

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Mapa de Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín para su clasificación mediante la metodología SUPERPAVE

TESIS

Para optar el título profesional de Ingeniero(a) Civil

AUTORES

Echevarria Gonzales, David Douglas ORCID: 0009-0003-9664-5822

Ruiz Godier, Ursula Paola de Guadalupe ORCID: 0009-0000-0863-1235

ASESOR

Huaman Guerrero, Nestor Wilfredo ORCID: 0000-0002-7722-8711

Lima, Perú

2023

METADATOS COMPLEMENTARIOS

Datos de los autores

Echevarria Gonzales, David Douglas

DNI: 46764310

Ruiz Godier, Ursula Paola de Guadalupe

DNI: 70910524

Datos de asesor

Huaman Guerrero, Nestor Wilfredo

DNI: 10281360

Datos del jurado

JURADO 1

Davila Fernandez, Susana Irene

DNI: 09147106

ORCID: 0000-0002-6949-1317

JURADO 2

Arevalo Lay, Victor Eleuterio

DNI: 04434662

ORCID: 0000-0002-2518-8201

JURADO 3

Tamara Rodriguez, Joaquin Samuel

DNI: 31615059

ORCID: 0000-0002-4568-9759

Datos de la investigación

Campo del conocimiento OCDE: 2.01.01

Código del Programa: 732016

DECLARACIÓN JURADA DE ORIGINALIDAD

Nosotros, Ursula Paola de Guadalupe Ruiz Godier, con código de estudiante Nº

201310444, con DNI N° 70910524, con domicilio en Jr. El Cadíz 140, distrito de Santiago

de Surco, provincia y departamento de Lima, y David Douglas Echevarria Gonzales, con

código de estudiante N°201020502, con DNI N° 46764310, con domicilio en Jr. El

Cuarzo Viv. Mariscal Gamarra Mz. J Lt. 21, distrito de Los Olivos, provincia y

departamento de Lima, en nuestra condición de bachilleres en Ingeniería Civil de la

Facultad de Ingeniería, declaramos bajo juramento que:

La presente tesis titulada: "Mapa de Performance Grade (PG) del asfalto en las regiones

de Ucayali, Loreto y San Martín para su clasificación mediante la metodología

SUPERPAVE" es de nuestra única autoría, bajo el asesoramiento del docente Huaman

Guerrero, Nestor Wilfredo, y no existe plagio y/o copia de ninguna naturaleza, en especial

de otro documento de investigación presentado por cualquier persona natural o jurídica

ante cualquier institución académica o de investigación, universidad, etc.; la cual ha sido

sometida al antiplagio Turnitin y tiene el 9% de similitud final.

Dejamos constancia que las citas de otros autores han sido debidamente identificadas en

la tesis, el contenido de estas corresponde a las opiniones de ellos, y por las cuales no

asumimos responsabilidad, ya sean de fuentes encontradas en medio escritos, digitales o

de internet.

Asimismo, ratificamos plenamente que el contenido íntegro de la tesis es de nuestro

conocimiento y autoría. Por tal motivo, asumimos toda la responsabilidad de cualquier

error u omisión en la tesis y somos conscientes de las connotaciones éticas y legales

involucradas.

En caso de falsa declaración, nos sometemos a lo dispuesto en las normas de la

Universidad Ricardo Palma y a los dispositivos legales nacionales vigentes.

Surco, 08 de octubre de 2023

Ursula Paola de Guadalupe Ruiz Godier

اليسوم

70910524

David Douglas Echevarria Gonzales

46764310

INFORME DE ORIGINALIDAD-TURNITIN

Mapa de Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín para su clasificación mediante la metodología SUPERPAVE

INFORME DE ORIGINALIDAD			
9% INDICE DE SIMILITUD	9% FUENTES DE INTERNET	1% PUBLICACIONES	3% TRABAJOS DEL ESTUDIANTE
FUENTES PRIMARIAS			
1 repositor Fuente de Inter	io.urp.edu.pe		2%
2 hdl.hand Fuente de Inter			2%
3 Submitte Trabajo del estu	d to Universida	d Ricardo Pal	ma 1 %
4 academic Fuente de Inter	c.oup.com		<1%
5 es.monga Fuente de Inter	abay.com		<1%
6 repositor Fuente de Inter	iosiidca.csuca.o	org	<1%
7 tesis.puc Fuente de Inter			<1%
8 pirhua.uc Fuente de Inter	dep.edu.pe	Est	<1 ₉

Dra. Vargas Chang Esther Joni

DEDICATORIA

Esta tesis está dedicada con profundo agradecimiento a mis padres David Tolentino y Leonela, cuyo sacrificio, esfuerzo y amor incondicional iluminaron mi camino hacia la realización de un sueño que hoy tanto anhelaba. Y a Pompeyo, quien desde el cielo ha sido mi fuente de inspiración y fortaleza. Su espíritu y amor siempre han estado presentes, guiándome en cada paso a lo largo de este camino.

David Douglas Echevarria Gonzáles

Esta tesis va dedicada en especial a mis padres Gerardo y Erika, quienes son mi soporte, jamás dudan de mis capacidades y me apoyan en todo momento, también para mis abuelos Carlos, Luisa, Julio e Inés que desde el cielo me ven y nunca me dejan sola, a mis perritos los cuales me acompañaron en las amanecidas y en los momentos de frustración, al resto de mi familia más cercana y amigos por darme ánimos a seguir.

Ursula Paola de Guadalupe Ruiz Godier

AGRADECIMIENTO

Un sincero agradecimiento al Ing. Nestor Huaman, por su paciencia y disposición a ayudarnos, al Ing. Samuel Tamara por apoyarnos con sus conocimientos y a nuestra Universidad Ricardo Palma y sus docentes, por formarnos para ser buenas personas y profesionales.

Douglas Echevarria y Ursula Ruiz

ÍNDICE GENERAL

METADATOS COMPLEMENTARIOS	ii
DECLARACIÓN JURADA DE ORIGINALIDAD	iii
INFORME DE ORIGINALIDAD-TURNITIN	iv
DEDICATORIA	v
AGRADECIMIENTO	vi
ÍNDICE GENERAL	vii
ÍNDICE DE TABLAS	xi
ÍNDICE DE FIGURAS	xiv
RESUMEN	xvi
ABSTRACT	xvii
INTRODUCCIÓN	1
CAPÍTULO I: PLANTEAMIENTO DEL PROBLEMA	3
1.1. Descripción y formulación del problema general y específicos	3
1.1.1. Descripción del problema	3
1.1.2 Problema general	3
1.1.3 Problemas específicos	3
1.2 Objetivo general y específico	4
1.2.1 Objetivo general	4
1.2.2 Objetivos específicos	4
1.3 Delimitación de la investigación	4
1.3.1 Delimitación temporal	4
1.3.2 Delimitación espacial	4
1.3.3 Delimitación temática	4
1.4 Justificación e importancia	4
1.4.1 Justificación	4
a) Justificación teórica	4
b) Justificación práctica	5
c) Justificación metodológica	5
d) Justificación social	5
1.4.2 Importancia	5
CAPÍTULO II: MARCO TEÓRICO	6
2.1 Antecedentes del estudio de investigación	6

2.1.1 Marco histórico	6
2.1.2 Investigaciones internacionales	9
2.1.3 Investigaciones nacionales	10
2.2 Estructura teórica y científica que sustenta el estudio	12
2.2.1 Pavimento asfáltico	12
2.2.2 Cemento asfáltico de petróleo (CAP)	17
a) Composición química del CAP	19
b) Grados de cemento asfálticos de pavimentación	20
c) Requisitos de calidad del CAP	20
2.2.3 Proyecto MERRA-2 de la NASA	21
2.2.4 Metodología SUPERPAVE	23
2.2.5 Ajuste del Performance Grade (PG) de acuerdo al tráfico y la velocidad	25
2.2.6 Mapa de Performance Grade (PG)	26
2.2.7 Modelos matemáticos SHRP y LTTP	27
2.3 Definición de términos básicos	28
CAPÍTULO III: HIPÓTESIS	30
3.1 Hipótesis	30
3.1.1 Hipótesis general	30
3.1.2 Hipótesis específicas	30
3.2 Variables	30
3.2.1 Definición conceptual de variables	30
3.2.2 Operacionalización de variables	31
CAPÍTULO IV: METODOLOGÍA DE LA INVESTIGACIÓN	32
4.1 Tipo y nivel	32
4.1.1 Tipo	32
4.1.2 Nivel	32
4.2 Diseño de investigación	32
4.3 Población y muestra	32
4.4 Técnicas e instrumentos de recolección de datos	32
4.4.1 Tipos de técnicas e instrumentos	32
4.4.2 Criterios de validez y confiabilidad de los instrumentos	33
4.4.3 Procedimientos para la recolección de datos	33
4.5 Técnicas para el procesamiento y análisis de información	33

CAPITULO V: PRESENTACION Y ANALISIS DE RESULTADOS DE LA	
INVESTIGACIÓN	34
5.1 Recolección de datos	34
5.1.1 Descripción y características de la zona de estudio	34
5.1.2 Selección de estaciones meteorológicas de Ucayali, Loreto y San Martín	37
5.1.3 Obtención de la data de temperaturas MERRA2- NASA	48
5.2 Procesamiento de datos	49
5.2.1 Temperatura máxima del aire	49
5.2.2 Temperatura máxima y mínima del aire al 98% y 50% de confiabilidad	55
5.2.3 Cálculo del Performance Grade (PG) - Modelo SHRP Original 1994	60
5.2.4 Cálculo del Performance Grade (PG) - Modelo SHRP Canadiense	71
5.2.5 Cálculo del Performance Grade (PG) - Modelo LTPPBind 1996	81
5.2.6 Cálculo del Performance Grade (PG) - Modelo LTPPBind 1998-2000	92
5.2.7 Cálculo del Performance Grade (PG) - Modelo LTPPBind 2004	103
5.2.8 Corrección del Performance Grade (PG) por tráfico y velocidad	113
5.3 Análisis de los resultados	121
5.3.1 Comparativa de los modelos matemáticos	121
5.3.2 Mapa de Performance Grade (PG)	123
5.4 Contrastación de hipótesis	130
5.4.1 Hipótesis específica 1	130
5.4.2 Hipótesis específica 2	130
5.4.3 Hipótesis específica 3	131
CONCLUSIONES	133
RECOMENDACIONES	135
REFERENCIAS	136
ANEXOS	142
Anexo A: Matriz de Consistencia	143
Anexo B: Clasificación de climas del Perú	144
Anexo C: Simbología de los climas del Perú	145
Anexo D: Climas del departamento de Ucayali	146
Anexo E: Climas del departamento de Loreto	147
Anexo F: Climas del departamento de San Martín	148
Anexo G: Provincias del departamento de Ucayali	149
Anexo H: Provincias del departamento de Loreto	150

Anexo I: Provincias del departamento de San Martín	151
Anexo J: Data meteorológica del Proyecto MERRA 2 de la NASA	152
Anexo K: Cálculos detallados para el cálculo del Performance Grade (PG)	153

ÍNDICE DE TABLAS

Tabla 1 Grado de corrección por tráfico y velocidad
Tabla 2 Clasificación por velocidad
Tabla 3 Operacionalización de variables
Tabla 4 Distritos del departamento de Ucayali
Tabla 5 Distritos del departamento de Loreto
Tabla 6 Distritos del departamento de San Martín
Tabla 7 Estaciones meteorológicas del departamento de Ucayali
Tabla 8 Estaciones meteorológicas del departamento de Loreto
Tabla 9 Estaciones meteorológicas del departamento de San Martín
Tabla 10 Latitudes y longitudes de los distritos del departamento de Ucayali44
Tabla 11 Latitudes y longitudes de los distritos del departamento de Loreto
Tabla 12 Latitudes y longitudes de los distritos del departamento de San Martín 46
Tabla 13 Temperatura máxima, temperatura mínima y temperatura promedio
Tabla 14 Valor máximo y mínimo por año de la temperatura promedio máxima 50
Tabla 15 Temperatura del aire y desviación estándar del departamento de Ucayali 51
Tabla 16 Temperatura del aire y desviación estándar del departamento de Loreto 51
Tabla 17 Temperatura del aire y desviación estándar del departamento de San Martín 53
Tabla 18 Temperatura del aire al 98% y 50% de confiabilidad - departamento de
Ucayali56
Tabla 19 Temperatura del aire al 98% y 50% de confiabilidad - departamento de
Loreto
Tabla 20 Temperatura del aire al 98% y 50% de confiabilidad - departamento de
San Martín
Tabla 21 Temperatura máxima y mínima al 98% y 50% de confiabilidad, aplicando
el Modelo SHRP Original 1994 para el departamento de Ucayali
Tabla 22 Temperatura máxima y mínima al 98% y 50% de confiabilidad, aplicando
el Modelo SHRP Original 1994 para el departamento de Loreto
Tabla 23 Temperatura máxima y mínima al 98% y 50% de confiabilidad, aplicando
el Modelo SHRP Original 1994 para el departamento de San Martín 64
Tabla 24 Performance Grade (PG) aplicando el Modelo SHRP Original 1994
- departamento de Ucayali

Tabla 25 Performance Grade (PG) aplicando el Modelo SHRP Original 1994	
- departamento de Loreto	67
Tabla 26 Performance Grade (PG) aplicando el Modelo SHRP Original 1994	
- departamento de San Martín	69
Tabla 27 Temperatura mínima al 98% y 50% de confiabilidad, aplicando el	
Modelo SHRP Canadiense para el departamento de Ucayali	72
Tabla 28 Temperatura mínima al 98% y 50% de confiabilidad, aplicando el	
Modelo SHRP Canadiense para el departamento de Loreto	73
Tabla 29 Temperatura mínima al 98% y 50% de confiabilidad, aplicando el	
Modelo SHRP Canadiense para el departamento de San Martín	74
Tabla 30 Performance Grade (PG) aplicando el Modelo SHRP Canadiense	
- departamento de Ucayali	77
Tabla 31 Performance Grade (PG) aplicando el Modelo SHRP Canadiense	
- departamento de Loreto	77
Tabla 32 Performance Grade (PG) aplicando el Modelo SHRP Canadiense	
- departamento de San Martín	79
Tabla 33 Temperatura máxima y mínima al 98% y 50% de confiabilidad, aplicando	
el Modelo LTPPBind 1996 para el departamento de Ucayali	82
Tabla 34 Temperatura máxima y mínima al 98% y 50% de confiabilidad, aplicando	
el Modelo LTPPBind 1996 para el departamento de Loreto	83
Tabla 35 Temperatura máxima y mínima al 98% y 50% de confiabilidad, aplicando	
el Modelo LTPPBind 1996 para el departamento de San Martín	85
Tabla 36 Performance Grade (PG) aplicando el Modelo LTPPBind 1996	
- departamento de Ucayali	87
Tabla 37 Performance Grade (PG) aplicando el Modelo LTPPBind 1996	
- departamento de Loreto	88
Tabla 38 Performance Grade (PG) aplicando el Modelo LTPPBind 1996	
- departamento de San Martín	90
Tabla 39 Temperatura máxima y mínima al 98% y 50% de confiabilidad, aplicando	
el Modelo LTPPBind 1998-2000 para el departamento de Ucayali	93
Tabla 40 Temperatura máxima y mínima al 98% y 50% de confiabilidad, aplicando	
el Modelo LTPPBind 1998-2000 para el departamento de Loreto	95
Tabla 41 Temperatura máxima y mínima al 98% y 50% de confiabilidad, aplicando	
el Modelo LTPPBind 1998-2000 para el departamento de San Martín	96

Tabla 42 Performance Grade (PG) aplicando el Modelo LTPPBind 1998-2000	
– departamento de Ucayali	98
Tabla 43 Performance Grade (PG) aplicando el Modelo LTPPBind 1998-2000	
- departamento de Loreto	99
Tabla 44 Performance Grade (PG) aplicando el Modelo LTPPBind 1998-2000	
departamento de San Martín	101
Tabla 45 Temperatura máxima al 98% y 50% de confiabilidad, aplicando el	
Modelo LTPPBind 2004 para el departamento de Ucayali	104
Tabla 46 Temperatura máxima al 98% y 50% de confiabilidad, aplicando el	
Modelo LTPPBind 2004 para el departamento de Loreto	104
Tabla 47 Temperatura máxima al 98% y 50% de confiabilidad, aplicando el	
Modelo LTPPBind 2004 para el departamento de San Martín	106
Tabla 48 Performance Grade (PG) aplicando el Modelo LTPPBind 2004	
– departamento de Ucayali	109
Tabla 49 Performance Grade (PG) aplicando el Modelo LTPPBind 2004	
- departamento de Loreto	109
Tabla 50 Performance Grade (PG) aplicando el Modelo LTPPBind 2004	
– departamento de San Martín	111
Tabla 51 Performance Grade (PG) corregido del departamento de Ucayali	
- Modelo LTPPBind 2004	116
Tabla 52 Performance Grade (PG) corregido del departamento de Loreto	
- Modelo LTPPBind 2004	117
Tabla 53 Performance Grade (PG) corregido del departamento de San Martín	
- Modelo LTPPBind 2004	119
Tabla 54 Resumen del PG corregido de Ucayali	134
Tabla 55 Resumen del PG corregido de Loreto	134
Tabla 56 Resumen del PG corregido de San Martín	134

ÍNDICE DE FIGURAS

Figura 1 Estructura del pavimento rígido	. 13
Figura 2 Estructura del pavimento flexible como paquete estructural	. 13
Figura 3 Mejoramiento del terreno de fundación	. 14
Figura 4 Esfuerzos tensionales y compresionales en el pavimento	. 15
Figura 5 Deterioro del pavimento	. 17
Figura 6 Recuperación y refinado de productos asfálticos del petróleo	. 18
Figura 7 Comportamiento visco-elástico del asfalto	. 19
Figura 8 Selección del tipo de cemento asfáltico	. 21
Figura 9 Página web del Proyecto MERRA-2	. 22
Figura 10 Acceso a la base de datos de POWER	. 23
Figura 11 Ejemplificación del Grado de Desempeño (PG)	. 24
Figura 12 Mapa con estaciones meteorológicas del departamento de Ucayali	. 37
Figura 13 Mapa con estaciones meteorológicas del departamento de Loreto	. 39
Figura 14 Mapa con estaciones meteorológicas del departamento de San Martín	. 42
Figura 15 Colocación de fechas en el Proyecto MERRA 2 - NASA	. 49
Figura 16 Fórmulas del Modelo SHRP Original 1994	. 61
Figura 17 Fórmulas del Modelo SHRP Canadiense	. 71
Figura 18 Fórmulas del Modelo LTPPBind 1996	. 82
Figura 19 Fórmulas del Modelo LTPPBind 1998-2000	. 92
Figura 20 Fórmulas del Modelo LTPPBind 2004	103
Figura 21 Ubicación del cruce de la Av. Centenario con la Av. Sáenz Peña y la	
Av. Centenario con la Av. Aeropuerto	114
Figura 22 Ubicación del trayecto al Nuevo Puerto de Yurimaguas	115
Figura 23 Ubicación de las calles que bordean el Mercado Número 3	116
Figura 24 Mapa de Performance Grade (PG) con confiabilidad del 98%	
– Región Ucayali	124
Figura 25 Mapa de Performance Grade (PG) con confiabilidad del 98%	
- Región Loreto	125
Figura 26 Mapa de Performance Grade (PG) con confiabilidad del 98%	
– Región San Martín	126
Figura 27 Mapa de Performance Grade (PG) con confiabilidad del 50%	
– Región Ucayali	127

Figura 28 Mapa de Performance Grade (PG) con confiabilidad del 50%	
– Región Loreto	128
Figura 29 Mapa de Performance Grade (PG) con confiabilidad del 50%	
– Región San Martín	129

RESUMEN

La presente investigación titulada "Mapa de Performance Grade (PG) del asfalto en las

regiones de Ucayali, Loreto y San Martín para su clasificación mediante la metodología

SUPERPAVE", brinda un análisis con el fin de obtener el Mapa de Performance Grade

(PG) mediante la metodología SUPERPAVE, para las regiones de Ucayali, Loreto y San

Martín. Los autores aplicaron los modelos matemáticos SHRP (Superior Highway

Research Program) y LTPP (Long-Term Pavement Performance) para confiabilidades

tanto del 98% como del 50%. Para dicho cálculo usaron data del Proyecto MERRA 2 de

la NASA, tomando como estaciones meteorológicas los distritos de las regiones antes

mencionadas; de este modo sacaron las temperaturas máximas y mínimas diarias dentro

de un periodo de 20 años de cada distrito. Luego, los autores eligieron los modelos con

temperaturas máximas y mínimas críticas para poder obtener los datos que,

posteriormente, lo pasaron a corregir por tráfico y velocidad. Finalmente, mediante el

software ArcGIS, elaboraron el Mapa de Performance Grade (PG) para las regiones de

Ucayali, Loreto y San Martín asignándole un color específico a cada distrito, según su

Performance Grade (PG) obtenido.

Palabras Claves: Clasificación SUPERPAVE, Mapa de Performance Grade (PG),

Performance Grade (PG), SHRP, LTPP.

xvi

ABSTRACT

The present research, entitled "Performance Grade (PG) Asphalt Map in the Ucayali, Loreto, and San Martín Regions for Classification Using the SUPERPAVE Methodology," provides an analysis aimed at obtaining the Performance Grade (PG) Map through the SUPERPAVE methodology for the Ucayali, Loreto, and San Martín regions. The authors applied the mathematical models from SHRP (Superior Highway Research Program) and LTPP (Long-Term Pavement Performance) for reliabilities of both 98% and 50%. For this calculation, they used data from the NASA MERRA 2 Project, considering the districts within the aforementioned regions as weather stations. In this way, they extracted daily maximum and minimum temperatures for a 20-year period from each district. Subsequently, the authors selected models with critical maximum and minimum temperatures to obtain the data, which were then adjusted for traffic and speed. Finally, using ArcGIS software, they created the Performance Grade (PG) Map for the Ucayali, Loreto, and San Martín regions, assigning a specific color to each district based on its obtained Performance Grade (PG).

Keywords: SUPERPAVE Classification, Performance Grade (PG) Map, Performance Grade (PG), SHRP, LTP

INTRODUCCIÓN

En la actualidad, la clasificación del asfalto en Perú se realiza por penetración y viscosidad, sin embargo, estos no brindan información respecto a cómo se va a desempeñar ante el tiempo de carga y las temperaturas a las que se le va a exponer. Por otro lado, la metodología SUPERPAVE clasifica el asfalto por Performance Grade (PG) o Grado de Desempeño, tomando en cuenta características climatológicas de la zona en donde se va a construir con dicho asfalto, además del tráfico y velocidad a la cual será sometido, asegurando así un mejor desempeño del mismo.

Se presenta a continuación, los contenidos de cada capítulo desarrollado en la tesis:

CAPÍTULO I. Se desarrolla el planteamiento del problema, tomando en cuenta y describiendo la situación actual en el país, el problema general y los problemas específicos, así como también el objetivo general y objetivos específicos. De igual manera se desarrolla la delimitación, justificación e importancia de la investigación. CAPÍTULO II. Se desarrolla el marco teórico, en el cual se incluye un marco histórico explicando más a fondo la historia del asfalto, así como también investigaciones internacionales y nacionales relacionadas al tema en estudio. Del mismo modo se desarrolla las bases teóricas relacionadas a cada variable y algunos términos básicos para facilitar la comprensión del lector. CAPÍTULO III. Se desarrolla la hipótesis general e hipótesis específicas, la identificación de variables, definición conceptual y operacionalización de las mismas. CAPÍTULO IV. Se describe el tipo, nivel y diseño de la investigación, así como también la población, muestra. Del mismo modo, se describe las técnicas e instrumentos de recolección de datos donde se incluyen tipos de técnicas e instrumentos, criterios de validez y confiabilidad de los instrumentos, procedimiento para la recolección de datos y las técnicas para el procesamiento y análisis de la información. CAPÍTULO V. Se presenta el desarrollo de la investigación iniciando con la recolección de datos, y es allí que se realiza la descripción de la zona de estudio y la selección de las estaciones meteorológicas de los distritos de Ucayali, Loreto y San Martín para posteriormente, mediante el Proyecto Merra 2 de la NASA, obtener las temperaturas máximas y mínimas diarias durante un periodo de 20 años. También presenta el procesamiento de datos en donde se calcula el Performance Grade (PG) mediante los modelos matemáticos SHRP Y LTPP para una confiabilidad del 98% y 50%, y su corrección por tráfico y velocidad. Esto para luego analizarlos, elaborar el Mapa de Performance Grade (PG) de los distritos de Ucayali, Loreto y San Martín con las confiabilidades mencionadas y realizar la contratación de hipótesis.

Finalmente, se desarrolla las conclusiones, recomendaciones, referencias bibliográficas y los anexos en donde se encuentran mapas, un archivo que contiene hojas de cálculo con la data obtenida del Proyecto MERRA 2 de la NASA según cada distrito y un archivo que contiene hojas de cálculo con el procesamiento de datos y los cálculos del Performance Grade (PG) para cada modelo matemático.

CAPÍTULO I: PLANTEAMIENTO DEL PROBLEMA

1.1. Descripción y formulación del problema general y específicos

1.1.1. Descripción del problema

La situación en Perú es motivo de preocupación, ya que gran parte de carreteras se encuentra en estado deficiente por efectos del clima. Esto es particularmente inquietante considerando que existen 38 tipos diferentes de climas los cuales no son considerados dentro de los diseños de carreteras. Así también, las carreteras se ven afectadas por la carga, este puede ser el tráfico en la vía ocasionando deterioro de los pavimentos y un aumento de gastos asociados tanto a su mantenimiento como a sus reparaciones, afectando al patrimonio del país y por consecuencia a las personas de menos recursos.

Actualmente en el país existen especificaciones para clasificar al asfalto mediante viscosidad o penetración del Ministerio de Transportes y Comunicaciones: EG-2013, pero éstas no permiten medir sus propiedades visco-elásticas.

También se ha estado implementado normativa sobre la clasificación por Performance Grade (PG) a través de la metodología SUPERPAVE, sin embargo, no se viene aplicando a pesar de ser una forma más adecuada de clasificar el asfalto ya que lo hace basándose en sus propiedades reológicas, el clima y el tráfico.

En base a lo mencionado, es necesario desarrollar un mapa de Performance Grade (PG) completo de los 24 departamentos, ya que esto permitiría facilitar la información a estudiantes y entidades que lo requieran, así se podrá mejorar la construcción de carretera ya que se estaría construyendo con los factores adecuados según el área, especialmente en Ucayali, Loreto y San Martín.

1.1.2 Problema general

¿Cómo crear el Mapa de Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín aplicando modelos matemáticos para su clasificación mediante la metodología SUPERPAVE?

1.1.3 Problemas específicos

- a) ¿Cuál es la data que se requieren para calcular el Performance Grade (PG) en las regiones de Ucayali, Loreto y San Martín para la realización del Mapa de Performance Grade (PG) del asfalto?
- b) ¿Cómo calcular el Performance Grade (PG) al aplicar los modelos matemáticos SHRP y LTPP para la realización del Mapa de Performance Grade (PG) del asfalto en las

- regiones de Ucayali, Loreto y San Martín para su clasificación mediante la metodología SUPERPAVE?
- c) ¿Cuáles serán las variaciones de acuerdo al tráfico y la velocidad para el Mapa de Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín?

1.2 Objetivo general y específico

1.2.1 Objetivo general

Crear el Mapa de Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín aplicando modelos matemáticos para su clasificación por zonas mediante la metodología SUPERPAVE, año 2023.

1.2.2 Objetivos específicos

- a) Identificar la data que se requieren para calcular el Performance Grade (PG) en las regiones de Ucayali, Loreto y San Martín para la realización del Mapa de Performance Grade (PG) del asfalto.
- b) Calcular el Performance Grade (PG) aplicando los modelos matemáticos SHRP y LTPP para la realización del Mapa de Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín para su clasificación mediante la metodología SUPERPAVE.
- c) Aplicar las variaciones de acuerdo al tráfico y la velocidad para el Mapa de Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín.

1.3 Delimitación de la investigación

1.3.1 Delimitación temporal

La investigación se desarrolla durante 18 semanas e inicia el 02 de mayo del 2023 hasta el 16 de setiembre del 2023.

1.3.2 Delimitación espacial

Nuestra investigación contempla datos geográficos y de los distritos de las regiones peruanas Ucayali, Loreto y San Martín.

1.3.3 Delimitación temática

Se toma en cuenta la metodología SUPERPAVE para realizar un Mapa de Performance Grade (PG) del asfalto en los distritos de las regiones de Ucayali, Loreto y San Martín.

1.4 Justificación e importancia

1.4.1 Justificación

a) Justificación teórica

La presente tesis se orienta a aplicar la metodología SUPERPAVE a través de los modelos matemáticos LTPP Y SHRP y así poder clasificar el asfalto por Performance Grade (PG).

Realizando dicha clasificación se espera construir un Mapa de Performance Grade (PG) de los distritos de las regiones de Ucayali, Loreto y San Martín y de ese modo ir completando el mapa de Perú.

b) Justificación práctica

Esta investigación servirá como información para la elección adecuada del asfalto en proyectos del área estudiada y también para futuras investigaciones relacionadas al tema.

c) Justificación metodológica

Esta investigación va a proponer aplicar la metodología SUPERPAVE a través de los modelos matemáticos tales como LTPP y SHRP para la clasificación del asfalto por Performance Grade (PG) en Perú.

d) Justificación social

Se busca brindar información a entidades públicas y privadas sobre la clasificación del asfalto por Performance Grade (PG) en las zonas de Ucayali, Loreto y San Martín. Además, se busca servir de apoyo informativo para estudiantes de pregrado y posgrado que requieran información en la especialización de Pavimentos.

1.4.2 Importancia

La relevancia de esta investigación radica en la correcta elección del asfalto para la realización de un proyecto de pavimentación en las zonas: Ucayali, Loreto y San Martín según las máximas y mínimas temperaturas a las que está expuesta la carpeta asfáltica; esto mediante la metodología SUPERPAVE. Así también se brinda información a entidades públicas y privadas para futuros proyectos en esas zonas.

CAPÍTULO II: MARCO TEÓRICO

2.1 Antecedentes del estudio de investigación

2.1.1 Marco histórico

Entre los años 1400 y 600 A.C. a las orillas del Tigris, se empezó a usar el término Sphalto: lo que hace caer. Posteriormente, ésta fue usada en el español, latín, griego, francés e inglés. Además, se sabe que el asfalto fue uno de los materiales de construcción más antiguos. El asfalto natural fue descubierto a mediados del siglo XVI, en la isla de Trinidad, por Cristóbal Colón, un siglo más tarde, Sir Walter Raleigh quedó asombrado ante este lago de asfalto y tomó posesión de él para la Corona Británica. (Maxil & Salinas, 2006)

Durante el siglo XIX, se descubre el asfalto refinado mediante la destilación del petróleo crudo, por lo tanto, ocurre el boom de la industria de los automóviles provocando un aumento en su consumo, de igual manera se utilizó para pavimentación, entre otros. (Ibáñez, 2015)

Así, es en 1852 cuando se construye la carretera Paris-Perpiñán utilizando el asfalto dando paso a la construcción de vías. En 1900 apareció la primera mezcla asfáltica en caliente, la cual se usó en la rue du Louvre y en la Avenue Victoria en París. (Maxil & Salinas, 2006)

De 1900 a 1946, es en Estados Unidos donde se produjo un notable auge de la producción del asfalto mediante la técnica de la refinería, en lugar de una extracción directa del asfalto mediante los lagos (Bonilla, 2013).

Es en la segunda guerra mundial que los ingenieros del ejército de Estados Unidos empezaron a realizar diseños de mezclas asfálticas en caliente para los aeródromos, esto debido a que los aviones pesados generaban mucha presión en el pavimento. Allí probaron el método de estabilidad de Marshall, el cual fue desarrollado por Bruce G. Después, por el año 1950 se continuó mejorando el método Marshall, pero se pudo ver que este método no consideraba aquellas variaciones de temperatura a los que estaba sometido el pavimento. (Najar & Serrano, 2022)

Entre 1987 y 1997 se desarrolla el método Superpave debido al trabajo del Programa Estratégico de Investigación de Carreteras SHRP o que traducido al inglés significa: Strategic Highway Research Program; resultando así una nueva clase de factores que influyen en los materiales asfálticos y agregados. Así también se creó una forma de realizar los diseños de las mezclas asfálticas en caliente MAC, los cuales toman valor

gracias a nuevos ensayos hechos para saber su reología mediante ensayos y que posteriormente serán interpretados directamente en el campo. (Medina & Terroba, 2021) En cuanto a Perú, es el 26 de Setiembre de 1826 que se adjudicó de forma ilegal la "mina" de Brea" a José Antonio de la Quintana, la cual estaba situada en el Cerro Prieto de Piura. Esto para que después se formara la hacienda La Brea y Pariñas. Después, en 1865 se creó la empresa Peruvian Petroleum Company, la cual explotaba el petróleo en la zona de Zorritos. Luego, en 1875 se forma la empresa Korokoro la cual se dedicaría a la búsqueda y explotación del petróleo en Puno. Posteriormente en 1884, al finalizar la Guerra del Pacífico, se constituye la Compañía Peruana de Refinar Petróleo y la Compañía Petrolera Thome; ambas en Zorritos. Y es así que, a orillas del río Tumbes, se construye una refinería la cual sería una de las primeras en Sudamérica, y que, a la muerte de su dueño, pasó a manos de la firma comercial Basso Hnos. y F. Piaggio del Callao. Durante ese tiempo, hubo unas disputas entre herederos de la hacienda La Brea y Pariñas, por lo que se solicitó al gobierno el reconocimiento de pertenencia del suelo y subsuelo de la misma, dando así, en 1887, los derechos a Genaro Helguero, el que un año después, cedería sus derechos por una cantidad de dinero a Herbert Tweddle, el mismo que, en 1890 junto a William Keswick, arrendaron por 99 años dicha hacienda a London Pacific Petroleum Company (LPPC). Dicha empresa extrajo mayor cantidad de la permitida y declarada al país, por lo que tuvo problemas posteriormente. Es por ello que, en 1914, la empresa International Petroleum Company (IPC) asume las operaciones de los campos de LPPC. (Fernández, 2008)

En 1921, en el gobierno de Augusto B. Leguía, se crea la Av. Arequipa, y es en 1924 que se crea la Avenida del Progreso, actualmente Av. Venezuela. Dicha obra de aproximadamente 12 kilómetros, fue realizada por el ingeniero J. Spalding junto con la empresa Foundation Company y fue la primera vía de concreto con refuerzo metálico (Medium, 2018).

Ese mismo año se empieza a elaborar un proyecto emblemático en el Perú, la construcción de la carretera central Lima-La Oroya. Esta es una de las obras de mayor importancia en el sector de la infraestructura vial e inició en el tramo Lima-Chosica (Vialidad y Transporte, 2016).

Y es en ese mismo año que la empresa IPC compra las instalaciones de LPPC (Fernández, 2008).

Posteriormente en 1931 se siguió con la construcción de la Carretera Central hasta Matucana (Vialidad y Transporte, 2016).

Hasta este momento, la actividad petrolera del Perú estaba a cargo de empresas extranjeras, es por ello que, el 11 de setiembre de 1934, se crea la Empresa Petrolera Fiscal (EPF) (Fernández, 2008).

Así también, en ese mismo año, se avanza la construcción de la Carretera Central en dos frentes: Matucana-La Oroya y viceversa. (Vialidad y Transporte, 2016)

Así, es en el año de 1938 se estableció la primera planta de asfaltos en el Perú ubicada en la provincia de Talara, la cual fue dirigida por la empresa International Petroleum Company (IPC) (Durand, 2019).

Después, en 1952 comienza la nueva refinería de la empresa IPC convirtiéndola en la más grande de América Latina en esa época. Y es en 1962 que se instaló la refinería de Conchán, en la playa próxima a la fábrica de Cemento de Atocongo, el cual tenía instalaciones marinas para abastecerse de combustible directamente de las petroleras. Posteriormente, el 24 de julio de 1969, se sustituye la denominación de la Empresa Petrolera Fiscal por la de Petróleos del Perú PETROPERÚ. (Fernández, 2008).

Actualmente posicionándolo en el mercado peruano como una de las empresas líderes en la producción del asfalto por el método de Penetración junto a la empresa Repsol YPF (Ibáñez, 2015).

Así, al paso de los años se han ido implementando tecnologías nuevas en el Perú, como el que se dio a fines del año 2016. Las empresas consorciadas COSAPI y Mota-Engil Perú adquirieron la primera planta de reciclado móvil de asfalto contribuyendo significativamente proyectos de pavimentación. (Bejarano, 2020)

Actualmente en Perú se realiza la clasificación de cemento asfáltico por viscosidad o penetración, sin embargo, éstas presentan sus respectivas limitaciones. La clasificación por viscosidad sólo brinda información del comportamiento viscoso del material y la clasificación por penetración se realiza a través de la observación o experimentación, imposibilitando medir propiedades visco-elásticas. (Abreu et al. 2020)

Por ello, surge el método SUPERPAVE, el cual estudia las propiedades reológicas del asfalto e introduce nuevas especificaciones al momento de clasificarlo mediante su Performance Grade (PG) o Grado de Desempeño.

Según a lo mencionado, es necesario desarrollar un mapa de Performance Grade (PG) en Perú utilizando la clasificación SUPERPAVE. Esto permitiría simplificar la información y se pondría al alcance de cualquier entidad que lo requiera al momento de elegir el asfalto. Así se podrá mejorar la construcción de carretera ya que se estaría construyendo con los factores adecuados según la ubicación del proyecto. Actualmente, no se utiliza en

su totalidad este método, a pesar que ya se cuenta con especificaciones técnicas generales para construcción EG-2013, además, tampoco existe en el país, un mapa total de Performance Grade (PG) para la clasificación del asfalto.

