data.

v

C O N T E N T S

I doctoral dissertation

1 introduction 3

1.1 Research Area 6

1.2 Research Goals 7

1.3 Research Methodology 8

1.4 Publications 11

1.5 Thesis Structure 14

2 background 15

2.1 Implementation of Literature Review 15

2.1.1 Initial Review 15

2.1.2 Generic Review 16

2.2 Related Studies 19

2.2.1 Data Management 19

2.2.2 Similar Approaches 21

2.3 Software Standards and Best Practices 25

2.3.1 Standards 25

2.3.2 Best Practices 27

2.4 Conclusion of the Background Study 29

3 toward generic data management 31

3.1 In Search of Data Management 31

3.1.1 Quality Aspects 32

3.1.2 System Models 34

3.2 Publications in Detail 36

4 the data processing model 41

4.1 Faucet-Sink-Drain Model 41

4.1.1 Overview 41

4.1.2 Abstraction 43

4.1.3 Implementation 47

4.2 Use Cases 50

4.3 Prototype System 54

4.3.1 Overview 54

4.3.2 Detailed Description 56

4.3.3 Reusing Technical Constructs 60

4.4 Conclusion of the Empirical Study 63

5 discussion 65

5.1 Revisiting the Research Questions 65

5.2 Contributions of the Thesis 66

5.3 Evaluation of the Constructs 68

5.4 Threats to Validity 72

5.5 Future Work 73

vii

viii contents

6 summary 75

references 77

II original publications

p1 publication i 87

p2 publication ii 95

p3 publication iii 105

p4 publication iv 113

p5 publication v 125

p6 publication vi 139

L I S T O F F I G U R E S

Figure 1.1 Total data volume worldwide 2010–2024 3

Figure 1.2 Applied DSRM process model 10

Figure 2.1 Overview of Datoms 22

Figure 2.2 ISO/IEC 25012 Target domain 26

Figure 3.1 Product quality model 32

Figure 3.2 Deployment of prototype system 35

Figure 4.1 Conceptual model of data processing 42

Figure 4.2 Data acquisition 44

Figure 4.3 Data storage 45

Figure 4.4 Data identification and filtering 45

Figure 4.5 Data processing 46

Figure 4.6 Data visualization 46

Figure 4.7 Reference architecture 47

Figure 4.8 Model of data flows 53

Figure 4.9 Overview of prototype data flows 54

Figure 4.10 Structure of an example system 62

L I S T O F TA B L E S

Table 2.1 Initial literature review 16

Table 2.2 Generic literature review 18

Table 3.1 Summary of research contribution 36

Table 4.1 Summary of terminological changes 49

Table 4.2 Components of an example system 61

Table 5.1 Analysis of the source code 67

L I S T I N G S

Listing 2.1 MongoDB Aggregation pipeline 23

Listing 4.1 Initialization of the system 57

Listing 4.2 Example use of Stream Operators 59

Listing 4.3 Example of result output 60

ix

x acronyms

A C R O N Y M S

API Application Programming Interface

CSV Comma-separated Values

DBMS Database Management System

DIKW Data-Information-Knowledge-Wisdom

DMM Data Management Maturity

DMS Data Management System

DS Design Science

DSRM Design Science Research Methodology

DW Data Warehouse

FAIR Findable, Accessible, Interoperable, Reusable

FRIEDA Flexible Robust Intelligent Elastic DAta

GDMSA Generic Data Management System Architecture

HTML5 HyperText Markup Language 5

IoT Internet of Things

IS Information Systems

ISO International Organization for Standardization

JSON JavaScript Object Notation

MCERTS Monitoring Certification Scheme

MDMS Microblogs Data Management System

MDS Manageable Data Sources

MIME Multipurpose Internet Mail Extensions

MVC Model-View-Controller

RDM Research Data Management

rHMEI River Heavy Metal Evaluation Index

RO Research Objective

RQ Research Question

SQL Structured Query Language

SE Software Engineering

SQuaRE Software product Quality Requirements and Evaluation

UI User Interface

USDMS Universal Simulation Data Management System

L I S T O F P U B L I C AT I O N S

[Publication I] J. Soini, P. Sillberg, and J. Raitaniemi, “Utilizing adap-
tive software to enhance information management,” International
Journal of Computer, Electrical, Automation, Control and Information
Engineering, vol. 6, no. 12, pp. 1553–1558, Dec. 2012.

[Publication II] J. Soini, P. Sillberg, and P. Rantanen, “Prototype sys-
tem for improving manually collected data quality,” in Proceedings
of the 3rd Workshop on Software Quality Analysis, Monitoring, Improve-
ment, and Applications (SQAMIA), Lovran, Croatia, Sep. 2014, pp. 99–
106.

[Publication III] J. Soini, P. Sillberg, P. Rantanen, and J. Nummela,
“Portable sensor system for reliable condition measurement,” in
Proceedings of the 39th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO),
Opatija, Croatia, May 2016, pp. 1397–1402. doi: 10.1109/MIPRO.
2016.7522320.

[Publication IV] P. Sillberg, C. Veesommai, J. Soini, and H. Jaakkola,
“Web-User-Interface System Utilizing rHMEI and Open Data for
a Water Quality Analyzer,” in Information Modelling and Knowledge
Bases XXIX, ser. Frontiers in Artificial Intelligence and Applications.
Netherlands: IOS Press, Feb. 2018, pp. 420–428, isbn: 978-1-61499-
833-4. doi: 10.3233/978-1-61499-834-1-420.

[Publication V] P. Sillberg, “Toward Manageable Data Sources,” in
Information Modelling and Knowledge Bases XXX, ser. Frontiers in
Artificial Intelligence and Applications. Netherlands: IOS Press, Feb.
2019, pp. 101–111, isbn: 978-1-61499-933-1. doi: 10.3233/978-1-
61499-933-1-101.

[Publication VI] P. Sillberg, M. Saari, J. Grönman, P. Rantanen, and
M. Kuusisto, “Interpretation, Modeling, and Visualization of Crowd-
sourced Road Condition Data,” in Intelligent Systems: Theory, Re-
search and Innovation in Applications, R. Jardim-Goncalves, V. Sgurev,
V. Jotsov, and J. Kacprzyk, Eds., ser. Studies in Computational In-
telligence. Springer, Cham, Mar. 2020, vol. 864, pp. 99–119, isbn:
978-3-030-38703-7. doi: 10.1007/978-3-030-38704-4_5.

xi

https://doi.org/10.1109/MIPRO.2016.7522320
https://doi.org/10.1109/MIPRO.2016.7522320
https://doi.org/10.3233/978-1-61499-834-1-420
https://doi.org/10.3233/978-1-61499-933-1-101
https://doi.org/10.3233/978-1-61499-933-1-101
https://doi.org/10.1007/978-3-030-38704-4_5

Part I

D O C T O R A L D I S S E RTAT I O N

1
I N T R O D U C T I O N

The amount of global information has been increasing at an exponen-
tial rate, and the trend appears to be continuing. Forecasts predict
(e.g., Statista, 2020; Patrizio, 2018; Marr, 2018) that the amount of data
is doubling approximately every two years, and by 2024 the amount
of data will reach 149 zettabytes. In terms of data volume, the bil-
lions of Internet users are now generating the majority of the content
(e.g., photos, videos, emails, documents), but in terms of data velocity,
the various technical actors such as Internet services and Internet of
Things (IoT) devices are leading. The increase of unstructured informa-
tion among other factors contribute to the expansion of the variability
of data. These three characteristics: volume, velocity, and variety, have
been identified as the defining features of big data (Laney, 2001).

Figure 1.1: Total data volume worldwide 2010–2024. (Statista, 2020)

The challenges of big data extend beyond the physical characteristics
(e.g., storage requirements or raw computing capacity). If the amount
of data grows as predicted (Figure 1.1), it might not be possible
to keep up with the demand by increasing and purchasing more
computational resources. Therefore, the logical management of big
data by software (e.g., applications and systems) will become more
important. At the same time, the complexity of Information Systems
(IS) are growing, and consequently system models will grow too, and

3

4 introduction

focus must be placed on a system of systems (Jaakkola and Thalheim,
2021). It will become more challenging to manage the data modeling
of complex, pipeline-based, and/or mixed data sources and formats in
one application only (Jaakkola and Thalheim, 2021). Therefore, having
systematic control over the (seemingly infinite) unstructured data
sources could provide improvements in several aspects of Software
Engineering (SE).

Recently, the trends of data management in applications cover the
following aspects of data: the increasing amount of the data handled
are either unstructured, or are based on the polymorphic data models.
Data has a variety of sources, which are not under control of the
application developers. This leads to the need for backward modeling.
The application handles large masses of data due to a part of it having
sources in legacy systems, and wide variety of changing (in time) open
sources. The data flow is real time and a pipeline based. Traditional
approach aims to develop applications for handling this complexity of
data is based on by purpose solutions. However, there can be a lot of
potential in the alternative approaches. In spite of the data complexity,
it is possible to separate common aspects in the data management;
this generic part (of the code) is application independent and reusable.
The generic part is complemented by a context dependent specific
part (of an application). Lastly, there may exist a part which is more
or less beyond our control; it could be boilerplate or library code in
the application, noise in the data or data formats, hacks to make the
program to work, or simply has other features that are unknown to us.
For the sake of completeness, it can be worthwhile to acknowledge
this unspecific part in the architecture of an application.

Our approach to the challenge of data complexity is to provide an
architecture of a framework, which separates the above mentioned
three architectural parts. The generic and reusable part of the architec-
ture is realized by Faucet-Sink-Drain Model based framework, which
implements the application independent part of the system. The appli-
cation specific part is connected to the generic part, and any unspecific
features can be filled in by the unspecific part. The implementation
of these three fragments is based on the principles of manageable
(architectural) dependencies.

If data processing can be carried out more easily and more effec-
tively, it will lead to improvement in the quality of the data. At the
same time, improving the reusability of processed information can
potentially save computational resources. Furthermore, development
resources could be focused better if the overall complexity of a system
can be simplified. It should be investigated how data can and should
be managed and utilized by the software. This can be a multifaceted
problem depending on the perspective of the potential user role. For
example, a user might be interested in formulating a reliable algorithm
to solve a specific problem. Another user might want to reuse and

introduction 5

extend this solution with their own (flavor of) data sources. When it is
looked at from the software developers’ point of view, they would like
to have appropriate tools, interfaces, and means for creating a fully
functional software application. In an ideal world, this can be done
in a controllable and systematic way that can also avoid error-prone
ad-hoc implementations.

This thesis approaches the challenge of data processing by propos-
ing the design of a simple and generic model, usable by a wide range
of applications. The main goals of the model are to standardize and
to control the steps of data processing performed by a software ap-
plication. In other words, it aims to provide a “mental model” for
solving various data processing problems in software applications.
Secondarily, the simplification by the model is based on the metaphor
of a common and easily relatable household appliance.

The hypothesis is that the model enables improvements in the qual-
ity of the data processing as well as improved software development.
The model proposed in this thesis is named Faucet-Sink-Drain Model.
The model is realized as a prototype system where the principles
of the model are applied and utilized. The chosen context for the
prototype is data management. The prototype system is constructed
in a way that the generic functionalities provided by the model can be
separated from the main logic of the system.

The initial working name (in Finnish) of the model was playfully
“viemärimalli,” literally in English, a drain model. While this name is
quite a verbatim characterization of the model, proper English names
were needed. Therefore, the generic data processing model part is
called Faucet-Sink-Drain Model while the data source management
part is called Manageable Data Sources (MDS) component framework.

To completely define and understand Faucet-Sink-Drain Model
requires that it be examined from multiple viewpoints. This thesis
uses the following definitions of terms in the context of Faucet-Sink-
Drain Model:

• As a model, it represents the conceptual idea of pipelined data
processing. The model is defined using the metaphor of a stream-
ing water apparatus which consists of faucets, sinks, and drains.
In practice, it is a reusable generic model that can be adopted
in applications and implemented, for example, as a software
library or framework.

• As a design pattern, it represents a general and reusable solution
on how the problem of data processing (and data management)
can be approached in software applications.

• As a framework, it provides a ready-made implementation of
the model and the basic functionalities that give guidance for the
structure for a software application. A component framework
is a distinct part of a framework, which has a clearly separated
role and task: it can be assembled and reused by another system.

6 introduction

• As an architecture (or more specifically, an architecture frag-
ment), it defines a logically cohesive system unit to solve various
problems. The specific problem of this thesis concentrates on
the effective and systematic management and processing of data
sources. As such, this can be seen as an example of how Faucet-
Sink-Drain Model (along with the MDS component framework)
can be applied to solve a specific problem.

In essence, Faucet-Sink-Drain Model is a collection of various se-
mantics assembled into a single term. Depending on the purpose,
it is possible to choose the most functionally appropriate mode of
operation from the defined semantics.

1.1 research area

Data is the raw building block of all information. Data constitutes
symbols that represent the properties of objects and events (Ackoff,
1989). Information is built upon data, knowledge is based on informa-
tion, and wisdom requires knowledge (Ackoff, 1989; Rowley, 2007).
Together they form a hierarchy, oftentimes called the Data-Information-
Knowledge-Wisdom (DIKW) hierarchy. Literature has multiple defini-
tions for each item in the DIKW hierarchy. For example, Rowley (2007)
reviewed 16 papers to find definitions and the essence of the compo-
nents in the DIKW hierarchy. The author concluded that the difference
between data and information is that plain data has no meaning, as it
is an unprocessed fact or observation. Information can be derived from
data by organizing it or by including a purpose or context, making it
meaningful, useful, and relevant. Furthermore, knowledge can be seen
as a combination of information, understanding, capability, experience,
skills, and values. (Rowley, 2007) Knowledge can be differentiated into
explicit and tacit knowledge, where the former is something that can
be recorded programmatically and the latter is an embedded part of
the human mind (Nonaka and Takeuchi, 1995; Rowley, 2007).

In the context of SE, if one would like to get the benefits of the
DIKW hierarchy, it needs to be programmed (or taught) to the software
application. It is definitely not an easy task to carry out from a scratch,
and presumptively there exist multiple approaches on the matter. The
approach proposed in this thesis can be considered an examination
of a tool for combining the strengths of the computer (e.g., good in
repetitive work and memory) and human users (e.g., good in specialist
knowledge). The design of a such system must also adhere to the
study of software architectures for the production of high-quality and
successful products (Taylor et al., 2009).

Before the data can be turned into information, there are several
questions that have to be resolved. In the case of software developers,
they might be asking practical questions that require concrete answers,
for example:

1.2 research goals 7

• Where does the data come from?
• Where is the data stored?
• How are the data and intermediary results cached and selected?
• Which kind of algorithms need to be used?
• How are the results presented?

The most obvious approach to solving these questions is to im-
plement the software on an ad-hoc basis, but that could introduce
unwanted side effects. For example, there might not be enough con-
cern about how the achieved outcome could be utilized and reused
in forthcoming systems or solutions. In other words, the new solu-
tions tend to solve the questions again and again in their own unique
way, which can accumulate with an unnecessary amount of resource
consumption. Software standards such as ISO/IEC 25012:2008 (2008)
define the qualities of the target data, but it appears that data manage-
ment related features (for example, reuse and accountability of data)
are not covered. The previously mentioned questions are referred to
in a data processing model, which is presented in Section 3.1.2.

1.2 research goals

The use of patterns, frameworks, models, and reusable code improves
the quality of software (Nguyen, 2013; Greenfield and Short, 2003;
Gamma et al., 1994). For example, the Model-View-Controller (MVC)
design pattern can be utilized to separate the application logic, data,
and user interface into their own logical components (Buschmann et
al., 2013; Koskimies and Mikkonen, 2005). Software requirements and
specifications, together with software standards are crucial in achiev-
ing the software that is fit for its intended purpose (Sommerville,
2016). Having well-defined requirements also help in other parts of
development. The system will become easier to modify, maintain,
and understand by dividing a complex system into smaller parts
through the process of decomposition and modularization. These mea-
sures can positively affect the reuse of the source code. According to
Sommerville (2016), the reuse landscape has an array of techniques
available, where the selection of appropriate tools depends on the
requirements for the system being developed. Therefore, we should
strive to incorporate methods found in the software engineering litera-
ture (e.g., reuse and patterns) to fully exploit the potential of big data
in data-intensive applications, to handle varying data processing and
search-related requests efficiently.

There is a growing need for maintainable and systematic ways for
managing the data produced, and subsequently, the information and
knowledge that is derived from the data. Miksa et al. (2018) note that
data has evolved from static documents into continuous streams of
information flowing into Information Systems, and that users have to
manage data efficiently to keep it safe and reusable. A general purpose

8 introduction

database may be an answer, but even then, the choice of an appropriate
software tool depends on the circumstances as each piece of software
is designed for a particular usage pattern (Kleppmann, 2017). For this
dilemma, there are no comprehensive solutions available, which is an
indication for a potential research gap addressed in this thesis.

Any such solution will demand the integration of several aspects.
As a result, the Research Objective (RO) of this thesis is to identify a
simple model of generic data processing that can be used for creating
a systematic framework to process data requests. Further, the RO

is divided into three Research Questions (RQs) which describe the
deficiencies in the current situation.

RO There exists a generic model that enables the processing of data
in any given software application.

RQ #1 How to manage the data quality & data processing sys-
tematically?

RQ #2 How to design and perform data processing cycle?

RQ #3 How to comprise & execute the approach of generic model
in a software application?

The presented RO and RQs are utilized to align the research with
a SE focused solution for systematically managed generic data pro-
cessing. The proposed solution is based on Faucet-Sink-Drain Model,
which encapsulates a reusable design for data processing applications
similar to what MVC is for User Interfaces (UIs). A prototype of a con-
crete framework has also been constructed. This construction is then
described and scrutinized for the applicability of solving a problem.

1.3 research methodology

To conduct valid research, there should be a methodology that is
suitable for the research discipline in question. The Design Science (DS)
method popularized by Hevner et al. (2004) is a tool for conducting
research in the context of IS, and presents a set of seven guidelines for
DS research. These guidelines are useful for structuring and directing
the research itself, and finally in the validation of the research approach
once the research has been conducted.

Based on the prior work done on DS, Peffers et al. (2007) propose
a Design Science Research Methodology (DSRM) for the production
and presentation of DS research in IS. The DSRM includes the tools for
carrying out the research that fulfills three objectives. These objectives
support consistency with prior literature, provide a process model
for conducting DS research, and a mental model for presenting and
evaluating the research. (Peffers et al., 2007) The methodology gives
a suitable framework to follow for conducting rigorous IS research.
Therefore, DSRM was selected as a research methodology in this study.

1.3 research methodology 9

DSRM makes a synthesis of the common elements found in seven
prior DS research studies. The result is a DSRM process model contain-
ing six stages of activities. The activities are described by drawing
the necessary explanations from the studies, making it clear what the
required inputs and outputs of the corresponding stage are. (Peffers et
al., 2007) The activities defined by Peffers et al. (2007) in their nominal
order are as follows:

Activity 1 Problem Identification and Motivation

Activity 2 Objectives of the Solution

Activity 3 Design and Development

Activity 4 Demonstration

Activity 5 Evaluation

Activity 6 Communication

While the activities are listed in sequential order, it is not required
to proceed in that order, and the process can be initiated “at almost
any” of them (Peffers et al., 2007). DSRM features an iterative process
that allows a versatile approach to research. This enables returning
to an earlier activity to conduct incrementally evaluative research
activities, resembling a feedback method that eventually converges on
a certain predetermined target. Identifying and adopting the research
activities described by DSRM can provide a roadmap to follow during
the research.

The initial activity can be identified from a prospective research
entry point, and the entry points defined in DSRM correspond to a
certain initial activity (Peffers et al., 2007), which in this case is iden-
tified as the Activity 3 (Design & Development Centered Approach).
The origin can be traced back to Publication V where the model of
manageable data processing was presented for the first time. The
problem identification and motivation (the RO in Section 1.2) appeared
initially in Publication V but has been reviewed and slightly adjusted
for the needs of this thesis. The earlier publications (i.e., Publica-
tion I–Publication IV) represent the prior research which supports
the formation of the intermediate products of the research activities:
inference, theory, knowledge of how to, knowledge of relevant metrics
and analysis techniques, and knowledge of the disciplinary culture.
An overview of the DSRM activities, the research specific steps taken
during this thesis are depicted in Figure 1.2. Each activity is mapped
to the publications of this compilation thesis.

This thesis also contributes to Activity 1, refining the contents of
problem identification and motivation, bringing together the prior
publications and the conducted research. The empirical knowledge
was gained from the various prototypes described in Publications I–IV.
As indicated above, those were produced prior to the identified Initial

10 introduction

Identify
Problem &
Motivate

Effectively
manage data

resources

Publication I-IV

Define
Objectives of a

Solution

Gain empirical
knowledge

&
Develop generic

solution
Publication I-IV

Design &
Development

Faucet-Drain-
Sink model

&
Manageable
Data Sources

framework
Publication V

Demonstration

Proof-of-
concept

&
Prototypes

Publication VI

Evaluation

Testing

Adapting for use
cases

Feedback from
publications

Publication V-VI

Process Iteration

Communication

Publication I-VI

Other
 publications

Possible Research Entry Points (Initial Activities)
In

fe
re

nc
e

Th
eo

ry

H
ow

 to
 K

no
w

le
dg

e

M
et

ric
s,

 A
na

ly
si

s
Kn

ow
le

dg
e

D
is

ci
pl

in
ar

y
Kn

ow
le

dg
e

Design &
Development-

Centered
Approach

Figure 1.2: Applied DSRM process model. Adapted from Peffers et al. (2007).

Activity. Publications V and VI are results after it. All the intermediary
publications contribute to Activity 6.

The outcome of the very first iteration of Activity 3 was an idea,
which could be useful in general use data processing scenarios. This
idea was refined iteratively through Activities 2–5 to find out what
could be implemented and how to use this idea properly. Once the
idea was found to be fruitful for further study, the original design
of the model was published in Publication V. The general message
from the peer review (prior the publication and at the conference)
was that more progress in the study, and actual implementation and
experimental results were expected. Hence, it was justified to con-
tinue the implementation of the system to gain the evidence of the
applicability of the model. Ultimately, a prototype system based on
the model was developed, demonstrated, and evaluated internally in
several iterations. The objectives of the solution (i.e., the design and
terminology of the model) were slightly adjusted once it was clear
how to match the actual needs of the use cases. The intended feature
set was also reviewed due to the limitations of available development
resources. Practically the reference architecture was made less complex
by dropping a few of the specific fields, and by applying more generic
naming scheme. The next major step was the testing of the model in
a proof-of-concept environment, published in Publication VI. Finally,
the gathered research knowledge is summarized in this thesis.

literature review Both the DSRM and DS methods require the
identification of problem relevance. This serves the need to show the
importance of the research, gaining insight into the state of the art in
the literature, as well as revealing a possible research gap.

To fulfill these needs, the literature review was conducted in two
separate phases. The first phase can be seen as a very specific literature
review. It was used to determine if there were any relevant or equiva-
lent prior studies on the chosen thesis subject. The second phase was

1.4 publications 11

a more generic review, in which the scope was zoomed out to find a
broader spectrum of the relevant literature. More information about
the literature review can be found in Section 2.1.

1.4 publications

This section gives a synopsis of each publication included in this thesis,
and identifies the independent contribution by the thesis author. The
list of publications is given in the List of Publications on page xi, and
the original publications can be found in Part II. The selected publica-
tions demonstrate the preceding iterations and prototype systems that
were crucial in the conception of the model solution presented in this
dissertation. The more detailed research contribution of the selected
publications is given in Section 3.2.

Publication I “Utilizing Adaptive Software to Enhance Informa-
tion Management.”

Publication I deals with flexible and dynamic UIs for enhancing
information transfer in mobile devices by presenting a tool for devel-
oping adaptive software. With the presented solution it is possible
to improve information management in the software. The manage-
ment, creation, and distribution of adaptive UIs, as well as access to
the collected data, are evaluated with the adapter software approach.
Adapter software is a specialized application that allows the usage
of the created flexible application UI on any device by translating the
downloaded UI definition file.

The contribution of the thesis author in this paper was the research
on dynamic UIs, the implementation of the adapter software prototype
by utilizing a cross-platform Qt programming framework, and in the
documentation of the system. This paper can be seen as a continuation
to Sillberg et al. (2011) from the information management perspective,
where the thesis author strongly contributed to flexible UIs and data
binding. The author wrote the main matter of the paper describing
the dynamic UI system (i.e., sections three and four), prepared screen
shots, figures, and formatting in the paper.

Publication II “Prototype System for Improving Manually Col-
lected Data Quality.”

Publication II presents a prototype system which is an attempt to
improve the quality of manually conducted data collection. There are
still legacy systems out there which cannot be replaced with fully
automatic sensor systems, or where the desire is to keep them intact
because ultimately they are working as intended. Nevertheless, it is
important to gather the data that the systems generate. The prototype
system helps the workload of maintenance staff by combining several
cumbersome steps into one manageable step: the identification of the

12 introduction

data collection point, the collection of data by a pen and paper, import-
ing the data from paper into a digital system, and finally processing
the data. Additionally, the prototype can help in the elimination of
human error, for example the mistyping of a number.

The author was responsible for implementing the client device
application, and specifying the user-centered procedure of information
collection facilitating the requirements of the maintenance staff. The
data visualizations and processing functions were fully implemented
by the author. Similarly, the author wrote the parts describing the
overview of the prototype system and visualization of results (i.e.,
sections 3.0 and 3.2). Additional tasks included preparing screen shots,
figures, and the paper formatting.

Publication III “Portable Sensor System for Reliable Condition
Measurement.”

Publication III extends the prototype system introduced in Publi-
cation II by replacing data collection with a commercially available
automatic sensor device. In this study, more emphasis was placed
on the visualization and post-processing of the collected data. The
approach allows a higher sampling rate and provides scaling of the
service by simply adding to the number of sensor devices. The de-
vice has a small internal memory, which has to be read periodically
(e.g., once a month depending on the sampling rate) to avoid the loss
of data. This also means that the approach does not fully support
real-time monitoring needs, but allows considerably greater detail
compared with manually collected data.

The contribution of the thesis author was the studying of the stan-
dards related to contactless identification systems, implementation of
data import functions from third party sensors, and the realization of
a floor plan view in the system. The system builds upon the results
published in Publication II. The corresponding work in the publication
is in presentation of the background and description of the imple-
mented visualization UI (i.e., sections II and III.C). The author also
prepared all screen shots, figures, and the paper formatting.

Publication IV “Web-User-Interface System Utilizing rHMEI
and Open Data for a Water Quality Analyzer.”

Publication IV introduces a prototype that is another application that
relies on processing data and providing the user with a visualization.
The prototype utilizes water sampling data from Finnish water bodies
provided by the Finnish Environment Institute as Open Data. This
means that anyone with an interest can gain access to Open Data.
However, often the data provided by Open Data repositories requires
specialized computer skills to obtain and analyze it. Thus, for non-
specialist users there is a need for an easier way to interpret (or at
minimum to inspect) the data. The prototype utilizes the River Heavy

1.4 publications 13

Metal Evaluation Index (rHMEI) algorithm (Veesommai et al., 2016) to
translate the raw data into a more easily understandable representation
of the measured heavy metal analytes in the water.

The contribution of the author was the implementation of the proto-
type application, i.e., the web UIs that collects the water quality data
from the open data platform, and also the realization of the rHMEI

in JavaScript programming language. The author also conducted the
case study of the available water quality open data—ranging from
2010 until 2016—that gives an overview of the water quality (in terms
of heavy metal analytes) in the municipality of Pori. The manuscript
was principally written by the author while the role of co-authors
was supportive in nature. They helped in reviewing and in giving
the crucial insight on what topics should be addressed with, as well
as confirming that the presented matters were factually correct. The
author presented the work at the 27th International Conference on
Information Modelling and Knowledge Bases (EJC 2017) in Krabi,
Thailand, in June 2017. The paper was later published in Information
Modelling and Knowledge Bases XXIX in 2018.

Publication V “Toward Manageable Data Sources.”
Publication V marks the first appearance of the conceptual model

of data processing and MDS. These concepts together lay out the foun-
dation of this thesis. Further, the basic vocabulary and specification
are laid out for the first iteration of the idea. In its simplicity, the data
processing model consists of five basic components: (1) faucets, (2)
streams, (3) sink, (4) sieves, and (5) drains. These and the other key
topics are revisited in Chapter 4.

The author was wholly responsible for the contributions of this
paper, and presented the work at the 28th International Conference
on Information Modelling and Knowledge Bases (EJC 2018) in Riga,
Latvia, in June 2018. The extended version of the paper was later
published in Information Modelling and Knowledge Bases XXX in 2019.

Publication VI “Interpretation, Modeling, and Visualization of
Crowdsourced Road Condition Data.”

Publication VI presents a prototype system for gathering data gener-
ated by users’ everyday actions by utilizing crowdsourcing and mobile
phones. This system is intended for recording normalized accelerom-
eter and location information provided by the various sensors of a
mobile device. The collected data quickly builds up, and creates chal-
lenges such as how to effectively manage and process big data. The
data produced is processed into five different shock levels (L0 . . . L4)
that can be visualized or further utilized by other systems. The shock
level represents the severity of unevenness of the road, where shock
level L0 contains the lowest one-fifth and shock level L4 contains the
highest one-fifth of the normalized accelerometer amplitude data.

14 introduction

The author adapted the model introduced in Publication V together
with the prototype system for road condition data collection. The
data analysis and interpretation of the recorded shock levels were
also carried out by the author. In the publication, the written work
reflects in the parts that discuss analysis results, data processing and
the integration of models in the prototype system (i.e., sections 3.2,
4, and 5.2). Activities also included being the corresponding author of
the publication.

1.5 thesis structure

The dissertation is composed of two parts. The first part (Part I)
includes the main content of the research. This part is divided into
six chapters, followed by a bibliographical section. The chapters are
structured in the following way:

Chapter 1 gives an introduction to the research topic of the thesis.
The chapter presents the included publications, goals, and
the chosen research methodology of the thesis.

Chapter 2 deals with the positioning of the thesis topic and presents
the background of the research by examining the related
studies revealed by means of a systematic mapping study.
The methodology of the literature review is also addressed
here. An examination of the applicable SE topics is made
before drawing the conclusions of the background study.

Chapter 3 approaches the main research subject of the thesis by intro-
ducing the prior work of the thesis author. The key focus
areas and selected SE topics supporting the forthcoming
findings are described together with their linkage to the
publications selected for this compilation thesis.

Chapter 4 presents the main results of the studies. The first section
addresses the system model and architecture while in the
second section the prospective use cases are studied. In the
third section the prototype system based on the model is
described, and in the last section the conclusions based on
the findings are discussed.

Chapter 5 discusses the results of the studies by analyzing, evaluat-
ing, and validating the presented system and model. The
chapter ends by outlining some future research topics.

Chapter 6 concludes the dissertation by summarizing the main results
and findings of the thesis.

Finally, the second part (Part II) contains the original publications
included in this compilation thesis. The rationale of the selected publi-
cations together with the author contribution is explained briefly in
Section 1.4 and more thoroughly in Section 3.2.

2
B A C K G R O U N D

This chapter outlines the related research and literature. The chapter
is divided into four sections. The first section concentrates on the
execution of the literature review. Insight into the literature discov-
ered is provided in the second section. The third section is dedicated
to the examination of the crucial software standards, models, and
architectures. The last section summarizes the findings of the chapter.

2.1 implementation of literature review

The activities of the phases of the literature reviews conducted during
this research are described in this section. Each subsection is detailing
the findings and conclusions of a particular phase. While there are
various literature review techniques available, systematic literature
reviews (Kitchenham et al., 2009; Babar and Zhang, 2009) have gained
popularity in SE research. The opposite of a systematic literature re-
view, informal ad-hoc surveys, are still preferred (Kitchenham et al.,
2009) by many researchers. Informal surveys are somewhat less la-
borious as they typically do not define the process of finding the
literature, but undertaking a systematic literature review has its ben-
efits in providing methodologically rigorous results (Kitchenham et
al., 2009). A systematic approach, such as a systematic mapping study,
can support SE research by saving time and effort (Kitchenham et al.,
2011; Petersen et al., 2015). The mapping study technique offers a less
rigorous approach compared with a conventional systematic literature
review (Kitchenham et al., 2011). For example, Kitchenham et al., 2011

mentions that the search strategy requirements are less demanding
if only research trends are of interest. For the literature scope of this
thesis, the mapping study technique was applied as the findings of
novelty and research trends would be used as the basis for the decision
of further research.

2.1.1 Initial Review

The first and the most specific literature review was conducted in
November 2017. It was used to determine if there were any other
relevant or equivalent prior studies on the chosen thesis subject based

15

16 background

on systematic literature review processes. The search was performed
on three major scientific indexing search engines: IEEE Xplore, Scopus,
and ACM Digital Library. Initially, the idea appeared simple enough,
thus there was a genuine suspicion of the novelty of the idea. Regard-
less of concerns, it became clear that relevant keywords produced only
a small amount of hits. Several variations were also tested indepen-
dently to find better results. Finally, it was decided to utilize the follow-
ing search term similarly on all indexes: “(faucet OR drain OR sink)

AND (data AND (conceptual OR model)).” The number of total hits
(last column), studies related to computer science and SE (Related
Hits), and studies that are both related and relevant (Relevant Hits)
are shown in Table 2.1.

Table 2.1: Initial literature review.

Search Engine Relevant Hits Related Hits Total Hits

ACM Digital Library 4

IEEE Xplore 3 11

Scopus 2 166

In the majority of the captured literature, the terms such as drain
and sink were utilized in a different research field (for example, elec-
tronics or water resources), making those studies unrelated. Only five
hits could be deemed related to the field of computer and information
science. Finally, there were zero studies that were both related and
relevant to the study area of the thesis. The conclusion of the initial re-
view was that there were no exact matches and no research on exactly
the same topic had been made previously. With this insight, further
research on the idea was considered reasonable. The result was the for-
mulation of the introductory publication, Publication V. In the making
of the Publication V, the positioning of the research was refined, and
the following related concepts were identified: architectures, big data,
data management, design patterns, models, and quality of software.
These topics were helpful in the discovery of the related research of
the thesis.

