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ABSTRACT

Aowen Shi: Application of Transformer Neural Networks to EEG Signal Analysis
Master of Science Thesis
Tampere University
September 2023

Transformer networks have emerged as an important advancement in the field of deep learning
and are widely used in several contemporary domains. Transformer networks were originally de-
veloped for natural language processing (NLP) and have shown potential for efficiently collecting
complex patterns in electroencephalography (EEG) data. This thesis briefly overviews the basic
ideas behind cognitive load assessment and transformer networks. The paper also reviews previ-
ous research exploring the use of transformer networks in EEG analysis. In addition, a case study
is conducted to illustrate the application of transformer networks, followed by a comprehensive
discussion of the results obtained.

The review of previous studies includes those that have used transformer networks alone, as
well as those that have been combined with other network architectures. The review of their stud-
ies and their results shows that the transformer and its combined architectures have obtained good
results in the classification task in the direction of EEG analysis. In the experimental part of the
case study, the EEG conformer network was experimented with a Python environment using local
data and a public dataset named simultaneous task EEG workload (STEW). The experimental
results show that the training results of EEG conformer are closely related to the data complexity
and the difficulty of the classification task and that the architecture of this model leads to a high
demand on the amount of data and is prone to overfitting. In addition, this model is sensitive to
parameter variations, and the optimal parameters for different datasets have large differences.

According to the existing research results, transformers are considered to play a crucial role
in the development of deep learning. Moreover, this thesis concludes by revealing prospective
challenges and issues that deserve attention in the future adoption of transformer networks. This
means that transformers have more possibilities in the field of EEG analysis in the future, thus
bringing more help to people in real life, such as the diagnosis of neurological diseases, sleep
studies, cognitive neuroscience research, brain-computer interfaces (BCI), and so on.

Keywords: Electroencephalogram (EEG), transformer network, cognitive load, classification
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1. INTRODUCTION

The transformer architecture stands as a revolutionary paradigm in the dynamic field of ar-

tificial intelligence and deep learning technologies. Tailored initially for natural language

processing endeavors, its adaptability, and capacity to capture intricate interdependen-

cies within sequences have transcended the confines of text-centric applications. This

remarkable versatility has kindled widespread interest across diverse domains, including

the realm of neuroscience. Here, the multifaceted dynamics of Electroencephalogram

(EEG) signals demand advanced computational methodologies.

The convergence of transformer networks and EEG signal analysis presents a captivating

fusion of innovative technology and the depths of cognitive science. EEG, serving as a

direct reflection of neural activity, provides a microscopic portal into the cognitive machin-

ery guiding human behavior. Notably, the assessment of cognitive load assumes a pivotal

role in deciphering the allocation of cognitive resources during tasks, influencing facets

ranging from decision-making to problem-solving and overall task performance. More-

over, the capacity to gauge cognitive load holds far-reaching implications, spanning the

optimization of human-computer interfaces to the enhancement of pedagogical methods

and medical diagnostic practices.

The thesis unfolds within a sequence of chapters, each contributing to the overarching

mission of harnessing transformer networks’ prowess for EEG signal analysis. The inau-

gural segment of the thesis embarks upon EEG-based cognitive load assessment, eluci-

dating its fundamental significance and its pertinence to practical, real-world applications.

Subsequently, the thesis embarks on a journey into the core tenets of the transformer net-

work, unveiling its fundamental architecture and operational mechanisms. The spotlight

here is on its self-attention mechanism and depth architecture, which lay the essential

theoretical groundwork, enabling a deeper comprehension of subsequent applications in

EEG signal analysis.

Building upon this foundation, the literature review chapter embarks on an extensive sur-

vey of prior research endeavors that have harnessed transformer networks to dissect

EEG signals. This survey assesses the strides made in leveraging this innovative neural

architecture to extract valuable insights from EEG data, presenting a view of the existing

corpus of knowledge.
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The centerpiece of this thesis is the case study, wherein the EEG Conformer Network,

an architectural marvel that marries the power of a Convolutional Neural Network (CNN)

with a transformer network, as proposed by Song et al. [1], takes center stage. This

amalgamation significantly amplifies the network’s capability to apprehend both spatial

and temporal correlations within EEG data. This section serves as a testament to the

practical application of the Transformer architecture, adeptly addressing the formidable

challenges that EEG analysis entails, encompassing data pre-processing techniques and

network fine-tuning.

Finally, the thesis provides a thoughtful discussion of the findings and their implications in

addition to drawing conclusions. The research journey of this dissertation demonstrates

the potential of transformer neural networks to reveal the complex patterns embedded in

EEG signals, thereby advancing our understanding of cognitive processes and providing

a promising avenue for the practical application of cognitive load assessment.
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2. ASSESSMENT OF COGNITIVE LOAD BASED ON EEG

Electroencephalography (EEG) is a valuable technique for assessing cognitive burden

within the fields of cognitive neuroscience and human-computer interaction. The term

"cognitive load" refers to the quantity of mental work and processing demands that are

placed on the cognitive resources of an individual when they are carrying out a task.

It is extremely important to do a cognitive load assessment since an excessive amount

of cognitive load can result in lower performance, an increase in the number of errors

made, and mental tiredness. On the other hand, a healthy amount of mental strain is

beneficial to both learning and performance on tasks. The measurement of cognitive

load using electroencephalography (EEG) is a useful technique that may be used in user

interface design, education, and healthcare to determine the mental strain and processing

demands placed on a person while completing a task.

2.1 Electroencephalography

Recording electrical activity produced by the brain using the EEG is a non-invasive pro-

cedure. EEG originated with the observation of electrical activity in the brains of animals,

first reported by a British physician, Richart Caton [2], in the late 19th century. Based on

Caton’s discovery, Hans Berger, a German psychiatrist, recorded the first human EEG

from the human scalp with his ordinary radio equipment in 1924 [3]. It marked the be-

ginning of EEG as a tool for studying the electrical activity of the human brain. In 1929,

Berger published a paper on the topic, describing alpha and beta waves [4]. Over the

next several decades, EEG became an increasingly important tool for understanding the

brain and its functions. Advances in EEG technology allowed researchers to study the

brain’s electrical activity in more detail, leading to the discovery of various EEG patterns

that were associated with different brain states, such as sleep, wakefulness, and epilepsy.

2.1.1 EEG Measurement

An electroencephalogram (EEG) is a graphical representation generated through the am-

plification and recording of spontaneous biopotentials in the cerebral cortex using an ad-

vanced instrument [3]. Nevertheless, the techniques for recording EEG are not restricted

solely to the utilization of electrodes placed on the scalp. As an illustration, some research
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investigations have conducted EEG measurements from the ear [5, 6]. The depiction of

this electrical activity is a planar graph of voltage versus time, with voltage serving as

the vertical axis and time serving as the horizontal axis. The EEG is comprised of three

fundamental components: the frequency (or period) of the brain waves, their amplitude,

and their phase.

The electrodes used in EEG acquisition can be broadly categorized into three main

groups, namely wet electrodes, semi-dry electrodes, and dry electrodes. Diverse at-

tributes are associated with each category of measurement, rendering them appropriate

for different research contexts and studies.

• Wet electrodes have low impedance, good reproducibility and stability, are most

widely used in the clinical and research community, and are still the current gold

standard.

• Dry electrodes have high impedance and poor stability, and the current research

mainly focuses on solving such problems [7].

• Semi-dry electrodes are the current research hot-spot [8] due to their more com-

prehensive performance and convenient use.

To obtain accurate EEG data, steps must be taken to locate the position that generates the

bioelectric signals, add more channels, and increase the sampling rate. This is because

the EEG records the firing activity of some of the neurons involved in the activity, not the

bioelectric signals of all the neurons involved in the activity.

The first human EEG was initially recorded by Berger using two electrodes applied to the

scalp, one at the anterior and one at the posterior region of the skull [9]. Later, additional

researchers brought attention to the fact that EEG activity varied greatly depending on

the region of the scalp where it was recorded. The use of many electrodes and additional

recording channels was prompted by the observation of various regional brain rhythms,

but standardization of the recording techniques quickly became required in order to make

the data produced comparable [9]. The first standardized system was the 10-20 system,

published by Jasper in 1958 [10]. The 10-20 system consisted of 19 recording electrodes

and 2 reference electrodes, as shown in Figure 2.1. It is ideal for the reference electrodes

to have zero potential, meaning they should not have any bioelectric activity. The left and

right earlobes are now frequently used as reference electrodes because, in actuality, there

is hardly any zero potential on the surface of the human body. As a result, we can only

select the areas of the body that move less and are less affected by different bioelectric

fields. In addition, "10" and "20" in the system indicate that the actual separation between

adjacent electrodes is either 10% or 20% of the overall separation between the left and

right or front and rear of the skull. Regarding the names of the electrodes, the prefixes

F, Fp, T, C, O, and P indicate the frontal polar, frontal, temporal, central, occipital, and

parietal, respectively. The letter suffix "z" designates an electrode positioned along the
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midline, whereas an odd number signifies an electrode situated in the left hemisphere and

an even number signifies an electrode positioned in the right hemisphere of the brain [11].

Fz and Cz are commonly used as the ground or common reference points for electrodes,

and A1 and A2 are used as the opposite reference point [12].

Figure 2.1. Standard electrode placement for the 10–20 system [12]

The 10-10 system was introduced in the 1980s as an improvement to the 10-20 system,

increasing the number of electrodes from 21 to 74 [11]. The left side in Figure 2.2 shows

21 electrode positions for the 10-20 system, while the right side shows 74 electrode posi-

tions for the 10-10 system. A comparison from Figure 2.2 shows that the blue electrodes

in the right part are the 21 electrodes in the conventional 10-20 leads. Therefore, the 10-

10 system can be described as an extension of the conventional 10-20 system, and the

10-10 system adds additional electrode positions to improve spatial resolution. The 10-10

system includes placement at 10% intervals between anatomical landmarks, resulting in

more electrodes and finer scalp coverage [13].