2.1.2 Investigaciones internacionales

Arteaga (2017), en su tesis "Comparación de Zonificaciones SUPERPAVE para Chile y Cuantificación de la Influencia del Cambio Climático en la Selección del Ligante Asfáltico" (p. 1), tiene como objetivo elaborar una zonificación SUPERPAVE de Chile a través de los modelos SHRP y LTPP utilizando el programa computacional LTPPBind 2.1 y 3.1. Así, gracias al análisis hecho por el autor, llegó a la conclusión que en Chile se puede implementar el método SUPERPAVE para elaborar una zonificación. Además, indica que el calentamiento global si ha afectado el PG presentando un aumento en el 39% de las estaciones evaluadas. (Arteaga, 2017)

Duarte & Lizcano (2012), en su tesis "Evaluación de las ventajas y desventajas de usar en Colombia las especificaciones técnicas de SUPERPAVE para diseño de mezcla asfáltica convencional" (p. 1), tiene como objetivo evaluar tanto las ventajas como las desventajas de utilizar las especificaciones de SUPERPAVE en Colombia para poder realizar el diseño de mezclas asfálticas. Esto mediante ensayos propuestos por la metodología SUPERPAVE e INVIAS. Así, gracias al análisis hecho por los autores llegaron a la conclusión que mediante la metodología SUPERPAVE se han obtenido mejores resultados respecto al método Marshall. Esto garantiza la calidad de la producción de la mezcla lo cual se verá reflejado a lo largo de su desempeño. (Duarte & Lizcano, 2012)

Matamala (2016), en su tesis "Zonificación Climática Sector Lo Orozco, Provincia de Marga Marga para la Clasificación PG SUPERPAVE y su Influencia en el Diseño Estructural del Pavimento de un Tramo de la Ruta F-50: Sector Lo Orozco-Quilpué" (p. 1), tiene como objetivo realizar una zonificación climática para poder determinar los pro y contras que tiene el sistema de clasificación del asfalto actualmente en Chile y así poder brindar un sistema de elección de ligantes según desempeño. Así, gracias al análisis hecho por el autor llegó a la conclusión que, si se puede realizar una clasificación climática en el área de investigación, además, constató los problemas de dimensionamiento en cuanto a los pavimentos, lo cual eleva el costo de construcción.

También se concluye que el Performance Grade va ligado no solo a las temperaturas, sino también al tráfico y confiabilidad. (Matamala, 2016)

Polanco (2022) en su investigación "Grados de Desempeño PG - SUPERPAVE de los ligantes asfálticos requeridos en las principales carreteras pavimentadas de El Salvador" (p. 1), tiene como objetivo clasificar el ligante asfáltico requerido para la elaboración de mezcla asfáltica en caliente, mediante Grado de Desempeño PG Superpave. Para ello, estudió las condiciones climáticas en el año 2019, las cuales estaban registradas por estaciones meteorológicas de todo el Salvador y usó los modelos de correlaciones para temperatura del pavimento LTPP. Así, gracias al análisis hecho por el autor, llegó a la conclusión que el cambio climático ha provocado una situación preocupante que requiere el uso de asfaltos modificados para poder cumplir con los requisitos ambientales mínimos de las carreteras. Es por ello que, se realizó un mapa de Performance Grade para las principales carreteras de El Salvador y así poder usar un correcto ligante asfáltico. (Polanco, 2022)

Rubio (2018) en su tesis "Metodología para la construcción de mapas de temperatura basada en la influencia termo-topográfica y el Grado de Desempeño (PG) aplicada en la selección de cementos asfálticos" (p. 1), tiene como objetivo "establecer una metodología para elaborar mapas de temperatura para la selección del cemento asfáltico por Grado PG en función a la correlación geoespacial topográfica-temperatura" (Rubio, 2018, p. 9). Todo esto en el estado de Michoacán, México. Así, gracias al análisis hecho por el autor, llegó a la conclusión que hay mucha ambigüedad en la normativa de Michoacán, ocasionando que los contratistas tomen datos errados. Por ello, indican que su investigación aportará el mapa PG adecuado para evaluar las condiciones de la información disponible de las zonas de estudio, el cual aumentó el porcentaje de estaciones de 8% al 51%. (Rubio, 2018)

2.1.3 Investigaciones nacionales

Alcalá & Delgado (2020), en su tesis "Mapa de Grado de Desempeño (PG) para ligantes asfálticos según clasificación SUPERPAVE, aplicado en las regiones Lima, Ancash e Ica" (p. 1) tienen como objetivo "elaborar el Mapa de Grado de Desempeño (PG) con la base de datos del ANA aplicando los modelos matemáticos del SHRP y LTPP para ligantes asfalticos según clasificación Superpave en las regiones de Lima, Ancash e Ica" (Alcalá & Delgado, 2020, p. 20). Así, gracias al análisis hecho, los autores llegaron

a la conclusión que si se pudo elaborar el Mapa de Grado de Desempeño (PG) de Lima, Ancash e Ica usando datos de 37 estaciones meteorológicas del ANA, además que realizaron las correcciones por carga de tráfico y velocidad. (Alcalá & Delgado, 2020)

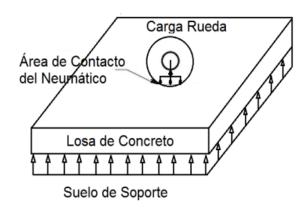
Carrasco (2022), en su tesis "Mapa de Grado de Desempeño (PG) de ligantes asfálticos según la metodología SUPERPAVE para la región Cusco al 2021" (p. 1) tiene como objetivo "diseñar el Mapa de Grado de Desempeño (PG) aplicando modelos matemáticos LTPP y SHRP para la elección del ligante asfaltico más adecuado según metodología SUPERPAVE para la región Cusco" (Carrasco, 2022, p. 37). Así, gracias al análisis hecho, el autor llegó a la conclusión que si se pudo realizar el Mapa de Performance Grade para Cusco utilizando datos climatológicos obtenido del software de la NASA dentro de un periodo de 20 años con un grado de confiabilidad al 50% y 98%. Esto servirá para poder elegir un correcto ligante asfáltico en la región de Cusco. (Carrasco, 2022)

Medina & Terroba (2021), en su tesis "Mapa de Grado de Desempeño (PG) para ligantes asfálticos según la clasificación SUPERPAVE" (p. 1) tienen como objetivo "crear el Mapa de Grado de Desempeño (PG) aplicando modelos matemáticos de la clasificación SUPERPAVE en ligantes asfálticos en las regiones de La Libertad, Lambayeque y Piura, año 2021" (Medina & Terroba, 2021, p. 3). Así, gracias al análisis hecho por los autores, llegaron a la conclusión que si se puede crear el Mapa de Performance Grade (PG) en: La Libertad, Lambayeque y Piura utilizando 53 estaciones climatológicas cuya data fue recopilada tanto de Senamhi como del Proyecto Power de la NASA. Además, indican que se realizaron correcciones por tráfico y velocidad produciendo un aumento del PG en 1, debido a que en su mayoría presentaba tráfico lento. (Medina & Terroba, 2021)

Najar & Serrano (2022), en su tesis "Mapa de grados de desempeño para ligantes asfálticos según clasificación Superpave, regiones Huancavelica, Ayacucho y Apurímac" (p. 1) tiene como objetivo "determinar cómo se puede elaborar el Mapa de Grado de Desempeño (PG) por zonas empleando modelos matemáticos de la clasificación SUPERPAVE en ligantes asfálticos en las regiones de Huancavelica, Ayacucho y Apurímac" (Najar & Serrano, 2022, p. 6). Así, gracias al análisis hecho por los autores, llegaron a la conclusión que si se puede hacer un Mapa de Performance Grade (PG) en

Huancavelica, Ayacucho y Apurímac basándose en la data del software de la NASA. Además, indican que se puede hallar el Performance Grade tanto para la confiabilidad del 50% como para la del 98%. (Najar & Serrano, 2022)

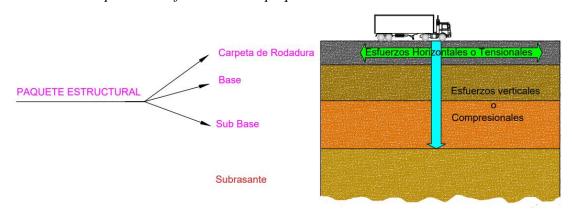
Ortiz (2021), en su tesis "Análisis del clima para la predicción de Grados de Desempeño empleando el método SUPERPAVE en la carretera - Tramo Chincha Alta – Huancavelica" (p. 1) tiene como objetivo predecir el Performance Grade de la zona estudiada. Así, gracias al análisis hecho por el autor, llegó a la conclusión que el análisis del clima va a contribuir en el cálculo de los Performance Grade del tramo de carretera Chincha Alta – Huancavelica. Además, indica que se debe realizar un cambio de grado de desempeño en los distritos de Chincha Baja que los resultados varían de PG 58 – 10 a PG 64 – 10, Huachos que los resultados varían de PG 52 – 10 a PG 58 – 16 y Pilpichaca que los resultados varían de PG 52 – 10 a PG 58 – 16; esto debido a que, al aumentar el grado de desempeño, la carretera mejora su comportamiento a altas temperaturas, y evita deflexiones o hundimientos futuros. (Ortiz, 2021)


2.2 Estructura teórica y científica que sustenta el estudio

2.2.1 Pavimento asfáltico

Bariani et al. (2008) indican en su libro Pavimentación Asfáltica que, en general, el pavimento está conformado por una estructura de diferentes capas de espesor y está construida encima del terreno de fundación natural. Está diseñada técnicamente para soportar los esfuerzos originados por el flujo de vehículos y la intemperie, además de otorgar una mejor experiencia al usuario.

"Tradicionalmente el pavimento de las carreteras se clasifica en dos tipos: rígido y flexible" (Bariani et al., 2008, p. 9); tal cómo se puede ver en la figura 1 y 2 respectivamente.


Figura 1 *Estructura del pavimento rígido*

Nota: Tomado de Pavimentación Asfáltica, por Bariani et al., 2008.

Figura 2

Estructura del pavimento flexible como paquete estructural

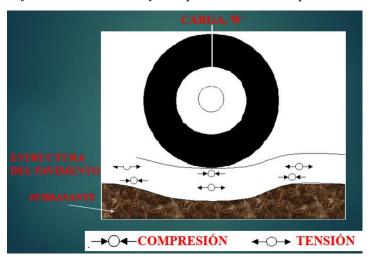
Nota: Adaptado de Los pavimentos y su comportamiento estructural y funcional, por Huamán, N., 2022, Curso de Pavimentos.

En cuanto al pavimento asfáltico o flexible, en general, es una estructura que permite un mejor tránsito al usuario y se conforma por un paquete estructural con tres capas: subbase, base y carpeta de rodadura, las cuales descansarán encima de la subrasante después de haber realizado las obras de movimiento de tierras. (Bariani et al. 2008)

Dichas capas tienen diferentes diseños y materiales los cuales corresponden a las carácterísticas requeridas en el proyecto, además, éstas se convierten en los elementos estructurales del pavimento asfáltico (Huamán, 2020).

La subbase es la capa granular, estabilizada o no, que se encuentra sobre la subrasante o el llamado terreno de fundación, el cual puede estar estabilizado previamente de forma química y/o mecánica, como se puede ver en la figura 3, con el fin de obtener el mayor valor en el CBR (Bariani et al. 2008).

Figura 3 *Mejoramiento del terreno de fundación*



Nota: La figura muestra un mejoramiento de subrasante con cemento portland. Pavimentación de la Av. Miraflores, distrito de Yarinacocha, Ucayali.

Además, esta subbase puede componerse por materiales de menor calidad y costo que de la base; tendrá una capacidad portante menor que la misma, pero mayor que la sub rasante. También, es quien va a transmitir cargas al terreno y aveces pueden actuar como ayuda para drenar las aguas del subsuelo y así evitar las deformaciones que se ven reflejadas en la superficie de rodamiento. (Vílchez & Yerén, 2022)

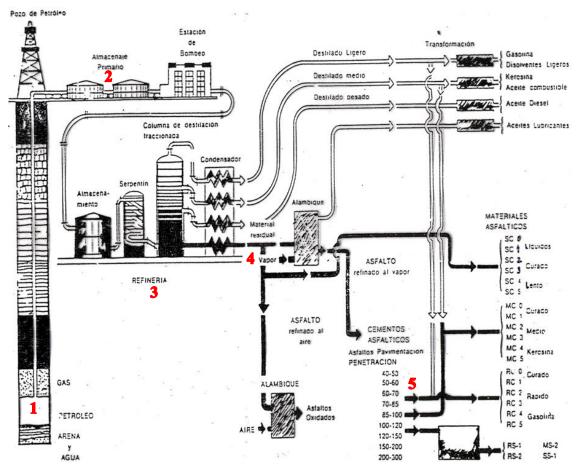
La base es la capa que se está conformada por áridos principalmente, que pueden haber sido tratados o no con cal, asfalto, cemento, entre otros agentes estabilizantes, y es la que va por encima de la subbase y antes de la carpeta asfáltica. Este debe ser compactado y tiene una mayor capacidad portante que la de la subbase, además, es quien va a absorver los esfuerzos que son generados por las cargas de los vehículos y los va a transmitir de manera uniforme a la subbase y sub rasante. Como se vió en la figura 2, la carpeta asfáltica es la que se encuentra en la parte superior, es la superficie de rodadura, por lo tanto, va a ser la primera en asumir los esfuerzos de los vehículos que pasan por la superficie del pavimento. Así, en la figura 4 se observa un vehículo con carga, el cual le está generando dos tipos de esfuerzos: el esfuerzo tensional u horizontal y el esfuerzo vertical o compresional. Estos son muy importantes debido a que son los responsables de las fallas que se generan en el pavimento y, por lo tanto, en la carpeta de rodadura, la cual está conformada por la mezcla asfáltica. (Huamán, 2020)

Figura 4Esfuerzos tensionales y compresionales en el pavimento

Nota: La figura muestra los esfuerzos tensionales u horizontales y compresionales o verticales del pavimento. Tomado de *Los pavimentos y su comportamiento estructural y funcional*, por Huamán, N., 2022, Curso de Pavimentos.

La diferencia entre ellos es que, los esfuerzos tensionales u horizontales son los que generan fallas funcionales en el pavimento, es decir, en la carpeta de rodadura ocasionando el deterioro del mismo; y los esfuerzos compresionales o verticales son los que se introducen hasta el interior del pavimento a nivel de la capa de subrasante. Teniendo conocimiento de estos esfuerzos, es importante realizar un buen diseño de la estructura del pavimento utilizando metodologías adecuadas, haciendo estudios respecto al tráfico, determinando el vehículo correspondiente, su cantidad, los ejes que tendrán dichos vehículos, todo esto para tener la data efectiva que necesitamos para el diseño de la parte estructural. En cuanto a la carpeta asfáltica con emulsiones, es ideal saber que hay emulsiones convencionales, emulsiones modificadas, de rotura rápida, de rotura lenta y catiónicas. Así también en el caso de los maltenos, las cuales son las fracciones livianas, se debe tener cuidado con las parafinas ya que pueden convertirlos en un material con mucho riesgo a deterioro de la mezcla asfáltica cuando esté dentro del paquete estructural. Así también, hay que tomar en cuenta las características que presenta el terreno de fundación que, si bien es cierto no es parte conformante del paquete estructural, es allí donde se asienta toda la estructura del pavimento, por lo tanto, tiene que estar en óptimas condiciones. Esto último se podrá medir a través del CBR que luego se va a traducir al módulo resiliente, ya sea de una forma directa, en caso se tenga equipos de laboratorios adecuados, o a través de correlaciones con el módulo resiliente. Dentro del paquete estructural mencionado anteriormente se encuentra la mezcla asfáltica, la cual juega un papel muy importante dentro del paquete estructural, es por ello que, es esencial hacer énfasis en entender el valor de la mezcla asfáltica en un pavimento asfáltico. Del mismo modo, es relevante conocer qué tan importante es manejar los materiales los cuales integran dicha mezcla asfáltica, los agregados: agregado fino, agregado grueso, filler, el proceso constructivo cuando la fabricamos, su transporte y ejecución en obra, entre otros. Igualmente dependerá mucho del tipo de mezcla asfáltica a elaborar, esto debido a que, si es una mezcla asfáltica en caliente, se trabajará con cemento asfáltico de petróleo, es decir, saldrá directamente de las refinerías. A diferencia de la mezcla asfáltica en frío, en la que se tendrá que utilizar una emulsión asfáltica. Asimismo, es sabido que la mezcla asfáltica convencional no puede resistir grandes cargas y es allí cuando se deben emplear las mezclas modificadas con polímeros que permitan mejorar la calidad de la mezcla asfáltica, produciendo un mejor comportamiento de la misma. Así, dentro de los procesos constructivos se pueden utilizar mezclas asfálticas convencionales, mezclas asfálticas mejoradas con polímeros, mezclas asfálticas modificadas con caucho, mezclas drenantes, mezclas tibias, mezcla SMA, entre otros. El asfalto va a ser muy importante dentro de la durabilidad que tendrá un pavimento. Esto debido a las debilidades que tiene, ya que puede presentar susceptibilidad térmica haciendo que funcione mal a altas y bajas temperaturas, provocando así deformaciones plásticas, afloramiento del asfalto hacia la parte superior, fallas de exudación, entre otros. Es muy importante elegir un correcto ligante asfáltico, es por ello que tenemos que condicionar al proyecto lo que queremos saber, esto para que la durabilidad del pavimento sea adecuada. Otro material importante es el agregado, ya que no se puede tener una buena mezcla asfáltica sin agregados de calidad; esto debido a que va a ser el que conforma el esqueleto estructural del pavimento. Es por ello que, tienen que realizarse los estudios correspondientes para poder obtener la mejor curva, el mejor diseño granulométrico para las mezclas que requerimos. En el caso del cálculo del esfuerzo de corte, existe una fórmula donde interviene la cohesión de los agregados a través de la fricción y viscosidad del material, esto para tener una estabilidad en la mezcla asfáltica, ya que, si no lo tenemos, pueden generarse fallos funcionales que pasarán a generar problemas mayores. Es así que, estos conjuntos de materiales van a dar las características especiales a la mezcla asfáltica, la cual no es un material ni sólido, ni líquido, si no, visco-elástico. Cada proyecto presenta necesidades y requerimientos distintos, por lo que no se debe tomar la misma información de otro proyecto ya que cada uno requiere estudios diferentes. Así, será muy importante tener un seguimiento profundo del diseño tanto estructural como de la mezcla asfáltica, porque si no se verá reflejado en obras con deterioro prematuro, tal como se puede observar en la figura 5, ocasionando un daño al patrimonio del país y por consecuencia, afectarán a las personas con menores recursos. (Huamán, 2020)

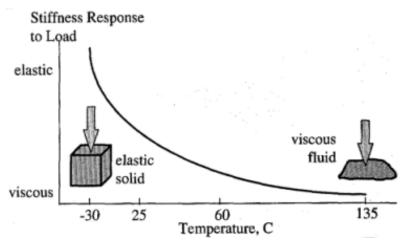
Figura 5Deterioro del pavimento


Nota: La figura muestra deformaciones y deterioro visibles del pavimento de la Av. Caminos del Inca cruce con Jr. El Cádiz, distrito de Surco, departamento de Lima.

2.2.2 Cemento asfáltico de petróleo (CAP)

Es importante saber el proceso para entender un poco sobre la recuperación y refinado de productos asfálticos de petróleo, lo cual se puede explicar mejor con la figura 6.

A través de la perforación de pozos, se obtiene el petróleo crudo, indicado en el punto 1. Este es procesado en depósitos grandes como son los almacenes, indicado en punto 2, para luego ser transportado a una planta de refinería, indicado en el punto 3. En la refinería, se realizan procesos de destilaciones que permite obtener los diferentes derivados como la gasolina, kerosene, aceite, diésel, aceites lubricantes, etc. Producto de las destilaciones queda la fracción más pesada del petróleo crudo que se le llama residual asfáltico, indicado en el punto 4. Se procede a realizar una segunda destilación para poder obtener nuestro cemento asfaltico de petróleo de diferentes penetraciones, como se indica en el punto 5. (Huamán, 2020)


Figura 6Recuperación y refinado de productos asfálticos del petróleo

Nota: Tomado de *Tecnología de los ligantes asfálticos*, por Huamán, N., 2022, Curso de Pavimentos.

El CAP o Cemento Asfáltico de Petróleo se obtiene de la destilación del petróleo, como se explicó previamente, y pertenece a la familia de los materiales bituminosos; obteniendo comúnmente un color negro o café oscuro. Este es semisólido o sólido a temperatura ambiente y líquido a altas temperaturas; su comportamiento visco-elástico se puede observar en la figura 7. (Galvis, 2006)

Figura 7 *Comportamiento visco-elástico del asfalto*

Nota: Tomado de Mapa de grados de desempeño para ligantes asfálticos según clasificación Superpave, regiones Huancavelica, Ayacucho y Apurímac, por Najar & Serrano, 2022.

Además, se utiliza para diseñar mezclas asfálticas en caliente o mezclas tibias a altas temperaturas, mas no mezclas frías (Huamán, 2020).

a) Composición química del CAP

Los asfaltenos son fracciones pesadas de hidrocarburos con alto peso molecular los cuales proporcionan dureza al asfalto. Es importante destacar que los asfaltenos no realizan una intervención directa en la adherencia de los materiales pétreos. Por otro lado, los maltenos son fracciones livianas de hidrocarburos con bajo peso molecular el cual está constituido en 3 fracciones fundamentales que son las resinas, parafinas y los aceites aromáticos. (Huamán, 2022)

Una de las debilidades del asfalto es su comportamiento visco-elástico ya que cuando sometemos lo sometemos a altas temperaturas, su viscosidad aumenta y su elasticidad disminuye, lo cual implicaría una deformación continua. Por otro lado, en zonas muy frías, el asfalto se vuelve duro, frágil, pierde flexibilidad y tiende a sufrir agrietamientos. (Vílchez & Yerén, 2022)

Se sabe que el asfalto tiene un comportamiento viscoso debido a su capacidad de deformarse cuando se somete a altas temperaturas y cargas constantes, es así que, específicamente, a elevadas temperaturas, el asfalto muestra un comportamiento plástico, esto implica que cuando se le aplica una carga, empieza a deformarse y seguirá deformándose hasta el momento que la carga sea retirada, sin embargo, no recupera su

forma original cuando dicha carga es retirada. En cambio, cuando aplicamos cargas a un material con propiedades elásticas, tiende a deformarse y vuelve a su forma original al momento que la carga se retira. (Polanco, 2022)

Otra debilidad es envejecimiento del asfalto, el cual muy importante porque afecta la durabilidad que presentará un cemento asfaltico. Este envejecimiento se presentará durante todas sus etapas de producción, desde que sale de la planta, durante su transporte, almacenamiento, colocación y compactación. El asfalto se envejece más rápido cuando este se encuentra sometido a altas temperaturas, se pone rígido debido a que pierde propiedades como los maltenos. (Bonilla, 2013)

También está la susceptibilidad térmica de la mezcla asfáltica, la cual es importante ya que con ella se conoce su temperatura adecuada para obtener una viscosidad necesaria para lo que se le requiera. (Vílchez & Yerén)

Si los asfaltos son altamente susceptibles a las variaciones de temperatura, no serán adecuados para su uso en la pavimentación. Se requiere que el ligante asfáltico tenga mínimas fluctuaciones en sus propiedades mecánicas, con el fin de prevenir modificaciones significativas en su comportamiento cuando se encuentra sometido a una temperatura de servicio. (Bariani et al. 2008)

b) Grados de cemento asfálticos de pavimentación

Comercialmente el CAP se prepara en 5 rangos de consistencia, los cuales se definen con el ensayo de penetración: cemento asfáltico PEN 40/50 con penetración entre 40 y 50 décimas de milímetro, cemento asfáltico PEN 60/70 con penetración entre 60 y 70 décimas de milímetro, cemento asfáltico PEN 85/100 con penetración entre 85 y 100 décimas de milímetro y cemento asfáltico PEN 120/150 con penetración entre 120 y 150 décimas de milímetro. Sin embargo, empresas como PETROPERÚ, ofrecen a pedido 2 rangos adicionales para uso industrial: cemento asfáltico PEN 10/20 con penetración entre 10 y 30 décimas de milímetro y cemento asfáltico PEN 20/30 con penetración entre 20 y 30 décimas de milímetro. (PETROPERÚ, 2023)

c) Requisitos de calidad del CAP

En el Perú se cuenta con requisitos en cuanto al CAP, los cual están especificados en el EG-2013 del Manual de Carreteras.

La norma establece que, el cemento asfáltico que se va a utilizar en riegos de liga y mezclas asfálticas, deben ser clasificados por viscosidad y penetración, y sus requisitos se pueden ver en el mismo Manual de Carreteras y están especificados en las tablas 415-03 y 415-02 respectivamente. Sin embargo, también se cuenta con especificaciones para

clasificarlo por Grado de Desempeño, estas se pueden observar en el Manual de Carreteras y están especificados en las tablas 423-13, 423-14 y 423-15. Su uso dependerá del clima de la zona donde se utilizará. Además, estará regido por la carta de viscosidad-temperatura del cemento asfáltico, la cual te la brinda el proveedor de cemento asfáltico según sus datos de laboratorio, y la tabla del MTC: Especificaciones técnicas generales para construcción EG-2013, tal como se puede ver en la Figura 8. (Ministerio de Transportes y Comunicaciones, 2013)

Figura 8Selección del tipo de cemento asfáltico

Temperatura Media Anual					
24°C o más	24°C - 15°C	15°C - 5°C	Menos de 5°C		
40-50 ó 60-70 o modificado	60-70	85-100 120-150	Asfalto Modificado		

Nota: Tomado de Especificaciones Técnicas Generales para Construcción: EG-2013 – Tabla 425-01, por Ministerio de Transportes y Comunicaciones, 2013.

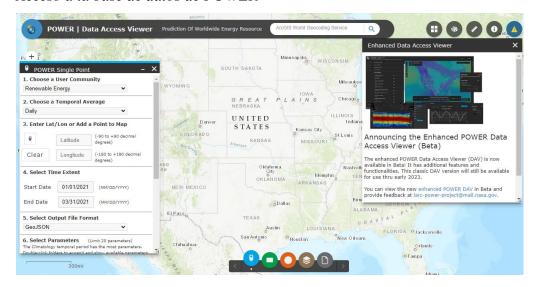
Se especifica que el CAP debe ser homogéneo, libre de agua y no debe formar espuma cuando es calentado a la temperatura de 175°C. De igual manera, este puede modificarse incluyendo aditivos como: rejuvenecedores, polímeros, entre otros, siempre y cuando hayan sido garantizados por ensayos. (Ministerio de Transportes y Comunicaciones, 2013)

2.2.3 Proyecto MERRA-2 de la NASA

La NASA, que en inglés significa National Aeronautics and Space Administration, tiene un programa de investigación especializado de Ciencias de la Tierra con la cual ha impulsado el estudio mediante sistemas satelitales e investigación. Así, brinda datos para poder estudiar el clima y procesos climáticos a través de estimaciones climatológicas de cantidades meteorológicas y flujos de energía solar superficial, todo esto a largo plazo, brindando así datos confiables de recursos solares y meteorológicos en zonas donde las mediciones de la superficie son escasas o nulas. La gran ventaja es que se pueden encontrar datos globales y contiguos en el tiempo, sin embargo, una desventaja que puede presentar es que, al contener tanta data, puede llegar a ser un poco confuso para el usuario; incluyendo el hecho de que muchas veces puede estar en un formado distinto al que usa el lector cotidianamente. Uno de los primeros proyectos financiados por la NASA es el

SSE que en inglés significa Surface Meteorology and Solar Energy, el cual fue iniciado en 1997, así a medida que pasaba el tiempo iban añadiendo datos adicionales por lo que estuvo en constante mejora. Así, es en 2003 que inicia el proyecto POWER creado a partir del proyecto SSE, al cual se le añadieron datos adicionales basados en los resultados del modelo de asimilación de la GMAO que en inglés significa Goddard's Global Modeling and Assimilation, de MERRA-2 que en inglés significa Modern Era Retrospective-Analysis for Research and Applications y FP-IT que en inglés significa Forward Processing – Instrument Teams. (National Aeronautics and Space Administration, 2022) El Proyecto MERRA-2 de la NASA, tal como se puede ver en la figura 9, es una nueva versión mejorada del proyecto original de nombre MERRA, este proporciona datos desde 1980 en adelante

Figura 9 *Página web del Proyecto MERRA-2*

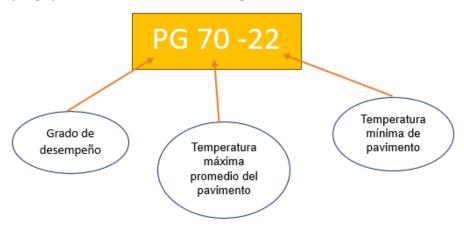


Nota: La figura muestra la página web del proyecto MERRA-2 de la NASA. Tomado de Global Modeling and Assimilation Office, por National Aeronautics and Space Administration, 2023.

Esta mejora se realiza a razón de los avances hechos en el sistema de asimilación de la radiancia hiperespectral moderna, observaciones de microondas, datos de ocultación GPS-Radio, entre otros, así también incluye una representación de las capas de hielo de la Antártida y Groenlandia. Con esta nueva versión de MERRA se busca un reanálisis

global de la Tierra a largo plazo, pudiendo realizar observaciones espaciales de aerosoles, así como también representar sus interacciones versus otros procesos físicos en el sistema climático, tal como se puede ver en la figura 10. (National Aeronautics and Space Administration, 2023)

Figura 10Acceso a la base de datos de POWER


Nota: La figura muestra la página donde se encuentra la base de datos de POWER por la NASA. Tomado de *POWER Data Access Viewer*, por National Aeronautics and Space Administration, 2023.

2.2.4 Metodología SUPERPAVE

Durante los años 1980 y 1987, se vivía una gran preocupación en los Estados Unidos debido al deterioro prematuro de las obras de pavimentos asfálticos haciendo que no llegaran a la vida útil para la cual habían sido diseñadas, y es así que, en 1987, surge en ese país el programa de investigación estratégica SUPERPAVE. Este programa se implementó en diferentes estados del país americano, donde se cambiaron las condiciones de la clasificación de los asfaltos y el diseño de las mezclas asfálticas, que posteriormente se extendió a nivel mundial, incluyendo Perú. La tecnología SUPERPAVE ha estado en uso mundial durante más de 25 años, sin embargo, todavía existen naciones que no han podido adoptar plenamente esta tecnología, lo cual es lamentable ya que esta proporciona mejoras significativas en la ejecución de las obras, brindando la oportunidad de mejorar la durabilidad y calidad de las obras de pavimentación. El SUPERPAVE tiene un objetivo primordial que es el de medir las propiedades reológicas las cuales se relacionan con los parámetros de desempeño, considerando las tres principales formas de falla en una mezcla

asfáltica: deformación permanente, agrietamiento por fatiga y agrietamiento a baja temperatura. Es importante destacar que dicha tecnología también nos exige tener que ir a realizar los ensayos de desempeño permitiendo determinar el comportamiento de las mezclas asfálticas, tanto en el presente como en el futuro. Por eso, la metodología del SUPERPAVE supera a la antigua técnica de diseño Marshall, que todavía se utiliza en muchos países a pesar de su antigüedad. Como se mencionó anteriormente, la tecnología SUPERPAVE ya se ha implementado en Perú, por lo tanto, hemos pasado de utilizar la antigua tecnología de diseño de mezclas basada en el método de estabilidad Marshall y la clasificación de los asfaltos por penetración, a trabajar con dicha tecnología. Este método consiste que, en lugar de utilizar la clasificación por penetración, ahora los clasificamos según su grado de desempeño, conocido como Performance Grade (PG). Cabe mencionar que cada país tiene sus propias fórmulas de cálculo para determinar el PG, adaptadas a sus cargas de tráfico y condiciones climáticas. En el caso de Perú, las especificaciones respecto al SUPERPAVE se encuentra indicadas en el Manual de Carreteras del Ministerio de Transportes y Comunicaciones: EG-2013. La clasificación por penetración no proporciona una información precisa sobre las propiedades reológicas del asfalto, a diferencia de cuando empleamos el grado PG (Performance Grade). Este establece rangos de temperaturas máximas y mínimas que el asfalto puede soportar como parte de una mezcla asfáltica en un pavimento tal como se puede ver en la figura 11. Allí se ejemplifica el asfalto clasificado como PG 70-22, esto indica que este asfalto tiene un excelente desempeño en un rango de temperatura entre + 70 grados y - 22 grados; es importante destacar que estas temperaturas abarcan tanto condiciones extremadamente altas como bajas. (Huamán, 2020).

Figura 11 *Ejemplificación del Grado de Desempeño (PG)*

Nota: Tomado de Superpave – Ingeniería Vial en Acción, por Huamán, 2020.

Es así que el asfalto PG que utilizamos para un proyecto específico nos brinda la seguridad de que cumplirá con las expectativas requeridas para el clima correspondiente. (Huamán, 2020).

2.2.5 Ajuste del Performance Grade (PG) de acuerdo al tráfico y la velocidad

El Performance Grade (PG) que se obtiene usando los modelos matemáticos se debe corregir de acuerdo a la velocidad y tráfico, esto debido a que un mayor nivel de tráfico y una menor velocidad, van a generar una cantidad mayor en cuanto a las deformaciones en el pavimento asfáltico. (Carrasco, 2022)

Esto se puede explicar un poco mejor mediante la Tabla 1 y Tabla 2 en donde se puede observar las equivalencias de los grados a corregir gracias al tráfico y la velocidad.

Tabla 1Grado de corrección por tráfico y velocidad

	Grados de I	Grados de Desempeño Corregido Ratios de la carga de tráfico				
ESAL de diseño (Millones)	Ratios de					
(Minones)	Permanente	Bajo	Estándar			
< 0.3	-	-	-			
0.3 a < 3	2	1	-			
3 a < 10	2	1	-			
10 a < 30	2	1	-			
>= 30	2	1	1			

Nota: Tomado de Mapa de zonificación por Grado de Desempeño (PG) para cementos asfálticos de acuerdo a la clasificación SUPERPAVE, por Orellano & Pilco, 2021.

 Tabla 2

 Clasificación por velocidad

Clasificación por velocidad	Valor
Permanente	Menor a 20 km/h
Bajo	Entre 20km/h y 70 km/h
Estándar	Mayor a 70 km/h

Nota: Tomado de Mapa de zonificación por Grado de Desempeño (PG) para cementos asfálticos de acuerdo a la clasificación SUPERPAVE, por Orellano & Pilco, 2021.

2.2.6 Mapa de Performance Grade (PG)

Nuestro País contiene 38 variedades de climas de acuerdo con la metodología de Thornthwaite registrado en el Servicio Nacional de Meteorología e Hidrología del Perú, tal como se puede observar en los anexos 2 y 3, y esto se da como resultado de la diversificación climática, su localización geográfica y la influencia que ejerce la cordillera de los andes. (SENAMHI, 2020)

Además, contamos con una amplia red de carreteras, con distintas altitudes, desde los 0 m.s.n.m. hasta casi los 5000 m.s.n.m. Asimismo, disponemos de zonas de temperaturas muy altas como el caso de la selva, así como zonas con temperaturas de congelamiento de hasta menos 30 grados. A su vez los intervalos de temperaturas máximas y mínimas son muy fuertes. (Huamán, 2021)

Así, basándonos en el método de Thornthwaite mediante su clasificación proporcionado por el SENAMHI, analizaremos las regiones de Ucayali, Loreto y San Martín, las cuales muestran una diversidad de zonas de acuerdo con la clasificación mencionada.

En consecuencia, dichas regiones tienen climas similares presenciando climas cálidos, con humedad abundante y características lluviosas. Iniciando con el análisis de la región de Ucayali, se puede mencionar que está localizada en la selva central del Perú, al sur del departamento de Loreto y al norte de Cuzco, además, presenta una variedad de climas, tal como se puede ver en el anexo D, incluyendo zonas con temperaturas bien altas gracias a su ubicación en la selva amazónica. Por otro lado, se sabe que la región de Loreto cuenta con 53 distritos y está localizado en el norte del Perú, limitando con Brasil, Ecuador y Colombia, además, presenta una variedad de climas como se puede ver en el anexo E. Presenta climas lluviosos, cálidos y húmedos; las temperaturas más elevadas se registran en Loreto durante los meses de octubre y noviembre. Finalmente, se puede afirmar que la región de San Martín cuenta con un clima muy variado como se puede ver en el anexo F, además, se encuentra localizado al norte de Huánuco, colindante con la región de Loreto, presenciando climas semisecos, cálidos y húmedos en la zona oriental norte. (SENAMHI, 2020)

Teniendo en cuenta toda esta información, es necesario hacer una representación geográfica de Performance Grade con la finalidad de que se pueda utilizar el ligante asfáltico adecuado para cada zona, las cuales son delimitadas de acuerdo a su altura respecto al nivel del mar y a las temperaturas máximas y mínimas correspondientes de cada región. Este Mapa se puede realizar con el uso de softwares como AutoCAD, Civil

3D, ArcGIS, entre otros; estos permiten la edición y superposición de datos (Medina & Terroba, 2021).

La realización de este Mapa es trascendental dado que SUPERPAVE es un sistema que toma en cuenta las características reológicas para la clasificación del ligante asfáltico y las relaciona con el rendimiento que presentan frente a las fallas frecuentes a lo largo de su tiempo de servicio como son: el ahuellamiento, fractura por fatiga y la fisuración térmica. Además, al llevar a cabo un proyecto de pavimentación asfáltica, sería posible disponer de una data necesaria para seleccionar un correcto ligante asfáltico. (Najar & Serrano, 2022)

Actualmente en Perú se vienen desarrollando dicho mapa en algunas zonas tales como: Arequipa, Moquegua, Cusco, Puno, Lima, Ancash, Ica, La Libertad, Lambayeque, Piura, Huancavelica, Ayacucho y Apurímac, y se espera lograr completar el mapa completo para así dar paso a la creación de algún software que pueda simplificar dicha información y así pueda estar al alcance de todos.

Y respecto a las especificaciones relacionadas al PG, si bien es cierto no se viene aplicando dicha clasificación actualmente en el Perú, ya se cuenta con normativa para ello, como se mencionó anteriormente en la sección "Requisitos de calidad del CAP" de la presente investigación.