2.1.2 Generic Review

The scarcity of results indicated that the keywords used in the first
review phase were too constraining, and prompted a wider study.
Using the feedback from the first phase, a significantly generalized
concept was then formulated, resulting in the search term “data
management”. The search term was utilized similarly to the first phase.
The second phase was performed in October 2019 while the proof-
of-concept application was being tested with the data published in

2.1 implementation of literature review 17

Publication VI. The purpose of this review phase was also to make
sure that the research was still aligned with the planned context
and research goals. Therefore, a complete list of literature was not
necessary, only the discovery of the most essential publications with
enough penetration in the research area.

It was expected (and quickly confirmed) that this approach would
generate a very large amount—hundreds of thousands, or even more—
of search hits. Due to the huge amount of results we were at the
mercy of the sorting algorithms of the selected search engines. In
practice, only a small subset of documents could be taken for closer
inspection. On the other hand, there are a few advantages to the
approach as well. It reduces the impact of trending search terms and
gives a relatively “fair chance” for any research to make an appearance.
Another advantage, partly due to its random nature, is acquiring a
wider and interdisciplinary point of view on the research topic. It helps
to position the context of the thesis more accurately, and gives hints on
where to look for supplementary literature. Finally, the method could
reveal documents or studies that might have been missed otherwise
(for example, due to poorly selected search terms). All the readily
accessible and relevant documents obtained by this approach were
then downloaded for closer inspection, and appropriately incorporated
into the related studies. The number of direct citations were reassessed
to capture the feasibility of the approach.

It was decided to include top hits from each search engine, and to
classify the studies based on a brief subjective assessment of the pro-
vided document metadata (e.g., abstract, conference name, publication
year, and so on). The search was conducted on six different search
engines, yielding in 120 documents to be reviewed and classified.
The selected search engines are listed in the header row of Table 2.2,
and the qualitative and quantitative parameters are then listed on
separated sections.

Let us start with the quantitative values (i.e., the bottom section).
There were in total 13 duplicates, indicated by the Duplicates row.
The duplicates are distributed among six documents: one document
appeared three times and five documents appeared twice. Thus, there
were in total 113 unique documents out of the 120 documents included.
Duplicates are included in the total count of classified documents on
each search engine. The effect of duplicates recounted in this manner
is denoted by “(+n)” where n is the number of duplicated documents
in the corresponding document class.

The Unreached row denotes the documents that were not accessible
in electronic format with a reasonable amount of effort. Total hits is
the number of search hits reported by the search engine. The number
of search hits reveals one of the weakest points of the random hit
search method; at best, only 0.2 percent of the results were covered by
selecting the top 20 results. Thus, there is a high chance that relevant

18 background

Table 2.2: Generic literature review.

Parameter ACM1 Google2 IEEE3 SD4 Sco.5 WoS6

Abundant 2 3(+1) 1 5(+1) 3(+1)

Adequate 5 3 6 5 4

Moderate 4 4 10(+2) 11(+1) 8(+2) 4(+3)

Duplicates 1 3 1 4 4

Unreached 1 3 1

Total Hits 22764 267000 9906 55667 36839 19035

Year (avg) 2011.5 2002.4 2012.4 2018.6 2011.4 2010.6

Year (std) 4.17 5.65 5.62 0.86 4.14 7.61

1 ACM Digital Library 2 Google Scholar 3 IEEE Xplore
4 ScienceDirect 5 Scopus 6 Web of Science

results will be missed in this approach. However, the exercise produced
a good cross-section of interdisciplinary fields and quite a wide time
range coverage. Useful follow-up references that appeared in some of
the documents also helped in searching for other publications. These
points positively contributed to gaining a wide perspective and a good
overview of the subject of data management.

The last two rows indicate the publication year of the papers in the
respective set; the first is the arithmetic mean of all documents, and
the second is the standard deviation of the population. ScienceDirect
produced the most recent documents (also with the smallest stan-
dard deviation) while Google Scholar produced the oldest documents.
Google Scholar also returned the most search hits, having almost twice
as many hits as the other search engines combined.

Returning to the qualitative values, documents were basically classi-
fied in four different categories based on a subjective assessment of
the document metadata for conducting a closer inspection of the most
related papers. A document that was immediately seen as out of scope
was discarded (for example, a paper discussing medical sciences). The
lowest document class (Moderate) was gained if the paper displayed
any relation, but the connection was not strong enough, or if there
was a chance that the paper could be deemed off-topic. A paper which
included interesting and relevant references was placed in Moderate

class. Adequate papers had a more relevant connection and/or dealt
with related topics more clearly. The best papers (Abundant) were
immediately seen as being related and highly relevant.

After the initial classification had been conducted, the remaining
papers were then reassessed by inspecting their full contents. The
final document class could then be readjusted based on the content. It
transpired that all (12) Abundant papers were cited, whereas three (3)

2.2 related studies 19

Adequate and ten (10) Moderate papers were included. The Abundant

papers were useful in describing similar studies and giving further
insight into the study area. The papers in the lower classes were useful
in the setting of boundaries (i.e., scoping) of the study area and in
showing slightly different aspects of the topic of data management.

2.2 related studies

The related studies that were discovered in the conducted literature
reviews as well as other topics that emerged are explained in this
section. Each study presented in this section appears under a certain
category (i.e., subsection) which covers the main characterization of
the topic. Categories were selected on the basis of the identification
conducted in the aforementioned literature reviews. A study may
belong to several categories, but it is discussed once under the most
relevant topic.

2.2.1 Data Management

The lifecycle of data comprises many activities, and using the data
purposefully as a valuable resource requires knowledge about data
management. Therefore, the focus of this subsection is on data man-
agement in general, and related issues and requirements.

In the literature, the meaning of the term data management varies
depending on the disciplinary field, for example in telecommunica-
tions (Franklin, 2011; Bisdikian et al., 2011) it may refer to managing the
amount of transferred data. There are also cases where data manage-
ment is mentioned together with optimization issues, e.g., regarding
the limited computational resources of computer hardware (Cheng
et al., 2017), scalable systems and services (e.g., Agrawal et al., 2010;
Abadi et al., 2007), as well as challenges with big data processing
(Khan et al., 2018; Emara and Huang, 2019; Kantere, 2014). Studies
collecting scientific data repositories, such as clinical trials (Gazali et
al., 2017; Hossmann et al., 2017; Du et al., 2016) and others (Pophal,
2019; Dong et al., 2010), refer to managing electronic research data in
general, for example in terms of accessibility, shareability, storability,
and distribution. Engineering, manufacturing, and business related
fields tend to talk about managing the product configuration (e.g., Li
et al., 2020; Chen and Tsao, 1998; Qiao and Liu, 2009).

There are research studies and guidelines covering the needs of
the data management of research data (e.g., Finnish Social Science
Data Archive, 2015; Bellgard, 2020). Data management for research
institutions, such as universities, can be challenging not only in terms
of actually handling the data but also in organizational policies gov-
erning Research Data Management (RDM) (Bellgard, 2020). Planning
of data management has also been studied, for example by Miksa et al.

20 background

(2018) and Vieira et al. (2014). When looking for standards, instructions,
and test procedures specific to environmental data management soft-
ware, Monitoring Certification Scheme (MCERTS) based publications
by Lloyd (2007) and Environment Agency UK (2017) might be useful.

Studies about data maturity are made under the term Data Manage-
ment Maturity (DMM). Baolong et al. (2018) have performed a survey
of several methods, e.g., DMM by CMMI Institute (2019) and the data
governance capability maturity model from IBM (Soares, 2010). They
also provide a brief comparison and typical use scenarios of them,
including their own capability based DMM, the Data Capability Matu-
rity Model. DMM gives valuable guidance on the quality, governance,
architecture, and strategy aspects of data and data management.

Many solutions can be characterized as Data Management Systems
(DMSs). Systems such as Apache Spark (The Apache Software Foun-
dation, 2018), and the Microblogs Data Management System (MDMS)
by Magdy and Mokbel (2015) are used to overcome the limitations
observed in traditional Database Management Systems (DBMSs). The
MDMS resembles a Structured Query Language (SQL) database back-
end, but is tuned for the high input data rated social media platforms.

Wilkinson et al. (2016) concentrate on the management and steward-
ship of scientific data. It is mentioned that “good data management is
not a goal in itself, but rather is the key conduit leading to knowledge
and innovation.” They also consider that there is a great need for
improvement of the infrastructure that supports the reuse of scholarly
data. They describe and explain a guide to Findable, Accessible, In-
teroperable, Reusable (FAIR) principles. In general, the FAIR guideline
is an implementation agnostic, and does not specify a standard or
suggest how to implement such a system. They present six examples
of systems which are FAIR compliant (or partially compliant), and their
level of “FAIRness” aspects. The FAIRness of the Faucet-Sink-Drain
Model is not evaluated, but it is important to consider the principles.

All things considered, data management as such is a widely re-
searched topic that is in great demand. The common denominator
for most cases is that there is a need for handling the data that is
being generated by various activities (by sensors, computers, humans,
etc.), and that the issues are resolved by implementing case-specific
solutions. This indicates that there are no comprehensive general pur-
pose data management solutions available. Ridley and Stoker (2004)
describe—based on Thuraisingham (1998)—many important points,
qualities, and advantages of a good DMS. They conclude that a good
DMS allows data to be used quickly, efficiently, and reliably. Data usage
at its maximum potential can also mean increased overhead on data
import and cleaning up, but the “rewards can be immense” by taking
the trouble and going through the process.

Finally, in the context of SE, it should be avoided to implement DMS

solutions from the scratch on a case-by-case basis because repetition

2.2 related studies 21

lowers the productivity. Building upon the tradition of SE design pat-
terns, and through the improved data reusability, the data processing
will become more efficient. As such, various applications may now
utilize the same solutions and processes, saving time and resources.

2.2.2 Similar Approaches

This subsection comprises applications and models that have influ-
enced, have similar characteristics, or possess other important features
that are positioned in parallel with the topic of the thesis. Even though
the Faucet-Sink-Drain Model has not yet been explained in detail, the
similarities, differences, and strengths across the found approaches
will be summarized at the end of this subsection.

Xue-rong et al. (2009) study Universal Simulation Data Management
System (USDMS) and the data ownership management in it utilizing the
Basic Data Object metamodel. The metamodel is used to organize what
is related to the data, and it is composed of three components: 1) ba-
sic information used for natural language identification, 2) property
data that is statically defined for each simulation task, and 3) status
data which contains the dynamic run-time information of the task.
Xue-rong et al. (2009) also introduce an implementation of USDMS in
relational DBMS. The interesting in this study is the usage of metadata
together with the proposed metamodel.

Kantere (2015) introduces the interesting concept of Datom, a mod-
ular data management solution. Datom, or data management atom,
encapsulates generic data management provisions in terms of data
workload and computing resources. The modularity of the approach
suggests that it is capable of generic data processing. The design
goal of Datom is to provide a tool for express problem constraints,
assumptions, and requirements in a unified and systematic manner.

A closer look at Datom is shown in Figure 2.1, which depicts the
structure of a single Datom (a), and a collection of more complex sets of
Datoms (b). It can be seen that Datom consists of three elements: data,
workload, and computing resources. The author further discusses the
usage of Datoms for data management entities in Kantere (2016).

A generic and distributed data management approach, Generic Data
Management System Architecture (GDMSA), by Plantikow et al. (2009)
deals with the challenges of community grid data management to bet-
ter understand how a one-size-fits-all data management system could
be built. Community grids are related to grid computing infrastruc-
tures. The proposed architecture addresses the complex distributed
data management issues by separating and handling the different
concerns using physical, logical, and query-based addressing. The
concept for the next generation data management includes several
interesting points such as generic data access Application Program-
ming Interface (API), which they believe would be beneficial for the

22 background

Figure 2.1: Overview of Datoms and data management provisions. (Kantere,
2015)

application developers of community grids. Similar to GDMSA, a cloud-
based data management framework, Flexible Robust Intelligent Elastic
DAta (FRIEDA), by Ghoshal and Ramakrishnan (2012), attempts to
overcome the data access issues of transient cloud environments by
providing application-specific mechanisms for managing the transfer
and storage of data.

The Data Warehouse (DW) design was initially reviewed in Pub-
lication V, thus only a brief summary and comparison is included
in this thesis. The purpose of a DW is to provide an architectural
model to support the decision-making activities of an organization.
It is achieved by extracting and storing variable data in a uniform
format in a centralized database, which provides tools for querying,
reporting, and information analysis. The definition by the author of
DW (Inmon, 1992) says that “[a] data warehouse is a subject-oriented,
integrated, nonvolatile, and time-variant collection of data in support
of management’s decisions.”

Data lakes are a newer, unstructured variant of data repositories,
that differ from DWs by having more flexibility and fewer constraints.
Data lakes are characterized by being like a “body of water in its
natural state,” whereas DW is more like purified, bottled water ready
for utilization. Their different approaches to data storage also mean
that they have different tools for accessing data. Whereas DW is more
business-oriented with its prestructured data use cases, data lakes
are better suited for scientists and experts that embrace exploratory
examination of the data by “diving in” to the lake. (Campbell, 2015;
Deloitte Consulting LLP, 2018)

Carney et al. (2002) present a system called Aurora, which is aimed
at real-time operations and offers a stream-oriented set of operators.
Their research concentrates on a DBMS model for monitoring applica-

2.2 related studies 23

tions, and they list five key points (data from external sources; tracking
of recent historical data; trigger-oriented operation; data storage issues;
real-time requirements) that make the traditional DBMSs difficult to in-
tegrate with monitoring applications. Their Aurora system is based on
stream-oriented input data sources that are processed multiple times
on their way to the output stream stage (i.e., before being presented to
data requesting applications). There may be several queries to control
the output stages and it can maintain historical storage.

MongoDB is an open source document-oriented NoSQL DBMS which
features an aggregation pipeline framework based on the concept of
a data processing pipeline (MongoDB, Inc, 2019). An example of
defining an aggregation pipeline is shown in Listing 2.1, containing
a scripted pipeline of a two-stage operation. The first stage selects
the documents which match the given status, “A.” The second stage
groups together the documents by their unique identifier, “$cust_id,”
calculates the sum of the field “$amount,” and places the results
(_id and total) into new documents. (MongoDB, Inc, 2019)

Listing 2.1: MongoDB Aggregation pipeline.

db.orders.aggregate([

{ $match: { status: "A" } },

{ $group: { _id: "$cust_id", total: { $sum: "$amount" } } }

])

There are other scalable database- and analytics-oriented tools such
as Elasticsearch (Elasticsearch B.V., 2021) which is based on Apache
Lucene library (The Apache Software Foundation, 2021b). It is a search
and analytics engine for all kinds of documents. However, it does
not handle data management by itself. Apache Spark (The Apache
Software Foundation, 2018) is also quite similar in this regard, and
can be configured to provide a unified analytics engine for large-scale
data processing. The Apache Flink (The Apache Software Foundation,
2021a) is an interesting concept of a unified stream-processing and
batch-processing framework. For example, it employs data pipelines
that can improve the latency of moving data and can also continuously
consume and emit data. Flink can be used to develop many different
types of applications due to its extensive features set. Flink does not
explicitly point out its data management features, but those could be
incorporated by using the package ecosystem for third-party projects.

summary The reviewed tools are employing interesting concepts,
but among the most interesting are the variants of pipelining and
streaming features which do appear most often. Kleppmann (2017)
considers that stream processors are suitable tools for data integration
in data-intensive applications because it makes sure that data ends up
in the right form in all the right places. However, while the discov-

24 background

ered tools solve problems in their respective domains, they are not a
comprehensive solution for reusable general purpose applications.

The Aurora system has similar idioms to Faucet-Sink-Drain Model,
such as streams and built-in operators, but the main difference is
that Aurora is designed as a stand-alone DBMS program, whereas
Faucet-Sink-Drain Model and its features can be integrated directly
into the application. The integration is one step further to a compre-
hensive general purpose data management solution. Aurora is also
more output-oriented, whereas Faucet-Sink-Drain Model focuses on
management of the sources and controlling the accountability and
reuse of information.

The aggregation pipeline of MongoDB has similarities with the
Faucet-Sink-Drain Model in the part where the documents can be
fed into a multi-stage pipeline to be aggregated and grouped into
more interesting results. There is one stage in the aggregation pipeline
which corresponds to the filtering and processing (performed by a
data sieve) in Faucet-Sink-Drain Model.The advantage provided by
Faucet-Sink-Drain Model is that it will be able to track and manage
the complete path of the steps taken in the processing of the results.

The similarity of Datom and Faucet-Sink-Drain Model is high in
terms of offering a unified, systematical, and reusable solution. How-
ever, the abstraction level of Datom is at a higher level. The data man-
agement provision of Datom consists of three sections: data, workload,
and computing resources, while Faucet-Sink-Drain Model concen-
trates on the data part only. Faucet-Sink-Drain Model describes how
the data sources should be utilized by the software (Publication V).
Nevertheless, the topics and arguments presented in Kantere (2015)
are well aligned with those of Faucet-Sink-Drain Model, which make
it reasonable to believe that Faucet-Sink-Drain Model is compatible
with Datom.

Faucet-Sink-Drain Model resembles the concept of DW in several
ways but the key difference is that the input data can be imported
with more flexibility and with less prior design effort. For example,
the data produced by different sources are imported to DW by utiliz-
ing extraction-transformation-loading processes before the creation
of smaller logical sections called data marts. Data marts, which are
comparable to Data Streams, are more static and unchanging rep-
resentations of an identified business problem. Defining streams in
Faucet-Sink-Drain Model is more flexible as the logical size of a stream
is smaller than that of a data mart. The downside of this is that the
number of required streams will be much greater, as less data process-
ing is performed per single stream.

The Basic Data Object metamodel that was introduced in USDMS

resembles the faucets, streams, and data defined in Faucet-Sink-Drain
Model. The idea of data lakes provides an unstructured data pro-
cessing approach compared with the DW, but both terms have been

2.3 software standards and best practices 25

criticized for being too fluctuating and vague. Apache Flink offers
an interesting architecture in pipelined data processing which could
offer synergy benefits in the future development of Faucet-Sink-Drain
Model.

2.3 software standards and best practices

SE and the development of software relies strongly on guidelines
given by various standards and best practices gained from well-tried
architectures, models, software frameworks, and design patterns. This
section introduces the selected standards and other topics that support
the effort to attain the goal of this thesis.

2.3.1 Standards

The literature review indicated that there are several major entities
that provide standards in the field of data management and data
quality. Data quality and software standards are mainly covered by
publications from International Organization for Standardization (ISO)
while data management standards include a few other players. In the
following, a selection of the most relevant standards will be examined.

data quality The ISO/IEC 2501n series, or Quality Model Division,
is focused on a quality model of both software and data. It belongs
to the family of Software product Quality Requirements and Evalu-
ation (SQuaRE). SQuaRE is organized as follows: standards numbered
25000–25049 form the five core divisions of the series. The following
documents (25050–25099) are reserved for various extensions such
as requirements for the quality of commercial off-the-shelf software
(ISO/IEC 25010:2011, 2011). To set the baseline for software quality
in this study, the ISO/IEC 25010:2011 (2011) defines quality as “a
degree to which a software product satisfies stated and implied needs
when used under specified conditions.” ISO/IEC 25010:2011 replaced
ISO/IEC 9126-1:2001 (Software engineering – Product quality) which
was originally issued in December 1999.

Quality models are useful for a wide range of users and benefit
product development activities such as the identification of software
and system requirements and design objectives (ISO/IEC 25010:2011,
2011). The model for data quality from ISO/IEC 25012:2008 (2008)
is complementary to the product quality model defined in ISO/IEC
25010:2011. The product quality model defines eight quality char-
acteristics: Functional suitability, Performance efficiency, Compatibility,
Usability, Reliability, Security, Maintainability, and Portability (ISO/IEC
25010:2011, 2011). Each characteristic is broken down into several sub-
characteristics, e.g., completeness, capacity, accessibility, availability,
modularity, reusability, to name a few (ISO/IEC 25010:2011, 2011;

26 background

ISO/IEC 25012:2008, 2008). A selection of practical characteristics for
the thesis topic will be discussed in Chapter 3.

Figure 2.2: ISO/IEC 25012 Target domain. (ISO/IEC 25012:2008, 2008)

The general data quality model defines a structured format within
a computer system, and specifically the portion of Target Data, as seen
in Figure 2.2. The standard specifies that “target data are those that
the organization decides to analyze and validate through the model.”
Thus, there are portions of data which are within the scope of the
standard but also there may be some non-target data to be left out
from the standardization process by a conscious choice. The structure
of the System can consist of multiple Information systems which in
turn can include one or more Computer systems. (ISO/IEC 25012:2008,
2008) The topic of this thesis will primarily refer to inside a computer
system, specifically in the Software section, by making use of the data
quality requirements specified for the target data.

Rafique et al. (2012) provide an extensive evaluation of the ISO/IEC
25012:2008 data quality model in terms of information quality and
learnability. They go one step further from the quality of data, and de-
fine an information quality model “InQ” with the use of the ISO/IEC
data quality model. They also want to make a clear distinction be-
tween data quality and information quality by stating “[w]hen data are
put into a context and combined within some structure, information
emerges.”

big data To handle the extensive amount of data, the ISO/IEC
standardization organization has taken the step of defining the big
data paradigm, for example in the following standards and technical
reports ISO/IEC 20546:2019 (2019), ISO/IEC TR 20547-2:2018 (2018),
and ISO/IEC 20547-3:2020 (2020). The first (ISO/IEC 20546:2019) aims
to set the definitions and the vocabulary needed to form a common
understanding for big data, as the term has been widely overloaded
with many kinds of scenarios (which may or may not be the actual

2.3 software standards and best practices 27

manifestations of big data systems). The following report consists of
five parts which are useful for a deeper understanding about big data.
For example, part 2 provides use cases and derived requirements,
whereas part 3 introduces the big data reference architecture. Many of
the parts in ISO/IEC 20547 were still under development at the time
of writing this thesis.

data management MCERTS is a standard for data management
applications software to deliver quality in environmental measure-
ments (Environment Agency UK, 2017; Lloyd, 2007). The standard
is organized into three parts: part A, which is the foundational layer
covering generic software quality; part B, which is focused on the
performance of generic data management; and finally part C, covering
additional performance aspects for specific environmental measure-
ment applications. The principal author of the standard goes through
one of the initial versions of the standard in Lloyd (2007). As an ex-
ample, the standard has identified continuous emission monitoring
systems in its specialized standards. The thorough and check-list style
of the standard offers a rigid and potentially useful guideline for any
software, not just environmental sensing applications.

DMM was briefly mentioned above by Baolong et al. (2018), who
conducted an analysis on a few capability maturity models as well as
one of their own. DMM is one way of improving the quality of data,
mainly through the discipline of treating the data as an asset of an
enterprise (Soares, 2010). While the organizational process and the
governance of data are not the main topics of this thesis, DMM is a way
to emphasize the importance of data. CMMI Institute (2019) states
that, with their guidance, the organization can identify strengths and
gaps in their data assets to improve their business performance. With
the above in mind, and the fact that there are standards for almost
each and every case available from many sources, it is crucial to select
standards that can be applied to specific needs, environments, and
resources (Horch, 2003).

2.3.2 Best Practices

In SE the more lightweight counterparts to software standards, such as
design patterns and models, can form the best practices that are useful
in cases where the absolute consistency and rigidity of standards are
deemed inappropriate (Horch, 2003). The goal of utilizing the best
practices is to help to make good choices when designing software,
and to achieve better and robust solutions. The industry-proven design
patterns, by Gamma et al. (1994), are intended to “solve specific design
problems, and make object-oriented designs more flexible, elegant,
and ultimately reusable.” The reusability of a software artifact is the
key to reducing repetition in software development.

28 background

In object-oriented programming and design, any well-structured
architecture is full of design patterns (Gamma et al., 1994; Sommerville,
2016). Architectures are a tool for understanding and to build a bigger
and bigger entirety of systems through the increased level of abstrac-
tion. Additionally, the long-term trend of SE is to increase the level
of abstraction of software descriptions, and to produce functional
systems from even higher level representations (Koskimies and Mikko-
nen, 2005). ISO/IEC 42010:2011 (2011) defines the architecture design,
descriptions, as well as conceptual foundations among other factors.

Software architecture can be seen as the base structure of a system,
which defines the rules and boundaries for conducting more detailed
design and implementation. On the one hand, it takes away some
creativity, but on the other, it makes the design of software easier
and faster to build (Gamma et al., 1994). A software architecture is a
collection presentation that can describe the architecture from several
viewpoints, by different stakeholders or levels of abstraction. One of
the most important factors is to keep the architecture well documented,
for example, by following the guidelines laid out by Clements et al.
(2010). The guidelines set the rules for common language so that the
reader of the documentation can clearly follow it.

A software framework is a collection of components, and/or in-
terfaces that can implement a base functionality of a specific need,
and is often used to create product-line architectures. Software frame-
works are designed to be reusable from the architecture level. To attain
reusability, the frameworks employ a technique called the inversion of
control. In addition, frameworks have known gaps (i.e., specialization
interfaces) in their implementation, allowing for the specialization of
the framework. The desired application artifact is achieved by filling
in the gaps with new code that implements the required functionality.
Design of a software framework is not an easy task, and the use of a
framework almost always incurs some trade-offs and risks. The con-
trollability of a framework can be managed with proper requirements,
definition, analysis, structuring, implementation, and testing. (Gamma
et al., 1994; Koskimies and Mikkonen, 2005)

Adopting these good software design choices from the beginning,
the maintenance of a software program is easier and the chances for
problems arising in the future are lower. It can be assumed that it
is worth implementing such measures in applications that manage
and process very large amounts of variable data. If the hypothesis is
correct, it is possible to create a new (data) design pattern style for a
new (data) environment, an experimentation that is incorporated in
this thesis.

2.4 conclusion of the background study 29

2.4 conclusion of the background study

The chapter has addressed the literature background of the thesis and
described how the reviews of the literature were conducted. The initial
findings of the first review indicated that no exactly similar research
had been carried out. Thus, the second review phase was conducted
with wider scope.

A further review revealed that data management has been studied
widely and in several interdisciplinary studies, i.e., not only in the field
of SE but also in medical, engineering, manufacturing, and business
sciences. A common factor for many studies on software applications
is that there is a certain need—simple or complex—for handling
the data that is generated by various activities. This need is then
resolved by implementing software which is a highly specialized
solution. While the software may utilize reusable software components,
following the software standards and best practices, it appears that
often the data management logic of the software is being “invented”
and implemented again and again for each application. This difficulty
could be resolved more efficiently by simplifying and generalizing
data management processes.

It was mentioned previously in Section 1.2 that there is a growing
need for maintainable and systematic ways for managing the produced
data, and also an appropriate software tool to fully take advantage
of data-intensive applications. After reviewing the related research,
it can be concluded that there indeed is a research gap in having a
comprehensive solution available.

Therefore, the model introduced by this thesis can fill in the gap,
in practice, by following the SE tradition of design patterns. Using
the tools provided by the model guides the way to replace those
previously highly specialized data utilization logic with generalized
and reusable counterparts and processes. The resulting model and its
prototype framework will increase quality and reuse in data-intensive
applications.

3
T O WA R D G E N E R I C D ATA M A N A G E M E N T

This chapter explains the selected work of the thesis author, and the
steps to collect the empirical background which has led to the real-
ization of the generic data management model and the framework
utilizing it. This dissertation is a compilation-type thesis which in-
cludes the selected articles that directly support certain parts of the
findings of the aforementioned model. These publications were briefly
introduced previously in Section 1.4. The work with multiple pro-
totypes, pilot systems, and other software project work items have
greatly contributed to the forming of knowledge and to understanding
the phenomena occurring in the processing of data in information
systems. With this knowledge, the integration of different software
systems raises the importance of models and architectures.

3.1 in search of data management

It can be frustrating to adopt data sets prepared by others—even
those made by ourselves. It always takes time to get familiar with
the data and other documentation. Even with good instructions, it is
almost certain that the use of case-specific requirements necessitates
modifications to the initialization code or the data set itself. Even
though the task might be easy and fast, it can begin to feel repetitive
and cumbersome after doing it for the n-th time. It certainly would be
useful to have a system that can generate and maintain “automated
recipes” for reproducible and reliable data management solutions.

The amount of data available—more or less Open Data—has given
plenty of opportunities for combining the data intelligently and pro-
viding new ways to contribute to society. However, retrieving and
processing the available data requires those external systems to be in-
tegrated. Practically, their documentation, interfaces, and architectures
need to be learned beforehand in order to be able to progress in our
own goals. Formalizing the process of problem solving with models
and architectural views would be useful for software development,
but it can also be reflected in the completed artifacts for the benefit of
the end users.

In one of the author’s joint publications (Sillberg et al., 2013) it was
stated that “[t]he amount of electronically stored and unclassified data

31

32 toward generic data management

is growing continuously, resulting in the need to find smart ways to
manage all this data.” Although this article was published several
years ago (in 2013), the statement still appears to be valid. It just might
require the following clarification: the paper was extensively focused
on the end users of the software, but in fact, there should be similar
management mechanisms and tools for everyone. Thus, the needs of
software developers, stakeholders, non-specialists in information and
communications technologies, third parties, and so on, should be
equally important.

3.1.1 Quality Aspects

Despite ISO/IEC 25010:2011 (2011), which states that data quality is a
significant part of the quality of a system, some interpretations appear
to take it for granted. It may lead to the assumption that data quality
simply appears together with software quality. Efforts must be made to
make data reusable, just as it is in the case of software, or a system. Due
to the ever-increasing amount of data—or big data—the quality and
management aspects should receive more attention from practitioners.
The starting point is the product quality model in Figure 3.1 defined
by the standard. By extending the quality model (for example, in the
same manner as was done by Rafique et al., 2012), it should be possible
to utilize these categories and/or their sub-characteristics in defining
extensions for data management and data quality.

Product quality model
(ISO/IEC 25010:2011)

Functional
suitability

Performance
efficiency CompatibilityUsabilityReliability Security Maintainability Portability

Functional
completeness

Functional
correctness

Functional
appropriateness

Time behaviour

Resource
utilization

Capacity

Co-existence

Interoperability

Appropriateness
recognizability

Learnability

Operability

User error
protection

User interface
aesthetics

Accessibility

Maturity

Availability

Fault tolerance

Recoverability

Condifentiality

Integrity

Non-repudiation

Accountability

Authenticity

Modularity

Reusability

Analysability

Modifiability

Testability

Adaptability

Installability

Replaceability

Figure 3.1: Product quality model. (ISO/IEC 25010:2011, 2011)

However, a perfect solution might not be realistically achievable.
Improvement of quality parameters is also a matter of finding an
optimal balance with the workload; thus improving one parameter
may impair another parameter. For example, increased maintainabil-
ity might adversely affect performance efficiency and thus increase
demands for computational capacity. Of course, if we are given an un-
limited amount of development resources and time, almost everything
is possible, but this is not feasible in typical business-driven contexts.

3.1 in search of data management 33

Therefore, some trade-offs must be made in order to properly focus on
the selected key areas that we are interested in. Selecting parameters
that support each other will make it easier to achieve the goal.

Based on the experience in the development of complex (data man-
agement) systems (i.e., Publication I–Publication IV), we have observed
similar and recurring issues which are related to the quality of data
and software. In the scope of this thesis, the goal is to find a solu-
tion that can improve quality aspects with a reasonable amount of
trade-offs. Furthermore, the selection of quality parameters is based
on the observations. For this reason, an extension of the quality model
dealing with data quality and data management was considered. It
transpired that there were a few characteristics in the product quality
model (ISO/IEC 25010:2011, 2011) which could be repurposed for
this need. As a result, the chosen characteristics would be useful in
drafting the data quality and data management extension.

The following list contains the quality parameters that are appro-
priately balanced for the above mentioned goal. Additionally, the
Faucet-Sink-Drain Model introduced in this thesis should—and will—
be able to provide a solution that supports these quality parame-
ters. Each of the listed characteristics is followed by a short textual
description of how the characteristic is related to data quality and
data management. After the description, the most closely matching
category/sub-characteristic with the informative description from
ISO/IEC 25010:2011 is given as a reference (preceded by • and written
in italics):

Accountability deals with the traceability of data, i.e., the paper trail
of operations performed with the data and results. It can ex-
plain precisely the different steps, and can help in recreating
the results. The tracing can also be used in the fine-tuning
of algorithms as the changes between different experiments
can be compared.
• Security.Accountability: The degree to which the actions of an
entity can be traced uniquely to the entity.

Compatibility and Interoperability deal with the ability to use the
data on any generic system or software. They aim to mini-
mize the efforts required in preparing the data for use.
• Compatibility: The degree to which a product, system, or compo-
nent can exchange information with other products, systems, or
components, and/or perform its required functions, while sharing
the same hardware or software environment.
• Compatibility.Interoperability: The degree to which two or more
systems, products, or components can exchange information and
use the information that has been exchanged.

34 toward generic data management

Reusability and Reproducibility deal with the manageable reuse and
data reprocessing in cases where results are needed again.
Being able to obtain reproducible results consistently is im-
portant if the determinism of the system is required.
• Maintainability.Reusability: The degree to which an asset can be
used in more than one system, or in building other assets.

Reliability and Availability deal with the ability to obtain proper and
current data as well as having the capability of retrieving the
previously stored data and/or results.
• Reliability: The degree to which a system, product, or component
performs specified functions under specified conditions for a speci-
fied period of time.
• Reliability.Availability: The degree to which a system, product,
or component is operational and accessible when required for use.