Figure 2.2. The left is the 10-20 International system of EEG electrode placement, and
the right is the 10-10 International system of EEG electrode placement. [11]

Over time, the 10-20 system attained global acknowledgment and established itself as the

standard for the placement of EEG electrodes. While the 10-20 system and the 10-10 sys-

tem provide general guidelines, individualized methods of electrode placement have also

been developed. Personalized placement takes into account variations in head shape

and anatomical landmarks to improve the accuracy and precision of EEG recordings [14].
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2.1.2 Interpretation of the brain waves

Brain waves are generated by the electrical activities that emanate from the neural tis-

sue within the brain. The transmission of signals by nerve cells generates brain electrical

signals, commonly known as brain waves. The manifestation of brain waves displays dis-

tinct patterns and is correlated to some degree with the level of cerebral awareness. The

variability of brain wave frequency is observed across various states, including but not

limited to coma, excitement, and stress, and is distributed within the range of 0.5 Hz to

40 Hz. Brain waves are classified into distinct categories according to their correspond-

ing frequencies, which comprise α, β, δ, θ, and γ waves. The aforementioned waves

are correlated with distinct levels of awareness, cognitive functions, and psychological

conditions, see Table 2.1.

At any given time, brain wave activity is not restricted to a singular type. Various brain

rhythms can concurrently exist and interrelate with one another, with their respective mag-

nitudes and configurations fluctuating according to an individual’s cognitive state, engage-

ment, and other pertinent aspects. Research on brainwaves offers valuable insights into

the functioning of the brain, cognitive processes, and mental states.

Table 2.1. Summary of Brain Waves and Associated Mental States [15, 16, 17]

Brain Wave Frequency Range Interpretation

δ 0.5-4 Hz Deep sleep, physical healing, un-
consciousness

θ 4-8 Hz Deep relaxation, daydreaming, cre-
ativity

α 8-12 Hz Relaxation, calmness, reflective
states

β 12-40 Hz Alertness, concentration, active
thinking

γ 40-100 Hz High-level cognitive processes, at-
tention

2.1.3 Artifacts

Artifacts are the noise recorded by the system that interferes with EEG data [18]. Prior

to starting the collection and analysis of EEG data, it is critical to ensure that the data is

as free from artifacts as possible, which means that the collected data should accurately

represent brain activity. Consequently, it is critical to minimize and remove these artifacts

to the greatest extent feasible.
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Source of Artifacts

The ability to identify artifacts is the first step in removing them. EEG artifacts can be

classified according to their source, which may be physiological or external to the body

(non-physiological). The most common ones are [18, 19, 20, 21]:

1. Physiological artifacts

• Eye activity: Electrical potentials generated by eye movements, including sac-

cades.

• Muscle activity: Electrical activity from surrounding muscles.

• Cardiac activity: Electrical activity associated with the heartbeat.

• Sweat: Electrical changes due to moisture or sweat on the scalp.

• Breathing: Electrical changes related to respiratory activity.

2. Non-physiological/technical artifacts

• Electrode rejection: Displacement or detachment of electrodes from the scalp.

• Cable movement: Artifacts caused by movement or tension in electrode ca-

bles.

• Incorrect reference placement: Improper placement of the reference elec-

trode.

• AC and electromagnetic interference: Electrical noise from power lines or

electromagnetic fields.

• Body movements: Movement artifacts caused by the individual’s body move-

ments.

Detection and Removal of EEG Artifacts

Accurate removal of artifacts in EEG involves a comprehensive approach that spans both

the data collection and data analysis stages. By addressing artifacts at each step, re-

searchers can minimize their impact and obtain high-quality EEG data for analysis, as

shown below [22, 23, 24].

1. Data collection phase:

• Proper preparation: Implement careful electrode placement, impedance check-

ing, cable management, grounding, and noise reduction techniques, as dis-

cussed earlier.

• Participant instructions: Provide clear instructions to individuals to minimize

movements, avoid excessive eye blinks, and remain as still and relaxed as

possible during the recording.
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• High-quality recording equipment: Use reliable and properly calibrated EEG

systems with adequate sampling rates and dynamic range to capture the EEG

signals accurately.

2. Data analysis phase:

• Rejection: The entirely automated statistical threshold method for EEG artifact

rejection, as proposed by Nolan et al., is one example of the selection and

rejection of EEG cycles containing artifacts. [25]

• Filtering: Remove artifacts while maintaining as much EEG information as

possible. For instance, simple linear filters, regression methods, adaptive fil-

ters with reference signals, the Wiener filter, and Bayesian filters.

• Blind Source Separation (BSS): Decomposition of the EEG into linear com-

binations of signal sources based on different mathematical considerations.

The most popular and useful techniques today are Independent Component

Analysis (ICA) and Principle Component Analysis (PCA). In addition, Canoni-

cal Correlation Analysis (CCA) and EEG source imaging (ESI) are also com-

monly used BSS techniques.

• Source Decomposition Methods: Each individual channel is decomposed into

basic waveforms, and waveforms containing artifacts are removed to recon-

struct a clean channel of the EEG signal. The main examples of these meth-

ods are Wavelet Transform (WT), and some less studied variants such as Em-

pirical Mode Decomposition (EMD) or Nonlinear Node Decomposition (NND).

2.2 Cognitive load

2.2.1 Definition and theory

Cognitive load, which is also referred to as mental load, and brain load, pertains to the

pace at which mental resources are expended in a work environment. Despite its sig-

nificance, a precise and universally recognized definition of this concept remains elusive.

According to the prevalent perspective, cognitive workload is a complex construct that en-

compasses multiple dimensions [26]. The 1977 NATO Human Factors Special Committee

conference on "Mental workload: its theory and measurement" [27] posited that cognitive

workload is contingent upon task demands and that the level of cognitive workload is de-

termined by the workload itself. Cognitive load pertains to a multitude of factors, including

task demands, temporal constraints, the operator’s cognitive capacity, exertion, perfor-

mance, and various other elements. Cognitive load has been defined in various manners

by scholars [27]. Wickens defines cognitive workload as "the relation between the (quan-

titative) demand for resources imposed by a task and the ability to supply those resources

by the operator" [28]. Cain defines it as "a mental construct that reflects the mental strain
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that arise when performing tasks under specific environmental and operational conditions,

coupled with the ability of the operator to respond to these demands" [29]. Abbass et al.

differentiated various concepts in the literature [30], including mental load attributed to the

work environment and mental load resulting from external environmental factors, such as

the personal life of the operator. Two equations were utilized [30]:

CognitiveLoad ≈ WorkLoad+ EnvironmentalLoad (2.1)

WorkLoad ≈ TaskLoad+ InterfaceLoad+OtherWorkRelatedFactors (2.2)

Cognitive Load Theory (CLT) was initially introduced in 1988 by John Sweller [31], a cog-

nitive psychologist affiliated with the University of New South Wales in Australia. CLT has

been extensively researched by scholars worldwide since its inception [32]. CLT catego-

rizes cognitive load into three different types: internal cognitive load, external cognitive

load, and associated cognitive load. The three distinct forms of cognitive load are concur-

rently imposed on one another. According to CLT, the cognitive architecture of humans

comprises two main components, namely working memory and long-term memory. Eric-

sson and Kintsch et al. [33] first introduced the concept of long-term memory in 1995.

Moreover, analyzing cognitive load and creating a theory of cognitive load are based

on theories of cognitive resources. The most prevalent model of cognitive resources is

Wickens’ Multiple Resource Theory (MRT) model [28], which contends that there are

really multiple resources available for processing information simultaneously rather than

just one.

2.2.2 Methods to assess cognitive load

Currently, the assessment of cognitive workload can be categorized into two distinct

types: subjective and objective measures [34]:

• Subjective assessment refers primarily to user self-assessment and involves tech-

nical instruments such as surveys and questionnaires. Commonly used question-

naires include the National Aeronautics and Space Administration-Task Load Index

(NASA-TLX) [35] and Subjective Workload Assessment Technique (SWAT) [36].

• Objective assessments can be carried out from a neurophysiological, physiological,

and behavioral perspective. EEG and functional near-infrared spectroscopy (fNIRS)

are the major neurophysiological methods used to assess cognitive load [37]. Elec-

trocardiography (ECG), respiration, electrodermal activity (EDA), and eye move-

ment measurements are examples of physiological parameters. Behavioral metrics

include keyboard dynamics, mouse tracking, and body positioning [38], as well as

accuracy, response time, and speed of completion in relation to real task perfor-

mance.
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3. TRANSFORMER NETWORK: BASIC ARCHITECTURE

AND OPERATION

In recent years, the transformer network architecture has become increasingly preva-

lent in the field of deep learning. Originally published by Vaswani et al. in 2017 [39],

transformers have shown to be extremely effective in a range of natural language pro-

cessing (NLP) applications, including text classification and language translation. Fur-

thermore, The transformer network is the first transformation model that excludes the use

of sequence-aligned recurrent or convolutional neural networks. Instead, it computes the

representation of inputs and outputs only through self-attention [39]. Transformer has not

only revolutionized the field of NLP but also shown remarkable success in other areas of

machine learning.

This chapter will discuss the architectures and operations of transformer networks in NLP,

with a focus on their unique features that set them apart from other neural network archi-

tectures.

3.1 Transformer Network Architecture

The transformer network is constructed using an encoder-decoder architecture, which

involves the stacking of multiple identical encoders and decoders. The encoders pro-

cess the input sequence and the decodes generate the output sequence. In a typical

sequence-to-sequence converter model used for tasks such as machine translation, the

number of cells in both decoder and encoder stacks is the same, as shown in Figure 3.1.

