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Background and Objective: This study considers dynamic modeling of the cerebral arterial circulation and 
reconstructing an atlas for the electrical conductivity of the brain. Electrical conductivity is a governing 
parameter in several electrophysiological modalities applied in neuroscience, such as electroencephalography 
(EEG), transcranial electrical stimulation (tES), and electrical impedance tomography (EIT). While high-

resolution 7-Tesla (T) Magnetic Resonance Imaging (MRI) data allow for reconstructing the cerebral arteries 
with a cross-sectional diameter larger than the voxel size, electrical conductivity cannot be directly inferred 
from MRI data. Brain models of electrophysiology typically associate each brain tissue compartment with a 
constant electrical conductivity, omitting any dynamic effects of cerebral blood circulation. Incorporating those 
effects poses the challenge of solving a system of incompressible Navier–Stokes equations (NSEs) in a realistic 
multi-compartment head model. However, using a simplified circulation model is well-motivated since, on the 
one hand, the complete system does not always have a numerically stable solution and, on the other hand, 
the full set of arteries cannot be perfectly reconstructed from the MRI data, meaning that any solution will be 
approximative.

Methods: We postulate that circulation in the distinguishable arteries can be estimated via the pressure–Poisson 
equation (PPE), which is coupled with Fick’s law of diffusion for microcirculation. To establish a fluid exchange 
model between arteries and microarteries, a boundary condition derived from the Hagen–Poisseuille model is 
applied. The relationship between the estimated volumetric blood concentration and the electrical conductivity of 
the brain tissue is approximated through Archie’s law for fluid flow in porous media.

Results: Through the formulation of the PPE and a set of boundary conditions (BCs) based on the Hagen–

Poisseuille model, we obtained an equivalent formulation of the incompressible Stokes equation (SE). Thus, 
allowing effective blood pressure estimation in cerebral arteries segmented from open 7T MRI data.

Conclusions: As a result of this research, we developed and built a useful modeling framework that accounts for 
the effects of dynamic blood flow on a novel MRI-based electrical conductivity atlas. The electrical conductivity 
perturbation obtained in numerical experiments has an appropriate overall match with previous studies on this 
subject. Further research to validate these results will be necessary.
1. Introduction

This study focuses on the dynamic modeling of the cerebral arterial 
circulation [1] and reconstructing an atlas for the electrical conductiv-

ity of the brain [2]. Electrical conductivity is a governing parameter 
in several electrophysiological modalities targeting the brain, for exam-
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ple, electroencephalography (EEG) [3], transcranial electrical stimula-

tion (tES) [4], and electrical impedance tomography (EIT) [5–7]. Brain 
models of electrophysiology conventionally associate each head tissue 
compartment with a constant electrical conductivity [8–11], omitting 
the dynamic effects of cerebral circulation. While high-resolution 7-

Tesla (T) MRI data allows for the reconstruction of cerebral arteries 
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with a cross-sectional diameter greater than the voxel size [12,13], 
electrical conductivity cannot be directly inferred based on MRI data. 
Advancements in dynamic conductivity modeling have addressed this 
critical gap in our understanding; in recent years, there has been grow-

ing interest in utilizing dynamic conductivity modeling to enhance our 
understanding of cerebral blood flow (CBF) regulation and its applica-

tions.

Incorporating blood flow effects is an important and timely topic 
that has most prominently been approached via rheoencephalography 
[14], EIT [15,16], and diffusion-weighted MRI [17] measurements. Al-

ternatively, a dynamic model can be constructed in silico through blood 
flow simulation, as recently suggested in [18,6,7]. To this end, recent 
studies have, for instance, involved predicting the hydraulic conductiv-

ity of the capillary network, which is a critical factor in understanding 
microvascular dynamics [19].

Modeling CBF poses the challenge of solving a system of Navier–

Stokes equations (NSEs) numerically for an incompressible fluid flow in 
a complex structured blood vessel model, which has been demonstrated 
in several different contexts, e.g., in [20–23]. Finding a numerical so-

lution for incompressible NSEs includes, among other things: (1) the 
ability to incorporate incompressibility conditions into the system; (2) 
calculating pressure equivalently from flow velocity by assuming pres-

sure boundary conditions (BCs) for the system; and (3) guaranteeing 
the numerical stability of the system [24]. In addition, since a full set 
of arteries cannot be perfectly reconstructed from the MRI data, only 
approximate solutions can be obtained. Hence, a simplified model is 
well-motivated. In particular, the model of [6] has been built upon a 
one-dimensional (1D) approximation of NSEs in the main arteries [20]. 
In this study, we propose using the pressure–Poisson equation (PPE) 
[25] in conjunction with Fick’s law of diffusion for the microcircula-

tion [26,27] to estimate blood circulation in an arbitrary set of arteries 
distinguishable in MRI data.

In incompressible flows, the pressure is in equilibrium with a time-

varying divergence-free velocity field, and its gradient is a significant 
physical quantity since it represents a force per unit of volume. We 
derive PPE for a three-dimensional (3D) steady state blood flow and 
domain. We do not directly discretize the NSEs [28]; instead, we (i) 
model the blood flow in the arteries as the simplest possible system that 
can be derived from Stokes equation (SE), (ii) derive BCs assuming that 
the pressure gradient can be obtained from a Hagen–Poiseuille flow in 
arterioles, which is in accordance with [29], and then (iii) discretize 
and solve the resulting PPE system.

We utilize PPE to estimate pressure fields within the arterial domain 
by discretizing this system using a numerical method such as FE analysis 
while considering Neumann BCs. This process involves breaking down 
the arterial system into discrete elements, which enables us to solve the 
equation numerically. Subsequently, we utilize Fick’s law to estimate 
the excess volumetric blood concentration within the microcirculation 
domain [26,27]. We discretize Fick’s law using the FE method, to nu-

merically solve it within the domain. Our hypothesis posits that there is 
a gradual reduction in this concentration with increasing distance from 
the arteries. This presumption is consistent with physiological princi-

ples, as it aligns with the process of diffusion, wherein blood diffuses 
from areas characterized by higher concentrations to those with lower 
concentrations.

The parameters determining the BCs are based on the knowledge 
of average blood viscosity, cerebral blood flow rate, pressure, and di-

ameter of the arterioles constituting an interface between arteries and 
capillaries [1]. The diffusion and decay parameter of the microcircu-

lation model are, additionally, affected by experimental data of the 
microvessel density in different brain tissues [30].

The excess volumetric blood concentration plays a central role in 
determining the electrical conductivity 𝜎 within the tissue. We incor-

porate this critical information into the electrical conductivity atlas, 
which is a key component of the proposed model. This atlas quantifies 
2

how the electrical conductivity of the tissue varies in relation to the 
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volumetric blood concentration. The relationship between microcircu-

lation estimates and electrical conductivity is derived from Archie’s law, 
a well-known and widely used two-phase mixture model. Archie’s law 
allows us to determine the effective electrical conductivity of a mix-

ture comprising fluid and porous media. Noteworthy studies [31–34]

have contributed to our understanding of this relationship via electrical 
measurements. As outlined in this study, the impact of the volumet-

ric blood concentration on electrical conductivity remains significant 
within a specific distance, typically ranging from 10 to 20 mm, from 
the arteries.

To place our work in a broader scientific context, we explore the 
proposed model’s connection with recent advancements in modeling

dynamic blood flow along the capillary bed and their effect on the elec-

trical conductivity distribution of the brain tissue.

Our results obtained with a finite element (FE) discretization of 
a multi-compartment head segmentation suggest that, given a high-

resolution 7T MRI dataset, PPE, together with Fick’s and Archie’s laws, 
allows us to approximate blood pressure effects on the electrical con-

ductivity in the brain. We compare the results to a tissue-wise constant 
distribution [8] which provides the background model for Archie’s law. 
Furthermore, we investigate potential future directions and applications 
of the proposed model, ultimately concluding this paper with an exten-

sive discussion that emphasizes its importance and potential influence 
on future research. Our numerical implementation is openly available 
[35].

2. Methods

In this study, a domain for a human brain vasculature model is de-

fined as the union Ω ∪ Ω̂ of a microcirculation domain Ω̂ and a domain 
Ω composed of distinguishable arteries. In Ω, the total pressure 𝑝 in the 
arteries is assumed to be of the form

𝑝 = 𝑝() + 𝑝() , (1)

where 𝑝() is a time-average of a dynamic arterial pressure and 𝑝() is 
a hydrostatic venous pressure distribution following from a (constant) 
gravitational force field 𝐟 , blood density 𝜌 and position 𝐱. Given a Rie-

mannian metric 𝐠 in Ω, 𝑝()(𝐱) can be expressed as

𝑝()(𝐱) = ∫
(𝐱,𝐱0)

𝐠(𝜌 𝐟 ,d𝐫) , (2)

where (𝐱, 𝐱0) is a geodesic, i.e., the shortest path on the surface, from 
a reference point 𝐱0 to 𝐱 and d𝐫 its differential. The Riemannian met-

ric utilized in formulations preserves local differences in shape and 
size across various head regions while maintaining the domain’s shape 
across coordinate transformations. We include the Riemannian metric 
in our mathematical model for generality but do not explicitly discuss 
the curvature of the domain in this study. We solve PPE to obtain an 
approximation for 𝑝, after which volumetric blood concentration in Ω̂
is approximated using Fick’s law of diffusion. Finally, electrical con-

ductivity atlases are obtained based on the concentration via Archie’s 
law. This section briefly reviews the theoretical grounds of PPE, Fick’s 
law of diffusion, and Archie’s law of two-phase electrical conductivity 
mixtures.