2.2.7 Modelos matemáticos SHRP y LTTP

Los investigadores del SHRP, lanzaron el primer modelo del SHRP Original en el año de 1994, este modelo determina la temperatura máxima del pavimento tomando como datos la temperatura máxima del aire y la latitud geográfica de la zona de proyecto. En el caso de la temperatura mínima del pavimento, los investigadores del SHRP tomaron como valor de referencia la temperatura mínima del aire, esta elección se debió a las limitaciones de tiempo dado que habían dedicado varios años a la investigación y desarrollo de este modelo matemático. Por otro lado, los investigadores del SHRP de Canadá se mostraron preocupados por el modelo Original, especialmente por las temperaturas mínimas. Esto se debió a que Canadá experimenta temperaturas extremadamente bajas, lo que los llevó a llevar a cabo pruebas con tramos experimentales y desarrollar un modelo matemático específico para la temperatura mínima del pavimento. Entre 1994 y 1996, las investigaciones continuaron debido a la falta de consistencia en los modelos propuestos por el SHRP Original. En este sentido, teniendo como información toda la data recopilada hasta el momento, en el año de 1996 se desarrolló el modelo LTPP Bind realizándolo con pruebas de 30 pistas experimentales,

esto permitió desarrollar nuevos modelos matemáticos que representarían mejor a las temperaturas máximas y mínimas del pavimento. Durante el período de 1998 al 2000, las investigaciones del Modelo LTPP Bind e Bosscher continuaron con la realización de más pruebas experimentales, incrementando más tramos experimentales. Durante ese periodo de tiempo, se lanzó un nuevo modelo matemático para la predicción de la temperatura mínima del pavimento. Finalmente, en el año del 2004 los investigadores Mohseni & Carpenter mencionan que LTPPBind desarrolló nuevamente otro modelo matemático para el caso de las temperaturas máximas del pavimento, considerando nuevos algoritmos, basado en datos de aproximadamente 8000 estaciones meteorológicas. Estos cambios que se realizan continuamente es con el objetivo de mejorar la consistencia en los resultados porque a medida que pasan los años se va obteniendo más información y más data, entonces se genera un modelo más consistente. (Colegio de Ingenieros del Perú, 2000)

2.3 Definición de términos básicos

LTPP

Programa de investigación encargado de recopilar datos del rendimiento de los pavimentos cuyas siglas en inglés son: Long-Term Pavement Performance.

Modelos matemáticos

Es una representación mediante ecuaciones o fórmulas de un fenómeno. Es ideal para analizar, evaluar y concluir dicho fenómeno.

Performance Grade (PG)

Valor máximo y mínimo de temperatura a la que puede estar expuesto el ligante asfáltico con la seguridad de brindar un correcto desempeño al incluirse en la construcción de pavimentos asfálticos.

Proyecto MERRA 2 – NASA

Es un proyecto a cargo de la NASA el cual registra a largo plazo el análisis atmosférico global.

SHRP

Es un programa estratégico creado en EEUU enfocado en la investigación de carreteras cuyas siglas en inglés son: Strategic Highway Research Program.

SUPERPAVE

Tiene las siglas en inglés cuyo significado es: Superior Performance Asphalt Pavements. Esta es una técnica de diseño ideal para poder estimar el comportamiento del pavimento y así elegir de forma adecuada el agregado y asfalto.

Susceptibilidad térmica

Es la variación que experimentan ciertos materiales al ser expuestos a diferentes temperaturas.

Tráfico

Es la intensidad de circulación vehicular en una determinada vía.

Velocidad

Es el desplazamiento vehicular en un espacio específico y en un periodo de tiempo determinado.

Zonificación de Performance Grade

Mapa el cual facilita visualizar las zonas de impacto de los Grados de Desempeño lo cuales son hallados a través de datos climatológicos.

CAPÍTULO III: HIPÓTESIS

3.1 Hipótesis

3.1.1 Hipótesis general

Se puede crear el Mapa de Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín aplicando modelos matemáticos para su clasificación por zonas mediante la metodología SUPERPAVE.

3.1.2 Hipótesis específicas

- a) Con los datos identificados se puede calcular el Performance Grade (PG) en las regiones de Ucayali, Loreto y San Martín para la realización del Mapa de Performance Grade (PG) del asfalto.
- b) Aplicando los modelos matemáticos SHRP y LTPP se calcula el Performance Grade (PG) para la realización del Mapa de Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín para su clasificación mediante la metodología SUPERPAVE.
- c) Aplicando las variaciones de acuerdo al tráfico y la velocidad se rectifica el Mapa de Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín.

3.2 Variables

3.2.1 Definición conceptual de variables

a) Variable independiente

Clasificación SUPERPAVE: Incorpora una nomenclatura adicional que permita categorizar los diferentes niveles de asfalto según su grado, el cual se determina mediante la consideración de las temperaturas máximas y mínimas adecuadas, en las que el ligante asfáltico se desempeñará de forma adecuada.

b) Variable dependiente

Mapa de Performance Grade (PG): Es una representación geográfica mediante zonas, la cual muestra el Performance Grade (PG) adecuado a ser utilizado en el proyecto.

3.2.2 Operacionalización de variables

Tabla 3 *Operacionalización de variables*

VARIABLE INDEPENDIENTE	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	ÍNDICES	INSTRUMENTOS	HERRAMIENTA	
Clasificación SUPERPAVE	Incorpora una nomenclatura adicional que permita categorizar los diferentes niveles de asfalto según su grado, el cual se determina mediante la consideración	obtiene mediante modelos matemáticos usando la data obtenida de distintos parámetros	Modelos Matemáticos para la determinación de	SHRP	Temperatura	Hoja de cálculo	Excel	
	de las temperaturas máximas y mínimas adecuadas, en las que el ligante asfáltico se desempeñará de forma apropiada.		obtenida de distintos parámetros	obtenida de distintos parámetros	Performance Grade	LTPP	Temperatura	Hoja de cálculo
VARIABLE DEPENDIENTE	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	ÍNDICES	INSTRUMENTOS	HERRAMIENTA	
		El acces de Bodonnes Condo		Clima	Temperatura	MERRA-2 (NASA)		
Mapa de Performance Grade (PG)	Es una representación geográfica mediante zonas, la cual muestra el Performance Grade (PG) adecuado a ser utilizado en el proyecto.	El mapa de Performance Grade (PG) se zonificará de acuerdo a la data meteorológica usando las temperaturas máximas y mínimas, y se aplicarán las correcciones en	Delimitación de zonas de Performance Grade (PG)	Tráfico	ESAL	Expediente Técnico	Software ArcGIS	
	• •	función al tráfico y la velocidad.		Velocidad	Velocidad de diseño	Expediente Técnico		

Nota. Elaboración propia

CAPÍTULO IV: METODOLOGÍA DE LA INVESTIGACIÓN

4.1 Tipo y nivel

4.1.1 Tipo

El tipo de investigación es básica no experimental porque se analizaron datos climatológicos que se dieron en Ucayali, Loreto y San Martín en un periodo de 20 años. Además, tiene enfoque cuantitativo ya que con la data obtenida y procesada en la hoja de cálculo se intentó probar las hipótesis.

También es descriptivo porque describe paso a paso como hallar el PG del asfalto de cada distrito mediante la metodología SUPERPAVE.

4.1.2 Nivel

El presente trabajo es de carácter deductivo, debido a que emplearán los conceptos de SHRP y LTPP para calcular el Performance Grade (PG) en la zona de estudio de acuerdo al clima en la que estará expuesta el pavimento. De esta manera, se diseñará el Mapa de Performance Grade (PG) del asfalto en estas áreas, lo cual permitirá seleccionar un ligante asfáltico adecuado.

4.2 Diseño de investigación

Es no probabilístico, se tomarán datos meteorológicos de un rango de 20 años, tomando así las temperaturas máximas y mínimas de los distritos ubicados en las zonas de Ucayali, Loreto y San Martín.

4.3 Población y muestra

La población fueron los datos meteorológicos de un rango de tiempo de 20 años en los distritos de los departamentos de Ucayali, Loreto y San Martín, lo cuales fueron obtenidos del proyecto MERRA-2 de la NASA.

4.4 Técnicas e instrumentos de recolección de datos

4.4.1 Tipos de técnicas e instrumentos

La técnica utilizada fue la revisión documental de tesis, artículos científicos, revistas, normativas, libros físicos y libros virtuales. Esto para poder tener un amplio y preciso panorama respecto al tema y así poder desarrollar correctamente esta investigación.

Además, se optó por 2 instrumentos a la hora de sacar información y procesarla. La data meteorológica de un periodo de 20 años, fue obtenida del proyecto MERRA-2 de la NASA y posteriormente se procesó dicha data en una hoja de cálculo de Excel, el cual fue nuestro segundo instrumento.

4.4.2 Criterios de validez y confiabilidad de los instrumentos

Nos basamos en información de clasificación por Performance Grade (PG) y mapas de Performance Grade (PG) realizadas con data de Perú y del extranjero, para así poder hacer una comparativa de resultados. Esto es importante porque pudimos analizar resultados de otros departamentos peruanos y resultados con normativas de otros países.

4.4.3 Procedimientos para la recolección de datos

En primer lugar, se tuvo que investigar la ubicación geográfica de cada distrito (latitud y longitud) de las 3 regiones a estudiar: Ucayali, Loreto y San Martín. Con esa data se accedió a la página del proyecto MERRA-2 de la NASA el cual contiene información meteorológica satelital que necesitábamos y que nos brindó al momento de ingresar las latitudes. Se seleccionó el rango de fechas para recopilar los datos de las temperaturas que se requirieron, que en este caso será un periodo de 20 años, y luego se procedió a ingresar la data de la longitud y latitud de cada distrito previamente obtenido. Se pasó a descargar dicha información en formato Excel para posteriormente procesarlos en una hoja de cálculo del mismo programa.

Finalmente, con esos datos obtenidos se pudo desarrollar los análisis.

4.5 Técnicas para el procesamiento y análisis de información

Al iniciar la investigación se comenzó buscando fuentes confiables sobre nuestro tema, esto para luego buscar palabras claves en todos los archivos seleccionados previamente: PG, SUPERPAVE, Performance Grade, Grado de Desempeño, asfalto, cemento asfáltico, CAP, Mapa de Grado de Desempeño, pavimentación asfáltica, LTPP, SHRP y MERRA-2. Después se procedió a copiar en un archivo Word, los párrafos e imágenes más importantes de dichos archivos con sus respectivos autores para que la búsqueda del archivo original sea más fácil.

Finalmente se comparó las similitudes entre ellos para así elegir la mejor información. Respecto a los datos de las temperaturas, se tomaron los datos del proyecto MERRA-2 para luego procesar únicamente los necesarios para aplicar los modelos matemáticos LTPP y SHRP; esto en una hoja de cálculo en Excel.

CAPÍTULO V: PRESENTACIÓN Y ANÁLISIS DE RESULTADOS DE LA INVESTIGACIÓN

5.1 Recolección de datos

5.1.1 Descripción y características de la zona de estudio

La presente investigación está basada en tres departamentos de Perú: Ucayali, Loreto y San Martín.

Por un lado, Ucayali, con su capital Pucallpa, cuenta con una superficie de 105097.27 kilómetros cuadrados y está dividido en 4 provincias, como se puede ver en el anexo G, y cuenta con 19 distritos, como se puede ver en la tabla 4. (Infraestructura de datos espaciales del Gobierno Regional de Ucayali, 2023).

Tabla 4Distritos del departamento de Ucayali

	DISTRITO		DISTRITO		DISTRITO
1	Callería	8	Iparía	15	Nueva Requena
2	Yarinacocha	9	Masisea	16	Boquerón
3	Manantay	10	Neshuya	17	Huipoca
4	Raymondi	11	Tahuanía	18	Purús
5	Padre Abad	12	Curimaná	19	Yuruá
6	Campo Verde	13	Sepahua		
7	Irazola	14	Alexander Von Humboldt		

Nota: Adaptado de *Gobierno Regional de Ucayali*, por Infraestructura de datos espaciales del Gobierno Regional de Ucayali, 2023 (http://ider.regionucayali.gob.pe/).

Ucayali tiene 3 sistemas de comunicaciones con el resto de Perú: el primero es el terrestre, el cual está constituido por las carreteras Lima-Huánuco-Tingo María-Pucallpa y Pucallpa-Tingo María-Tocache-Campanilla, segundo el fluvial, utilizando los ríos Ucayali, Pachitea y Amazonas y finalmente el aéreo, que incluyen rutas de Pucallpa a Lima, Iquitos y la frontera con Brasil. Cabe destacar que, en el caso del transporte vial, Ucayali cuenta con 2505 kilómetros en total de los cuales solo el 9% está pavimentado (Banco Central de Reserva del Perú, 2023).

Por otro lado, Loreto, con su capital Iquitos, cuenta con una superficie de 368851 kilómetros cuadrados y está dividido en 8 provincias, como se puede ver en el anexo H, y cuenta con 53 distritos en total, como se puede en la tabla 5. (GOREL, 2023).

Tabla 5Distritos del departamento de Loreto

	DISTRITO		DISTRITO		DISTRITO
1	Iquitos	19	Pebas	37	Puinahua
2	San Juan Bautista	20	Indiana	38	Putumayo
3	Yurimaguas	21	Trompeteros	39	Morona
4	Punchana	22	Yavarí	40	Santa Cruz
5	Belén	23	Manseriche	41	Alto Nanay
6	Nauta	24	Maquía	42	Padre Márquez
7	Contamana	25	Las Amazonas	43	Saquena
8	Requena	26	Cahuapanas	44	Teniente Manuel Clavero
9	Ramón Castilla	27	Tigre	45	Yaquerana
10	Napo	28	Vargas Guerra	46	Capelo
11	Balsapuerto	29	Emilio San Martín	47	Inahuaya
12	Andoas	30	Teniente César López Rojas	48	Yaguas
13	Barranca	31	Pastaza	49	Alto Tapiche
14	Sarayacu	32	Parinari	50	Tapiche
15	Mazán	33	Pampa Hermosa	51	Soplin
16	Lagunas	34	Torres Causana	52	Rosa Panduro
17	Fernando Lores	35	Jenaro Herrera	53	Urarinas
18	San Pablo	36	Jeberos		

Nota: Adaptado de *Gobierno Regional de Loreto*, por GOREL, 2023 (https://regionloreto.gob.pe/).

Loreto presenta algunas dificultades en cuanto a construcción vías debido a la presencia de extensos bosques y ríos por lo que sus sistemas de comunicación actualmente son: el multimodal y vía aérea; teniendo presente que el fluvial es el principal. El multimodal se divide en 2 formas: la primera, teniendo la ruta terrestre Lima-Tarapoto-Yurimaguas complementada con la ruta fluvial Yurimaguas-Iquitos con una duración de 3 a 4 días, y la segunda, teniendo la ruta terrestre Lima-Tingo María-Aguaytía-Pucallpa complementada con la ruta fluvial Pucallpa-Iquitos con una duración de 4 a 5 días. Y en cuanto a la vía aérea, Loreto se conecta con Lima mediante un vuelo de una hora y media. Cabe destacar que dicho departamento mencionado cuenta con 901 kilómetros de vía en total de los cuales el 23% está pavimentado. (Banco Central de Reserva del Perú, 2023) Finalmente, San Martín, con su capital Moyobamba, cuenta con una superficie de 51345.85 kilómetros cuadrados y está dividido en 10 provincias, como se puede ver en el anexo I y cuenta con 78 distritos, como se puede ver en la tabla 6. (Geoportal, 2023).

Tabla 6Distritos del departamento de San Martín

	DISTRITO		DISTRITO		DISTRITO
1	Moyobamba	27	Shamboyacu	53	Shatoja
2	Tarapoto	28	Chazuta	54	Pucacaca
3	La Banda de Shilcayo	29	Alto Biavo	55	Buenos Aires
4	Nueva Cajamarca	30	Huicungo	56	Yantalo
5	Morales	31	Pinto Recodo	57	Cuñumbuqui
6	Juanjuí	32	San Pablo	58	Huallaga
7	Tocache	33	Awajun	59	El Porvenir
8	Rioja	34	Barranquita	60	Yorongos
9	Elías Soplin Vargas	35	Santa Rosa	61	Chipurana
10	Soritor	36	Pachiza	62	Agua Blanca
11	Bellavista	37	Sauce	63	Sacanche
12	Campanilla	38	San Rafael	64	Caspisapa
13	San José de Sisa	39	Santa Lucía	65	Posic
14	Pardo Miguel	40	Zapatero	66	Shapaja
15	Lamas	41	Pajarillo	67	Papaplaya
16	Jepelacio	42	Alto Saposoa	68	El Eslabón
17	Bajo Biavo	43	Calzada	69	Shanao
18	Saposoa	44	Piscoyacu	70	San Antonio
19	Tabalosos	45	Juan Guerra	71	San Roque de Cumbaza
20	Uchiza	46	Tres Unidos	72	Habana
21	Alonso de Alvarado	47	Rumisapa	73	Shunte
22	San Martín	48	Cacatachi	74	San Cristóbal
23	Nuevo Progreso	49	Tingo de Ponasa	75	Alberto Leveau
24	Picota	50	Yuracyacu	76	Pilluana
25	Caynarachi	51	San Hilarión	77	Tingo de Saposoa
26	Polvora	52	San Fernando	78	Huimbayoc

Nota: Adaptado de Gobierno Regional de San Martín, por Geoportal, 2023 (https://geoportal.regionsanmartin.gob.pe/).

San Martín tiene un sistema de comunicaciones con el resto del Perú por vía aérea, terrestre y en menos frecuencia la fluvial. En cuanto a sus carreteras cuenta con 3 principales vías: la primera presenta la ruta Lima-Chiclayo-Olmos-Bagua-Rioja-Moyobamba-Tarapoto, la segunda presenta la ruta Lima-Pacasmayo-Cajamarca-Balsas-Leimebamba-desvío a Chachapoyas-Pedro Ruiz y la tercera presenta la ruta Lima-Huánuco-Tingo María-Tocache-Juanjuí-Tarapoto. Cabe destacar que San Martín cuenta

con 5567 kilómetros de infraestructura vial de los cuales 17% está pavimentado. (Banco Central de Reserva del Perú, 2023)

5.1.2 Selección de estaciones meteorológicas de Ucayali, Loreto y San Martín

Para la selección de las estaciones meteorológicas a usar en el proyecto de investigación, se tiene que tomar en cuenta que se requiere un rango de tiempo de 20 años en la data de temperaturas máximas y mínimas de cada estación. Teniendo presente esto se procedió a verificar la información tanto de SENAMHI como del proyecto MERRA-2 de la NASA, esto para corroborar que cuenten con el rango de tiempo antes mencionado. (Carrasco, 2022)

Primero, al investigar con la data de las estaciones meteorológicas presentadas por el SENAMHI, se pudo obtener el nombre de la estación, el tipo, la latitud y rango de años en los 3 departamentos de estudio: Ucayali, Loreto y San Martín.

En el caso del departamento de Ucayali, SENAMHI presenta 19 estaciones meteorológicas dentro de su territorio que, como se puede observar en la figura 12, se encuentran indicadas con unos símbolos en tono gris, indicando una estación meteorológica convencional, y tono verde, indicando una estación meteorológica automática. Cabe resaltar que allí hay 17 estaciones convencionales y 2 estaciones automáticas. (SENAMHI, 2023).

Figura 12 *Mapa con estaciones meteorológicas del departamento de Ucayali*

Nota: Tomado de Mapa de estaciones en Ucayali por SENAMHI, 2023 (https://www.senamhi.gob.pe/mapas/mapa-estaciones/mapadepesta1.php?dp=ucayali)

Sin embargo, como ya se mencionó, la información del rango de años encontrados en dichas estaciones, tal como se puede ver en la tabla 7, no son lo suficientemente amplios para poder tomarla y procesarla en nuestra investigación, incluso algunas estaciones presentan información discontinua en algunos meses imposibilitando usar dicha data en nuestro estudio.

Tabla 7 *Estaciones meteorológicas del departamento de Ucayali*

	ESTACIÓN	TIPO	LATITUD	RANGO (AÑOS)
1	Santa Ana	Automática	8° 29' 51.47"	[2016-2023]
2	Aguaytía	Convencional	9° 2' 32.11"	[2018-2023]
3	Yurac	Convencional	9° 3' 1"	[1967-1972]
4	El Maronal	Convencional	8° 27' 0"	[2018-2023]
5	El Maronal	Convencional	8° 35' 1"	[2017]
6	San Alejandro	Convencional	8° 50' 4"	[2018-2023]
7	Neshuya	Convencional	8° 40' 1"	[1960-1965]
8	Mayuca	Convencional	8°52'24.6"	[2012-2017]
9	El Boquerón	Convencional	8° 34' 57"	[2014-2020]
10	San Jorge	Convencional	8° 30' 1"	[1974-1979]
11	Pucallpa	Convencional	8° 24' 47.62"	[2017-2023]
12	Pucallpa	Convencional	8° 22' 0"	[1947-1950]
13	Masisea	Convencional	8°36' 1"	[1973-1978]
14	Iparía	Convencional	9° 18' 1"	[1969-1976]
15	Bolognesi	Convencional	10° 4' 1"	[1974-1979]
16	Atalaya	Convencional	10° 44' 1"	[1934-1981]
17	Sepa	Convencional	10° 49' 1"	[1966-1972]
18	Sepahua	Convencional	11° 9' 1"	[1963-1966]
19	Puerto Esperanza	Automática	9° 46′ 14.98″	[2017-2023]

Nota: Adaptado de *Mapa de estaciones - Ucayali*, por SENAMHI, 2023 (https://www.senamhi.gob.pe/mapas/mapa-estaciones/mapadepestal.php?dp=ucayali)

En el caso del departamento de Loreto, SENAMHI presenta 80 estaciones meteorológicas dentro de su territorio que, como se puede observar en la figura 13, se encuentran indicadas con los mismos colores antes mencionados, indicando así que hay 74 estaciones meteorológicas convencionales y 6 estaciones meteorológicas automáticas. (SENAMHI, 2023).

Figura 13 *Mapa con estaciones meteorológicas del departamento de Loreto*

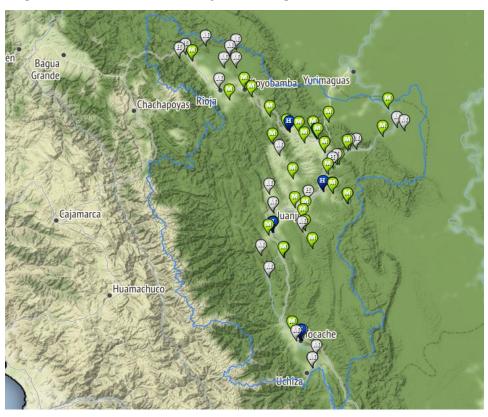
Nota: Tomado de Mapa de estaciones en Loreto por SENAMHI, 2023 (https://www.senamhi.gob.pe/mapas/mapa-estaciones/mapadepesta1.php?dp=loreto)

Sin embargo, al igual que Ucayali, la información del rango de años encontrados en las estaciones de Loreto, tal como se puede observar en la tabla 8, no son lo suficientemente amplios para poder tomarla y procesarla en nuestra investigación, incluso algunas estaciones también presentan información discontinua en algunos meses imposibilitando usar dicha data en nuestro estudio.

Tabla 8 *Estaciones meteorológicas del departamento de Loreto*

	ESTACIÓN	TIPO	LATITUD	RANGO (AÑOS)
1	Sargento P.	Convencional	3° 13' 1"	[1976-1983]
2	Borja	Convencional	4° 28' 10.48"	[2018-2023]
3	Rimachi	Convencional	4° 25' 1"	[1967-1972]
4	Barranca	Convencional	4° 49' 1"	[1984-1992]
5	San Lorenzo	Convencional	4° 49' 46'.35"	[2018-2023]
6	Balsa Puerto	Convencional	5° 50' 1"	[1968-1973]
7	Shanusi	Convencional	6° 4' 1.33"	[2018-2023]
8	San Ramón	Convencional	5° 56' 8.13"	[2015-2023]
9	Samango	Convencional	5° 55' 1"	[1965-1968]
10	Plantación Santa María	Convencional	5° 47' 1"	[1960-1965]

	ESTACIÓN	TIPO	LATITUD	RANGO (AÑOS)
11	Schuc Shuyacu	Convencional	6° 3' 1"	[1971-1977]
12	Santa Cruz	Convencional	5° 29' 1"	[1975-2008]
13	Lagunas	Convencional	5° 13' 9.74"	[2018-2023]
14	Soplin	Convencional	3° 24' 1"	[1976-1983]
15	Teniente López	Convencional	2° 32" 1'	[1992-1997]
16	Bartra	Convencional	2° 30' 1"	[1980-1992]
17	Arica	Convencional	1° 36' 1"	[1977-1982]
18	Pantoja	Convencional	0° 58' 1"	[1974-1982]
19	Gueppi	Convencional	0° 7' 1''	[1977-1983]
20	Santa Mercedes	Convencional	1° 35' 1"	[1997]
21	Puerto Arturo	Convencional	1° 49' 59.74"	[1977-1986]
22	Curaray	Convencional	2° 22' 1"	[1978-2010]
23	Santa Clotilde	Convencional	2° 29' 15.3"	[2015-2023]
24	Trompeteros	Automática	3° 48' 1"	[2013-2016]
25	Trompeteros	Convencional	3° 48' 27"	[1998-2003]
26	Sargento Lores	Convencional	3° 44' 1"	[1976-1983]
27	Silvia Merino	Convencional	4° 30′ 38.9″	[1995-2007]
28	El Estrecho	Convencional	2° 26' 1"	[1992-1996]
29	El Estrecho	Convencional	2° 26' 47.94"	[2016-2023]
30	Francisco Orellana	Convencional	3° 25' 24"	[2018-2023]
31	Maniti	Convencional	3° 31' 13.09"	[2017-2023]
32	Mazán	Convencional	3° 29' 17.4"	[2018-2023]
33	Timicurillo	Convencional	3° 31' 25.34"	[2015-2021]
34	Santa Cruz	Convencional	3° 31' .97"	[2018-2023]
35	La Libertad	Convencional	3° 29' 10.69"	[2018-2023]
36	Punchana	Convencional	3° 40' 1"	[1976-1981]
37	Punchana	Convencional	3° 41' 25.07"	[2017-2023]
38	Iquitos	Automática	3° 44' 30"	no hay datos
39	Guayabamba	Convencional	3° 45' 1"	[1960-1965]
40	Amazonas	Convencional	3° 45' 50.3"	[2018-2023]
41	San Roque	Convencional	3° 47' 11.6"	[2018-2023]
42	Quistococha	Convencional	3° 49' 1"	[1965-1970]
43	Quisticocha	Convencional	3° 50' 0"	[1995-1999]
44	Puerto Almendra	Convencional	3° 49' 42.98"	[2018-2023]
45	Moralillo	Convencional	3° 53' 58.8"	[2017-2023]
46	Muyuy	Convencional	3° 54' 1"	[1978-1983]
47	Tamshiyacu	Convencional	4° 0' 12.81"	[2017-2022]
48	Santa Maria de Nanay	Convencional	3° 53' 20.06"	[2016-2022]
49	Pithecia	Convencional	4° 35' 1"	[1985-1986]


	ESTACIÓN	TIPO	LATITUD	RANGO (AÑOS)
50	Santa Rita de Castilla	Convencional	4° 35' 31.77"	[2018-2023]
51	San Regis	Convencional	4° 30' 46.83"	[2018-2023]
52	Nauta	Convencional	4° 30' 1"	[1960-1965]
53	Nauta	Convencional	4° 30' 48.1"	[2016-2023]
54	Bagazan	Convencional	4°43'26.46"	[2017-2023]
55	Genaro Herrera	Convencional	4° 53' 58"	[1997-2002]
56	Genaro Herrera	Convencional	4° 54' 36.1"	[2017-2023]
57	Requena	Convencional	5° 2' 35.06"	[2018-2023]
58	Bretaña	Convencional	5° 15' 56.43"	[2018-2022]
59	Flor de Punga	Convencional	5° 24' 19.82"	[2017-2023]
60	Tamanco	Convencional	5° 47' 31.45"	[2018-2023]
61	La Pedrera	Convencional	5° 46' 1"	[1978-1984]
62	Juancito	Automática	6° 1' 50.5"	[2001-2006]
63	Juancito	Convencional	6° 2' 1"	[2009-2014]
64	Dos de Mayo	Convencional	6° 22' 1"	[1961-2006]
65	Orellana	Convencional	6° 54' 1"	[1973-1978]
66	Pampa Hermosa	Convencional	7° 12' 1"	[1976-1981]
67	Contamana	Automática	7° 21' 9.14"	[2010-2020]
68	Tiruntan	Convencional	7° 57' 1"	[1969-1975]
69	Angamos	Convencional	5° 10' .61"	[1990-1994]
70	Angamos	Convencional	5° 8' 59.44"	[2018-2023]
71	Bergerie	Convencional	2° 20' 1"	[1976-1983]
72	Corbata	Convencional	2° 17' 1"	[1980-1985]
73	Pebas	Convencional	3° 19' 7.57"	[2018-2023]
74	Pebas	Automática	3° 19′ 4.48″	[2018-2023]
75	Chimbote	Convencional	3° 56' 1"	[1976-1982]
76	San Fernando	Convencional	4° 10' 1"	[1977-1982]
77	Caballococha	Automática	3° 54' 40.5"	[2018-2023]
78	Santa Rosa	Convencional	4° 13′ 34.88″	[2018-2023]
79	Petropolis	Convencional	4° 14' 1"	[1965-1970]
80	Puerto Alegría	Convencional	4° 15' 1.19"	[1977-1985]

Nota: Adaptado de Mapa de estaciones - Loreto, por SENAMHI, 2023 (https://www.senamhi.gob.pe/mapas/mapa-estaciones/mapadepesta1.php?dp=loreto)

Finalmente, en el caso del departamento de San Martín, SENAMHI presenta 33 estaciones meteorológicas dentro de su territorio que, como se puede observar en la figura 14, se encuentran indicadas con los mismos colores antes mencionados, indicando así que

hay 29 estaciones meteorológicas convencionales y 4 estaciones meteorológicas automáticas. (SENAMHI, 2023).

Figura 14Mapa con estaciones meteorológicas del departamento de San Martín

Nota: Tomado de Mapa de estaciones en San Martín por SENAMHI, 2023 (https://www.senamhi.gob.pe/mapas/mapa-estaciones/mapadepesta1.php?dp=san-martin)

Así, al igual que Ucayali y Loreto, la información del rango de años encontrados en las estaciones de San Martín, tal como se puede observar en la tabla 9, no son lo suficientemente amplios para poder tomarla y procesarla en nuestra investigación, presentando estaciones con información discontinua en algunos meses imposibilitando usar dicha data en nuestro estudio.

Tabla 9 *Estaciones meteorológicas del departamento de San Martín*

	ESTACIÓN	TIPO	LATITUD	RANGO (AÑOS)
1	Naranjillo	Automática	5° 48' 34.63"	[2023]
2	Playa hermosa	Automática	76° 59' 13.87"	[2023]
3	Moyobamba	Convencional	6° 2' 41.3"	[2017-2023]

	ESTACIÓN	TIPO	LATITUD	RANGO (AÑOS)
4	Jepelacio	Convencional	6° 6' 45.9"	[2017-2023]
5	Potrerillo	Automática	6°9'8.81"	[2023]
6	Soritor	Convencional	6°8'31.19"	[2017-2023]
7	Pacaypaza	Convencional	6°16'54.48"	[2018-2023]
8	Alao	Convencional	6°31'1.2"	[2017-2023]
9	Tabalosos	Convencional	6°23'43.2"	[2017-2023]
10	Lamas	Convencional	6°25'7.46"	[2017-2023]
11	Pongo de Caynarachi	Convencional	6°19'49.7"	[2017-2023]
12	San Antonio	Convencional	6°24'45.86"	[2018-2023]
13	Cuñumbuque	Convencional	6°30'29.7"	[2018-2023]
14	Tarapoto	Convencional	6°28'33.5"	[2017-2023]
15	El Porvenir	Automática	6°35'20.62"	[2018-2023]
16	Chazuta	Convencional	6°34'16.3"	[2017-2023]
17	Sauce	Convencional	6°41'39.54"	[2017-2023]
18	Pilluana	Convencional	6°46'34.7"	[2017-2023]
19	San Pablo	Convencional	6°48'34.4"	[2017-2023]
20	Picota	Convencional	6°55'11.61"	[2018-2023]
21	Tingo de Ponaza	Convencional	6°56'14"	[2017-2023]
22	Shamboyacu	Convencional	7°1'20.28"	[2017-2019]
23	Bellavista	Convencional	7°3'18.6"	[2017-2023]
24	Nuevo Lima	Convencional	7°5'46.6"	[2017-2023]
25	La Unión	Convencional	7°9'47.48"	[2017-2023]
26	Cuzco Biavo	Convencional	7°15'15.9"	[2017-2023]
27	Huayabamba	Convencional	7°15'48.81"	[2018-2023]
28	Pachiza	Convencional	7°17'35.6"	[2017-2023]
29	Jose Olaya	Convencional	7°24'25.6"	[2016-2023]
30	Campanilla	Convencional	7°29'3.64"	[2017-2023]
31	Tananta	Convencional	8°6'54.86"	[2017-2023]
32	Pucallpa - Huambiyoc	Convencional	6°27'10"	[2017-2023]
33	Pelejo	Convencional	6°12'55.13"	[2018-2023]

Nota: Adaptado de *Mapa de estaciones* – *San Martín*, por SENAMHI, 2023 (https://www.senamhi.gob.pe/mapas/mapa-estaciones/mapadepesta1.php?dp=san-martin)

Es así que, finalmente se optó por extraer la data a utilizar desde la página del proyecto MERRA-2 de la NASA, la cual está mucho más completa. Para esto se toma como estaciones meteorológicas todos los distritos de los departamentos de Ucayali, Loreto y

San Martín, tal como se puede ver en las tablas 10, 11 y 12 respectivamente, obteniendo así sus las latitudes y sus longitudes.

Estos datos serán de mucha importancia al momento de procesar la información.

Tabla 10 Latitudes y longitudes de los distritos del departamento de Ucayali

DI	STRITO	LATITUD	LONGITUD
1 Ca	allería	-8.3827	-74.5322
2 Ya	arinacocha	-8.3519	-74.5756
3 M	anantay	-8.3983	-74.5367
4 Ra	nymondi	-10.7297	-73.7556
5 Pa	dre Abad	-9.0377	-75.5128
6 Ca	ampo Verde	-8.4725	-74.8056
7 Ira	azola	-8.8261	-75.2100
8 Ipa	aría	-9.3063	-74.4356
9 M	asisea	-8.6052	-74.3064
10 Ne	eshuya	-8.6390	-74.9644
11 Ta	huanía	-10.0300	-73.9569
12 Cu	ırimaná	-8.4341	-75.1531
13 Se	pahua	-11.1467	-73.0475
14 Al	exander Von Humboldt	-8.8263	-75.0523
15 Nu	ueva Requena	-8.3108	-74.8630
16 Bo	oquerón	-8.8626	-75.3287
17 Hu	ıipoca	-8.9763	-75.4472
18 Pu	ırús	-9.7725	-70.7100
19 Yı	ıruá	-9.5308	-72.7594
Nota:	Adaptado de	Google I	Earth, por

Earth, 2023

(https://earth.google.com/web/)

Tabla 11 Latitudes y longitudes de los distritos del departamento de Loreto

	DISTRITO	LATITUD	LONGITUD
1	Iquitos	-3.7491	-73.2538
2	San Juan Bautista	-3.7752	-73.2892
3	Yurimaguas	-5.8938	-76.1069
4	Punchana	-3.7283	-73.2444
5	Belén	-3.7616	-73.2483
6	Nauta	-4.5066	-73.5756
7	Contamana	-7.3333	-75.0166

	DISTRITO	LATITUD	LONGITUD
8	Requena	-5.0636	-73.8564
9	Ramón Castilla	-3.9061	-70.5169
10	Napo	-2.4894	-73.6756
11	Balsapuerto	-5.8336	-76.5597
12	Andoas	-3.4752	-76.4333
13	Barranca	-4.8316	-76.5544
14	Sarayacu	-6.3933	-75.1169
15	Mazán	-3.4966	-73.0900
16	Lagunas	-5.2269	-75.6797
17	Fernando Lores	-4.003	-73.1606
18	San Pablo	-7.1188	-78.8239
19	Pebas	-3.3205	-71.8617
20	Indiana	-3.5002	-73.0411
21	Trompeteros	-3.8052	-75.0614
22	Yavarí	-4.3519	-70.0414
23	Manseriche	-4.5663	-77.4158
24	Maquía	-5.7500	-74.5375
25	Las Amazonas	-3.4225	-72.7642
26	Cahuapanas	-5.2866	-76.9889
27	Tigre	-3.4897	-74.7817
28	Vargas Guerra	-6.9113	-75.1583
29	Emilio San Martín	-5.7941	-74.2853
30	Teniente César López Rojas	-6.0250	-75.8739
31	Pastaza	-4.6517	-76.5878
32	Parinari	-4.6313	-74.4631
33	Pampa Hermosa	-7.1952	-75.2969
34	Torres Causana	-0.9705	-75.1747
35	Jenaro Herrera	-4.9036	-73.6694
36	Jeberos	-5.2908	-76.2836
37	Puinahua	-5.2558	-74.3458
38	Putumayo	-2.4469	-72.6683
39	Morona	-4.3230	-77.2172
40	Santa Cruz	-5.5133	-75.8586
41	Alto Nanay	-3.8880	-73.6964
42	Padre Márquez	-7.9500	-74.8389
43	Saquena	-4.7252	-73.5336
44	Teniente Manuel Clavero	-0.3744	-74.6767
45	Yaquerana	-5.1530	-72.8822
46	Capelo	-5.4047	-74.1578

	DISTRITO	LATITUD	LONGITUD
47	Inahuaya	-7.1169	-75.2628
48	Yaguas	-2.4088	-71.1753
49	Alto Tapiche	-6.0252	-74.0939
50	Tapiche	-5.6647	-74.1889
51	Soplín	-6.0094	-73.6928
52	Rosa Panduro	-1.7894	-73.4117
53	Urarinas	-4.5877	-74.7669

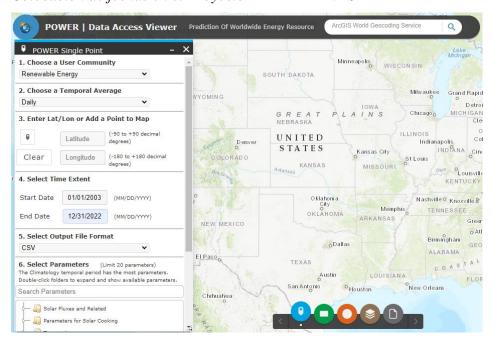
Nota: Adaptado de Google Earth, por Google Earth, 2023

(https://earth.google.com/web/)

Tabla 12Latitudes y longitudes de los distritos del departamento de San Martín

	DISTRITO	LATITUD	LONGITUD
1	Moyobamba	-6.0347	-76.9747
2	Tarapoto	-6.4877	-76.3597
3	La Banda de Shilcayo	-6.4905	-76.3544
4	Nueva Cajamarca	-5.9405	-77.3094
5	Morales	-6.4786	-76.3833
6	Juanjuí	-7.1797	-76.7272
7	Tocache	-8.1886	-76.5103
8	Rioja	-6.0625	-77.1678
9	Elías Soplin Vargas	-5.9891	-77.2811
10	Soritor	-6.1391	-77.1022
11	Bellavista	-7.0561	-76.5911
12	Campanilla	-7.4822	-76.6525
13	San José de Sisa	-6.6138	-76.695
14	Pardo Miguel	-5.7394	-77.5039
15	Lamas	-6.4219	-76.5161
16	Jepelacio	-6.1080	-76.9150
17	Bajo Biavo	-7.0994	-76.4725
18	Saposoa	-6.9333	-76.7717
19	Tabalosos	-6.3886	-76.6833
20	Uchiza	-8.4588	-76.4619
21	Alonso de Alvarado	-6.3558	-76.7747
22	San Martín	-6.5138	-76.7408
23	Nuevo Progreso	-8.4516	-76.3242
24	Picota	-6.9205	-76.3303
25	Caynarachi	-6.3305	-76.2842

	DISTRITO	LATITUD	LONGITUD
26	Polvora	-7.9080	-76.6683
27	Shamboyacu	-7.0238	-76.1325
28	Chazuta	-6.5713	-76.1289
29	Alto Biavo	-7.2552	-76.4769
30	Huicungo	-7.3166	-76.7769
31	Pinto Recodo	-6.3791	-76.6044
32	San Pablo	-6.8081	-76.5747
33	Awajun	-5.8161	-77.3836
34	Barranquita	-6.2533	-76.0322
35	Santa Rosa	-6.7463	-76.6233
36	Pachiza	-7.2975	-76.7736
37	Sauce	-6.6902	-76.2172
38	San Rafael	-7.0233	-76.4661
39	Santa Lucía	-8.3472	-76.3858
40	Zapatero	-6.5305	-76.4942
41	Pajarillo	-7.1800	-76.6903
42	Alto Saposoa	-6.7647	-76.8139
43	Calzada	-6.0300	-77.0669
44	Piscoyacu	-6.9800	-76.7683
45	Juan Guerra	-6.5841	-76.3242
46	Tres Unidos	-6.8063	-76.2311
47	Rumisapa	-6.4488	-76.4714
48	Cacatachi	-6.4622	-76.4514
49	Tingo de Ponasa	-6.9358	-76.2539
50	Yuracyacu	-5.9305	-77.2264
51	San Hilarión	-7.0041	-76.4392
52	San Fernando	-5.9014	-77.2692
53	Shatoja	-6.5277	-76.7200
54	Pucacaca	-6.8494	-76.3411
55	Buenos Aires	-6.7916	-76.3275
56	Yantalo	-5.9738	-77.0208
57	Cuñumbuqui	-6.5108	-76.4811
58	Huallaga	-7.1311	-76.6486
59	El Porvenir	-6.2119	-75.8008
60	Yorongos	-6.1391	-77.1442
61	Chipurana	-6.3541	-75.7414
62	Agua Blanca	-6.7250	-76.6956
63	Sacanche	-6.9563	-76.4183
64	Caspisapa	-6.9563	-76.4183


	DISTRITO	LATITUD	LONGITUD
65	Posic	-6.0191	-77.1619
66	Shapaja	-6.5800	-76.2619
67	Papaplaya	-6.2452	-75.7906
68	El Eslabón	-7.0225	-76.7225
69	Shanao	-6.4116	-76.5939
70	San Antonio	-6.4091	-76.4064
71	San Roque de Cumbaza	-6.3852	-76.4394
72	Habana	-6.0802	-77.0917
73	Shunte	-8.3633	-76.7286
74	San Cristóbal	-6.9925	-76.4183
75	Alberto Leveau	-6.6630	-76.2869
76	Pilluana	-6.7766	-76.2919
77	Tingo de Saposoa	-7.0941	-76.6417
78	Huimbayoc	-6.4172	-75.7672

Nota: Adaptado de Google Earth, por Google Earth, 2023 (https://earth.google.com/web/)

5.1.3 Obtención de la data de temperaturas MERRA2- NASA

Después de la recolección de datos antes mencionado, se procedió a descargar las temperaturas máximas y mínimas de cada distrito desde el Proyecto MERRA 2 de la NASA, como se puede ver en la figura 15. Allí se colocó un periodo que abarcaba desde el 1 de enero del 2003 hasta el 31 de diciembre del 2022, dándonos así un rango total de 20 años con información de 365 días por año y 366 días para años bisiestos. Así también, se eligió el formato de archivo con la extensión CSV, el cual es ideal para trabarlo en hojas de cálculo de Excel. Ver anexo J.