This is because capturing and transmitting correlation information between the input and

output sequences is facilitated by having an equivalent number of layers in the encoder

and decoder. The following describes the workflow of the transformer network:

1. The first step is to obtain the representation vector X for each word in the input

phrase. The X consists of the embedding of the word and the embedding of the

word position added together.

2. The encoder receives the word representation vector, and after six encoder blocks,

the information matrix for all the words in the phrase is acquired. The word vector

is represented by the symbol Xn×d, where n represents the number of words in the
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phrase and d represents the dimension of the vector. The output matrix from each

encoder block is of the same dimension as the input matrix.

3. The next word is translated by the decoder based on the word that is presently

being translated using the encoded information matrix output by the encoder.

Figure 3.1. The transformer encoder-decoder stack [40]

The preceding part illustrates the architecture of the transformer and the overall sequence

of its application. Subsequent sections will expand on the intricacies of the individual

components therein.

3.2 Transformer Network Operations

3.2.1 Input to Transformer

Summing the initial input embedding and the positional encoding yields the input to the

encoder section in Transformer, as shown in Figure 3.2 below.

• Embedding: Each symbol in the input sequence is first transformed by the trans-

former into a fixed-size vector representation. Embedding can be obtained in a

number of methods, including pre-training with algorithms such as Word2Vec and

Glove [41], or training in Transformer.

• Positional Encoding: The transformer employs positional encoding in addition to

word embedding to describe the placement of words in a phrase. Since the trans-

former uses global information, it is unable to use the words’ sequence information,

which is crucial for NLP. As a result, the transformer maintains the absolute or rela-

tive positions of the words within the series by using positional encoding. Moreover,

the dimension of the positional encoding and the embedding should be the same,



12

Figure 3.2. Positional Encoding [40]

so that they can be added to each other [39]. Positional encoding can be acquired

through training or by applying an algorithm. Transformer uses the latter, which is

computed as follows [39]:

PE(pos,2i) = sin(pos/100002i/d) (3.1)

PE(pos,2i+2) = cos(pos/10002i/d) (3.2)

where pos is the position of the word in the sentence, d is the dimension of po-

sitional encoding, 2i indicates the even dimension and 2i + 1 represents the odd

dimension.

Even for sequences with varying lengths, the unique positional encoding of each

location in the sequence is guaranteed by the employment of sine and cosine func-

tions with distinct frequencies. The positional encoding is subsequently appended

to the input embeddings prior to their input into the encoder of the transformer.

3.2.2 Attention

Our ability to form snap judgments about what we see is due to the fact that our brains

automatically zero down on the most salient features of an item rather than forcing us to

examine it in its entirety. It is on this theory that the attention mechanism was developed.

With the encoder block on the left and the decoder block on the right, the accompanying

Figure 3.3 illustrates the internal construction of the transformer in the [39]. One multi-

head attention is present in the Encoder block, whereas two multi-head attentions are

present in the Decoder block, one of which is masked. Since the key component of the

transformer network architecture is self-attention, this section will mainly discuss self-

attention and multi-head attention.
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Figure 3.3. The Transformer - model architecture [39]

Self-Attention

Figure 3.4 illustrates the architecture of self-attention, which utilizes the matrices Q (query),

K (key), and V (value) during computation. In practical applications, self-attention is typ-

ically provided with either the input subsequent to embedding and positional encoding or

the output originating from the preceding encoder block. The values of Q, K, and V are

obtained through a linear conversion of the input of self-attention.

Figure 3.4. The left is scaled dot-product attention, and the right is multi-head atten-
tion [39]

As shown on the left in Figure 3.5, the input matrix X , after embedding and positional

encoding, is multiplied by the trained weight matrices WQ, WK , W V . Afterwards, the
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attention calculation is performed based on the following formula [39]:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (3.3)

where
√
dk is the number of columns of the Q, K matrix, which is the dimension of the

vector.

Figure 3.5. Self-Attention Calculation [40]

After the Q, K, and V matrices are determined, the score is derived through the multipli-

cation of Q and K as shown on the right-hand side of Figure 3.5, which are capable of

representing the degree of attention between words. The softmax function is employed

to determine the attention coefficient of each word relative to the other words subsequent

to the acquisition of QKT . Upon obtaining the softmax matrix, it can be subjected to

multiplication with V , resulting in the ultimate output Z. Ultimately, a Z-matrix is derived,

serving as the resultant product of the self-attention layer.

Multi-Head Attention

The multi-head attention is comprised of multiple self-attention components, as depicted

in the right side of Figure 3.5 presented in the [39]. Following the embedding and posi-

tional encoding process, the input matrix denoted as X is passed to each of the h different

self-attention. The term "different self-attention" refers to h groups of Q, K, V obtained

by multiplying the input matrix X with the h groups of WQ, WK , W V weight matrices.

Each group Q, K, V will eventually result in a weight matrix Z. The final output Z of

multi-head attention is created by concatenating h weight matrices Z and passing them
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into a Linear layer.

Figure 3.6. Multi-Headed Self-Attention [40]

3.2.3 Encoder

The left-hand side of Figure 3.3 represents the encoder blocks, each of which consists of a

multi-head attention layer, 2 add&norm layers, and a feed-forward layer. In the preceding

section, the calculation process of multi-head attention has been comprehended. The

sections that follow will be explained: add&norm and feed-forward.

Add&Norm

The add&norm layer is comprised of two distinct components, namely add and norm,

which are computed in the following formulas:

LayerNorm(X +MultiHeadAttention(X)) (3.4)

LayerNorm(X + FeedForward(X)) (3.5)

where X is the input to multi-head attention or feed-forward, while MultiHeadAttention(X)

and FeedForward(X) are the outputs of multi-head attention or feed-forward.

The term "Add" pertains to the operation of combining X and MultiHeadAttention(X),

along with a residual connection. Conversely, "Norm" refers to the process of Layer Nor-

malization, which standardizes the inputs of every layer of neurons to possess identical

mean-variance values, thereby expediting the convergence process [42].
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Feed Forward

The feed-forward layer comprises two fully connected layers. The first layer employs ReLu

as its activation function, while the second layer does not have any activation function.

This can be represented mathematically as follows [39]:

FFN(x) = max(0, xW1 + b1)W2 + b2 (3.6)

where X is the input and feed-forward ends up with an output matrix that has the same

dimensions as X . The ReLU function is a segmented linear function that treats negative

values as 0.

Encoder Operation

The multi-head attention, feed-forward, and add&norm operations that were explained

before are used to form an encoder block. This block takes in a matrix X(n∗d) as its

input and produces a matrix O(n∗d) as its output. Multiple encoder blocks can be stacked

together to produce an encoder. A vector containing the words is the first input to the

first encoder block. The output of the previous encoder block is used as the input for the

next encoder blocks. The final encoder block produces the output matrix for the entire

encoder, which is subsequently utilized in the decoder.

3.2.4 Decoder

The section on the right-hand side of Figure 3.3 depicts the decoder component of the

transformer, which has a resemblance to the encoder module, but with particular distinc-

tions:

• There are two multi-head attention layers present.

• The first multi-head attention layer uses a masked operation.

• The output matrix of the encoder is used to construct the K and V matrices of

the second multi-head attention layer, whereas the output of the previous decoder

block is used to calculate Q.

• For each translated word, the probability is computed by a softmax layer.

The First Multi-Head Attention

Due to the sequential nature of the translation process, the initial multi-head attention of

the decoder block makes use of the masked operation. This is the case because it is
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necessary to translate the ith word before translating the (i+1)th word. Through the use

of the masked operation, the ith word is shielded from the information that comes after

the (i+ 1)th word.

The process of executing the masking operation entails the utilization of the masking ma-

trix to mask the information subsequent to each word, prior to the softmax of self-attention.

This results in the generation of a masking QKT . Upon conducting the softmax opera-

tion on the given basis, the attention score of the ith word towards the other words is

0. The subsequent procedure is identical to the preceding self-attention. Ultimately, the

masking self-attention produces an output matrix denoted as Zi, which is subsequently

concatenated with multiple outputs through multi-head attention, similar to the encoder.

The resultant matrix Z from "the first multi-head attention" operation is calculated to pos-

sess identical dimensions as the input matrix X .

The Second Multi-Head Attention

The main difference between the first multi-head attention and the second multi-head

attention lies in the fact that the K and V matrixes for self-attention are derived not from

the output of the preceding decoder block, but rather from the encoder’s output matrix.

The values of K and V are derived from the output matrix of the encoder, while Q is

obtained from the output Z of the preceding decoder block, or from the input matrix X if

it is the first decoder block. The subsequent computations follow the previously outlined

methodology. One benefit of this approach is that during the decoding phase, individual

words have access to the collective information from all the words in the encoding phase

without requiring any masking.

Softmax: predicting output words

The last step of the decoder block requires using softmax to anticipate the subsequent

word. In the prior network layer, the final result Z can be obtained because the presence

of masking ensures that the output Z0 of the ith word contains only the information related

to the ith word. The softmax function is utilized to predict the subsequent word by taking

into account each row of the output matrix.

3.3 Discussion of Transformer Network Applications

Despite its current popularity, the Transformer model is not without notable imperfections

and limitations. In NLP, tasks that involve lengthy inputs, such as those at the chap-

ter level, often pose a significant computational challenge for the transformer model.

This is due to the excessive length of the input, which can result in a considerable de-

crease in processing speed. Zihang Dai et al. introduced the Transformer-XL architec-
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ture in 2019 [43], which effectively addresses the challenge of processing lengthy input

sequences. The transformer model has demonstrated efficacy not only within the do-

main of NLP but has also garnered widespread adoption across various other disciplines.

Therefore, the transformer model needs to be adapted differently to cope with different

challenges.

Since the birth of the transformer model, subsequent research and development has

evolved in three main areas: model efficiency, model generalization, and model adapt-

ability [44].