2.1. Circulation in arteries

In this study, blood is modeled as a non-homogeneous, incompress-

ible viscous fluid moving through blood vessels as a Newtonian flow 
with constant absolute dynamic viscosity of 𝜇 = 0.004 Pa s, which can 
be considered a typical value in vessels with diameter from one to few 
millimeters with hematocrit between 45 and 60% [36,37]. The corre-

sponding 3D time-dependent Stokes equation is:
𝜌𝐮,𝑡 − 𝜇𝐋𝐮+∇𝑝 = 𝜌 𝐟 𝗂𝗇 Ω× [0, 𝑇 ] , (3a)
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𝖽𝗂𝗏(𝐮) = 0 𝗂𝗇 Ω× [0, 𝑇 ] , (3b)

𝐮(𝐱; 0) = 𝐮0 𝗈𝗇Ω , (3c)

where Ω is the physical domain of the problem and [0, 𝑇 ] is the time 
domain. The blood velocity and pressure are defined as 𝐮 = 𝐮(𝐱; 𝑡) and 
𝑝 = 𝑝(𝐱; 𝑡), respectively, in which 𝐱 ∈ Ω and 𝑡 ∈ℝ+. The specification of 
the diffusion force, denoted as 𝐋𝐮, can be found in Appendix A. We iden-

tify 𝜌(𝐱; 𝑡) = 𝜌 as a constant blood (mass) density, and the term 𝐟 = 𝐟(𝐱; 𝑡)
on the right-hand side accounts for the possible action of external forces. 
It is assumed that the initial velocity field 𝐮0 is divergence-free. The 
vector ∇𝑝 is a function of given velocity data and depends on the con-

stitutive properties of blood, ∇𝑝 = 𝜌 𝐟 − 𝜌𝐮,𝑡 + 𝜇𝐋𝐮, whose divergence 
leads to PPE. Derived from the momentum equation applying the in-

compressibility (3b), PPE of laminar flow is of the form

Δ𝑝 =∇ ⋅ (𝜌 𝐟) + 2𝜇∇ ⋅ (𝐑𝐢(𝐮)) 𝗂𝗇 Ω . (4)

Because any harmonic function with a vanishing mean can be added 
to the above equation, it is clear that this does not define a unique 𝑝. 
As a result, we must consider the specific BC for the system (4). Now, 
we face two critical questions: 1) Can equation (4) be used to calculate 
pressure 𝑝, and 2) does it imply incompressibility (3b)? It seems that 
the answer to both questions is yes, if the divergence of Ricci curvature 
term ∇ ⋅ (𝐑𝐢(𝐮)) is zero or small enough, i.e., if the geometry is locally 
flat. Incompressibility for a static pressure field is implied by (4) under 
∇ ⋅ (𝐑𝐢(𝐮)) = 0, as justified in Appendix B.

2.2. Pressure–Poisson equation

We solve the pressure in system (3) applying PPE and determining 
the proper BC based on that. Previously, FEs have been used to solve 
the pressure fields in the arteries driven by the so-called Neumann BCs, 
which are often sensitive and challenging to determine [38,39]. It is 
theoretically sufficient to provide a BC for the system (3) by project-

ing (3a) onto the boundary in either a normal or tangential direction. 
Thus, when Lemma A.1 and the incompressibility requirement (3b) are 
applied to the formula (3a) together with the assumption that 𝐟 is a 
constant gravity field with ∇ ⋅ (𝜌𝐟) = 0. Utilizing formulas (1) and (2), the 
3D-PPE model representing the dynamical aspect of the pressure field 
𝑝() takes the following form:

Δ𝑝() = 0 𝗂𝗇 Ω , (5a)

𝐠(∇𝑝(), 𝐧⃗) = −𝜁𝜆(𝑝() − 𝑝()) 𝗈𝗇 𝜕Ω∩ 𝜕Ω̂ , (5b)

where parameter 𝜁 is assumed to be constant, affecting the level of to-

tal blood flowing into the arterioles, and 𝑝() is a distribution enforced 
on the boundary, determining the contribution of the incoming flow. 
Note that the domain Ω is flat with zero or close-to-zero curvature, the 
boundary condition is set on the common boundary 𝜕Ω ∩ 𝜕Ω̂ of Ω and 
Ω̂, and 𝐧⃗ is the normal unit vector that is defined on the artery wall. The 
pressure drop on the boundary is denoted by −𝐠(∇𝑝, ⃗𝐧) = −𝜕𝑝∕𝜕𝐧⃗ which 
is the inward normal derivative of the blood pressure and characterizes 
the behavior of the fluid near the boundary. The BC follows from the 
assumption that the flow is laminar in arterioles, which leads the blood 
through the boundary wall to the microcirculation domain. The total 
level of this flow is scaled by the pressure 𝑝 and 𝜆 = 𝜉∕𝜉, which is de-

fined as the ratio between the length density 𝜉 of microvessels [30] per 
unit volume (𝑚−2), i.e., the total number of cross-sections per unit area, 
and the integral mean

𝜉 = 1|𝜕Ω| ∫
𝜕Ω

𝜉 d𝜔𝜕Ω ,

where |𝜕Ω| = ∫
𝜕Ω d𝜔𝜕Ω. We discuss the Hagen–Poiseuille model [1]

motivating the BC in Section 2.3 as a means of determining the BC. 
Assuming, for simplicity, a steady state flow, the blood velocity can be 
approximated based on the solution of PPE, implying the following for-
3

mula:
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𝜇Δ𝐵𝐮 =∇𝑝() − 𝜌 𝐟 , (6)

with 𝐮 = 0 on 𝜕Ω (Appendix B).

2.2.1. Variational form

The equation determining blood flow pressure in the cerebral arter-

ies is approximated numerically through FE discretization. We need to 
identify an appropriate variational formulation of PPE in order to con-

tinue with the FE discretization. Both the mathematical analysis and 
the numerical solution are based on weak formulations. Integration by 
parts results in a weak general form of the above equations for blood 
pressure (5) and velocity field (6).

We assume that 𝑝 ∈𝕎 with 𝕎 = H1(Ω) and 𝐮 ∈ 𝕍0 and 𝐟 ∈ 𝕍 , where 
𝕍0 and 𝕍 denote spaces of vector-valued functions in a physical 3D 
space, with 𝕍 = [H1(Ω)]3 and 𝕍0 = [H1

0(Ω)]
3 ⊂ 𝕍 . In other words, each of 

the three Cartesian components in 𝕍0 and 𝕍 is in the Sobolev space H1(Ω)
of square-integrable (∫Ω |𝐮|2 d𝜔Ω <∞) functions with square integrable 
partial derivatives

H1(Ω) =
{
𝑢 ∈ L2(Ω) |∇𝑢 ∈ L2(Ω)

}
and

H1
0(Ω) =

{
𝑢 ∈H1(Ω) |𝑢|𝜕Ω = 0

}
.

A variational form of (5) can be obtained by multiplying the equation 
(5a) with a smooth enough test function 𝑞 ∈𝕎 and applying the diver-

gence theorem. We arrive at the following variational problems:

I. Find 𝑝() ∈𝕎 such that, for a smooth enough test function 𝑞 ∈𝕎

𝑏(𝑝(), 𝑞) = −∫
𝜕Ω

𝑞 𝜁𝜆(𝑝() − 𝑝()) d𝜔𝜕Ω . (7)

The continuous bilinear form 𝑏 ∶𝕎 ×𝕎 →ℝ is defined as follows:

𝑏(𝑝(), 𝑞) ∶= ∫
Ω

𝐠(∇𝑝(),∇𝑞) d𝜔Ω .

II. Find 𝐮 ∈ 𝕍0 such that, for a smooth enough test function 𝐯 ∈ 𝕍0

𝑎(𝐮,𝐯) = ∫
Ω

𝐠(∇𝑝(),𝐯)d𝜔Ω − ∫
Ω

𝜌𝐠(𝐟 ,𝐯)d𝜔Ω . (8)

The continuous bilinear form 𝑎 ∶ 𝕍0 × 𝕍0 →ℝ is defined as follows:

𝑎(𝐮,𝐯) ∶= −𝜇∫
Ω

𝐠(∇𝐮,∇𝐯) d𝜔Ω .

2.3. Pressure boundary condition

The blood flows from Ω to the microcirculation domain Ω̂ through 
the total cross-section area of the outlets of the arterioles on 𝜕Ω. Ar-

terioles are microvessels that connect to arteries on one end and are 
continued by capillaries and thereon by venules in Ω̂. Most of the pres-

sure decay in the blood flow, about 70% of the total pressure [1], takes 
place in arterioles, which form a necessary transition zone for the blood 
pressure. In this study, we focus on modeling the blood flow within 
vessels and microvessels while excluding the circulation of interstitial 
fluid, which occurs outside the vessels.