It should be noted that the entries use a similar sub-characteristic
naming convention and sometimes overlap with existing characteris-
tics that can already be found in ISO/IEC 25010:2011. For this reason,
more careful naming schemes and more formalized textual descrip-
tions must be adopted to make the new data quality and data man-
agement category more suitable for incorporation into the standard
extensions.

3.1.2 System Models

Even a simple system that accomplishes one task may consist of multi-
ple software components and artifacts, which in turn may implement
different models and design choices in order to achieve their goals.
System modeling is the key to simplifying the design process, but it
requires an increase in the level of abstraction, and thus a reduction in
the amount of details. Using several layers of abstraction allows a finer
grained separation of concerns in the underlying subsystems, and
can offer multiple viewpoints regarding the structure of the system.
A model can also be seen as the blueprint of the foundation of the
system in question. These foundations can be used to describe the
fundamental rules that need to be complied with when developing
software.

Therefore, the data flow of a system should be modeled. In Fig-
ure 3.2, a model of a fairly typical information system conducting
data gathering, processing, and visualization is shown. The presented
prototype system consists of three different subsystems (i.e., devices):
a mobile phone for data gathering, cloud service for data processing,
and a web-browser client to facilitate the visualization of processed
data (to give the user a way to consume the information that is gener-
ated).

3.1 in search of data management 35

4
<<data processing>>
Cloud Service

<<data gathering>>
<<device>>
Mobile Phone

<<data visualization>>
<<device>>
Browser Client

<<storage>>
MySQL

<<acquisition>>
Internet

1

5 <<visualization>>
Internet

<<device>>
Sensor «master node»

ShockApplication

<<storage>>

<<identification>>

32

<<processing>>

<<service>>
Apache Tomcat

Figure 3.2: Deployment of prototype system. (Publication VI)

Each subsystem is responsible for at least one high level task related
to data processing. In Publication VI these tasks were defined as: 1)
acquisition, 2) storage, 3) identification and filtering, 4) processing,
and finally 5) visualization. These tasks also combine the key focus
areas of the previous study by the author of this thesis. The focus
areas are as follows:

1. Acquisition Data gathering is performed by any capable device
(e.g., a mobile phone). The device may operate as a
combined sensor-master node if it is also capable of
communicating the data to a remote service.

2. Storage The cloud service receives and parses the data sent
by the master node. The parsing of the data needs to
be done before the received data can be fully utilized.
Once finished, the service will be able to store the data
in a format that it recognizes.

3. Identification and Filtering The data will be identified and filtered
when the service receives a request on its interface.
Data selection is based on the criteria that were passed
in the parameters of the request.

4. Processing The selected data is processed further by the rules (i.e.,
business logic) encoded into the program.

5. Visualization The data provided by the service is finally visualized
in the user interface of the client device, e.g., a web
browser.

Practically, the tasks are represented by the basic components of
Faucet-Sink-Drain Model, the data processing model initially de-
scribed in Publication V, and the main topic of this thesis. A more
detailed description of the components of the model is provided in

36 toward generic data management

Section 4.1, while the tasks carried out by the model are revisited in
Section 4.1.2.

System modeling is a way to simplify the design, but even more
importantly, it can give a clear and understandable view of the system
and its interrelation with others. In the best case, a simple figure can
answer the question “How should I implement this system in order
to accomplish my requirements?” With the ever growing and more
complex systems of systems, understanding the important parts is
even more critical.

3.2 publications in detail

This section provides an insight into the contribution to this thesis by
combining the different topics together. The research done for each of
the focus areas is summarized in Table 3.1.

Table 3.1: Summary of research contribution.

Publications

Focus Area I II III IV V VI

Acquisition X X X X

Storage X X X

Identification & Filtering X X

Processing X X

Visualization X X X X X X

The table rows represent the focus area, and the columns represent
the publication selected for this compilation thesis (see also Section 1.4).
The check marks on the table indicate that this publication is related
to the focus area.

acquisition Data acquisition is one of the first steps performed
by a system. Without data, there cannot be information, and without
information, there is only a little value to the end user.

In Publication VI, a mobile phone utilizing its sensors is an example
of raw data collection. Raw data is often some sort of time series
data, e.g., periodically collected data points from a certain sensor or
sensors. Acquisition additionally relies on the communication of the
data from the source to the processing system. However, everything
cannot be automated easily, or it is not financially viable to replace
measuring devices with the newest technology. Many devices that are
available can be networked and contain automatic error detection or
monitoring software. However, this is not true for all devices, especially
when taking into consideration legacy devices which still have to be

3.2 publications in detail 37

supported. If these devices are seldom used or replacing them would
be expensive, alternative approaches are required. (Publication II)

Sometimes further processing is performed directly on the sensing
system, but the data still needs to be communicated in a certain way
for the receiving end to understand it. Often the data we are interested
in has already been collected by another party, but the data format—
i.e., the language our system understands—is not suitable for specific
use. Data sanitizing, lexical transformations, and other preprocessing
operations are almost mandatory on the way to processing data into
more useful forms. However, the accountability and integrity of the
data cannot be verified if the system operates in a “black box” mode.
Therefore, to increase the transparency of a system, it should be able
to describe each operation that modified the data.

Furthermore, the topic of data acquisition has been considered in
terms of reliable condition measurement as well as the well-being of
the people using the system or living in an area where the system
is being operated (Publication III). The objective was to generate a
reliable portable system that presents measurement data clearly for the
monitoring of changes in conditions. In practice, property automation
installed in buildings demands continuous monitoring of conditions to
work properly. It is indeed crucial to ensure that a property automation
system works continuously and flawlessly, or correspondingly. If there
are problems in the process, the problem areas can then be identified so
that the necessary adjustment and corrective actions can be carried out.
The objective of condition monitoring is at a healthy and functional
living and/or working environment as well as energy cost control.
Additionally, the right conditions, such as indoor air quality and the
right temperature, are fundamental as far as comfort and well-being
are concerned. (Publication III) Data acquisition was briefly discussed
in Publication V regarding the proposed use cases for real-time data
gathering and processing.

storage The storage phase can be a straightforward task if there
is just a small amount of data to be stored—simply save everything!
Realistically speaking this is not a viable approach. Problems may
also arise if the original data set is too large so that some data pre-
processing has to be done to conserve space. Thus, strategies must
be formulated concerning which data and which intermediate results
must be preserved, and what can be discarded. Even the discarded
data could have been useful in some form at a later point of time, so
there should be a mechanism for providing a means of activating the
storage of this data. It should also be considered whether attaching
the complete data processing cycle (i.e., what has been done to achieve
this result) as additional metadata provides a clear advantage. It could
potentially reduce the requirement of storing everything by offering

38 toward generic data management

reproducibility, but at the cost of processing everything again as well
as increasing the ratio of metadata to actual data.

The storage scenario may depend on the nature of the ingested data
and produced results. Is the data produced in real time and required
immediately, or can it be processed in batch runs? The answer can
help to place the data in the correct storage tier (e.g., in-memory,
solid-state, hard disk, tape drive). Usually, the economic preconditions
differ from what might be the best solution for the current problem
at hand. For example, two of the previous prototypes (Publication II;
Publication VI) differ greatly in the amount of data points: the first
produces just a few per day, while the latter creates one data point
once per second when in use. The utilization of the data, however, is
quite low: the first case is checked perhaps a few times per week on a
regular basis, keeping the total system load rather low. In the latter
case, the data is processed at very rare intervals, but once the data is
requested almost all the data needs to be processed. This can create a
lot of traffic and other related processing requests, but on average the
system might indicate low overall utilization. Knowing what kind of
information might be requested beforehand can help to decide if there
is a way to process and store preliminary results from the original
data, and serve it instead of the whole data set.

identification and filtering For efficient processing of the
data, it has to be identified and indexed properly; usually it is also
tagged with metadata. It is also useful if the selected data contains
only the required data as it will reduce, for example, the required
bandwidth and memory footprint. However, making the data too clean
can be just as problematic if additional queries have to be performed
to find missing information. For example, it can be hard to deduce
what kind of shaking is due to road conditions and what kind is due
to problems in the car itself (Publication VI).

In modern business, one of the key issues is ubiquitous access
to the organization’s back-end system information, company data,
and process infrastructure. Enabling access to corporate information
anywhere and anytime is essential. We can state that, in principle,
advanced mobile technology facilitates the real-time collecting and
sharing of data and its storage directly in the company’s information
systems, so that the updated data becomes available to everyone.
(Publication I)

processing The processing step can be difficult to define and
position exactly. For example, even the data that is ready to be pre-
sented still requires some post-processing on the device conducting
visualization. This is the case in the prototypes in Publication II and
Publication IV where both end user web applications request the data,
but perform a few more steps before visualization. In the first case,

3.2 publications in detail 39

a daily 24-hour rate of change as well as the price of energy are cal-
culated, and in the latter, the data is inspected for the determination
of hazardous concentration of heavy metal substances. For the latter
case, the processing is basically done in the correct phase (according
to the typical model presented in Figure 3.2) but in the first case, some
extra processing occurs again in the visualization step.

In theory, the data that is prepared should not need any more
processing, but in practice some operations are still done on the visu-
alization end. This means that each and every device unnecessarily
duplicates the processing work. In this particular case (Publication II),
the incurred processing cost is almost insignificant. However, if the
processing task is more demanding, then the accumulated amount of
time and energy may become significant. These are the hidden costs
which can be challenging (even impossible) to calculate in budget-
ing and resourcing. For visualization purposes, the balance between
repeated processing and customization should be supported by the
data processing back-end. Perhaps there will be techniques in the
future that allow direct visualization with a minimal amount of extra
processing, but that is beyond the scope of this thesis.

visualization Visualization of data meaningfully is becoming
more and more important as the amount of data increases. Good
visualization also helps the user of the data to interpret it more easily.
With visualization, more useful knowledge can be extracted from data.
Visualizations of data allow the user to gain insight into the data
and come up with new hypotheses and research questions about the
phenomena behind the data. (Publication IV)

If required, a system can provide alternative visualization methods,
such as those practiced in Publication II. The system allows the user
to examine the collected data quickly on the mobile client application
(simple view) and more thoroughly using the management user in-
terface (full chart including analysis information) once the user has
returned to their office. The rationale for limiting client application
features was to keep it as simple as possible and therefore reduce the
maintenance required for the application. It also helps to keep the
device small enough to carry around and to use for entering data.
Also, the employee typing in the data might be more interested in
seeing if the figures show any unexpected highs or lows, so he/she
can react to the situation more quickly.

In another example (Publication IV), the prototype application for re-
viewing the quality of water was implemented as a HyperText Markup
Language 5 (HTML5) web page utilizing JavaScript for interactive fea-
tures. The goal of the prototype was to provide an easy-to-access
and a simple user interface with a minimal amount of configurable
options. A simple classification (safe or toxic) for different categories
should be clear indication for the user to determine water quality. The

40 toward generic data management

application can be seen as an improvement over spreadsheets as it
can speed up the analysis of the data by skipping the export and the
import phase completely. (Publication IV)

The system introduced in Publication III assists maintenance staff
and also supports managers who are responsible for ensuring the cor-
rect operation of the devices. Thus, the system is one step toward more
reliable measurement data, and it also improves the visual presenta-
tion of collected condition data for analysis. The ability of maintenance
staff to monitor changes in real time has also been investigated in
the public swimming pool data gathering case (Publication II): “The
system developed facilitates the maintenance staff’s work in register-
ing and recording the measurement information as well as real-time
tracking of usage information and perception of possible anomalous
consumption situations.”

An attempt at adaptive software UIs was made with the system
described in Publication I. In this case, a multiplatform framework
was created and introduced, which provided a means for a modifiable
UI utilizing adapter software. The goal of the framework was to allow
users to create applications, distribute applications to desired clients,
use applications on any device with compatible adapter software, and
gather data. In Publication I it was anticipated that adapter software
“could be one of the key emerging technologies in the information tech-
nology sector in relation to mobile devices and telecommunications”
and that it had “great potential for enhancing information transfer in
mobile devices, and consequently for improving information manage-
ment.” Soon afterwards, a standard for HTML5 emerged and paved
the way for sophisticated web applications. Since then the web ap-
plications have become very common, but the claim about adapter
software was not realized. However, in a broader sense, the modern
web browsers can be seen to resemble the adapter software approach
described in Publication I.

4
T H E D ATA P R O C E S S I N G M O D E L

This chapter presents a detailed data processing model for controllable
and systematic data source management. Briefly, the model contains
the idea of how the data is processed in software systems and aims
at the logical organization of various data streams. The model is
iteratively developed and experimented in prototypes following the
DSRM process. The model, also known as Faucet-Sink-Drain Model,
describes the foundational building blocks and relationships. The
MDS component framework is the resulting software artifact that was
designed and realized during the prototyping process. The framework
itself demonstrates the initial capabilities of Faucet-Sink-Drain Model
as generalizable software for systematic control of the data flows in a
software application.

4.1 faucet-sink-drain model

This section focuses on introducing the data processing model called
Faucet-Sink-Drain Model. First, an overview and motivational look at
the model is given. After this, the individual components of the model
are examined in more detail. Lastly, the reference architecture of the
MDS component framework is described.

4.1.1 Overview

The idea behind the Faucet-Sink-Drain Model was envisioned by the
author while washing dishes in a kitchen sink. The water enters the
system from a predetermined point by the user who controls the
volume and heat of the water stream. Then the water is combined
and mixed with the previous contents of the sink. Together with a
“catalyst” (such as a detergent), a tool (e.g., a sponge), and external
force, the water can clean the contents of the sink by separating or
dissolving the unwanted substances. Finally, the fully “processed”
water is released from the system from a predetermined point of exit,
into the drainage system, by opening the filter cap in the sink. For
additional effectiveness, each step could also be interrupted, observed,
and inspected by the user.

41

42 the data processing model

design and rationale of the model Firstly, as briefly indi-
cated above, data processing can be modeled with a water piping
apparatus consisting of five components: faucets, streams, sink, sieves,
and drains. The data flows through the model as many times as is
deemed necessary to achieve the desired information. At each new cy-
cle, a new set of faucets, sieves, and drains are created, which generates
new streams to be stored in the sink. (Publication V; Publication VI)

Secondly, as stated in Publication VI, it is possible to create highly
practical and interoperable applications with the use of fundamentally
simple models. This can result in the improvement of the overall
quality of the software. In Publication VI, a combination of models for
1) data gathering and 2) analysis of the gathered data was studied to
enable effective data processing of large data sets. When these points
are fused, it should be possible to create data processing applications
with a “natural-like” work flow that assists in achieving the necessary
information for interpretation of gathered data and decision-making.

The basic overview in Figure 4.1a indicates the mandatory compo-
nents of the model’s processing cycle. Working from top to bottom,
the five key components of the model are as follows (prefix Data is
omitted for clarity): 1) faucet, 2) stream, 3) sink, 4) sieve, and 5) drain.

01101111 01101011

01
10

00
01

 0
11

01
00

0
01

10
00

01

1

2

3

4

5

(a) Simple case.

01101111 01101011

01
10

00
01

 0
11

01
00

0
01

10
00

01

o
k

o
k

o
k

o
k

(b) Extended case.

Figure 4.1: Conceptual model of data processing. (Publication V)

The first component is a faucet, which appears to be open and run-
ning two streams. Any stream can flow into a sink, and eventually can
be captured by any sieve (i.e., a filter device) attached to the bottom of
the sink. The sieve provides a connection to the last component, a drain.
(Publication V) The purpose of a faucet is to provide a controllable
entry point of data to the system through the connection to a drain.
The drain represents the data transfer between system(s) and provides
an interface for faucets to attach to. Streams emitted by faucets are

4.1 faucet-sink-drain model 43

representations of data, and the sink is analogous to a database. The
sieve collects and combines the data available in the sink, and emits
the requested data forward for further processing.

When the data is combined together and processed with expertise,
the result will provide more data, which in turn can be processed again
with some other data. If the data, selection criteria, and processing
methods are chosen wisely, the data refinement cycle (i.e., processing
cycle) can eventually provide information that is valuable to its user.
(Publication V) A system that is able to perform such data processing
on a wide range of source data must therefore be generic, customizable,
and extendable. The model can provide all of these features with an
extension of the feedback mechanism, as shown in Figure 4.1b.

The model accepts data streams of any kind from any data source
in order to provide generic features. The requirement is that the data
streams have been supplied with the necessary metadata (i.e., a few
basic pieces of information encoded into DataStream). This metadata
may be given by the user (e.g., when operating with raw data) or
be automatically generated by faucets in the subsequent processing
cycles. Customization means that the model allows processing of any
data with the ability to interpret the selected source data in different
formats. For example, interpreting a string “11” as number 11, and
for more advanced examples selecting several different types of data
having a similar timestamp, and combining those together. The system
resembles data lakes in being a repository for unstructured data. Any
data which is acquired (by any faucet) is in practice unstructured. If
the data cannot be interpreted directly, it is the responsibility of the
sink and sieves to translate/modify/combine the data into a more
useful structured data format for further processing.

With the feedback mechanism, it is possible to “loop” any of the
aforementioned data through any number of processing stages, in
theory indefinitely. Lastly, the model does not have to be of a single
instance, but there may be multiple data sources (i.e., drainpipes)
to attach “our” data faucet onto. This allows, for example, the im-
porting of preprocessed data sets, and utilizing Open Data provided
by multiple other users. The same data could also be forwarded to
two different instances with slightly different processing algorithms
for purposes of result comparison. Lastly, to keep everything under
control, the model expects that every data stream—including data
and the accompanying metadata—should be accountable in terms of
origin and all the operations which have been performed. In theory,
the accountability should also improve the reusability of the data.

4.1.2 Abstraction: Model in Brief

In the following section, the model is compared to the elements ex-
plained in Section 3.1 to establish the responsibilities of each com-

44 the data processing model

ponent. Each figure in this subsection is composed of subfigures
(a) and (b). Subfigure (a) is similar to Figure 4.1b with added trans-
parency to highlight the component. Subfigure (b) is the architectural
class diagram of the case with a corresponding highlight. Text in these
figures is purposefully left illegible, however, the legible version of the
class diagram (i.e., architecture) will be discussed in Section 4.1.3.

The Acquisition step in Figure 4.2 represents the entry point of the
data. The faucet itself specifies the attached and controlled point where
the data streams of the providing source are allowed to flow into the
system. From the model point of view, the origin of the acquired data
(specifically, data streams) can be treated similarly in all cases; the data
can be from external sources (the leftmost faucet) or be reprocessed
by the system itself (the rightmost faucet). In Figure 4.2a, the leftmost
faucet is highlighted to indicate that the external source is active.
The most important feature is the type structure in which the data
streams (which are the enclosing constructions of the actual data)
store the information of where the data comes from and what kinds
of operations have been done to the data. By inspecting the structure,
it is possible to trace the origin of any piece of data inside the model.
Classes involved in this step are DataFaucet and partially DataDrain.

01101111 01101011

01
10

00
01

 0
11

01
00

0
01

10
00

01

o
k

o
k

o
k

o
k

(a) Acquisition step.

DataSink

DataDrain

DataSieve

dataSelector: List<RuleSet>

process: DataProcessor

Data

data: Object

timestamp: TimeStamp

DataStream

description: String

id: UUID

name: String

operators: List<StreamOperator>

type: String

unit: String

DataFaucet

characteristics: Map<K, V>
1

0..*

1

1..* 1

0..*0..*

0..*

1

0..1

0..*

0..1

1

1

(b) Reference architecture.

Figure 4.2: Data acquisition.

The Storage step is mainly handled by the data sink as shown in
Figure 4.3. The model, however, intentionally does not specify how
the data is to be physically stored, so each implementation is free to
make the most appropriate choice of solution. The implementation
can use and support any logical storage retention plan, for example,
but not limited to: 1) keep everything in the sink, 2) keep only the data
requested by the sieves, 3) have the data consumed immediately by the
n-th applicable sieve, or 4) remove the data once there are no dangling
dependencies by any sieve. There should be options to specify con-
figurations that override the default storage retention settings. If the
sink needs to do any special tasks (for example, accumulate, calculate,
or compare), it can be instructed to do so using the StreamOperators

attached to the data streams. Operators can be injected into the stream

4.1 faucet-sink-drain model 45

by any other component action, for example in the faucet by user
intervention, in the sieve by the query developer, or in the drain by
the system. The main class involved in this step is DataSink.

01101111 01101011

01
10

00
01

 0
11

01
00

0
01

10
00

01

o
k

o
k

o
k

o
k

(a) Storage step.

DataSink

DataDrain

DataSieve

dataSelector: List<RuleSet>

process: DataProcessor

Data

data: Object

timestamp: TimeStamp

DataStream

description: String

id: UUID

name: String

operators: List<StreamOperator>

type: String

unit: String

DataFaucet

characteristics: Map<K, V>
1

0..*

1

1..* 1

0..*0..*

0..*

1

0..1

0..*

0..1

1

1

(b) Reference architecture.

Figure 4.3: Data storage.

The Identification and filtering step will be performed on each data
sieve that is attached to the sink (see Figure 4.4). Sieves always check
any incoming streams and data, and depending on the implementation
this could be performed in parallel or sequentially. Race conditions
and the order of data entering the sieves might also matter if the sieve
system is configured to allow simultaneous data access or not. A sieve
has a predefined set of rules and criteria that define what kind of data
it expects and requires from the data sink. In this sense, the sieve is in
practice a query tool for the data. The main class involved in this step
is DataSieve, along with RuleSet.

01101111 01101011

01
10

00
01

 0
11

01
00

0
01

10
00

01

o
k

o
k

o
k

o
k

(a) Identification step.

DataSink

DataDrain

DataSieve

dataSelector: List<RuleSet>

process: DataProcessor

Data

data: Object

timestamp: TimeStamp

DataStream

description: String

id: UUID

name: String

operators: List<StreamOperator>

type: String

unit: String

DataFaucet

characteristics: Map<K, V>
1

0..*

1

1..* 1

0..*0..*

0..*

1

0..1

0..*

0..1

1

1

(b) Reference architecture.

Figure 4.4: Data identification and filtering.

In the Processing step, the bulk of the processing is carried out inside
data sieves. However, some parts of the post-processing may occur
in other parts of the system due to the use of StreamOperators. As
illustrated in Figure 4.5, the processing happens only in the rightmost
sieve as if it was activated by the previous step to find suitable data
for that particular sieve. As explained in the previous step, sieves
select and prepare the data for further processing. Sieves are also

46 the data processing model

the first components which can inject additional operations into the
data streams emerging from them. Once the data specified by the
data stream reaches the faucet, the accompanying operations are per-
formed. The generated results are primarily intended for accumulating
information usable for reporting purposes. However, it should be pos-
sible to feed-forward the results to other data sieves to generate new
data and/or data streams. The main classes involved in this step are
DataSieve together with DataProcessor and StreamOperator.

01101111 01101011

01
10

00
01

 0
11

01
00

0
01

10
00

01

o
k

o
k

o
k

o
k

(a) Processing step.

DataSink

DataDrain

DataSieve

dataSelector: List<RuleSet>

process: DataProcessor

Data

data: Object

timestamp: TimeStamp

DataStream

description: String

id: UUID

name: String

operators: List<StreamOperator>

type: String

unit: String

DataFaucet

characteristics: Map<K, V>
1

0..*

1

1..* 1

0..*0..*

0..*

1

0..1

0..*

0..1

1

1

(b) Reference architecture.

Figure 4.5: Data processing.

The Visualization step involves the presentation of the data emerging
from the faucets. This requires (read-only) access to the data, and
it must be supported by providing the necessary interfaces so that
the requesting program/application/user can get a view to the data
residing in the sink (see Figure 4.6). The model can provide specialized
UIs for visualizing the data, but it is not obligatory. In the previous
version of the model (Publication V), the visualizations were explicitly
included in the sink, but on further consideration it was made optional.
Thus, the realization can choose whether to include it or not. The
prototype system introduced in this thesis does not include such
visualizations. The main class involved in this step would be DataSink,
accompanied by DataStream and Data.

01101111 01101011

01
10

00
01

 0
11

01
00

0
01

10
00

01

o
k

o
k

o
k

o
k

(a) Visualization step.

DataSink

DataDrain

DataSieve

dataSelector: List<RuleSet>

process: DataProcessor

Data

data: Object

timestamp: TimeStamp

DataStream

description: String

id: UUID

name: String

operators: List<StreamOperator>

type: String

unit: String

DataFaucet

characteristics: Map<K, V>
1

0..*

1

1..* 1

0..*0..*

0..*

1

0..1

0..*

0..1

1

1

(b) Reference architecture.

Figure 4.6: Data visualization.

4.1 faucet-sink-drain model 47

In summary, the model can provide a lot of opportunities for data
processing. However, it does have the downside of allowing the for-
mulation of meaningless operations. This could include cases such
as selecting all numeric & textual data to perform an arithmetic sum
operation on the unchecked inputs. Therefore, special care should
be taken in the choice of data selectors and operations, for example
by blocking the most commonly known errors. Other approaches to
mitigate the issue are to perform a smart error checking of operations,
or by producing a live preview of the input and output data.

4.1.3 Implementation: Manageable Data Sources Framework

This section describes the design choices that were made when the MDS

component framework was being realized. The framework aims to
help the processing, combination, and management of data sources by
making them controllable and systematic. With a systematic approach,
the accountability of data (i.e., what steps were taken to achieve the
result) should become more evident and reproducible. The model is
applied for MDS in order to create a usable system for the handling
and processing of data. MDS covers the creation of data, includes the
search, selection, and combination of any input data, and finishes with
the outcome of the processed data such as a report. Furthermore, as
defined by the model, MDS gives the control of the data to the users
by letting them choose and manage the desired features such as data
sources, processors, and so on. (Publication V)

The reference architecture of the core components of the MDS com-
ponent framework is depicted in Figure 4.7. This high level view
identifies the associations and relationships between core components.

DataSink

DataDrain

DataSieve

dataSelector: List<RuleSet>

process: DataProcessor

Data

data: Object

timestamp: TimeStamp

DataStream

description: String

id: UUID

name: String

operators: List<StreamOperator>

type: String

unit: String

DataFaucet

characteristics: Map<K, V>
1

0..*

1

1..* 1

0..*0..*

0..*

1

0..1

0..*

0..1

1

1

Figure 4.7: Reference architecture. (adapted from Publication V)

One important aspect is that this depiction should not be interpreted
as a closed loop system; rather, it is a logical representation of the

48 the data processing model

interrelations between the components shown. In fact, there could
exist as many instances as required, and there could be connections
between different instances when deemed necessary. For example,
DataFaucet can receive data from DataDrain created and defined by
another user. (Publication V) This is possible if the said DataDrain has
been published and shared for public use. Additionally, many faucets
can be attached to one drain, and these connections can be kept fully
unidirectional as the drain does not need any information from the
faucets connected to it. It is possible, as demonstrated in Section 4.3,
for the drain to have certain interfaces for a data query to facilitate the
retrieval of a more or less partial set of data from the related DataSink.

definitions and specifications The key concepts of the MDS

component framework are presented here with the necessary amend-
ments and clarifications (compared to the original listing from Publica-
tion V). The following list contains the fields and concepts which are
present in Figure 4.7. The exception to this rule is that simple fields
(e.g., description, ID, name) and classes (String, Object, TimeStamp,
List, Map, UUID) which are considered as being standard plain data
types are not included.

data The component that represents the smallest particle that builds
up a DataStream. It is basically of any type and format, and
includes the timestamp when the data was created. Each piece of
data is associated to exactly one DataStream but the association
is unidirectional, thus the data is not aware of its owner.

datastream The component represents information and its presen-
tation. It uniformly describes the type, format, and origin of
the Data. The data stream has 0 . . . n Data, and is associated to
exactly one DataFaucet.

datafaucet This component is the source of all content, and defines
a uniform protocol to access the data. It specifies the character-
istic metadata of the source such as location, update interval,
previous processing history, and so on. The faucet has 0 . . . n
DataStreams.

datasieve Each DataSieve component has the ability to filter all of
the data inside the sink, select the most interesting streams, and
process and combine them into new streams. Sieves may also
translate the selected data into a more useful structured data
formats. The processed output of the sieve is transmitted to the
attached drain. The sieve has exactly one DataDrain.

datadrain The drain component is a transmission mechanism for
the data. If left unconnected, the data is simply discarded. Mul-
tiple faucets can be attached to a single drain, and all of these
faucets will receive the same data. The drain may have 0 . . . n
DataFaucets.

4.1 faucet-sink-drain model 49

datasink The central component where the data resides and can
be observed. The sink will share the ownership of a DataStream

once it has been emitted from the DataFaucet. The sink may store
and accumulate the data, or simply update the current data in-
stance in the sink based on the StreamOperator defined on each
stream. The DataSink knows 0 . . . n DataFaucets, and has 0 . . . n
DataStreams. There must be at least one (1 . . . n) DataSieve to
prevent “information overflow” in the sink.

dataprocessor A set of rules for processing DataStreams by the
DataSieve. It defines the means necessary to create new output
data from the selected input data (e.g., addition, subtraction,
multiplication, logical AND & OR, set combinations, concatena-
tions, and so on). Variation point for application specific tasks.

ruleset A set of rules for selecting the desired DataStreams.
streamoperator This controls how the Data of a DataStream has

to be handled once a new data point emerges. Specifies how to
formulate a result, and how it should be stored. Results can be
accumulated into a single updating variable, or concatenated to
form a time series data. StreamOperator can have multiple sub-
operations carrying out tasks such as differential and integral
calculus, percentage calculations, continuous average, and so on.

type A string representing what kind of DataStream is in question.
unit A fine-grained string which can be used to identify DataStream

elements. For example, it can be used to indicate measurement
(e.g., SI unit), calculations, and so on. For more specialized clas-
sifications, it is possible to use any (purposeful and imaginable)
scheme such as Multipurpose Internet Mail Extensions (MIME).

Table 4.1 summarizes the major terminological changes between the
framework presented previously in Publication V and this thesis. These
changes are made for more accurate representation. Visualizations
(visualizers) are no longer explicitly included as it can be better to give
the responsibility of those features to another component or system.

Table 4.1: Summary of terminological changes.

Changed Concept Now Previously

DataFaucet::characteristics characteristics physicalInformation

DataStream::type String Type

DataSieve::dataSelectors RuleSet Criteria

Visualizations N/A Visualizer

Data formats for information sharing and various settings files were
also considered in Publication V, but the specific implementation
details will remain out of the scope of this version of the system.

50 the data processing model

4.2 use cases

The core features of the Faucet-Sink-Drain Model can be demonstrated
with the help of three use cases: 1) reading and processing a data file,
2) combination with external data, and 3) utilizing multiple data
sources. The complexity of the described use cases increases gradually,
beginning from the most simple case.

The base data for the experiments was previously collected during
another research project, and utilized in Publication VI. This data set
will be referred to as shock data from now on. Shock data is basically
road condition data collected by leveraging crowdsourcing and ac-
celerometer sensors on mobile phones. The data set was quite ideal
for proof-of-concept testing as it is almost completely numerical, thus
easy to process, has a small number of different attributes, and a
sufficiently big amount of data points (approximately 483 thousand
rows in total, and 146 thousand rows after sanitization and deduplica-
tion). The results provided by the application could also be verified
by referencing to the calculations made by other means (mainly, by
various manually crafted spreadsheet functions).

The experimentation of the third use case is based on a system
which is used to detect water leaks in a large building complex. The
schematics and the technical implementation for detecting water leaks
is described in more detail in paper by Rantanen et al. (2021). In
summary, that system consists of a few interesting raw data sources;
the actual water flow status detected by measuring the temperature
fluctuations of the water pipe; the usage statistics of the building; and
the blueprints or details of the layout of the building. Ultimately, the
system would produce a simple status view for the user. The status
indicator was chosen to be a traffic light indicator where green color
means all good condition, yellow color indicates a minor problem in
the system, and red color is an indication of a major problem, such as
a detected water leakage.

use case 1 : reading and processing a data file In this
use case, the system is given a task based on the shock data set
file. In the scenario a researcher works with their half yearly released
research data, which has been exported from a database into a Comma-
separated Values (CSV) file. Now the researcher needs some key figures
to be extracted from the data but the previously used spreadsheet with
the associated formulas has once again gone missing. Additionally, due
to the fact that it is a relatively small task and infrequently needed, no
real effort to automate the reporting system has been carried out. It can
also be that automation has not been done because the perceived work
load of developing such system is too high. Therefore, the challenge is
to overcome the opportunity costs of developing an automated system
compared with manually conducted (repetitive) work.

4.2 use cases 51

The goal of this use case is quite simple: read the contents of a file
and apply the necessary processing steps to produce and retrieve sta-
tistical information from the data. Basically, the procedure to achieve
the goal can be separated into five steps: 1) read a CSV formatted file
on the local file system, 2) read and parse the contents of the file,
3) select the interesting pieces of data, 4) process the selected data
with appropriate functions and methods, and 5) print out the results.
These steps essentially represent the tasks portrayed previously (e.g.,
in Figure 3.2 and Figures 4.2–4.6). The procedure of how this was
implemented on the prototype system is described in Section 4.3.2.

The implication of this use case is that any Faucet-Sink-Drain Model
system is able to ingest and process various kinds of data. This is
possible due to model guides to work in a specific way as systems
are specialized to fulfill the processing tasks. In the context of the
prototype system, it would be necessary to implement components
such as file parsers, column selection rules, mathematical algorithms
for data processors, and so on. The framework is designed in such
a way that many of the components can be instantiated again in
different scenarios for the increased reusability (e.g., CSVParser and
FileFaucet). In theory, the framework can operate in an incremental
processing mode as it knows which data is new and unprocessed.
Although it might be imperceptible in this use case, this mode may
provide more savings of computational resources in different contexts.