• Model efficiency focuses on reducing the computational and memory complex-

ity by adjusting the content of the transformer structural module and the overall

structure. For example, improvement of the multi-headed attention mechanism,

adjustment of the layer normalization approach, and transformer lightweight.

• Model generalization is mainly the introduction of structural bias or regulariza-

tion, pre-training of large-scale unlabeled data, and so on. Transfomer-based pre-

training models can be divided into three main categories: those that use only

encoders, those that use only decoders, and those that use both.

• Model adaptability is to apply the transformer model to more fields. Transformer

model is first used in the field of NLP, such as machine translation and the subse-

quent Bidirectional Encoder Representations from Transformer (BERT) and Gen-

erative Pre-trained Transformer (GPT) series. Transformer is also used in the

field of computer vision for image classification, object detection, image genera-

tion, and video processing tasks, such as Vision Transformer (ViT). Furthermore,

Transformer has also been applied to the field of speech for tasks such as speech

recognition, speech synthesis, speech enhancement, and music generation. Multi-

modal scenarios consisting of NLP, vision, and speech are also hot directions for

Transformer applications in recent years, such as visual question and answer, visual

common sense reasoning, speech-to-text translation, and text-to-image generation.

In addition to the usual AI scenarios of NLP, vision, and speech, Transformer has

also been applied to the field of psychology.

This chapter thoroughly overviews the transformer’s structure and functionality, delving

into its primary constituents, including self-attention mechanisms and position encoding,

which endow the transformer with exceptional aptitudes across diverse domains. The

subsequent chapter will underscore the significance of the transformer in EEG research

and its capacity to enhance our comprehension of brain dynamics. This will be achieved

through a comprehensive review of literature pertaining to the utilization of the transformer

in EEG signal analysis.
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4. TRANSFORMER NETWORK IN ANALYZING EEG

SIGNAL: LITERATURE REVIEW

EEG data analysis is essential for comprehending the intricate dynamics of the human

brain. Many machine learning and signal processing methods have been employed over

time to glean important information from EEG data. The transformer model, which was

first used in the study of NLP, has lately drawn a lot of interest for its potential to improve

EEG analysis. Its ability to capture complex patterns and dependencies in sequences

has led to early applications in a variety of fields such as emotion detection, sleep quality

assessment, and cognitive load.

This chapter explores four methods for applying transformer networks to EEG analysis:

utilizing them alone, in conjunction with other deep learning networks including capsule

networks and convolutional neural networks (CNN). In the direction of EEG analysis,

the network architecture that combines transformer and CNN is more prevalent. Con-

sequently, the following includes two distinct combinations of transformer networks and

CNN with their respective applications.

4.1 Study 1

For the classification of the raw EEG data, Siddhad et al. first proposed the application

of transformer networks. [45]. They assessed its performance in comparison to estab-

lished deep learning networks. The experimentation involved the utilization of two distinct

datasets: one sourced locally, focusing on age and gender, and the other being the open-

access mental workload dataset named the Simultaneous Task EEG Workload (STEW)

Dataset [46]. Notably, the proposed framework got top-notch accuracy on both datasets.

This shows how transformer networks can be used to learn the features and improve the

accuracy of EEG data classification.

Data Pre-processing

In this study, the researchers utilized two distinct datasets for their investigations. The

first dataset was locally collected and focused on demographic characteristics such as

age and gender. This dataset comprised resting-state EEG data obtained from a sample
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of 60 individuals, evenly divided between 30 males and 30 females. The EEG data was

recorded using a 14-channel EEG system operating at a sampling rate of 128 Hz. The

second dataset employed in this study was the open-access mental workload dataset

known as STEW [46]. The dataset consisted of unprocessed EEG data obtained from 48

participants who engaged in a simultaneous capacity (SIMKAP) multitasking test-based

multitasking workload experiment [47]. Two different experiment types are included in the

dataset: "No task" and "SIMKAP-based multitasking activity." The "No task" experiment

has been divided into low and high workload levels, whereas the "SIMKAP-based multi-

tasking activity" has been divided into three workload levels, namely low, moderate, and

high, based on the subjects’ ratings [48]. The EEG signals were captured using the Emo-

tiv EPOC EEG headset, equipped with 14 channels (AF3, F7, F3, FC5, T7, P7, O1, O2,

P8, T8, FC6, F4, F8, AF4) with 2 reference channels (CMS, DRL), and sampled at a rate

of 128 Hz [46].

To prepare the EEG data for analysis, a series of preprocessing steps were undertaken.

These steps included bandpass filtering, epoch segmentation to isolate relevant data seg-

ments, the removal of segments with poor quality, and the application of ICA to mitigate

artifacts. Subsequently, the preprocessed EEG data was divided into fixed-length seg-

ments, serving as input for the transformer network. Each segment of EEG data was

treated as a chronological sequence of data samples, with each sample representing the

voltage measurement from a specific electrode at a given time point. Through the im-

plementation of embedding and positional encoding techniques, this sequence of data

samples was transformed into a sequence of feature vectors. The resulting sequence of

feature vectors was then input into the transformer network, a critical component respon-

sible for encoding the input sequence into a sequence of uniform feature vectors of fixed

dimensions.

Network Architecture

To better adapt the original transformer network architecture for EEG data categorization

tasks, the authors made some modifications. When dealing with tasks involving natural

language processing and an input consisting of a string of words or tokens, the initial

transformer network was created. On the other hand, the network receives a series of

data samples as input, whereas EEG data are continuous time-series signals. In order

to properly handle this kind of input, the authors had to change the transformer network’s

architecture. To be more precise, they employed an embedding layer to convert the input

sequence of data samples into a sequence of feature vectors, and a position encoding

layer was then utilized to add information about each feature vector’s position within the

input sequence. For the STEW dataset and the age and gender dataset, they employed

a stack of four transformer encoder layers in their suggested architecture. A positionally

fully connected feed-forward network and a multi-head self-attention mechanism make
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up each encoder layer’s two sub-layers. An essential component of classifying EEG data

is the network’s ability to recognize interdependencies among the segments of the input

sequence, which is made possible by the multi-head self-attention mechanism. In or-

der to handle the self-attention mechanism’s output, a feed-forward neural network was

then added. This neural network aids in transforming the network to capture the intricate

nonlinear correlations between the input variables, which are explained in the preceding

chapter.

The researchers employed two distinct transformer networks to process the two datasets

under investigation. For Age and Gender classification, the experiments were conducted

separately for the age and gender datasets. The network architecture employed for gen-

der classification (2 classes) is visually depicted on the left of the accompanying Fig-

ure 4.1. For the age classification task (6 classes), the number of nodes in the last layer

of the model, the Dense layer, also known as the fully connected layer, was modified to 6.

Furthermore, the attention heads were augmented to a total of 8 to enhance the network’s

capabilities. Likewise, with regards to the STEW dataset, the research endeavors ex-

tended to encompass examinations of the "No task" (2 classes) and the "SIMKAP-based

multitasking activity" (3 classes) datasets. The architectural configuration deployed for the

"No task" is visually presented on the right-hand side of the accompanying Figure 4.1.

Drawing from this framework, the final layer was strategically modified by adjusting the

number of nodes in the fully connected layer to 3. This modification was carried out to

align the architecture with the complexity of SIMKAP multitasking classification.

Result

The outcomes of the experiments on the age and gender dataset highlight the effective-

ness of the proposed transformer network. It achieved a remarkable accuracy of 94.68%

for gender classification and 87.63% for age classification. Comparisons were made with

leading methods by Zhu et al. [49] and Zheng and Chen [50], demonstrating that the

proposed transformer network outperforms these benchmarks in both gender and age

classification tasks.

Regarding the STEW dataset experiments, the proposed transformer network yielded im-

pressive results. It achieved 95.32% accuracy for the "No task" classification and 89.01%

for the "SIMKAP multi-task" classification. Comparisons with methods by Zhang et al. [49]

further underscored the superiority of the proposed transformer network across both clas-

sification scenarios.

In general, the findings of the research indicate that transformer networks exhibit superior

performance in the classification of EEG data, particularly in the absence of any require-

ment for manual feature extraction. Nevertheless, the authors highlight that the positional

encoding employed in transformer networks designed for text processing is not specif-
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ically optimized for EEG data, and that features, which can be more effective in certain

situations, are not utilized. The authors suggest that further research is needed to validate

the proposed method with different datasets and more comparisons.

Figure 4.1. The architecture for Age and Gender and STEW dataset are on the left and
right, respectively. [45]

4.2 Study 2

Wei et al. proposed a deep learning model named Transformer Capsule Network (TC-

Net) [51] for emotion recognition from EEG signals. It combines the power of transformers

and capsule networks to capture local and global contextual information from EEG sig-

nals.

Data Pre-processing

Before feeding the signal into TC-Net, they pre-processed the EEG signal by applying

segmentation, baseline removal, and continuous wavelet transform (CWT) as shown in

Figure 4.2.
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Figure 4.2. The flow chart of signal preprocessing in TC-Net [51]

In the segmentation stage, a sliding window slices the EEG signals into 1-second inter-

vals. The notation for each segment is Si, where i = 1, 2, ..., N, where N is the number of

segments. Additionally, Si is an element of the set RC×L, where C represents the number

of EEG channels and L represents the window length. After segmentation, they applied

baseline removal since many previous studies have employed the practice of removing

baseline signals to improve performance outcomes. For each segment that underwent

baseline removal, they performed CWT for each channel separately. CWT enables the

wavelet to capture the innate frequency characteristics by sliding it over the signals along

the time dimension. The CWT mechanism is responsible for this conversion of raw signals

to the time–frequency domain.

Network Architecture

As illustrated in Figure 4.3, the model comprises three primary modules subsequent to

the data processing: the patch partitioning module, the EEG transformer module, and the

emotion capsule module.