2.3.1. Hagen–Poiseuille model

To obtain a value for 𝜁 , we use the Hagen–Poiseuille equation of 
laminar flow [1], which, written for a single artery-arteriole interface 
(Fig. 1), is of the form [1]:

𝜗𝑝 =
8𝜋𝜇𝐿𝑄𝑎

𝐴2
𝑎

. (9)

Here, it is taken into account that 𝑝 stands for a pressure drop between 

the inlet and outlet of an artery. As a result, it is scaled by the constant 𝜗, 
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Fig. 1. Our model of the artery-arteriole interface shows the arteries in the domain Ω and the microcirculation domain Ω̂, where blood flows from the arteries 
into a network of arterioles, capillaries, and venules. Left: The relationship between the flow rate and the normal derivative 𝐠(∇𝑝, ⃗𝐧) on 𝜕Ω of the pressure (with 
respect to the Riemannian metric) is determined by the Hagen–Poiseuille equation [1], i.e., a laminar balance between the inertial force and viscous drag in a 
cylindrical tube with a diameter 𝐷𝑎 and a length 𝐿. Right: A schematic of brain tissue cross-section with a set of blood vessels, including cross-sections of arterioles, 
capillaries, and venules. The length density of arterioles can be approximated by the total observed length density of microvessels [30], the cross-section areas of 
individual microvessels, and the total cross-section area fractions between the different microvessel types [40]. It is assumed that, due to the randomness of the 
vessel orientations, there is no orientational dependence in the length densities.
which determines the relative pressure drop in arterioles. In the equa-

tion (9), 𝑄𝑎 represents the blood flow rate through a single arteriole, 
𝐴𝑎 = 𝜋∕4 𝐷2

𝑎 is its cross-sectional area with a diameter of an arteriole 
𝐷𝑎, and 𝐿 represents its length. The value of 𝑄𝑎 can be approximated 
as

𝑄𝑎 =
𝑄|𝜕Ω| 𝜉𝑎 ,

where 𝑄 is the total flow through 𝜕Ω and 𝜉𝑎 is the average length den-

sity of arterioles on 𝜕Ω (Appendix C). It follows that

𝐿 =
|𝜕Ω|𝐴2

𝑎 𝜗𝑝 𝜉𝑎

8𝜋𝜇𝑄
, (10)

where 𝑝 is a given average pressure. Since the inward normal deriva-

tive of 𝑝 represents force per surface area, we additionally scale the 
approximation following from Hagen–Poisseuille model (9) locally by 
the relative area covered by the arterioles, i.e., the product 𝜉𝑎𝐴𝑎 be-

tween the length density 𝜉𝑎 and per vessel cross-sectional area 𝐴𝑎 of 
arterioles (Fig. 1), resulting in

𝜁 = 8𝜋 𝜇𝑄|𝜕Ω|𝐴𝑎 𝑝
.

Here it has been taken into account that 𝜆 = 𝜉∕𝜉 = 𝜉𝑎∕𝜉𝑎 (Appendix C).

2.4. Microcirculation model

When blood flows from the arteries in Ω to the microcirculation 
domain Ω̂, it produces an excess blood volume concentration 𝐜 = 𝐜(𝐱; 𝑡)
in comparison to the equilibrium state where the pressure in the head 
is constant. This can be counted as local blood supply upregulation, 
which varies the cross-sectional diameter [41]. To approximate 𝐜, we 
apply advection-diffusion equation from Fick’s second law of diffusion 
[26,27,29] and mass conservation. Fick’s second law of diffusion and 
mass conservation have the following form:

𝐜,𝑡 =∇ ⋅
(
− (𝐮⊗ 𝐜) + 𝐉

)
+ 𝐜̂ 𝗂𝗇 Ω̂×[0, 𝑇 ] ,

𝖽𝗂𝗏(𝐮) = 0 𝗂𝗇 Ω̂×[0, 𝑇 ] ,
(11)

where 𝐮 ⊗ 𝐜 and 𝐉 stand for the advective and diffusion flux, re-

spectively. The flux 𝐉 = 𝐉(𝐱; 𝑡) is a vector pointing in the direction of 
movement, and the three-dimensional flux amplitude distribution |𝐉| is 
proportional to the amount of blood flowing in the direction of 𝐉∕|𝐉| per 
4

unit time. The following equation is in accordance with Fick’s first law 
under the assumption, that volumetric blood concentration and diffu-

sive flow are proportionate to the tissue’s relative microvessel density:

𝐉 = −𝜍𝜆∇𝐜 . (12)

Here 𝜍 is an effective diffusion coefficient and is referred to as diffusiv-

ity. In system (11), the term 𝐜̂ stands for a decay term. This results in 
the following governing differential system:

𝐜,𝑡 + 𝐮 ⋅∇𝐜− 𝜍𝜆Δ𝐵𝐜 = −𝜺𝐜 𝗂𝗇 Ω̂×[0, 𝑇 ] , (13a)

𝖽𝗂𝗏(𝐮) = 0 𝗂𝗇 Ω̂×[0, 𝑇 ] , (13b)

𝐠(∇𝐜, 𝐧⃗) = − 1
𝜍𝜆

𝐠(𝐉, 𝐧⃗) 𝗈𝗇 𝜕Ω∩ 𝜕Ω̂, (13c)

where the Fickian and non-Fickian fluxes are represented by the terms 
𝐮 ⋅ ∇𝐜 and 𝜍𝜆Δ𝐵𝐜, respectively. The concentration is maximized on 
the boundary 𝜕Ω ∩ 𝜕Ω̂ due to the inward flux over 𝜕Ω ∩ 𝜕Ω̂ from Ω
to Ω̂. The decay term 𝜺𝐜 accounts for the flow from the microcircu-

lation domain to the venous circulation system, which happens at a 
rate proportional to the coefficient 𝜺. We consider a steady state solu-

tion, i.e., lim𝑡→∞ 𝐜(𝐱; 𝑡) = 𝑐(𝐱), in which concentration reaches a constant 
state or remains stable over time, 𝑐(𝐱) = 𝑐, and the flow’s macroveloc-

ity 𝐮 vanishes. The following simplified form results from applying the 
conservation of mass condition (13b) to the limiting equation (13a)

−𝜍𝜆Δ𝑐 + 𝜀 𝑐 = 𝑠 𝗂𝗇 Ω̂ , (14)

where 𝑠 = 𝜍𝜆 𝐠(∇𝑐, ⃗𝐧).

2.4.1. Parameter estimation

To obtain an approximation for 𝜍 without taking into account the 
geometry, we rely on the Hagen–Poiseuille model for the arterioles (sec-

tion 2.3.1) with the additional assumptions that (i) the excess concen-

tration is zero when the pressure is zero and that (ii) the concentration 
gradient is constant along the length of the microvessels. Under these 
assumptions, Fick’s first law (12) for the flux passing 𝜕Ω ∩ 𝜕Ω̂ is of the 
form

|𝐉| = 𝜍𝜆
𝜗𝑐

𝐿
= 𝜍𝜆

𝜗𝐴𝑎𝜉𝑎

𝐿
,

where 𝐴𝑎𝜉𝑎 is the mean volume concentration of the blood and 𝐿 is the 
distance over which the concentration decreases from 𝜗𝐴𝑎𝜉𝑎. Substitut-
ing |𝐉| = 𝜆𝑄𝑎𝜉𝑎 and the formula (10) for 𝐿, it follows that
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𝜍 =
𝐴𝑎𝑝

8𝜋𝜇
.

Parameter 𝜀 can be obtained assuming that at each interior point in Ω̂
the blood in venules flows to a venous vessel, thereby exiting Ω̂. In a 
balanced state, the concentration loss caused by this flow equals the 
density |𝐉|. We establish a balance by requiring that the sink amplitude 
𝜀 integrated over a radius 𝑅 sphere with a volume max = (4∕3)𝜋𝑅3 of 
the largest element in the FE discretization matches an outward flux |𝐉|
integrated over the surface of the sphere, i.e.,

𝜀max = (4∕3)𝜋𝑅3𝜀 = 4𝜋𝑅2|𝐉| or 𝜀 = 𝜍𝜆
𝜗

𝐿

(
45𝜋
max

)1∕3
.

2.4.2. Variational form

The variational form of (14) can be obtained in the same fashion as 
in the case of PPE. Multiplying (14) with a smooth enough test function 
ℎ ∈𝕎 and applying the divergence theorem, we arrive at the following 
form:

Find 𝑐 ∈𝕎 such that, for a smooth enough test function ℎ ∈𝕎

𝑑(𝑐, ℎ) = ∫
𝜕Ω

𝜍𝜆ℎ𝐠(∇𝑐, 𝐧⃗) d𝜔𝜕Ω , (15)

where the linear boundary term describing the incoming flow is on the 
left-hand side and 𝐧⃗ is the normal unit vector defined in the micro-

circulation domain. The continuous bilinear form 𝑑(𝑐, ℎ) is defined as 
𝑑 ∶ 𝕍̂ × 𝕍̂ →ℝ, where

𝑑(𝑐, ℎ) = ∫̂
Ω

𝜍𝜆𝐠(∇𝑐,∇ℎ) d𝜔Ω̂ + ∫̂
Ω

𝜀𝑐 ℎd𝜔Ω̂ .