Generic data processing could be adopted by many different soft-
ware applications, and for example, make data sharing between appli-
cations more streamlined. As a result, the emphasis of data processing
development efforts could shift more toward the creation of useful
content and information instead of the handling of individual data
points. This use case has its roots in Publication VI, where the model
was applied and documented for the first time.

use case 2 : combination with external data In this “draw-
ing board exercise,” the aforementioned researcher needs to append
weather data to the shock data set for discovering the road condition
of any given data point. The shock data set already contains the exact
geographical location and timestamp, thus the remaining challenge
is how the data processing software can be instructed to collect and
combine the weather data efficiently enough.

The goal of this use case is to extend the previous case by combining
additional external data to the locally available data. This represents
a typical situation where some resources are provided by external
services. By extension, it enables Faucet-Sink-Drain Model systems to
connect with different data sources. Generally, the traditional ways
of solving the problem include obtaining the weather data from a
third party service by adapting our own system to their data formats

52 the data processing model

and APIs. The adaptation usually requires additional source code
development and adds to the general complexity of the application.

Faucet-Sink-Drain Model provide benefit to a system by reducing
the complexity data handling during the data import phase: by treating
all data similarly. From the model point of view a data faucet is an
abstraction of any (internal or external) data source. The faucet defines
a uniform interface to access the data. The faucet abstraction enables
the user to use similar source code on multiple, varying data sources.
Therefore, any emerging data is readily available for utilization.

In this case, the researcher needs to define a new DataFaucet, which
points to the requested DataStream from the DataDrain of a weather
service. This means that the software retrieves the corresponding
weather data from the server through the supplied data query in-
terfaces, handled behind the scenes by the faucet abstraction. As a
result, the emerging data stream will contain the appropriate (time-
and location-based) weather information for further utilization. For
example, the processed shock data and weather information may be
bundled together, and served thru another DataDrain service. For
traceability and verification purposes, the drain should provide a list
of operations that were utilized to reach the result.

The second use case is a small increment to the idea in first use
case, but it provides plenty of extended functionality for the system.
These will be very useful on reusing the shock data—or any other data
source—in different scenarios and systems. However, it was not fully
implemented due to constraints on working resources. In bridging a
gap between a Faucet-Sink-Drain Model and third party systems, it
should be technically possible to implement a wrapper service that
creates an artificial DataDrain interface between the said systems.

use case 3 : utilizing multiple data sources In the third
use case, the desired data varies significantly from each other. Their
data format, method of data delivery, among others, need to be dealt
with before getting started to operate with the data. Thus each source
would need to have a custom-made data import implementation. After
the source data is made accessible, data processing algorithms are able
to work. It is crucial to have a common data access format (i.e., an
abstraction layer) to make the data import task less complicated.

The goal of the use case is to demonstrate the extendable multipur-
pose nature of the Faucet-Sink-Drain Model, and its ability to work
with multiple generic data sources. This can be achieved while follow-
ing the principles of the model, and also means that interoperability
between different Faucet-Sink-Drain Model systems can be seamless.

An example system expressed in the context of Faucet-Sink-Drain
Model is depicted in Figure 4.8. The figure has three main parts of data
flows, where the last data flow is being utilized by an external system:
1) raw data combine processing part which includes the group of three

4.2 use cases 53

faucets on the left, 2) generic component processing part consisting of
one faucet in the middle, and finally 3) information processing part
which is the last faucet on the right. In fact, there could be multiple
faucets in the last part, depending on the complexity of the required
operation. The data stream containing the processed information flows
to the sink similarly like all other data.

The combine processing part includes the following data streams:
a) sensor location data and floor plan map, b) building’s locked/un-
locked status which conveys the estimated working hours for setting
normal and abnormal changes (e.g., differential over time; dx

dt), and
c) time series data from the temperature sensors.

:

:
:

Figure 4.8: Model of data flows.

The combine process continues as follows. The data will be pro-
cessed by the combinatory functions in the second sieve in the middle.
The initial selection is based on the building’s locked status (i.e., ac-
tive/inactive usage). At certain hours, the building is in a stage of low
demand use, and that is the time when abnormal leaks can be detected.
All other raw data, which are not captured nor needed, are discarded
thru the main drain on the left, as indicated by the dashed line and
the unlocked state. The sieve will then transfer the combined data
stream to the faucet in the middle. The data stream contains sufficient
amount of information for the next step, traffic sign processing.

The output of the middle faucet is a stream which includes all
three data sources as a one logical set. In this second part, or traffic
sign processing part, the rightmost sieve is programmed to collect the
previously combined data stream. It processes the data with series of
functions in order to generate data for a “traffic light” indicator. The
traffic sign process shown in Figure 4.8 could actually utilize multiple
sieve-drain-faucet cycles instead of just the one that is depicted.

The third part, information processing, depicts the finalized product
of the data processing cycle. In this step, the information stream

54 the data processing model

(encircled by letter “i”) is the output stream of the rightmost faucet. At
this point, the outputted data stream has been chosen for monitoring
by an external view port.

4.3 prototype system

The purpose of the prototype system introduced in this section is to
gain an empirical basis of the model in terms of applicability and
feasibility in anticipated use case scenarios. It also serves as a starting
point for determining the level of reusability and generalization of the
implementation.

4.3.1 Overview

The basic structure of the prototype follows the architecture which
was described in Figure 4.7. Specifically, the prototype system is a
representation of use case 1: reading and processing a data file. The
data flow diagram of the system is shown in Figure 4.9.

I

II

Sink

1. start

fileFaucet

fileStream
type=file

unit=text/csv

3. emerge

«Data»

row₁

⋮

rowₙ

4 emit

5. flow

'fileFaucet₂'

'fileStream₂'

9. emerge

«Data»

row₁col₁ ⋯ row₁colₘ

⋮

rowₙcol₁ ⋯ rowₙcolₘ

10. emit

11. flow

fileSieve

«RuleSet»

type=file

unit=text/csv

(identify and filter)

«DataProcessor»

CSVParser

(translate)

Drain
(fileSieve)

7. process

8. transfer results
(creates 'fileFaucet₂')

csvSieve

«RuleSet»

id='fileStream₂'

(identify and filter)

«DataProcessor»

(translate)

Drain
(csvSieve)

13. process

14. transfer results

2. attach 6. collect and combine

12. collect and combine

Figure 4.9: Overview of prototype data flows.

Each step is consecutively numbered (i.e., 1. start) and is accom-
panied by a verb which describes what is happening in that step. The
verbs use the semantics of the actions described in Section 4.1. Shapes
in the figure are denoted as follows: 1) ellipse is an object which is
one of the five key components, 2) rectangles are objects belonging to

4.3 prototype system 55

a certain component, and 3) large rectangles around shapes designate
a clustered package. The shapes colored in light gray are like their
normal equivalent, but can be implicitly instantiated by the prototype
system (e.g., the parent object contains all information needed to create
a complete object of such type). Text written in parentheses gives an
extra remark for the corresponding section.

The starting point (1) of this diagram is just before attaching the
first faucet to the sink. The next steps (2–5) are related to the internal
handling of data on the first faucet which provides “raw” data to the
system. The faucet in question is specialized in reading files from the
local file system. When the said fileFaucet is attached, a single fileStream
emerges from it, and the relevant file data will be emitted. In this case,
stream is populated with metadata such as type and unit, and each
file row is treated as a separate piece of data. The stream and data
flow into the sink.

Once the data flows into the sink, the next steps (6–7) are han-
dled by a data sieve. The data stream is identified by a fileSieve due
to its RuleSet being suitable enough (actually, it is identical with
the fileStream). Then it is time for processing the captured stream or
streams. The fileSieve has a DataProcessor which is of type CSVParser

that can translate raw data rows into a processable format according
to CSV rules. The processed stream and data is outputted to a drain
for further usage (8). The newly created ’fileFaucet2’ can be seen in
the next cluster but firstly, let us examine the first cluster (I) more
closely. All shapes in it forms the archetype of a processing cycle,
and represent the basic structure that every other key component will
follow. The application specific variation is possible as can be seen on
the subsequent cluster (II).

The faucet created in step 8 is automatically created according to
the information provided by the drain. The same attach, emerge, emit
and flow steps are represented by steps 9–11. For illustration purposes,
to indicate it is the second cycle, the names have been appended
with a subscript number two. The most obvious difference with this
faucet is in the data. The data is in structured format now, containing
the column name information which was present in the CSV file. It
was translated by the CSVParser into a format that is native to the
prototype system, thus it is now readily processable by any subse-
quent step. In fact, CSVParser is an extension of internally utilized
DefaultProcessor which is a minimum implementation to define the
required functionalities for DataProcessors. The same occurs with
other classes with a prefix Default in their name.

The logic may seem quite complicated, but there is a reason to do so.
Firstly, it creates a well-formed structure and interfaces for carrying
out (simple or advanced) work with source data. Then, the structure
allows reusable components, and lastly generism in data processing
enables application specific variation on the same source data. This

56 the data processing model

is exercised in the last remaining steps (12–14) by csvSieve where the
second file stream is captured, processed, and transferred forward.
The end state concludes the use case 1 and can be used as the start for
the use case 2 (see Section 4.2).

4.3.2 Detailed Description

In this section, the prototype system is detailed from three views.
Firstly, how it is initialized, then in which way it can operate with
data, and lastly how it reports results.

Listing 4.1 and Listing 4.2 provide a source code (written in Type-
Script) level overview of how an application could utilize the MDS

component framework from a development point of view. The listed
source code is commented inline, but for added clarity, the code is
examined in more detail below. At this point it might be worthwhile
recalling the high level tasks portrayed previously in Section 3.1.2,
Section 3.2, and in Section 4.1.2 (see Figures 4.2–4.6). The binding of
these tasks in the implementation is also explained below. The former
list concentrates on preparing the system for receiving data while the
latter indicates how a certain data stream will be processed.

initializing the system In Listing 4.1, the system is being
prepared for use by instantiating the components appearing in Faucet-
Sink-Drain Model. Many components instantiate the necessary objects
by themselves behind the scenes. For example, the developer can
leave the creation of DataDrain to the framework most of the time.
Another example with data processors is the creation of a new logical
DataStream and generation of new Data. These are implicitly redi-
rected to the sink instance through the new instances of DataDrain
and DataFaucet. The typical code for application initialization is also
omitted from the source code listing. The source code in Listing 4.1
consists of three logical sections distributed followingly:

1. Prepare DataSink & DataFaucet (rows 1–2 and 28)
2. Create different types of DataSieves (rows 4–13)
3. Define application specific data selectors (rows 15–26)

The first point fulfills two of the tasks, the acquisition and storage
steps, while the identification & filtering task is fulfilled by the second
and third points (see definitions in Section 4.1.2). On rows 1–2, a
fileSieve is instantiated with an instruction to look for a file on a local
disk from a specified path, followed by getting a handle to the data
sink. The data processor should be given to the DataSieve so it can
operate properly with the received data. Data selection algorithms
may be given different criteria depending on the use case. A fileSieve,
defined on rows 4–9, is instructed to look for data streams declaring
they are of type “file” and having a content type “text/csv” (rows

4.3 prototype system 57

15–21). In this case, the selection will be targeted to the output of a
DataFaucet fileFaucet defined on row 1. Another sieve is instantiated
(rows 10–13), which is instructed to look for data streams having a
specific identifier. The stream identifier is created automatically by a
series of (behind the scenes) drain-faucet functions, initiated by the
fileSieve (rows 22–26).

Listing 4.1: Initialization of the system.

1 const fileFaucet = new FileFaucet("./data.csv");/*create faucet*/

2 const sink = DefaultSink.getInstance(); /* get sink instance */

3

4 /* create a new Data Sieve with pointer to the sink. This sieve

5 * will be specialized in finding file streams. Second parameter

6 * is Data Processor which deserializes contents into (internally

7 * used) JSON data objects. Here it is a specialized CSVParser,

8 * that is able to separate each column into name-value pairs. */

9 const fileSieve = new DefaultSieve(sink, new CSVParser());

10 /* create another Data Sieve with pointer to the sink. This sieve

11 * will be specialized in finding data streams by specified

12 * identifiers. Creates a basic Data Processor automatically. */

13 const csvSieve = new DefaultSieve(sink, null);

14

15 /* prepare File Sieve to find streams with combinatory rule:

16 * - type of the stream is "file" (defined type of File Faucet)

17 * - unit of the stream is "text/csv" (detected by File Faucet)*/

18 const fileSelector = new RuleSet(); //each rule in set must match

19 fileSieve.addNewCriteria("type", "file", fileSelector);

20 fileSieve.addNewCriteria("unit", "text/csv", fileSelector);

21 sink.addSieve(fileSieve); /* explicitly attach File Sieve */

22 /* prepare CSV Sieve with just a single rule:

23 * - select a specific stream which will be created by the

24 * fileSieve. Creates an empty Rule Set automatically. */

25 csvSieve.addNewCriteria("id", fileSieve.faucet().stream(), null);

26 sink.addSieve(csvSieve); /* explicitly attach CSV Sieve */

27

28 sink.attachFaucet(fileFaucet); /* finally attach File Faucet */

Theoretically, a sieve can select the matching data from any available
source by any selection criteria. It enables a flexible way to choose (pre-
viously processed) DataStreams, improving reusability. For example,
reports created from the source data often diverge only after several
identical stages have been conducted. Therefore, different operations
can benefit (e.g., conserve computational resources) from utilizing a
common ancestor stream together.

At this point, the traceable operations may become useful, as trace-
ability can further support the decision on selecting useful types of
data streams. For example, if we know the data has been thru a well-
known and tested set of operations, the resulting data is more likely to
be consistent and error-free. In the prototype system, the accountability
of data is implemented by the means of a deterministic hash function.

58 the data processing model

It is derived from a deliberately chosen set of data stream information
variables from any previous and current processing cycles. The result
of the hash function is a signature, calculated and distributed forward
by the data drain. The signature can be used as a selection criteria in
the sieve. As hash functions are one-way only, the criteria needs to
be supplied a pre-calculated signature. The pre-calculation is possi-
ble because all affecting variables are known in advance, or in case
of external data, perhaps the original source already provided their
own signature. A divergence from the signature means that data had
something which was not expected. Simply put, the current imple-
mentation was good enough for conducting proof-of-concept testing,
but a more complete method to verify the accountability of data needs
to be implemented.

Before row 28 has been executed, the system (i.e., the data sink) will
have been in an apparently idle state—just waiting for any data to
appear in the sink. The status changes as soon as fileFaucet is attached
to the sink. This represents the figurative action of the valve of the
faucet being opened. Once the “valve” is opened, the data will be
allowed to flow into the system for further processing. Each time
new data emerges from any faucet into the sink (initiated either by
a server push or by a client pull), the system will begin the selection
and processing cycle as instructed.

operating with the data The source code in Listing 4.2 shows
an example of defining a processing step for any DataStream object. In
terms of the tasks explained in Section 4.1.2, this fulfills the processing
task. The further breakdown of the example shows that it consists of
three distinct sections:

1. Instantiate StreamOperator (rows 1 and 2)
2. Add different logical operations and related data column(s).

The example uses just one data column for reasons of clarity
(rows 4–12)

3. Define the desired processing functions and fine-grained require-
ments for each operation (rows 14–27)

The source code shown here focuses on a specific instance of
DataStream which is ought to be captured by the csvSieve (defined
on rows 10–13 and 22–26 in Listing 4.1). The purpose is to collect
and maintain the relevant processing information for the next step,
in this case for reporting results. Any additional instructions (i.e.,
StreamOperator) could be injected into the DataStream at practically
any point between DataSieve and DataSink. They will be executed
at DataSink whenever the sink receives new data belonging to this
data stream. The StreamOperator class can include more fine-grained
filters and terms for combining additional data columns for more
advanced processing requirements.

4.3 prototype system 59

Listing 4.2: Example use of Stream Operators.

1 /* prepare Stream Operator with a literal key */

2 const op = new DefaultStreamOperator("Breakdown of Data Points");

3

4 /* prepare 5 simple filters for selecting data for various

5 * operations. The first argument is a literal text identifier.

6 * The following argument(s) specify the needed column(s) and any

7 * additional arguments needed by the corresponding operator. */

8 op.addOperation("Level 0", "computed_level");

9 op.addOperation("Level 1", "computed_level");

10 op.addOperation("Level > 1", "computed_level");

11 op.addOperation("Total Count", "computed_level");

12 op.addOperation("Total Count with Level", "computed_level");

13

14 /* prepare operators for previously filtered data. Operators (2nd

15 * argument) are class-wrapped functions to manipulate data. */

16 op.addOperator("Level 0", Percentage, // Percentage of rows == 0

17 new Requirement<number>("computed_level", Comparer.IS, 0));

18 op.addOperator("Level 1", Percentage, // Percentage of rows == 1

19 new Requirement<number>("computed_level", Comparer.IS, 1));

20 op.addOperator("Level > 1", Percentage, // Percentage of rows > 1

21 new Requirement<number>("computed_level",

22 Comparer.GREATER_THAN, 1));

23 op.addOperator("Total Count", CountOf); // Counts amount of rows

24 op.addOperator("Total Count with Level", CountOf,

25 // Counts amount of rows where row (column value exists) >= 0

26 new Requirement<number>("computed_level",

27 Comparer.GREATER_THAN_OR_EQUAL_TO, 0));

The first argument in the addOperation function (for example, row 8)
should be considered as a handle for the corresponding operation. It is
used as a key value in the underlying data structure to store the results
(see Listing 4.3) as well as operations later on (for example, rows 16

and 17). With TypeScript programming language, the transcompiler
can enforce build-time type safety with the use of diamond opera-
tors. It can make the debugging of certain errors easier if the data is
misinterpreted as strings instead of numbers, and so on.

generating results A simplified example of the results gener-
ated by the application—a very basic form of the visualization step
mentioned in Section 4.1.2—can be seen in Listing 4.3. The output in
the example is structured as a simple JavaScript Object Notation (JSON)
both for illustrative purposes and to be slightly more pleasant for
human readers. For machine-to-machine communications, the output
should be reworked for better structure and usability. However, the
selection of the best (or the most suitable) serialization method will be
at the discretion of the user (i.e., developer).

In the JSON output file, the object literal “title” represents the textual
description given to the DefaultStreamOperator. Each literal key in

60 the data processing model

object operation_results represents the result of the corresponding oper-
ation. In the case of the result record of “Level > 1,” the percentage of
“computed levels” being greater than one is 0.971, and the number of
rows is 4691. In the case of CountOf records there is only one number
included in the result, representing the n of cases found.

Listing 4.3: Example of result output.

{

"title": "Breakdown of Shock Data Points",

"column": "computed_level",

"operation_results": {

"Level 0": { "Percentage": 20.371, "n": 98367 },

"Level 1": { "Percentage": 9.336, "n": 45083 },

"Level > 1": { "Percentage": 0.971, "n": 4691 },

"Total Count": { "CountOf": 482871 },

"Total Count with Level": { "CountOf": 148141 }

}

}

The numbers shown in the example output (Listing 4.3) do not
fully add up to 100 percent. This is due to the omission of data
points missing a computed level and also because of the presented
figures have been rounded up. The numbers match those available in
Publication VI (Table I, column v ≥ 0 m/s) because exactly the same
source data was utilized here.

4.3.3 Reusing Technical Constructs

The prototype system is designed to be extendable by reusing its
components. Therefore, it is possible to create new applications with
Faucet-Sink-Drain Model based systems, but it can also be utilized in
the remodeling of existing systems. An example of such procedure is
described in this section while the more detailed description of the
system in question is presented in Section 4.2. For the integration with
an existing system, a few factors must be taken into consideration.
This is required to determine whether the necessary features required
by the Faucet-Sink-Drain Model are in place. Those features need to be
inspected, and then the most suitable components would be selected
to fulfill each of the main level tasks defined by the model.

One needs to identify the relevant system components that perform
in the following five tasks as defined in Section 3.1.2 and Section 4.1.2:
1) acquisition, 2) storage, 3) identification and filtering, 4) processing,
and 5) visualization. The results of the identification process, and the
corresponding components are shown in Table 4.2. The next step is
to assign an appropriate task for those components (i.e., the rows in
Table 4.2). It is desirable to find as suitable components as possible
for all five tasks (i.e., the columns) in order to ensure the compatibil-
ity with the Faucet-Sink-Drain Model. The complete mappability is

4.3 prototype system 61

denoted by • while partial mappability is represented by ◦. The task
allocation is allowed to overlap between different components, and a
component may perform multiple tasks.

Table 4.2: Components of an example system.

Component A
cq

ui
si

tio
n

St
or

ag
e

Id
en

tifi
ca

tio
n

&
Fi

lte
ri

ng

Pr
oc

es
si

ng

V
is

ua
liz

at
io

n

Data sources (Faucets)

– Building usage statistics •
– Building blueprints •
– Water flow sensor •

Cloud service

– Database (Sinks) •
– Algorithms (Sieves) • •
– API (Drains) ◦ ◦ ◦

Interfaces

– Web browser •

• — mappable ◦ — partially mappable

In this case, there have been identified different components that
belong to three separate groups: data sources, cloud service, and
interfaces. The groups are for clarity reasons, and the name of the
group could be just about anything. The components in the data
sources group cover the first task, acquisition, while the cloud service
spans over the tasks storage, identification & filtering, and processing.
The “Service API” component is allocated to three tasks because it
has functionalities to support those tasks implicitly. The component
“Service Algorithms,” however, could be splitted for the benefit of a
more fine-grained breakdown of task allocation and more obvious
responsibilities. The last group, interfaces, consists of a web browser
which is fully mappable for the visualization task.

Finally, the system can be expressed by using the language of Faucet-
Sink-Drain Model. The structure of a complete example system is
shown in Figure 4.10. The beginning of the figure is on the left side
where the aforementioned data sources appear in the Physical world

environment. Each raw data source is encapsulated in a rectangle in
order to distinguish them as independent systems. The encapsulation
also denotes the task of acquisition. The wide arrows, or drains, from
these sources are connected to the three faucets on the example

62 the data processing model

system. It is here where the data enters the Faucet-Sink-Drain Model
system, or the Sink to be specific. The Sink in Figure 4.10 is now
portrayed in top-down view (hence the rounded corners) instead of
the previously seen side view (e.g., Figure 4.1).

:

Sink

+

Identification

& Filtering

"Combine"

Process

"Traffic Sign"

Process

"Information"

Process

Ph
ys

ic
al

 w
or

ld
C

yb
er

 w
or

ld

:

:

"Visualization"
t1 t2 tn tn+1

Figure 4.10: Structure of an example system.

In the Figure 4.10, the dotted arrows inside the system represents
a data stream. The connected arrows also indicate the completed
task of identification & filtering. The head of an arrow marks the
acquisition step for the algorithms performing a processing task. Each
processing task in the sink is an application specific variation point,
encapsulated in a circle. In the context of Faucet-Sink-Drain Model,
the circle indicates the sieve component. Processing tasks can be
further connected together in order to create the feedback mechanism
(Publication V). These are indicated by wide arrows, which remarks
similarity to the initial data flow of the raw data sources.

The first processing task is a combiner process that gathers the data
from the sources. The combiner can be a simple algorithm that selects
the latest values from designated variables and streams. The output
of the process would be forwarded to the next processing task. For
the sake of a succinct presentation, the next step is actually a group of
processing tasks, denoted by a group of encircled traffic lights. The
group is also an abstraction that represents the simplified steps of
turning the raw data into the information. Lastly, the results from
the traffic sign process can be exported from the system through the
information process task. This task (i.e., sieve) is an endpoint that
can provide exportable drain interface to serve the selected data to
various users and/or applications. In this case it is used to provide the
data for an external visualization system. This visualization system

4.4 conclusion of the empirical study 63

could be another Faucet-Sink-Drain Model system as is hinted by the
faucet icon on the left side of the rectangle.

As a summary, the Faucet-Sink-Drain Model provides a highly
adaptable set of functionalities that can be easily extended. In princi-
ple, all processing tasks (i.e., the variation points inside the sink) and
the communication between those provide a similar generic interface.
Therefore, any system is more simple to design and implement, regard-
less of the actual operations used. The application specific variation
to processing tasks is “just a simple matter” of replacing the contents
inside the variation points. From the software development point of
view, this can present large potential for reusable components, as well
as for the reusability of the data. Further, fixing errors in the software
(i.e., bugs) may become easier, as the changes can be targeted to a
specific encapsulated processing task instead of the whole system.

4.4 conclusion of the empirical study

The Faucet-Sink-Drain Model and MDS component framework were it-
eratively improved throughout the research process. The first iteration
was the recognition of the pipelined data processing model thru the
metaphor of a streaming water apparatus, consisting of faucets, sinks,
and drains. With the initial recognition of the model, it was possible
to gain understanding in achievable capabilities. This understanding
enabled to try the idea in a problem domain, which ended up to be
in data source management. As a result, the reference architecture of
MDS component framework (Publication V) was designed.

The next logical step was to prove that the model could be utilized in
the creation of a framework. This was demonstrated by the realization
of the prototype system, described in Section 4.3. The prototype system
is an empirical result of the iterative search process. The prototype
system also serves its purpose as a testing platform for the model. In
the subsequent iterations of the search process, the model was defined
more precisely and its theoretical implications were better identified
(when compared with Publication V and Publication VI). The general
purpose data processing model was described with the examples of
prospective use cases (Section 4.2). Ideally, these use cases represent a
subset of capabilities that can be implemented with the model.

Faucet-Sink-Drain Model was built upon on the idea of control-
ling the data processing cycle more systematically to aid software
development. The best practices in SE have shown that there are good
architectural choices and design patterns that can improve the quality
of software, for example, in terms of higher reuse or better maintain-
ability. The main point of the model is how the model treats all data
sources as simply and generically as possible. The generic data source
management of the model is the key to improving the reuse of source
code as well as providing guidelines for implementation of new data

64 the data processing model

source processing. The defined model of data processing is seen as a
distinctively separable component from the application logic, which
supports general purpose implementations. Furthermore, the quality,
reusability and maintainability of the data itself is increased due to the
improved interpretation and tracing process enabled by the system.

The prototype system demonstrates that it follows the data process-
ing tasks described in Section 3.1.2. It also meets the quality parameters
defined in Section 3.1.1 in the following ways:

Accountability The traceable operations make it possible to store
and retrieve the whole data processing log to each data
stream. With this feature, the user would be able to trace the
conducted operations all the way back to the original source.

Compatibility and Interoperability The architecture of the model and
the MDS component framework encourages for a standard-
ized approach to data processing: all data is/are equal, and
therefore all data is being handled in the same way. The user
would be able to rely on and utilize similar software con-
structs in different use cases. The standardized approach also
improves the interoperability when communicating between
other systems compatible with Faucet-Sink-Drain Model.

Reusability and Reproducibility With the aid of the accountable data,
the system is able to provide consistent results with the same
data and processing functions. The user would be able to
rely on having reusable results in different environments,
and is also able to share results consistently with other users
and/or systems.

Reliability and Availability The storage model of the system has sup-
port for flexible and always up-to-date access to the original
and processed data. The user would be able to find, access
and manipulate any data stored in the system.

However, the system requires more focus on the development and
implementation of new features in future research. For example, the
quality parameters of compatibility and interoperability tested par-
tially as the necessary features for a concrete client-server test system
have not yet been implemented. The design of the prototype system
supports compatibility, and the initial testing with the prototype sys-
tem has indicated promising results. In theory, the system should be
capable of fulfilling the quality parameters once the implementation is
available. It might be worth to review the FAIR principles (Wilkinson
et al., 2016) which was referred to in Section 2.2.1. Further discussion
about additional considerations and implications can be found in
Chapter 5.

5
D I S C U S S I O N

This chapter discusses the results of the research in wider scope to
offer views for possible uses and further research. It also considers
how well the research goal introduced in Section 1.2 was achieved.

5.1 revisiting the research questions

This section revisits the RQs mentioned in Section 1.2, which are
duplicated below:

RQ #1 How to manage the data quality & data processing systemati-
cally?

RQ #2 How to design and perform data processing cycle?

RQ #3 How to comprise & execute the approach of generic model in
a software application?

The RQ #1 can be answered with the knowledge gained from the
background research of data management and similar approaches. The
conclusion of the background research (see Section 2.4) was that there
were no comprehensive solutions available that provide maintainable
and systematic ways for managing the data. It was also realized that
the typical information systems operate in five key areas, and should
be benchmarked against a reference set of quality parameters (i.e.,
ISO/IEC 25010:2011, 2011; ISO/IEC 25012:2008, 2008). Both of these
were described earlier in Section 3.1. The answer to RQ #2 is the design
of a pipelined data processing model, which assigns each step with
certain roles and tasks. The model in question was described in Sec-
tion 4.1. The result continues the traditional practice of creating design
patterns (e.g., Gamma et al., 1994; Sommerville, 2016), providing a
structurally new method for repeatable data processing in software.
This enables more clarified and comprehensible system development.
Lastly, the RQ #3 is a demonstration with a software prototype sys-
tem, which integrates the requirements of the former questions. The
prototype system was described in Section 4.3. The work in this part
contributes significantly to practice rather than literature.

The idea of Faucet-Sink-Drain Model can be applied to various data
processing scenarios because of its generic approach. It was concluded

65

66 discussion

to conduct experiments to improve data management because the
model also had features that allowed it to operate with different types
of data sources, and therefore would make it of the most fruitful
application areas. Further study (see Chapter 2 and Section 2.1) also
revealed that there was a gap when combining data quality, software
quality, and systematic data management together. The model treats
data as generic, simple enough, and easily reusable content. This can
promote more efficient access to any data. With help of managing and
tracking the data sources, the model has prospectives of providing
reusable data in reusable software.

As one of the key results of the thesis, the generic approach was
utilized in a data management application, where it was gained a
better grasp of data sources in five key areas: acquisition, storage,
identification & filtering, processing, and with certain limitations,
visualization. These steps represent a data processing cycle, in which
each step is well defined. The formal definition helps in the utilization
of any data related needs in a software application. For example, it
should be clear for the user to identify the entry point of the data, as
well as the necessary activities for that particular step. The outcome of
each processing cycle can be utilized in subsequent processing cycles
again, as many times as necessary.

The Faucet-Sink-Drain Model is capable of solving problems in
different scenarios other than data management. Different systems
that are compatible with Faucet-Sink-Drain Model can find compatible
parts that can be reused. From the SE point of view, this supports the
reusability of the source code, and provides a suitable design pattern
to be used in software applications dealing with data.

5.2 contributions of the thesis

The invariable main contribution of this thesis is the design and de-
velopment of the Faucet-Sink-Drain Model and the demonstration
of the model in the form of MDS component framework. In this sec-
tion, a selection of benefits leading toward the main contribution, are
discussed.

The model defines a standardized approach for data processing
by specifying how the data needs to be utilized, which enables sys-
tematical data management. By utilizing the systematical approach, it
provides reusability at source code level (by offering patterns) as well
as reusability of the data. Increased reusability improves the logical
use of the data. Data managed by the model can be accompanied
by metadata which stores the complete, traceable processing history,
providing accountability for the managed data. With accountability, it
is easier to determine the original source and understand the complete
processing cycle, achieving in a more coherent procedure to modify
any single step in the data processing.

5.2 contributions of the thesis 67

From the data management point of view, knowing that the data
is accountable can have benefits such as reuse of data, understanding
how the resulting data (or information) was obtained, and make use
of previously utilized methods with a different data set. In the scope
of the model, the accountability of data can be observed on a few
logical formations. A single sink formation contains everything within
one sink. This representation is the one that was described in this
thesis. In this formation all data, data cycles, processing, and history
is accessible from a specific sink. In a sequential sink formation, the
configuration goes into a strictly sequential mode with multiple sinks
having a single cycle each. This is logically identical to the previous
one, but there can be only one operation per sink. History of each step
remains accessible as long as intermediary sinks are not removed. An
unmanaged formation can be expressed as a sink with just one, very
large cycle. Everything happens inside single processing cycle, thus
only the state of the initial and the final conditions are observed.

Reusability of the source code related to the use case 1 was studied
by manually inspecting the prototype system and the MDS compo-
nent framework. The analysis can be seen in Table 5.1. The analysis
includes a selected quantitative and qualitative metrics in the follow-
ing assessments: source code level analysis is conducted by a tool
named cloc, and a reusability analysis by examining the source code
components that are prospective candidates to be incorporated into
the future versions of the framework. It turned out that a remarkable
part of the prototype system total code-base could be reusable in the
framework. About 13 % of the code could easily integrate into the
framework. Additionally, approximately 76 % is potentially reusable
in the framework after refactoring the code. The remaining code is
application specific that cannot be transferred.

Table 5.1: Analysis of the source code.

Metric Framework Prototype System

Lines of code (total) 196 993

Lines of blanks & comments 97 271

Number of files 11 16

Distinctly reusable 13 %

Candidates for reuse 76 %

Most of the framework code consists of interface definitions or com-
ments, thus the greater part of the features are implemented by the
prototype system. However, the forthcoming iterations could adopt
the most useful and productive features directly into the framework.
Until this happens, the performance in computational capacity might
actually be lower when compared with conventional approaches, such

68 discussion

as those following procedural programming. Performance in develop-
ment capacity can exhibit the same behavior as even the most simple
components doing the processing work must be implemented from
the scratch (e.g., faucets, sieves, filter rules et al.). However, any single
component is easily reusable in the forthcoming development efforts,
and can be incorporated into the tool box of the prototype system.
In addition to the wider selection of tools, a good generic solution
could be made as configurable recipes (Publication V) for the users to
adopt in their own programs. One recipe is a well-defined series of
processing cycles, that is intended to improve the productivity. The
hypothetical examples of such recipes could be “select a data stream
from data source X, and combine it with my own data,” or “perform
outlier detection in data stream Y.”

Related to the reusability of data, a set of quality parameters was
introduced in Section 3.1.1. Basically, it is a (ISO/IEC 25012:2008 data
quality model) draft for data quality and data management extension.
The draft includes definitions for characteristics that should be fea-
tured in systematically operated data applications. The characteristics
were chosen in the way that a balanced workload could be maintained
while allowing solutions to improve data quality issues. The account-
ability, interoperability, reusability, and reliability of data may prove
useful in future as the amount of automated decisions based on data
keeps growing.