• Patch partition module: Pre-processed EEG signals are initially segmented into

small patches using convolution operations, with patch size determined by fre-

quency and temporal resolution considerations. During convolution, both the kernel

size and stride are aligned with the patch size. As a result, EEG signals from each

channel are partitioned into adjacent non-overlapping patches. In this manner, the

patches sustain the original frequency and temporal attributes. These patches are

then processed through an EEG transformer module consisting of various blocks.

• EEG transformer module: The feature extraction is accomplished by the EEG

transformer module, which consists of four primary components: the window par-

tition block, the transformer block, the window reverse block, and the patch merg-

ing block. The window partition block divides tokens into non-overlapping feature
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Figure 4.3. The architecture of Transformer Capsule Network (TC-Net) [51]

windows, maintaining computational efficiency. A series of feature vectors are pro-

duced as a result of a subsequent transformer block employing multi-head self-

attention to capture temporal dependencies. The window reverse block ensures

the preservation of the original temporal order. In the patch merging block, neigh-

boring patches are merged to capture local features, and the resulting patches are

passed to the next module layer.

To preserve the inherent local attributes of EEG signals, the researchers introduce

a novel patch merging strategy called EEG Patch Merging (EEG-PM), illustrated

in Figure 4.4. This convolutional operation employs a larger kernel and increased

output channels, doubling the feature maps while halving their resolution. In order

to derive high-level emotional features, the EEG Transformer module undergoes

four iterations. Prior to the patch merging block, the feature map is generated in the

4th cycle. This comprehensive process facilitates the extraction of discriminative

features from pre-processed EEG signals for classification.

Figure 4.4. The EEG-PM strategy [51]

• Emotion capsule module: The emotion capsule module plays a pivotal role. It

is responsible for categorizing EEG features into two emotional states. To ensure

a comprehensive representation of relationships between different channels within

the feature map, the number of capsules is set to match the number of feature map
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channels. This alignment facilitates the subsequent processing steps. In this pro-

cess, EEG features are transformed into capsules, with each capsule containing 8

neurons. The introduction of the dynamic routing-by-agreement mechanism aids in

capturing the intricate relationships that exist among the various feature map chan-

nels. This mechanism enhances the model’s ability to capture essential information

embedded within the EEG data. The ultimate classification results are derived by

evaluating the L2-Norm of each capsule after the dynamic routing-by-agreement

process. This step provides a solid basis for producing accurate and reliable clas-

sification outcomes, effectively summarizing the emotional states inferred from the

EEG features.

Result

Experiments were performed by the authors on two widely used datasets that pertain to

emotion recognition from EEG signals: the database for emotion analysis using physio-

logical signals (DEAP) [52] and the database for emotion recognition through EEG and

ECG signals (DREAMER) [53]. EEG signals from 32 electrodes were recorded in DEAP

in accordance with the international 10-20 system while subjects viewed 40 one-minute

music videos. EEG signals from 14 electrodes were recorded in DREAMER in accor-

dance with the standard 10-20 system while subjects viewed 18 movie excerpts.

A subject-dependent 10-fold cross-validation method was employed to assess the effi-

cacy of TC-Net. In this method, both the training and testing datasets originated from

the same subject. The results showed that TC-Net outperformed several cutting-edge

approaches on both datasets in terms of accuracy. Specifically, on the DEAP dataset,

TC-Net achieved an accuracy of 98.76% for valence, 98.81% for arousal, and 98.82%

for dominance. On the DREAMER dataset, TC-Net achieved an accuracy of 98.59% for

valence, 98.61% for arousal, and 98.67% for dominance. The outcomes of this study

illustrate the efficacy of TC-Net in emotion recognition using EEG and its potential for

practical implementations.

4.3 Study 3

Guo et al. present an innovative neural network model known as depthwise convolu-

tional transformer (DCoT), which integrates depthwise convolution and Transformer en-

coders for EEG-based emotion recognition [54]. The researchers investigate the intricate

relationship between emotion recognition and individual EEG channels, enhancing inter-

pretability by visually presenting the extracted features. Impressively, the DCoT model

achieves notable classification accuracy while also unveiling the importance of distinct

EEG channels in representing emotional states through brain map visualization. The dis-

course within the article also contemplates the practical applications of this technology
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in real-world scenarios, particularly its potential to reduce equipment and computational

costs.

Data Pre-processing

To validate their approach, the authors utilized the SJTU Emotion EEG Dataset (SEED) [55].

This dataset contains EEG data collected from 15 participants, comprising 7 males and 8

females, with an average age of 23.27 ± 2.37 years. These participants took part in emo-

tional experiments where they watched 15 emotionally evocative film clips, each about

4 minutes in length. These clips were carefully chosen to induce positive, neutral, and

negative emotions, with five corresponding clips for each emotion. After watching each

clip, participants were asked to provide emotional feedback through questionnaires. This

experiment was repeated three times, every two weeks, resulting in a total of 45 trials per

participant across three sessions.

For the SEED dataset, a systematic preprocessing approach was utilized. This included

downsampling the raw EEG signals from 1000 Hz to 200 Hz, applying ICA to eliminate

unwanted signals, implementing a bandpass filter between 0 and 50 Hz for noise reduc-

tion, segmenting EEG signals into 10-second intervals aligned with movie clips, selecting

relevant data epochs within the range of 1000 to 37000, and extracting distinct frequency

rhythms (δ, θ, α, β, γ) from these epochs. This comprehensive preprocessing method

establishes a strong foundation for insightful analyses of the SEED dataset.

Before inputting data into the model, the authors harnessed differential entropy (DE) as a

nonlinear entropy metric for manual feature extraction. Differential entropy is particularly

effective in recognizing EEG signals, especially those related to emotions [56]. The stan-

dard definition of differential entropy involves integrating the probability density function

of a random variable. Given that EEG signals tend to follow a Gaussian distribution [56],

their differential entropy can be determined as the logarithmic energy spectrum within a

specific frequency range. This process involved the extraction of DE features across five

EEG frequency bands (δ, θ, α, β, γ), facilitated by a 256-point Short-Time Fourier Trans-

form using a non-overlapping Hanning window of one second. As a result, DE features

were derived with dimensions of N × 1 × C per second, where N represents the num-

ber of EEG channels and C stands for the EEG bands. For a sample of T seconds, the

authors obtained DE features with dimensions of N × T × C.

Network Architecture

The model design is founded upon the original Vision Transformer model, which was ini-

tially introduced in the domain of computer vision (CV). The DCoT model is made up

of numerous components, including a depthwise convolution (DW-CONV) layer, position

embeddings, learnable embeddings, transformer encoders, and linear layers, see Fig-
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Figure 4.5. The architecture of the proposed DCoT model [54]

ure 4.5.

• DW-CONV: The DCoT model leverages a DW-CONV layer for processing the input

DE features, playing a pivotal role in the model. This layer facilitates the extrac-

tion of comprehensive information from multi-frequency data. While conventional

Transformer models segment input data into patches and reshaped vectors, they

can disrupt temporal coherence and lead to undesirable interference. To counteract

this, the convolution layer is introduced to enhance coherence and fuse DE features

across frequencies. It also aids in capturing local and frequency domain features,

thus streamlining subsequent computations and enhancing emotion recognition re-

sults.

In ensuring the independence of EEG channel features, a depthwise convolution

layer is utilized due to its efficacy in extracting features from distinct color chan-

nels in CV. In this adaptation, EEG channels are treated as image channels. The

depthwise convolution layer employs N kernels with dimensions of C×f , where C

represents the frequency domain, f denotes the time domain, and the stride is s.

The outcome is a feature matrix X0 with dimensions N ×Df , where Df is derived

from the temporal length T and stride s. To uphold channel independence, the

EEG feature matrix X0 is segmented into one-dimensional vectors based on EEG

channels, resulting in N inputs for the subsequent Transformer encoder.

• Positional embedding and learnable embedding: The authors introduced one-

dimensional learnable position embeddings into the input sequences of the en-

coders to encode positional information. These position embeddings help maintain

the sequence orders of different channel feature vectors. Simultaneously, an addi-

tional [class] token, denoted by a box with ’∗’, is added to the input sequence, serv-

ing as the learnable embedding, as shown in Figure 4.5. This learnable embedding

acts as the representation of EEG features. The output from the Transformer en-
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coder represents the learnable embedding, effectively capturing the input feature

representation.

• Transformer encoder: In the context of the DCoT model, the Transformer encoder

holds substantial importance, serving as a key element to capture temporal de-

pendencies among the extracted features. The Transformer encoder configuration

comprises layer normalizations (LN), multi-head self-attention (MSA) layers, and

feed-forward networks (FFN). The investigation into intrinsic relationships among

EEG channels occurs predominantly through a sequence of stacked Transformer

encoders. Each encoder is composed of two primary components: MSA and FFN.

The structure entails residual connections encircling MSA and FFN, as depicted in

Figure 4.5, subsequently followed by layer normalization. This study employs five

encoder layers.

The MSA layer is tasked with capturing the interplay between informative signals,

while the FFN layer focuses on capturing the fundamental features within distinct

EEG frequency bands. The attention mechanism holds the capacity to identify

pivotal EEG channels for emotion recognition, contributing to the interpretability of

DCoT’s learning process. The output from the Transformer encoder is then directed

through a linear layer to yield the final classification outcome.

Result

The experiment results using the SEED dataset affirm the strong performance of the

proposed DCoT model in EEG-based emotion recognition. The authors conducted both

subject-dependent and subject-independent evaluations, showcasing impressive average

accuracies across different classification tasks. In subject-dependent experiments, accu-

racies reached remarkable levels of 99.82% for two tasks and 93.83% for three tasks. For

subject-independent experiments, average accuracy attained 88.37% for two tasks and a

noteworthy 83.03% for three tasks. These findings highlight the model’s superiority over

various alternative approaches in emotion recognition.