2.5. Discretization

We use the Ritz-Galerkin method [42] to discretize the PPE (5) and 
Fick’s law of diffusion (14), whose solutions are assumed to be con-

tained by the trial function spaces

𝕍ℎ = 𝗌𝗉𝖺𝗇
{
𝜓1,… , 𝜓𝑛

}
⊂ 𝕍

𝕎ℎ = 𝗌𝗉𝖺𝗇
{
𝜑1,… , 𝜑𝑚

}
⊂𝕎

𝕍̂ℎ = 𝗌𝗉𝖺𝗇
{
𝜙1,… , 𝜙𝑚

}
⊂ 𝕍̂ ,

respectively. In each case, the discretization error is assumed to be 
orthogonal to the solution. Linear Lagrangian (nodal) basis functions 
are utilized in this context. Specifically, we have the sets {𝜓𝑖}𝑛

𝑖=1 and 
{𝜑ℎ}𝑚

ℎ=1 supported in Ω, as well as {𝜙ℎ}𝑚
ℎ=1 supported in Ω̂. These 

sets consist of piecewise linear functions that satisfy the conditions 
𝜓𝑖(𝑥𝑗 ) = 𝛿𝑖

𝑗
for 𝑖, 𝑗 = 1, ⋯ , 𝑛, 𝜑ℎ(𝑥𝑘) = 𝛿ℎ

𝑘
for ℎ, 𝑘 = 1, ⋯ , 𝑚 at the FE 

mesh nodes of the finite element (FE) mesh in Ω, and 𝜙ℎ(𝑥𝑘) = 𝛿ℎ
𝑘

for 
ℎ, 𝑘 = 1, ⋯ , 𝑚 at the nodes of Ω̂. Consequently, the velocity 𝐮 ∈ 𝕍 , pres-

sure 𝑝() ∈𝕎, and concentration 𝑐 ∈ 𝕍̂ take the following forms:

𝑢𝓁(𝐱) =
𝑛∑

𝑖=1
𝜓𝑖(𝐱)𝑢𝓁𝑖 , 𝑓𝓁(𝐱) =

𝑛∑
𝑖=1

𝜓𝑖(𝐱)𝑓𝓁
𝑖 ,

𝑝()(𝐱) =
𝑚∑
𝑖=1

𝜑𝑖(𝐱)𝑝𝑖 , 𝑐(𝐱)=
𝑚∑
𝑖=1

𝜙𝑖(𝐱)𝑐𝑖 ,

for 𝓁 = 1, 2, 3. The coordinate vectors are denoted by

𝐮 = (𝑢1, 𝑢2, 𝑢3) = ({𝑢1𝑖 }
𝑛
𝑖=1,{𝑢

2
𝑖 }

𝑛
𝑖=1,{𝑢

3
𝑖 }

𝑛
𝑖=1)

𝐟 = (𝑓 1, 𝑓 2, 𝑓 3) = ({𝑓 1
𝑖 }

𝑛
𝑖=1,{𝑓

2
𝑖 }

𝑛
𝑖=1,{𝑓

3
𝑖 }

𝑛
𝑖=1)

𝐩() = (𝑝(), 𝑝(), 𝑝()) = ({𝑝𝑖}𝑚𝑖=1,{𝑝𝑖}
𝑚
𝑖=1,{𝑝𝑖}

𝑚
𝑖=1)
5

𝐜 = (𝑐1, 𝑐2,… , 𝑐𝑚) .
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2.5.1. Blood pressure and velocity in arteries

The system of (7) is equivalent to the following Ritz-Galerkin dis-

cretized form:

I. Find 𝑝()
ℎ

∈𝕎ℎ, such that, for all 𝜑ℎ ∈𝕎ℎ

𝑏(𝑝()
ℎ

,𝜑ℎ) = −∫
𝜕Ω

𝜑ℎ 𝜁𝜆(𝑝()
ℎ

− 𝑝()) d𝜔𝜕Ω (16)

II. Find 𝐮ℎ ∈ 𝕍0,ℎ such that, for all 𝜓ℎ ∈ 𝕍0,ℎ

𝑎(𝐮ℎ,𝜓ℎ) = ∫
Ω

𝐠(∇𝑝(), 𝜓ℎ)d𝜔Ω − ∫
Ω

𝜌𝐠(𝐟 , 𝜓ℎ)d𝜔Ω . (17)

Here 𝕍0,ℎ ⊂ 𝕍ℎ is obtained from 𝕍ℎ by excluding the boundary degrees 
of freedom, i.e., basis functions with non-zero values on the boundary 
𝜕Ω.

Equation (16) possesses a solution that satisfies the following equa-

tion:

(𝐊+𝐌)𝐩() =𝐌𝐩() with 𝐩() = 𝐩̂+ 𝐩. (18)

Here 𝐩̂ denotes a contribution of the incoming flow, normalized to a 
given pulse pressure 𝑝̂ and 𝐩 is a normotensive diastolic average, 𝐩𝑖 = 𝑝

for each entry 𝑖. The matrices corresponding to equation (18) can be 
expressed as follows:

𝐊𝑖𝑗 = ∫
Ω

𝜑ℎ,𝑖 𝜑ℎ,𝑗 d𝜔Ω

𝐌𝑖𝑗 = ∫
𝜕Ω

𝜁𝜆𝜑𝑖𝜑𝑗 d𝜔𝜕Ω,

where 𝐊 =
[
𝐊𝑖𝑗

]
𝑚×𝑚 and 𝐌 =

[
𝐌𝑖𝑗

]
𝑚×𝑚.

Following from the present modeling premises, we find an esti-

mate for the systolic pressure distribution as a steady state solution, 
whose boundary restriction approximately satisfies 𝐩()|𝜕Ω = 𝐩(), i.e., the 
boundary restriction of 𝐩()|𝜕Ω equals that of 𝐩(). Given an initial approx-

imation 𝐩̂(0) of 𝐩̂, a recursive sequence of 𝐩()(1), 𝐩()(2), … is obtained 
by finding 𝐩()(𝑘) as a solution of (18) corresponding to 𝐩̂(𝑘), and set-

ting 𝐩̂(𝑘+1) = 𝐩()|𝜕Ω , for 𝑘 = 0, 1, 2, …. As a stopping criterion, we use the 
tolerance condition

‖𝐩()(𝐾) − 𝐩()(𝐾−1)‖2‖𝐩()(𝐾−1)‖2 < 𝜖

with 𝜖 = 0.01 and fix 𝐩()(𝐾)
as the final estimate of 𝐩(). The initial 

distribution 𝐩̂(0) is selected to be piecewise constant with 𝐩̂(0)
𝑖

= 𝑝̂, if 𝑖
corresponds to one of two inlets (Fig. 2) placed in the vicinity of the 
anterior and posterior end-points of Circle of Willis at the base of the 
brain, where the blood flow enters the brain, one in basilar artery and 
the other one in the junction of anterior cerebral and anterior commu-

nicating arteries. Other entries of 𝐩̂(0) are set to zero. Two sources were 
applied to ensure balanced results; namely, asymmetry of the flow in 
the Circle of Willis has been shown to extend to global scale [23].

The solution of equation (17) satisfies 𝐮𝓁 = 1∕𝜇𝐋−1𝐪𝓁 , where the 
components of matrices 𝐋 and 𝐪𝓁 are obtained as follows:

𝐋𝑖𝑗 = −∫
Ω

𝜇𝜓ℎ,𝑖 𝜓ℎ,𝑗 d𝜔Ω

𝐪𝓁𝑖𝑗 = ∫
Ω

𝑝𝓁
ℎ
𝜑ℎ,𝑖 𝜓𝑗 d𝜔Ω − ∫

Ω

𝜌𝑓𝓁
𝑖 𝜓𝑗 d𝜔Ω ,

where 𝓁 = 1, 2, 3. Matrix 𝐋 can be obtained from 𝐊 by excluding the 
boundary degrees of freedom from row and column indices. Namely, 
the test function space 𝕍ℎ is linear and nodal akin to 𝕎ℎ, but in 𝕍ℎ the 
boundary degrees of freedom are set to zero due to the zero boundary 

condition for the velocity.
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2.5.2. Volumetric blood concentration in microcirculation

The discretized diffusion problem related to the system of (15) can 
be formulated as follows:

Find 𝑐ℎ ∈𝕎ℎ, such that, for all 𝜙ℎ ∈𝕎ℎ

𝑑(𝑐ℎ,𝜙ℎ) = (𝑠,𝜙ℎ) . (19)

A numerical solution 𝐜 of (19) can be obtained via

(𝐒+𝐓) 𝐜 =𝐰 , (20)

where

𝐒𝑖𝑗 = ∫̂
Ω

𝜍𝜆𝜙ℎ,𝑖 𝜙ℎ,𝑗 d𝜔Ω̂

𝐓𝑖𝑗 = ∫̂
Ω

𝜀𝜙𝑖 𝜙𝑗 d𝜔Ω̂

𝐰𝑖 = ∫̂
Ω

𝑠𝜙𝑖 d𝜔Ω̂ ,

and 𝐰 =
(
𝐰1 𝐰2 …𝐰𝑚

)𝑇
.