5.3 evaluation of the constructs

This section reflects on the validity of the research in terms of the
selected research goals. The evaluation of the model relies on the
conclusions drawn from prior knowledge of related studies and the
empirical evidence from the implementation and testing of the proto-
type system.

resolution to ro and rqs Previously, the individual RQs were
discussed in Section 5.1. To return to the RO presented in Section 1.2,
a response can be formulated according to what has been discovered.

RO There exists a generic model that enables the processing of data
in any given software application.

Based on the findings and the answers discovered for the RQs,
the Faucet-Sink-Drain Model has shown capabilities of satisfying this
objective. It is generic enough to be adaptable to different requirements,
and it can be integrated directly into a software application (see
Section 4.3). The model is able to provide data processing operations
according to the quality parameters as indicated in Section 4.4. A
subset of the model features are tested with the prototype system (i.e.,
MDS component framework).

5.3 evaluation of the constructs 69

design principles of the model The structure and architec-
ture of the model is presented in Section 4.1. The architecture of
Faucet-Sink-Drain Model is designed to support general purpose im-
plementations by being generic enough to be utilized in different
use cases. The focus areas are in improvement of systematic data
processing approaches, and in data and software quality. The system-
atic control of data processing described by Faucet-Sink-Drain Model
aids software development. This is the key in improving the reuse of
source code as well as providing guidelines for the implementation
of new data processing tools. Furthermore, the quality, reusability
and maintainability of the data itself is increased due to the improved
interpretation and tracing process enabled by the system.

appearance of the model in use cases This theme is dealt
with in Section 4.2 with three increasingly more demanding use cases.
The first of them is the most basic one where the Faucet-Sink-Drain
Model is utilized in accessing and manipulating a local CSV file. This
is also a concrete example of the Faucet-Sink-Drain Model as this case
has been demonstrated by the developed prototype system.

The second case is a small increment to the previous use case,
but it offers great potential for extended system features. In this
case, the system utilizes data from an external data source. This is
a theoretical example of the model as the current prototype system
does not implement the accessing of remote data sources. However, in
theory, the user could simply configure their own system to retrieve
the interesting data from another system. Then, both of the Faucet-
Sink-Drain Model compatible systems would negotiate and handle
the mode of data transfer autonomously, perhaps even without the
need to write additional code. As a consequence, the user would have
more time to focus on implementing the functionalities regarding the
data processing, thus increasing the productivity of the user.

The third case described more complex system operating with
multiple data sources. Similar to the second case, there is no current
implementation, but the value of this case is on the viewpoint of
successfully applying the Faucet-Sink-Drain Model retroactively to an
existing system. Thus, it indicates the model is capable and generic
enough for a wide range of applications. This case was explained in
more detail in Section 4.3.3.

application practices of the model This topic is considered
in Section 4.3, and it presents in more detail about how the Faucet-
Sink-Drain Model is utilized in an application. The prototype imple-
ments the model as a framework to provide the basic features. The
framework is the generic part that may remain the same in different
applications. Specific part of the application is defined by the use case
specific requirements. The framework is attached to the application

70 discussion

by the means of variation points (e.g., inheritance, parameterization,
interfaces) that are one of the basic features in the software develop-
ment. Specific part of the prototype application will then declare how
it utilizes the generic and reusable fragments of the model (mainly
five key components; faucets, streams, sinks, sieves, and drains) to
complement missing framework features with various application
specific implementations. The remaining unspecific part is uncontrol-
lable which can make the discovery of the model more complicated.
Generalization cannot reach this part, but it is nevertheless important
to identify the areas which are beyond the scope of the model.

The generic and specific parts were distinctively depicted on Fig-
ure 4.9. The organization of components inside processing cycles (i.e.,
clusters) remain similar, while the necessary parts of components are
changed to meet application specific needs. The variation points of the
model were shown from another viewpoint in Figure 4.10 where each
full processing cycle is depicted as a sequence of variable operations.

improvement of the quality aspects Improvement of the
quality aspects of a software and data were in a central role as the
model was being implemented. Those were discussed in more detail
in Section 3.1.1, and Section 4.4 compiles how the quality aspects were
improved by the Faucet-Sink-Drain Model.

The main reasons for using the model is in its approach of data
processing: all data are “created equal,” and therefore all data is being
handled in the same way. The data processing can be splitted and
pipelined over several processing cycles instead of writing a single
monolithic black box function. While the model allows implemen-
tation of such “large functions,” the initial idea was to prefer more
(reusable) processing cycles (per data point) and less work per cycle.
Each processing cycle has identical and well-formed steps which can
give predictable and reproducible output based on the input and the
selected processing functions. From this perspective, the processing
functions of the model system can be regarded stateless and pure.
The inevitable drawback of this approach is the increased processing
overhead, thus the pros and cons must be carefully taken into account
when it comes down to the selection of the tools for a certain project.

The model can accept all kinds of data, and it can be utilized in dif-
ferent scenarios and use cases as shown above. Applications building
upon the model can steer and encourage in selecting approaches that
enable reusable general purpose constructs to be utilized. Reusability
can appear at source code level as well as in the creation and orga-
nization of the processing cycles. Reusability can also appear in the
utilization of data. The model aims for easier control of utilizing any
existing data, and allows the user to indicate what kind of data should
be retained for further use. Additionally, it is possible to trace back
in the processing history of (any) data point, and see what partic-

5.3 evaluation of the constructs 71

ular steps have been carried out. The aspects discussed can return
increased value in the form of more efficient software development.

self-assessment One of the strongest points of the model is
the ability to retrieve and manage a lot of similarly structured data
effectively from the developer’s point of view. However, the users
(of the system) will be required to have good insight into the data
so that they can reach the desired results. It can offer a “code once;
process multiple times” approach which saves effort with a high level
of reusable structures. The data from each different source should be
well defined, which should aid in the ability of the system to handle
laborious and repetitive low-level database routines. Additionally, if
required, the system would be able to create the logical snapshots
of the current work so it would be easy to come back to the same
point with a) new data or b) different algorithms. All this allows us to
concentrate on conducting more experiments with the data instead of
the need to dilute the focus by building and tweaking the system.

Regarding the disadvantages, there are some notable points to
consider. One, the sequence of operations may form very long chains,
depending on the amount and complexity of the feedback loops being
utilized. Another consideration is that the selector creation can be
rather prone to mistakes as no sanity checking is done. As it stands,
the selectors and processors need to be written as code since there are
no other tools for creating them. Ideally, the user would have a helper
application to make the rule writing easier. This could alleviate some
issues with the sanity checking of rules. Similar issues also manifest in
the current implementation of the selection and processing procedure
(especially Listing 4.2), so improvement in that regard is required for
reaching higher maturity level.

Is this model an answer to any and all data (source) management
needs? Will the applications implementing it, immediately become
better? Evidently, there is still a lot to be done, and the model is not a
magical silver bullet. It should be considered more like the beginning
of a paradigm for tackling the issues arising in data handling. Also, it
is probably not a complete back-end data solution as is, but is better
viewed as a specialized component in the application architecture.
In this way, the model can be implemented to perform the single
logical task of data source management. This would partially satisfy
the Unix philosophy (e.g., Gancarz, 1995; Raymond, 2003) of software
development where a program should be made to “do one task and to
do it well.” It appears that the size of systems has grown larger since
the term was coined, but that does not mean that everything must be
built into one monolithic system. Thus, with smart architectural design
choices, the responsibilities of a certain application feature(s) can be
partitioned into smaller, simple, and manageable software artifacts.
Of course, doing just one task would contradict with many of the

72 discussion

previous arguments in this thesis, but perhaps it can be solved by
rephrasing the sentence to “do one processing cycle and to do it well.”

5.4 threats to validity

This section reflects on the validity of the research in terms of the
chosen research methodology, DSRM, proposed by Peffers et al. (2007).
DSRM defines a process model consisting of six research activities. The
outcome of the activities can be used as a way to confirm validity. The
mapping of the activities to the chapters of this thesis is summarized
in the following listing:

Chapter 1 Activity 1: Problem Identification and Motivation
Activity 2: Objectives of the Solution

Chapter 2 Activity 1: Problem Identification and Motivation

Chapter 3 Activity 2: Objectives of the Solution

Chapter 4 Activity 3: Design and Development
Activity 4: Demonstration

Chapter 5 Activity 5: Evaluation

The first two activities provide prior knowledge and boundaries
for the research. The background study conducted and reported on
Chapter 2 deals with Activity 1. The results and relevance of this
activity can be validated with the help of the literature review results
described in the chapter. The second activity described in Chapter 3

provides the necessary theory from the prior work and knowledge of
the thesis author. Activities 3 and 4 can be earmarked for Section 4.1
and Section 4.3, respectively. Chapter 4 in its entirety also fulfills
the first guideline of DS research (Hevner et al., 2004): design as an
artifact. The fifth activity, evaluation and comparison of the results,
is conducted in the current chapter, Chapter 5. The sixth activity,
communication, is not specifically placed in any single chapter or
section. However, communication was conducted during the research
by the means of publications, especially Publication V and Publica-
tion VI. The feedback from these papers was utilized to guide the
research. Furthermore, this thesis as a whole can be seen as fulfilling
the communication aspect.

Regarding the potential risks of the research, the model and archi-
tecture was put to the test over three use cases Section 4.2 and a single
prototype system Section 4.3. The generic nature of the model can
make it hard to affix to a concrete example, but a reasonable amount of
effort was used to make the cases representative enough. For example,
the process iteration of DSRM enabled to revise and adapt use cases
based on the intermediary evaluation of the model (see Figure 1.2
outlining the chosen research process). The selected use cases cover

5.5 future work 73

typical data processing needs, explaining the intended usage and
therefore the most appropriate setting for the system. The described
prototype system was shown to perform consistent with the conven-
tional methods in the first case, and according to the implementation
level of the prototype system, promising results in the others.

5.5 future work

This section gives indications of where to continue the research from
here. The previous sections in this chapter have already included a
few suggestions for improvement in their respective contexts, so those
are not repeated unnecessarily in this section.

The basic concept of the model (i.e., Faucet-Sink-Drain Model) has
remained largely similar throughout the research, but there are always
avenues for improvement. The most obvious points for improvement
are in the MDS component framework and applications building upon
it, as they are still gaining the necessary maturity for large-scale
utilization. The architecture could benefit from a re-evaluation and
fine-tuning of the organization of its internal components. In hind-
sight, the change in visualizations mentioned along Table 4.1 was not
fully carried out, as the final step of the data processing could be
consumed by an automated machine-to-machine system. Therefore, the
terminology in the visualization step should be replaced with more
relevant terms. Additionally, it could prove an interesting experiment
to utilize the Apache Flink ecosystem to implement the current MDS

component framework logic as a community package for the Apache
Flink. Either way, there have been discussions on publishing the source
codes of the prototype on a public platform.

The applicability of the model should be documented in more
scenarios to gain more understanding and feedback on the overall
system. This includes, among others, the full evaluation of FAIRness of
the Faucet-Sink-Drain Model. The prototype system has shown that
it can handle a few data streams and data process cycles at the same
time, but it will be interesting to see also how effectively it can handle
very large amounts of data and data streams simultaneously.

theoretical use cases While the MDS component framework is
specialized in tackling issues of data source management, the model
has the flexibility to make it useful in various other approaches. In the
following, a few theoretical scenarios are discussed. These are based
on the potential improvement topics discovered during the research
on the model and the prototypes:

Multi-sink Depending on the case, the user could assign many data
sinks for different purposes. For example, the user is
able to create different data sink environments for the
tasks they are performing, the user would be able to

74 discussion

make clones (duplicating data), or create the read-only
mirrors of the data sink.

Pooling Data sinks can be chained so that the flow of information
is additive and scaleable through an increased level of
parallelism. The idea bases on the flow of information
and data builds up, forming bigger streams of data.
The bigger streams can be formed from the valuable
information, or even from the discarded data.

Accessibility In this approach, the physical location of the sink can be
freely chosen. For example, data sinks could be made
accessible from everywhere through Internet services, or
by keeping them on a portable mass storage for mobility
or security purposes.

Ownership The bearer (or owner) of the sink can control what can
be shared to third parties. With the help of accessible
data sinks, user-related data such as the customer infor-
mation of an online shopping service could be stored
on personal data sinks instead of storing them on each
and every web service independently.

The potential presented by the model may be a precursor to a new
kind of decentralized service data infrastructure. For an example, it
could enhance a signature service which performs a digital signing
of documents among its users. The data can be distributed across
different service providers. However, the signature service would not
store the data in their own servers. Instead, it would act as a gateway
to the users to transmit signature requests to each other and to provide
the certification of the authenticity of the signatures. The service would
not need to host a large repository for the storage of the payload data.
This way, any service could specialize further, and would not need to
maintain features deemed unnecessary for their core business.

concluding remarks Reflecting on the implementation level
of the MDS component framework, there are some features lacking
in the current prototype system. However, this is to be expected as
the intention of the research artifact was not a fully featured product
for a regular system developer, but to indicate the feasibility of the
selected approach. The research has shown that the idea is feasible
on the proof-of-concept level. While the concrete realizations are less
ideal than originally envisioned, the theoretical implications of the
research provide open pathways for introducing more features, testing,
and development efforts. As it stands, the primary effort needs to be
focused on the creation of reusable components and recipes so that
the system would have better tools and well-defined solution patterns
available. The wider tool selection can increase level of automation for
the development process.

6
S U M M A RY

This thesis studied how data management goals can be achieved in
software development from the perspective of data sources. The back-
ground research indicated that there was a gap in data management
in combining data quality, software quality, and a systematic approach
together. It was concluded that a generic model which can operate
with the data processing of data sources efficiently would improve the
situation. A generic data management model was developed utiliz-
ing these findings, along with good architectural design points and
software standards.

The Faucet-Sink-Drain Model was built upon on the idea of con-
trolling the data processing cycle more systematically to aid software
development. The main point of the model is how the model treats all
data sources as simply and generically as possible. The generic data
source management of the model is the key to improving the reuse
of source code as well as providing guidelines for the implementa-
tion of new data source processing tools. Furthermore, the quality of
data, on such parameters as accountability, compatibility, reusability,
and reliability, are increased due to the improved interpretation and
tracing process enabled by the system. The data source processing
architecture was designed to support general purpose implementa-
tions. The aforementioned aspects of the model were tested in the MDS

component framework system.
MDS is an architecture that covers the creation of data, includes the

search, selection, and combination of any input data, and finishes with
the outcome of the processed data. Reflecting on the implementation
level of the MDS component framework, there are several improvement
paths available both on the theoretical and practical side. However,
this was an expected outcome as the intention of the research artifact
was not to be a fully featured product, but to indicate the feasibility of
the selected approach.

The research has shown that the idea is feasible, thus more features,
testing, and development efforts are good avenues for future research.
The adoption of the generic data processing model is practicable
for various software applications. As a result, the emphasis of data
processing development efforts could shift more toward the creation of
useful content and information instead of the handling of individual

75

76 summary

data points. The Faucet-Sink-Drain Model can potentially aid in efforts
to improve data accessibility, reusability, and ownership by means of a
data processing infrastructure which allows a greater decentralization
of service data.

The experiments with prototypes indicate that the proposed Faucet-
Sink-Drain Model can be implemented in a software application. The
theoretical background studies support the notion that the problem
described in this thesis is relevant, and that the choices in the designed
architecture can improve the quality of software. Therefore, it can be
concluded that there exists a generic and systematically manageable
data processing model, which can improve the quality of both software
and data.

R E F E R E N C E S

D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach, “Scalable
semantic web data management using vertical partitioning,” in
Proceedings of the 33rd International Conference on Very Large Data
Bases, ser. VLDB ’07, Vienna, Austria: VLDB Endowment, 2007,
pp. 411–422, isbn: 978-1-59593-649-3. [Online]. Available: http://
dl.acm.org/citation.cfm?id=1325851.1325900.

R. L. Ackoff, “From Data to Wisdom,” Journal of Applied Systems Analy-
sis, vol. 16, no. 1, pp. 3–9, 1989.

D. Agrawal, A. El Abbadi, S. Antony, and S. Das, “Data management
challenges in cloud computing infrastructures,” Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 5999 LNCS, pp. 1–10, 2010.
doi: 10.1007/978-3-642-12038-1_1.

M. A. Babar and H. Zhang, “Systematic literature reviews in software
engineering: Preliminary results from interviews with researchers,”
in 2009 3rd International Symposium on Empirical Software Engineering
and Measurement, 2009, pp. 346–355.

Y. Baolong, W. Hong, and Z. Haodong, “Research and application
of data management based on Data Management Maturity Model
(DMM),” in Proceedings of the 2018 10th International Conference on
Machine Learning and Computing, ser. ICMLC 2018, Macau, China:
ACM, 2018, pp. 157–160, isbn: 978-1-4503-6353-2. doi: 10.1145/
3195106.3195177.

M. I. Bellgard, “ERDMAS: An exemplar-driven institutional research
data management and analysis strategy,” International Journal of
Information Management, vol. 50, pp. 337–340, 2020, issn: 0268-4012.
doi: 10.1016/j.ijinfomgt.2019.08.009.

C. Bisdikian, B. Mitschang, D. Pedreschi, V. S. Tseng, and C. Bettini,
“Challenges for mobile data management in the era of cloud and
social computing,” in Proceedings of the 2011 IEEE 12th International
Conference on Mobile Data Management, vol. 1, Jun. 2011, p. 6. doi:
10.1109/MDM.2011.104.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture, A System of Patterns. Wiley,
2013, isbn: 9781118725269.

C. Campbell, Top Five Differences between Data Lakes and Data Warehouses,
2015. [Online]. Available: https://www.bluegranite.com/blog/
bid/402596/top-five-differences-between-data-lakes-and-

data-warehouses/ (Accessed: 21 Jan. 2021).

77

http://dl.acm.org/citation.cfm?id=1325851.1325900
http://dl.acm.org/citation.cfm?id=1325851.1325900
https://doi.org/10.1007/978-3-642-12038-1_1
https://doi.org/10.1145/3195106.3195177
https://doi.org/10.1145/3195106.3195177
https://doi.org/10.1016/j.ijinfomgt.2019.08.009
https://doi.org/10.1109/MDM.2011.104
https://www.bluegranite.com/blog/bid/402596/top-five-differences-between-data-lakes-and-data-warehouses/
https://www.bluegranite.com/blog/bid/402596/top-five-differences-between-data-lakes-and-data-warehouses/
https://www.bluegranite.com/blog/bid/402596/top-five-differences-between-data-lakes-and-data-warehouses/

78 references

D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Monitoring streams: A
new class of data management applications,” in Proceedings of the
28th International Conference on Very Large Data Bases, ser. VLDB ’02,
Hong Kong, China: VLDB Endowment, 2002, pp. 215–226. [On-
line]. Available: http://dl.acm.org/citation.cfm?id=1287369.
1287389.

Y.-M. Chen and T.-H. Tsao, “A structured methodology for implement-
ing engineering data management,” Robotics and Computer-Integrated
Manufacturing, vol. 14, no. 4, pp. 275–296, 1998, issn: 0736-5845. doi:
10.1016/S0736-5845(98)00013-1.

Y. Cheng, X. Zhang, P. Wang, L. Zha, D. Hou, Y. Qi, and C. Ma, “Data
management challenges and event index technologies in high energy
physics,” Jisuanji Yanjiu yu Fazhan/Computer Research and Development,
vol. 54, no. 2, pp. 258–266, 2017. doi: 10.7544/issn1000-1239.2017.
20160939.

P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P.
Merson, R. Nord, and J. Stafford, Documenting Software Architectures:
Views and Beyond, ser. SEI Series in Software Engineering. Pearson
Education, 2010, isbn: 9780132488594.

CMMI Institute, CMMI Institute – Data Management Maturity (DMM),
2019. [Online]. Available: https://www.cmmiinstitute.com/data-
management-maturity (Accessed: 28 Oct. 2019).

Deloitte Consulting LLP, How Data Lakes Fit Into a Modern Data Ar-
chitecture, 2018. [Online]. Available: https://deloitte.wsj.com/
cio/2018/09/05/how-data-lakes-fit-into-a-modern-data-

architecture/ (Accessed: 21 Jan. 2021).

W. Dong, X. Zhang, and B. Jiang, “Service-based distributed data
management and application in China Digital Ocean,” 2010, pp. 425–
428. doi: 10.1109/IGARSS.2010.5649883.

Y. C. Du, J. Hongli, G. Lili, and L. Xin, “Comparative analysis of data
management system,” in Proceedings of The 2016 6th International
Conference on Machinery, Materials, Environment, Biotechnology and
Computer (MMEBC), Zhang, L and Xu, D, Ed., ser. AER-Advances
in Engineering Research, vol. 88, Atlantis Press, 2016, 919–923, isbn:
978-94-6252-210-7. doi: 10.2991/mmebc-16.2016.192.

Elasticsearch B.V., Elasticsearch: The Official Distributed Search & Analyt-
ics Engine | Elastic, 2021. [Online]. Available: https://www.elastic.
co/elasticsearch/ (Accessed: 21 Jan. 2021).

T. Z. Emara and J. Z. Huang, “A distributed data management system
to support large-scale data analysis,” Journal of Systems and Software,
vol. 148, pp. 105–115, 2019, issn: 0164-1212. doi: 10.1016/j.jss.
2018.11.007.

http://dl.acm.org/citation.cfm?id=1287369.1287389
http://dl.acm.org/citation.cfm?id=1287369.1287389
https://doi.org/10.1016/S0736-5845(98)00013-1
https://doi.org/10.7544/issn1000-1239.2017.20160939
https://doi.org/10.7544/issn1000-1239.2017.20160939
https://www.cmmiinstitute.com/data-management-maturity
https://www.cmmiinstitute.com/data-management-maturity
https://deloitte.wsj.com/cio/2018/09/05/how-data-lakes-fit-into-a-modern-data-architecture/
https://deloitte.wsj.com/cio/2018/09/05/how-data-lakes-fit-into-a-modern-data-architecture/
https://deloitte.wsj.com/cio/2018/09/05/how-data-lakes-fit-into-a-modern-data-architecture/
https://doi.org/10.1109/IGARSS.2010.5649883
https://doi.org/10.2991/mmebc-16.2016.192
https://www.elastic.co/elasticsearch/
https://www.elastic.co/elasticsearch/
https://doi.org/10.1016/j.jss.2018.11.007
https://doi.org/10.1016/j.jss.2018.11.007

references 79

Environment Agency UK, “Quality and Performance Standards for
Environmental Data Management Software,” Environment Agency
United Kingdom, Rotherham, UK, Guidance, Dec. 2017. [Online].
Available: https://www.gov.uk/government/uploads/system/
uploads/attachment_data/file/664289/LIT_5787.pdf.

Finnish Social Science Data Archive, Data Management Guidelines,
urn:nbn:fi:fsd:V-201504200002, Feb. 2015. [Online]. Available: https:
//www.fsd.tuni.fi/en/services/data-management-guidelines

(Accessed: 16 May 2021).

M. J. Franklin, “Mobile data management – a dozen years later,” in
Proceedings of the 2011 IEEE 12th International Conference on Mobile
Data Management, ser. MDM ’11, vol. 1, USA: IEEE Computer Society,
Jun. 2011, p. 3, isbn: 9780769544366. doi: 10.1109/MDM.2011.102.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, 32nd, ser. Addison-
Wesley Professional Computing Series. Pearson Education, 1994,
isbn: 0-201-63361-2.

M. Gancarz, The UNIX philosophy. Digital Press, 1995, isbn: 1555581234.

Gazali, S. Kaur, and I. Singh, “Artificial intelligence based clinical data
management systems: A review,” Informatics in Medicine Unlocked,
vol. 9, pp. 219–229, 2017, issn: 2352-9148. doi: 10.1016/j.imu.2017.
09.003.

D. Ghoshal and L. Ramakrishnan, “FRIEDA: Flexible robust intelligent
elastic data management in cloud environments,” 2012, pp. 1096–
1105. doi: 10.1109/SC.Companion.2012.132.

J. Greenfield and K. Short, “Software factories: Assembling applica-
tions with patterns, models, frameworks and tools,” in Companion
of the 18th Annual ACM SIGPLAN Conference on Object-oriented Pro-
gramming, Systems, Languages, and Applications, ser. OOPSLA ’03,
Anaheim, CA, USA: ACM, 2003, pp. 16–27, isbn: 1-58113-751-6. doi:
10.1145/949344.949348.

A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in
information systems research,” MIS Quarterly, vol. 28, no. 1, pp. 75–
105, May 2004.

J. W. Horch, Practical Guide to Software Quality Management, ser. Artech
House computing library. Artech House, 2003, isbn: 9781580536042.

S. Hossmann, A. G. Haynes, A. Spoerri, I. D. Diatta, B. Aboubacar,
M. Egger, F. Rintelen, and S. Trelle, “Data management of clinical
trials during an outbreak of ebola virus disease,” Vaccine, 2017, issn:
0264-410X. doi: 10.1016/j.vaccine.2017.09.094.

W. H. Inmon, Building the Data Warehouse. New York, NY, USA: John
Wiley & Sons, Inc., 1992, isbn: 0471569607.

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/664289/LIT_5787.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/664289/LIT_5787.pdf
https://www.fsd.tuni.fi/en/services/data-management-guidelines
https://www.fsd.tuni.fi/en/services/data-management-guidelines
https://doi.org/10.1109/MDM.2011.102
https://doi.org/10.1016/j.imu.2017.09.003
https://doi.org/10.1016/j.imu.2017.09.003
https://doi.org/10.1109/SC.Companion.2012.132
https://doi.org/10.1145/949344.949348
https://doi.org/10.1016/j.vaccine.2017.09.094

80 references

ISO/IEC 20546:2019, “Information technology – Big data – Overview
and vocabulary,” International Organization for Standardization,
Geneva, CH, Standard ISO/IEC 20546:2019, Feb. 2019. [Online].
Available: https://www.iso.org/standard/68305.html.

ISO/IEC 20547-3:2020, “Information technology – Big data reference
architecture – Part 3: Reference architecture,” International Organi-
zation for Standardization, Geneva, CH, Standard ISO/IEC 20547-
3:2020, Mar. 2020. [Online]. Available: https : / / www . iso . org /

standard/71277.html.

ISO/IEC 25010:2011, “Systems and software engineering – Systems
and software Quality Requirements and Evaluation (SQuaRE) –
System and software quality models,” International Organization
for Standardization, Geneva, CH, Standard ISO/IEC 25010:2011,
Mar. 2011. [Online]. Available: https://www.iso.org/standard/
35733.html.

ISO/IEC 25012:2008, “Software engineering – Software product Qual-
ity Requirements and Evaluation (SQuaRE) – Data quality model,”
International Organization for Standardization, Geneva, CH, Stan-
dard ISO/IEC 25012:2008, Dec. 2008. [Online]. Available: https:
//www.iso.org/standard/35736.html.

ISO/IEC 42010:2011, “Systems and software engineering – Architec-
ture description,” International Organization for Standardization,
Geneva, CH, Standard ISO/IEC/IEEE 42010:2011, Dec. 2011. [On-
line]. Available: https://www.iso.org/standard/50508.html.

ISO/IEC TR 20547-2:2018, “Information technology – Big data refer-
ence architecture – Part 2: Use cases and derived requirements,”
International Organization for Standardization, Geneva, CH, Stan-
dard ISO/IEC TR 20547-2:2018, Jan. 2018. [Online]. Available: https:
//www.iso.org/standard/71276.html.

H. Jaakkola and B. Thalheim, “Trends and Future of Data Modelling,”
in Information Modelling and Knowledge Bases XXXII, ser. Frontiers in
Artificial Intelligence and Applications. Netherlands: IOS Press, Feb.
2021.

V. Kantere, “A holistic framework for big scientific data management,”
in 2014 IEEE International Congress on Big Data, Jun. 2014, pp. 220–
226. doi: 10.1109/BigData.Congress.2014.39.

——, “Datom: Towards modular data management,” in 2015 IEEE
International Conference on Information Reuse and Integration, Aug.
2015, pp. 443–450. doi: 10.1109/IRI.2015.74.

——, “Datom continued: Towards multi-objective optimization of
data management entities,” in 17th IEEE International Conference on
Information Reuse and Integration, IRI 2016, Pittsburgh, PA, USA, July
28-30, 2016, 2016, pp. 275–282. doi: 10.1109/IRI.2016.44.

https://www.iso.org/standard/68305.html
https://www.iso.org/standard/71277.html
https://www.iso.org/standard/71277.html
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35736.html
https://www.iso.org/standard/35736.html
https://www.iso.org/standard/50508.html
https://www.iso.org/standard/71276.html
https://www.iso.org/standard/71276.html
https://doi.org/10.1109/BigData.Congress.2014.39
https://doi.org/10.1109/IRI.2015.74
https://doi.org/10.1109/IRI.2016.44

references 81

N. Khan, M. Alsaqer, H. Shah, G. Badsha, A. A. Abbasi, and S. Salehian,
“The 10 Vs, issues and challenges of big data,” in Proceedings of the
2018 International Conference on Big Data and Education, ser. ICBDE ’18,
Honolulu, HI, USA: ACM, 2018, pp. 52–56, isbn: 978-1-4503-6358-7.
doi: 10.1145/3206157.3206166.

B. A. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering –
A systematic literature review,” Information and Software Technology,
vol. 51, no. 1, pp. 7–15, 2009, Special Section – Most Cited Articles in
2002 and Regular Research Papers, issn: 0950-5849. doi: 10.1016/j.
infsof.2008.09.009.

B. A. Kitchenham, D. Budgen, and O. P. Brereton, “Using mapping
studies as the basis for further research – a participant-observer case
study,” Information and Software Technology, vol. 53, no. 6, pp. 638–651,
2011, Special Section: Best papers from the APSEC, issn: 0950-5849.
doi: 10.1016/j.infsof.2010.12.011.

M. Kleppmann, Designing data-intensive applications: the big ideas behind
reliable, scalable, and maintainable systems, 1st ed. O’Reilly, 2017, isbn:
978-1-449-37332-0.

K. Koskimies and T. Mikkonen, Ohjelmistoarkkitehtuurit. Talentum,
2005.

D. Laney, 3-D Data Management: Controlling Data Volume, Velocity
and Variety, (Broken link as of 6 November 2020), Feb. 2001. [On-
line]. Available: https://blogs.gartner.com/doug-laney/files/
2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-

Velocity-and-Variety.pdf.

L. Li, H. Wang, J. Li, and H. Gao, “A survey of uncertain data man-
agement,” Frontiers of Computer Science, vol. 14, no. 1, 162–190, Feb.
2020, issn: 2095-2228. doi: 10.1007/s11704-017-7063-z.

M. Lloyd, “Performance standards and test procedures for environ-
mental data management software,” Proceedings – 1st IMEKO TC-19
International Symposium on Measurement and Instrumentation for Envi-
ronmental Monitoring, 2007.

A. Magdy and M. F. Mokbel, “Towards a Microblogs Data Manage-
ment System,” in 2015 16th IEEE International Conference on Mobile
Data Management, vol. 1, Jun. 2015, pp. 271–278. doi: 10.1109/MDM.
2015.24.

B. Marr, How Much Data Do We Create Every Day? The Mind-Blowing
Stats Everyone Should Read, 2018. [Online]. Available: https://www.
forbes.com/sites/bernardmarr/2018/05/21/how- much- data-

do-we-create-every-day-the-mind-blowing-stats-everyone-

should-read (Accessed: 6 Nov. 2020).

https://doi.org/10.1145/3206157.3206166
https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1016/j.infsof.2010.12.011
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://doi.org/10.1007/s11704-017-7063-z
https://doi.org/10.1109/MDM.2015.24
https://doi.org/10.1109/MDM.2015.24
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read

82 references

T. Miksa, J. Cardoso, and J. Borbinha, “Framing the scope of the com-
mon data model for machine-actionable data management plans,”
in 2018 IEEE International Conference on Big Data (Big Data), Dec. 2018,
pp. 2733–2742. doi: 10.1109/BigData.2018.8622618.

MongoDB, Inc, Aggregation Pipeline – MongoDB Manual, 2019. [Online].
Available: https://docs.mongodb.com/manual/core/aggregation-
pipeline/ (Accessed: 28 Oct. 2019).

T. T. Nguyen, “Improving software quality with programming pat-
terns,” Ph.D. dissertation, Iowa State University, 2013.

I. Nonaka and H. Takeuchi, The Knowledge-creating Company: How
Japanese Companies Create the Dynamics of Innovation. Oxford Univer-
sity Press, 1995, isbn: 9780195092691.

A. Patrizio, IDC: Expect 175 zettabytes of data worldwide by 2025, Dec.
2018. [Online]. Available: http://www.networkworld.com/article/
3325397/idc-expect-175-zettabytes-of-data-worldwide-by-

2025 (Accessed: 23 Oct. 2021).

K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A
design science research methodology for information systems re-
search,” Journal of Management Information Systems, vol. 24, no. 3,
pp. 45–77, 2007. doi: 10.2753/MIS0742-1222240302.

K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for con-
ducting systematic mapping studies in software engineering: An
update,” Information and Software Technology, vol. 64, pp. 1–18, 2015,
issn: 0950-5849. doi: 10.1016/j.infsof.2015.03.007.

S. Plantikow, K. Peter, M. Högqvist, C. Grimme, and A. Papaspyrou,
“Generalizing the data management of three community grids,”
Future Generation Computer Systems, vol. 25, no. 3, pp. 281–289, 2009.
doi: 10.1016/j.future.2008.05.001.