Furthermore, the authors introduced a visual approach to emphasize the role of EEG

channels in emotion recognition. This visualization aids experts in brain science in evalu-

ating result reliability. The visualized outcomes effectively underline key features captured

by the DCoT model, shedding light on the significance of individual EEG channels in

emotion recognition. This visual interpretability enriches the understanding of the DCoT

model’s learning process and its application in EEG-based emotion recognition.

In summary, the experiment outcomes using the SEED dataset validate the DCoT model’s

effectiveness in EEG-based emotion recognition. The inclusion of visualizations strength-

ens the model’s interpretability, enhancing its potential for real-world applications.



29

4.4 Study 4

A novel deep learning model named EEG Conformer was presented by Song et al [1].

that is capable of effectively decoding EEG signals. The authors want to improve inter-

pretability by utilizing visualization techniques to capture both local and global aspects of

EEG categorization.

Data Pre-processing

Initial preprocessing of the raw EEG data is required before it is fed into the model. First,

the authors eliminated unnecessary high-frequency and low-frequency noise using band-

pass filtering. They preserved task-relevant rhythms by using a 6th-order Chebyshev

filter. After that, Z-score normalization was carried out to lessen the data’s volatility and

non-stationarity. This is how the Z-score normalization was determined [1]:

xo =
xi − µ√

σ2
(4.1)

where xi and xo stand for the output of standardization and band-pass filtered data, re-

spectively. The mean and variance, denoted by µ and σ2, are computed using the training

set of data and applied straight to the test set.

Network Architecture

The architecture of the EEG conformer network comprises three fundamental compo-

nents: a convolutional module, a self-attention module, and a fully connected classifier,

as shown in Figure 4.6. Each component plays a distinct role in processing preprocessed

EEG data and extracting valuable features for accurate decoding.

Figure 4.6. EEG conformer network architecture

The EEG data comprises several channels, each containing one-dimensional time series

data. Prior to inputting this EEG data into the deep learning network, it undergoes a
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rearrangement and consolidation process.

• Convolutional module: A series of preprocessed EEG trials, including the chan-

nel and sample dimensions, are provided as input to the convolution module. One

dimension is added to each trial to represent the convolution channel. The temporal

convolution layer applies a 1D convolution operation along the time dimension of

the input, resulting in a tensor with the same number of channels and spatial dimen-

sions but a reduced temporal dimension. The spatial convolution layer applies a 1D

convolution operation along the channel dimension of the input, resulting in a tensor

with the same number of channels and temporal dimensions but a reduced spatial

dimension. The output of the spatial convolution layer is then passed through an

average pooling layer, which reduces the spatial dimension further by taking the

average of each channel across all spatial positions. The temporal convolution

layer (presented in Figure 4.7) is responsible for capturing the temporal correlation

present inside each electrode channel. The spatial convolution layer (presented in

Figure 4.7) is tasked with capturing the spatial association among distinct electrode

channels.

Figure 4.7. The temporal convolution illustration (left) and the spatial convolution illustra-
tion (right). (The data elements seen in the picture do not correspond to those presented
in the original text)

• Self-attention module: The primary objective of this module is to extract long-term

temporal information by utilizing the feature map that is created by the convolution

module, and it serves to enhance the restricted sensory scope that is intrinsic to

the convolution module. The output of the convolution module is a tensor with three

dimensions: channel, temporal, and spatial. The self-attention module takes this

tensor as input and applies a multi-head self-attention mechanism to capture global

dependencies between different time positions. The self-attention mechanism in-

volves computing attention scores between each pair of time positions in the input

tensor and using these scores to weigh the importance of each time position for

each channel. This approach enables the network to effectively highlight significant

traits while disregarding inconsequential ones. The method has a high degree of
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efficacy in capturing intricate nonlinear relationships included in EEG data. Further-

more, the module integrates two fully linked feed-forward layers in order to improve

the model’s capacity to accurately represent the data. Moreover, it should be noted

that the output of the self-attention module is a tensor that possesses an identical

form to that of the input tensor.

• Fully connected classifier: The output of the self-attention module is a tensor with

three dimensions: channel, temporal, and spatial. The fully connected classifier ap-

plies a global average pooling operation along the temporal and spatial dimensions

of the input tensor, resulting in a tensor with only the channel dimension. This ten-

sor is then passed through two fully connected layers, each followed by a ReLU

activation function. The output of the second fully connected layer is a tensor with

M dimensions, where M is the number of EEG categories. The softmax function is

applied to this tensor to produce a probability distribution over the categories. The

entire framework is trained using cross-entropy loss, as defined below:

L = − 1

Nb

Nb∑︂
i=1

M∑︂
c=1

y log(ŷ) (4.2)

where M represents the number of EEG categories, y is the base true label, and ŷ

is the predicted label. Nb denotes the number of trials in a batch.

Result

Three distinct publicly accessible datasets were employed in their investigation of EEG

conformer, which are BCI Competition IV Dataset 2a [57], BCI Competition IV Dataset

2b [57], SEED dataset [55]:

• BCI Competition IV Dataset 2a: The first dataset is the EEG data from 9 individ-

uals from the BCI Competition IV Dataset 2a, which was made available by Graz

University of Technology. There were four motor imagery exercises that included

the movement of the tongue, both feet and the left and right hands. Twenty-two

Ag/AgCl electrode sessions were collected at a sampling rate of 250 Hz on sepa-

rate days. 288 EEG trials, or 72 trials for each task, were conducted during a single

session. They employed [2, 6] seconds for every trial and, following their studies,

band-passed the EEG data to [4, 40] Hz. The purpose of the first session was

training, and the second was testing.

• BCI Competition IV Dataset 2b: The second dataset, which includes EEG data

from 9 participants, is the BCI competition dataset 2b from the Graz University of

Technology. Two left- and right-handed motor imagery tasks are included in the
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dataset. Using three bipolar electrodes (C3, Cz, and C4) and a sampling rate of

250 Hz, the individuals collected data in five sessions, with 120 trials per session.

They conducted their experiments using [3, 7] seconds per trial. In addition, we

applied band-pass filtering between [4, 40] Hz in order to minimize noise at both

high and low frequencies. The training set was used the first three times, and the

test set was used the final two times.

• SEED dataset: The SEED data set is described in detail in Study 3.

On the first dataset, the EEG conformer model achieves an average classification accu-

racy of 78.66%, while on the second dataset, it achieves an accuracy of 84.63%. On

the third dataset, it can achieve an accuracy of up to 95.3%. They not only calculated

the accuracy, but they also counted the inter-rater agreement or reliability of the cate-

gorized data as kappa. Kappa is utilized as a metric to assess the overall performance

of the model in EEG decoding [1]. It considers both the accuracy of the model and the

accuracy of random guessing. On each of the three datasets, the EEG conformer model

yields kappa values of 0.7155, 0.6926, and 0.9295 respectively. Overall, the EEG con-

former had the best performance on the SEED dataset. This is due to the fact that the

SEED dataset was developed specifically for the purpose of emotion recognition, which

is a more difficult endeavor than the categorization of motor images, and it requires that

the model capture both local and global information contained within the data. The EEG

conformer model was developed expressly for the purpose of overcoming this difficulty. It

does so by making use of a self-attentive mechanism that discovers long-range relation-

ships and recognizes global patterns in the data. The SEED dataset exceeds the other

two in terms of the number of trials and the variety of emotional stimuli it contains.

4.5 Discussion of Transformer Network in Analyzing EEG Signal

A noteworthy aspect underscored by the review is the strategic integration of Transformer

networks into EEG analysis workflows. The efficacy of these networks lies not only in

their inherent capacity to capture complex temporal and spatial relationships within EEG

signals but also in their adaptability across diverse cognitive tasks. Particularly relevant

is the inclusion of detailed methodologies for data preprocessing, ensuring the input sig-

nals are primed for optimal analysis. Techniques such as downsampling, artifact removal,

and signal segmentation serve as essential prelude steps that lay the foundation for ac-

curate and meaningful feature extraction. Moreover, the spotlight on Transformer net-

work architectures emphasizes their pivotal role in revolutionizing EEG analysis. Through

a combination of self-attention mechanisms, multi-head layers, and feed-forward neural

networks, Transformer networks transcend the limitations of conventional methods by ef-

fectively capturing dependencies across various frequency bands and channels. In the

four literatures reviewed above where transformer architectures have been applied, the
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data input to the transformer in each model is differentiated:

• Transformer: Before sending the EEG data to the transformer encoder, the authors

preprocessed it to remove noise and artifacts. In particular, the raw EEG data

was imported and band-pass filtering was implemented on the EEG to eliminate

environmental and muscle noise. After epoching the data and removing the bad

epochs, ICA was applied to remove the bad channels. Embedding and positional

coding were performed before sending the input to the encoder. Embedding is the

process of converting the input into a fixed-size vector, and position coding is used

to provide contextual information about the relative position of the input.

• TC-Net: After the data preparation phase, the patch partition module receives the

preprocessed EEG signal. The EEG signal of each channel is divided into non-

overlapping neighboring patches using the patch partition module in order to main-

tain the signal’s temporal and frequency characteristics. The size of each patch

is determined by the frequency and temporal resolution of the input signal. Each

segment serves as a marker, summarizing the primary characteristics of the signal.

A string of markers is the Patch Partition module’s output, and this string is passed

into the EEG transformer module.

• DCoT: After denoising, segmentation, and feature extraction a feature matrix is ob-

tained, which is then fed into a deep convolutional layer to extract the complete

information of the multi-frequency data. To ensure that each channel retains its

relative independence, the DCoT model partitions the EEG feature matrix into a se-

quence of one-dimensional vectors corresponding to the EEG channels, and each

vector represents the EEG features of one channel. These vectors are then fed

into the transformer encoder, which processes the data from all channels in paral-

lel. In order to preserve position information, a one-dimensional learnable position

embedding is appended to the input sequence to the encoder in the transformer.