2.6. Electrical conductivity of brain tissues

To approximate how excess volumetric blood concentration perturbs 
the electrical conductivity distribution of the head, we apply Archie’s 
law, a two-term linear combination of power functions that approxi-

mates the effective electrical conductivity 𝜎 for a two-phase mixture of 
fluid and inhomogeneous medium [31–34]. For a two-phase mixture, 
Archie’s law is of the form

𝜎 = 𝜎𝑚(1 − 𝑐)𝜏 + 𝜎𝑓 𝑐
𝛽 with 𝜏 =

log
(
1 − 𝑐𝛽

)
log(1 − 𝑐)

, (21)

where 𝜎𝑓 and 𝜎𝑚 denote conductivities of fluid and medium, respec-

tively, and 𝛽 is so-called cementation factor [31,33], which for the 
cerebral cortex is between 3∕2 and 5∕3 [31]. The lower and upper lim-

its for 𝛽 follow from spherical and cylindrical inhomogeneities, which 
in the cortex are represented by the somas and dendrites of the pyrami-

dal cells, respectively. When substituted in the formula of Archie’s law, 
𝛽 = 3∕2 and 𝛽 = 5∕3 yield a lower and upper bound for the effective 
electrical conductivity, respectively.

Alternatively, the effective electrical conductivity can be estimated 
from above and below via Hashin–Shtrikman upper and lower bound, 
defined as

𝜎+ = 𝜎𝑓

(
1 −

3(1 − 𝑐)
(
𝜎𝑓 − 𝜎𝑚

)
3𝜎𝑓 − 𝑐

(
𝜎𝑓 − 𝜎𝑚

)) (22)

𝜎− = 𝜎𝑚

(
1 +

3𝑐
(
𝜎𝑓 − 𝜎𝑚

)
3𝜎𝑚 + (1 − 𝑐)

(
𝜎𝑓 − 𝜎𝑚

)) , (23)

respectively. Hashin-Shtrikman bounds have shown to be valid for 
coated spherical inhomogeneities of all different sizes, filling the space 
[43].

2.7. Numerical experiments

2.7.1. Segmentation

We performed numerical experiments using a realistic multi-

compartment head model to assess PPE in combination with Fick’s and 
Archie’s laws in reconstructing an electrical conductivity atlas of the 
brain. This head model was created using the open sub-millimeter pre-

cision Magneto Resonance Imaging (MRI) dataset1 of CEREBRUM-7T 
6

1 doi:10 .18112 /openneuro .ds003642 .v1 .1 .0.
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Table 1

Compartments of the head model segmentation were obtained us-

ing the FreeSurfer software suite [44] together with FieldTrip’s 
[45] segmentation interface, which has been built upon the func-

tions of the package [46]. The vessel segmentation was performed 
using the Vesselness algorithm [47,48]. The piecewise constant 
background approximation of the electrical conductivity distri-

bution 𝜎𝑚 was based on [8]. The subcortical active nuclei were 
associated with the conductivity of the grey matter [49]. Vessel 
conductivity was chosen to match the blood conductivity [50]. 
Skull and skin conductivity values were included in the head seg-

mentation but not in the electrical conductivity atlases, since the 
segmented blood vessels were fully enclosed by the skull, inside 
the cranial cavity.

Compartment Segmentation method 𝜎𝑚 (S m-1)

Blood vessels Vesselness 0.70

Grey matter FreeSurfer 0.33

White matter FreeSurfer 0.14

Cerebellum cortex FreeSurfer’s Aseg atlas 0.33

Cerebellum white matter FreeSurfer’s Aseg atlas 0.14

Brainstem FreeSurfer’s Aseg atlas 0.33

Cingulate cortex FreeSurfer’s Aseg atlas 0.14

Ventral Diencephalon FreeSurfer’s Aseg atlas 0.33

Amygdala FreeSurfer’s Aseg atlas 0.33

Thalamus FreeSurfer’s Aseg atlas 0.33

Caudate FreeSurfer’s Aseg atlas 0.33

Accumbens FreeSurfer’s Aseg atlas 0.33

Putamen FreeSurfer’s Aseg atlas 0.33

Hippocampus FreeSurfer’s Aseg atlas 0.33

Pallidum FreeSurfer’s Aseg atlas 0.33

Ventricles FreeSurfer’s Aseg atlas 0.33

Cerebrospinal fluid (CSF) FieldTrip-SPM12 1.79

Skull FieldTrip-SPM12

Skin FieldTrip-SPM12

[13]. The dataset has been acquired using 7T magnetic flux density 
and, therefore, allows distinguishing the arterial vessels as a separate 
compartment, as shown in [12]. The FreeSurfer Software Suite [44], 
FieldTrip’s [45] interface for the SPM12 surface extractor [46], and the 
Vesselness algorithm [47,48,12] were applied to segment the arteries, 
i.e., domain Ω. The other 16 brain compartments (Table 1), also en-

closed by the skull, constituted Ω̂. Skin and skull were not included in 
the electrical conductivity atlas since the domain of arterial vessels Ω
was fully contained by the skull. The microcirculation domain Ω̂ in-

cluded microvessel-containing compartments: in addition to skin and 
skull, the cerebrospinal fluid (CSF) compartment and CSF-filled ventri-

cles were excluded from Ω̂.

2.7.2. Vessel extraction

The vessel extraction process was inspired by the work of Choi et al. 
[51] but is not entirely based on their proposed procedure. The Frangi 
filter was first applied to the MRI data slice-by-slice, and then the results 
were aggregated to produce the final arterial model. This process was 
performed in the following three steps:

1. Frangi’s algorithm was applied to both the preprocessed INV2 and 
T1w slices of the dataset separately. We used the Scikit-Image [47]

package’s implementation of the Frangi method with different pa-

rameters for each slice.

2. After applying the filter to a specific slice of the INV2 and T1w 
data, we created a mask by superposing these two layers in an 
element-wise manner. The mask was binarized using a user-defined 
threshold level; every element with value less than this threshold 

was set to zero and, otherwise, to one.

https://doi.org/10.18112/openneuro.ds003642.v1.1.0
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Table 2

The physical parameters applied in numerical simulations. Gravita-

tional acceleration has been set to its average level and oriented 
parallel to the z-axis. The electrical conductivity of the blood 𝜎𝑓

and the reference pressure were chosen according to [50] and [21], 
respectively. Blood density 𝜌, 𝜇, total CBF 𝑄, pressure decay in ar-

terioles 𝜗, diameters 𝐷𝑎, 𝐷𝑐 and 𝐷𝑣 of arterioles, capillaries and 
venules (subtracting the total wall thickness, 2.0E-5, 2.0E-06 and 2E-

6, respectively), and their relative total area fractions 𝛾𝑎 , 𝛾𝑐 and 𝛾𝑣, 
respectively, are based on the textbooks [40,1]. Microvessel density 
𝜉 in cerebral and cerebellar grey and white matter (GM and WM), 
subcortical WM, and the brain stem was chosen according to the me-

dian values observed in [30]. The cementation factor estimates for 
spherical and cylindrical inhomogeneities approximating somas and 
dendrites of brain tissues, respectively, are based on [31]. Arteriole 
length has been obtained by substituting other parameter values in 
(10) with an appropriate correspondence to the values found in liter-

ature [1].

Property Param. Unit Value

Gravitation (z-component) 𝑓 (3) m s-2 -9.81

Electrical conductivity of blood 𝜎𝑓 S m-1 0.70

Average diastolic pressure 𝑝 mmHg 75

Pulse pressure 𝑝̂ mmHg 40

Arteriole length 𝐿 mm 0.4

Blood density 𝜌 kg m-3 1050

Viscosity 𝜇 m2 Pa s 4.0E-03

Total CBF 𝑄 ml min-1 750

Pressure decay in arterioles 𝜗 % 70

Arteriole diameter 𝐷𝑎 m 1.0E-05

Capillary diameter 𝐷𝑐 m 7.0E-06

Venule diameter 𝐷𝑎 m 1.8E-05

Arteriole total area fraction 𝛾𝑎 % 25

Capillary area fraction 𝛾𝑐 % 50

Venule area fraction 𝛾𝑣 % 25

Microvessels in cerebral GM 𝜉 m-2 2.4E08

Microvessels in cerebral WM 𝜉 m-2 1.4E08

Microvessels in cerebellar GM 𝜉 m-2 3.0E08

Microvessels in cerebellar WM 𝜉 m-2 1.0E08

Microvessels in subcortical WM 𝜉 m-2 1.5E08

Microvessels in brainstem 𝜉 m-2 2.9E08

Cementation factor (spheres) 𝛽 None 3/2

Cementation factor (cylinders) 𝛽 None 5/3

3. The segmented cerebral vessels were obtained by iterating the pre-

vious steps through an axis of the MRI image and aggregating the 
results. In order to reduce noise, aggregation was performed sep-

arately for sagittal, axial, and coronal slices using the following 
scoring scheme: if a voxel was detected as a vessel in two or three 
of the results, it was considered a vessel in the final vessel mask; 
otherwise, it was neglected.