L. Pophal, “The State of Data Management,” ECONTENT, vol. 42,
no. 1, 28–30, 2019, issn: 1525-2531.

L. Qiao and W. Liu, “Agile manufacturing data management,” Key
Engineering Materials, vol. 407-408, pp. 189–193, 2009. doi: 10.4028/
www.scientific.net/KEM.407-408.189.

I. Rafique, P. Lew, M. Q. Abbasi, and Z. Li, “Information quality
evaluation framework: Extending ISO 25012 data quality model,”
World Academy of Science, Engineering and Technology, vol. 65, pp. 523–
528, 2012.

P. Rantanen, J. Mäkivaara, M. Saari, P. Sillberg, and H. Jaakkola,
“Utilizing cost-effective NB-IoT-based sensors for detecting water
temperature and flow,” in 2021 IEEE 25th International Conference
on Intelligent Engineering Systems (INES), 2021, pp. 165–170. doi:
10.1109/INES52918.2021.9512896.

https://doi.org/10.1109/BigData.2018.8622618
https://docs.mongodb.com/manual/core/aggregation-pipeline/
https://docs.mongodb.com/manual/core/aggregation-pipeline/
http://www.networkworld.com/article/3325397/idc-expect-175-zettabytes-of-data-worldwide-by-2025
http://www.networkworld.com/article/3325397/idc-expect-175-zettabytes-of-data-worldwide-by-2025
http://www.networkworld.com/article/3325397/idc-expect-175-zettabytes-of-data-worldwide-by-2025
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1016/j.future.2008.05.001
https://doi.org/10.4028/www.scientific.net/KEM.407-408.189
https://doi.org/10.4028/www.scientific.net/KEM.407-408.189
https://doi.org/10.1109/INES52918.2021.9512896

references 83

E. S. Raymond, The art of Unix programming. Pearson Education, 2003,
isbn: 0131429019.

M. Ridley and C. Stoker, “Data management tools,” Bridging the Gap:
Meeting the World’s Water and Environmental Resources Challenges –
Proceedings of the World Water and Environmental Resources Congress
2001, vol. 111, 2004. doi: 10.1061/40569(2001)52.

J. Rowley, “The wisdom hierarchy: representations of the DIKW hier-
archy,” Journal of Information Science, vol. 33, no. 2, pp. 163–180, 2007.
doi: 10.1177/0165551506070706.

P. Sillberg, J. Raitaniemi, P. Rantanen, J. Soini, and J. Leppäniemi, “Flex-
ibly managed user interfaces for mobile applications,” in Proceedings
of the IADIS International Conferences Web Based Communities 2011,
Collaborative Technologies 2011 and Internet Applications and Research
2011, Rome, Italy, 20-26 July, 2011, IADIS International Association
for Development of the Information Society, 2011, pp. 151–159, isbn:
978-972-8939-40-3.

P. Sillberg, P. Rantanen, and J. Soini, “A content based tool for search-
ing, connecting and combining digital information – case: Smart
photo service,” in Proceedings of the 16th International Multiconference
Information Society, IS 2013, Volume A, 7-11 October 2013, Ljubljana,
Slovenia, 2013, pp. 249–252.

S. Soares, The IBM Data Governance Unified Process: Driving Business
Value with IBM Software and Best Practices. MC Press, LLC, 2010, isbn:
978-1-5834-7360-3.

I. Sommerville, Software Engineering, 10th ed., ser. Always learning.
Pearson, 2016, isbn: 9780133943030.

Statista, Total data volume worldwide 2010-2024, 2020. [Online]. Available:
https://www.statista.com/statistics/871513/worldwide-data-

created/ (Accessed: 6 Nov. 2020).

R. Taylor, N. Medvidovic, and E. Dashofy, Software Architecture: Foun-
dations, Theory, and Practice. Wiley, 2009, isbn: 9780470167748.

The Apache Software Foundation, Apache Spark – Unified Analytics En-
gine for Big Data, 2018. [Online]. Available: https://spark.apache.
org (Accessed: 28 Oct. 2019).

——, Apache Flink – Stateful Computations over Data Streams, 2021. [On-
line]. Available: https://flink.apache.org/ (Accessed: 21 Jan.
2021).

——, Apache Lucene – Welcome to Apache Lucene, 2021. [Online]. Avail-
able: https://lucene.apache.org/ (Accessed: 23 Oct. 2021).

B. M. Thuraisingham, Handbook of Data Management, 1998 Edition, 1st.
Boca Raton, FL, USA: CRC Press, Inc., 1998, isbn: 084939953X.

https://doi.org/10.1061/40569(2001)52
https://doi.org/10.1177/0165551506070706
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://spark.apache.org
https://spark.apache.org
https://flink.apache.org/
https://lucene.apache.org/

84 references

C. Veesommai, Y. Kiyoki, P. Sillberg, J. Soini, H. Jaakkola, and P.
Chawakitchareon, “The rSPA process realization: The creation of
river heavy metal evaluation index (rHMEI) by using dimensional
subspace of heavy metal,” International Transaction Journal of Engi-
neering, Management, & Applied Sciences & Technologies, vol. 7, no. 3,
2016, issn: 2228-9860.

R. Vieira, F. Ferreira, J. Barateiro, and J. Borbinha, “Data management
with risk management in engineering and science projects,” New
Review of Information Networking, vol. 19, no. 2, pp. 49–66, 2014. doi:
10.1080/13614576.2014.918519.

M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M.
Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos,
P. E. Bourne, et al., “The FAIR guiding principles for scientific data
management and stewardship,” Scientific data, vol. 3, 2016.

Y. Xue-rong, L. Jia-hong, L. Ying, L. Feng, F. Xiang-jun, and W. Yuan-
lan, “Study of universal simulation data management system,” in
Proceedings of the 2009 International Conference on Information Technol-
ogy and Computer Science – Volume 01, ser. ITCS ’09, Washington, DC,
USA: IEEE Computer Society, 2009, pp. 333–338, isbn: 978-0-7695-
3688-0. doi: 10.1109/ITCS.2009.75.

https://doi.org/10.1080/13614576.2014.918519
https://doi.org/10.1109/ITCS.2009.75

Part II

O R I G I N A L P U B L I C AT I O N S

This part consists of the original publications which found
the basis of this compilation thesis.

P1
P U B L I C AT I O N I

Utilizing Adaptive Software to Enhance Information Management
J. Soini, P. Sillberg, and J. Raitaniemi

International Journal of Computer, Electrical, Automation, Control and Information
Engineering 6(12) 2012, pp. 1553–1558

Publication reprinted with the permission of the copyright holders

87





 
—     

        

 

         

          

       

   

  





          

       

     

         

        





—    
    



 



  

access to the company’s back  
      

         

      

      

     

  



  

        

      

       

       

        

    

       

 


         

        



         

        



  

       





  

         



         



        

      

        

  

        



         











          



        

       





      



     –    
 –        
       

 

organization’s operations. The proposed approach shows an
       



       



  





        



          



       

       



  

        















    





          

     



        



        

        



        

        

       



     





       



          

       

  

      

       

      

–


          

       



         

        

      

        



       

      

        

  

the most important and significant parts of a company’s


         

access to the organization’s back  
      

      

        

        

        

 

          

company’s       




 

          

       



       

          

         

         



       

        





   

       

       



       



      



       

       



 

      

      

       

      

       

  

         

       

       



         

 



      

       

   



         

       



  

       

         



         



        







        

       



      



       

    

      







       

        

       





 








    

     





       

     

        













      



Desktop. The Android client’s UI format is Extensible User
    



          

       







  

          





    

 

           



         





       

        



        



        

“Menu” and “Navigable.” In menu applica
       

      –  
          





       

        

        

 







        

    



        

         

     

         























       

      

        



           



         

          



       

 

          

 

    



       













          

          

          



ly in the device’s adapter software, so it is
           





       

form’s content. The user may also navigate between the forms
          


















         



          

         

application’s IDE view. The    
























Listing of the user’s available 










       

   



 



       
















         



         

   



      



’





         







to handle the application’s creation, distribution, data
        

 

    “offset” situations and


       

        

        

          

“offline” situations. Old web
“off” situations at all and      
 



       

         





     

  

       



 

          

        



          

       





        



     

          

      

       







     

       

       

         



  



         



       

        



 

        

       

       

      



       

        



      

        

       



         





        

       





        





      



        

       





 K. Burden, ”Business benefits of industry
       





 G. B. Davis, “Anytime/anyplace computing and the future of the
knowledge work,” 


 K. MacDonald, and J. Metzger, “Achieving tangible
physician practices,”    


 




 S. L. Järvenpää, K. R. Lang, Y. Takeda, and V. K. Tuunainen, ”Mobile
commerce at crossroads,” 


 K. Siau, E. Lim, and Z. Shen, “Mobile commerce: Promises, challenges
and research agenda,”


 J. Van Gurp, A. Karhinen, and J. Bosch, “Mobile Service Oriented
Architectures (MOSOA),”      


        


 C. Jou, “Automatic web table transcoding for mobile devices based on
table classification,” in 


 H. Jin, J. Y. Cho, and J. W. Park, “Dynamic user interface update using
web based framework,” in     


 Herbert, “Framework for Use Interface Adaption,”


 N. Rosenthal, “Hybrid Qt/WebKit applications: Pushing the Limits of
Web Development [Video],”    
       





 


 J. Bishop, and N. Horspool, “Cross  
that lasts,” 

 N. Mitrovic, and E. Mena, “Adaptive user interface for mobile devices,”
   tion, and Verification,” 


 N. Mitrovic, J. A. Rovo, and E. Mena, “ADUS: Indirect generation of
user interfaces on wireless devices,”     
 



 
“Dynamic interfaces,” 


 D. Buhalis, “E
industry,”        


 G. H. Griffiths, and P. N. Finlay, “IS  
     and manufacturing,” 
          



 M. N. Melville, K. Kraemer, and V. Gurbaxani, “Review: Information
       

business value,” 


 S. J. Barnes, “Enterprise mobility: concept and examples,"


 
“Mobile decision support for transplantation patient data,”


 CIO insight (2003), “When will mobility add strategic value?,”
    



    Hoon Nah, and K. Siau, “Strategic implications of
  Focused Thinking,”
 



 


        


       
    



          
      



         



       



       


     









P2
P U B L I C AT I O N I I

Prototype System for Improving Manually Collected Data Quality
J. Soini, P. Sillberg, and P. Rantanen

Proceedings of the 3rd Workshop on Software Quality Analysis, Monitoring, Im-
provement, and Applications (SQAMIA) 2014, pp. 99–106

Publication reprinted with the permission of the copyright holders

95

1

Prototype System for Improving Manually Collected
Data Quality
JARI SOINI, PEKKA SILLBERG and PETRI RANTANEN, Tampere University of Technology – Pori

Even nowadays, a great deal of measurement data is collected and also saved manually. In this kind of situation, there are

phases when human error can easily occur and also when interpreting the typed collected measurement data could be difficult.

This research aimed to discover resources for improving the quality of measurement data as well as better and more illustrative
tracking of usage information in real time. The objective was both quality improvement of a specific measurement data collection

process as well as the elimination of human error. This paper describes one reliable solution for this purpose, which improves

the quality and also the visual presentation of manually collected data. The paper presents elements of the system developed
for this aim and also the technology deployed along with its operational principles.

Categories and Subject Descriptors: H.3.5 [Information Storage and Retrieval]: Online Information Services—Web-based
services; H.4.0 [Information Systems Applications] General

Additional Key Words and Phrases: Data quality, measurement process quality, data visualization, software applications

1. INTRODUCTION

The starting point of the research was to map out areas and activities of the public sector in which
savings could be achieved by controlling, optimizing and intensifying operations. This research is a
part of the ongoing two-year (2013-2014) Kiiaudata (Kiinteistöjärjestelmien datan älykäs analysointi
– smart analysis of property systems data) project funded by Tekes [2014], where one of the main aims
was to study potential new technologies for managing and controlling conditions in buildings in a smart
way. In collaboration with the City of Pori, a survey was made about the points where measurement
data is collected and also how said data is utilized. As the result of this mapping, it was decided to
focus on the upgrading of measurement data collection and the new swimming pool was chosen as the
research subject, as it is the city’s most expensive individual building in terms of energy consumption.

The idea was that the maintenance staff would continue checking the physical measuring devices
to ensure their conditions, but the collected data would be recorded with the developed system in con-
trast to the fully manual record keeping used in the past (i.e. pen and paper). The measurements
produce information that can be used, for example, in consumption and condition tracking. For in-
stance, analyses of alteration in energy consumption can be made by means of inclusive measurement
and usage tracking based on it. Electricity, heat and water are examples for different measured energy
currents. In many cases, the aforementioned currents can be tracked and anomalous situations can be
reported automatically using modern computer controlled systems, but there still remain situations
where manual work is required, especially when dealing with legacy systems.

Author’s address: J. Soini, Department of Software Engineering, Tampere University of Technology – Pori, P.O.Box 300, FIN-
28101 Pori, Finland; email: jari.o.soini@tut.fi.

Copyright c© by the papers authors. Copying permitted only for private and academic purposes. In: Z. Budimac (ed.): Proceedings
of the 3nd Workshop of Software Quality, Analysis, Monitoring, Improvement, and Application (SQAMIA), Lovran, Croatia, 19.-
22.9.2014, published at http://ceur-ws.org

1:2 • J. Soini et al.

There are several studies related to building automation systems and automatic sensor data col-
lection, for example Cheng and Shen [2011] introduced wireless sensor networks based on embedded
Linux. Nainwal et al. [2011] studied on remote surveillance and monitoring system utilizing wireless
sensor networks, Vujović and Maksimović [2014] focused on utilizing Raspberry Pi as a building block
of wireless sensor node, and Toshniwal and Conrad [2010] introduced a web-based sensor monitoring
system on a Linux-based single board computer platform. However our focus was on systems where
automatic sensors cannot be fully utilized. The work presented in this paper utilizes the findings of
Soini et al. [2013], in which mobile devices, Global Positioning System (GPS) technology and route
optimizations were combined in a real-time tracking service for delivery of goods.

The owners of the property chosen as the research subject – the new public indoor swimming pool
of the City of Pori – were particularly interested in, for example, identifying development targets re-
lated to energy consumption measurement, development of the measurement process, early discovery
of possible issues, and evaluation of the impacts of changes. For this research, a manually used digi-
tal data collection system has been developed as a collaboration project between Tampere University
of Technology (TUT) and the City of Pori. The system developed facilitates the maintenance staff ’s
work in registering and recording the measurement information as well as real-time tracking of usage
information and perception of possible anomalous consumption situations.

2. PROBLEMS IN QUALITY OF MANUALLY COLLECTED DATA

Erroneous values are common when collecting and typing up data by hand, especially for long numeric
values. Errors can also be very hard to detect, and it is difficult to know if the erroneous value was
caused by an error with a meter or a correct value was simply mistyped by the person reading the
meter. This was the problem observed and the starting point of this study. The assumption was that
typing errors can be detected by software.

In some cases, it is not financially viable to replace measuring devices: many devices available today
can be networked and contain automatic error detection or monitoring software, but this is not true for
all devices, especially when taking into consideration many legacy devices. If these devices are seldom
used or replacing them would be expensive, alternative approaches are required.

There are still many measuring devices that need to be checked periodically by a user. In practice
this may require writing down the values by hand. In many places it is still common to use the basic
pen-paper-and-Excel approach, in which the measurements are checked manually, written down and
later inputted using datasheet software such as Microsoft Excel. The system presented here enables
the pen-and-paper phase to be skipped. Using a management interface, reports of the values can be
created and saved in various formats (such as .pdf or .xls). The paper describes simple client software,
which uses Near Field Communication (NFC) [ISO 2013] tags to detect a measurement device called
an “object” in the context of this paper. In the scope of this paper, an object means a monitored physical
device (e.g. water meter).

3. SOLUTION – PROTOTYPE SYSTEM FOR COLLECTION OF CONSUMPTION DATA

The main idea behind the prototype system is to combine a typical web service, a mobile device with
networking capability and a way to identify the object to implement a data gathering and reporting
service. QR-Codes and Radio Frequency IDentification (RFID) [ISO 2008; Finkenzeller 2010] contact-
less proximity cards were the main candidates for identification purposes. RFID cards were chosen
over QR-Codes as they should be more reliable to recognize in dimly lighted environments. It is also
more convenient to touch the card instead of taking a photo of QR-Code when the space is limited.

Not all RFID cards, or tags, are alike as they vary on parameters such as operating frequency, data
speed, distance of reading, power supply (passive, active, battery-assisted passive), and price. The

Prototype System for Improving Manually Collected Data Quality • 1:3

Fig. 1. System overview.

choice of parameters depends on the use case [Nummela 2010]. Typically, a low operating frequency
correlates with low data speed and reading distance. An active power supply increases the price of the
tag but enables the tag to operate without the support of a tag reader. We chose to use Near Field
Communication (NFC) compatible tags as they are:

—relatively inexpensive
—they receive all the required power from the reader which reduces the need for maintenance
—the reading distance was not a crucial part of the system
—NFC capable smart phones and tablets are becoming more common.

For the purpose of this application, we are only interested in the unique ID which can be read from
every tag. In our system this ID – i.e. a tag – is bound to an object. The user only has to touch the tag
and the client software retrieves the correct data. Every object can be configured with various details:

—a common name (e.g. Water consumption)
—names of related gauges (e.g. Main water meter)
—the unit of the gauge (e.g. Cubic meters)
—warning limits for expected minimum and maximum daily increase (e.g. we expect that the gauge

reading could increase by 50 to 100 units per day).

Figure 1 shows an overview of the system. The Service is available over the Internet where both
Management User Interface and Client application can be connected. The service uses JavaScript Ob-
ject Notation (JSON) to transmit data objects and it has two Representational state transfer (REST)
interfaces, one for getting the gauge data and the other for posting the gauge data. It also supports user
access control, but this feature is not currently used in the pilot phase of the system. The management
user interface is a JavaScript-based web page accessible with a web browser. There the system admin-
istrator can configure a particular object and interpret the results sent by the client. For example, the
results can be viewed as raw data or plotted as a chart. The Client, in Figure 1, is the main component
that the end user is using. It is used to interact with tags, collect the data, and perform small scale
on-site analysis of the data. The client application in our case is programmed for Android devices.

The prototype system is currently being tested in at the new swimming pool in City of Pori. There
are three different gauges (water, electricity and central heating) which are being monitored. There
are a couple members of the maintenance staff who operate the client device just to collect the gauge
readings, and one person to oversee the changes in the collected data. All workers are operating the

1:4 • J. Soini et al.

Fig. 2. Application screenshots, from left to right: initial view before a tag has been read, form view after the tag has been read,
and finally, threshold value is below the defined limit.

client thru one shared device. So far the response from the staff has been enthusiastic about the data
collection system, particularly of the ability to see the approximate costs of the facility immediately.

3.1 Information Collection

The client device and the NFC tag play an important role in collecting the meter readings. The infor-
mation collection consists of three phases:

(1) identifying the object
(2) inputting the data
(3) saving the data.

Each of the three phases is explained in more detail in the following sub-sections.

3.1.1 Identifying the Object. The first step is to identify the object by touching the tag attached
to the object. The tag will be automatically detected by the device. The tag detection is based on the
unique ID found on every tag. In the current implementation these IDs can be mapped to objects using
the service’s management interface. This mapping is used by the client to detect which object is the
current target and to show the correct object-dependent input fields. It could also be possible to extend
the client software to enable mapping new tags for objects, which would make installing the overall
system easier. This way the system installation could use bulk tags, which would be mapped to objects
on the spot by the person performing the installation procedure. Whether mapping the tags on the
device is required depends on the use case, and in our current scenario it was not a necessary feature
mainly because of the relatively small amount of objects and tags. Also, as the main use of the client
device is to gather information, it might be better to keep the software simpler to use by limiting the
functionality available (see Figure 2).

The mapping information and the input field details can be synchronized with the service at any
time, but in general, synchronization is performed only when specially requested. There are two rea-
sons for this: firstly, the mapping and input field details change very rarely, making continuous syn-
chronization a waste of network bandwidth; and secondly, in some cases the objects may be located
in places with poor or non-existent network connectivity, making live synchronization difficult or even

Prototype System for Improving Manually Collected Data Quality • 1:5

impossible. The basic view before any tags have been detected is shown in Figure 2 (left), and the view
after a tag has been selected is shown in Figure 2 (center). In the example case a very simple object is
illustrated containing only two fields; a numerical input field for the Main water meter, which accepts
values ranging from 69882 (the previous input value) to 99999, and a text input field for Notes.

3.1.2 Inputting the Data. Figure 2 shows the views of a detected object. The view in the center
shows the basic view and the view on the right show the extended view. When the user taps any of the
fields, additional information related to that specific field is shown: the previously given value with
the timestamp of the input date, the daily average, and the difference of the currently typed value (if
any) in relation to the previously given value. The purpose of the extended information is to give a
quick glimpse of previous data, which can be used to detect possible errors in the readings and give the
person using the device an idea of the possible values. In the example case (Figure 2, right), the red
dot on the right hand side of the input field shows that a bad value has been given, and the user has
typed a descriptive comment on the matter in the Notes section (“The water flow was too low”). Figure
3 (left side) shows the same case with the properly inputted value.

The value ranges used to detect and show warning situations are configured on the management
web interface of the service. The ranges are numerical thresholds, which have either been calculated
based on earlier data (e.g. it may be known how much water is used on average on a daily basis), or
they may be based on physical limits (e.g. water consumption cannot be negative). The ranges can be
simple minimum and maximum values, which should not be exceeded (e.g. voltage should stay between
10 and 15 volts) or cumulative limits (e.g. water consumption should not exceed ten cubic meters per
day). The minimum and maximum values do not need previous values for accurate calculation of the
warning threshold. In the case of cumulative limits, at least one single previous value is required.
The previous values can be provided by the service when synchronizing the tag mappings and input
fields or they can be results from previous use of the software. The warnings are meant to help the
person typing the input values, and they are only “soft limits”, i.e. they can be overridden if required.
For example, it may be possible that a meter is giving an erroneous reading or for some reason much
higher consumption is occurring. In this case it may be required to input a value that is outside the
previously designated range. Inputting a value outside the range requires a confirmation from the
user, and it will automatically be detected by the system and will pop up as an erroneous value on the
management interface. It is also possible to generate an automatic notification, for example an email or
SMS alert to be sent when an erroneous value is detected by the service, but in practice the notification
will not be sent immediately if the data inputting process is performed in a location without network
connectivity.

3.1.3 Saving the Data. After the user has inputted the desired data, the Save values button can
be used to submit the results. The submit process may not necessarily start immediately. The values
are stored locally on the device and can be viewed at any time, but when the actual result submission
happens depends on the availability of the service. The client contains a background service which will
periodically try to submit any unsent information. In our use case, the measuring devices themselves
are located in an area of poor connectivity, but the users’ workplace contains areas where the results
can be submitted. The users generally carry the client device with them, thus allowing the automatic
submission of the results when a network connection has been established. If instantaneous submis-
sion is required, other approaches should be considered such as providing wireless access by using a
wireless router. The effects of periodic submit retries on battery life may vary. On one hand, turning
the wireless radio off, and turning it on only when required may improve the battery life of the de-
vice. On the other hand, if the availability of the network connectivity is unknown, it may be difficult
to establish the connection at timed intervals. In practice, many tablet and smart phone devices can

1:6 • J. Soini et al.

Fig. 3. Application screenshots: the left figure is the form view with data given by the user, the right figure asks for user
confirmation before saving the data.

sustain a battery life of a whole day using the default power saving settings, thus only requiring the
device to be charged when not needed, for example, outside working hours.

If the inputted values contain erroneous out-of-range values, a confirmation of values is required
before the data can be saved and sent. The confirmation dialog is illustrated in Figure 3 (right).

3.2 Viewing the Results

The system allows the user to examine the collected data quickly on the client application and more
thoroughly using the management user interface. Figure 4 illustrates the general idea of the different
views:

—simple chart view of the client application on the left
—more complete analysis chart of the management user interface on the right.

The rationale for limiting client application features is to keep it as simple as possible and therefore
to reduce the maintenance required for the application. It also helps to keep the device small enough for
carrying around and for entering data. Also, the employee typing in the data might be more interested
in seeing if the figures show any unexpected highs or lows, so he/she can react to the situation more
quickly.

Both charts in Figure 4 contain the same data (consumption of water; x-axis time; y-axis consump-
tion in cubic meters), but the view on the client application (Figure 4, left) is panned and zoomed in to
show data between June 2013 and August 2013. The browser view (Figure 4, right) displays all of the
data beginning from January 2012 and ending in May 2014. The upper chart shows the actual data
and the lower chart illustrates the calculated daily average consumption. Between the charts there
is a section with statistical information about the consumption. It shows the meter reading, date of
the reading, and also approximated daily, weekly, and monthly costs in euros (by using a predefined
average price per unit). The statistical information follows the pointer of the mouse so it is possible to
see the same data from any point of the chart.

A surge in water consumption can be seen during July 2013 with consumption peaking at 400 cubic
meters per day. This kind of information can be helpful for the maintenance team as it could be a sign
of a leakage somewhere in the system. Fortunately, the peak was due to a scheduled maintenance of

Prototype System for Improving Manually Collected Data Quality • 1:7

Fig. 4. Chart views as seen on mobile application (left) and on web browser (right).

the swimming pools. There are also many small consumption peaks and lows on the lower chart of
the browser view. This occurred because the data was imported from the handwritten notes without
exact time information. The collection time of the imported data is simply set at 12 noon, so it will
cause fluctuation if the meter was actually read in the morning or evening. In the future as the data
is collected directly to the system, the exact reading time can be stored, which will eliminate the
fluctuation caused by unknown meter reading times.

The data shown in Figure 4 has been imported into the system from the actual water consumption
data collected from the new public swimming pool located in the City of Pori. The facility has also been
recording the consumption of central heating and the consumption of electrical energy. As the data
comes from an actual facility, we had the opportunity to reflect on the consumption in terms of what
had really happened. The data can be broken down into the following sections (see Figure 4, right side):

(1) January 2012 – June 2012, (winter & spring season, average consumption)
(2) June 2012 – August 2012 (summer maintenance, low consumption)
(3) August 2012 – June 2013 (fall, winter & spring season, average consumption)
(4) June 2013 – August 2013 (summer maintenance, from low to high consumption)

—Contains a surge of water consumption due to pools being emptied, overhauled, and then refilled.
(5) August 2013 – May 2014 (fall, winter & spring season, average consumption)

The data has been recorded by pen-and-paper, but is now being stored directly on the electronic
database by using the system described in this paper. In fact, there are a lot of other digitally moni-
tored and configurable parameters in the new swimming pool facility, but these three gauges (water
consumption, central heating consumption and electrical energy consumption) are the only meters that
still require old-fashioned manual reading.

4. DISCUSSION

The efficiency of the system greatly depends on the defined value ranges. If it is not possible to define
clear ranges or the ranges remain vague, the possibility of error increases, and in this case the soft-
ware works only as a pen-paper-and-Excel replacement. In practice, based on user feedback, the most

1:8 • J. Soini et al.

common source of error was grossly mistyped numbers, caused by lengthy numeric values (e.g. when
writing down values it is easy to mix up 154763 and 157463, an error that can easily be detected by
the software).

The software is more suitable for use cases where the meters are not read very often, but do need to
be read manually periodically. If the meters need to be read continuously, for example several times a
day, it may be more advisable to invest in meters with an automatic monitoring and warning system
(if possible). On the other hand, if the meters are hardly ever checked, the basic pen-paper-and-Excel
approach may be more feasible, and the resources required for setting up the system can be saved.

Then why not change the remaining analog meters? The comments from the facility’s maintenance
workers were that if they routinely read the meters every day, they can simultaneously monitor the
condition of the nearby equipment and perform preventative maintenance if needed. Thus they can
complete several tasks at once. It also helps to get a better grasp of the facility as a whole as they can
see how much power or water is consumed daily.

5. SUMMARY

The paper presents a system for improving the quality of manually collected data. In many cases,
especially in the public sector, there are many different points where manually measurement data
collection is still practised. These situations usually relate to the monitoring of the operations of some
physical devices, such as energy-related consumption measurement. The system introduced assists
maintenance staff and also supports managers who are responsible for ensuring the correct operation
of the devices. This system is one step towards more reliable and thus better quality measurement
data, and it also improves the visual presentation of collected data for analysis. During the ongoing
study, the system features will be extended and adapted for the purpose of monitoring patient rooms
in the public sector health care environment.

REFERENCES

Xiaohui Cheng and Fanfan Shen. 2011. Design of the wireless sensor network communication terminal based on embedded
Linux. 2011 IEEE 2nd International Conference on Software Engineering and Service Science (July 2011), 598–601.

Klaus Finkenzeller. 2010. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency
Identification and Near-Field Communication (3rd ed.). Wiley.

ISO. 2008. ISO/IEC 14443, Identification cards – Contactless integrated circuit cards – Proximity cards.
ISO. 2013. ISO/IEC 18092:2013, Information technology – Telecommunications and information exchange between systems –

Near Field Communication – Interface and Protocol (NFCIP-1).
V Nainwal, P J Pramod, and S V Srikanth. 2011. Design and implementation of a remote surveillance and monitoring system

using Wireless Sensor Networks. In Electronics Computer Technology (ICECT), 2011 3rd International Conference on, Vol. 5.
186–189.

Jussi Nummela. 2010. Studies towards Utilizing Passive UHF RFID Technology in Paper Reel Supply Chains. Doctoral disser-
tation. Tampere University of Technology.

Jari Soini, Timo Widbom, Jari Leppäniemi, Petri Rantanen, and Pekka Sillberg. 2013. Pilot system for transport confirmation
with location awareness. In Symposium GIS Ostrava 2013 - Geoinformatics for City Transformation. Ostrava.

Tekes. 2014. Finnish Funding Agency for Technology and Innovation. (2014). http://www.tekes.fi/eng
Kailash Toshniwal and James M. Conrad. 2010. A web-based sensor monitoring system on a Linux-based single board computer

platform. Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon) (March 2010), 371–374.
Vladimir Vujović and Mirjana Maksimović. 2014. Raspberry Pi as a Wireless Sensor Node : Performances and Constraints. In

Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2014 37th International Convention
on. Opatija, 1247–1252.

P3
P U B L I C AT I O N I I I

Portable Sensor System for Reliable Condition Measurement
J. Soini, P. Sillberg, P. Rantanen, and J. Nummela

Proceedings of the 39th International Convention on Information and Communica-
tion Technology, Electronics and Microelectronics (MIPRO) 2016, pp. 1397–1402

doi: 10.1109/MIPRO.2016.7522320

Publication reprinted with the permission of the copyright holders

105

https://doi.org/10.1109/MIPRO.2016.7522320

Portable Sensor System for Reliable Condition

Measurement

J. Soini *, P. Sillberg *, P. Rantanen * and J. Nummela **

* Tampere University of Technology/Pori Department, Pori, Finland
** Riffid Oy, Rauma, Finland

jari.o.soini@tut.fi

Abstract – Regarding sustainable development, there is a

growing need to gather more and more various kinds of

measurement, space, and consumption information about

property. The necessity for property condition measurement

is apparent and the appropriate circumstances, such as

indoor air quality and suitable temperature, have an

essential influence on comfort and welfare at work and, at

the same time, have significance in terms of energy

efficiency. This paper presents a portable prototype system

for property condition measurement. The objective was to

generate a reliable system that improves the quality and also

the visual presentation of the collected data. The paper

presents the components of the system and the technology

utilized to implement the system. The results of piloting in a

real-life environment, where particular focus was placed on

both controlling energy efficiency and well-being at work,
are also presented.

I. INTRODUCTION

Nowadays there is a growing interest in the indoor air
condition of buildings, the operability of structure-
technical equipment and systems, as well as in energy
efficiency. Likewise, concerning sustainable development,
there is a growing need to receive more diverse
measuring, status, and consumption information on
properties. Indoor air quality and temperature have an
essential influence on working and living conditions. With
condition measurement, fulfillment of condition
objectives can be better ensured and possible anomalies
can be detected early on. Companies in charge of the
construction and maintenance of properties (and an
increasing amount of private households and housing
companies as well) profit from condition measurement in
their activity. Property condition measurement offers the
following benefits:

• energy conservation

• real-time consumption and status control

• improvement of working conditions

• malfunction management

• reliable history information of property behavior

• verification of the functionality of property
automation

• alert notification.

In future, the need to receive more diverse measuring
and status/freeze frame data on properties will grow.
Measurement produces data that can be used, for example,
to monitor consumption and circumstances for predictive
maintenance purposes, or for the purposes of property
automation. It is crucial to ensure that measurement
systems work continuously and flawlessly, or if problems
arise, the problem areas can be easily identified so that the
necessary adjustments and possible corrective actions can
be carried out. This paper presents one solution for this
purpose - a portable prototype system for reliable
condition measurement. The system developed facilitates
the maintenance staff’s work in detecting possible
anomalous condition situations in properties.

Related research in this area has been conducted, for
example, by Leong et al. [1] who have studied a Near
Field Communication (NFC) and Bluetooth bridge system
for connecting Bluetooth-enabled mobile devices to NFC-
enabled consumer services. Ihasalo [2] has presented a
tool for the construction and evaluation of continuous
building performance measurement. Banerjee et al. [3]
concentrate on the security aspects of sensors that collect
sensitive or private data. Saari et al. [4] studied on
collecting data from a sensor packet which was connected
by wire directly to a single board computer. This was
made by using embedded Linux and BeagleBone Black
hardware, which is similar credit card–sized single-board
computer as Raspberry Pi. The focus of that research was
to collect data and to serve it over the Internet. Toshniwal
et al. [5] have introduced a network-based sensor
monitoring system that is portable for various
applications. Voinescu et al. [6] describe in their research
a USB device, which can be used as a wireless network
gateway between ZigBee sensor nodes. These are some
examples of studies related to this theme.