Figura 15Colocación de fechas en el Proyecto MERRA 2 - NASA

Nota: Tomado de *POWER* por National Aeronautics and Space Administration, 2023 (https://power.larc.nasa.gov/data-access-viewer/)

5.2 Procesamiento de datos

5.2.1 Temperatura máxima del aire

Teniendo las temperaturas máximas y mínimas, y sabiendo el procesamiento de datos de la metodología SUPERPAVE, se procedió en primer lugar a sacar el promedio de la máxima temperatura (T_p) en un rango de 7 días consecutivos, todo esto para cada año.

En la tabla 13 se puede observar dicho cálculo para el distrito de Yarinacocha, departamento de Ucayali.

$$T_p = (35.26 + 34.19 + 35.72 + 34.89 + 33.77 + 34.47 + 35.54) / 7 = 34.83$$
°C

Tabla 13 *Temperatura máxima, temperatura mínima y temperatura promedio*

DÍA .	2003			2022			
	T_{max} (°C)	T_p (°C)	T_{min} (°C)	•••	T_{max} (°C)	$T_p(^{\circ}C)$	T _{min} (°C)
1	35.26	34.83	23.09		35.96	37.00	25.98
2	34.19	34.96	24.77		36.23	36.78	26.08
3	35.72	34.80	23.44		35.07	36.50	26.49
4	34.89	34.14	24.56		37.58	36.20	25.91
5	33.77	34.09	24.63		38.26	35.89	26.48
6	34.47	34.45	24.80		37.01	35.03	25.23

DÍA -	2003		2022				
DIA -	T _{max} (°C)	T _p (°C)	T _{min} (°C)		T _{max} (°C)	$T_p(^{\circ}C)$	T _{min} (°C)
7	35.54	34.19	24.36		38.86	33.99	25.44
٠	•	•				•	
359	30.62	30.58	24.88		31.48	29.87	23.29
360	30.81	-	23.68		26.32	-	22.91
361	34.11	-	23.30		31.00	-	20.76
362	33.93	-	24.37		30.34	-	22.98
363	30.76	-	24.49		31.08	-	23.06
364	28.15	-	24.12		29.19	-	22.88
365	25.71	-	23.29		29.65	-	22.88
366	-	-	-		-	-	-

Así, se pasó a seleccionar el máximo y el mínimo valor de cada T_p calculado en cada año, como se ve en la tabla 14.

Tabla 14Valor máximo y mínimo por año de la temperatura promedio máxima

	2003	2004	2005		2022
T _{max} (°C)	36.50	35.99	37.52	•••	38.12
$T_{min}(^{\circ}C)$	27.83	27.24	27.81		28.07

Nota. Elaboración propia

Luego se halló la temperatura promedio, tanto de la temperatura máxima como de la temperatura mínima indicadas en la tabla 14. Cabe destacar dichos promedios son equivalentes a la temperatura máxima del aire y temperatura mínima del aire respectivamente.

$$T_{maxair} = (T_{max(2003)} + T_{max(2004)} + T_{max(2005)} \ldots + T_{max(2022)})/20 = 37.37^{\circ}C$$

$$T_{minair} = (T_{max(2003)} + T_{max(2004)} + T_{max(2005)}... + T_{max(2022)})/20 = 27.49^{\circ}C$$

De igual manera se calculó la desviación estándar, tanto de la temperatura máxima como de la temperatura mínima indicadas en la tabla 14.

$$D.E.T_{max} = 1.004$$

$$D.E.T_{min} = 0.855$$

Todos estos cálculos se realizaron para cada distrito de los departamentos de Ucayali, Loreto y San Martín, los cuales se pueden observar en forma general en las tablas 15, 16 y 17 respectivamente y que además se encuentran de forma más detallada en el anexo K.

Tabla 15Temperatura del aire y desviación estándar del departamento de Ucayali

			LONG(°) -	TEMPER	RATURA	DESVIACIÓN		
	DISTRITOS	LAT(°)		DEL	AIRE	ESTÁNDAR		
	DISTRITOS	LAI()	LONG()	T_{maxair}	T_{minair}	DET _{max}	DET_{min}	
				(°C)	(°C)	DET max	DE1 min	
1	Callería	-8.3827	-74.5322	37.37	27.49	1.004	0.855	
2	Yarinacocha	-8.3519	-74.5756	37.37	27.49	1.004	0.855	
3	Manantay	-8.3983	-74.5367	37.37	27.49	1.004	0.855	
4	Raymondi	-10.7297	-73.7556	36.23	27.09	0.785	0.905	
5	Padre Abad	-9.0377	-75.5128	34.21	24.79	1.089	0.429	
6	Campo Verde	-8.4725	-74.8056	36.97	27.03	1.036	0.550	
7	Irazola	-8.8261	-75.2100	37.25	27.10	0.994	0.563	
8	Iparía	-9.3063	-74.4356	35.85	26.22	0.738	0.690	
9	Masisea	-8.6052	-74.3064	37.37	27.49	1.004	0.855	
10	Neshuya	-8.6390	-74.9644	36.97	27.03	1.036	0.550	
11	Tahuanía	-10.030	-73.9569	37.03	27.25	0.882	0.779	
12	Curimaná	-8.4341	-75.1531	36.97	27.03	1.036	0.550	
13	Sepahua	-11.1467	-73.0475	37.47	27.09	0.852	0.752	
14	Alexander Von Humboldt	-8.8263	-75.0523	37.25	27.10	0.994	0.563	
15	Nueva Requena	-8.3108	-74.8630	36.97	27.03	1.036	0.550	
16	Boquerón	-8.8626	-75.3287	34.21	24.79	1.089	0.429	
17	Huipoca	-8.9763	-75.4472	34.21	24.79	1.089	0.429	
18	Purús	-9.7725	-70.7100	36.77	25.89	0.987	0.754	
19	Yuruá	-9.5308	-72.7594	36.92	26.33	0.940	0.466	

Tabla 16Temperatura del aire y desviación estándar del departamento de Loreto

			LONG(°)	TEMPERATURA DEL AIRE		DESVIACIÓN ESTÁNDAR	
	DISTRITOS	LAT(°) l					
				T_{maxair}	$T_{\text{minair}} \\$	DET_{max}	DETmin
				(°C)	(°C)		
1	Iquitos	-3.7491	-73.2538	30.02	26.83	0.835	0.301
2	San Juan Bautista	-3.7752	-73.2892	30.00	26.84	0.856	0.349
3	Yurimaguas	-5.8938	-76.1069	34.73	26.50	1.387	0.854
4	Punchana	-3.7283	-73.2444	30.02	26.83	0.835	0.301
5	Belén	-3.7616	-73.2483	30.00	26.84	0.856	0.349

	DISTRITOS	I AT(°)	LAT(°) LONG(°)		TEMPERATURA DEL AIRE		DESVIACIÓN ESTÁNDAR	
		LAT(*) LONG(LONG(*)	T _{maxair} (°C)	T _{minair} (°C)	DET _{max}	DET _{min}	
6	Nauta	-4.5066	-73.5756	30.31	26.87	1.151	0.367	
7	Contamana	-7.3333	-75.0166	36.99	27.48	0.848	0.749	
8	Requena	-5.0636	-73.8564	30.50	26.87	1.339	0.330	
9	Ramón Castilla	-3.9061	-70.5169	30.26	26.81	1.742	0.469	
10	Napo	-2.4894	-73.6756	29.72	26.59	0.379	0.295	
11	Balsapuerto	-5.8336	-76.5597	34.73	26.50	1.387	0.854	
12	Andoas	-3.4752	-76.4333	30.63	26.44	1.795	0.480	
13	Barranca	-4.8316	-76.5544	35.87	27.53	1.909	0.904	
14	Sarayacu	-6.3933	-75.1169	36.19	27.48	1.339	0.538	
15	Mazán	-3.4966	-73.0900	30.02	26.83	0.835	0.301	
16	Lagunas	-5.2269	-75.6797	35.72	27.32	1.734	0.658	
17	Fernando Lores	-4.0030	-73.1606	30.00	26.84	0.856	0.349	
18	San Pablo	-7.1188	-78.8239	24.25	18.67	0.518	0.827	
19	Pebas	-3.3205	-71.8617	29.86	26.79	0.414	0.306	
20	Indiana	-3.5002	-73.0411	30.02	26.83	0.835	0.301	
21	Trompeteros	-3.8052	-75.0614	31.44	26.88	1.102	0.325	
22	Yavarí	-4.3519	-70.0414	30.31	26.80	1.681	0.488	
23	Manseriche	-4.5663	-77.4158	35.18	27.76	0.882	1.099	
24	Maquía	-5.7500	-74.5375	32.01	26.97	1.598	0.356	
25	Las Amazonas	-3.4225	-72.7642	29.92	26.81	0.552	0.325	
26	Cahuapanas	-5.2866	-76.9889	33.26	25.68	1.023	0.924	
27	Tigre	-3.4897	-74.7817	29.95	26.66	0.558	0.333	
28	Vargas Guerra	-6.9113	-75.1583	36.71	27.57	0.986	0.657	
29	Emilio San Martín	-5.7941	-74.2853	33.59	27.14	1.662	0.442	
30	Tte. César López Rojas	-6.0250	-75.8739	35.67	27.31	1.833	0.799	
31	Pastaza	-4.6517	-76.5878	35.49	27.71	1.685	0.906	
32	Parinari	-4.6313	-74.4631	31.65	26.94	1.552	0.347	
33	Pampa Hermosa	-7.1952	-75.2969	36.71	27.57	0.986	0.657	
34	Torres Causana	-0.9705	-75.1747	29.61	26.19	0.421	0.504	
35	Jenaro Herrera	-4.9036	-73.6694	30.50	26.87	1.339	0.330	
36	Jeberos	-5.2908	-76.2836	35.43	27.20	1.867	0.927	
37	Puinahua	-5.2558	-74.3458	32.01	26.97	1.598	0.356	
38	Putumayo	-2.4469	-72.6683	29.95	26.82	0.822	0.328	
39	Morona	-4.3230	-77.2172	35.18	27.76	0.882	1.099	
40	Santa Cruz	-5.5133	-75.8586	35.35	27.33	2.176	0.807	

				TEMPERATURA DEL AIRE		DESVIACIÓN	
	DISTRITOS	LAT(°) LONG(°)	ESTÁNDAR				
			, ,	T_{maxair}	$T_{\text{minair}} \\$	DET_{max}	$\mathrm{DET}_{\mathrm{min}}$
				(°C)	(°C)	mux	
41	Alto Nanay	-3.8880	-73.6964	30.21	26.85	1.073	0.339
42	Padre Márquez	-7.9500	-74.8389	37.04	27.45	0.912	0.959
43	Saquena	-4.7252	-73.5336	30.31	26.87	1.151	0.367
44	Tte. Manuel Clavero	-0.3744	-74.6767	29.67	26.34	0.399	0.444
45	Yaquerana	-5.1530	-72.8822	30.59	26.76	1.608	0.373
46	Capelo	-5.4047	-74.1578	32.01	26.97	1.598	0.356
47	Inahuaya	-7.1169	-75.2628	36.71	27.57	0.986	0.657
48	Yaguas	-2.4088	-71.1753	29.91	26.89	0.898	0.297
49	Alto Tapiche	-6.0252	-74.0939	33.59	27.14	1.662	0.442
50	Tapiche	-5.6647	-74.1889	32.01	26.97	1.598	0.356
51	Soplín	-6.0094	-73.6928	32.67	26.92	1.854	0.410
52	Rosa Panduro	-1.7894	-73.4117	29.96	26.73	0.704	0.357
53	Urarinas	-4.5877	-74.7669	34.01	27.09	1.328	0.416

Tabla 17Temperatura del aire y desviación estándar del departamento de San Martín

				TEMPER	TEMPERATURA		DESVIACIÓN	
	DISTRITOS	I AT(°)	LAT(°) LONG(°) _	DEL A	DEL AIRE		NDAR	
	DISTRITOS	LAI()	LONG()	T_{maxair}	xair T _{minair}	DET _{max}	DET _{min}	
				(°C)	(°C)			
1	Moyobamba	-6.0347	-76.9747	31.08	24.05	0.665	0.873	
2	Tarapoto	-6.4877	-76.3597	34.62	26.35	0.775	0.854	
3	La Banda de Shilcayo	-6.4905	-76.3544	34.62	26.35	0.775	0.854	
4	Nueva Cajamarca	-5.9405	-77.3094	25.78	19.44	1.451	0.795	
5	Morales	-6.4786	-76.3833	34.62	26.35	0.775	0.854	
6	Juanjuí	-7.1797	-76.7272	33.39	25.44	0.780	0.980	
7	Tocache	-8.1886	-76.5103	31.82	23.81	0.763	0.583	
8	Rioja	-6.0625	-77.1678	31.08	24.05	0.665	0.873	
9	Elías Soplin Vargas	-5.9891	-77.2811	25.78	19.44	1.451	0.795	
10	Soritor	-6.1391	-77.1022	31.08	24.05	0.665	0.873	
11	Bellavista	-7.0561	-76.5911	33.39	25.44	0.780	0.980	
12	Campanilla	-7.4822	-76.6525	30.89	23.76	0.583	0.692	
13	San José de Sisa	-6.6138	-76.6950	30.73	23.30	0.808	0.849	

				TEMPERATURA		DESVIACIÓN		
	DISTRITOS	LAT(°)	LAT(°) LONG(°) _		DEL AIRE		ESTÁNDAR	
		()		T_{maxair}	T_{minair}	DET _{max}	DETmin	
				(°C)	(°C)	22 I max	221mm	
14	Pardo Miguel	-5.7394	-77.5039	29.33	23.14	0.990	0.926	
15	Lamas	-6.4219	-76.5161	34.62	26.35	0.775	0.854	
16	Jepelacio	-6.1080	-76.9150	31.08	24.05	0.665	0.873	
17	Bajo Biavo	-7.0994	-76.4725	34.89	26.56	0.607	0.864	
18	Saposoa	-6.9333	-76.7717	33.39	25.44	0.780	0.980	
19	Tabalosos	-6.3886	-76.6833	30.73	23.30	0.808	0.849	
20	Uchiza	-8.4588	-76.4619	29.66	22.02	0.990	0.575	
21	Alonso de Alvarado	-6.3558	-76.7747	30.73	23.30	0.808	0.849	
22	San Martín	-6.5138	-76.7408	30.73	23.30	0.808	0.849	
23	Nuevo Progreso	-8.4516	-76.3242	29.66	22.02	0.990	0.575	
24	Picota	-6.9205	-76.3303	34.89	26.56	0.607	0.864	
25	Caynarachi	-6.3305	-76.2842	34.62	26.35	0.775	0.854	
26	Polvora	-7.9080	-76.6683	25.63	19.58	0.776	0.554	
27	Shamboyacu	-7.0238	-76.1325	34.89	26.56	0.607	0.864	
28	Chazuta	-6.5713	-76.1289	34.62	26.35	0.775	0.854	
29	Alto Biavo	-7.2552	-76.4769	34.14	25.74	0.532	0.625	
30	Huicungo	-7.3166	-76.7769	30.89	23.76	0.583	0.692	
31	Pinto Recodo	-6.3791	-76.6044	30.73	23.30	0.808	0.849	
32	San Pablo	-6.8081	-76.5747	33.39	25.44	0.780	0.980	
33	Awajun	-5.8161	-77.3836	25.78	19.44	1.451	0.795	
34	Barranquita	-6.2533	-76.0322	34.62	26.35	0.775	0.854	
35	Santa Rosa	-6.7463	-76.6233	30.73	23.30	0.808	0.849	
36	Pachiza	-7.2975	-76.7736	30.89	23.76	0.583	0.692	
37	Sauce	-6.6902	-76.2172	34.62	26.35	0.775	0.854	
38	San Rafael	-7.0233	-76.4661	34.89	26.56	0.607	0.864	
39	Santa Lucía	-8.3472	-76.3858	29.66	22.02	0.990	0.575	
40	Zapatero	-6.5305	-76.4942	34.62	26.35	0.775	0.854	
41	Pajarillo	-7.1800	-76.6903	33.39	25.44	0.780	0.980	
42	Alto Saposoa	-6.7647	-76.8139	33.39	25.44	0.780	0.980	
43	Calzada	-6.0300	-77.0669	31.08	24.05	0.665	0.873	
44	Piscoyacu	-6.9800	-76.7683	33.39	25.44	0.780	0.980	
45	Juan Guerra	-6.5841	-76.3242	34.62	26.35	0.775	0.854	
46	Tres Unidos	-6.8063	-76.2311	34.89	26.56	0.607	0.864	
47	Rumisapa	-6.4488	-76.4714	34.62	26.35	0.775	0.854	
48	Cacatachi	-6.4622	-76.4514	34.62	26.35	0.775	0.854	
49	Tingo de Ponasa	-6.9358	-76.2539	34.89	26.56	0.607	0.864	

				TEMPER	TEMPERATURA		DESVIACIÓN	
	DISTRITOS	I A TP(0)	LONG(0)	DEL A	AIRE	ESTÁNDAR		
	DISTRITOS	LAT(°) LONG(°)	T _{maxair} (°C)	T _{minair} (°C)	DET _{max}	DET _{min}		
50	Yuracyacu	-5.9305	-77.2264	25.78	19.44	1.451	0.795	
51	San Hilarión	-7.0041	-76.4392	34.89	26.56	0.607	0.864	
52	San Fernando	-5.9014	-77.2692	25.78	19.44	1.451	0.795	
53	Shatoja	-6.5277	-76.7200	30.73	23.30	0.808	0.849	
54	Pucacaca	-6.8494	-76.3411	34.89	26.56	0.607	0.864	
55	Buenos Aires	-6.7916	-76.3275	34.89	26.56	0.607	0.864	
56	Yantalo	-5.9738	-77.0208	31.08	24.05	0.665	0.873	
57	Cuñumbuqui	-6.5108	-76.4811	34.62	26.35	0.775	0.854	
58	Huallaga	-7.1311	-76.6486	33.39	25.44	0.780	0.980	
59	El Porvenir	-6.2119	-75.8008	35.67	27.24	1.833	0.775	
60	Yorongos	-6.1391	-77.1442	31.08	24.05	0.665	0.873	
61	Chipurana	-6.3541	-75.7414	35.72	26.89	1.119	0.727	
62	Agua Blanca	-6.7250	-76.6956	30.73	23.30	0.808	0.849	
63	Sacanche	-6.9563	-76.4183	34.89	26.56	0.607	0.864	
64	Caspisapa	-6.9563	-76.4183	34.89	26.56	0.607	0.864	
65	Posic	-6.0191	-77.1619	31.08	24.05	0.665	0.873	
66	Shapaja	-6.5800	-76.2619	34.62	26.35	0.775	0.854	
67	Papaplaya	-6.2452	-75.7906	35.67	27.24	1.833	0.775	
68	El Eslabon	-7.0225	-76.7225	33.39	25.44	0.780	0.980	
69	Shanao	-6.4116	-76.5939	30.73	23.30	0.808	0.849	
70	San Antonio	-6.4091	-76.4064	34.62	26.35	0.775	0.854	
71	San Roque de Cumbaza	-6.3852	-76.4394	34.62	26.35	0.775	0.854	
72	Habana	-6.0802	-77.0917	31.08	24.05	0.665	0.873	
73	Shunte	-8.3633	-76.7286	22.01	16.83	1.029	0.712	
74	San Cristóbal	-6.9925	-76.4183	34.89	26.56	0.607	0.864	
75	Alberto Leveau	-6.6630	-76.2869	34.62	26.35	0.775	0.854	
76	Pilluana	-6.7766	-76.2919	34.89	26.56	0.607	0.864	
77	Tingo de Saposoa	-7.0941	-76.6417	33.39	25.44	0.780	0.980	
78	Huimbayoc	-6.4172	-75.7672	35.72	26.89	1.119	0.727	

5.2.2 Temperatura máxima y mínima del aire al 98% y 50% de confiabilidad

Para el cálculo de las temperaturas máximas y mínimas del aire al 98% y 50% de confiabilidad se utilizaron los valores de Z = 2.32 y Z = 0.6745 respectivamente; además

también se utilizaron los datos de la desviación estándar $D.E.T_{max}$ y $D.E.T_{min}$ calculados previamente.

Estos datos son importantes ya que serán necesarios para poder aplicarlos en las siguientes fórmulas:

 $T_{maxair98\%} = T_{maxair} + D.E.T_{max}*Z_{98\%}$

 $T_{minair98\%} = T_{minair} - D.E.T_{min}*Z_{98\%}$

 $T_{maxair50\%} = T_{maxair} + D.E.T_{max}*Z_{50\%}$

 $T_{minair50\%} = T_{minair}$ - D.E.T_{min}*Z_{50\%}

De este modo se obtuvieron los resultados al 98% y 50% de confiabilidad para todos los distritos de Ucayali, Loreto y San Martín, tal como se puede ver en las tablas 18, 19 y 20 respectivamente. Para ver los cálculos con mayor detalle, ver el anexo K.

Tabla 18Temperatura del aire al 98% y 50% de confiabilidad - departamento de Ucayali

		Temperatura	del aire 98%	Temperatura del aire 50%		
	DISTRITOS	$\mathbf{Z} =$	2.32	Z =	0.6745	
		T _{maxair98%}	T _{minair98%}	T _{maxair50%}	T _{minair50%}	
1	Callería	39.70	25.51	38.05	26.92	
2	Yarinacocha	39.70	25.51	38.05	26.92	
3	Manantay	39.70	25.51	38.05	26.92	
4	Raymondi	38.06	24.99	36.76	26.48	
5	Padre Abad	36.73	23.79	34.94	24.50	
6	Campo Verde	39.37	25.75	37.66	26.66	
7	Irazola	39.55	25.80	37.92	26.72	
8	Iparía	37.56	24.62	36.34	25.75	
9	Masisea	39.70	25.51	38.05	26.92	
10	Neshuya	39.37	25.75	37.66	26.66	
11	Tahuanía	39.08	25.44	37.63	26.72	
12	Curimaná	39.37	25.75	37.66	26.66	
13	Sepahua	39.45	25.34	38.04	26.58	
14	Alexander Von Humboldt	39.55	25.80	37.92	26.72	
15	Nueva Requena	39.37	25.75	37.66	26.66	
16	Boquerón	36.73	23.79	34.94	24.50	
17	Huipoca	36.73	23.79	34.94	24.50	
18	Purús	39.05	24.14	37.43	25.38	
19	Yuruá	39.10	25.25	37.55	26.01	

Tabla 19Temperatura del aire al 98% y 50% de confiabilidad - departamento de Loreto

		Temperatura	del aire 98%	Temperatura del aire 50%		
	DISTRITOS	Z =	2.32	Z =	0.6745	
		T _{maxa} ir _{98%}	Tminair98%	T _{maxair50%}	Tminair50%	
1	Iquitos	31.96	26.13	30.58	26.62	
2	San Juan Bautista	31.99	26.03	30.58	26.61	
3	Yurimaguas	37.95	24.52	35.67	25.93	
4	Punchana	31.96	26.13	30.58	26.62	
5	Belén	31.99	26.03	30.58	26.61	
6	Nauta	32.98	26.02	31.09	26.63	
7	Contamana	38.95	25.74	37.56	26.97	
8	Requena	33.61	26.11	31.40	26.65	
9	Ramón Castilla	34.30	25.72	31.44	26.50	
10	Napo	30.60	25.91	29.97	26.39	
11	Balsapuerto	37.95	24.52	35.67	25.93	
12	Andoas	34.79	25.33	31.84	26.12	
13	Barranca	40.30	25.40	37.16	26.92	
14	Sarayacu	39.29	26.23	37.09	27.11	
15	Mazán	31.96	26.13	30.58	26.62	
16	Lagunas	39.74	25.79	36.89	26.88	
17	Fernando Lores	31.99	26.03	30.58	26.61	
18	San Pablo	25.45	16.76	24.60	18.12	
19	Pebas	30.82	26.08	30.14	26.59	
20	Indiana	31.96	26.13	30.58	26.62	
21	Trompeteros	34.00	26.13	32.18	26.66	
22	Yavarí	34.21	25.67	31.45	26.47	
23	Manseriche	37.22	25.21	35.77	27.02	
24	Maquía	35.72	26.15	33.09	26.73	
25	Las Amazonas	31.20	26.05	30.29	26.59	
26	Cahuapanas	35.63	23.54	33.95	25.06	
27	Tigre	31.25	25.89	30.33	26.44	
28	Vargas Guerra	39.00	26.04	37.38	27.12	
29	Emilio San Martín	37.45	26.11	34.71	26.84	
30	Teniente César López Rojas	39.93	25.46	36.91	26.77	
31	Pastaza	39.40	25.61	36.63	27.10	
32	Parinari	35.25	26.14	32.70	26.71	
33	Pampa Hermosa	39.00	26.04	37.38	27.12	
34	Torres Causana	30.59	25.02	29.89	25.85	
35	Jenaro Herrera	33.61	26.11	31.40	26.65	

		Temperatura	del aire 98%	Temperatura del aire 50%		
	DISTRITOS	Z =	2.32	Z =	0.6745	
		T _{maxa} ir _{98%}	$T_{minair98\%}$	$T_{maxair50\%}$	Tminair50%	
36	Jeberos	39.76	25.05	36.69	26.58	
37	Puinahua	35.72	26.15	33.09	26.73	
38	Putumayo	31.86	26.06	30.51	26.60	
39	Morona	37.22	25.21	35.77	27.02	
40	Santa Cruz	40.40	25.46	36.82	26.78	
41	Alto Nanay	32.70	26.06	30.94	26.62	
42	Padre Márquez	39.16	25.73	37.65	26.81	
43	Saquena	32.98	26.02	31.09	26.63	
44	Teniente Manuel Clavero	30.60	25.31	29.94	26.04	
45	Yaquerana	34.32	25.89	31.67	26.51	
46	Capelo	35.72	26.15	33.09	26.73	
47	Inahuaya	39.00	26.04	37.38	27.12	
48	Yaguas	31.99	26.20	30.52	26.69	
49	Alto Tapiche	37.45	26.11	34.71	26.84	
50	Tapiche	35.72	26.15	33.09	26.73	
51	Soplín	36.97	25.97	33.92	26.64	
52	Rosa Panduro	31.60	25.90	30.44	26.49	
53	Urarinas	37.10	26.13	34.91	26.81	

Tabla 20Temperatura del aire al 98% y 50% de confiabilidad - departamento de San Martín

	Temperatura	del aire 98%	Temperatura del aire 50%		
DISTRITOS	Z =	2.32	Z =	0.6745	
	T _{maxair98%}	T _{minair98%}	T _{maxair50%}	T _{minair50%}	
Moyobamba	32.62	22.03	31.52	23.46	
Tarapoto	36.42	24.37	35.14	25.78	
La Banda de Shilcayo	36.42	24.37	35.14	25.78	
Nueva Cajamarca	29.14	17.59	26.76	18.90	
Morales	36.42	24.37	35.14	25.78	
Juanjuí	35.19	23.17	33.91	24.78	
Tocache	33.59	22.46	32.33	23.42	
Rioja	32.62	22.03	31.52	23.46	
Elías Soplin Vargas	29.14	17.59	26.76	18.90	
Soritor	32.62	22.03	31.52	23.46	
Bellavista	35.19	23.17	33.91	24.78	
	Moyobamba Tarapoto La Banda de Shilcayo Nueva Cajamarca Morales Juanjuí Tocache Rioja Elías Soplin Vargas Soritor		Moyobamba 32.62 22.03 Tarapoto 36.42 24.37 La Banda de Shilcayo 36.42 24.37 Nueva Cajamarca 29.14 17.59 Morales 36.42 24.37 Juanjuí 35.19 23.17 Tocache 33.59 22.46 Rioja 32.62 22.03 Elías Soplin Vargas 29.14 17.59 Soritor 32.62 22.03		

		Temperatura	del aire 98%	Temperatura del aire 50%		
	DISTRITOS	Z =	2.32	Z =	0.6745	
		T _{maxair98%}	T _{minair} 98%	T _{maxair50%}	T _{minair50%}	
12	Campanilla	32.24	22.16	31.28	23.30	
13	San José de Sisa	32.61	21.33	31.28	22.73	
14	Pardo Miguel	31.62	20.99	29.99	22.51	
15	Lamas	36.42	24.37	35.14	25.78	
16	Jepelacio	32.62	22.03	31.52	23.46	
17	Bajo Biavo	36.30	24.55	35.30	25.97	
18	Saposoa	35.19	23.17	33.91	24.78	
19	Tabalosos	32.61	21.33	31.28	22.73	
20	Uchiza	31.96	20.68	30.33	21.63	
21	Alonso de Alvarado	32.61	21.33	31.28	22.73	
22	San Martín	32.61	21.33	31.28	22.73	
23	Nuevo Progreso	31.96	20.68	30.33	21.63	
24	Picota	36.30	24.55	35.30	25.97	
25	Caynarachi	36.42	24.37	35.14	25.78	
26	Polvora	27.43	18.30	26.15	19.21	
27	Shamboyacu	36.30	24.55	35.30	25.97	
28	Chazuta	36.42	24.37	35.14	25.78	
29	Alto Biavo	35.38	24.29	34.50	25.32	
30	Huicungo	32.24	22.16	31.28	23.30	
31	Pinto Recodo	32.61	21.33	31.28	22.73	
32	San Pablo	35.19	23.17	33.91	24.78	
33	Awajun	29.14	17.59	26.76	18.90	
34	Barranquita	36.42	24.37	35.14	25.78	
35	Santa Rosa	32.61	21.33	31.28	22.73	
36	Pachiza	32.24	22.16	31.28	23.30	
37	Sauce	36.42	24.37	35.14	25.78	
38	San Rafael	36.30	24.55	35.30	25.97	
39	Santa Lucía	31.96	20.68	30.33	21.63	
40	Zapatero	36.42	24.37	35.14	25.78	
41	Pajarillo	35.19	23.17	33.91	24.78	
42	Alto Saposoa	35.19	23.17	33.91	24.78	
43	Calzada	32.62	22.03	31.52	23.46	
44	Piscoyacu	35.19	23.17	33.91	24.78	
45	Juan Guerra	36.42	24.37	35.14	25.78	
46	Tres Unidos	36.30	24.55	35.30	25.97	
47	Rumisapa	36.42	24.37	35.14	25.78	
48	Cacatachi	36.42	24.37	35.14	25.78	

		Temperatura	del aire 98%	Temperatura del aire 50%		
	DISTRITOS	Z =	2.32	Z =	0.6745	
		T _{maxair98%}	T _{minair98%}	T _{maxair50%}	Tminair50%	
49	Tingo de Ponasa	36.30	24.55	35.30	25.97	
50	Yuracyacu	29.14	17.59	26.76	18.90	
51	San Hilarión	36.30	24.55	35.30	25.97	
52	San Fernando	29.14	17.59	26.76	18.90	
53	Shatoja	32.61	21.33	31.28	22.73	
54	Pucacaca	36.30	24.55	35.30	25.97	
55	Buenos Aires	36.30	24.55	35.30	25.97	
56	Yantalo	32.62	22.03	31.52	23.46	
57	Cuñumbuqui	36.42	24.37	35.14	25.78	
58	Huallaga	35.19	23.17	33.91	24.78	
59	El Porvenir	39.93	25.44	36.91	26.72	
60	Yorongos	32.62	22.03	31.52	23.46	
61	Chipurana	38.32	25.21	36.48	26.40	
62	Agua Blanca	32.61	21.33	31.28	22.73	
63	Sacanche	36.30	24.55	35.30	25.97	
64	Caspisapa	36.30	24.55	35.30	25.97	
65	Posic	32.62	22.03	31.52	23.46	
66	Shapaja	36.42	24.37	35.14	25.78	
67	Papaplaya	39.93	25.44	36.91	26.72	
68	El Eslabon	35.19	23.17	33.91	24.78	
69	Shanao	32.61	21.33	31.28	22.73	
70	San Antonio	36.42	24.37	35.14	25.78	
71	San Roque de Cumbaza	36.42	24.37	35.14	25.78	
72	Habana	32.62	22.03	31.52	23.46	
73	Shunte	24.40	15.18	22.70	16.35	
74	San Cristóbal	36.30	24.55	35.30	25.97	
75	Alberto Leveau	36.42	24.37	35.14	25.78	
76	Pilluana	36.30	24.55	35.30	25.97	
77	Tingo de Saposoa	35.19	23.17	33.91	24.78	
78	Huimbayoc	38.32	25.21	36.48	26.40	

5.2.3 Cálculo del Performance Grade (PG) - Modelo SHRP Original 1994

Para calcular el Performance Grade (PG) mediante el modelo SHRP Original 1994, ha sido necesario tener en cuenta las fórmulas que se indican en la figura 16.

Figura 16Fórmulas del Modelo SHRP Original 1994

• Modelo SHRP Original (McGennis et al., 1994)
$$T_{MAX} = 0.9545 (T_{maxair} - 0.00618 Lat^2 + 0.2289 Lat + 42.2) - 17.78$$

$$T_{MIN} = T_{minair}$$

Nota: Tomado de Grados de Desempeño PG - Superpave de los Ligantes Asfálticos Requeridos en las Principales Carreteras Pavimentadas de El Salvador, por Polanco, 2022.

Así, aplicando dicho modelo realizamos los cálculos para el distrito de Yarinacocha de la región de Ucayali, tanto para el 98% como para el 50% de confiabilidad.

$$T_{max98\%} = 0.9545*((39.70) - 0.00618*(-8.3519)^2 + 0.2289*(-8.3519) + 42.2) - 17.78 = 58.16$$
°C

$$T_{min98\%} = 25.51^{\circ}C$$

$$T_{max50\%} = 0.9545*((38.05) - 0.00618*(-8.3519)^2 + 0.2289*(-8.3519) + 42.2) - 17.78 = 56.58$$
°C

$$T_{min50\%} = 26.92$$
°C

De este mismo modo se realizaron los cálculos para todos los distritos de los departamentos de Ucayali, Loreto y San Martín tal como se puede ver en las tablas 21, 22 y 23 respectivamente, y que además se encuentran de forma más detallada en el anexo K.