2.8. Numerical simulations

The numerical simulations were performed using the open Zeffiro 
Interface [35,52] (ZI) toolbox. Solvers for PPE, Fick’s law, and Archie’s 
law were implemented as Matlab codes and included in ZI.2 Using ZI, 
the volume of the head segmentation was discretized by a tetrahedral FE 
mesh of 6.4 M nodes and 32 M elements, corresponding approximately 
to 1 mm overall resolution. Of these, Ω contained 0.15 M nodes and 
0.54 M tetrahedra, and Ω̂ 2.4 M nodes and 11 M tetrahedra. Other 
relevant parameter values can be found in Table 2.
7
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Table 3

Relative difference measure (RDM) and magnitude (MAG) dif-

ference for the mixture models applied in this study.

Mixture model Type RDM MAG

Archie’s law for spheres Lower bound 11.19 1.65

Archie’s law for cylinders Upper bound 11.32 1.69

Hashin–Shtrikman Lower bound 11.29 1.72

Hashin–Shtrikman Upper bound 11.85 1.86

After solving the discretized pressure in Ω from (18), the excess 
blood concentration 𝑐 in Ω̂ was obtained by solving (20). Archie’s law 
(21) was evaluated using the excess concentration 𝑐 and two alternative 
cementation factors 𝛽 = 5∕3 and 𝛽 = 3∕2 corresponding to cylindrical 
and spherical tissue inhomogeneities and constituting a lower and up-

per bound approximation for the electrical conductivity, respectively. 
In addition, the Hashin–Shtrikman lower and upper bounds (23) and 
(22) were evaluated as an alternative approximation.

As a result, altogether five different electrical conductivity atlases 
were obtained: one corresponding to the piecewise constant background 
distribution and four effective electrical conductivity atlases following 
from the different mixture models. To examine differences between the 
background 𝜎bg and effective 𝜎eff distributions, the following difference 
measures (%) were evaluated:

RDM = 100
‖‖‖‖‖

𝜎eff‖𝜎eff‖1 −
𝜎bg‖𝜎bg‖1

‖‖‖‖‖1 , (24)

MAG = 100
‖𝜎eff‖1‖𝜎bg‖1 − 100 , (25)

PRD = 100
|𝜎eff − 𝜎bg|‖𝜎bg‖∞ . (26)

Of these, RDM (relative difference measure) evaluates the overall rel-

ative difference between normalized distributions 𝜎eff and 𝜎bg, MAG 
(magnitude measure) shows the average amplitude of 𝜎eff compared to 
𝜎bg, and PRD (pointwise relative difference) is the difference between 
𝜎eff and 𝜎bg in relation to ‖𝜎bg‖∞ for each point.

3. Results

This section describes the results of our four-phase numerical sim-

ulations, where (i) the brain model was segmented to obtain Ω and 
Ω̂ as well as an estimate for the background tissue concentration; (ii) 
the blood pressure 𝑝 and velocity 𝐮 following from the present PPE 
model were found; (iii) Fick’s law was applied to find an estimate 𝑐 for 
excess blood concentration in the microcirculation domain Ω̂; finally, 
(iv) effective electrical conductivity atlases were reconstructed by esti-

mating the effect of the excess blood concentration on the background 
distribution via Archie’s law and Hashin–Shtrikman bounds. The results 
of the numerical experiments have been included in Fig. 2 showing 
the head segmentation results; Fig. 3 with sagittal, axial, and coronal 
illustrations of the pressure and concentration distributions obtained 
as numerical solutions of PPE and Fick’s law; Table 3 including RDM 
and MAG for the estimates of background and effective electrical con-

ductivity atlases obtained via Archie’s model; histograms showing the 
value distributions of the blood pressure, velocity, and volumetric blood 
concentration (Fig. 4) and the PRD of the electrical conductivity distri-

bution (Fig. 5); and Fig. 6 visualizing effective conductivity atlases for 
sagittal, axial, and coronal projections.

3.1. Phase (i): segmentation

The segmentation obtained (Fig. 2) shows that the Vesselness al-

gorithm found a connected set of arteries inside the skull. Finding a 

connected set was considered important for the continuity of the PPE 

https://github.com/sampsapursiainen/zeffiro_interface
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Fig. 2. Top: A surface segmentation was obtained for the subject sub-045 of 
the open CEREBRUM-7T dataset1 [13] containing 7-Tesla (T) MRI data. Sur-

face meshes (Table 1) were extracted using the segmentation routines of the 
FreeSurfer software suite [44] and FieldTrip’s [45] interface for SPM12’s sur-

face extractor [46]. The cerebral arterial vessels shown on the right (violet) 
were segmented using Frangi’s Vesselness algorithm [47,48] as suggested in 
[12]. The clipping planes correspond to the sagittal, axial, and coronal surface 
slices shown in this study. Bottom: Sagittal, axial, and coronal projections of 
the segmentation without cerebral grey and white matter surfaces, showing the 
arteries and how they integrate with the subcortical structures. Two spherical 
surfaces show the locations of two 10 mm diameter inlets placed in the vicin-

ity of the anterior and posterior end-points of the Circle of Willis at the base 
of the brain. The locations correspond to the basilar artery and the junction of 
anterior cerebral and anterior communicating arteries.

solution. Therefore, it was prioritized in the segmentation process over 
resolution, which led to an overlap of the tightly packed vessel bundles 
following from cortical branches. This geometrical distortion was con-

sidered unavoidable, due to the relatively small diameter of the cerebral 
arteries compared to the 1 mm resolution of the discretization.

3.2. Phase (ii): PPE

As shown by Figs. 3 and 4, excluding the outliers, the total pressure 
distribution 𝑝 varies between 80 mmHg and 115 mmHg in the artery 
domain Ω. The values are the greatest at the base of the brain, close to 
the basilar artery, the deepest vessel in Ω, which is oriented nearly ver-

tically in front of the brainstem. The pressure gradually decreases when 
moving towards the cerebral cortex, where branched, overlapping struc-

tures are dominant. This result is expected since the total vessel area 
gradually increases as the branching occurs. Thus, the pressure grad-

ually decreases as the blood flows towards smaller vessels, eventually 
entering the microcirculation domain Ω̂.

The blood velocity profile varies between 0 and 1.46 m/s, excluding 
8

the outliers (Figs. 3 and 4). The greatest values were observed in ante-
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rior and middle cerebral artery which had overall greater velocities than 
posterior cerebral artery or the smaller arteries in cortical branches.

3.3. Phase (iii): excess blood concentration

The excess blood concentration estimate 𝑐 obtained via Fick’s law 
(Fig. 3) expectedly decays when moving away from the arteries in Ω
that bring blood into the microcirculation domain Ω̂. The amplitude of 
𝑐 vanishes at a distance of 10–20 mm from the arteries. Consequently, 
the effect of the concentration on the electrical conductivity atlases is, 
within the present model, limited to this distance.

3.4. Phase (iv): effective electrical conductivity atlases

As shown by Table 3, the reconstructed atlases differ overall by 
1.65–1.86% and 11.19–11.85% with respect to the MAG and RDM, re-

spectively. The major part of the differences is limited to a few percent 
of the volume fraction (Fig. 4), which is obvious based on the excess 
concentration estimates obtained in the third phase and is verified by 
PRD, showing that locally the largest differences are approximately 
30% with respect to the maximum (1.79 S/m) of the background dis-

tribution. Those can be related to regions close to the vessels where 
the excess blood concentration is close to one. Compared to the other 
atlases, the Hashin–Shtrikman upper bound yields a greater volume 
fraction of PRD values slightly below 30%. Spatial differences between 
atlases corresponding to different mixture models are minor, which can 
be observed based on Fig. 6.

4. Discussion

This study demonstrated that a simplification of the Stokes equation 
(SE), namely the pressure–Poisson equation (PPE) [25] allows for the 
estimation of the blood pressure in cerebral arteries segmented from 
open 7T MRI data [13]. We introduced a boundary condition (BC) based 
on the Hagen–Poisseuille model [1] to bind PPE with the governing 
physical parameters of CBF, particularly the microvessel diameters [1]

and densities [30]. Through the formulation of the PPE and the BC, we 
obtained an equivalent formulation of the incompressible SE.

Based on the solution of PPE, we estimated the excess volumetric 
blood concentration in microvessels caused by the pressure using Fick’s 
law [26,27], the parameters of which were likewise obtained via the 
Hagen–Poisseuille model. Finally, the effect of the excess concentration 
on the brain tissues was approximated using Archie’s law as well as the 
upper and lower bounds of Hashin and Shtrikman [31]. Our four-phase 
modeling process (i) first generates a multi-compartment FE mesh and 
a piecewise conductivity atlas of the head, then (ii) finds a solution for 
PPE and (iii) Fick’s law, and finally, (iv) reconstructs an atlas.