• EEG conformer: A preprocessed EEG with a convolutional channel that has one

dimension added to both the channel and the sample. The convolution module then

extracts local temporal and spatial properties from the preprocessed EEG data. To

capture temporal relationships, temporal convolution was used along the temporal

dimension; to capture spatial dependencies, spatial convolution was applied along

the electrode channels. The self-attention module of the converter module then

receives the generated spatial-temporal representation.

In summary, transformer networks have transformative potential in EEG signal analysis,

with advantages in capturing intricate temporal patterns and greater adaptability to differ-

ent cognitive tasks. It is foreseeable that as the research community continues to embrace

and advance this innovative paradigm, the integration of transformer networks will not only

refine the understanding of EEG data, but also provide new avenues for groundbreaking
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applications in neuroscience, clinical diagnostics, and human-computer interfaces.
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5. TRANSFORMER IN THE ASSESSMENT OF

COGNITIVE LOAD: CASE STUDY

Cognitive load, the mental effort required to process information, is a fundamental con-

cept in cognitive psychology and human-computer interaction. Understanding cognitive

load is essential in designing effective learning environments, optimizing user interfaces,

and enhancing overall cognitive performance. As technology continues to evolve and

infiltrate various aspects of our lives, the need for accurate and efficient methods to as-

sess cognitive load becomes increasingly vital. This chapter delves into a case study

that explores the application of transformer models in the assessment of cognitive load.

Transformer models have revolutionized the field of natural language processing (NLP)

and have shown promise in various applications across domains. Their ability to cap-

ture complex dependencies in sequential data has made them a compelling choice for

analyzing cognitive processes.

The primary objective of this case study is to explore the application of the EEG con-

former [1] network mentioned in Chapter 4 in assessing cognitive load. This chapter is

structured into several sections to provide a comprehensive overview of the case study:

data collection, data pre-processing, network architecture, and results.

5.1 Data Collection

In this case study, two distinct datasets formed the basis for our exploration of cognitive

load assessment. The initial dataset, known as the Simultaneous Task EEG Workload

(STEW) dataset [46], encompasses a diverse collection of raw EEG data acquired from

participants who were engaged in a multitasking workload experiment, a dataset also

employed in Study 1 of the literature review. Furthermore, as part of the comprehensive

description of the STEW dataset outlined in Study 1, each participant contributed 2.5 min-

utes of EEG recordings during both resting-state conditions and multitasking scenarios

with the SIMKAP test. During these multitasking phases, participants were requested

to provide self-assessments of their perceived cognitive workload, utilizing a rating scale

ranging from 1 to 9. These subjective ratings offered valuable insights into their cognitive

load experiences.



36

The second dataset originated locally from a cohort of 30 individuals aged between 18

and 65, all devoid of any psychiatric history. These participants actively engaged in the

N-back memory game during data collection, a task involving the display of single digits

(ranging from 0 to 9) on a laptop screen every 3 seconds. Their objective was to click the

mouse when a specific target digit appeared. The game consisted of 9 rounds, with brief

pauses, accumulating to 90 seconds per round. In level 0, participants were instructed to

click upon sighting the predetermined target number. In level 1, the instruction was to click

if the previously shown number reappeared, and in level 2, participants responded when

the number from two steps back was displayed. Data acquisition was executed using

the Neuroelectrics® Instrument Controller (NIC2) software, in tandem with the ENOBIO®

EEG recording system supplied by Neuroelectrics®. EEG recordings were performed

across 7 channels, with a primary focus on the prefrontal region, sampled at a frequency

of 500 Hz [58].

5.2 Data Pre-processing

Within the data preprocessing framework, a uniform methodology was consistently ap-

plied to the STEW dataset and locally acquired data, ensuring standardized data prepa-

ration for subsequent analysis. Initially, the code is designed to extract raw EEG data

from their respective source files, transforming them into a digital array format suitable

for further processing. Simultaneously, an array is initialized as a container for EEG data

refinement and denoising.

The processing of individual EEG channels is given careful attention as the code de-

velops. In this phase, the important frequency components of the EEG signal are re-

tained while unwanted noise components are filtered out using a precise bandpass But-

terworth filter. The code then explores the crucial discrete wavelet transform (DWT) stage.

Because of their similarity to blinking patterns, the use of Daubechies 4 (db4) mother

wavelets is especially noteworthy in this instance. Through this complex procedure, the

EEG signal is broken down into its fundamental frequency components, revealing the

underlying frequency patterns and subtleties.

Furthermore, the algorithm calculates necessary thresholds, which is a critical step in the

denoising procedure. These threshold values, derived from the median absolute value

of wavelet coefficients, serve as a discriminative mechanism to separate valuable neural

signals from extraneous noise. The code employs the cmddenoise function, a trusted

tool for noise reduction, to meticulously eliminate noise and unwanted artifacts from the

EEG signals. This critical step contributes significantly to refining the EEG signal dataset,

fine-tuning the data by ridding it of unwanted elements while retaining the essential neural

information, see the comparison from Figure 5.1.
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Figure 5.1. The comparison of EEG signal before pre-processing and after pre-
processing

5.3 Implementation

In the case study, implementing this deep learning neural network involves dealing with

two datasets: the local dataset and the STEW dataset. The official repository of EEG

Conformer [59] is used as a reference in the design and implementation of validation

experiments.

The following lists the software and hardware environments used by the implementation.

The software environments include the programming language used and the names and

version numbers of the major libraries. The hardware environment includes the GPU,

RAM, and other information.

Software Environment:

1. Programming Language: Python 3.10.0

2. Deep Learning Packages: PyTorch 2.1.0, Pandas 2.1.1, SciPy 1.11.3

Hardware Environment: Google Colab (GPU Type: V100; GPU RAM: 15GB; System

RAM: 40GB).

The program is thoughtfully designed with two primary considerations:

• Modularization of the deep learning neural network: Modularity is a key feature

of the design, allowing for ease of future modifications and structural adjustments to

the model. As shown in Figure 5.2, the implementation of this deep learning neural

network involves four essential blocks, each associated with its specific input vari-

ables, parameters, and output variables. This modular structure not only enables

the seamless integration of additional layers to the MLP (Multi-Layer Perceptron) but
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also simplifies the process of making program extensions or modifications, such as

altering the convolution technique.

Figure 5.2. The flow of the program module

• Parameterization of the modules: Each module within the network has its own

set of parameters. This parameterization empowers the user to fine-tune the neural

network, enabling the exploration of its performance across different configurations.

Within deep learning neural networks, various tunable parameters exist, and ad-

justing these parameters is pivotal in optimizing the network’s performance across

different datasets. Furthermore, this parameterization serves as a valuable tool for

conducting experiments and thoroughly assessing the neural network’s capabilities

and adaptability. Table 5.1 presents several critical parameters within various mod-

ules that significantly impact the neural network’s performance, as elaborated upon

in the subsequent section.

The configuration of the convolution kernel affects the size of the token that the con-

volution layer processes within the convolution module, and the number of channels

is dataset-dependent. The three parameters within the multi-head attention module

significantly impact the computation vector and overall performance. Additionally,

the parameters of the MLP classifier are contingent on the number of classifications

required.
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Table 5.1. Parameters of modules

Convolution Module
channel number

kernel size

Multi-head Attention Module

number of Heads

depth

embedding size

MLP Classifier number of classes

5.4 Result

This part is devoted to the presentation and comprehensive assessment of the perfor-

mance of the EEG conformer network application on two separate datasets: the STEW

dataset and a dataset obtained locally. By systematically manipulating a variety of pa-

rameter combinations, the primary objective of this study is to assess the robustness and

effectiveness of the model across a number of experimental scenarios. These config-

urations include the number of heads in the self-attention mechanism, the depth of the

architecture, and the size of the convolution kernel of the convolution module. This allows

us to understand how their model performance is affected by changing these parameters.

5.4.1 STEW Dataset

• The number of heads: In transformer-based deep learning neural networks, the

number of heads significantly influences their capacity to identify and extract global

features and patterns from the data. As illustrated in Figure 5.3, when the number

of heads is less than 8, the accuracy rate increases as the number of heads grows.

With fewer than 8 heads, augmenting the number of heads effectively enhances

the neural network’s learning capability, achieving peak accuracy in the experiment

when there are 8 heads. However, when the number of heads exceeds 8, the

accuracy rate demonstrates a declining trend. This phenomenon arises because,

as the number of heads increases, the neural network’s demand for data volume

also rises. Therefore, using more than 8 heads can lead to overfitting when data is

insufficient, causing a decrease in the accuracy rate.

Hence, there exists a trade-off when deciding on the number of heads:

1. As the number of heads increases, the amount of data required also

grows proportionally. The self-attention mechanism inherently demands a

larger volume of data, and when the number of heads is increased exces-

sively, it becomes more susceptible to overfitting, thereby leading to a reduc-

tion in accuracy.
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Figure 5.3. The effect of the number of heads in the self-attention module on accuracy.

2. Increasing the number of heads also escalates the computational cost.

With an increase in the number of heads, there is an accompanying rise in the

memory space needed to perform gradient computations, and simultaneously,

the time required for self-attention computations also increases.

• Depth: The depth of the self-attention module and the number of heads have sim-

ilar effects on accuracy and computational cost. In general, increasing the depth

of the self-attentive module and adding more layers improves its ability to extract

and learn information, but it also comes at the cost of increased time and mem-

ory requirements for training and reasoning. Figure 5.4 illustrates that the highest

accuracy is attained at a depth of 3.