The structure of the paper is as follows: Section 2
represents the basis and the starting point of the system
development work as well as briefly introduces the sensor
technology utilized. Section 3 describes the architecture of
our prototype system, data collection process, and the user
interface for the graphical representation of collected data.
Finally, section 4 summarizes the paper.

II. BACKGROUND – CASE: PORI HEALTH CARE

CENTER

This case study was a part of the KiiauData (Smart
analysis of property systems data, 2013-2015) project

MIPRO 2016/CTS 1397

funded by TEKES [7], where one of the main aims was to
study potential new technologies for managing and
controlling circumstances in buildings in a smart way.
This case study is one example of the technology pilots
carried out during the research project. This technology
pilot - a portable sensor system - was developed as a
collaboration project between Tampere University
Technology (TUT) and the City of Pori. For this research
case, the 5-storey hospital building of the City of Pori
main health center was selected, which had undergone an
extensive renovation, completed in the fall of 2014. The
owners, i.e., the City of Pori, were particularly interested
in identifying whether the property automation updated at
the same time was functioning properly.

The research objective set was to implement a sensor
system that would enable the flexible collection of the
most reliable measurement data possible on changes in the
conditions of the premises (rooms) and present the results
in the clearest and most illustrative form possible. The
research began by mapping out all the potential
technologies for identifying changes in room conditions.
In this case, the research was restricted to monitoring
temperature and humidity data. An additional starting
point for the system was that it should be transferable
from one point to another, and scalable (addition of
sensors) at a later date. Also, there was plenty of
discussion on an appropriate measurement results
presentation tool and methods from the aspect of
analyzing and interpreting the collected data.

At the beginning of the case study, the sensor
technology to be utilized in the system was selected. As a
result of the specification and design stage, it was decided
to build the system using RFID/NFC sensors. Considering
the technical aspect of living conditions monitoring sensor
networks, the application can be divided into three parts:
1) measuring the data, 2) transferring the data from the
sensors to the service and 3) processing the data in the
service. For part 2), one emerging approach for
transferring data from sensors is NFC [8] or RFID (Radio
Frequency Identification) technology [9], which was also
utilized in this study.

Using RFID or NFC to gather data from sensors
enables users to utilize a simple existing method for
wireless data transfer, and thus develop scalable and cost
efficient applications and solutions. NFC complements
several widely used consumer level wireless technologies,
by utilizing the key elements in existing standards for
contactless card technology (ISO/IEC 14443 A&B and
JIS-X 6319-4) and also enabling devices to share
information at a distance of less than 4 centimeters with a
maximum communication speed of 424 kbps. [10].
Choosing NFC as a communication method also reduces
the energy requirement on the sensor side. All the energy
needed for data communication will be received from the
NFC reader, so the sensor battery capacity can be better
utilized for data collection. This makes more frequent
sampling possible while still maintaining long operation
periods and lower maintenance requirements.

III. SENSOR SYSTEM IMPLEMENTATION

This chapter describes the implementation of the
sensor system. First, the architecture of the system is
described and then the selected sensor type and the data
collection process. Finally, we introduce the user interface
for the graphical representation of the collected data.

A. System Overview

Fig. 1 shows an overview of the system. The Service is
available over the Internet where both the Web User
Interface and Data Collection application can be
connected. The service uses JavaScript Object Notation
(JSON) to transmit data objects and has two
REpresentational State Transfer (REST) interfaces, one
for receiving the gauge data and the other for posting the
data. The web user interface is a JavaScript-based web
page accessible with a web browser. Here, the NFC tag
collects the data independently, and maintenance staff is
able to periodically transfer the collected data from the
tag.

Figure 1. System overview.

Using the web interface, the collected data can be
viewed embedded on a location map, plotted on a chart, or
downloaded as raw data (as a comma-separated value file,
CSV) for use with, for example, a spreadsheet application
such as Microsoft Excel. A separate web page exists for
system administrators for inserting new tag locations and
uploading new data collected from the tags. In a practical
use case, the tag locations are very rarely changed, and the
web interface is generally used only for observing the tag
data. Uploading new data is a relatively simple operation,
in which the administrator uses the web browser to upload
the log file transferred from the tag.

B. Sensors and Data Collection

The study began with a survey of the sensor types
suitable for the purpose. As a result, 14 sensor types were
found that could be adapted for the planned application.
The key selection criterion was the customization
capability of the sensors (e.g. code), as this feature ruled
out most of the sensors found. The NFC-capable sensor
KT-255F [11], which can store up to 16000 data points in
its non-volatile memory, was chosen for this project. The
device is shown on the left of Fig. 2 (below). It would also
have been possible to buy the sensors separately and use a
microcontroller or a single-board computer (for example,
BeagleBone Black [12] or Raspberry Pi [13]) to
implement an open source sensor device. In our case,
temperature and humidity measurements were required
and thus, a simple commercial device was a simpler and

1398 MIPRO 2016/CTS

easier solution. A proprietary device brings certain
disadvantages when compared to a more open platform,
such as dependency on the manufacturer’s software and
support and possible difficulties on moving from one
manufacturer to another in the future, or making
modifications to the existing hardware. The KT-255F
sensor uses the FeliCa standard [14] in combination with a
proprietary encrypted data format, which makes it difficult
to read the tag using other than manufacturer certified
reader software. Also, the encryption is not signed with a
unique key, so the data can be read as long as you have
the manufacturer’s software and a FeliCa capable reader
device, making encryption somewhat irrelevant. The data
cannot be modified using an external reader, but the
sensor can be reset to the default values. In practice, this
means that any user with a suitable reader can read the
data or reset the tag, but the user cannot insert malicious
data. In our use case, this is not a major concern, as the
tags are located in a public place (a hospital). The
collected data, even though it is not published, is public,
and in theory, you could gather the same data by simply
walking around the building with a temperature meter in
your hand. In addition, the data is used only for illustrating
an overview of the conditions inside public areas, and
accessing critical areas of the building requires privileged
access, making tampering with the tags very difficult.

In our use case, however, the advantages outweigh any
possible disadvantages. The tag device is in many areas
situated in a publicly visible location, making a finalized
product a more appropriate solution. The chosen
commercial device is of sturdier build and is not as easily
damaged if accidentally hit or dropped as a self-made
sensor system would be. As an added benefit, the tag
contains an LCD screen, which shows the current
temperature, which according to the patients and the
hospital staff was a nice feature, although not the most
crucial part of the system.

Reading the tags is performed using a laptop with an
external NFC tag reader and reader software. The software
is capable of generating a PDF document with histograms
and data values. The PDF format is unnecessarily difficult
to convert to a format transferable to a database, and all
the same graphs and charts can be generated by any other
software, such as the web interface described in this paper.
For that reason, it is much easier to collect the raw data
only, which contains a comma-separated list of the values
and their timestamps, and an ID unique to each tag, which
can be used to detect automatically which tag was read.
The data is automatically parsed by the service, and
timestamps are compared to ensure the coherence of the
data, and more specifically, to remove any duplicates in
case the log files contain previously uploaded results.
After the upload, the values are also checked for validity
against a preset range of acceptable values (e.g., the
temperature should be between 21 and 24 degrees
Celsius). If a value is outside the range, an alert
notification is automatically generated and shown in the
web interface.

To summarize, for the sake of simplicity, the software
is used to read the data log file, which is then uploaded by
the system administrator or service personnel to the
service using the administration web page. After the

upload, the data will be immediately visible on the web
interface. No other action is required, and the operation
takes one to five minutes per tag, depending on the
amount of data. The battery life of a tag is about two
years, but the memory of the tag can contain only a
limited amount of measurements. In our case, the tag
sensors measure the temperature and humidity every 15
minutes, which fills the available memory in about five
months. In practice, the measurements would be read
more often than every five months, preferably once per
month or even every two weeks for relatively up-to-date
data. It should be noted that in this case, the data is used
only for statistical and analytical purposes, i.e.,
verification of the property automation functionality, and
there is no requirement for real-time data collection.

Figure 2. KT-255F Sensor and GoSense TH-Stat ID sensor.

In addition to the chosen sensor model KT-255F, other
types were also sourced. Fig. 2 (right) presents another
suitable option. However, this sensor, type name:
GoSense TH-Stat ID NFC Temp & Humidity Sensor [15],
varies clearly from the selected model, since it is not a
ready-made commercial model nor is there any software
available for configuring, controlling, and data handling.
In some situations this can also be a benefit, since all data
interfaces are open and specifications are freely available,
which makes it possible to use this sensor in a wider area
of applications. This sensor uses the standard ISO15693
air-interface for communication, which gives more
flexibility in choosing the reader device compared to
FeliCa, and can store up to 1 Mb measurement data. When
considering this pilot study and its proof-of-concept type
goals, using this sensor would have required considerably
more effort in software development, which favored the
use of the chosen KT-255F sensor.

When considering this application (living environment
monitoring), it can naturally be carried out in different
ways. One typical solution would be installing the
necessary monitoring sensors permanently to the space
under monitoring, and transfer measurement data through
wires to the monitoring server. However, this approach
requires more installation and cabling work than wireless
options. The traditional way to utilize wireless data
collection is to use radio links to transfer data, but then the
battery life of the sensors may become an issue. The
selected approach, using battery-powered data loggers and
standardized NFC technology to deliver data from the
sensors, makes it possible for sensors to gather a large

MIPRO 2016/CTS 1399

amount of data with high sample frequency and still keep
the battery lifetime around two years, which is more than
enough for this application. Along with this chosen
architecture, the entire measuring system can be
considered portable, as it can easily be taken to other
locations for subsequent measuring periods.

C. Web User Interface and Visualization

The user interface is intended for the graphical
representation of collected data. In addition to this, a
meter location view was created to enable a quick
overview of the collected data. This view is shown in Fig.
3. The web application supports internationalization (i18n)
features but the data itself is not translated; it includes the
names of the locations and the meters. The meter location
view consists of the following sections:

• Top panel, which lists all the locations available
for the authenticated user.

• Main view displaying locations and meters.

• Meter statistics, which can be seen when the
cursor is moved on top of a meter marker. Fig. 4
illustrates the meter statistics window.

• Bottom toolbar with buttons Show meters and
Clear selections.

The meter location view can show any kind of image
and draw meters on top of it. The testing phase of the
system consisted of installing sensors in the newly
renovated facilities of the main health center of the City of
Pori, mapping the sensor locations to floor plans, and
finally defining acceptable boundaries for room
temperature and relative humidity. In the event that the
recorded data is outside the limits, an exclamation point
will appear inside the corresponding meter marker. This
tool can help the pinpointing of issues that occur in a
certain room or floor.

Fig. 3 and Fig. 4 show floor plans of the main health
center. The health center underwent extensive renovation
work, and it was decided that collection of room
temperature and humidity data was needed in order to
verify a comfortable indoor environment. There are a total
of 32 active sensors in this building, eight (8) for each
floor, with a sampling period of 15 minutes.

Fig. 4 shows a close-up screenshot of a floor plan with
an alert window opened. This alert appears in room
number 24 on the third floor of the building (3. Kerros
Huone 24). The window reports that both the humidity (8
% relative humidity) and the temperature have been too
low (20.2 degrees Celsius), compared to the set limits.
Other information displayed in the window is the average
and standard deviation of all measured data types.

Figure 3. Meter locations overview.

The collected data can also be displayed in a chart
view. The user may choose to show data from only one
meter by double clicking the desired meter marker, or
multiple meters can be shown by clicking any amount of
meter markers, and then clicking Show meters (shown in
Fig. 3). Fig. 5 (below) is a screenshot of a chart data view
from the second floor lobby (2. Kerros Aula).

Figure 4. Close-up of floor plan with an alert window.

The upper chart zooms into the latest two weeks by
default. The chart has options for zooming and panning
for navigating through the data. The smaller chart on the
bottom shows the overview of all collected data points.
The chart can also be used for navigating through the data
by selecting the desired range of dates.

1400 MIPRO 2016/CTS

Figure 5. Meter value chart.

The example chart (Fig. 5) shows temperature
(Lämpötila, higher line) in yellow and relative humidity
(Kosteus, lower line) in blue. The chart can also draw the
preferred zone for the temperature; here it has been
defined as between 21 and 24 degrees Celsius. The cursor
can be used to track the exact sensor value at a specific
time and date shown in the tooltip. The Return button on
the bottom toolbar can be used to go back to the list of
locations view.

This prototype system has been in operation at the City
of Pori main health care center since the fall of 2014. The
primary goal of the system is to monitor the indoor
conditions of the property and any changes that may occur
over a long period of time. The health care center is under
a large renovation project with an adjacent hospital
building currently under construction. When the new
construction project is complete, the sensor system will
also be installed in the new location. The system can assist
in detecting changes in the living and working conditions
in both buildings during the renovation period, and after
the projects are complete.

IV. SUMMARY AND FUTURE RESEARCH

The paper presented a flexible and reliable prototype
application for verifying changes in conditions inside a
property and presents the measurement data collected to
the system user in a clear manner. The portable condition
measurement system makes it possible to reliably monitor
and check the functionality of the property automation
system at the renovated pilot target (main health center).
The system introduced assists maintenance staff and also
supports managers who are responsible for ensuring the
correct operation of the devices. This system is one step
toward more reliable measurement data, and it also
improves the visual presentation of collected condition
data for analysis. The portable, RFID-based, measurement
sensor business is only just taking off globally.
Conventional measurement sensors are still dominant, but

in the near future both small- and low-current sensors will
have a clear place on the market. In the future, the focus
will be on studying how this technology can be applied to
the packet transfer business. This technology does not
need any wiring; sensors are easy to move and are easy to
locate in terms of size and weight in different kinds of
transfer packets. This is our next topic related to the
sensor network research theme.

REFERENCES

[1] C.Y. Leong, K.C. Ong, K.K. Tan, O.P. Gan, “Near Field
Communication and Bluetooth Bridge System for Mobile

Commerce”, IEEE International Conference on Mobile
Commerce, Industrial Informatics, pp. 50-55. August 16-18, 2006.

[2] H. Ihasalo, “Transforming building automation data into building

performance metrics - design, implementation and evaluation of
use of a performance monitoring and management system”, Aalto

University publication series Doctoral Dissertations, 26/2012,
ISBN 978-952-60-4540-5 (electronic).

[3] S. Banerjee, D. Sethia, T. Mittal, U. Arora, and A. Chauhan,

“Secure sensor node with Raspberry Pi,” Impact-2013, pp. 26–30,
November 2013.

[4] M. Saari, P. Sillberg, P. Rantanen, J. Soini, and H. Fukai, “Data

collector service - practical approach with embedded linux”. In
2015 38th International Convention on Information and

Communication Technology, Electronics and Microelectronics
(MIPRO), pp. 1037–1041, 2015.

[5] K. Toshniwal, and J. M. Conrad, “A web-based sensor monitoring

system on a Linux-based single board computer platform,”
Proceedings of the IEEE SoutheastCon 2010, pp. 371–374, March

2010.

[6] A. Voinescu, D. Tudose, and D. Dragomir, “A lightweight,

versatile gateway platform for wireless sensor networks,” In
Networking in Education and Research, RoEduNet International

Conference 12th Edition, pp. 1–4, September 2013.

[7] Finnish Funding Agency for Technology and Innovation, Tekes,
http://www.tekes.fi/en. (retrieved November 6, 2015)

[8] International Organization for Standardization. ISO/IEC

18092:2013, Information technology -- Telecommunications and
information exchange between systems -- Near Field

Communication -- Interface and Protocol (NFCIP-1).

MIPRO 2016/CTS 1401

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.h

tm?csnumber=56692 (retrieved November 6, 2015)

[9] Finkenzeller Klaus. RFID Handbook: Radio-frequency
identification fundamentals and applications, Wiley, 1999.

[10] NFC Forum, What is NFC?, http://nfc-forum.org/what-is-nfc/

(retrieved November 6, 2015)

[11] Fujita Electric Works Ltd, KT-255F Specifications (Japanese),
http://f-log.jp/?p=117 (retrieved November 6, 2015)

[12] G. Coley, BeagleBone Black System Reference Manual. 2014.

[13] V. Vujović, and M. Maksimović, “Raspberry Pi as a wireless

sensor node: performances and constraints,” 37th International
Convention on Information and Communication Technology,

Electronics and Microelectronics (MIPRO), pp. 1247–1252, 2014.

[14] Sony Corporation, FeliCa Card User’s Manual,
http://www.sony.net/Products/felica/business/tech-support/

data/card_usersmanual_2.0.pdf (retrieved November 6, 2015)

[15] GoSense Wireless Ltd, 20TH-StatID Datasheet,
http://www.gosense-wireless.com/GoSense%20TH-

StatID%20DS%20Rev1.pdf (retrieved November 6, 2015)

1402 MIPRO 2016/CTS

P4
P U B L I C AT I O N I V

Web-User-Interface System Utilizing rHMEI and Open Data for a
Water Quality Analyzer
P. Sillberg, C. Veesommai, J. Soini, and H. Jaakkola

Information Modelling and Knowledge Bases XXIX 2018, pp. 420–428

doi: 10.3233/978-1-61499-834-1-420

Publication reprinted with the permission of the copyright holders

113

https://doi.org/10.3233/978-1-61499-834-1-420

Web-User-Interface System Utilizing
rHMEI and Open Data for a Water

Quality Analyzer

Pekka SILLBERG a,1, Chalisa VEESOMMAI b, Jari SOINI a and
Hannu JAAKKOLA a

a Tampere University of Technology, Pori Department, Finland
bKeio University, Graduate School of Media and Governance, Japan

Abstract. A clean environment is often taken for granted, but when a river or a lake
becomes polluted, it might be hard for the general public to verify the condition. A
simple visualization tool for checking the condition of water could help to inform
the public and help to increase environmental awareness. With the emergence of
Open Data and other openly available data sources, it is possible to create new and
innovative applications. In this paper we present a web-based tool for reviewing
the quality of water by applying the River Heavy Metal Evaluation Index (rHMEI)
method together with open data on water quality in Finland.

Keywords. Visualization, Open Data, rHMEI, User Interface

1. Introduction

There is a saying that Finland is the land of a thousand lakes, although in fact there are
187 888 lakes larger than 500 square meters [1]. The value given to the protection of
clean water is reflected by being a national concern in Finland [22], and continues to hold
great interest for the Finnish public. When a web-based tool called Vesikartta2 (literally
water map in English) was published in 2016 for the public to review the condition of
Finnish lakes and rives, it received 83 000 visits in one day [2]. In Finland, the current
classification system emphasizes the ecological state of water areas, including several
biological parameters such as fish populations, phytoplankton and aquatic vegetation.
However, the quality of water is an essential component in the well-being and living
conditions of biological organisms, thus monitoring of the water quality in lakes and
rivers remains important. [3]

Water resource contamination by toxic substances is increasing, and is a cause of
major concern to local people [4][5]. Several human activities may cause heavy metals
to spread into ground water resources such as processing of metals, mining, discharge
of agricultural waste, discharge of industrial waste, and use of pesticides containing

1Corresponding Author: Pekka Sillberg, Tampere University of Technology, Pori department, PO Box 300,
FI-28101 Pori, Finland; E-mail: pekka.sillberg@tut.fi.

2http://paikkatieto.ymparisto.fi/vesikartta

compounds of heavy metals. [6][7] Concentrations of heavy metals exceeding a certain
threshold level may affect the food chain and cause damage in aquatic organisms or to
an industrial process. Safe levels of heavy metal concentrations in water are generally
well established (e.g. [8][9][10]), but the synergistic effect of multiple heavy metals may
affect the toxicity [11], and [9] remarks that the synergic effects of metals must be taken
into consideration.

The River Heavy Metal Evaluation Index (rHMEI) is an environmental index that
aggregates and rates the influence of each individual heavy metal parameter. It is a flexi-
ble tool for calculating and classifying water quality in a water resource in terms of heavy
metals. The rHMEI can present the results of the environmental situation in terms of
several heavy metal parameters and type of target category, such as irrigation or aquatic
life. The index is also compared with six other methods. [12]

In this paper we present a web-based tool for reviewing the quality of water by
applying the rHMEI method to an openly available data set. The algorithm to calculate
the water-quality index is based on the findings of [12], and is the first implementation
of rHMEI on an interactive web site. The open data set contains the physico-chemical
determination values of water samples and is a repository of systematically collected
data from various locations in Finland since the beginning of the 1960s.

The contents of this paper are as follows. Section 2 explains the background of the
study; Section 3 describes the technical aspects of the implemented prototype applica-
tion, explains the features of the user interface and presents a case study done with the
prototype; finally, Section 4 concludes the paper and lists possible directions for future
research.

2. Background

Visualization of data in a meaningful way is becoming more and more important as
the amount of data increases. A good visualization also helps the user of the data to
interpret it more easily. With visualization, more useful knowledge can be extracted from
data. Visualizations of data allow the user to gain insight into the data and come up
with new hypotheses and research questions about the phenomena behind the data. The
analysis of Big Data, and especially Open Data from public administration may provide
interesting and innovative solutions. Open resources such as Open Data can be seen
as enablers for new applications [13] and it is expected to have at least the following
advantages [14][15][16][17][18]: new jobs, new companies, new services and products,
improved innovations, improved governance, more efficient use of the information, and
even improved democracy. Concern about personal privacy related to openly available
data has been raised [19], but environmental data—such as the data involved in this
study—typically does not contain information that would breach anyone’s privacy, so in
that respect it would be safe to use this data.

Cyber-Physical Systems (CPSs) represent a new generation of digital systems where
cyber entities and physical devices cooperate towards a set of common goals. [20] The
CPS aims to be a complete solution, in order to integrate the dynamics of the changing
environment in physical space, and dynamics among computers and networking in cyber
space. [21] It is expected that the CPS will be used for the design and development of
future environmental monitoring systems. In the use case of environmental monitoring,

the CPS can provide a solution for gathering, analyzing, and visualizing data from any
device connected to the Internet. [22]

The prototype application is loosely based on the CPS concept by utilizing Open
Data sources for data collection, the rHMEI [12] water quality evaluation method for
analysis of data, and HTML5 web technologies for visualization. Our focus is on the
visualization step which binds the results of physical and cyber spaces together. The
result from physical space is the collected raw sensor data—in our case the Open Data
provided by the Finnish Environment Institute—and the result from cyber space is the
processed and evaluated environmental information. The result of the visualization step is
an attempt to create an example solution based on Open Data in a way that can benefit the
potential end users and the owner/publisher of the data. It is also an effort to disseminate
the results of scientific research to non-specialist users.

How to increase public’s awareness of environmental matters? It is suggested that
the use of mobile technologies in education helps increasing students’ awareness [23].
Furthermore, increasing environmental awareness with a computer application can be
seen as a research problem in the field of human-computer interaction (HCI). While this
topic is not assessed in this article, it could prove to be a fruitful method for studying
whether the prototype application has effect on the user’s environmental awareness or
not. An approach of problem-solving in HCI research is given in [24] where they claim
that it consists of three different problem types (empirical, conceptual, and constructive),
and that the validity and reliability of the research can be evaluated by five criteria (sig-
nificance, effectiveness, efficiency, transfer, and confidence).

3. Prototype Application

The prototype application for reviewing the quality of water is implemented as a HTML5
web page utilizing JavaScript for interactive features. The goal of the prototype is to
provide an easy-to-access and a simple user interface with a minimal amount of config-
urable options. A simple classification (safe or toxic) for different categories should be
clear enough for a user to determine the water quality. The application can be seen as an
improvement over spreadsheets as it can speed up the analysis of the data by skipping an
export and import phase completely.

3.1. Implementation

The web page follows single-page application design, and relies on client side processing
for user interactions and external services for data retrieval. The data is loaded by using
the asynchronous JavaScript and XML (AJAX) technique together with jQuery and
tabulator.js libraries to produce interactive tables. The website requires the web
browser to support at least ECMAScript 2015 (ES6). Although most of the code still uses
the older JavaScript syntax, ES6 has a large number of useful improvements and new
features [25] compared to the previous version.

The PIVET API3—the source of the Open Data utilized in the application—is based
on Open Data Protocol (OData) version 3.0, which enables the use of RESTful calls to
query data. From the API, we firstly needed to retrieve a list of sampling locations in a

3PIVET APIv2.0: http://rajapinnat.ymparisto.fi/api/vesla/2.0/

specified area, and secondly the actual data of the selected sampling location. In total,
two different OData method calls are used by the application.

The list of sampling locations was acquired by calling the method Paikka on the
OData API, and using Finnish municipalities4 as a filter. A numerical identifier is given
for each municipality, for example number 609 corresponds to Pori, and number 837
corresponds to Tampere. The identifier only changes if the municipality is disbanded,
divided, or consolidated with another. The identifier is widely used in public administra-
tion data systems in Finland, and due to its static nature it is useful in all kinds of ap-
plications where municipalities need to be managed. Finally, the list of result entities is
retrieved by calling the method Result_Wide and by using the desired location entity
as a filtering parameter.

3.2. User Interface

Figure 1 shows a screenshot of the web page after completion of loading and rendering.
The user may control the following aspects of the data to be retrieved: selection of mu-
nicipality, selection of desired water area (i.e. sampling location, see Figure 2), selection
of starting and ending date, and an option to filter out all values that are deemed safe (i.e.
showing only the hazardous values, see Figure 4).

Figure 1. Screenshot of the initial view of the web page.

The table seen in Figure 1 contains the following columns: ID is the identifier of
a sample used in the original dataset; Time Stamp shows the time when the sam-
ple was collected; Category Name explains what domain this information relates
to; Classification indicates the meaning of the rHMEI value in plain language;
rHMEI Value is the evaluated index value of the sample for the corresponding cat-
egory; Available Parameter Count indicates the aggregate of suitable ana-
lytes found in the corresponding sample; Expected Parameter Count indicates
the count of analytes that may be used for calculation of the corresponding category;
Available / Expected (%) is simply the percentage figure of the two former
columns.

To use the web page, the first step is to select one of the municipalities from the first
drop-down menu. This menu simply contains a static list of active Finnish municipalities.
By making this selection now, the user can filter out most of the unrelated water areas
seen in the next step.

4List of Finnish municipalities in 2016: http://tilastokeskus.fi/meta/luokitukset/kunta/001-2016/ (in Finnish)

In the second step, after the user has selected the municipality, the list of water
areas contained in the corresponding municipality is retrieved. In Figure 2, the selected
municipality is Pori, and several sampling locations are shown in the selection list. The
name of the water area might also be an acronym or contain more detailed information
defined by the maintainer of the data, thus these names cannot be accurately translated.
In this example, the water sampling location Eteläjoki tie 272 mts is selected.
Each location is also associated with coordinate information, which enables the software
to embed a map, or generate a corresponding link to any of the popular mapping web
sites.

Figure 2. Screenshot of the list containing available water areas in the selected municipality.

The third and last step before retrieving and processing the data is to select the
starting and ending date of the dataset. Some of the observation stations may contain
data from the beginning of the 1960s, so it might be useful to limit the amount of data
retrieved to the latest data only. This is just the default behavior of the web page, so users
can retrieve the data from the beginning if they choose to do so. Once the user is ready,
the data can be retrieved and processed by clicking the Start button.

Figure 3. Screenshot of the unfiltered results table.

The Selected area field is updated with corresponding information after click-
ing the Start button. This field also includes a link to this location using Google
Maps. The data is retrieved from the server, and is then processed for visualization. Fig-
ures 3 and 4 show two different views of the same data, unfiltered and filtered views,
respectively. Filtering hides all values that are below the threshold level, thus it may help
to spot occasional values deemed hazardous. The hazardous values may have a different
background color (e.g. red) in order to differentiate them from the safe values.

Figure 4. Screenshot of the filtered results table.

Each sample (a collection of water quality parameters) is swept in order to find
the heavy metal analytes we are interested in. The values of these parameters are
then processed against each pre-defined category. There are five different categories
(Aquatic Life, Estuary Harbour Basin, Industrial, Irrigation and
Livestock/Wildlife), and each of these contains a different set of heavy metal
analytes and coefficients for producing the rHMEI value [12]. As the formula for cal-
culating the rHMEI value is additive, the threshold value may be exceeded even if only
one—sufficiently toxic—analyte is found from the sample data (for example, see rows
with ID 2802633 in Figure 3). If more suitable analytes are available, the borderline
cases may become more evident.

3.3. Case Study: Water Quality in Pori

We conducted an analysis of water resources in the municipality of Pori with the pro-
totype application in order to find out what kind of information a regular user could be
able to extract. The test was segmented into three time periods: 2010–2012 (3 years),
2013–2014 (2 years) and 2015–2016 (about 1 1

2 years as the database was last updated on
the second quarter of the year 2016). There are 389 stations in the municipality of Pori
and 84 of them had at least one measurement in the time frame of from 2010 to 2016.
Table 1 summarizes the findings of each segment.

Table 1. Information from the municipality of Pori by means of the prototype application. Values indicate the
number of stations.

Segment I Segment II Segment III
Station Information 2010–2012 2013–2014 2015–2016

Stations including data 70 67 48
Stations not including heavy metal analytes 14 14 10
Stations not exceeding any threshold* 21 27 19
Stations with an exceeding threshold* 35 26 19

Categories where the threshold is exceeded

Aquatic Life 32 24 19
Irrigation 28 21 16
Livestock/Wildlife 25 18 16
Industrial 6 3 0
Estuary Harbour Basin 3 0 0
* excludes stations that did not include heavy metal analytes.

Approximately one-fifth (20–21 %) of the stations do not include heavy metal an-
alytes and it has remained steady on all segments. In the Segment I, the percentage of
completely safe stations (not including the stations without the measurements of heavy
metal analytes) is 30 percent, while Segments II and III are at 40 percent. The remainder
(Segments I, II and III; 50 %, 39 %, and 40 %, respectively) belongs to the stations that
had at least one rHMEI value that was toxic. The amount of stations with an exceed-
ing threshold per category appears to be at five to ten percentage point decline in each
category. The reason for the decline cannot be interpreted from this data alone, so more
knowledge of the surrounding environment will be needed.

The prototype application tells the number of the heavy metal analytes found, but
it does not indicate which were found nor what is their significance to the calculated
rHMEI value. The average count of available parameters was also recorded during the
test. In the majority of the measurements, there was one out of nine (19) possible heavy
metal analytes available (Segments I, II, and III; 70 %, 49 %, and 74 %, respectively).
The second most common occurrence was seven out of nine (79) possible analytes, while
the highest number of analytes was eight out of nine (89) which appeared in only one
measurement.

4. Conclusion and Future Work

There is a lot of openly available data gathered by the public administration, at least in
Finland, but the utilization of the data, such as visualizations and other applications, lags
behind. Presenting the processed data in an intuitive and easily understandable way could
make the service very popular and interesting for the public. In this paper we presented
a tangible example of producing a simple user interface to review water quality by pro-
cessing the water sample data collected in Finland. Currently, the prototype application
is not targeted at any specific user group, and serves the needs of the authors as a veri-
fication tool. A user study should be carried out to test the usability and applicability of
the prototype and to determine the users’ interest in environmental matters.

As it was noted in Section 3.3, the application does not inform the user about which
heavy metal analytes were used and what was their relative contribution to the calcula-
tion of rHMEI value. This should be included to provide more complete information. For
further development ideas for the prototype application, the improvement of the look and
feel and the addition of an interactive map of the corresponding measurement location
were considered. For each location, the map could show an emoticon (e.g. happy, neutral,
or sad) for each of the selected category (for example Aquatic Life) according to
the analysis of the available data set. Extension of other fields, such as the quality of air,
would complement the user’s awareness of local environmental information. In addition,
it would be interesting if it were possible to crowdsource the collection of water quality
parameters. To implement this, it would be necessary to create a suitable back-end ser-
vice for storing and validating the data. Improvements to the rHMEI method, categories,
and coefficients can also be introduced into the application to make the provided infor-
mation more accurate. It might also be useful to provide a summary of data (as seen on
Table 1) to the user, as well as comparison between desired locations or between different
time periods.

Acknowledgements

The research was made possible by the excellent and long-lasting co-operation between
Tampere University of Technology, Pori Department (TUT Pori, Finland) and Keio Uni-
versity Shonan Fujisawa Campus (Keio SFC, Japan), and the jointly organized researcher
exchange in the summer of 2016. The researcher exchange was supported partially by
MEXT Grant-in-Aid for the Program for Leading Graduate School Graduate School of
Media and Governance, and by the Global Environmental System Leaders (GESL) pro-
gram, Keio University.

References

[1] H. Haarmann, Modern Finland: Portrait of a Flourishing Society. McFarland, Incorporated Publishers,
2016.

[2] Yle, “Vesien kuntokartan suosio räjähti - jopa 70 000 käyntiä tunnissa (in Finnish) [The popularity of the
condition map of water areas skyrocketed - up to 70 000 visits per hour (title translated into English)].”
http://yle.fi/uutiset/3-8878981, May 2016. Accessed December 23, 2016.

[3] The Water Protection Association of the River Kokemäenjoki, “Järvet ja joet (in Finnish) [Lakes and
Rivers (title translated to English)].” http://kvvy.fi/?p=2495, November 2015. Accessed January 31,
2017.

[4] J. Duruibe, M. Ogwuegbu, and J. Egwurugwu, “Heavy metal pollution and human biotoxic effects,”
International Journal of Physical Sciences, vol. 2, no. 5, pp. 112–118, 2007.

[5] F. Xu, Z. Liu, Y. Cao, L. Qiu, J. Feng, F. Xu, and X. Tian, “Assessment of heavy metal contamination
in urban river sediments in the Jiaozhou Bay catchment, Qingdao, China,” CATENA, vol. 150, pp. 9–16,
2017.

[6] M. Hosseinpour, G. Lashkaripour, and P. Dehghan, “Assessing the effect of heavy metal concentrations
(Fe, Pb, Zn, Ni, Cd, As, Cu, Cr) on the quality of adjacent groundwater resources of Khorasan steel
complex,” International Journal of Plant, Animal and Environmental Sciences, vol. 4, 2014.