As the strength of our approach, we suggest the direct applicability 
of NSEs and their approximations to individual datasets to potentially 
improve the quality of electrophysiological brain modeling. Thereby, 
the results of this study complement the recently developed statistical 
approaches following from 1D NSEs [6,7]. Overall, this study advances 
the electrical conductivity approximation techniques applicable in elec-

trophysiological modalities, where dynamic components affecting the 
conductivity atlases are typically absent, e.g., EEG/MEG source local-

ization [8], tES [4], and EIT [5,53,6]. In particular, we have shown how 
to incorporate the dynamic blood flow effects in modeling the electrical 
conductivity when a high-resolution and high-intensity MRI segmenta-

tion with distinguishable blood vessels is available [12].

We consider PPE an appropriate approximation of SE under the 
present modeling framework, since the MRI data does not allow a per-

fect segmentation of cerebral arteries. Hence, a more advanced solution 
based on NSEs might at least partly suffer from the limited accuracy of 
the segmentation. The current results suggest a spatial pressure vari-

ation between 80 and 115 mmHg, which matches with ±5 mmHg 

discrepancy the normotensive systolic pressures found via numerical 
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Fig. 3. Approximations of systolic blood pressure, velocity, and volumetric blood concentration illustrated on a logarithmic color scale Top: Sagittal, axial, and 
coronal views of the pressure distribution (mmHg) solving PPE in domain Ω. The large subcortical arteries can be observed to have a higher pressure up to 115 
mmHg, compared to the smaller arteries of the cortical branches, for which the value range extends down to 80 mmHg. Values larger than 𝑞75 + 1.5(𝑞75 − 𝑞25), where 
𝑞25 and 𝑞75 denote the 25th and 75th percentiles, respectively, have been excluded as outliers. Center: The velocity distribution (m/s) in Ω. The greatest values 
extend up to or close to 1.46 m/s. The anterior and middle cerebral arteries can be observed to have overall greater velocities than the posterior cerebral arteries 
or the arteries with smaller cortical branches. Outliers larger than 𝑞75 + 1.5(𝑞75 − 𝑞25) have been excluded. Bottom: Sagittal, axial, and coronal surface cuts of the 
estimated excess blood concentration (%) in the microvessel domain Ω̂ as predicted by Fick’s law. The greatest values are obtained in the vicinity of the arterial 
vessel boundary 𝜕Ω, i.e., the boundaries of the violet subdomains. The concentration decays to zero within 10–20 mm of a 𝜕Ω. The visible structures not included 
9

in Ω̂ include the arterial vessels, i.e. Ω, ventricles (blue), and cerebrospinal fluid (green).
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Fig. 4. Histograms for the distributions of blood pressure, velocity, and vol-

umetric concentration. The horizontal axis shows the value of the pressure 
(top), velocity (center), or concentration (bottom), and the vertical one shows 
the corresponding volume fraction of Ω̂ (%) on a logarithmic scale. Each vi-

sualization includes 20 bars. For pressure and velocity, outliers larger than 
𝑞75 + 1.5(𝑞75 − 𝑞25), where 𝑞25 and 𝑞75 have been excluded, the concentration 
is shown for the values above 0 and below 100%.

simulation in [21] for arteries with diameter greater than 0.5 mm (e.g., 
117 mmHg for 4.839 mm internal carotid artery, 113 mmHg for 3.448 
mm basilar artery, 110 mmHg for 0.545 mm distal medial striate artery, 
and 85 mmHg for 1.039 mm posterior parietal branch of the middle 
cerebral artery).

The velocity distribution can be considered appropriate based on 
experimental transcranial doppler ultrasound studies, e.g., [54,55]. A 
peak systolic velocity of 1.4 m/s has been suggested as a threshold 
criterion for mild stenosis in an intracranial vessel [54]. While our re-

sults reach that threshold, the vast majority of the velocity distribution 
stays below 1.4 m/s, i.e., in the range found for healthy subjects. While 
there are some obvious artifacts, the structure of the observed velocity 
distribution reflects the existing literature, as the greatest values were 
observed in the larger vessels, of which the middle and anterior cere-
10

bral arteries have overall greater velocities than the posterior cerebral 
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artery or the vessels with a smaller diameter in the cortical branches 
[56,1].

The present model of excess blood flow and concentration near the 
arteries, resulting from arterial pressure, builds upon the utilization of 
Fick’s law within the intricate network of microvessels [26,27]. This 
model incorporates the assumption of a linear pressure drop along the 
length of microvessels and considers the adaptability of microvessel di-

ameter and length to regulate blood flow [41]. Since venous vessels 
or any vessels outside the brain are difficult to distinguish based on 
MRI data [12], we introduced a uniform sink term that covers the en-

tire brain. Although directly validating the accuracy and reliability of 
numerical simulation results may be impractical, an observable correla-

tion can be found between the estimated concentration distribution and 
whole-brain CBF scans obtained through MRI, positron emission tomog-

raphy, and single-photon emission computed tomography [57–59]. A 
potential feature affecting the accuracy of our estimate obtained for 
the volumetric concentration is the fluid exchange between the mi-

crovessels and the tissue interstition, which was omitted in deriving the 
diffusion coefficient. We, however, deem that the uncertainty related to 
the sink term is likely to be a dominant error source as the venous flow 
rate is greater than the interstitial fluid exchange.

Our excess concentration estimates and the general knowledge of 
perfusion scans both demonstrate that the excess blood in the brain is 
not limited to the large arteries but is somewhat spread in the neighbor-

hood of those. Thus, the present distributions obtained using Archie’s 
law and Hashin–Shtrikman bounds, which, in this study, were designed 
to take this aspect into account, might represent an improvement com-

pared to the piecewise constant electrical conductivity estimates when 
a segmentation of the arteries is available. Furthermore, as suggested 
in [12], an additional challenge arises due to a significant portion of 
the blood being limited to the subcortical region of the brain. This area 
is acknowledged to exhibit compromised localization and stimulation 
accuracy when utilizing non-invasive techniques such as EEG/MEG, 
EIT, and tES. We consider studying this aspect from the application 
point of view as important future work, while the focus of this study 
clearly was on establishing an appropriate modeling framework in or-

der to take dynamic blood flow effects into account in an individualized 
MRI-based electrical conductivity atlas of the brain. The knowledge of 
the mixture models suggests [31] that while Hashin–Shtrikman bounds 
give valuable information about the potential modeling discrepancies, 
they do not achieve the accuracy of Archie’s law, which is better suited 
for brain tissues. While the discrepancies between the models can be 
considered significant regarding the local value of electrical conduc-

tivity, the global differences observed in this study can be considered 
minor.

As for the limitations of this study, based on the above reasoning, we 
do not expect that our model in its current form would be applicable 
for obtaining other than coarse estimates of blood pressure, velocity, 
volumetric concentration, and electrical conductivity distribution; the 
current results are limited to showing the feasibility of evaluating the 
PPE approximation for pressure and velocity to obtain estimates for 
concentration and electrical conductivity directly based on individual-

ized data in electrophysiological modeling. As a governing limitation, 
we consider the weak distinguishability of blood vessels from MRI data 
recorded with a magnetic flux density lower than 7T, as most datasets 
applied in electrophysiological head model generation comprise 3T or 
4T measurements. Moreover, the present mathematical model is simpli-

fied and thus limited in its capability to approximate cerebral circula-

tion. Features omitted in this model include any time-dependencies of 
the blood flow, the contribution of viscoelastic arterial walls [60] and 
fluid exchange between microcirculation and tissue interstitium [61]. 
A simplified model is, however, well-motivated in this study due to the 
incompleteness of the MRI data with respect to obtaining blood vessel 

segmentation.
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Fig. 5. Histograms showing the distribution of the relative difference PRD (%) between the piecewise constant background and the approximated effective electrical 
conductivity in those parts of Ω̂, where PRD exceeds 0.1%. The horizontal axis shows the value of PRD, and the vertical one shows the volume fraction (%) of the 
corresponding computing domain on a logarithmic scale. Each visualization includes 20 bars.
4.1. Future prospects

While we achieved an appropriate overall match with the existing 
results, such as a similar range of values and distribution of the elec-

trical conductivity perturbation as shown in [6,7], further studies are 
required to validate the present approach. The focus of future work will 
be on approximating the velocity field of cerebral circulation, which 
would necessitate solving a time-dependent system, e.g., the Navier–