Tabla 21Temperatura máxima y mínima al 98% y 50% de confiabilidad, aplicando el Modelo SHRP Original 1994 para el departamento de Ucayali

	DISTRITOS		LONG(°) -	Confia	bilidad	Confiabilidad 50%	
		LAT(°)		98	3%		
	DISTRITOS	Litt()	Lorto()	T _{max98%}	Tmin98%	T _{max98%}	Tmin98%
				(°C)	(°C)	(°C)	(°C)
1	Callería	-8.3827	-74.5322	58.15	25.51	56.57	26.92
2	Yarinacocha	-8.3519	-74.5756	58.16	25.51	56.58	26.92
3	Manantay	-8.3983	-74.5367	58.14	25.51	56.56	26.92
4	Raymondi	-10.7297	-73.7556	55.80	24.99	54.57	26.48
5	Padre Abad	-9.0377	-75.5128	55.11	23.79	53.40	24.50
6	Campo Verde	-8.4725	-74.8056	57.80	25.75	56.18	26.66
7	Irazola	-8.8261	-75.2100	57.86	25.80	56.30	26.72

	DISTRITOS	LAT(°)	LONG(°)	Confiabilidad 98%		Confiabilidad 50%	
	DISTRITOS	LAI()	LONG()	T _{max98%}	Tmin98%	T _{max98%}	Tmin98%
				(°C)	(°C)	(°C)	(°C)
8	Iparía	-9.3063	-74.4356	55.80	24.62	54.65	25.75
9	Masisea	-8.6052	-74.3064	58.08	25.51	56.50	26.92
10	Neshuya	-8.6390	-74.9644	57.75	25.75	56.12	26.66
11	Tahuanía	-10.0300	-73.9569	57.02	25.44	55.63	26.72
12	Curimaná	-8.4341	-75.1531	57.82	25.75	56.19	26.66
13	Sepahua	-11.1467	-73.0475	56.98	25.34	55.65	26.58
14	Alexander Von Humboldt	-8.8263	-75.0523	57.86	25.80	56.30	26.72
15	Nueva Requena	-8.3108	-74.8630	57.85	25.75	56.23	26.66
16	Boquerón	-8.8626	-75.3287	55.16	23.79	53.45	24.50
17	Huipoca	-8.9763	-75.4472	55.13	23.79	53.42	24.50
18	Purús	-9.7725	-70.7100	57.08	24.14	55.53	25.38
19	Yuruá	-9.5308	-72.7594	57.20	25.25	55.73	26.01

Tabla 22Temperatura máxima y mínima al 98% y 50% de confiabilidad, aplicando el Modelo SHRP Original 1994 para el departamento de Loreto

	DISTRITOS		LONG(0)	Confiabilidad 98%		Confiabilidad 50%	
	DISTRITOS	LAT(°)	LONG(°)	T _{max98%}	T _{min98%}	T _{max98%}	T _{min98%}
				(°C)	(°C)	(°C)	(°C)
1	Iquitos	-3.7491	-73.2538	52.10	26.13	50.79	26.62
2	San Juan Bautista	-3.7752	-73.2892	52.12	26.03	50.78	26.61
3	Yurimaguas	-5.8938	-76.1069	57.23	24.52	55.05	25.93
4	Punchana	-3.7283	-73.2444	52.11	26.13	50.79	26.62
5	Belén	-3.7616	-73.2483	52.13	26.03	50.78	26.61
6	Nauta	-4.5066	-73.5756	52.88	26.02	51.07	26.63
7	Contamana	-7.3333	-75.0166	57.76	25.74	56.43	26.97
8	Requena	-5.0636	-73.8564	53.32	26.11	51.22	26.65
9	Ramón Castilla	-3.9061	-70.5169	54.30	25.72	51.56	26.50
10	Napo	-2.4894	-73.6756	51.12	25.91	50.53	26.39
11	Balsapuerto	-5.8336	-76.5597	57.25	24.52	55.07	25.93
12	Andoas	-3.4752	-76.4333	54.88	25.33	52.06	26.12
13	Barranca	-4.8316	-76.5544	59.77	25.43	56.78	26.92
14	Sarayacu	-6.3933	-75.1169	58.37	26.23	56.26	27.11

				Confiabil	idad 98%	idad 98% Confiabilidad	
	DISTRITOS	LAT(°)	LONG(°)	T _{max98%}	Tmin98%	T _{max98%}	Tmin98%
				(°C)	(°C)	(°C)	(°C)
15	Mazán	-3.4966	-73.0900	52.17	26.13	50.86	26.62
16	Lagunas	-5.2269	-75.6797	59.13	25.79	56.41	26.88
17	Fernando Lores	-4.0030	-73.1606	52.06	26.03	50.72	26.61
18	San Pablo	-7.1188	-78.8239	44.94	16.76	44.12	18.12
19	Pebas	-3.3205	-71.8617	51.13	26.08	50.48	26.59
20	Indiana	-3.5002	-73.0411	52.17	26.13	50.85	26.62
21	Trompeteros	-3.8052	-75.0614	54.03	26.13	52.30	26.66
22	Yavarí	-4.3519	-70.0414	54.09	25.67	51.45	26.47
23	Manseriche	-4.5663	-77.4158	56.91	25.21	55.52	27.02
24	Maquía	-5.7500	-74.5375	55.15	26.15	52.64	26.73
25	Las Amazonas	-3.4225	-72.7642	51.47	26.05	50.60	26.59
26	Cahuapanas	-5.2866	-76.9889	55.19	23.54	53.58	25.06
27	Tigre	-3.4897	-74.7817	51.49	25.89	50.62	26.44
28	Vargas Guerra	-6.9113	-75.1583	57.93	26.04	56.38	27.12
29	Emilio San Martín	-5.7941	-74.2853	56.78	26.11	54.17	26.84
30	Teniente César López Rojas	-6.0250	-75.8739	59.08	25.46	56.20	26.77
31	Pastaza	-4.6517	-76.5878	58.96	25.61	56.32	27.10
32	Parinari	-4.6313	-74.4631	55.01	26.14	52.57	26.71
33	Pampa Hermosa	-7.1952	-75.2969	57.85	26.04	56.30	27.12
34	Torres Causana	-0.9705	-75.1747	51.48	25.02	50.82	25.85
35	Jenaro Herrera	-4.9036	-73.6694	53.36	26.11	51.26	26.65
36	Jeberos	-5.2908	-76.2836	59.13	25.05	56.20	26.58
37	Puinahua	-5.2558	-74.3458	55.29	26.15	52.78	26.73
38	Putumayo	-2.4469	-72.6683	52.34	26.06	51.05	26.60
39	Morona	-4.3230	-77.2172	56.97	25.21	55.59	27.02
40	Santa Cruz	-5.5133	-75.8586	59.68	25.46	56.26	26.78
41	Alto Nanay	-3.8880	-73.6964	52.78	26.06	51.09	26.62
42	Padre Márquez	-7.9500	-74.8389	57.76	25.23	56.33	26.81
43	Saquena	-4.7252	-73.5336	52.82	26.02	51.01	26.63
44	Teniente Manuel Clavero	-0.3744	-74.6767	51.62	25.31	51.00	26.04
45	Yaquerana	-5.1530	-72.8822	53.97	25.89	51.45	26.51
46	Capelo	-5.4047	-74.1578	55.24	26.15	52.73	26.73
47	Inahuaya	-7.1169	-75.2628	57.87	26.04	56.32	27.12
48	Yaguas	-2.4088	-71.1753	52.48	26.20	51.07	26.69
49	Alto Tapiche	-6.0252	-74.0939	56.71	26.11	54.10	26.84
50	Tapiche	-5.6647	-74.1889	55.17	26.15	52.66	26.73

	DISTRITOS	LAT(°)	LONG(°)	Confiabilidad 98%		Confiabilidad 50%	
				T _{max98%}	Tmin98%	T _{max98%}	Tmin98%
				(°C)	(°C)	(°C)	(°C)
51	Soplín	-6.0094	-73.6928	56.26	25.97	53.35	26.64
52	Rosa Panduro	-1.7894	-73.4117	52.25	25.90	51.14	26.49
53	Urarinas	-4.5877	-74.7669	56.78	26.13	54.70	26.81

Tabla 23Temperatura máxima y mínima al 98% y 50% de confiabilidad, aplicando el Modelo SHRP Original 1994 para el departamento de San Martín

				Confiabil	idad 98%	Confiabilidad 50%	
	DISTRITOS	LAT(°)	LONG(°)	T _{max98%}	Tmin98%	T _{max98%}	T _{min98%}
				(°C)	(°C)	(°C)	(°C)
1	Moyobamba	-6.0347	-76.9747	52.10	22.03	51.06	23.46
2	Tarapoto	-6.4877	-76.3597	55.59	24.37	54.38	25.78
3	La Banda de Shilcayo	-6.4905	-76.3544	55.59	24.37	54.37	25.78
4	Nueva Cajamarca	-5.9405	-77.3094	48.81	17.59	46.53	18.90
5	Morales	-6.4786	-76.3833	55.60	24.37	54.38	25.78
6	Juanjuí	-7.1797	-76.7272	54.22	23.17	53.00	24.78
7	Tocache	-8.1886	-76.5103	52.38	22.46	51.18	23.42
8	Rioja	-6.0625	-77.1678	52.09	22.03	51.05	23.46
9	Elías Soplin Vargas	-5.9891	-77.2811	48.80	17.59	46.52	18.90
10	Soritor	-6.1391	-77.1022	52.07	22.03	51.03	23.46
11	Bellavista	-7.0561	-76.5911	54.26	23.17	53.03	24.78
12	Campanilla	-7.4822	-76.6525	51.31	22.16	50.40	23.30
13	San José de Sisa	-6.6138	-76.6950	51.92	21.33	50.65	22.73
14	Pardo Miguel	-5.7394	-77.5039	51.24	20.99	49.68	22.51
15	Lamas	-6.4219	-76.5161	55.61	24.37	54.39	25.78
16	Jepelacio	-6.1080	-76.9150	52.08	22.03	51.04	23.46
17	Bajo Biavo	-7.0994	-76.4725	55.30	24.55	54.34	25.97
18	Saposoa	-6.9333	-76.7717	54.30	23.17	53.07	24.78
19	Tabalosos	-6.3886	-76.6833	51.99	21.33	50.72	22.73
20	Uchiza	-8.4588	-76.4619	50.74	20.68	49.18	21.63
21	Alonso de Alvarado	-6.3558	-76.7747	52.00	21.33	50.73	22.73
22	San Martín	-6.5138	-76.7408	51.95	21.33	50.68	22.73
23	Nuevo Progreso	-8.4516	-76.3242	50.74	20.68	49.18	21.63

		DISTRICTOR LATE(S) LONG(S)		Confiabilidad 98%		Confiabilidad 50%	
	DISTRITOS	LAT(°)	LONG(°)	T _{max98%}	Tmin98%	T _{max98%}	T _{min98%}
				(°C)	(°C)	(°C)	(°C)
24	Picota	-6.9205	-76.3303	55.35	24.55	54.40	25.97
25	Caynarachi	-6.3305	-76.2842	55.64	24.37	54.42	25.78
26	Polvora	-7.9080	-76.6683	46.58	18.30	45.37	19.21
27	Shamboyacu	-7.0238	-76.1325	55.32	24.55	54.36	25.97
28	Chazuta	-6.5713	-76.1289	55.57	24.37	54.35	25.78
29	Alto Biavo	-7.2552	-76.4769	54.37	24.29	53.53	25.32
30	Huicungo	-7.3166	-76.7769	51.36	22.16	50.45	23.30
31	Pinto Recodo	-6.3791	-76.6044	51.99	21.33	50.72	22.73
32	San Pablo	-6.8081	-76.5747	54.33	23.17	53.11	24.78
33	Awajun	-5.8161	-77.3836	48.85	17.59	46.57	18.90
34	Barranquita	-6.2533	-76.0322	55.66	24.37	54.44	25.78
35	Santa Rosa	-6.7463	-76.6233	51.88	21.33	50.61	22.73
36	Pachiza	-7.2975	-76.7736	51.37	22.16	50.45	23.30
37	Sauce	-6.6902	-76.2172	55.53	24.37	54.32	25.78
38	San Rafael	-7.0233	-76.4661	55.32	24.55	54.37	25.97
39	Santa Lucía	-8.3472	-76.3858	50.77	20.68	49.22	21.63
40	Zapatero	-6.5305	-76.4942	55.58	24.37	54.36	25.78
41	Pajarillo	-7.1800	-76.6903	54.22	23.17	53.00	24.78
42	Alto Saposoa	-6.7647	-76.8139	54.35	23.17	53.12	24.78
43	Calzada	-6.0300	-77.0669	52.10	22.03	51.06	23.46
44	Piscoyacu	-6.9800	-76.7683	54.28	23.17	53.06	24.78
45	Juan Guerra	-6.5841	-76.3242	55.56	24.37	54.35	25.78
46	Tres Unidos	-6.8063	-76.2311	55.38	24.55	54.43	25.97
47	Rumisapa	-6.4488	-76.4714	55.60	24.37	54.39	25.78
48	Cacatachi	-6.4622	-76.4514	55.60	24.37	54.38	25.78
49	Tingo de Ponasa	-6.9358	-76.2539	55.34	24.55	54.39	25.97
50	Yuracyacu	-5.9305	-77.2264	48.81	17.59	46.53	18.90
51	San Hilarión	-7.0041	-76.4392	55.32	24.55	54.37	25.97
52	San Fernando	-5.9014	-77.2692	48.82	17.59	46.54	18.90
53	Shatoja	-6.5277	-76.7200	51.95	21.33	50.68	22.73
54	Pucacaca	-6.8494	-76.3411	55.37	24.55	54.42	25.97
55	Buenos Aires	-6.7916	-76.3275	55.39	24.55	54.43	25.97
56	Yantalo	-5.9738	-77.0208	52.12	22.03	51.07	23.46
57	Cuñumbuqui	-6.5108	-76.4811	55.59	24.37	54.37	25.78
58	Huallaga	-7.1311	-76.6486	54.24	23.17	53.01	24.78
59	El Porvenir	-6.2119	-75.8008	59.03	25.44	56.15	26.72

				Confiabilidad 98%		Confiabilidad 50%	
	DISTRITOS	LAT(°)	LONG(°)	T _{max98%}	Tmin98%	Tmax98%	Tmin98%
				(°C)	(°C)	(°C)	(°C)
60	Yorongos	-6.1391	-77.1442	52.07	22.03	51.03	23.46
61	Chipurana	-6.3541	-75.7414	57.45	25.21	55.69	26.40
62	Agua Blanca	-6.7250	-76.6956	51.89	21.33	50.62	22.73
63	Sacanche	-6.9563	-76.4183	55.34	24.55	54.39	25.97
64	Caspisapa	-6.9563	-76.4183	55.34	24.55	54.39	25.97
65	Posic	-6.0191	-77.1619	52.11	22.03	51.06	23.46
66	Shapaja	-6.5800	-76.2619	55.57	24.37	54.35	25.78
67	Papaplaya	-6.2452	-75.7906	59.02	25.44	56.14	26.72
68	El Eslabon	-7.0225	-76.7225	54.27	23.17	53.04	24.78
69	Shanao	-6.4116	-76.5939	51.98	21.33	50.71	22.73
70	San Antonio	-6.4091	-76.4064	55.62	24.37	54.40	25.78
71	San Roque de Cumbaza	-6.3852	-76.4394	55.62	24.37	54.41	25.78
72	Habana	-6.0802	-77.0917	52.09	22.03	51.04	23.46
73	Shunte	-8.3633	-76.7286	43.55	15.18	41.93	16.35
74	San Cristóbal	-6.9925	-76.4183	55.33	24.55	54.37	25.97
75	Alberto Leveau	-6.6630	-76.2869	55.54	24.37	54.32	25.78
76	Pilluana	-6.7766	-76.2919	55.39	24.55	54.44	25.97
77	Tingo de Saposoa	-7.0941	-76.6417	54.25	23.17	53.02	24.78
78	Huimbayoc	-6.4172	-75.7672	57.43	25.21	55.67	26.40

De este modo, usando las tablas indicadas en "Requisitos de Calidad del CAP" del capítulo 2 de esta investigación, se pudo calcular el Performance Grade (PG) aplicando el modelo SHRP Original 1994, de todos los distritos de los departamentos de Ucayali, Loreto y San Martín, tal como se puede ver en las tablas 24, 25 y 26 respectivamente.

Tabla 24Performance Grade (PG) aplicando el Modelo SHRP Original 1994 – departamento de Ucayali

		PERFORMANCE GRADE (PG)						
	DISTRITOS	Confiabil	idad 98%	Confiabil	idad 50%			
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)			
1	Callería	64	10	58	10			
2	Yarinacocha	64	10	58	10			
3	Manantay	64	10	58	10			

		PERFORMANCE GRADE (PG)					
	DISTRITOS	Confiabil	idad 98%	Confiabil	idad 50%		
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)		
4	Raymondi	58	10	58	10		
5	Padre Abad	58	10	58	10		
6	Campo Verde	58	10	58	10		
7	Irazola	58	10	58	10		
8	Iparía	58	10	58	10		
9	Masisea	64	10	58	10		
10	Neshuya	58	10	58	10		
11	Tahuanía	58	10	58	10		
12	Curimaná	58	10	58	10		
13	Sepahua	58	10	58	10		
14	Alexander Von Humboldt	58	10	58	10		
15	Nueva Requena	58	10	58	10		
16	Boquerón	58	10	58	10		
17	Huipoca	58	10	58	10		
18	Purús	58	10	58	10		
19	Yuruá	58	10	58	10		

Tabla 25Performance Grade (PG) aplicando el Modelo SHRP Original 1994 – departamento de Loreto

		PERFORMANCE GRADE (PG)					
	DISTRITOS	Confiabil	idad 98%	Confiabil	idad 50%		
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)		
1	Iquitos	58	10	52	10		
2	San Juan Bautista	58	10	52	10		
3	Yurimaguas	58	10	58	10		
4	Punchana	58	10	52	10		
5	Belén	58	10	52	10		
6	Nauta	58	10	52	10		
7	Contamana	58	10	58	10		
8	Requena	58	10	52	10		
9	Ramón Castilla	58	10	52	10		
10	Napo	52	10	52	10		
11	Balsapuerto	58	10	58	10		
12	Andoas	58	10	58	10		

-		PERFORMANCE GRADE (PG)						
	DISTRITOS	Confiabil	idad 98%	Confiabil	idad 50%			
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)			
13	Barranca	64	10	58	10			
14	Sarayacu	64	10	58	10			
15	Mazán	58	10	52	10			
16	Lagunas	64	10	58	10			
17	Fernando Lores	58	10	52	10			
18	San Pablo	46	10	46	10			
19	Pebas	52	10	52	10			
20	Indiana	58	10	52	10			
21	Trompeteros	58	10	58	10			
22	Yavarí	58	10	52	10			
23	Manseriche	58	10	58	10			
24	Maquía	58	10	58	10			
25	Las Amazonas	52	10	52	10			
26	Cahuapanas	58	10	58	10			
27	Tigre	52	10	52	10			
28	Vargas Guerra	58	10	58	10			
29	Emilio San Martín	58	10	58	10			
30	Teniente César López Rojas	64	10	58	10			
31	Pastaza	64	10	58	10			
32	Parinari	58	10	58	10			
33	Pampa Hermosa	58	10	58	10			
34	Torres Causana	52	10	52	10			
35	Jenaro Herrera	58	10	52	10			
36	Jeberos	64	10	58	10			
37	Puinahua	58	10	58	10			
38	Putumayo	58	10	52	10			
39	Morona	58	10	58	10			
40	Santa Cruz	64	10	58	10			
41	Alto Nanay	58	10	52	10			
42	Padre Márquez	58	10	58	10			
43	Saquena	58	10	52	10			
44	Teniente Manuel Clavero	52	10	52	10			
45	Yaquerana	58	10	52	10			
46	Capelo	58	10	58	10			
47	Inahuaya	58	10	58	10			
48	Yaguas	58	10	52	10			
49	Alto Tapiche	58	10	58	10			

		PERFORMANCE GRADE (PG)						
	DISTRITOS	Confiabilidad 98%		Confiabilidad 50%				
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)			
50	Tapiche	58	10	58	10			
51	Soplín	58	10	58	10			
52	Rosa Panduro	58	10	52	10			
53	Urarinas	58	10	58	10			

Tabla 26Performance Grade (PG) aplicando el Modelo SHRP Original 1994 – departamento de San Martín

		PERFORMANCE GRADE (PG)						
	DISTRITOS	Confiabil	idad 98%	Confiabil	idad 50%			
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)			
1	Moyobamba	58	10	52	10			
2	Tarapoto	58	10	58	10			
3	La Banda de Shilcayo	58	10	58	10			
4	Nueva Cajamarca	52	10	52	10			
5	Morales	58	10	58	10			
6	Juanjuí	58	10	58	10			
7	Tocache	58	10	52	10			
8	Rioja	58	10	52	10			
9	Elías Soplin Vargas	52	10	52	10			
10	Soritor	58	10	52	10			
11	Bellavista	58	10	58	10			
12	Campanilla	52	10	52	10			
13	San José de Sisa	52	10	52	10			
14	Pardo Miguel	52	10	52	10			
15	Lamas	58	10	58	10			
16	Jepelacio	58	10	52	10			
17	Bajo Biavo	58	10	58	10			
18	Saposoa	58	10	58	10			
19	Tabalosos	52	10	52	10			
20	Uchiza	52	10	52	10			
21	Alonso de Alvarado	52	10	52	10			
22	San Martín	52	10	52	10			
23	Nuevo Progreso	52	10	52	10			
24	Picota	58	10	58	10			

-		P	PERFORMANCE GRADE (PG)					
DISTRITOS		Confiabil	idad 98%	Confiabil	idad 50%			
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)			
25	Caynarachi	58	10	58	10			
26	Polvora	52	10	46	10			
27	Shamboyacu	58	10	58	10			
28	Chazuta	58	10	58	10			
29	Alto Biavo	58	10	58	10			
30	Huicungo	52	10	52	10			
31	Pinto Recodo	52	10	52	10			
32	San Pablo	58	10	58	10			
33	Awajun	52	10	52	10			
34	Barranquita	58	10	58	10			
35	Santa Rosa	52	10	52	10			
36	Pachiza	52	10	52	10			
37	Sauce	58	10	58	10			
38	San Rafael	58	10	58	10			
39	Santa Lucía	52	10	52	10			
40	Zapatero	58	10	58	10			
41	Pajarillo	58	10	58	10			
42	Alto Saposoa	58	10	58	10			
43	Calzada	58	10	52	10			
44	Piscoyacu	58	10	58	10			
45	Juan Guerra	58	10	58	10			
46	Tres Unidos	58	10	58	10			
47	Rumisapa	58	10	58	10			
48	Cacatachi	58	10	58	10			
49	Tingo de Ponasa	58	10	58	10			
50	Yuracyacu	52	10	52	10			
51	San Hilarión	58	10	58	10			
52	San Fernando	52	10	52	10			
53	Shatoja	52	10	52	10			
54	Pucacaca	58	10	58	10			
55	Buenos Aires	58	10	58	10			
56	Yantalo	58	10	52	10			
57	Cuñumbuqui	58	10	58	10			
58	Huallaga	58	10	58	10			
59	El Porvenir	64	10	58	10			
60	Yorongos	58	10	52	10			
61	Chipurana	58	10	58	10			

		PERFORMANCE GRADE (PG)					
	DISTRITOS	Confiabil	idad 98%	Confiabil	idad 50%		
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)		
62	Agua Blanca	52	10	52	10		
63	Sacanche	58	10	58	10		
64	Caspisapa	58	10	58	10		
65	Posic	58	10	52	10		
66	Shapaja	58	10	58	10		
67	Papaplaya	64	10	58	10		
68	El Eslabon	58	10	58	10		
69	Shanao	52	10	52	10		
70	San Antonio	58	10	58	10		
71	San Roque de Cumbaza	58	10	58	10		
72	Habana	58	10	52	10		
73	Shunte	46	10	46	10		
74	San Cristóbal	58	10	58	10		
75	Alberto Leveau	58	10	58	10		
76	Pilluana	58	10	58	10		
77	Tingo de Saposoa	58	10	58	10		
78	Huimbayoc	58	10	58	10		

5.2.4 Cálculo del Performance Grade (PG) - Modelo SHRP Canadiense

Para calcular el Performance Grade (PG) mediante el modelo SHRP Canadiense, ha sido necesario tener en cuenta las fórmulas que se indican en la figura 17.

Figura 17

Fórmulas del Modelo SHRP Canadiense

• Modelo C-SHRP (Canadá)
$$T_{MIN} = 0.859T_{minair} + 1.7$$

Nota: Tomado de Grados de Desempeño PG - Superpave de los Ligantes Asfálticos Requeridos en las Principales Carreteras Pavimentadas de El Salvador, por Polanco, 2022.

Así, aplicando dicho modelo realizamos los cálculos para el distrito de Yarinacocha de la región de Ucayali, tanto para el 98% como para el 50% de confiabilidad.

$$T_{\text{min}98\%} = 0.859*(25.51) + 1.7 = 23.61$$
°C

 $T_{min50\%} = 0.859*(26.92) + 1.7 = 24.82^{\circ}C$

De este mismo modo se realizaron los cálculos para todos los distritos de los departamentos de Ucayali, Loreto y San Martín tal como se puede ver en las tablas 27, 28 y 29 respectivamente, y que además se encuentran de forma más detallada en el anexo K.

Tabla 27Temperatura mínima al 98% y 50% de confiabilidad, aplicando el Modelo SHRP
Canadiense para el departamento de Ucayali

				Confiabilidad	Confiabilidad
	DISTRITOS	LAT(°)	LONG(°)	98%	50%
				T _{min98%} (°C)	T _{min50%} (°C)
1	Callería	-8.3827	-74.5322	23.61	24.82
2	Yarinacocha	-8.3519	-74.5756	23.61	24.82
3	Manantay	-8.3983	-74.5367	23.61	24.82
4	Raymondi	-10.7297	-73.7556	23.17	24.45
5	Padre Abad	-9.0377	-75.5128	22.14	22.75
6	Campo Verde	-8.4725	-74.8056	23.82	24.60
7	Irazola	-8.8261	-75.2100	23.86	24.65
8	Iparía	-9.3063	-74.4356	22.85	23.82
9	Masisea	-8.6052	-74.3064	23.61	24.82
10	Neshuya	-8.6390	-74.9644	23.82	24.60
11	Tahuanía	-10.0300	-73.9569	23.55	24.65
12	Curimaná	-8.4341	-75.1531	23.82	24.60
13	Sepahua	-11.1467	-73.0475	23.47	24.53
14	Alexander Von Humboldt	-8.8263	-75.0523	23.86	24.65
15	Nueva Requena	-8.3108	-74.8630	23.82	24.60
16	Boquerón	-8.8626	-75.3287	22.14	22.75
17	Huipoca	-8.9763	-75.4472	22.14	22.75
18	Purús	-9.7725	-70.7100	22.44	23.50
19	Yuruá	-9.5308	-72.7594	23.39	24.05

Tabla 28Temperatura mínima al 98% y 50% de confiabilidad, aplicando el Modelo SHRP

Canadiense para el departamento de Loreto

	DISTRITOS	LAT(°)	LONG(°)	Confiabilidad 98%	Confiabilidad 50%
				T _{min98%} (°C)	T _{min50%} (°C)
1	Iquitos	-3.7491	-73.2538	24.14	24.57
2	San Juan Bautista	-3.7752	-73.2892	24.06	24.55
3	Yurimaguas	-5.8938	-76.1069	22.76	23.97
4	Punchana	-3.7283	-73.2444	24.14	24.57
5	Belén	-3.7616	-73.2483	24.06	24.55
6	Nauta	-4.5066	-73.5756	24.05	24.57
7	Contamana	-7.3333	-75.0166	23.81	24.87
8	Requena	-5.0636	-73.8564	24.13	24.59
9	Ramón Castilla	-3.9061	-70.5169	23.80	24.46
10	Napo	-2.4894	-73.6756	23.96	24.37
11	Balsapuerto	-5.8336	-76.5597	22.76	23.97
12	Andoas	-3.4752	-76.4333	23.46	24.14
13	Barranca	-4.8316	-76.5544	23.54	24.82
14	Sarayacu	-6.3933	-75.1169	24.23	24.99
15	Mazán	-3.4966	-73.0900	24.14	24.57
16	Lagunas	-5.2269	-75.6797	23.86	24.79
17	Fernando Lores	-4.0030	-73.1606	24.06	24.55
18	San Pablo	-7.1188	-78.8239	16.09	17.26
19	Pebas	-3.3205	-71.8617	24.11	24.54
20	Indiana	-3.5002	-73.0411	24.14	24.57
21	Trompeteros	-3.8052	-75.0614	24.14	24.60
22	Yavarí	-4.3519	-70.0414	23.75	24.44
23	Manseriche	-4.5663	-77.4158	23.36	24.91
24	Maquía	-5.7500	-74.5375	24.16	24.66
25	Las Amazonas	-3.4225	-72.7642	24.08	24.54
26	Cahuapanas	-5.2866	-76.9889	21.92	23.23
27	Tigre	-3.4897	-74.7817	23.94	24.41
28	Vargas Guerra	-6.9113	-75.1583	24.07	25.00
29	Emilio San Martín	-5.7941	-74.2853	24.13	24.75
30	Teniente César López Rojas	-6.0250	-75.8739	23.57	24.70
31	Pastaza	-4.6517	-76.5878	23.70	24.98
32	Parinari	-4.6313	-74.4631	24.15	24.64
33	Pampa Hermosa	-7.1952	-75.2969	24.07	25.00

				Confiabilidad	Confiabilidad
	DISTRITOS	LAT(°)	LONG(°)	98%	50%
			•	T _{min98%} (°C)	T _{min50%} (°C)
34	Torres Causana	-0.9705	-75.1747	23.19	23.90
35	Jenaro Herrera	-4.9036	-73.6694	24.13	24.59
36	Jeberos	-5.2908	-76.2836	23.22	24.53
37	Puinahua	-5.2558	-74.3458	24.16	24.66
38	Putumayo	-2.4469	-72.6683	24.09	24.55
39	Morona	-4.3230	-77.2172	23.36	24.91
40	Santa Cruz	-5.5133	-75.8586	23.57	24.71
41	Alto Nanay	-3.8880	-73.6964	24.09	24.57
42	Padre Márquez	-7.9500	-74.8389	23.37	24.73
43	Saquena	-4.7252	-73.5336	24.05	24.57
44	Teniente Manuel Clavero	-0.3744	-74.6767	23.44	24.07
45	Yaquerana	-5.1530	-72.8822	23.94	24.47
46	Capelo	-5.4047	-74.1578	24.16	24.66
47	Inahuaya	-7.1169	-75.2628	24.07	25.00
48	Yaguas	-2.4088	-71.1753	24.20	24.62
49	Alto Tapiche	-6.0252	-74.0939	24.13	24.75
50	Tapiche	-5.6647	-74.1889	24.16	24.66
51	Soplín	-6.0094	-73.6928	24.01	24.59
52	Rosa Panduro	-1.7894	-73.4117	23.95	24.45
53	Urarinas	-4.5877	-74.7669	24.14	24.73

Tabla 29Temperatura mínima al 98% y 50% de confiabilidad, aplicando el Modelo SHRP

Canadiense para el departamento de San Martín

				Confiabilidad	Confiabilidad
	DISTRITOS	LAT(°)	LONG(°)	98%	50%
				T _{min98%} (°C)	$T_{min50\%}$ (°C)
1	Moyobamba	-6.0347	-76.9747	20.62	21.85
2	Tarapoto	-6.4877	-76.3597	22.64	23.84
3	La Banda de Shilcayo	-6.4905	-76.3544	22.64	23.84
4	Nueva Cajamarca	-5.9405	-77.3094	16.81	17.93
5	Morales	-6.4786	-76.3833	22.64	23.84
6	Juanjuí	-7.1797	-76.7272	21.60	22.98
7	Tocache	-8.1886	-76.5103	20.99	21.82
8	Rioja	-6.0625	-77.1678	20.62	21.85

				Confiabilidad	Confiabilidad
	DISTRITOS	LAT(°)	LONG(°)	98%	50%
				T _{min98%} (°C)	T _{min50%} (°C)
9	Elías Soplin Vargas	-5.9891	-77.2811	16.81	17.93
10	Soritor	-6.1391	-77.1022	20.62	21.85
11	Bellavista	-7.0561	-76.5911	21.60	22.98
12	Campanilla	-7.4822	-76.6525	20.74	21.71
13	San José de Sisa	-6.6138	-76.6950	20.02	21.22
14	Pardo Miguel	-5.7394	-77.5039	19.73	21.04
15	Lamas	-6.4219	-76.5161	22.64	23.84
16	Jepelacio	-6.1080	-76.9150	20.62	21.85
17	Bajo Biavo	-7.0994	-76.4725	22.79	24.01
18	Saposoa	-6.9333	-76.7717	21.60	22.98
19	Tabalosos	-6.3886	-76.6833	20.02	21.22
20	Uchiza	-8.4588	-76.4619	19.47	20.28
21	Alonso de Alvarado	-6.3558	-76.7747	20.02	21.22
22	San Martín	-6.5138	-76.7408	20.02	21.22
23	Nuevo Progreso	-8.4516	-76.3242	19.47	20.28
24	Picota	-6.9205	-76.3303	22.79	24.01
25	Caynarachi	-6.3305	-76.2842	22.64	23.84
26	Polvora	-7.9080	-76.6683	17.42	18.20
27	Shamboyacu	-7.0238	-76.1325	22.79	24.01
28	Chazuta	-6.5713	-76.1289	22.64	23.84
29	Alto Biavo	-7.2552	-76.4769	22.57	23.45
30	Huicungo	-7.3166	-76.7769	20.74	21.71
31	Pinto Recodo	-6.3791	-76.6044	20.02	21.22
32	San Pablo	-6.8081	-76.5747	21.60	22.98
33	Awajun	-5.8161	-77.3836	16.81	17.93
34	Barranquita	-6.2533	-76.0322	22.64	23.84
35	Santa Rosa	-6.7463	-76.6233	20.02	21.22
36	Pachiza	-7.2975	-76.7736	20.74	21.71
37	Sauce	-6.6902	-76.2172	22.64	23.84
38	San Rafael	-7.0233	-76.4661	22.79	24.01
39	Santa Lucía	-8.3472	-76.3858	19.47	20.28
40	Zapatero	-6.5305	-76.4942	22.64	23.84
41	Pajarillo	-7.1800	-76.6903	21.60	22.98
42	Alto Saposoa	-6.7647	-76.8139	21.60	22.98
43	Calzada	-6.0300	-77.0669	20.62	21.85
44	Piscoyacu	-6.9800	-76.7683	21.60	22.98
45	Juan Guerra	-6.5841	-76.3242	22.64	23.84

				Confiabilidad	Confiabilidad
	DISTRITOS	LAT(°)	LONG(°)	98%	50%
				T _{min98%} (°C)	T _{min50%} (°C)
46	Tres Unidos	-6.8063	-76.2311	22.79	24.01
47	Rumisapa	-6.4488	-76.4714	22.64	23.84
48	Cacatachi	-6.4622	-76.4514	22.64	23.84
49	Tingo de Ponasa	-6.9358	-76.2539	22.79	24.01
50	Yuracyacu	-5.9305	-77.2264	16.81	17.93
51	San Hilarión	-7.0041	-76.4392	22.79	24.01
52	San Fernando	-5.9014	-77.2692	16.81	17.93
53	Shatoja	-6.5277	-76.7200	20.02	21.22
54	Pucacaca	-6.8494	-76.3411	22.79	24.01
55	Buenos Aires	-6.7916	-76.3275	22.79	24.01
56	Yantalo	-5.9738	-77.0208	20.62	21.85
57	Cuñumbuqui	-6.5108	-76.4811	22.64	23.84
58	Huallaga	-7.1311	-76.6486	21.60	22.98
59	El Porvenir	-6.2119	-75.8008	23.56	24.65
60	Yorongos	-6.1391	-77.1442	20.62	21.85
61	Chipurana	-6.3541	-75.7414	23.35	24.38
62	Agua Blanca	-6.7250	-76.6956	20.02	21.22
63	Sacanche	-6.9563	-76.4183	22.79	24.01
64	Caspisapa	-6.9563	-76.4183	22.79	24.01
65	Posic	-6.0191	-77.1619	20.62	21.85
66	Shapaja	-6.5800	-76.2619	22.64	23.84
67	Papaplaya	-6.2452	-75.7906	23.56	24.65
68	El Eslabon	-7.0225	-76.7225	21.60	22.98
69	Shanao	-6.4116	-76.5939	20.02	21.22
70	San Antonio	-6.4091	-76.4064	22.64	23.84
71	San Roque de Cumbaza	-6.3852	-76.4394	22.64	23.84
72	Habana	-6.0802	-77.0917	20.62	21.85
73	Shunte	-8.3633	-76.7286	14.74	15.74
74	San Cristóbal	-6.9925	-76.4183	22.79	24.01
75	Alberto Leveau	-6.6630	-76.2869	22.64	23.84
76	Pilluana	-6.7766	-76.2919	22.79	24.01
77	Tingo de Saposoa	-7.0941	-76.6417	21.60	22.98
78	Huimbayoc	-6.4172	-75.7672	23.35	24.38

De este modo, usando las tablas indicadas en "Requisitos de Calidad del CAP" del capítulo 2 de esta investigación, se pudo calcular el Performance Grade (PG) aplicando

el modelo SHRP Canadiense, de todos los distritos de los departamentos de Ucayali, Loreto y San Martín, tal como se puede ver en las tablas 30, 31 y 32 respectivamente.