Figure 5.4. The effect of depth in the self-attention module on accuracy.
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• The size of convolution kernel: In the convolution module, the kernel size, often

referred to as the filter size, plays a crucial role in determining the scale of infor-

mation captured. Smaller kernels excel at capturing localized information, whereas

larger kernels are more effective at capturing global features. As previously dis-

cussed, in EEG Conformer, the convolution module focuses on extracting localized

information, while the self-attention module handles global information extraction.

The input to the self-attention module is derived from the local feature map pro-

duced by the convolution module. Figure 5.5 illustrates the relationship between

kernel size and accuracy, showing that accuracy increases as the local field of view

expands and reaches its peak at a kernel size of 30.

Figure 5.5. The effect of the size of the convolution kernel in the convolution module on
accuracy.

Regarding computational cost, smaller kernels result in larger feature maps, while

larger kernels produce smaller feature maps. Additionally, using large kernels may

increase the risk of overfitting.

• Convergence analysis: As depicted in Figure 5.6, the optimal experimental out-

come for the STEW dataset was attained with the following parameter settings: 4

attention heads, a kernel size of 30, and a depth of 3, resulting in an accuracy of

90.8772%. The training process converged after 125 epochs.

5.4.2 Local Dataset

Our series of parametric experiments on the locally gathered dataset showed that varying

the model’s depth and number of attention heads had comparable impacts to those we

had previously shown in the STEW dataset. The observed consistent patterns indicate
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Figure 5.6. The convergence illustration of accuracy.

that the EEG conformer network’s reaction to variations in the number of attention heads

and its architectural complexity displays a level of universality across diverse datasets.

Nevertheless, it is crucial to emphasize a significant disparity between the two datasets.

The mismatch became apparent when examining the effects of altering the kernel size in

the convolution module of the EEG conformer network. In contrast to the constant pat-

terns observed in attention heads and depth, the impact of kernel size on the experimental

outcomes was shown to be different and dependent on the specific dataset.

This dataset-dependent behavior underscores the importance of considering dataset char-

acteristics and domain-specific nuances when optimizing the model’s hyperparameters.

• The number of heads: The examination of experimental findings reveals a no-

table discrepancy between the local dataset and the STEW dataset, particularly in

their responsiveness to changes in the number of attention heads utilized in the

EEG conformer network. The graphical representation in Figure 5.7 clearly demon-

strates that the local dataset has a greater sensitivity to variations in the number of

attention heads compared to the STEW dataset. It is noteworthy to mention that

the accuracy measure displays a discernible pattern in relation to the quantity of

heads.

In the context of the local dataset, it is apparent that the number of attention heads

and the performance of the model are positively correlated in the context of the local

dataset. The degree of ascension is notably prominent in cases where the quan-

tity of headings is less than three. This implies that the EEG conformer network

can derive advantages from enhanced attention granularity, enabling it to capture

more nuanced linkages and dependencies within the complex EEG recordings of
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Figure 5.7. The effect of the number of heads in the self-attention module on accuracy.

the local dataset. However, a critical juncture arises when the quantity of attention

headings approaches four. At this point in time, there is a noticeable decrease in the

accuracy metric. The observed decline in performance is indicative of a situation

that is frequently associated with overfitting, a condition in which the model be-

comes overly customized to the training set, impairing its capacity to predict new,

unseen data with any degree of accuracy. The intricacy of the dataset at hand

seems to require a larger quantity of data in order to adequately mitigate the prob-

lem of overfitting.

Figure 5.8. The effect of depth in the self-attention module on accuracy.

• Depth: Our experimental investigation on the impact of the depth of the self-

attention module in the EEG Conformer network has revealed a significant pattern

that offers vital insights into the model’s interaction with the specific details of the
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local dataset. To be more precise, the model showed overfitting when we increased

the depth over a threshold that we found to be 2. This phenomenon resulted in a

noticeable decrease in accuracy.

By augmenting the depth of the self-attention module, the model’s ability to effec-

tively capture and represent the patterns and relationships within the training data

was enhanced. Nevertheless, this increased capability came with a trade-off, as

the model progressively improved its ability to capture the intricate particulars and

subtleties of the training data, encompassing the irrelevant variations and peculiar-

ities that might not effectively apply to novel, unfamiliar data. One of the outcomes

of overfitting is a significant decrease in accuracy. When the model is confronted

with data that exhibits even minor deviations from the training set, it experiences

difficulties in generating precise predictions. This is due to the model’s tendency

to essentially "memorize" the training data rather than acquire a comprehensive

understanding of universal patterns and relationships.

Figure 5.9. The effect of the size of the convolution kernel in the convolution module on
accuracy.

• The size of convolution kernel: As depicted in Figure 5.9, a discernible trend

emerges wherein the accuracy experiences a gradual decline as the kernel size

increases. There are two primary explanations that can account for this observed

decrease in accuracy:

1. As the size of the kernel increases, there is an increased likelihood of en-

countering overfitting in the model. In the context of kernel size, a larger

kernel possesses an increased ability to catch intricate information that exists

in the training data, such as noise. However, this heightened capacity may not

effectively generalize to unseen data.
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2. The use of a large kernel results in a lack of localized information in the ex-

tracted feature maps, which may not provide appropriate input to the subse-

quent self-attention module.

To summarize, the local dataset achieved the highest accuracy: 75.5827% with a convo-

lution module kernel size of 5, a self-attention module depth of 2, and a head number of

3.
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6. DISCUSSION AND CONCLUSIONS

The use of transformer neural networks for the processing of EEG signals is a rapidly de-

veloping and potentially game-changing topic that lies at the crossroads of deep learning

and cognitive research. The EEG, which is a very effective technique for measuring the

activity of the brain in real-time, offers a glimpse into the workings of the cognitive process.

Therefore, this thesis proceeds from a description of transformer network designs and

cognitive load to investigate 4 transformer models, their combinations with other models

in EEG analysis, and a case study of one of them. Therefore, this thesis first describes the

theories and measurements related to EEG-based cognitive load and then explains the

basic architecture and operation of transformer networks. Subsequently, several trans-

former models and their combined models with other network architectures in EEG anal-

ysis are explored, and a case study of one of the models is conducted. Throughout the

learning and experimentation process, the following points are crucial in determining the

success of the experiment:

• The quality of the data: High-quality data ensures that the insights gained from

the EEG signal accurately represent neural processes, which is crucial for making

a correct diagnosis or understanding cognitive patterns. In addition, transformer-

based models require high-quality data for generalization, just like any machine

learning model. And the quality of the data depends on upfront data collection and

proper data preprocessing. During the data collection process, it is important to

avoid, as much as possible, any factors that can be completely avoided to affect

the data. In data preprocessing, important information should not be lost while

removing noise and artifacts, and preprocessing techniques should be selected

based on the data.

• Selection of model: The study objectives, data features, available data, and prob-

lem complexity need to be considered when choosing an appropriate model for

EEG analysis. There is also a need to review the existing literature in the field of

EEG analysis to see which models have been successfully applied to similar tasks,

which can provide insight into the effectiveness of different approaches. Addition-

ally, it is helpful to experiment with multiple models to see which one performs best

on a particular EEG dataset and task. Model performance is often evaluated using

appropriate evaluation metrics (such as accuracy, F1 score, or kappa). In some
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cases, combining multiple models into a whole can improve performance and ro-

bustness.

• Parameter tuning: Tuning the parameters of the model applied in EEG analysis

is a critical step in optimizing its performance. This process includes techniques

such as understanding the parameters of the model, defining the parameter search

space, and performing cross-validation to evaluate different settings for optimiza-

tion. Furthermore, continuous iteration and refinement of the parameters, as well as

the consideration of regularization techniques are key. Visualization of results and

maintenance of records are also important for tracking progress. Overall, parame-

ter tuning is an iterative process that ensures optimal performance of the model for

EEG analysis tasks.

• Computational infrastructure: Computational resources are critical in EEG anal-

ysis studies involving the application of transformer models. Transformers are com-

plex deep-learning architectures, and they require a significant amount of com-

putational power to accomplish a variety of tasks. Computational infrastructure

facilitates efficient research, collaboration, and experimentation in EEG analysis,

enabling researchers to discover valuable insights.

While transformer networks and network architectures that include other networks have

made notable progress and gained substantial benefits in this area, there remain some

difficulties that require future attention and resolution:

• Computational resources: Computational effort may be required for transformer

models, particularly when working with big EEG datasets. It is possible that the

training and deployment of these models may demand large computational re-

sources, which may be a hindrance in certain research contexts.

• Data requirements: In order to train transformers effectively, it is often necessary

to have access to substantial annotated datasets. The process of acquiring and

categorizing EEG data, particularly when accompanied by accurate cognitive load

labels, might prove to be a laborious and costly endeavor.

• Model complexity: The complexity of transformer architectures can pose chal-

lenges for researchers and practitioners who are not familiar with deep learning

techniques. Implementation and fine-tuning of transformer models can be non-

trivial.

• Overfitting: Transformers are prone to overfitting, especially when trained on lim-

ited data. Careful regularization and validation techniques are necessary to prevent

overfitting and ensure generalizability.

In summary, transformer networks have emerged as a potent and adaptable tool in the

realm of EEG research, providing vital insights and progress in diverse disciplines. These
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networks have been utilized in several domains such as cognitive load assessment, the

study of functional connectivity, recognition of emotions, research of sleep patterns, de-

velopment of brain-computer interfaces, and other related applications. The capacity to

effectively represent intricate temporal relationships, dynamically extract distinctive char-

acteristics, and offer immediate insights has significantly broadened the scope of EEG

research and its practical implementations. However, challenges remain. Future de-

velopments will likely involve addressing these challenges, exploring more efficient ar-

chitectures, and improving data acquisition techniques. Despite these challenges, the

transformative potential of transformer networks in EEG analysis is undeniable, and their

continued integration promises to advance the understanding of cognitive processes and

brain activity, thereby enhancing diagnostic and therapeutic applications in the fields of

neurology, psychology, and human-computer interaction.
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