Stokes equation. This work will involve a complex and multidisciplinary 
study focusing on the electrical conductivity of the brain, incorporating 
mathematical modeling, numerical simulations, and data analysis to ad-

vance our understanding of brain function. We will use a segmentation 
of arterial blood vessels in the brain and a dynamic solution of NSEs 
coupled with Fick’s law to represent microcirculation in a specific do-

main. For this purpose, we will solve a discretized non-Newtonian NSEs 
system using a two-stage process involving pressure estimation and ve-

locity field updates. This includes regularization techniques to ensure 
numerical stability. The motivation behind this research lies in its sig-

nificance for EEG, tES, and EIT, particularly, in scenarios characterized 
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by dynamic modeling.
Looking ahead, the future path of this research will necessitate deep 
exploration of theoretical foundations, such as geometry, boundary con-

ditions and viscosity models, as well as experimental validation. An 
important aspect is, for example, how computing geometry influences 
the results obtained. To enlighten this, for example, a modeling study 
can be conducted to validate the performance of the current versions of 
PPE and Fick’s law within a simplified computational geometry, such as 
a cylindrical domain. Furthermore, an experimental study can be con-

ducted to compare the results of perfusion imaging with numerically 
simulated volumetric blood concentration. We also aim at multi-subject 
studies and evaluations conducted at different scales.
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Fig. 6. Top row: Sagittal, axial, and coronal visualization of the piecewise constant background distribution 𝜎𝑚 in which each compartment corresponds to a 
constant electrical conductivity given in Table 1. Compared to the background, each effective electrical conductivity distribution the conductivity in the vicinity of 
the arteries is emphasized. Center row:: Sagittal, axial, and coronal illustration of the effective electrical conductivity atlas obtained with Archies’s law assuming 
that the tissue inhomogeneities are cylindrical. Bottom row: A comparison between the different effective electrical conductivity atlases in a sagittal region of 
interest. The differences can be observed to be minor. Hashin–Shtrikman upper bound shows more spread effects of the blood flow than the other estimates.
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Appendix A. Motivation for approximating NSEs

The Cauchy stress tensor, which is the symmetric component of the 
gradient of the velocity field, 𝐮, is always split into two parts and writ-

ten as 𝜎(𝐮, 𝑝) = −𝐈 𝑝 + 𝜇 𝐬𝐮, where I is the unit tensor. 𝐬𝐮 = ∇𝐮 + (∇𝐮)𝑇
and 𝜇 𝐬𝐮 stand as a stress tensor and deformation (strain) rate tensor, 
respectively. Following is a definition of the diffusion force [62]

𝐋𝐮 ∶= 𝖽𝗂𝗏(𝐬𝐮) = Δ𝐵𝐮+ 𝗀𝗋𝖺𝖽(𝖽𝗂𝗏(𝐮)) +𝐑𝐢(𝐮) , (A.1)

where Δ𝐵 is the Bochner Laplacian and 𝐑𝐢 is the Ricci curvature [63], 
which is given in the local coordinates by the Riemann curvature tensor 

𝐑 =𝑅ℎ

𝑘𝑖𝑗
as follows
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(𝐑𝐢(𝐮))𝑗 ∶= (𝐑𝐢 ∶ 𝐮)𝑗 =𝑅𝑘
𝑘𝑖𝑗

𝑔𝑖ℎ𝑢ℎ =𝑅𝑖𝑗𝑢
𝑖 . (A.2)

Lemma A.1.

𝖽𝗂𝗏(𝐋𝐮) = 2𝖽𝗂𝗏(Δ𝐵𝐮) = 2Δ𝐵(𝖽𝗂𝗏(𝐮)) + 2𝖽𝗂𝗏(𝐑𝐢(𝐮)) .

Proof. We have:

𝖽𝗂𝗏(𝐋𝐮) = 𝖽𝗂𝗏(𝖽𝗂𝗏(∇𝐮)) + 𝖽𝗂𝗏(𝖽𝗂𝗏(∇𝐮)𝑇 ) = 𝑔ℎ𝑘(𝑢𝑖;ℎ𝑖𝑘 + 𝑢𝑖;ℎ𝑘𝑖) .

By applying the Ricci identity to formula (A.1) we get

𝖽𝗂𝗏(𝐋𝐮) = 2(𝑔ℎ𝑘𝑢𝑖;𝑖ℎ𝑘 + 𝑔ℎ𝑘𝑢𝑖;𝑘𝑅ℎ𝑖 + 𝑔ℎ𝑘𝑢𝑖𝑅ℎ𝑖;𝑘) .

On the one hand, the following formula will follow easily from defini-

tion

Δ𝐵(𝖽𝗂𝗏(𝐮)) = Δ𝐵(𝑢𝑖;𝑖) = 𝖽𝗂𝗏(𝗀𝗋𝖺𝖽(𝑢𝑖;𝑖)) = 𝑔ℎ𝑘𝑢𝑖;𝑖ℎ𝑘 .

On the other hand, by applying formula (A.2), we obtain

𝖽𝗂𝗏(𝐑𝐢(𝐮)) = 𝖽𝗂𝗏(𝑢ℎ𝑅ℎ𝑖) = 𝑔ℎ𝑘𝑢𝑖;𝑘𝑅ℎ𝑖 + 𝑔ℎ𝑘𝑢𝑖𝑅ℎ𝑖;𝑘 .

Consequently, we can show

𝖽𝗂𝗏(𝖽𝗂𝗏(∇𝐮)) = 𝖽𝗂𝗏(𝑢𝑖;ℎ𝑖) = 𝑔ℎ𝑘𝑢𝑖
,ℎ𝑖𝑘

= 𝑔ℎ𝑘(𝑢𝑖;𝑖ℎ𝑘 + 𝑢𝑖;𝑘𝑅ℎ𝑖 + 𝑢𝑖𝑅ℎ𝑖;𝑘) ,

which proves 𝖽𝗂𝗏(𝖽𝗂𝗏(∇𝐮)) = 1
2𝖽𝗂𝗏(𝐋𝐮). □

Appendix B. Incompressibility of flow with static pressure field

In this study, we assume that 𝐮,𝑡 = 0. If 𝑝 = 𝑝(𝐱; ⋅) is a static pressure 
distribution between 0 and 𝑡, and 𝐮(𝐱; 0) = 𝐮0 with ∇ ⋅𝐮0 = 0, the velocity 
field 𝐮̂ = 𝐮 − 𝐮0 such that 𝐮̂(𝐱; 0) = 0, can be obtained as follows

𝐮̂(𝐱; 𝑡) = lim
𝑘→∞

𝐮̂𝑘(𝐱; 𝑡)

where

𝐮̂𝑘 = (𝐈+Δ𝑡
𝜇

𝜌
𝐋) 𝐮̂𝑘−1 + 𝐮̂1 with Δ𝑡 = 𝑡

𝑘
,

for 𝑘 = 1, 2, … and ∇ ⋅ 𝐮̂𝑘 = 0, which follows inductively from (4). Induc-

tion implies further that 𝐮̂1 = 𝜌−1Δ𝑡 (𝜌 𝐟 −∇𝑝) and

𝐮̂𝑘 =
𝑘∑

𝓁=1
(𝐈+Δ𝑡

𝜇

𝜌
𝐋)𝓁−1 𝐮̂1.

Consequently, by the geometric series formula (𝐈 −𝐀)−1 =∑∞
𝓁=1𝐀

𝓁−1 it 
holds that

𝐮̂ = lim
𝑘→∞

𝐮̂𝑘 =
∞∑
𝓁=1

(𝐈+Δ𝑡
𝜇

𝜌
𝐋)𝓁−1 𝐮̂1

= (𝐈− 𝐈−Δ𝑡
𝜇

𝜌
𝐋)−1𝐮̂1 = − 1

𝜇
𝐋−1 (𝜌 𝐟 −∇𝑝) (B.1)

Substituting 𝐮 = 𝐮̂+ 𝐮0, we have

𝐮 = 𝐮0 +
1
𝜇
𝐋−1 (∇𝑝− 𝜌 𝐟) with ∇ ⋅ 𝐮 = 0.

Appendix C. Length density of arterioles

The total microvessel count 𝜉 = 𝜉𝑎+𝜉𝑐+𝜉𝑣 composed by the densities 
of arterioles 𝜉𝑎, capillaries 𝜉𝑐 and venules 𝜉𝑣 (Fig. 1), can be related to 
𝜉𝑎 based on the respective individual cross-sectional areas 𝐴𝑎 = 𝜋𝐷2

𝑎∕4, 
𝐴𝑐 = 𝜋𝐷2

𝑐∕4 and 𝐴𝑣 = 𝜋𝐷2
𝑣∕4, with 𝐷𝑎, 𝐷𝑐 , 𝐷𝑣 denoting the diameters, 

and the relative fractions [40] 𝛾𝑎, 𝛾𝑐 and 𝛾𝑣, 𝛾𝑎 + 𝛾𝑐 + 𝛾𝑣 = 1 of the total 
area 𝐴 bound together via the following equation:

𝐴 =
𝐴𝑎𝜉𝑎 =

𝐴𝑐𝜉𝑐 =
𝐴𝑣𝜉𝑣

.
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𝛾𝑎 𝛾𝑐 𝛾𝑣
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It follows that

𝜉𝑐 =
𝐴𝑎𝜉𝑎𝛾𝑐

𝐴𝑐𝛾𝑎
, and 𝜉𝑣 =

𝐴𝑎𝜉𝑎𝛾𝑣

𝐴𝑣𝛾𝑎
,

and, further, that

𝜉𝑎 = 𝜉

(
1 +

𝐴𝑎𝛾𝑐

𝐴𝑐𝛾𝑎
+

𝐴𝑎𝛾𝑣

𝐴𝑣𝛾𝑎

)−1
.
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