Tabla 30Performance Grade (PG) aplicando el Modelo SHRP Canadiense – departamento de Ucayali

		PERFORMANO	CE GRADE (PG)
	DISTRITOS	Confiabilidad 98%	Confiabilidad 50%
		Tmin (°C)	Tmin (°C)
1	Callería	10	10
2	Yarinacocha	10	10
3	Manantay	10	10
4	Raymondi	10	10
5	Padre Abad	10	10
6	Campo Verde	10	10
7	Irazola	10	10
8	Iparía	10	10
9	Masisea	10	10
10	Neshuya	10	10
11	Tahuanía	10	10
12	Curimaná	10	10
13	Sepahua	10	10
14	Alexander Von Humboldt	10	10
15	Nueva Requena	10	10
16	Boquerón	10	10
17	Huipoca	10	10
18	Purús	10	10
19	Yuruá	10	10

Tabla 31Performance Grade (PG) aplicando el Modelo SHRP Canadiense – departamento de Loreto

		PERFORMANCE GRADE (PG)					
	DISTRITOS	Confiabil	idad 98%	Confiabilidad 50%			
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)		
1	Iquitos	58	10	52	10		
2	San Juan Bautista	58	10	52	10		
3	Yurimaguas	58	10	58	10		

		PERFORMANCE GRADE (PG)						
	DISTRITOS	Confiabil	idad 98%	Confiabilidad 50%				
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)			
4	Punchana	58	10	52	10			
5	Belén	58	10	52	10			
6	Nauta	58	10	52	10			
7	Contamana	58	10	58	10			
8	Requena	58	10	52	10			
9	Ramón Castilla	58	10	52	10			
10	Napo	52	10	52	10			
11	Balsapuerto	58	10	58	10			
12	Andoas	58	10	58	10			
13	Barranca	64	10	58	10			
14	Sarayacu	64	10	58	10			
15	Mazán	58	10	52	10			
16	Lagunas	64	10	58	10			
17	Fernando Lores	58	10	52	10			
18	San Pablo	46	10	46	10			
19	Pebas	52	10	52	10			
20	Indiana	58	10	52	10			
21	Trompeteros	58	10	58	10			
22	Yavarí	58	10	52	10			
23	Manseriche	58	10	58	10			
24	Maquía	58	10	58	10			
25	Las Amazonas	52	10	52	10			
26	Cahuapanas	58	10	58	10			
27	Tigre	52	10	52	10			
28	Vargas Guerra	58	10	58	10			
29	Emilio San Martín	58	10	58	10			
30	Teniente César López Rojas	64	10	58	10			
31	Pastaza	64	10	58	10			
32	Parinari	58	10	58	10			
33	Pampa Hermosa	58	10	58	10			
34	Torres Causana	52	10	52	10			
35	Jenaro Herrera	58	10	52	10			
36	Jeberos	64	10	58	10			
37	Puinahua	58	10	58	10			
38	Putumayo	58	10	52	10			
39	Morona	58	10	58	10			
40	Santa Cruz	64	10	58	10			

	PERFORMANCE GRADE (P				
	DISTRITOS	Confiabil	idad 98%	Confiabil	idad 50%
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)
41	Alto Nanay	58	10	52	10
42	Padre Márquez	58	10	58	10
43	Saquena	58	10	52	10
44	Teniente Manuel Clavero	52	10	52	10
45	Yaquerana	58	10	52	10
46	Capelo	58	10	58	10
47	Inahuaya	58	10	58	10
48	Yaguas	58	10	52	10
49	Alto Tapiche	58	10	58	10
50	Tapiche	58	10	58	10
51	Soplín	58	10	58	10
52	Rosa Panduro	58	10	52	10
53	Urarinas	58	10	58	10

Tabla 32Performance Grade (PG) aplicando el Modelo SHRP Canadiense – departamento de San

Martín

		PERFORMANCE GRADE (PG)					
	DISTRITOS	Confiabil	idad 98%	Confiabilidad 50%			
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)		
1	Moyobamba	58	10	52	10		
2	Tarapoto	58	10	58	10		
3	La Banda de Shilcayo	58	10	58	10		
4	Nueva Cajamarca	52	10	52	10		
5	Morales	58	10	58	10		
6	Juanjuí	58	10	58	10		
7	Tocache	58	10	52	10		
8	Rioja	58	10	52	10		
9	Elías Soplin Vargas	52	10	52	10		
10	Soritor	58	10	52	10		
11	Bellavista	58	10	58	10		
12	Campanilla	52	10	52	10		
13	San José de Sisa	52	10	52	10		
14	Pardo Miguel	52	10	52	10		
15	Lamas	58	10	58	10		

-		PERFORMANCE GRADE (PG)						
	DISTRITOS	Confiabil	idad 98%	Confiabilidad 50%				
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)			
16	Jepelacio	58	10	52	10			
17	Bajo Biavo	58	10	58	10			
18	Saposoa	58	10	58	10			
19	Tabalosos	52	10	52	10			
20	Uchiza	52	10	52	10			
21	Alonso de Alvarado	58	10	52	10			
22	San Martín	52	10	52	10			
23	Nuevo Progreso	52	10	52	10			
24	Picota	58	10	58	10			
25	Caynarachi	58	10	58	10			
26	Polvora	52	10	46	10			
27	Shamboyacu	58	10	58	10			
28	Chazuta	58	10	58	10			
29	Alto Biavo	58	10	58	10			
30	Huicungo	52	10	52	10			
31	Pinto Recodo	52	10	52	10			
32	San Pablo	58	10	58	10			
33	Awajun	52	10	52	10			
34	Barranquita	58	10	58	10			
35	Santa Rosa	52	10	52	10			
36	Pachiza	52	10	52	10			
37	Sauce	58	10	58	10			
38	San Rafael	58	10	58	10			
39	Santa Lucía	52	10	52	10			
40	Zapatero	58	10	58	10			
41	Pajarillo	58	10	58	10			
42	Alto Saposoa	58	10	58	10			
43	Calzada	58	10	52	10			
44	Piscoyacu	58	10	58	10			
45	Juan Guerra	58	10	58	10			
46	Tres Unidos	58	10	58	10			
47	Rumisapa	58	10	58	10			
48	Cacatachi	58	10	58	10			
49	Tingo de Ponasa	58	10	58	10			
50	Yuracyacu	52	10	52	10			
51	San Hilarión	58	10	58	10			
52	San Fernando	52	10	52	10			

		PERFORMANCE GRADE (PG)						
	DISTRITOS	Confiabil	idad 98%	Confiabil	idad 50%			
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)			
53	Shatoja	52	10	52	10			
54	Pucacaca	58	10	58	10			
55	Buenos Aires	58	10	58	10			
56	Yantalo	58	10	52	10			
57	Cuñumbuqui	58	10	58	10			
58	Huallaga	58	10	58	10			
59	El Porvenir	64	10	58	10			
60	Yorongos	58	10	52	10			
61	Chipurana	58	10	58	10			
62	Agua Blanca	52	10	52	10			
63	Sacanche	58	10	58	10			
64	Caspisapa	58	10	58	10			
65	Posic	58	10	52	10			
66	Shapaja	58	10	58	10			
67	Papaplaya	64	10	58	10			
68	El Eslabon	58	10	58	10			
69	Shanao	52	10	52	10			
70	San Antonio	58	10	58	10			
71	San Roque de Cumbaza	58	10	58	10			
72	Habana	58	10	52	10			
73	Shunte	46	10	46	10			
74	San Cristóbal	58	10	58	10			
75	Alberto Leveau	58	10	58	10			
76	Pilluana	58	10	58	10			
77	Tingo de Saposoa	58	10	58	10			
78	Huimbayoc	58	10	58	10			

5.2.5 Cálculo del Performance Grade (PG) - Modelo LTPPBind 1996

Para calcular el Performance Grade (PG) mediante el modelo LTPPBind 1996, ha sido necesario tener en cuenta las fórmulas que se indican en la figura 18.

Figura 18

Fórmulas del Modelo LTPPBind 1996

• Modelo LTPPBind (Mohseni, 1996). Basado en 30 pistas experimentales en EE. UU. $T_{MAX} = 54.32 + 0.77585 T_{maxair} - 0.002468 Lat^2 - 15.137 \log(H+25)$ $T_{MIN} = -1.56 + 0.71819 T_{minair} - 0.003966 Lat^2 + 6.264 \log(H+25)$

Nota: Tomado de Grados de Desempeño PG - Superpave de los Ligantes Asfálticos Requeridos en las Principales Carreteras Pavimentadas de El Salvador, por Polanco, 2022.

Así, aplicando dicho modelo realizamos los cálculos para el distrito de Yarinacocha de la región de Ucayali, tanto para el 98% como para el 50% de confiabilidad.

Sabiendo que H es la profundidad del pavimento y tiene un valor de 2 cm.

$$T_{max98\%} = 54.32 + 0.77585*(39.70) - 0.002468*(-8.3519)^2 - 15.137*log_{10}(2+25) = 63.28$$
°C

$$\begin{split} T_{min98\%} &= -1.56 + 0.71819*(25.51) - 0.003966*(-8.3519)^2 + 6.264*log_{10}(2+25) = 25.45°C \\ T_{max50\%} &= 54.32 + 0.77585*(38.05) - 0.002468*(-8.3519)^2 - 15.137*log_{10}(2+25) = 62.00°C \end{split}$$

 $T_{min50\%} = 54.32 + 0.71819*(26.92) - 0.003966*(-8.3519)^2 + 6.264*log_{10}(2+25) = 26.46°C$ De este mismo modo se realizaron los cálculos para todos los distritos de los departamentos de Ucayali, Loreto y San Martín tal como se puede ver en las tablas 33, 34 y 35 respectivamente, y que además se encuentran de forma más detallada en el anexo K.

Tabla 33Temperatura máxima y mínima al 98% y 50% de confiabilidad, aplicando el Modelo LTPPBind 1996 para el departamento de Ucayali

	DISTRITOS	LAT(°)	LONG(°) -	Confiabilidad 98%		Confiabilidad 50%	
	Distriction	Lili()	Lor(o()	T _{max98%}	T _{min98%}	$T_{\text{max}50\%}$	Tmin50%
				(°C)	(°C)	(°C)	(°C)
1	Callería	-8.3827	-74.5322	63.28	25.45	62.00	26.46
2	Yarinacocha	-8.3519	-74.5756	63.28	25.45	62.00	26.46
3	Manantay	-8.3983	-74.5367	63.28	25.45	62.00	26.46
4	Raymondi	-10.7297	-73.7556	61.89	24.90	60.89	25.97
5	Padre Abad	-9.0377	-75.5128	60.95	24.17	59.56	24.68

	DISTRITOS	LAT(°) LONG(°)			Confiabilidad 98%		Confiabilidad 50%	
	DISTRITOS	Liii()	Lorid()	T _{max98%} (°C)	T _{min98%}	T _{max50%} (°C)	T _{min50%} (°C)	
6	Campo Verde	-8.4725	-74.8056	63.02	25.62	61.70	26.27	
7	Irazola	-8.8261	-75.2100	63.15	25.62	61.88	26.29	
8	Iparía	-9.3063	-74.4356	61.58	24.74	60.64	25.56	
9	Masisea	-8.6052	-74.3064	63.27	25.43	61.99	26.44	
10	Neshuya	-8.6390	-74.9644	63.01	25.60	61.69	26.25	
11	Tahuanía	-10.0300	-73.9569	62.72	25.28	61.60	26.20	
12	Curimaná	-8.4341	-75.1531	63.02	25.62	61.70	26.27	
13	Sepahua	-11.1467	-73.0475	62.95	25.12	61.86	26.00	
14	Alexander Von Humboldt	-8.8263	-75.0523	63.15	25.62	61.88	26.29	
15	Nueva Requena	-8.3108	-74.8630	63.03	25.63	61.70	26.28	
16	Boquerón	-8.8626	-75.3287	60.96	24.18	59.57	24.69	
17	Huipoca	-8.9763	-75.4472	60.95	24.18	59.56	24.68	
18	Purús	-9.7725	-70.7100	62.72	24.36	61.46	25.25	
19	Yuruá	-9.5308	-72.7594	62.77	25.18	61.57	25.73	

Tabla 34Temperatura máxima y mínima al 98% y 50% de confiabilidad, aplicando el Modelo LTPPBind 1996 para el departamento de Loreto

			LONG(°) -	Confiabilidad 98%		Confiabilidad 50%	
	DISTRITOS	LAT(°)	LONG(°)	T _{max98%}	Tmin98%	Tmax50%	Tmin50%
				(°C)	(°C)	(°C)	(°C)
1	Iquitos	-3.7491	-73.2538	57.41	26.11	56.35	26.47
2	San Juan Bautista	-3.7752	-73.2892	57.44	26.05	56.34	26.46
3	Yurimaguas	-5.8938	-76.1069	62.01	24.88	60.24	25.89
4	Punchana	-3.7283	-73.2444	57.41	26.11	56.35	26.47
5	Belén	-3.7616	-73.2483	57.44	26.05	56.34	26.46
6	Nauta	-4.5066	-73.5756	58.19	26.01	56.72	26.45
7	Contamana	-7.3333	-75.0166	62.74	25.68	61.66	26.57
8	Requena	-5.0636	-73.8564	58.66	26.06	56.95	26.45
9	Ramón Castilla	-3.9061	-70.5169	59.23	25.82	57.01	26.37
10	Napo	-2.4894	-73.6756	56.38	25.99	55.89	26.34
11	Balsapuerto	-5.8336	-76.5597	62.01	24.88	60.24	25.89
12	Andoas	-3.4752	-76.4333	59.62	25.55	57.33	26.12

				Confiabil	idad 98%	Confiabilidad 50%	
	DISTRITOS	LAT(°)	LONG(°)	T _{max98%}	T _{min98%}	T _{max50%}	T _{min50%}
				(°C)	(°C)	(°C)	(°C)
13	Barranca	-4.8316	-76.5544	63.86	25.58	61.43	26.64
14	Sarayacu	-6.3933	-75.1169	63.04	26.08	61.33	26.72
15	Mazán	-3.4966	-73.0900	57.42	26.12	56.35	26.48
16	Lagunas	-5.2269	-75.6797	63.42	25.82	61.21	26.60
17	Fernando Lores	-4.0030	-73.1606	57.43	26.04	56.34	26.45
18	San Pablo	-7.1188	-78.8239	52.27	19.24	51.61	20.22
19	Pebas	-3.3205	-71.8617	56.54	26.09	56.01	26.46
20	Indiana	-3.5002	-73.0411	57.42	26.12	56.35	26.48
21	Trompeteros	-3.8052	-75.0614	58.99	26.11	57.59	26.50
22	Yavarí	-4.3519	-70.0414	59.15	25.77	57.00	26.34
23	Manseriche	-4.5663	-77.4158	61.48	25.43	60.36	26.73
24	Maquía	-5.7500	-74.5375	60.29	26.05	58.25	26.47
25	Las Amazonas	-3.4225	-72.7642	56.83	26.07	56.13	26.46
26	Cahuapanas	-5.2866	-76.9889	60.23	24.20	58.92	25.29
27	Tigre	-3.4897	-74.7817	56.87	25.95	56.15	26.34
28	Vargas Guerra	-6.9113	-75.1583	62.79	25.92	61.53	26.70
29	Emilio San Martín	-5.7941	-74.2853	61.62	26.02	59.50	26.55
30	Teniente César López Rojas	-6.0250	-75.8739	63.54	25.54	61.20	26.49
31	Pastaza	-4.6517	-76.5878	63.17	25.71	61.02	26.78
32	Parinari	-4.6313	-74.4631	59.95	26.09	57.97	26.50
33	Pampa Hermosa	-7.1952	-75.2969	62.78	25.90	61.52	26.68
34	Torres Causana	-0.9705	-75.1747	56.38	25.37	55.84	25.96
35	Jenaro Herrera	-4.9036	-73.6694	58.67	26.06	56.96	26.45
36	Jeberos	-5.2908	-76.2836	63.43	25.29	61.05	26.38
37	Puinahua	-5.2558	-74.3458	60.30	26.07	58.26	26.49
38	Putumayo	-2.4469	-72.6683	57.36	26.10	56.31	26.49
39	Morona	-4.3230	-77.2172	61.49	25.44	60.36	26.74
40	Santa Cruz	-5.5133	-75.8586	63.92	25.57	61.15	26.52
41	Alto Nanay	-3.8880	-73.6964	57.99	26.06	56.62	26.46
42	Padre Márquez	-7.9500	-74.8389	62.88	25.27	61.71	26.41
43	Saquena	-4.7252	-73.5336	58.19	26.01	56.72	26.44
44	Teniente Manuel Clavero	-0.3744	-74.6767	56.39	25.58	55.88	26.11
45	Yaquerana	-5.1530	-72.8822	59.21	25.90	57.16	26.34
46	Capelo	-5.4047	-74.1578	60.30	26.07	58.26	26.49
47	Inahuaya	-7.1169	-75.2628	62.79	25.91	61.53	26.68
48	Yaguas	-2.4088	-71.1753	57.46	26.20	56.32	26.55

	DISTRITOS		LONG(°) -	Confiabilidad 98%		Confiabilidad 50%	
		LAT(°)		T _{max98%}	T _{min98%}	T _{max50%}	T _{min50%}
				(°C)	(°C)	(°C)	(°C)
49	Alto Tapiche	-6.0252	-74.0939	61.62	26.01	59.49	26.54
50	Tapiche	-5.6647	-74.1889	60.29	26.06	58.25	26.48
51	Soplín	-6.0094	-73.6928	61.24	25.91	58.88	26.40
52	Rosa Panduro	-1.7894	-73.4117	57.16	26.00	56.26	26.42
53	Urarinas	-4.5877	-74.7669	61.38	26.09	59.69	26.58

Tabla 35Temperatura máxima y mínima al 98% y 50% de confiabilidad, aplicando el Modelo LTPPBind 1996 para el departamento de San Martín

				Confiabil	idad 98%	Confiabilidad 50%	
	DISTRITOS	LAT(°)	LONG(°)	T _{max98%}	Tmin98%	T _{max50%}	Tmin50%
				(°C)	(°C)	(°C)	(°C)
1	Moyobamba	-6.0347	-76.9747	57.87	23.08	57.02	24.11
2	Tarapoto	-6.4877	-76.3597	60.80	24.74	59.81	25.75
3	La Banda de Shilcayo	-6.4905	-76.3544	60.80	24.74	59.81	25.75
4	Nueva Cajamarca	-5.9405	-77.3094	55.18	19.90	53.32	20.84
5	Morales	-6.4786	-76.3833	60.80	24.75	59.81	25.75
6	Juanjuí	-7.1797	-76.7272	59.83	23.84	58.84	25.00
7	Tocache	-8.1886	-76.5103	58.55	23.27	57.57	23.96
8	Rioja	-6.0625	-77.1678	57.87	23.08	57.02	24.11
9	Elías Soplin Vargas	-5.9891	-77.2811	55.18	19.90	53.32	20.84
10	Soritor	-6.1391	-77.1022	57.87	23.08	57.02	24.11
11	Bellavista	-7.0561	-76.5911	59.84	23.85	58.84	25.00
12	Campanilla	-7.4822	-76.6525	57.53	23.10	56.79	23.92
13	San José de Sisa	-6.6138	-76.6950	57.84	22.55	56.81	23.55
14	Pardo Miguel	-5.7394	-77.5039	57.11	22.35	55.84	23.45
15	Lamas	-6.4219	-76.5161	60.80	24.75	59.82	25.76
16	Jepelacio	-6.1080	-76.9150	57.87	23.08	57.02	24.11
17	Bajo Biavo	-7.0994	-76.4725	60.69	24.84	59.91	25.86
18	Saposoa	-6.9333	-76.7717	59.84	23.85	58.84	25.01
19	Tabalosos	-6.3886	-76.6833	57.85	22.56	56.82	23.57
20	Uchiza	-8.4588	-76.4619	57.27	21.98	56.01	22.66
21	Alonso de Alvarado	-6.3558	-76.7747	57.85	22.56	56.82	23.57
22	San Martín	-6.5138	-76.7408	57.85	22.56	56.82	23.56

				Confiabil	idad 98%	Confiabilidad 50%		
	DISTRITOS	LAT(°)	LONG(°)	T _{max98%} (°C)	T _{min98%} (°C)	T _{max50%} (°C)	T _{min50%} (°C)	
23	Nuevo Progreso	-8.4516	-76.3242	57.27	21.98	56.01	22.66	
24	Picota	-6.9205	-76.3303	60.69	24.85	59.92	25.87	
25	Caynarachi	-6.3305	-76.2842	60.81	24.75	59.82	25.76	
26	Polvora	-7.9080	-76.6683	53.78	20.30	52.79	20.95	
27	Shamboyacu	-7.0238	-76.1325	60.69	24.84	59.92	25.86	
28	Chazuta	-6.5713	-76.1289	60.80	24.74	59.81	25.75	
29	Alto Biavo	-7.2552	-76.4769	59.97	24.65	59.29	25.38	
30	Huicungo	-7.3166	-76.7769	57.54	23.11	56.79	23.93	
31	Pinto Recodo	-6.3791	-76.6044	57.85	22.56	56.82	23.57	
32	San Pablo	-6.8081	-76.5747	59.84	23.86	58.85	25.02	
33	Awajun	-5.8161	-77.3836	55.18	19.91	53.33	20.85	
34	Barranquita	-6.2533	-76.0322	60.81	24.76	59.82	25.77	
35	Santa Rosa	-6.7463	-76.6233	57.84	22.54	56.81	23.55	
36	Pachiza	-7.2975	-76.7736	57.54	23.11	56.79	23.93	
37	Sauce	-6.6902	-76.2172	60.80	24.73	59.81	25.74	
38	San Rafael	-7.0233	-76.4661	60.69	24.84	59.92	25.86	
39	Santa Lucía	-8.3472	-76.3858	57.28	21.98	56.01	22.66	
40	Zapatero	-6.5305	-76.4942	60.80	24.74	59.81	25.75	
41	Pajarillo	-7.1800	-76.6903	59.83	23.84	58.84	25.00	
42	Alto Saposoa	-6.7647	-76.8139	59.85	23.86	58.85	25.02	
43	Calzada	-6.0300	-77.0669	57.87	23.08	57.02	24.11	
44	Piscoyacu	-6.9800	-76.7683	59.84	23.85	58.84	25.01	
45	Juan Guerra	-6.5841	-76.3242	60.80	24.74	59.81	25.75	
46	Tres Unidos	-6.8063	-76.2311	60.70	24.86	59.92	25.88	
47	Rumisapa	-6.4488	-76.4714	60.80	24.75	59.81	25.76	
48	Cacatachi	-6.4622	-76.4514	60.80	24.75	59.81	25.75	
49	Tingo de Ponasa	-6.9358	-76.2539	60.69	24.85	59.92	25.87	
50	Yuracyacu	-5.9305	-77.2264	55.18	19.90	53.32	20.84	
51	San Hilarión	-7.0041	-76.4392	60.69	24.84	59.92	25.87	
52	San Fernando	-5.9014	-77.2692	55.18	19.90	53.33	20.84	
53	Shatoja	-6.5277	-76.7200	57.85	22.56	56.82	23.56	
54	Pucacaca	-6.8494	-76.3411	60.70	24.85	59.92	25.87	
55	Buenos Aires	-6.7916	-76.3275	60.70	24.86	59.92	25.88	
56	Yantalo	-5.9738	-77.0208	57.87	23.08	57.02	24.11	
57	Cuñumbuqui	-6.5108	-76.4811	60.80	24.74	59.81	25.75	
58	Huallaga	-7.1311	-76.6486	59.83	23.84	58.84	25.00	

			Confiabil	idad 98%	Confiabil	idad 50%	
	DISTRITOS	LAT(°)	LONG(°)	T _{max98%}	T _{min98%}	T _{max50%}	T _{min50%}
				(°C)	(°C)	(°C)	(°C)
59	El Porvenir	-6.2119	-75.8008	63.54	25.53	61.20	26.44
60	Yorongos	-6.1391	-77.1442	57.87	23.08	57.02	24.11
61	Chipurana	-6.3541	-75.7414	62.28	25.35	60.86	26.21
62	Agua Blanca	-6.7250	-76.6956	57.84	22.55	56.81	23.55
63	Sacanche	-6.9563	-76.4183	60.69	24.85	59.92	25.87
64	Caspisapa	-6.9563	-76.4183	60.69	24.85	59.92	25.87
65	Posic	-6.0191	-77.1619	57.87	23.08	57.02	24.11
66	Shapaja	-6.5800	-76.2619	60.80	24.74	59.81	25.75
67	Papaplaya	-6.2452	-75.7906	63.53	25.53	61.19	26.44
68	El Eslabon	-7.0225	-76.7225	59.84	23.85	58.84	25.01
69	Shanao	-6.4116	-76.5939	57.85	22.56	56.82	23.56
70	San Antonio	-6.4091	-76.4064	60.80	24.75	59.82	25.76
71	San Roque de Cumbaza	-6.3852	-76.4394	60.81	24.75	59.82	25.76
72	Habana	-6.0802	-77.0917	57.87	23.08	57.02	24.11
73	Shunte	-8.3633	-76.7286	51.41	18.03	50.10	18.87
74	San Cristóbal	-6.9925	-76.4183	60.69	24.85	59.92	25.87
75	Alberto Leveau	-6.6630	-76.2869	60.80	24.74	59.81	25.74
76	Pilluana	-6.7766	-76.2919	60.70	24.86	59.93	25.88
77	Tingo de Saposoa	-7.0941	-76.6417	59.84	23.84	58.84	25.00
78	Huimbayoc	-6.4172	-75.7672	62.28	25.35	60.85	26.21

De este modo, usando las tablas indicadas en "Requisitos de Calidad del CAP" del capítulo 2 de esta investigación, se pudo calcular el Performance Grade (PG) aplicando el modelo LTPPBind 1996, de todos los distritos de los departamentos de Ucayali, Loreto y San Martín, tal como se puede ver en las tablas 36, 37 y 38 respectivamente.

Tabla 36Performance Grade (PG) aplicando el Modelo LTPPBind 1996 – departamento de Ucayali

		PERFORMANCE GRADE (PG)					
	DISTRITOS	Confiabil	idad 98%	Confiabilidad 50%			
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)		
1	Callería	64	10	64	10		
2	Yarinacocha	64	10	64	10		

		PERFORMANCE GRADE (PG)					
	DISTRITOS	Confiabil	idad 98%	Confiabil	idad 50%		
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)		
3	Manantay	64	10	64	10		
4	Raymondi	64	10	64	10		
5	Padre Abad	64	10	64	10		
6	Campo Verde	64	10	64	10		
7	Irazola	64	10	64	10		
8	Iparía	64	10	64	10		
9	Masisea	64	10	64	10		
10	Neshuya	64	10	64	10		
11	Tahuanía	64	10	64	10		
12	Curimaná	64	10	64	10		
13	Sepahua	64	10	64	10		
14	Alexander Von Humboldt	64	10	64	10		
15	Nueva Requena	64	10	64	10		
16	Boquerón	64	10	64	10		
17	Huipoca	64	10	64	10		
18	Purús	64	10	64	10		
19	Yuruá	64	10	64	10		

Tabla 37Performance Grade (PG) aplicando el Modelo LTPPBind 1996 – departamento de Loreto

		PERFORMANCE GRADE (PG)					
	DISTRITOS	Confiabil	idad 98%	Confiabilidad 50%			
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)		
1	Iquitos	58	10	58	10		
2	San Juan Bautista	58	10	58	10		
3	Yurimaguas	64	10	64	10		
4	Punchana	58	10	58	10		
5	Belén	58	10	58	10		
6	Nauta	64	10	58	10		
7	Contamana	64	10	64	10		
8	Requena	64	10	58	10		
9	Ramón Castilla	64	10	58	10		
10	Napo	58	10	58	10		
11	Balsapuerto	64	10	64	10		

-		P	PERFORMANCE GRADE (PG)					
	DISTRITOS	Confiabil	idad 98%	Confiabil	idad 50%			
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)			
12	Andoas	64	10	58	10			
13	Barranca	64	10	64	10			
14	Sarayacu	64	10	64	10			
15	Mazán	58	10	58	10			
16	Lagunas	64	10	64	10			
17	Fernando Lores	58	10	58	10			
18	San Pablo	58	10	58	10			
19	Pebas	58	10	58	10			
20	Indiana	58	10	58	10			
21	Trompeteros	64	10	58	10			
22	Yavarí	64	10	58	10			
23	Manseriche	64	10	64	10			
24	Maquía	64	10	64	10			
25	Las Amazonas	58	10	58	10			
26	Cahuapanas	64	10	64	10			
27	Tigre	58	10	58	10			
28	Vargas Guerra	64	10	64	10			
29	Emilio San Martín	64	10	64	10			
30	Teniente César López Rojas	64	10	64	10			
31	Pastaza	64	10	64	10			
32	Parinari	64	10	58	10			
33	Pampa Hermosa	64	10	64	10			
34	Torres Causana	58	10	58	10			
35	Jenaro Herrera	64	10	58	10			
36	Jeberos	64	10	64	10			
37	Puinahua	64	10	64	10			
38	Putumayo	58	10	58	10			
39	Morona	64	10	64	10			
40	Santa Cruz	64	10	64	10			
41	Alto Nanay	58	10	58	10			
42	Padre Márquez	64	10	64	10			
43	Saquena	64	10	58	10			
44	Teniente Manuel Clavero	58	10	58	10			
45	Yaquerana	64	10	58	10			
46	Capelo	64	10	64	10			
47	Inahuaya	64	10	64	10			
48	Yaguas	58	10	58	10			

		PERFORMANCE GRADE (PG)					
	DISTRITOS	Confiabil	idad 98%	Confiabilidad 50%			
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)		
49	Alto Tapiche	64	10	64	10		
50	Tapiche	64	10	64	10		
51	Soplín	64	10	64	10		
52	Rosa Panduro	58	10	58	10		
53	Urarinas	64	10	64	10		

Tabla 38Performance Grade (PG) aplicando el Modelo LTPPBind 1996 – departamento de San

Martín

		PERFORMANCE GRADE (PG)				
	DISTRITOS	Confiabilidad 98%		Confiabilidad 50%		
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)	
1	Moyobamba	58	10	58	10	
2	Tarapoto	64	10	64	10	
3	La Banda de Shilcayo	64	10	64	10	
4	Nueva Cajamarca	58	10	58	10	
5	Morales	64	10	64	10	
6	Juanjuí	64	10	64	10	
7	Tocache	64	10	58	10	
8	Rioja	58	10	58	10	
9	Elías Soplin Vargas	58	10	58	10	
10	Soritor	58	10	58	10	
11	Bellavista	64	10	64	10	
12	Campanilla	58	10	58	10	
13	San José de Sisa	58	10	58	10	
14	Pardo Miguel	58	10	58	10	
15	Lamas	64	10	64	10	
16	Jepelacio	58	10	58	10	
17	Bajo Biavo	64	10	64	10	
18	Saposoa	64	10	64	10	
19	Tabalosos	58	10	58	10	
20	Uchiza	58	10	58	10	
21	Alonso de Alvarado	58	10	58	10	
22	San Martín	58	10	58	10	
23	Nuevo Progreso	58	10	58	10	

-		PERFORMANCE GRADE (PG)				
	DISTRITOS	Confiabilidad 98%		Confiabilidad 50%		
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)	
24	Picota	64	10	64	10	
25	Caynarachi	64	10	64	10	
26	Polvora	58	10	58	10	
27	Shamboyacu	64	10	64	10	
28	Chazuta	64	10	64	10	
29	Alto Biavo	64	10	64	10	
30	Huicungo	58	10	58	10	
31	Pinto Recodo	58	10	58	10	
32	San Pablo	64	10	64	10	
33	Awajun	58	10	58	10	
34	Barranquita	64	10	64	10	
35	Santa Rosa	58	10	58	10	
36	Pachiza	58	10	58	10	
37	Sauce	64	10	64	10	
38	San Rafael	64	10	64	10	
39	Santa Lucía	58	10	58	10	
40	Zapatero	64	10	64	10	
41	Pajarillo	64	10	64	10	
42	Alto Saposoa	64	10	64	10	
43	Calzada	58	10	58	10	
44	Piscoyacu	64	10	64	10	
45	Juan Guerra	64	10	64	10	
46	Tres Unidos	64	10	64	10	
47	Rumisapa	64	10	64	10	
48	Cacatachi	64	10	64	10	
49	Tingo de Ponasa	64	10	64	10	
50	Yuracyacu	58	10	58	10	
51	San Hilarión	64	10	64	10	
52	San Fernando	58	10	58	10	
53	Shatoja	58	10	58	10	
54	Pucacaca	64	10	64	10	
55	Buenos Aires	64	10	64	10	
56	Yantalo	58	10	58	10	
57	Cuñumbuqui	64	10	64	10	
58	Huallaga	64	10	64	10	
59	El Porvenir	64	10	64	10	
60	Yorongos	58	10	58	10	

		PI	ERFORMANC	CE GRADE (PC	G)
	DISTRITOS	Confiabil	idad 98%	Confiabil	idad 50%
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)
61	Chipurana	64	10	64	10
62	Agua Blanca	58	10	58	10
63	Sacanche	64	10	64	10
64	Caspisapa	64	10	64	10
65	Posic	58	10	58	10
66	Shapaja	64	10	64	10
67	Papaplaya	64	10	64	10
68	El Eslabon	64	10	64	10
69	Shanao	58	10	58	10
70	San Antonio	64	10	64	10
71	San Roque de Cumbaza	64	10	64	10
72	Habana	58	10	58	10
73	Shunte	52	10	58	10
74	San Cristóbal	64	10	64	10
75	Alberto Leveau	64	10	64	10
76	Pilluana	64	10	64	10
77	Tingo de Saposoa	64	10	64	10
78	Huimbayoc	64	10	64	10

5.2.6 Cálculo del Performance Grade (PG) - Modelo LTPPBind 1998-2000

Para calcular el Performance Grade (PG) mediante el modelo LTPPBind 1998-2000, ha sido necesario tener en cuenta las fórmulas que se indican en la figura 19.

Figura 19 *Fórmulas del Modelo LTPPBind 1998-2000*

 $\begin{array}{l} \bullet \quad \text{Modelo LTPPBind (LTPP-FHWA, 1998 y Bosscher, 2000). Utilizando confiabilidad} \\ T_{MAX} = 54.32 + 0.77585 T_{maxair} - 0.002468 Lat^2 - 15.137 \log(H + 25) + z \sqrt{9 + 0.61 \sigma_{air}^2} \\ T_{MIN} = -1.56 + 0.71819 T_{minair} - 0.003966 Lat^2 + 6.264 \log(H + 25) - z \sqrt{4.4 + 0.52 \sigma_{air}^2} \\ \end{array}$

Nota: Tomado de Grados de Desempeño PG - Superpave de los Ligantes Asfálticos Requeridos en las Principales Carreteras Pavimentadas de El Salvador, por Polanco, 2022.

Así, aplicando dicho modelo realizamos los cálculos para el distrito de Yarinacocha de la región de Ucayali, tanto para el 98% como para el 50% de confiabilidad.

Sabiendo que H es la profundidad del pavimento y tiene un valor de 2 cm.

$$\begin{split} T_{max98\%} &= 54.32 + 0.77585*(39.70) - 0.002468*(-8.3519)^2 - 15.137*log_{10}(2+25) + \\ &(2.320)*(9 + 0.61*(1.004^2))^{1/2} = 70.48°C \\ T_{min98\%} &= -1.56 + 0.71819*(25.51) - 0.003966*(-8.3519)^2 + 6.264*log_{10}(2+25) - \\ &(0.855)*(4.4 + 0.52*(0.855^2))^{1/2} = 70.48°C = 20.38°C \\ T_{max50\%} &= 54.32 + 0.77585*(38.05) - 0.002468*(-8.3519)^2 - 15.137*log_{10}(2+25) + \\ &(2.320)*(9 + 0.61*(1.004^2))^{1/2} = 64.09°C \\ T_{min50\%} &= -1.56 + 0.71819*(26.92) - 0.003966*(-8.3519)^2 + 6.264*log_{10}(2+25) - \\ \end{split}$$

 $T_{min50\%} = -1.56 + 0.71819*(26.92) - 0.003966*(-8.3519)^2 + 6.264*log_{10}(2+25) - (0.855)*(4.4 + 0.52*(0.855^2))^{1/2} = 24.99°C$

De este mismo modo se realizaron los cálculos para todos los distritos de los departamentos de Ucayali, Loreto y San Martín tal como se puede ver en las tablas 39, 40 y 41 respectivamente, y que además se encuentran de forma más detallada en el anexo K.