[7] M. Sankhla, M. Kumari, M. Nandan, R. Kumar, and P. Agrawal, “Heavy metals contamination in water
and their hazardous effect on human health-a review,” International Journal of Current Microbiology
and Applied Sciences, vol. 5, no. 10, pp. 759–766, 2016.

[8] World Health Organization, “Guidelines for drinking-water quality, fourth edition,” Standard, World
Health Organization, 2011.

[9] Environmental Protection Agency, “Parameters of Water Quality – Interpretation and Standards,” Stan-
dard, Environmental Protection Agency, 2001.

[10] P. Tchounwou, C. Yedjou, A. Patlolla, and D. Sutton, “Heavy metal toxicity and the environment,” in
Molecular, clinical and environmental toxicology, pp. 133–164, Springer, 2012.

[11] C. Jayasumana, S. Gunatilake, and S. Siribaddana, “Simultaneous exposure to multiple heavy metals
and glyphosate may contribute to Sri Lankan agricultural nephropathy,” BMC Nephrology, vol. 16, no. 1,
p. 103, 2015.

[12] C. Veesommai, Y. Kiyoki, P. Sillberg, J. Soini, H. Jaakkola, and P. Chawakitchareon, “The rSPA process
realization: The creation of river heavy metal evaluation index (rHMEI) by using dimensional subspace
of heavy metal,” International Transaction Journal of Engineering, Management, & Applied Sciences
& Technologies, vol. 7, no. 3, 2016.

[13] H. Jaakkola, T. Mäkinen, J. Henno, and J. Mäkelä, “Openn,” in 2014 37th International Convention on
Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 608–615,
May 2014.

[14] H. Jaakkola, T. Mäkinen, and A. Eteläaho, “Open data: Opportunities and challenges,” in Proceedings
of the 15th International Conference on Computer Systems and Technologies, CompSysTech ’14, (New
York, NY, USA), pp. 25–39, ACM, 2014.

[15] T. Turkki, “Nykyaikaa etsimässä – Suomen digitaalinen tulevaisuus,” EVA-raportti. Helsinki, 2009.
[16] N. Huijboom and T. Van den Broek, “Open data: an international comparison of strategies,” European

journal of ePractice, vol. 12, no. 1, pp. 4–16, 2011.
[17] European Commission, “Open data – An engine for innovation, growth and transparent governance.”

http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:52011DC0882, December 2011. Accessed
January 31, 2017.

[18] Cabinet Office of United Kingdom, “Open Data Charter.” https://www.gov.uk/government/publications/
open-data-charter, June 2013. Accessed January 31, 2017.

[19] H. Jaakkola, J. Henno, and J. Soini, Data driven ecosystem - Perspectives and problems, pp. 17–26.
CEUR Workshop Proceedings, M. Jeusfeld c/o Redaktion Sun SITE, 2015.

[20] T. Sanislav, G. Mois, S. Folea, L. Miclea, G. Gambardella, and P. Prinetto, “A cloud-based cyber-physical
system for environmental monitoring,” in 2014 3rd Mediterranean Conference on Embedded Computing
(MECO), pp. 6–9, IEEE, 2014.

[21] E. A. Lee, “Cyber Physical Systems: Design Challenges,” in 2008 11th IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing (ISORC), pp. 363–369, May
2008.

[22] G. Mois, T. Sanislav, and S. Folea, “A cyber-physical system for environmental monitoring,” IEEE
Transactions on Instrumentation and Measurement, vol. 65, no. 6, pp. 1463–1471, 2016.

[23] H. Uzunboylu, N. Cavus, and E. Ercag, “Using mobile learning to increase environmental awareness,”
Computers & Education, vol. 52, no. 2, pp. 381–389, 2009.

[24] A. Oulasvirta and K. Hornbæk, “HCI research as problem-solving,” in Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, CHI ’16, (New York, NY, USA), pp. 4956–4967,
ACM, 2016.

[25] R. Engelschall, “ECMAScript 6 – New Features: Overview & Comparison.” http://es6-features.org,
2016. Accessed April 21, 2017.

P5
P U B L I C AT I O N V

Toward Manageable Data Sources
P. Sillberg

Information Modelling and Knowledge Bases XXX 2019, pp. 101–111

doi: 10.3233/978-1-61499-933-1-101

Publication reprinted with the permission of the copyright holders

125

https://doi.org/10.3233/978-1-61499-933-1-101

Toward Manageable Data Sources

Pekka SILLBERG 1

Tampere University of Technology, Pori, Finland

Abstract. As information systems are producing vast amounts of data with ever
increasing speed and diversity, the management of data is becoming an important
part of gaining the information that we need. With this as the motivation, this paper
proposes a Manageable Data Sources framework for the systematic management
of data sources. The framework is derived from a new conceptual model of data
processing: the Faucet-Sink-Drain model. The framework achieves two aims: the
unification of data processing, and secondly, the componentization and decoupling
of data processing related tasks. The framework is described and a reference archi-
tecture is laid out for the creation of a proof-of-concept implementation to solve
the given use case.

Keywords. Framework, MDS, Conceptual model, Big Data, Data processing,
Faucet-Sink-Drain model

1. Introduction

Information systems are producing data in ever increasing amounts, with greater and
greater speed and diversity. At the same time, Internet of Things (IoT) devices are be-
coming smaller and more energy efficient, and require fewer resources to manufacture.
These low power battery operated devices can stay connected to the network for up to
ten years, or even longer [1]. This enables new kinds of applications, such as mount-
ing sensor devices permanently into the structures of a building. As the quantity of de-
vices grows larger, the more it increases the pressure on how the produced (big) data
can and should be managed and utilized by the software. The ideal case is that it can be
done in both a controllable and systematic way, while avoiding any error-prone ad-hoc
implementations.

The use of patterns, frameworks, models, and re-usable code improves the quality
of software. [2,3] By decomposing the system into smaller modules, the development of
a piece of software becomes easier to modify and the re-usability of the code increases.
For example, the Model-View-Controller (MVC) design pattern separates the application
logic, data, and user interface into their own logical components. [4,5] To fully leverage
the opportunities of big data in software engineering, we need to implement a decoupled
and standardized component that is specialized in the handling of all data processing and
searching-related requests.

Thus, the goal of this study is to identify a generic data processing model for cre-
ating a software framework to process data requests. The framework should make data

1Corresponding Author: Pekka Sillberg, Tampere University of Technology, Pori, P.O. Box 300, FI-28101
Pori, Finland; E-mail: pekka.sillberg@tut.fi.

processing easier and more organized, and improve the quality of the software on the
data handling related operations. The framework must also be kept relatively simple.
Simple and easily understandable concepts and terms may enable us to be more efficient
when working with the big data challenges. Questions such as how to manage the ever
increasing amount of data, how to utilize and visualize the data in a meaningful way, and
how to programmatically extract knowledge and wisdom from the data are not necessar-
ily answered in this study, but are nevertheless inspiring topics. The research question
that this study attempts to solve can be formalized as follows:

Does there exist a generic model or approach that enables the processing of all data
in any given software application?

This paper proposes a new conceptual data processing model called Faucet-Sink-
Drain model. The model is applied for a Manageable Data Sources (MDS) framework
in order to create a systematic framework for the handling and processing of data. The
framework covers the creation of data, includes the search, selection, and combination
of real input data as well as any supplementary open data, and finishes with the outcome
of the processed data (e.g., reports or visualizations). Furthermore, the framework gives
the control of the data to the users by letting them choose and manage the desired data
sources, data processors, and visualizations as best suits their need. The scope of this
paper is to describe the model from the perspective of a single user and/or an instance,
but there shall be no such limitation in the finalized framework.

The contents of this paper are as follows. Section 2 explains the background of the
study; Section 3 concentrates on the specifications and definitions of the framework;
finally, Section 4 concludes the paper and lists possible directions for future research.

2. Background

2.1. From Data to Wisdom

What is data and why do we need data, and where and how should we use it? Data is the
raw building block of all information. This block, a symbol, represents the properties of
objects and events [6]. Information is built upon data, knowledge is based on information,
and wisdom requires knowledge [6,7]. Together they form a hierarchy, shown in Figure 1,
oftentimes called the data-information-knowledge-wisdom hierarchy (DIKW). It is also
known as the ‘Knowledge Hierarchy,’ ‘Information Hierarchy,’ or ‘Knowledge Pyramid’.
It is also referred to as the ‘Wisdom Hierarchy’ to promote the concept of wisdom over
knowledge [7].

Literature has multiple definitions for each item in the DIKW hierarchy. In [7], the
author reviewed 16 papers to find definitions and the essence of each of them. The author
concluded that the difference between data and information is that plain data has no
meaning as it is an unprocessed fact or observation. Information can be derived from
the data by organizing it or by including a purpose or context, making it meaningful,
useful, and relevant [7]. As a summary [7], knowledge can be seen as a combination of
information, understanding, capability, experience, skills, and values. Knowledge can be
differentiated into explicit and tacit knowledge, where the first is something that can be
recorded programmatically but the latter is an embedded part of the human mind.

Figure 1. The hierarchy of data, information, knowledge, and wisdom (DIKW). [7]

2.2. Data Warehouse Design

The purpose of a Data Warehouse (DW) is to provide an architectural model to support
the decision-making activities of an organization. It is achieved by extracting and storing
variable data in a uniform format in a centralized database, which provides tools for
querying, reporting, and information analysis. The definition by [8] says that “[a] data
warehouse is a subject-oriented, integrated, nonvolatile, and time-variant collection of
data in support of management’s decisions.” The data produced by different sources can
be imported to the DW by utilizing Extraction-Transformation-Loading (ETL) processes.
There are two main design styles for setting up a data warehouse: bottom-up and top-
down [9]. In the bottom-up model, smaller logical sections called Data Marts (DM) are
solved first, and then integrated into the DW. The data included in a DM is specific to a
certain business problem, and knowing the Business Model (BM) helps to analyze what
data should be included in it. [9,10] In the top-down model, the whole dataset is fitted
into the DW, and then the smaller DMs are designed from data provided by the DW [9].

Designing a complete DW comprises several phases such as the design of concep-
tual and logical schemas or ETL processes. Each phase in turn may have several com-
peting techniques and patterns, but a lack of formal design guidelines for a whole DW
system has been identified [10,11]. The framework introduced in this study resembles
the concept of DW in several ways. Incidentally, MDS was designed independently with-
out prior knowledge of the similarities with DW. The key difference is that with MDS,
the input data can be imported with more flexibility and with less design effort. Data
marts in the DW are more static and unchanging representations of an identified business
problem, but in MDS, any stream of data (or combination) can be analogous to a data
mart.

2.3. Big Data

Big data is certainly an interesting field for harnessing by the MDS framework, as all
kinds of appliances and IoT devices produce data. Big data has been identified by [12]
as consisting of three characterizing Vs: volume, velocity, and variety. The original def-
initional qualities of big data have since been varied in several other ways, typically by
addition of more Vs (e.g. [13,14,15]). The other Vs introduced in subsequent sources
included terms such as veracity, variability, visualization and value. Originally, the three

Vs were “intended to define proportional dimensions and challenges specific to big data”
[16] in the same way as width, height, and depth are magnitudes of measures in real life
three-dimensional space. The additional Vs can be used to understand various important
topics when working with big data, but they are not aspects unique to big data only.

If the big data is too much to handle there exist solutions to reduce it to smaller, more
manageable data chunks by the creation of coresets, subsets of the original data. [17,18].
Other means of analytics, as well as views on next generation DW research are studied
in [19]. From the viewpoint of the MDS framework, big data is simply a lot of data, and
the framework should be able to import and to process it based on criteria defined by the
user. The framework’s key point is the ability to handle different kinds of data sources
in a systematic and controlled manner, with the goal of generating a suitable information
for creating reports and the most value to the user.

3. The Framework: Manageable Data Sources

This section describes the design ideas behind the MDS framework. It will also clarify
the conceptual model of data processing (i.e., the Faucet-Sink-Drain model) used in this
paper. The framework aims to help the processing, combination, and management of data
sources, by making them controllable and systematic. With the systematical approach,
the traceability of operations (i.e., what steps were taken to reach the result) should be-
come more evident and reproducible.

3.1. Overview

Let us start by introducing the key concepts of the model shown in Figure 2. There are
five core components, the first (topmost in the figure) being a faucet, which appears to
be open, and running a couple of streams. These streams go into a sink, and eventually
into a sieve (i.e., an filter on the bottom of the sink). The sieve is connected to the last
component, a drain. In this figure, the faucet simply appears from somewhere whereas
the drain disappears. They are not necessarily connected to each other, but they are most
likely connected to different systems which are not in the scope of this figure. An ex-
tended version of this concept will be explained together with the meaning of the added
components in Figure 3. Term “stream” in the context of this paper does not relate to
term streaming of media.

How does the imaginary version of this rather mundane appliance compare to its real
world counterpart? Firstly, the faucet can be seen as the source of the data. The running
water is a collection of data streams, and the sink is used to store and display the data.
The sieve is a filter of the data with the capability of selecting and processing any chunk
of any given data stream. The drain is a piping system to remove the excess amount of
data in order to prevent information overflow in the sink. The drain may also be used for
looping the processed data to another faucet and sink for refining the data even more.
Secondly, this appliance has far greater adaptability than the physical one as it is easy to
add or remove components.

It is not enough merely to collect all kinds of data sources together and display
the data produced by them. When the data is combined together and processed in a
certain way, the result will provide more data, which in turn can be processed again

01101111 01101011

01
10

00
01

 0
11

01
00

0
01

10
00

01

Figure 2. New conceptual model of data processing.

with some other data. If the data, selection criteria, and processing methods are chosen
wisely, the data refinement cycle can eventually provide information that is valuable to its
user. Therefore, the solution must be customizable and able to accommodate a feedback
mechanism.

The framework strives to resolve this by being adaptable and able to grow seam-
lessly. Any number of data sources can be added, configurations for data visualizations
and storage can be made based on stream criteria, and sieves can select and process any
data stream. The extendability of the MDS framework is depicted in Figure 3, where an
additional set of components (faucet, stream, sieve, and drain) have been “attached” to
the sink to the sink (when compared to the starting point shown in Figure 2). From the
software engineering and design point of view, the MDS framework also relies on the
decoupling of data processing from the application logic in the same way as the MVC
design pattern does with regard to model, view, and controller.

Let us examine Figure 3 more closely. The largest faucet located in the top left
corner appears to be emitting two separate data streams. These two data streams2 con-
tain the following data pieces: 01100001 01101000 01100001 and 01101111
01101011. In this case they are actually streams of binary data, usable by computers,
but not so useful for humans. What could the user do to benefit from the generated data?
The data can be refined in a series of loops, where each loop can improve the information
value of the data. The feedback loop is the most essential part of this framework, because
that is where all the data processing takes place in a systematic and controllable way.

A simple case of feedback processing is visualized on the right side of Figure 3. The
added sieve is configured to select the “shorter” of the previous streams (01101111
01101011), process it, and forward the new processed data stream to a drain (piping
system). If the drain is not connected to anything, the generated data will simply be dis-

2Streams actually have certain metadata attached to them, but they are omitted from the figure for the sake
of simplicity.

01101111 01101011

01
10

00
01

 0
11

01
00

0
01

10
00

01

o
k

o
k

o
k

o
k

Figure 3. Extension of the conceptual model of data processing with a feedback mechanism.

carded. However, should we connect the drain to a new faucet, the data can then be di-
rected to the data sink. The data stream that emerges from the faucet contains the fol-
lowing data: ok ok ok ok3 which is an ASCII string representation of the previously
selected binary data.

To recap, the MDS framework allows the addition of as many “feedback loops” as
necessary. We can have any data stream (the old and the new) re-used, combined, and
processed in additional sieves, which in turn create more data for additional faucets. If the
chaining of the processed data is done wisely, the result will be useful information—and
perhaps, knowledge.

3.2. Definitions, Glossary and Specifications

In this section, the framework’s implementation-specific matters are dealt with. The key
concepts and terms are defined as follows:

Data Component that forms the bulk of the content in the DataSink. It is basically of
any type and format, and also includes the timestamp when the data was created.
Each piece of data is associated to exactly one DataStream but the association
is uni-directional, thus data is not aware of its owner.

DataStream Component which uniformly describes the type, format, and origin of
the associated Data. Owns 0 to n Data, and is associated to exactly one
DataFaucet. Not to be confused with with media streaming, or stream process-
ing.

DataFaucet This component is the source of all content (i.e., data) and it also defines
the physical characteristics of the source (e.g., location, update intervals and so
on). The faucet has 0 to n DataStreams.

3The new stream in Figure 3 has four times more output compared to the input data; the reason for this is
simply a more aesthetic look.

DataSieve Each DataSieve component has the ability to filter all data inside the
sink, select the most interesting streams, and process and combine them into new
streams. The processed output of the sieve—DataStreams—is transmitted to
the attached drain. The sieve has exactly one DataDrain.

DataDrain The drain component is a transmission mechanism for the data. If left un-
connected, the data will be discarded. Multiple faucets can be attached to a single
drain, and all of these faucets will receive the same data. The drain may have 0 to
n DataFaucets.

DataSink The central component where the data resides and can be observed. The
sink will share the ownership of a DataStream once it has been emitted from
the DataFaucet. Different kinds of Visualizers may be applied to any
stream matching the defined Criteria. The sink may store and accumulate
the data, or simply update the current data instance in the sink based on the
StreamOperator defined on each stream. The DataSink knows 0 to n
DataFaucets, and has 0 to n DataStreams. There must be at least one
(1 to n) DataSieve to prevent “information overflow” in the sink.

DataProcessor A set of rules for processing DataStreams by the DataSieve. It de-
fines any means necessary to create a new output data from the selected input data
(e.g., addition, substraction, multiplication, logical AND & OR, set combination
such as union & intersection, concatenations).

Criteria A set of rules for selecting the desired DataStreams that are available in the
DataSink.

StreamOperator This controls how the DataSink needs to observe and handle the
Data of a DataStream once the data has entered the sink. It says what needs
to done to the data point to formulate a result, and how the result should be stored.
For example, this could be a rule to accumulate the results for forming a time series
of the data; to apply a differential and integral calculus to it; or to the continuous
average and so on.

Type Definition of the (stream) type.
UUID Universally unique identifier.
Visualizer A visualizer may be used to create different views of the DataStream and

the Data in the DataSink, such as documents, charts, maps, and reports. They
are attachable and interchangeable, and do not modify the data.

Figure 4 depicts the reference architecture of the core components of the MDS
framework. This high level view identifies the associations and quantitative relationships
between these components. One important aspect is that this figure represents the case of
a single user instance. This means that there may be other external components to which
the components seen in Figure 4 are attached. For example, the DataFaucet may re-
ceive data from a drain created and defined by another user. Similarly, the DataDrain
seen here can transmit its data to someone else’s faucet.

Currently no implementations of the framework exist as the study is still in its early
stages. Consequently, data formats regarding settings and description files have not been
finalized, but the available techniques are constrained by the selected design criteria:
compactness, splittability, exchangeability, and transferability. In practice, this means
supporting at least the human-readable data serialization languages such as Extensible
Markup Language (XML), JavaScript Object Notation (JSON), or YAML Ain’t Markup

Figure 4. Reference architecture of Manageable Data Sources framework.

Language (YAML). Transferability, and easy sharing, would be important so that users
could share their data sources with each other for more refined data, and information.
This can be achieved by encoding the said files into barcodes or similar. If the files are
splittable, it helps transferability, as individual file chunks can be fitted and shared with a
storage medium such as barcodes or contactless integrated circuit cards (e.g., utilization
of the NFC Data Exchange Format, NDEF). Being compact enough will allow the files
to be fitted in a minimum amount of the previously mentioned media. The transmission
of data does not have this kind of constraint, and it may use any means necessary to reach
the system so that any internet connected device can be communicated with.

3.3. Discussion

The idea of the MDS framework has been introduced but there has not yet been any dis-
cussion of where it could be utilized. The use case scenarios described here are poten-
tial targets that might benefit from utilizing the MDS framework. Once the framework
reaches the proof-of-concept maturity level, it should be benchmarked against at least
one of the use cases.

Real-time Data The cars of today produce a lot of data and information with their
electronic devices and sensors. A multitude of control units continuously monitor for
the data in the Controller Area Network (CAN) bus. However, a fair share of that data
cannot be accessed by the end user. Even if the on-board computer of the data can display
information, it is typically limited to a pre-selected, non-customizable list of variables.
The data is there, but the users have no means to access it without third party extensions
and to make their own decision on what information to display. Ultimately, it is my car,
and my data, and I want to have access to it.

So let us say that users could customize their access to their car’s systems to select,
process, and display any data produced by their car. OK, that would be nice, but where to
next? There are multiple data sources in the car itself, as well as multiple other devices to

display data (e.g., dashboard, in-vehicle infotainment systems, laptops, mobile phones,
and smart watches). In addition, there may be several users for the same car, but they may
have different perspectives on the information that they need. An even more extended
case is where the user has several cars—perhaps a fleet of cars—where they would like
to have similar settings, preferences, and reporting features.

This is where the MDS framework comes in—by enabling the user to have their own
systematically defined specification of what is important for them. The user’s own pool
of data, preferences, visualizations, reports and so on can follow them wherever they go,
and allow them seamless integration with any available data source (i.e., by attaching
their own DataFaucet to any openly available DataDrain). In an ideal case, the
user would be able to (1) attach new data sources to their sink, (2) process and combine
the incoming data, (3) refine the available data until the desired goal has been achieved,
(4) control the results of the process (e.g., reports and visualizations), and (5) be able to
release the results to other users.

Web Data Sources The data sources available around the Internet might not be pro-
viding a real-time data, but nevertheless, data processing and data source management
could be a useful tool on monitoring of these sources. The following examples are cho-
sen because I have had the opportunity to contribute in the development of the mentioned
systems. In the first system [20], a third party Open Data source is being used to detect
dangerously high heavy metal concentrations in water. This is a relatively simple use
case to implement as the results of calculations are displayed in a tabulated format. Sim-
ilarly, the second example [21] is quite a simple data collection and visualizer system,
that has been used to gather the usage data of water, electricity and heat consumption in
a public swimming pool in the City of Pori. In this case scatter and bar charts are used to
visualize the consumption values. Both of the use cases could benefit from further data
processing, such as the trend detection or implementation of any new analysis method
that was not implemented in the original user interface. In order to achieve this, the data
source as well all the chain of currently applied analysis methods should be transferable
to another environment (for example, import from the application website to the user’s
personal computer). This transferable processing information, and the previously defined
steps from 1 to 5, can be called a Faucet-Sink-Drain recipe.

Data Protection In the wake of General Data Protection Regulation (GDPR), the pro-
posed framework could be even seen as a part of the underlying operating system where
all data accessed by different applications require an authorization from the user first.
The user may select which kind of data the application may read and process, and is that
application allowed to make changes (e.g., add or remove) to the system-wide data or
merely to the clone of the data that resides isolated in the application space. Basically,
the operating system governs the biggest DataSink containing all the data, and each
application have access to a “smaller” DataSink (i.e., the subset of the data). Applica-
tions can be seen as DataFaucets and/or DataDrains depending on their usage of
the data. To be able to access the data on DataSink, the application must publish a list
of the required and the optional data (i.e., DataStreams captured by DataSieve).
The application developer would have to compose the list, and indicate if the application
can not operate without the requested data. For example, a navigation application would
probably be rather useless without location information, but the user might simply want
to use that application because of the maps it can provide; the developer might accom-

modate to the user’s wishes and offer a way to use the application without the navigation
feature. Alternatively, the user might want to feed dummy location information to the
application, but the application developer does not allow the use of application in this
kind of situation.

4. Conclusion and Future Work

In this paper, I presented a new conceptual model of data processing and a framework
called Manageable Data Sources for systematic management of different sources of data.
The aim of the framework is to make data processing easier and more organized, and to
improve the quality of the software on the data handling related operations.

The concept consists of five basic components: (1) faucets, (2) streams, (3) sink, (4)
sieves, and (5) drains. The concept of MDS relies on the decoupling of the data process-
ing component from the application logic in the same way as MVC design patterns with
regard to model, view, and controller. Data processing in MDS is a continuous “feedback
loop” of data, in which the data is refined bit by bit in order to provide more data and
valuable information to the user. MDS is customizable to meet the requirements of dif-
ferent users. Finally, an example use case showing the potential for future research in the
data source management field was introduced.

Future work will focus on the implementation of a proof-of-concept application
which can be used to perform experiments and to collect evidence for evaluating the
framework. The proof-of-concept implementation of the framework is to be evaluated
by at least one of the designed methods, such as the Architecture Trade-off Analysis
Method (ATAM) to find any possible defects and design flaws as early as possible [5,22].
Also, the applicability of the model in the example use cases requires more evidence and
experiments.

References

[1] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low Power Wide Area Networks: An Overview,” IEEE
Communications Surveys Tutorials, vol. 19, no. 2, pp. 855–873, 2017.

[2] T. T. Nguyen, Improving software quality with programming patterns. PhD thesis, Iowa State University,
2013.

[3] J. Greenfield and K. Short, “Software factories: Assembling applications with patterns, models, frame-
works and tools,” in Companion of the 18th Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOPSLA ’03, (New York, NY, USA), pp. 16–27,
ACM, 2003.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented Software Archi-
tecture, A System of Patterns. Wiley, 2013.

[5] K. Koskimies and T. Mikkonen, Ohjelmistoarkkitehtuurit. Talentum, 2005.
[6] R. L. Ackoff, “From Data to Wisdom,” Journal of Applied Systems Analysis, vol. 16, no. 1, pp. 3–9,

1989.
[7] J. Rowley, “The wisdom hierarchy: representations of the DIKW hierarchy,” Journal of Information

Science, vol. 33, no. 2, pp. 163–180, 2007.
[8] W. H. Inmon, Building the Data Warehouse. New York, NY, USA: John Wiley & Sons, Inc., 1992.
[9] D. Bourgeois, Information Systems for Business and Beyond. The Saylor Foundation, 2014.

[10] S. Luján-Mora and J. Trujillo, “A Comprehensive Method for Data Warehouse Design,” in Proceedings
of the 5th Intl. Workshop on Design and Management of Data Warehouses (DMDW’03), pp. 1–14, 2003.

[11] V. Peralta and R. Ruggia, “Using Design Guidelines to Improve Data Warehouse Logical Design,” in
DMDW, 2003.

[12] D. Laney, “3-D Data Management: Controlling Data Volume, Velocity and Variety.”
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-
Volume-Velocity-and-Variety.pdf, February 2001. Accessed January 18, 2018.

[13] M. Van Rijmenam, Think Bigger: Developing a Successful Big Data Strategy for Your Business. AMA-
COM, 2014.

[14] IBM, “Extracting Business Value from the 4 V’s of Big Data.”
http://www.ibmbigdatahub.com/infographic/extracting-business-value-4-vs-big-data, January 2016.
Accessed January 24, 2018.

[15] R. J. Self, “Impact of the "12 Vs" of Big Data on Questions of Ethics, Trust, Stewardship and Governance
of Analytics.” http://computing.derby.ac.uk/c/wp-content/uploads/2014/11/Self_Richard_A2014.pdf,
2014. Accessed January 24, 2018.

[16] D. Laney, “Batman on Big Data.” https://blogs.gartner.com/doug-laney/batman-on-big-data, November
2013. Accessed January 18, 2018.

[17] D. Feldman, M. Schmidt, and C. Sohler, Turning Big data into tiny data: Constant-size coresets for k-
means, PCA and projective clustering, pp. 1434–1453. Society for Industrial and Applied Mathematics,
2013.

[18] D. Feldman, M. Volkov, and D. Rus, “Dimensionality Reduction of Massive Sparse Datasets Using
Coresets,” in Advances in Neural Information Processing Systems 29, pp. 2766–2774, Curran Asso-
ciates, Inc., 2016.

[19] A. Cuzzocrea, I.-Y. Song, and K. C. Davis, “Analytics over Large-scale Multidimensional Data: The
Big Data Revolution!,” in Proceedings of the ACM 14th International Workshop on Data Warehousing
and OLAP, DOLAP ’11, (New York, NY, USA), pp. 101–104, ACM, 2011.

[20] P. Sillberg, C. Veesommai, J. Soini, and H. Jaakkola, Web-User-Interface System Utilizing rHMEI and
Open Data for a Water Quality Analyzer, pp. 420–428. Frontiers in Artificial Intelligence and Applica-
tions, Netherlands: IOS Press, 2018.

[21] J. Soini, P. Sillberg, and P. Rantanen, “Prototype system for improving manually collected data qual-
ity,” in Proceedings of the 3rd Workshop on Software Quality Analysis, Monitoring, Improvement, and
Applications, SQAMIA 2014, September 19-22, 2014, Lovran, Croatia, pp. 99–106, 2014.

[22] P. Clements, R. Kazman, and M. Klein, Evaluating Software Architectures: Methods and Case Studies.
SEI series in software engineering, Addison-Wesley, 2002.

P6
P U B L I C AT I O N V I

Interpretation, Modeling, and Visualization of Crowdsourced Road
Condition Data
P. Sillberg, M. Saari, J. Grönman, P. Rantanen, and M. Kuusisto

Intelligent Systems: Theory, Research and Innovation in Applications. Ed. by R.
Jardim-Goncalves, V. Sgurev, V. Jotsov, and J. Kacprzyk 2020, pp. 99–119

doi: 10.1007/978-3-030-38704-4_5

Publication reprinted with the permission of the copyright holders

139

https://doi.org/10.1007/978-3-030-38704-4_5













          



            



situations where users’ everyday actions can generate data usable in more co
           









     

         











     











         



 –







 

















            





   





          

     















   





   



    





         









        

    









           



          









         



























        







ta were collected “through a common repository.” The research [17] presented an




  

 



          

      

       

           







       



             





       





    

           

    









            





         













      









           





 





• 


•            




•  




•          




          

         

        



  

           













          

           



  

          





        











          



           



     







          

      









    



sieve is a filter component with the
          





          





            









             







   









          









           



  







       







        



         

 

    



           







      







  –– 


   



            

   


















       







          









        

      









            





to input his/her credentials (in the example, “user”) and use the start and stop but-


     

            



        

“0”); the option to create all measurements as “public”, which means that any








            

  

practice the devices showed slight variances from the expected values. The “show
systematic error” option can be used to show the currently measured values and t
           

sending the results to the service. The “print log” can be used to show a debug log




    



  





         





measurements) can be seen in the Android’s pull


when “participating” in the trial) and off at other times. In addition to changing the




 





  











    





the university. The user’s choice







            



          

             





























         





          









v ≥ 0 m/s v ≥ 1 m/s
   

    

    

    

    

    

    

    

    













            

            











—

            









             

           



    





 

             



     













 

  

  

  

  

  

—  







—



            

  —     
  

—


   



––
















     

      

      

      

      

      

—      















            

             



tween “good road condition” data and “bad road condition” data. Currently, levels












ed per device, with level L0 being the “normal” of the device and L4 being the
            























            

    

mize the effects caused by the user’s change of vehicle as well as the cases where


      



          







          





from, for example, public transportation utilizing the user’s mobile devices.


             



           

 

        

        





    – 




of slightly different sizes with the green “good condition” markers being the
smallest and the black “bad condition” markers being the largest. This is in order
“bad condition” markers easier to spot among the data, which largely




















The upper part of the figure shows basically the “raw data” selected from an area,




    







is a high concentration of “bad condition” markers. It would also be possible to
            





       





–“bad condition” –








er’s location and gathering data from the basic sensors embedded in a mobile de-








   



























required the calculation of a “normal” for




  





    







   



    a could be analyzed to determine the device’s
normal, for example, if known “good condition” roads have been driven on. In
 











          

             

            

           







       



           

  



           







basic idea of where the “bumpy” roads were located, the preliminary results were
     

        

          





     

       





           





            

      









           

     –        
–
           

   





      

were stored on our server. Storing the “good condition” data can also help to map


–
– 


         

 



especially if “good condition” data are includ






—














   

    











            







 













          

           



before more conclusions can be drawn of the model’s usefulness.
      











    –
     –      














        

 

  








         

–




–
     

           

–
–


  



 



Hać, A.








         

–
  



–


           

–


          





   





–








     

–
“On the analysis of road surface conditions using embedded

smartphone sensors,” in 2017 8th International Conference on Information and Communication
–

               

          

  

–


         

MobiSys ’08, Colorado, USA
  



–






      





  DSM ’05
–

  



–


–




–
   

   

–
 

       

–

	Preface
	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	List of Publications
	 Doctoral Dissertation
	1 Introduction
	1.1 Research Area
	1.2 Research Goals
	1.3 Research Methodology
	1.4 Publications
	1.5 Thesis Structure

	2 Background
	2.1 Implementation of Literature Review
	2.1.1 Initial Review
	2.1.2 Generic Review

	2.2 Related Studies
	2.2.1 Data Management
	2.2.2 Similar Approaches

	2.3 Software Standards and Best Practices
	2.3.1 Standards
	2.3.2 Best Practices

	2.4 Conclusion of the Background Study

	3 Toward Generic Data Management
	3.1 In Search of Data Management
	3.1.1 Quality Aspects
	3.1.2 System Models

	3.2 Publications in Detail

	4 The Data Processing Model
	4.1 Faucet-Sink-Drain Model
	4.1.1 Overview
	4.1.2 Abstraction
	4.1.3 Implementation

	4.2 Use Cases
	4.3 Prototype System
	4.3.1 Overview
	4.3.2 Detailed Description
	4.3.3 Reusing Technical Constructs

	4.4 Conclusion of the Empirical Study

	5 Discussion
	5.1 Revisiting the Research Questions
	5.2 Contributions of the Thesis
	5.3 Evaluation of the Constructs
	5.4 Threats to Validity
	5.5 Future Work

	6 Summary
	 References

	 Original Publications
	P1 Publication I
	P2 Publication II
	P3 Publication III
	P4 Publication IV
	P5 Publication V
	P6 Publication VI