Tabla 39Temperatura máxima y mínima al 98% y 50% de confiabilidad, aplicando el Modelo LTPPBind 1998-2000 para el departamento de Ucayali

				Confiabilidad 98%		Confiabilidad 50%	
	DISTRITOS	LAT(°)	LONG(°)	T _{max98%}	Tmin98%	Tmax50%	Tmin50%
				(°C)	(°C)	(°C)	(°C)
1	Callería	-8.3827	-74.5322	70.47	20.38	64.09	24.98
2	Yarinacocha	-8.3519	-74.5756	70.48	20.38	64.09	24.99
3	Manantay	-8.3983	-74.5367	70.47	20.37	64.09	24.98
4	Raymondi	-10.7297	-73.7556	69.00	19.80	62.96	24.49
5	Padre Abad	-9.0377	-75.5128	68.19	19.25	61.66	23.25
6	Campo Verde	-8.4725	-74.8056	70.23	20.66	63.79	24.83
7	Irazola	-8.8261	-75.2100	70.34	20.67	63.97	24.85
8	Iparía	-9.3063	-74.4356	68.67	19.74	62.70	24.10
9	Masisea	-8.6052	-74.3064	70.47	20.36	64.08	24.97
10	Neshuya	-8.6390	-74.9644	70.22	20.65	63.79	24.81
11	Tahuanía	-10.0300	-73.9569	69.87	20.24	63.67	24.73
12	Curimaná	-8.4341	-75.1531	70.23	20.67	63.80	24.83
13	Sepahua	-11.1467	-73.0475	70.08	20.09	63.94	24.54
14	Alexander Von Humboldt	-8.8263	-75.0523	70.34	20.67	63.97	24.85
15	Nueva Requena	-8.3108	-74.8630	70.24	20.67	63.80	24.84
16	Boquerón	-8.8626	-75.3287	68.19	19.26	61.67	23.26

	Diampino a	LAT(°)	1 0 V G (0)	Confiabilidad 98%		Confiabilidad 50%	
	DISTRITOS		LONG(°)	T _{max98%} (°C)	T _{min98%}	T _{max50%} (°C)	T _{min50%} (°C)
17 Hu	uipoca	-8.9763	-75.4472	68.19	19.26	61.67	23.25
18 Pu	ırús	-9.7725	-70.7100	69.90	19.34	63.55	23.79
19 Yu	ıruá	-9.5308	-72.7594	69.93	20.25	63.65	24.30

Tabla 40Temperatura máxima y mínima al 98% y 50% de confiabilidad, aplicando el Modelo LTPPBind 1998-2000 para el departamento de Loreto

	DICTRITOC	I AT(0)	LONG(9)	Confiabil	idad 98%	Confiabilidad 50%	
	DISTRITOS	LAT(°)	LONG(°)	T _{max98%}	Tmin98%	T _{max50%}	T _{min50%}
				(°C)	(°C)	(°C)	(°C)
1	Iquitos	-3.7491	-73.2538	64.53	21.22	58.42	25.05
2	San Juan Bautista	-3.7752	-73.2892	64.57	21.14	58.42	25.03
3	Yurimaguas	-5.8938	-76.1069	69.41	19.81	62.39	24.41
4	Punchana	-3.7283	-73.2444	64.53	21.22	58.42	25.05
5	Belén	-3.7616	-73.2483	64.57	21.14	58.42	25.03
6	Nauta	-4.5066	-73.5756	65.46	21.11	58.84	25.02
7	Contamana	-7.3333	-75.0166	69.87	20.66	63.73	25.10
8	Requena	-5.0636	-73.8564	66.03	21.16	59.10	25.02
9	Ramón Castilla	-3.9061	-70.5169	66.87	20.89	59.23	24.94
10	Napo	-2.4894	-73.6756	63.37	21.10	57.93	24.92
11	Balsapuerto	-5.8336	-76.5597	69.41	19.81	62.39	24.42
12	Andoas	-3.4752	-76.4333	67.30	20.62	59.56	24.68
13	Barranca	-4.8316	-76.5544	71.64	20.48	63.69	25.16
14	Sarayacu	-6.3933	-75.1169	70.41	21.13	63.47	25.28
15	Mazán	-3.4966	-73.0900	64.54	21.23	58.42	25.06
16	Lagunas	-5.2269	-75.6797	71.06	20.83	63.43	25.15
17	Fernando Lores	-4.0030	-73.1606	64.56	21.14	58.41	25.03
18	San Pablo	-7.1188	-78.8239	59.30	14.18	53.65	18.75
19	Pebas	-3.3205	-71.8617	63.54	21.20	58.05	25.03
20	Indiana	-3.5002	-73.0411	64.54	21.23	58.42	25.06
21	Trompeteros	-3.8052	-75.0614	66.23	21.22	59.69	25.07
22	Yavarí	-4.3519	-70.0414	66.75	20.83	59.21	24.91
23	Manseriche	-4.5663	-77.4158	68.62	20.23	62.43	25.22

	DVAFFDATIOG	V A T (0)	Y 0.V(G/0)	Confiabil	idad 98%	Confiabil	idad 50%
	DISTRITOS	LAT(°)	LONG(°)	T _{max98%} (°C)	T _{min98%} (°C)	T _{max50%} (°C)	T _{min50%} (°C)
24	Maquía	-5.7500	-74.5375	67.83	21.15	60.44	25.05
25	Las Amazonas	-3.4225	-72.7642	63.87	21.17	58.17	25.03
26	Cahuapanas	-5.2866	-76.9889	67.43	19.09	61.02	23.81
27	Tigre	-3.4897	-74.7817	63.90	21.05	58.20	24.92
28	Vargas Guerra	-6.9113	-75.1583	69.98	20.93	63.62	25.25
29	Emilio San Martín	-5.7941	-74.2853	69.21	21.10	61.71	25.12
30	Teniente César López Rojas	-6.0250	-75.8739	71.25	20.50	63.44	25.02
31	Pastaza	-4.6517	-76.5878	70.77	20.61	63.23	25.30
32	Parinari	-4.6313	-74.4631	67.46	21.19	60.15	25.08
33	Pampa Hermosa	-7.1952	-75.2969	69.97	20.92	63.61	25.23
34	Torres Causana	-0.9705	-75.1747	63.38	20.43	57.88	24.53
35	Jenaro Herrera	-4.9036	-73.6694	66.04	21.16	59.10	25.03
36	Jeberos	-5.2908	-76.2836	71.17	20.18	63.30	24.90
37	Puinahua	-5.2558	-74.3458	67.84	21.17	60.45	25.07
38	Putumayo	-2.4469	-72.6683	64.47	21.20	58.38	25.06
39	Morona	-4.3230	-77.2172	68.63	20.24	62.44	25.23
40	Santa Cruz	-5.5133	-75.8586	71.92	20.52	63.47	25.05
41	Alto Nanay	-3.8880	-73.6964	65.22	21.16	58.72	25.04
42	Padre Márquez	-7.9500	-74.8389	70.03	20.15	63.79	24.92
43	Saquena	-4.7252	-73.5336	65.45	21.10	58.83	25.01
44	Teniente Manuel Clavero	-0.3744	-74.6767	63.39	20.66	57.92	24.68
45	Yaquerana	-5.1530	-72.8822	66.76	20.99	59.35	24.91
46	Capelo	-5.4047	-74.1578	67.84	21.16	60.45	25.06
47	Inahuaya	-7.1169	-75.2628	69.97	20.92	63.62	25.23
48	Yaguas	-2.4088	-71.1753	64.61	21.31	58.39	25.13
49	Alto Tapiche	-6.0252	-74.0939	69.20	21.09	61.70	25.11
50	Tapiche	-5.6647	-74.1889	67.83	21.15	60.44	25.05
51	Soplín	-6.0094	-73.6928	68.97	21.00	61.12	24.97
52	Rosa Panduro	-1.7894	-73.4117	64.24	21.09	58.32	24.99
53	Urarinas	-4.5877	-74.7669	68.75	21.17	61.83	25.15

Tabla 41Temperatura máxima y mínima al 98% y 50% de confiabilidad, aplicando el Modelo LTPPBind 1998-2000 para el departamento de San Martín

				Confiabil	idad 98%	Confiabilidad 50%	
	DISTRITOS	LAT(°)	LONG(°)	T _{max98%}	Tmin98%	T _{max50%}	Tmin98%
				(°C)	(°C)	(°C)	(°C)
1	Moyobamba	-6.0347	-76.9747	64.93	18.00	58.48	22.62
2	Tarapoto	-6.4877	-76.3597	67.90	19.67	61.29	24.27
3	La Banda de Shilcayo	-6.4905	-76.3544	67.90	19.67	61.29	24.27
4	Nueva Cajamarca	-5.9405	-77.3094	62.62	14.86	54.93	19.36
5	Morales	-6.4786	-76.3833	67.90	19.67	61.29	24.27
6	Juanjuí	-7.1797	-76.7272	66.93	18.70	60.31	23.49
7	Tocache	-8.1886	-76.5103	65.64	18.31	59.04	22.51
8	Rioja	-6.0625	-77.1678	64.93	18.00	58.48	22.62
9	Elías Soplin Vargas	-5.9891	-77.2811	62.62	14.85	54.93	19.36
10	Soritor	-6.1391	-77.1022	64.93	17.99	58.48	22.62
11	Bellavista	-7.0561	-76.5911	66.94	18.71	60.31	23.50
12	Campanilla	-7.4822	-76.6525	64.57	18.10	58.24	22.46
13	San José de Sisa	-6.6138	-76.6950	64.96	17.48	58.29	22.07
14	Pardo Miguel	-5.7394	-77.5039	64.29	17.24	57.35	21.95
15	Lamas	-6.4219	-76.5161	67.90	19.68	61.29	24.27
16	Jepelacio	-6.1080	-76.9150	64.93	18.00	58.48	22.62
17	Bajo Biavo	-7.0994	-76.4725	67.74	19.76	61.36	24.37
18	Saposoa	-6.9333	-76.7717	66.94	18.72	60.32	23.51
19	Tabalosos	-6.3886	-76.6833	64.96	17.49	58.30	22.08
20	Uchiza	-8.4588	-76.4619	64.46	17.02	57.52	21.21
21	Alonso de Alvarado	-6.3558	-76.7747	64.97	17.49	58.30	22.08
22	San Martín	-6.5138	-76.7408	64.96	17.49	58.29	22.08
23	Nuevo Progreso	-8.4516	-76.3242	64.46	17.02	57.52	21.21
24	Picota	-6.9205	-76.3303	67.74	19.77	61.37	24.38
25	Caynarachi	-6.3305	-76.2842	67.91	19.68	61.29	24.28
26	Polvora	-7.9080	-76.6683	60.88	15.35	54.26	19.51
27	Shamboyacu	-7.0238	-76.1325	67.74	19.77	61.37	24.38
28	Chazuta	-6.5713	-76.1289	67.90	19.67	61.28	24.26
29	Alto Biavo	-7.2552	-76.4769	67.00	19.67	60.73	23.93
30	Huicungo	-7.3166	-76.7769	64.58	18.11	58.24	22.47
31	Pinto Recodo	-6.3791	-76.6044	64.96	17.49	58.30	22.08
32	San Pablo	-6.8081	-76.5747	66.95	18.73	60.32	23.51
33	Awajun	-5.8161	-77.3836	62.62	14.86	54.94	19.37

_		_		Confiabil	idad 98%	Confiabil	idad 50%
	DISTRITOS	LAT(°)	LONG(°)	T _{max98%}	T _{min98%}	T _{max50%}	T _{min98%}
				(°C)	(°C)	(°C)	(°C)
34	Barranquita	-6.2533	-76.0322	67.91	19.68	61.29	24.28
35	Santa Rosa	-6.7463	-76.6233	64.95	17.47	58.29	22.06
36	Pachiza	-7.2975	-76.7736	64.58	18.11	58.24	22.47
37	Sauce	-6.6902	-76.2172	67.90	19.66	61.28	24.26
38	San Rafael	-7.0233	-76.4661	67.74	19.77	61.37	24.38
39	Santa Lucía	-8.3472	-76.3858	64.47	17.02	57.52	21.22
40	Zapatero	-6.5305	-76.4942	67.90	19.67	61.28	24.27
41	Pajarillo	-7.1800	-76.6903	66.93	18.70	60.31	23.49
42	Alto Saposoa	-6.7647	-76.8139	66.95	18.73	60.32	23.51
43	Calzada	-6.0300	-77.0669	64.93	18.00	58.48	22.62
44	Piscoyacu	-6.9800	-76.7683	66.94	18.72	60.32	23.50
45	Juan Guerra	-6.5841	-76.3242	67.90	19.67	61.28	24.26
46	Tres Unidos	-6.8063	-76.2311	67.75	19.78	61.37	24.39
47	Rumisapa	-6.4488	-76.4714	67.90	19.67	61.29	24.27
48	Cacatachi	-6.4622	-76.4514	67.90	19.67	61.29	24.27
49	Tingo de Ponasa	-6.9358	-76.2539	67.74	19.77	61.37	24.38
50	Yuracyacu	-5.9305	-77.2264	62.62	14.86	54.93	19.36
51	San Hilarión	-7.0041	-76.4392	67.74	19.77	61.37	24.38
52	San Fernando	-5.9014	-77.2692	62.62	14.86	54.93	19.37
53	Shatoja	-6.5277	-76.7200	64.96	17.49	58.29	22.07
54	Pucacaca	-6.8494	-76.3411	67.74	19.78	61.37	24.39
55	Buenos Aires	-6.7916	-76.3275	67.75	19.78	61.38	24.39
56	Yantalo	-5.9738	-77.0208	64.94	18.00	58.48	22.63
57	Cuñumbuqui	-6.5108	-76.4811	67.90	19.67	61.28	24.27
58	Huallaga	-7.1311	-76.6486	66.94	18.71	60.31	23.49
59	El Porvenir	-6.2119	-75.8008	71.25	20.49	62.91	24.97
60	Yorongos	-6.1391	-77.1442	64.93	17.99	58.48	22.62
61	Chipurana	-6.3541	-75.7414	69.53	20.33	62.39	24.74
62	Agua Blanca	-6.7250	-76.6956	64.95	17.48	58.29	22.06
63	Sacanche	-6.9563	-76.4183	67.74	19.77	61.37	24.38
64	Caspisapa	-6.9563	-76.4183	67.74	19.77	61.37	24.38
65	Posic	-6.0191	-77.1619	64.94	18.00	58.48	22.62
66	Shapaja	-6.5800	-76.2619	67.90	19.67	61.28	24.26
67	Papaplaya	-6.2452	-75.7906	71.25	20.49	62.91	24.97
68	El Eslabon	-7.0225	-76.7225	66.94	18.71	60.32	23.50
69	Shanao	-6.4116	-76.5939	64.96	17.49	58.30	22.08

				Confiabil	Confiabilidad 98%		Confiabilidad 50%	
	DISTRITOS	LAT(°)	LONG(°)	T _{max98%}	T _{min98%}	T _{max50%}	Tmin98%	
				(°C)	(°C)	(°C)	(°C)	
70	San Antonio	-6.4091	-76.4064	67.91	19.68	61.29	24.27	
71	San Roque de Cumbaza	-6.3852	-76.4394	67.91	19.68	61.29	24.27	
72	Habana	-6.0802	-77.0917	64.93	18.00	58.48	22.62	
73	Shunte	-8.3633	-76.7286	58.61	13.02	51.61	17.41	
74	San Cristóbal	-6.9925	-76.4183	67.74	19.77	61.37	24.38	
75	Alberto Leveau	-6.6630	-76.2869	67.90	19.66	61.28	24.26	
76	Pilluana	-6.7766	-76.2919	67.75	19.78	61.38	24.39	
77	Tingo de Saposoa	-7.0941	-76.6417	66.94	18.71	60.31	23.50	
78	Huimbayoc	-6.4172	-75.7672	69.53	20.33	62.96	24.75	

De este modo, usando las tablas indicadas en "Requisitos de Calidad del CAP" del capítulo 2 de esta investigación, se pudo calcular el Performance Grade (PG) aplicando el modelo LTPPBind 1998-2000, de todos los distritos de los departamentos de Ucayali, Loreto y San Martín, tal como se puede ver en las tablas 42, 43 y 44 respectivamente.

Tabla 42Performance Grade (PG) aplicando el Modelo LTPPBind 1998-2000 – departamento de Ucayali

		PERFORMANCE GRADE (PG)					
	DISTRITOS	Confiabil	idad 98%	Confiabil	idad 50%		
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)		
1	Callería	76	10	70	10		
2	Yarinacocha	76	10	70	10		
3	Manantay	76	10	70	10		
4	Raymondi	70	10	64	10		
5	Padre Abad	70	10	64	10		
6	Campo Verde	76	10	64	10		
7	Irazola	76	10	64	10		
8	Iparía	70	10	64	10		
9	Masisea	76	10	70	10		
10	Neshuya	76	10	64	10		
11	Tahuanía	70	10	64	10		
12	Curimaná	76	10	64	10		
13	Sepahua	76	10	64	10		

		PERFORMANCE GRADE (PG)					
	DISTRITOS	Confiabil	idad 98%	Confiabilidad 50%			
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)		
14	Alexander Von Humboldt	76	10	64	10		
15	Nueva Requena	76	10	64	10		
16	Boquerón	70	10	64	10		
17	Huipoca	70	10	64	10		
18	Purús	70	10	64	10		
19	Yuruá	70	10	64	10		

Tabla 43Performance Grade (PG) aplicando el Modelo LTPPBind 1998-2000 – departamento de Loreto

		PERFORMANCE GRADE (PG)					
	DISTRITOS	Confiabil	idad 98%	Confiabil	idad 50%		
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)		
1	Iquitos	70	10	64	10		
2	San Juan Bautista	70	10	64	10		
3	Yurimaguas	70	10	64	10		
4	Punchana	70	10	64	10		
5	Belén	70	10	64	10		
6	Nauta	70	10	64	10		
7	Contamana	70	10	64	10		
8	Requena	70	10	64	10		
9	Ramón Castilla	70	10	64	10		
10	Napo	64	10	58	10		
11	Balsapuerto	70	10	64	10		
12	Andoas	70	10	64	10		
13	Barranca	76	10	64	10		
14	Sarayacu	76	10	64	10		
15	Mazán	70	10	64	10		
16	Lagunas	76	10	64	10		
17	Fernando Lores	70	10	64	10		
18	San Pablo	64	10	58	10		
19	Pebas	64	10	64	10		
20	Indiana	70	10	64	10		
21	Trompeteros	70	10	64	10		
22	Yavarí	70	10	64	10		

	E GRADE (PO	G)			
	DISTRITOS	Confiabil	idad 98%	Confiabil	idad 50%
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)
23	Manseriche	70	10	64	10
24	Maquía	70	10	64	10
25	Las Amazonas	64	10	64	10
26	Cahuapanas	70	10	64	10
27	Tigre	64	10	64	10
28	Vargas Guerra	70	10	64	10
29	Emilio San Martín	70	10	64	10
30	Teniente César López Rojas	76	10	64	10
31	Pastaza	76	10	64	10
32	Parinari	70	10	64	10
33	Pampa Hermosa	70	10	64	10
34	Torres Causana	64	10	58	10
35	Jenaro Herrera	70	10	64	10
36	Jeberos	76	10	64	10
37	Puinahua	70	10	64	10
38	Putumayo	70	10	64	10
39	Morona	70	10	64	10
40	Santa Cruz	76	10	64	10
41	Alto Nanay	70	10	64	10
42	Padre Márquez	76	10	64	10
43	Saquena	70	10	64	10
44	Teniente Manuel Clavero	64	10	58	10
45	Yaquerana	70	10	64	10
46	Capelo	70	10	64	10
47	Inahuaya	70	10	64	10
48	Yaguas	70	10	64	10
49	Alto Tapiche	70	10	64	10
50	Tapiche	70	10	64	10
51	Soplín	70	10	64	10
52	Rosa Panduro	70	10	64	10
53	Urarinas	70	10	64	10

Tabla 44Performance Grade (PG) aplicando el Modelo LTPPBind 1998-2000 – departamento de San Martín

		PERFORMANCE GRADE (PG)					
DISTRITOS		Confiabil	idad 98%	Confiabil	idad 50%		
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)		
1	Moyobamba	70	10	64	10		
2	Tarapoto	70	10	64	10		
3	La Banda de Shilcayo	70	10	64	10		
4	Nueva Cajamarca	64	10	58	10		
5	Morales	70	10	64	10		
6	Juanjuí	70	10	64	10		
7	Tocache	70	10	64	10		
8	Rioja	70	10	64	10		
9	Elías Soplin Vargas	64	10	58	10		
10	Soritor	70	10	64	10		
11	Bellavista	70	10	64	10		
12	Campanilla	70	10	64	10		
13	San José de Sisa	70	10	64	10		
14	Pardo Miguel	70	10	58	10		
15	Lamas	70	10	64	10		
16	Jepelacio	70	10	64	10		
17	Bajo Biavo	70	10	64	10		
18	Saposoa	70	10	64	10		
19	Tabalosos	70	10	64	10		
20	Uchiza	70	10	58	10		
21	Alonso de Alvarado	70	10	64	10		
22	San Martín	70	10	64	10		
23	Nuevo Progreso	70	10	58	10		
24	Picota	70	10	64	10		
25	Caynarachi	70	10	64	10		
26	Polvora	64	10	58	10		
27	Shamboyacu	70	10	64	10		
28	Chazuta	70	10	64	10		
29	Alto Biavo	70	10	64	10		
30	Huicungo	70	10	64	10		
31	Pinto Recodo	70	10	64	10		
32	San Pablo	70	10	64	10		
33	Awajun	64	10	58	10		

		PERFORMANCE GRADE (PG)					
	DISTRITOS	Confiabil	idad 98%	Confiabil	idad 50%		
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)		
34	Barranquita	70	10	64	10		
35	Santa Rosa	70	10	64	10		
36	Pachiza	70	10	64	10		
37	Sauce	70	10	64	10		
38	San Rafael	70	10	64	10		
39	Santa Lucía	70	10	58	10		
40	Zapatero	70	10	64	10		
41	Pajarillo	70	10	64	10		
42	Alto Saposoa	70	10	64	10		
43	Calzada	70	10	64	10		
44	Piscoyacu	70	10	64	10		
45	Juan Guerra	70	10	64	10		
46	Tres Unidos	70	10	64	10		
47	Rumisapa	70	10	64	10		
48	Cacatachi	70	10	64	10		
49	Tingo de Ponasa	70	10	64	10		
50	Yuracyacu	64	10	58	10		
51	San Hilarión	70	10	64	10		
52	San Fernando	64	10	58	10		
53	Shatoja	70	10	64	10		
54	Pucacaca	70	10	64	10		
55	Buenos Aires	70	10	64	10		
56	Yantalo	70	10	64	10		
57	Cuñumbuqui	70	10	64	10		
58	Huallaga	70	10	64	10		
59	El Porvenir	76	10	64	10		
60	Yorongos	70	10	64	10		
61	Chipurana	70	10	64	10		
62	Agua Blanca	70	10	64	10		
63	Sacanche	70	10	64	10		
64	Caspisapa	70	10	64	10		
65	Posic	70	10	64	10		
66	Shapaja	70	10	64	10		
67	Papaplaya	76	10	64	10		
68	El Eslabon	70	10	64	10		
69	Shanao	70	10	64	10		
70	San Antonio	70	10	64	10		

		PERFORMANCE GRADE (PG)				
	DISTRITOS	Confiabil	idad 98%	Confiabil	idad 50%	
		Tmax (°C)	Tmin (°C)	Tmax (°C)	Tmin (°C)	
71	San Roque de Cumbaza	70	10	64	10	
72	Habana	70	10	64	10	
73	Shunte	64	10	58	10	
74	San Cristóbal	70	10	64	10	
75	Alberto Leveau	70	10	64	10	
76	Pilluana	70	10	64	10	
77	Tingo de Saposoa	70	10	64	10	
78	Huimbayoc	70	10	64	10	

5.2.7 Cálculo del Performance Grade (PG) - Modelo LTPPBind 2004

Para calcular el Performance Grade (PG) mediante el modelo LTPPBind 2004, ha sido necesario tener en cuenta las fórmulas que se indican en la figura 20.

Figura 20 *Fórmulas del Modelo LTPPBind 2004*

• Modelo LTPPBind (Mohseni e Carpenter, 2004) – ICM basado en dados de aproximadamente 8000 estaciones meteorológicas $T_{MAX} = 32.7 + 0.837 T_{maxair} - 0.0029 Lat^2 + z \sqrt{\sigma^2 + \delta_{modelo}^2}$

Nota: Tomado de Grados de Desempeño PG - Superpave de los Ligantes Asfálticos Requeridos en las Principales Carreteras Pavimentadas de El Salvador, por Polanco, 2022.

Sabiendo que el error estándar del modelo tiene un valor de 2.1°C.

$$T_{\text{max}98\%} = 32.7 + 0.837*(39.70) - 0.0029*(-8.3519)^2 + (2.32)*((1.004)^2 + (2.1)^2)^{1/2} = 71.13$$
°C

$$T_{max50\%} = 32.7 + 0.837*(38.05) - 0.0029*(-8.3519)^2 + (0.6745)*((1.004)^2 + (2.1)^2)^{1/2} = 65.91°C$$

De este mismo modo se realizaron los cálculos para todos los distritos de los departamentos de Ucayali, Loreto y San Martín tal como se puede ver en las tablas 45, 46 y 47 respectivamente, y que además se encuentran de forma más detallada en el anexo K.

Tabla 45Temperatura máxima al 98% y 50% de confiabilidad, aplicando el Modelo LTPPBind 2004 para el departamento de Ucayali

				Confiabilidad	Confiabilidad
	DISTRITOS	LAT(°)	LONG(°)	98%	50%
				T _{max98%} (°C)	T _{max50%} (°C)
1	Callería	-8.3827	-74.5322	71.12	65.91
2	Yarinacocha	-8.3519	-74.5756	71.13	65.91
3	Manantay	-8.3983	-74.5367	71.12	65.91
4	Raymondi	-10.7297	-73.7556	69.42	64.65
5	Padre Abad	-9.0377	-75.5128	68.70	63.30
6	Campo Verde	-8.4725	-74.8056	70.88	65.60
7	Irazola	-8.8261	-75.2100	70.97	65.78
8	Iparía	-9.3063	-74.4356	69.05	64.37
9	Masisea	-8.6052	-74.3064	71.11	65.90
10	Neshuya	-8.6390	-74.9644	70.87	65.59
11	Tahuanía	-10.0300	-73.9569	70.40	65.44
12	Curimaná	-8.4341	-75.1531	70.88	65.60
13	Sepahua	-11.1467	-73.0475	70.61	65.71
14	Alexander Von Humboldt	-8.8263	-75.0523	70.97	65.78
15	Nueva Requena	-8.3108	-74.8630	70.88	65.60
16	Boquerón	-8.8626	-75.3287	68.71	63.31
17	Huipoca	-8.9763	-75.4472	68.70	63.31
18	Purús	-9.7725	-70.7100	70.49	65.32
19	Yuruá	-9.5308	-72.7594	70.50	65.42

Tabla 46Temperatura máxima al 98% y 50% de confiabilidad, aplicando el Modelo LTPPBind 2004 para el departamento de Loreto

				Confiabilidad	Confiabilidad
	DISTRITOS	LAT(°)	LONG(°)	98%	50%
				T _{max98%} (°C)	T _{max50%} (°C)
1	Iquitos	-3.7491	-73.2538	64.65	59.78
2	San Juan Bautista	-3.7752	-73.2892	64.69	59.78
3	Yurimaguas	-5.8938	-76.1069	70.20	64.15
4	Punchana	-3.7283	-73.2444	64.65	59.78
5	Belén	-3.7616	-73.2483	64.69	59.78

				Confiabilidad	Confiabilidad
	DISTRITOS	LAT(°)	LONG(°)	98%	50%
				T _{max98%} (°C)	T _{max50%} (°C)
6	Nauta	-4.5066	-73.5756	65.80	60.28
7	Contamana	-7.3333	-75.0166	70.40	65.51
8	Requena	-5.0636	-73.8564	66.53	60.59
9	Ramón Castilla	-3.9061	-70.5169	67.70	60.81
10	Napo	-2.4894	-73.6756	63.24	59.21
11	Balsapuerto	-5.8336	-76.5597	70.20	64.15
12	Andoas	-3.4752	-76.4333	68.20	61.18
13	Barranca	-4.8316	-76.5544	72.95	65.65
14	Sarayacu	-6.3933	-75.1169	71.25	65.31
15	Mazán	-3.4966	-73.0900	64.65	59.79
16	Lagunas	-5.2269	-75.6797	72.20	65.34
17	Fernando Lores	-4.0030	-73.1606	64.69	59.78
18	San Pablo	-7.1188	-78.8239	58.87	54.60
19	Pebas	-3.3205	-71.8617	63.43	59.34
20	Indiana	-3.5002	-73.0411	64.65	59.79
21	Trompeteros	-3.8052	-75.0614	66.61	61.19
22	Yavarí	-4.3519	-70.0414	67.52	60.78
23	Manseriche	-4.5663	-77.4158	69.08	64.12
24	Maquía	-5.7500	-74.5375	68.63	62.08
25	Las Amazonas	-3.4225	-72.7642	63.82	59.49
26	Cahuapanas	-5.2866	-76.9889	67.86	62.61
27	Tigre	-3.4897	-74.7817	63.86	59.52
28	Vargas Guerra	-6.9113	-75.1583	70.59	65.41
29	Emilio San Martín	-5.7941	-74.2853	70.16	63.46
30	Teniente César López Rojas	-6.0250	-75.8739	72.48	65.37
31	Pastaza	-4.6517	-76.5878	71.86	65.11
32	Parinari	-4.6313	-74.4631	68.20	61.77
33	Pampa Hermosa	-7.1952	-75.2969	70.57	65.40
34	Torres Causana	-0.9705	-75.1747	63.27	59.16
35	Jenaro Herrera	-4.9036	-73.6694	66.54	60.59
36	Jeberos	-5.2908	-76.2836	72.42	65.22
37	Puinahua	-5.2558	-74.3458	68.64	62.10
38	Putumayo	-2.4469	-72.6683	64.58	59.74
39	Morona	-4.3230	-77.2172	69.09	64.12
40	Santa Cruz	-5.5133	-75.8586	73.45	65.47
41	Alto Nanay	-3.8880	-73.6964	65.50	60.14
42	Padre Márquez	-7.9500	-74.8389	70.60	65.58

				Confiabilidad	Confiabilidad
	DISTRITOS	LAT(°)	LONG(°)	98%	50%
				T _{max98%} (°C)	T _{max50%} (°C)
43	Saquena	-4.7252	-73.5336	65.80	60.27
44	Teniente Manuel Clavero	-0.3744	-74.6767	63.27	59.20
45	Yaquerana	-5.1530	-72.8822	67.48	60.91
46	Capelo	-5.4047	-74.1578	68.64	62.09
47	Inahuaya	-7.1169	-75.2628	70.58	65.40
48	Yaguas	-2.4088	-71.1753	64.76	59.77
49	Alto Tapiche	-6.0252	-74.0939	70.15	63.45
50	Tapiche	-5.6647	-74.1889	68.63	62.09
51	Soplín	-6.0094	-73.6928	70.03	62.87
52	Rosa Panduro	-1.7894	-73.4117	64.28	59.66
53	Urarinas	-4.5877	-74.7669	69.45	63.53

Tabla 47Temperatura máxima al 98% y 50% de confiabilidad, aplicando el Modelo LTPPBind 2004 para el departamento de San Martín

				Confiabilidad	Confiabilidad
	DISTRITOS	LAT(°)	LONG(°)	98%	50%
				T _{max98%} (°C)	T _{max50%} (°C)
1	Moyobamba	-6.0347	-76.9747	65.01	60.47
2	Tarapoto	-6.4877	-76.3597	68.25	63.50
3	La Banda de Shilcayo	-6.4905	-76.3544	68.25	63.50
4	Nueva Cajamarca	-5.9405	-77.3094	62.91	56.71
5	Morales	-6.4786	-76.3833	68.25	63.50
6	Juanjuí	-7.1797	-76.7272	67.21	62.45
7	Tocache	-8.1886	-76.5103	65.80	61.08
8	Rioja	-6.0625	-77.1678	65.01	60.47
9	Elías Soplin Vargas	-5.9891	-77.2811	62.91	56.71
10	Soritor	-6.1391	-77.1022	65.00	60.46
11	Bellavista	-7.0561	-76.5911	67.21	62.45
12	Campanilla	-7.4822	-76.6525	64.58	60.19
13	San José de Sisa	-6.6138	-76.6950	65.09	60.27
14	Pardo Miguel	-5.7394	-77.5039	64.46	59.27
15	Lamas	-6.4219	-76.5161	68.25	63.50
16	Jepelacio	-6.1080	-76.9150	65.00	60.46
17	Bajo Biavo	-7.0994	-76.4725	68.00	63.57

				Confiabilidad	Confiabilidad
	DISTRITOS	LAT(°)	LONG(°)	98%	50%
				T _{max98%} (°C)	T _{max50%} (°C)
18	Saposoa	-6.9333	-76.7717	67.22	62.46
19	Tabalosos	-6.3886	-76.6833	65.10	60.28
20	Uchiza	-8.4588	-76.4619	64.63	59.45
21	Alonso de Alvarado	-6.3558	-76.7747	65.10	60.28
22	San Martín	-6.5138	-76.7408	65.09	60.28
23	Nuevo Progreso	-8.4516	-76.3242	64.63	59.45
24	Picota	-6.9205	-76.3303	68.01	63.58
25	Caynarachi	-6.3305	-76.2842	68.26	63.51
26	Polvora	-7.9080	-76.6683	60.67	55.92
27	Shamboyacu	-7.0238	-76.1325	68.01	63.57
28	Chazuta	-6.5713	-76.1289	68.25	63.50
29	Alto Biavo	-7.2552	-76.4769	67.18	62.88
30	Huicungo	-7.3166	-76.7769	64.59	60.20
31	Pinto Recodo	-6.3791	-76.6044	65.10	60.28
32	San Pablo	-6.8081	-76.5747	67.22	62.46
33	Awajun	-5.8161	-77.3836	62.92	56.72
34	Barranquita	-6.2533	-76.0322	68.26	63.51
35	Santa Rosa	-6.7463	-76.6233	65.08	60.27
36	Pachiza	-7.2975	-76.7736	64.59	60.20
37	Sauce	-6.6902	-76.2172	68.24	63.49
38	San Rafael	-7.0233	-76.4661	68.01	63.57
39	Santa Lucía	-8.3472	-76.3858	64.63	59.45
40	Zapatero	-6.5305	-76.4942	68.25	63.50
41	Pajarillo	-7.1800	-76.6903	67.21	62.45
42	Alto Saposoa	-6.7647	-76.8139	67.22	62.46
43	Calzada	-6.0300	-77.0669	65.01	60.47
44	Piscoyacu	-6.9800	-76.7683	67.21	62.45
45	Juan Guerra	-6.5841	-76.3242	68.25	63.50
46	Tres Unidos	-6.8063	-76.2311	68.02	63.58
47	Rumisapa	-6.4488	-76.4714	68.25	63.50
48	Cacatachi	-6.4622	-76.4514	68.25	63.50
49	Tingo de Ponasa	-6.9358	-76.2539	68.01	63.58
50	Yuracyacu	-5.9305	-77.2264	62.91	56.71
51	San Hilarión	-7.0041	-76.4392	68.01	63.58
52	San Fernando	-5.9014	-77.2692	62.91	56.72
53	Shatoja	-6.5277	-76.7200	65.09	60.27
54	Pucacaca	-6.8494	-76.3411	68.01	63.58

				Confiabilidad	Confiabilidad
	DISTRITOS	LAT(°)	LONG(°)	98%	50%
				T _{max98%} (°C)	T _{max50%} (°C)
55	Buenos Aires	-6.7916	-76.3275	68.02	63.58
56	Yantalo	-5.9738	-77.0208	65.01	60.47
57	Cuñumbuqui	-6.5108	-76.4811	68.25	63.50
58	Huallaga	-7.1311	-76.6486	67.21	62.45
59	El Porvenir	-6.2119	-75.8008	72.47	65.36
60	Yorongos	-6.1391	-77.1442	65.00	60.46
61	Chipurana	-6.3541	-75.7414	70.18	64.72
62	Agua Blanca	-6.7250	-76.6956	65.08	60.27
63	Sacanche	-6.9563	-76.4183	68.01	63.58
64	Caspisapa	-6.9563	-76.4183	68.01	63.58
65	Posic	-6.0191	-77.1619	65.01	60.47
66	Shapaja	-6.5800	-76.2619	68.25	63.50
67	Papaplaya	-6.2452	-75.7906	72.47	65.36
68	El Eslabon	-7.0225	-76.7225	67.21	62.45
69	Shanao	-6.4116	-76.5939	65.09	60.28
70	San Antonio	-6.4091	-76.4064	68.25	63.50
71	San Roque de Cumbaza	-6.3852	-76.4394	68.25	63.50
72	Habana	-6.0802	-77.0917	65.01	60.46
73	Shunte	-8.3633	-76.7286	58.34	53.08
74	San Cristóbal	-6.9925	-76.4183	68.01	63.58
75	Alberto Leveau	-6.6630	-76.2869	68.24	63.49
76	Pilluana	-6.7766	-76.2919	68.02	63.58
77	Tingo de Saposoa	-7.0941	-76.6417	67.21	62.45
78	Huimbayoc	-6.4172	-75.7672	70.17	64.72

De este modo, usando las tablas indicadas en "Requisitos de Calidad del CAP" del capítulo 2 de esta investigación, se pudo calcular el Performance Grade (PG) aplicando el modelo LTPPBind 2004, de todos los distritos de los departamentos de Ucayali, Loreto y San Martín, tal como se puede ver en las tablas 48, 49 y 50 respectivamente.

Tabla 48Performance Grade (PG) aplicando el Modelo LTPPBind 2004 – departamento de Ucayali

		PERFORMANCE GRADE (PG)				
	DISTRITOS	Confiabilidad 98%	Confiabilidad 50%			
		Tmax (°C)	Tmax (°C)			
1	Callería	76	70			
2	Yarinacocha	76	70			
3	Manantay	76	70			
4	Raymondi	70	70			
5	Padre Abad	70	64			
6	Campo Verde	76	70			
7	Irazola	76	70			
8	Iparía	70	70			
9	Masisea	76	70			
10	Neshuya	76	70			
11	Tahuanía	76	70			
12	Curimaná	76	70			
13	Sepahua	76	70			
14	Alexander Von Humboldt	76	70			
15	Nueva Requena	76	70			
16	Boquerón	70	64			
17	Huipoca	70	64			
18	Purús	76	70			
19	Yuruá	76	70			

Tabla 49Performance Grade (PG) aplicando el Modelo LTPPBind 2004 – departamento de Loreto

		PERFORMANCE GRADE (PG)			
	DISTRITOS	Confiabilidad 98%	Confiabilidad 50%		
		Tmax (°C)	Tmax (°C)		
1	Iquitos	70	64		
2	San Juan Bautista	70	64		
3	Yurimaguas	76	70		
4	Punchana	70	64		
5	Belén	70	64		

		PERFORMANCE GRADE (PG)	
	DISTRITOS	Confiabilidad 98%	Confiabilidad 50%
		Tmax (°C)	Tmax (°C)
6	Nauta	70	64
7	Contamana	76	70
8	Requena	70	64
9	Ramón Castilla	70	64
10	Napo	64	64
11	Balsapuerto	76	70
12	Andoas	70	64
13	Barranca	76	70
14	Sarayacu	76	70
15	Mazán	70	64
16	Lagunas	76	70
17	Fernando Lores	70	64
18	San Pablo	64	58
19	Pebas	64	64
20	Indiana	70	64
21	Trompeteros	70	64
22	Yavarí	70	64
23	Manseriche	70	70
24	Maquía	70	64
25	Las Amazonas	64	64
26	Cahuapanas	70	64
27	Tigre	64	64
28	Vargas Guerra	76	70
29	Emilio San Martín	76	64
30	Teniente César López Rojas	76	70
31	Pastaza	76	70
32	Parinari	70	64
33	Pampa Hermosa	76	70
34	Torres Causana	64	64
35	Jenaro Herrera	70	64
36	Jeberos	76	70
37	Puinahua	70	64
38	Putumayo	70	64
39	Morona	70	70
40	Santa Cruz	76	70
41	Alto Nanay	70	64
42	Padre Márquez	76	70

		PERFORMANCE GRADE (PG)	
	DISTRITOS	Confiabilidad 98%	Confiabilidad 50%
		Tmax (°C)	Tmax (°C)
43	Saquena	70	64
44	Teniente Manuel Clavero	64	64
45	Yaquerana	70	64
46	Capelo	70	64
47	Inahuaya	76	70
48	Yaguas	70	64
49	Alto Tapiche	76	64
50	Tapiche	70	64
51	Soplín	76	64
52	Rosa Panduro	70	64
53	Urarinas	70	64

Tabla 50Performance Grade (PG) aplicando el Modelo LTPPBind 2004 – departamento de San Martín

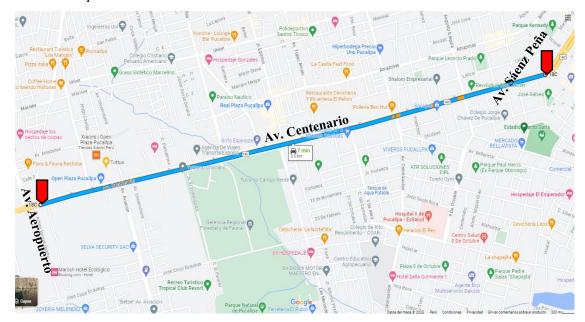
		PERFORMANCE GRADE (PG)	
	DISTRITOS	Confiabilidad 98%	Confiabilidad 50%
		Tmax (°C)	Tmax (°C)
1	Moyobamba	70	64
2	Tarapoto	70	64
3	La Banda de Shilcayo	70	64
4	Nueva Cajamarca	64	58
5	Morales	70	64
6	Juanjuí	70	64
7	Tocache	70	64
8	Rioja	70	64
9	Elías Soplin Vargas	64	58
10	Soritor	70	64
11	Bellavista	70	64
12	Campanilla	70	64
13	San José de Sisa	70	64
14	Pardo Miguel	70	64
15	Lamas	70	64
16	Jepelacio	70	64
17	Bajo Biavo	70	64

		PERFORMANCE GRADE (PG)	
	DISTRITOS	Confiabilidad 98%	Confiabilidad 50%
		Tmax (°C)	Tmax (°C)
18	Saposoa	70	64
19	Tabalosos	70	64
20	Uchiza	70	64
21	Alonso de Alvarado	70	64
22	San Martín	70	64
23	Nuevo Progreso	70	64
24	Picota	70	64
25	Caynarachi	70	64
26	Polvora	70	58
27	Shamboyacu	70	64
28	Chazuta	70	64
29	Alto Biavo	70	64
30	Huicungo	70	64
31	Pinto Recodo	70	64
32	San Pablo	70	64
33	Awajun	64	58
34	Barranquita	70	64
35	Santa Rosa	70	64
36	Pachiza	70	64
37	Sauce	70	64
38	San Rafael	70	64
39	Santa Lucía	70	64
40	Zapatero	70	64
41	Pajarillo	70	64
42	Alto Saposoa	70	64
43	Calzada	70	64
44	Piscoyacu	70	64
45	Juan Guerra	70	64
46	Tres Unidos	70	64
47	Rumisapa	70	64
48	Cacatachi	70	64
49	Tingo de Ponasa	70	64
50	Yuracyacu	64	58
51	San Hilarión	70	64
52	San Fernando	64	58
53	Shatoja	70	64
54	Pucacaca	70	64

		PERFORMANCE GRADE (PG)	
	DISTRITOS	Confiabilidad 98%	Confiabilidad 50%
		Tmax (°C)	Tmax (°C)
55	Buenos Aires	70	64
56	Yantalo	70	64
57	Cuñumbuqui	70	64
58	Huallaga	70	64
59	El Porvenir	76	70
60	Yorongos	70	64
61	Chipurana	76	70
62	Agua Blanca	70	64
63	Sacanche	70	64
64	Caspisapa	70	64
65	Posic	70	64
66	Shapaja	70	64
67	Papaplaya	76	70
68	El Eslabon	70	64
69	Shanao	70	64
70	San Antonio	70	64
71	San Roque de Cumbaza	70	64
72	Habana	70	64
73	Shunte	64	58
74	San Cristóbal	70	64
75	Alberto Leveau	70	64
76	Pilluana	70	64
77	Tingo de Saposoa	70	64
78	Huimbayoc	76	70

5.2.8 Corrección del Performance Grade (PG) por tráfico y velocidad

Para la corrección del Performance Grade (PG) hallado para los distritos de las regiones de Ucayali, Loreto y San Martín, tanto por tráfico como por velocidad, ha sido necesario tomar como referencia datos específicos de algunas tesis de las zonas de estudio.


Para el departamento de Ucayali se empleó la tesis de Meléndez (2016) "Mejoramiento de las Vías alternas desde la Av. Sáenz Peña hasta la Av. Aeropuerto distrito de Callería y Yarinacocha – Provincia de Coronel Portillo – Región de Ucayali" (p.1).

El proyecto mencionado se encuentra localizado al inicio de las intersecciones de la Av. Centenario con la Av. Sáenz Peña y finaliza en la intersección de la Av. Centenario con la Av. Aeropuerto, ambos ubicados entre los distritos de Yarinacocha y Callería. (Meléndez, 2016)

En la figura 21 se aclara la cita de Meléndez.

Figura 21

Ubicación del cruce de la Av. Centenario con la Av. Sáenz Peña y la Av. Centenario con la Av. Aeropuerto

Nota: Adaptado de *Maps*, por Google, 2023 (https://www.google.com/maps/dir/-8.3897339,-74.5705973/-8.3823592,-74.5393918/@-8.3866167,-74.5521322,15.5z/data=!4m2!4m1!3e0?entry=ttu)

En la tesis de Meléndez (2016) se indica que, el ESAL de diseño para la zona mencionada tiene un valor de 20.76*10⁶ y una velocidad de diseño bajo y que, tomando como referencia la tabla 1 de la presente tesis de investigación, se obtuvo el valor de 1, es así que se aumentará dicho valor al Performance Grade (PG) ya hallado en dicha región.

Para el departamento de Loreto se empleó la tesis de Vega (2018) "Diseño de los Pavimentos de la Carretera de acceso al nuevo puerto de Yurimaguas (Km 1+000 a 2+000)" (p.1).

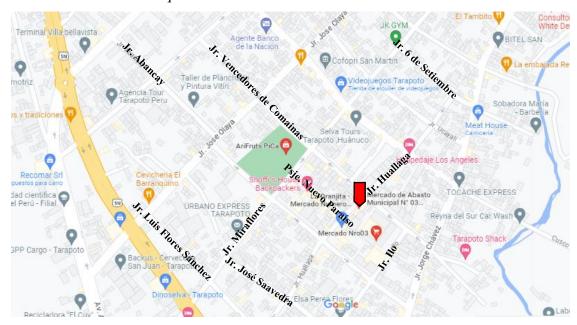
El proyecto mencionado se encuentra localizado en la carretera del subtramo 1 por donde se interconecta la Vía Interoceánica Norte tramo Tarapoto-Yurimaguas con el nuevo puerto de Yurimaguas, el cual está ubicado en el distrito de Yurimaguas. (Vega, 2018) En la figura 22 se aclara la cita de Vega.

Figura 22

Ubicación del trayecto al Nuevo Puerto de Yurimaguas

Nota: Tomado de Diseño de los pavimentos de la carretera de acceso al nuevo puerto de Yurimaguas (KM 1+000 a 2+000), por Vega, 2018.

En la tesis de Vega (2018) se indica que, el ESAL de diseño para la zona mencionada tiene un valor de 12*10⁶ y una velocidad de diseño bajo y que, tomando como referencia la tabla 1 de la presente tesis de investigación, se obtuvo el valor de 1, es así que se aumentará dicho valor al Performance Grade (PG) ya hallado en dicha región.


Para el departamento de San Martín se empleó la tesis de Chávez & Pinedo (2016) "Propuesta de Diseño de Pavimentos y Obras de Drenaje pluvial en la reconstrucción de los Jirones: Miraflores, Huallaga y Otros, Distrito de Tarapoto, Provincia y Región de San Martín" (p. 1).

Chávez & Pinedo (2016) indican que:

El proyecto mencionado se realizó en el Mercado número 03 localizados en el Jirón Miraflores cuadra 03-09, Jirón Huallaga cuadra 01-07, Jirón Ilo cuadra 01-04, Jirón 6 de Setiembre cuadra 01-02, Jirón Vencedores de Comainas cuadra 01-04, Pasaje Nuevo Paraíso cuadra 01, Jirón Abancay cuadra 01-06, Jirón Josué Saavedra cuadra 01-03 y Jirón Luis Flores Sánchez cuadra 01-04, todos ubicados en el Sector Barrio Huayco del distrito de Tarapoto. (p. 2)

En la figura 23 se aclara la cita de Chávez y Pinedo.

Figura 23 *Ubicación de las calles que bordean el Mercado Número 3*

Nota: Tomado de Propuesta de Diseño de Pavimentos y Obras de Drenaje pluvial en la reconstrucción de los Jirones: Miraflores, Huallaga y Otros, Distrito de Tarapoto, Provincia y Región de San Martín, por Chávez & Pinedo, 2016.

En la tesis de Chávez & Pinedo (2016) se indica que, el ESAL de diseño para la zona mencionada tiene un valor de 3.5*10⁶ y una velocidad de diseño bajo y que, tomando como referencia la tabla 1 de la presente tesis de investigación, se obtuvo el valor de 1, es así que se aumentará dicho valor al Performance Grade (PG) ya hallado en dicha región.

Ya con esos datos obtenidos, finalmente se pasó a corregir los valores del Performance Grade para los distritos de los departamentos de Ucayali, Loreto y San Martín tal como se puede ver en tabla 51, 52 y 53 respectivamente.

Tabla 51Performance Grade (PG) corregido del departamento de Ucayali - Modelo LTPPBind 2004

		PERFORMANCE GRADE (PG) CORREGIDO	
	DISTRITOS	Confiabilidad 98%	Confiabilidad 50%
		T _{max} (°C)	T_{max} (°C)
1	Callería	82	76
2	Yarinacocha	82	76
3	Manantay	82	76

		PERFORMANCE GRADE (PG) CORREGIDO	
	DISTRITOS	Confiabilidad 98%	Confiabilidad 50%
	•	T _{max} (°C)	T_{max} (°C)
4	Raymondi	76	76
5	Padre Abad	76	70
6	Campo Verde	82	76
7	Irazola	82	76
8	Iparía	76	76
9	Masisea	82	76
10	Neshuya	82	76
11	Tahuanía	82	76
12	Curimaná	82	76
13	Sepahua	82	76
14	Alexander Von Humboldt	82	76
15	Nueva Requena	82	76
16	Boquerón	76	70
17	Huipoca	76	70
18	Purús	82	76
19	Yuruá	82	76

Tabla 52Performance Grade (PG) corregido del departamento de Loreto - Modelo LTPPBind
2004

		PERFORMANCE GRADE (PG) CORREGIDO	
	DISTRITOS	Confiabilidad 98%	Confiabilidad 50%
		T _{max} (°C)	T _{max} (°C)
1	Iquitos	76	70
2	San Juan Bautista	76	70
3	Yurimaguas	82	76
4	Punchana	76	70
5	Belén	76	70
6	Nauta	76	70
7	Contamana	82	76
8	Requena	76	70
9	Ramón Castilla	76	70
10	Napo	70	70
11	Balsapuerto	82	76
12	Andoas	76	70

		PERFORMANCE GRADE (PG) CORRECT	
	DISTRITOS	Confiabilidad 98%	Confiabilidad 50%
		T _{max} (°C)	T _{max} (°C)
13	Barranca	82	76
14	Sarayacu	82	76
15	Mazán	76	70
16	Lagunas	82	76
17	Fernando Lores	76	70
18	San Pablo	70	64
19	Pebas	70	70
20	Indiana	76	70
21	Trompeteros	76	70
22	Yavarí	76	70
23	Manseriche	76	76
24	Maquía	76	70
25	Las Amazonas	70	70
26	Cahuapanas	76	70
27	Tigre	70	70
28	Vargas Guerra	82	76
29	Emilio San Martín	82	70
30	Teniente César López Rojas	82	76
31	Pastaza	82	76
32	Parinari	76	70
33	Pampa Hermosa	82	76
34	Torres Causana	70	70
35	Jenaro Herrera	76	70
36	Jeberos	82	76
37	Puinahua	76	70
38	Putumayo	76	70
39	Morona	76	76
40	Santa Cruz	82	76
41	Alto Nanay	76	70
42	Padre Márquez	82	76
43	Saquena	76	70
44	Teniente Manuel Clavero	70	70
45	Yaquerana	76	70
46	Capelo	76	70
47	Inahuaya	82	76
48	Yaguas	76	70
49	Alto Tapiche	82	70

	PERFORMANCE GRADE (PG) CORREGIDO	
DISTRITOS	Confiabilidad 98%	Confiabilidad 50%
	T _{max} (°C)	T _{max} (°C)
50 Tapiche	76	70
51 Soplín	82	70
52 Rosa Panduro	76	70
53 Urarinas	76	70

Tabla 53Performance Grade (PG) corregido del departamento de San Martín - Modelo LTPPBind
2004

		PERFORMANCE GRADE (PG) CORREGIDO	
	DISTRITOS	Confiabilidad 98%	Confiabilidad 50%
		T _{max} (°C)	T _{max} (°C)
1	Moyobamba	76	70
2	Tarapoto	76	70
3	La Banda de Shilcayo	76	70
4	Nueva Cajamarca	70	64
5	Morales	76	70
6	Juanjuí	76	70
7	Tocache	76	70
8	Rioja	76	70
9	Elías Soplin Vargas	70	64
10	Soritor	76	70
11	Bellavista	76	70
12	Campanilla	76	70
13	San José de Sisa	76	70
14	Pardo Miguel	76	70
15	Lamas	76	70
16	Jepelacio	76	70
17	Bajo Biavo	76	70
18	Saposoa	76	70
19	Tabalosos	76	70
20	Uchiza	76	70
21	Alonso de Alvarado	76	70
22	San Martín	76	70
23	Nuevo Progreso	76	70
24	Picota	76	70

DISTRITOS			PERFORMANCE GRADE (PG) CORREGIDO	
25 Caynarachi 76 70 26 Polvora 76 64 27 Shamboyacu 76 70 28 Chazuta 76 70 29 Alto Biavo 76 70 30 Huicungo 76 70 31 Pinto Recodo 76 70 32 San Pablo 76 70 33 Awajun 70 64 34 Barranquita 76 70 35 Santa Rosa 76 70 36 Pachiza 76 70 37 Sauce 76 70 38 San Rafael 76 70 39 Santa Lucía 76 70 40 Zapatero 76 70 41 Pajarillo 76 70 42 Alto Saposoa 76 70 43 Calzada 76 70 44		DISTRITOS	Confiabilidad 98%	Confiabilidad 50%
26 Polvora 76 64 27 Shamboyacu 76 70 28 Chazuta 76 70 29 Alto Biavo 76 70 30 Huicungo 76 70 31 Pinto Recodo 76 70 31 Pinto Recodo 76 70 32 San Pablo 76 70 33 Awajun 70 64 34 Barranquita 76 70 35 Santa Rosa 76 70 36 Pachiza 76 70 37 Sauce 76 70 38 San Rafael 76 70 39 Santa Lucía 76 70 40 Zapatero 76 70 41 Pajarillo 76 70 42 Alto Saposoa 76 70 43 Calzada 76 70 44 Piscoyacu 76 70 45 Jua Guerra 76			T _{max} (°C)	T _{max} (°C)
27 Shamboyacu 76 70 28 Chazuta 76 70 29 Alto Biavo 76 70 30 Huicungo 76 70 31 Pinto Recodo 76 70 32 San Pablo 76 70 33 Awajun 70 64 34 Barranquita 76 70 35 Santa Rosa 76 70 36 Pachiza 76 70 37 Sauce 76 70 38 San Rafael 76 70 39 Santa Lucía 76 70 40 Zapatero 76 70 41 Pajarillo 76 70 42 Alto Saposoa 76 70 43 Calzada 76 70 44 Piscoyacu 76 70 45 Jua Guerra 76 70 47	25	Caynarachi	76	70
28 Chazuta 76 70 29 Alto Biavo 76 70 30 Huicungo 76 70 31 Pinto Recodo 76 70 32 San Pablo 76 70 33 Awajun 70 64 34 Barranquita 76 70 35 Santa Rosa 76 70 36 Pachiza 76 70 37 Sauce 76 70 38 San Rafael 76 70 39 Santa Lucía 76 70 40 Zapatero 76 70 41 Pajarillo 76 70 42 Alto Saposoa 76 70 43 Calzada 76 70 44 Piscoyacu 76 70 45 Juan Guerra 76 70 46 Tres Unidos 76 70 47	26	Polvora	76	64
29 Alto Biavo 76 70 30 Huicungo 76 70 31 Pinto Recodo 76 70 32 San Pablo 76 70 33 Awajun 70 64 34 Barranquita 76 70 35 Santa Rosa 76 70 36 Pachiza 76 70 37 Sauce 76 70 38 San Rafael 76 70 39 Santa Lucía 76 70 40 Zapatero 76 70 41 Pajarillo 76 70 42 Alto Saposoa 76 70 43 Calzada 76 70 44 Piscoyacu 76 70 45 Juan Guerra 76 70 46 Tres Unidos 76 70 47 Rumisapa 76 70 48 Cacatachi 76 70 49 Tingo de Ponasa 76<	27	Shamboyacu	76	70
30 Huicungo 76 70 31 Pinto Recodo 76 70 32 San Pablo 76 70 33 Awajun 70 64 34 Barranquita 76 70 35 Santa Rosa 76 70 36 Pachiza 76 70 37 Sauce 76 70 38 San Rafael 76 70 39 Santa Lucía 76 70 40 Zapatero 76 70 41 Pajarillo 76 70 42 Alto Saposoa 76 70 43 Calzada 76 70 44 Piscoyacu 76 70 45 Juan Guerra 76 70 46 Tres Unidos 76 70 47 Rumisapa 76 70 48 Cacatachi 76 70 49 Tingo de Ponasa 76 70 50 Yuracyacu 70 64 51 San Hilarión 76 70 52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca	28	Chazuta	76	70
31 Pinto Recodo 76 70 32 San Pablo 76 70 33 Awajun 70 64 34 Barranquita 76 70 35 Santa Rosa 76 70 36 Pachiza 76 70 37 Sauce 76 70 38 San Rafael 76 70 39 Santa Lucía 76 70 40 Zapatero 76 70 41 Pajarillo 76 70 42 Alto Saposoa 76 70 43 Calzada 76 70 44 Piscoyacu 76 70 45 Juan Guerra 76 70 46 Tres Unidos 76 70 47 Rumisapa 76 70 48 Cacatachi 76 70 49 Tingo de Ponasa 76 70 50 Yuracyacu 70 64 51 San Hilarión 76 70 52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca 76 70 55 Buenos A	29	Alto Biavo	76	70
32 San Pablo 76 70 33 Awajun 70 64 34 Barranquita 76 70 35 Santa Rosa 76 70 36 Pachiza 76 70 37 Sauce 76 70 38 San Rafael 76 70 39 Santa Lucía 76 70 40 Zapatero 76 70 41 Pajarillo 76 70 42 Alto Saposoa 76 70 43 Calzada 76 70 44 Piscoyacu 76 70 45 Juan Guerra 76 70 46 Tres Unidos 76 70 47 Rumisapa 76 70 48 Cacatachi 76 70 49 Tingo de Ponasa 76 70 50 Yuracyacu 70 64 51 San Fernando 70 64 52 San Fernando	30	Huicungo	76	70
33 Awajun 70 64 34 Barranquita 76 70 35 Santa Rosa 76 70 36 Pachiza 76 70 37 Sauce 76 70 38 San Rafael 76 70 39 Santa Lucía 76 70 40 Zapatero 76 70 41 Pajarillo 76 70 42 Alto Saposoa 76 70 43 Calzada 76 70 44 Piscoyacu 76 70 45 Juan Guerra 76 70 46 Tres Unidos 76 70 47 Rumisapa 76 70 48 Cacatachi 76 70 49 Tingo de Ponasa 76 70 50 Yuracyacu 70 64 51 San Fernando 70 64 52 San Fernando 70 64 53 Shatoja 76	31	Pinto Recodo	76	70
34 Barranquita 76 70 35 Santa Rosa 76 70 36 Pachiza 76 70 37 Sauce 76 70 38 San Rafael 76 70 39 Santa Lucía 76 70 40 Zapatero 76 70 41 Pajarillo 76 70 42 Alto Saposoa 76 70 43 Calzada 76 70 44 Piscoyacu 76 70 45 Juan Guerra 76 70 46 Tres Unidos 76 70 47 Rumisapa 76 70 48 Cacatachi 76 70 49 Tingo de Ponasa 76 70 50 Yuracyacu 70 64 51 San Hilarión 76 70 52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca	32	San Pablo	76	70
35 Santa Rosa 76 70 36 Pachiza 76 70 37 Sauce 76 70 38 San Rafael 76 70 39 Santa Lucía 76 70 40 Zapatero 76 70 41 Pajarillo 76 70 42 Alto Saposoa 76 70 43 Calzada 76 70 44 Piscoyacu 76 70 44 Piscoyacu 76 70 45 Juan Guerra 76 70 46 Tres Unidos 76 70 47 Rumisapa 76 70 48 Cacatachi 76 70 49 Tingo de Ponasa 76 70 50 Yuracyacu 70 64 51 San Hilarión 76 70 52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca 76	33	Awajun	70	64
36 Pachiza 76 70 37 Sauce 76 70 38 San Rafael 76 70 39 Santa Lucía 76 70 40 Zapatero 76 70 41 Pajarillo 76 70 42 Alto Saposoa 76 70 43 Calzada 76 70 44 Piscoyacu 76 70 45 Juan Guerra 76 70 46 Tres Unidos 76 70 47 Rumisapa 76 70 48 Cacatachi 76 70 49 Tingo de Ponasa 76 70 50 Yuracyacu 70 64 51 San Hilarión 76 70 52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca 76 70 55 Buenos Aires 76 70 56 Yantalo 76 70 57 Cuñumbuqui 76 70 58 Huallaga 76 70 59 El Porvenir 82 76 60 Yorongos	34	Barranquita	76	70
37 Sauce 76 70 38 San Rafael 76 70 39 Santa Lucía 76 70 40 Zapatero 76 70 41 Pajarillo 76 70 42 Alto Saposoa 76 70 43 Calzada 76 70 44 Piscoyacu 76 70 45 Juan Guerra 76 70 46 Tres Unidos 76 70 47 Rumisapa 76 70 48 Cacatachi 76 70 49 Tingo de Ponasa 76 70 50 Yuracyacu 70 64 51 San Hilarión 76 70 52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca 76 70 55 Buenos Aires 76 70 56 Yantalo 76 70 58 Huallaga 7	35	Santa Rosa	76	70
38 San Rafael 76 70 39 Santa Lucía 76 70 40 Zapatero 76 70 41 Pajarillo 76 70 42 Alto Saposoa 76 70 43 Calzada 76 70 44 Piscoyacu 76 70 45 Juan Guerra 76 70 46 Tres Unidos 76 70 47 Rumisapa 76 70 48 Cacatachi 76 70 49 Tingo de Ponasa 76 70 50 Yuracyacu 70 64 51 San Hilarión 76 70 52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca 76 70 55 Buenos Aires 76 70 56 Yantalo 76 70 57 Cuñumbuqui 76 70 58 Huallaga	36	Pachiza	76	70
39 Santa Lucía 76 70 40 Zapatero 76 70 41 Pajarillo 76 70 42 Alto Saposoa 76 70 43 Calzada 76 70 44 Piscoyacu 76 70 45 Juan Guerra 76 70 46 Tres Unidos 76 70 47 Rumisapa 76 70 48 Cacatachi 76 70 49 Tingo de Ponasa 76 70 50 Yuracyacu 70 64 51 San Hilarión 76 70 52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca 76 70 55 Buenos Aires 76 70 56 Yantalo 76 70 57 Cuñumbuqui 76 70 58 Huallaga 76 70 59 El Porvenir	37	Sauce	76	70
40 Zapatero 76 70 41 Pajarillo 76 70 42 Alto Saposoa 76 70 43 Calzada 76 70 44 Piscoyacu 76 70 45 Juan Guerra 76 70 46 Tres Unidos 76 70 47 Rumisapa 76 70 48 Cacatachi 76 70 49 Tingo de Ponasa 76 70 50 Yuracyacu 70 64 51 San Hilarión 76 70 52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca 76 70 55 Buenos Aires 76 70 56 Yantalo 76 70 57 Cuñumbuqui 76 70 58 Huallaga 76 70 59 El Porvenir 82 76 60 Yorongos 76 70	38	San Rafael	76	70
41 Pajarillo 76 70 42 Alto Saposoa 76 70 43 Calzada 76 70 44 Piscoyacu 76 70 45 Juan Guerra 76 70 46 Tres Unidos 76 70 47 Rumisapa 76 70 48 Cacatachi 76 70 49 Tingo de Ponasa 76 70 50 Yuracyacu 70 64 51 San Hilarión 76 70 52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca 76 70 55 Buenos Aires 76 70 56 Yantalo 76 70 57 Cuñumbuqui 76 70 58 Huallaga 76 70 59 El Porvenir 82 76 60 Yorongos 76 70	39	Santa Lucía	76	70
42 Alto Saposoa 76 70 43 Calzada 76 70 44 Piscoyacu 76 70 45 Juan Guerra 76 70 46 Tres Unidos 76 70 47 Rumisapa 76 70 48 Cacatachi 76 70 49 Tingo de Ponasa 76 70 50 Yuracyacu 70 64 51 San Hilarión 76 70 52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca 76 70 55 Buenos Aires 76 70 56 Yantalo 76 70 57 Cuñumbuqui 76 70 58 Huallaga 76 70 59 El Porvenir 82 76 60 Yorongos 76 70	40	Zapatero	76	70
43 Calzada 76 70 44 Piscoyacu 76 70 45 Juan Guerra 76 70 46 Tres Unidos 76 70 47 Rumisapa 76 70 48 Cacatachi 76 70 49 Tingo de Ponasa 76 70 50 Yuracyacu 70 64 51 San Hilarión 76 70 52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca 76 70 55 Buenos Aires 76 70 56 Yantalo 76 70 57 Cuñumbuqui 76 70 58 Huallaga 76 70 59 El Porvenir 82 76 60 Yorongos 76 70	41	Pajarillo	76	70
44 Piscoyacu 76 70 45 Juan Guerra 76 70 46 Tres Unidos 76 70 47 Rumisapa 76 70 48 Cacatachi 76 70 49 Tingo de Ponasa 76 70 50 Yuracyacu 70 64 51 San Hilarión 76 70 52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca 76 70 55 Buenos Aires 76 70 56 Yantalo 76 70 57 Cuñumbuqui 76 70 58 Huallaga 76 70 59 El Porvenir 82 76 60 Yorongos 76 70	42	Alto Saposoa	76	70
45 Juan Guerra 76 70 46 Tres Unidos 76 70 47 Rumisapa 76 70 48 Cacatachi 76 70 49 Tingo de Ponasa 76 70 50 Yuracyacu 70 64 51 San Hilarión 76 70 52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca 76 70 55 Buenos Aires 76 70 56 Yantalo 76 70 57 Cuñumbuqui 76 70 58 Huallaga 76 70 59 El Porvenir 82 76 60 Yorongos 76 70	43	Calzada	76	70
46 Tres Unidos 76 70 47 Rumisapa 76 70 48 Cacatachi 76 70 49 Tingo de Ponasa 76 70 50 Yuracyacu 70 64 51 San Hilarión 76 70 52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca 76 70 55 Buenos Aires 76 70 56 Yantalo 76 70 57 Cuñumbuqui 76 70 58 Huallaga 76 70 59 El Porvenir 82 76 60 Yorongos 76 70	44	Piscoyacu	76	70
47 Rumisapa 76 70 48 Cacatachi 76 70 49 Tingo de Ponasa 76 70 50 Yuracyacu 70 64 51 San Hilarión 76 70 52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca 76 70 55 Buenos Aires 76 70 56 Yantalo 76 70 57 Cuñumbuqui 76 70 58 Huallaga 76 70 59 El Porvenir 82 76 60 Yorongos 76 70	45	Juan Guerra	76	70
48 Cacatachi 76 70 49 Tingo de Ponasa 76 70 50 Yuracyacu 70 64 51 San Hilarión 76 70 52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca 76 70 55 Buenos Aires 76 70 56 Yantalo 76 70 57 Cuñumbuqui 76 70 58 Huallaga 76 70 59 El Porvenir 82 76 60 Yorongos 76 70	46	Tres Unidos	76	70
49 Tingo de Ponasa 76 70 50 Yuracyacu 70 64 51 San Hilarión 76 70 52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca 76 70 55 Buenos Aires 76 70 56 Yantalo 76 70 57 Cuñumbuqui 76 70 58 Huallaga 76 70 59 El Porvenir 82 76 60 Yorongos 76 70	47	Rumisapa	76	70
50 Yuracyacu 70 64 51 San Hilarión 76 70 52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca 76 70 55 Buenos Aires 76 70 56 Yantalo 76 70 57 Cuñumbuqui 76 70 58 Huallaga 76 70 59 El Porvenir 82 76 60 Yorongos 76 70	48	Cacatachi	76	70
51 San Hilarión 76 70 52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca 76 70 55 Buenos Aires 76 70 56 Yantalo 76 70 57 Cuñumbuqui 76 70 58 Huallaga 76 70 59 El Porvenir 82 76 60 Yorongos 76 70	49	Tingo de Ponasa	76	70
52 San Fernando 70 64 53 Shatoja 76 70 54 Pucacaca 76 70 55 Buenos Aires 76 70 56 Yantalo 76 70 57 Cuñumbuqui 76 70 58 Huallaga 76 70 59 El Porvenir 82 76 60 Yorongos 76 70	50	Yuracyacu	70	64
53 Shatoja 76 70 54 Pucacaca 76 70 55 Buenos Aires 76 70 56 Yantalo 76 70 57 Cuñumbuqui 76 70 58 Huallaga 76 70 59 El Porvenir 82 76 60 Yorongos 76 70	51	San Hilarión	76	70
54 Pucacaca 76 70 55 Buenos Aires 76 70 56 Yantalo 76 70 57 Cuñumbuqui 76 70 58 Huallaga 76 70 59 El Porvenir 82 76 60 Yorongos 76 70	52	San Fernando	70	64
55 Buenos Aires 76 70 56 Yantalo 76 70 57 Cuñumbuqui 76 70 58 Huallaga 76 70 59 El Porvenir 82 76 60 Yorongos 76 70	53	Shatoja	76	70
56 Yantalo 76 70 57 Cuñumbuqui 76 70 58 Huallaga 76 70 59 El Porvenir 82 76 60 Yorongos 76 70	54	Pucacaca	76	70
57 Cuñumbuqui 76 70 58 Huallaga 76 70 59 El Porvenir 82 76 60 Yorongos 76 70	55	Buenos Aires	76	70
58 Huallaga 76 70 59 El Porvenir 82 76 60 Yorongos 76 70	56	Yantalo	76	70
59 El Porvenir 82 76 60 Yorongos 76 70	57	Cuñumbuqui	76	70
60 Yorongos 76 70	58	Huallaga	76	70
	59	El Porvenir	82	76
61 Chipurana 82 76	60	Yorongos	76	70
	61	Chipurana	82	76

		PERFORMANCE GRADE (PG) CORREGIDO	
	DISTRITOS	Confiabilidad 98%	Confiabilidad 50%
		T _{max} (°C)	T _{max} (°C)
62	Agua Blanca	76	70
63	Sacanche	76	70
64	Caspisapa	76	70
65	Posic	76	70
66	Shapaja	76	70
67	Papaplaya	82	76
68	El Eslabon	76	70
69	Shanao	76	70
70	San Antonio	76	70
71	San Roque de Cumbaza	76	70
72	Habana	76	70
73	Shunte	70	64
74	San Cristóbal	76	70
75	Alberto Leveau	76	70
76	Pilluana	76	70
77	Tingo de Saposoa	76	70
78	Huimbayoc	82	76

5.3 Análisis de los resultados

5.3.1 Comparativa de los modelos matemáticos

Al realizar la aplicación del modelo matemático SHRP Original 1994, se obtuvieron resultados los cuales ya se presentaron en las tablas 21, 22 y 23, para las regiones de Ucayali, Loreto y San Martín respectivamente.

De allí se puede observar que la temperatura máxima para una confiabilidad del 98% y 50%, para Ucayali se da en el distrito de Yarinacocha con un valor de 58.16°C y 56.57°C respectivamente, para Loreto se da en el distrito de Barranca con un valor de 59.77°C y 56.78°C respectivamente y para San Martín se da en el distrito de El Porvenir con un valor de 59.03°C y 56.15°C respectivamente. Así también se puede observar que la temperatura mínima para una confiabilidad del 98% y 50%, para Ucayali se da en los distritos de Padre Abad, Boquerón y Huipoca con un valor de 23.79°C y 24.50°C respectivamente, para Loreto se da en el distrito de San Pablo con un valor de 16.76°C y 18.12°C respectivamente y para San Martín se da en el distrito de Shunte con un valor de 15.18°C y 16.35°C respectivamente.

Al realizar la aplicación del modelo matemático SHRP Canadiense, se obtuvieron resultados los cuales ya se presentaron en las tablas 27, 28 y 29 para las regiones de Ucayali, Loreto y San Martín respectivamente.

De allí se puede observar que la temperatura mínima para una confiabilidad del 98% y 50%, para Ucayali se da en los distritos de Padre Abad, Boquerón y Huipoca con un valor de 22.14°C y 22.75°C respectivamente, para Loreto se da en el distrito de San Pablo con un valor de 16.09°C y 17.26°C respectivamente y para San Martín se da en el distrito de Shunte con un valor de 14.74°C y 15.74°C respectivamente.

Al realizar la aplicación del modelo matemático LTPPBind 1996, se obtuvieron resultados los cuales ya se presentaron en las tablas 33, 34 y 35, para las regiones de Ucayali, Loreto y San Martín respectivamente.

De allí se puede observar que la temperatura máxima para una confiabilidad del 98% y 50%, para Ucayali se da en los distritos de Callería, Yarinacocha y Manantay con un valor de 63.28°C y 62.00°C respectivamente, para Loreto se da en el distrito de Santa Cruz con un valor de 63.92°C y en el distrito de Padre Márquez con un valor de 61.71°C respectivamente y para San Martín se da en el distrito de El Porvenir con un valor de 63.54°C y 61.20°C respectivamente. Así también se puede observar que la temperatura mínima para una confiabilidad del 98% y 50%, para Ucayali se da en el distrito de Padre Abad con un valor de 24.17°C y en los distritos de Padre Abad y Huipoca con un valor de 24.68°C respectivamente, para Loreto se da en el distrito de San Pablo con un valor de 19.24°C y 20.22°C respectivamente y para San Martín se da en el distrito de Shunte con un valor de 18.03°C y 18.87°C respectivamente.

Al realizar la aplicación del modelo matemático LTPPBind 1998-2000, se obtuvieron resultados los cuales ya se presentaron en las tablas 39, 40 y 41 para las regiones de Ucayali, Loreto y San Martín respectivamente.

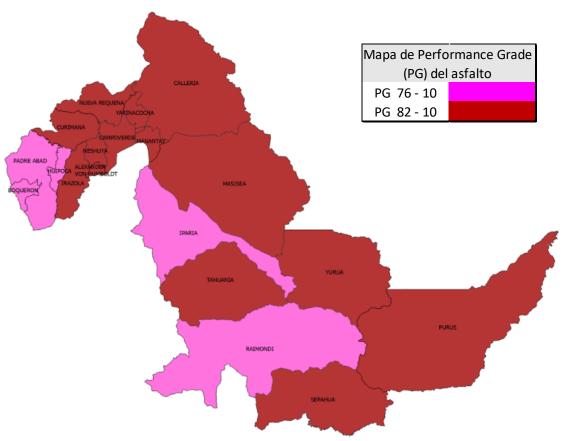
De allí se puede observar que la temperatura máxima para una confiabilidad del 98% y 50%, para Ucayali se da en el distrito de Yarinacocha con un valor de 70.48°C y en los distritos de Callería, Yarinacocha y Manantay con un valor de 64.09°C respectivamente, para Loreto se da en el distrito de Santa Cruz con un valor de 71.92°C y en el distrito de Padre Márquez con un valor de 63.79°C respectivamente y para San Martín se da en los distritos de El Porvenir y Papaplaya con un valor de 71.25°C y el distrito de Huimbayoc con un valor de 62.96°C respectivamente. Así también se puede observar que la temperatura mínima para una confiabilidad del 98% y 50%, para Ucayali se da en el distrito de Padre Abad con un valor de 19.25°C y en los distritos de Padre Abad y Huipoca

con un valor de 23.25°C respectivamente, para Loreto se da en el distrito de San Pablo con un valor de 14.18°C y 18.75°C respectivamente y para San Martín se da en el distrito de Shunte con un valor de 13.02°C y 17.42°C respectivamente.

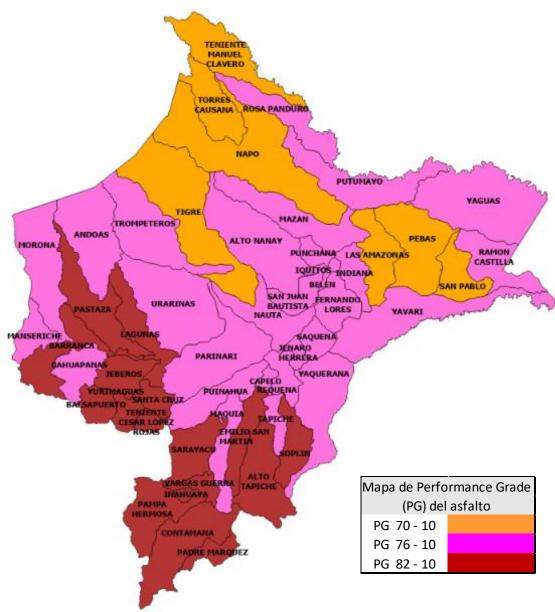
Al realizar la aplicación del modelo matemático LTPPBind 2004, se obtuvieron resultados los cuales ya se presentaron en las tablas 45, 46 y 47 para las regiones de Ucayali, Loreto y San Martín respectivamente.

De allí se puede observar que la temperatura máxima para una confiabilidad del 98% y 50%, para Ucayali se da en el distrito de Yarinacocha con un valor de 71.13°C y en los distritos de Callería, Yarinacocha y Manantay con un valor de 65.91°C respectivamente, para Loreto se da en el distrito de Santa Cruz con un valor de 73.45°C y en el distrito de Barranca con un valor de 65.65°C respectivamente y para San Martín se da en los distritos de El Porvenir y Papaplaya con un valor de 72.47°C y 65.36°C respectivamente.

Teniendo los resultados de los modelos matemáticos SHRP Original 1994, SHRP Canadiense, LTPPBind 1996, LTPPBind 1998-2000 y LTPPBind 2004, se pudo verificar que, en cuanto a las temperaturas máximas, el modelo que presentó valores mayores es el LTPPBind 2004.

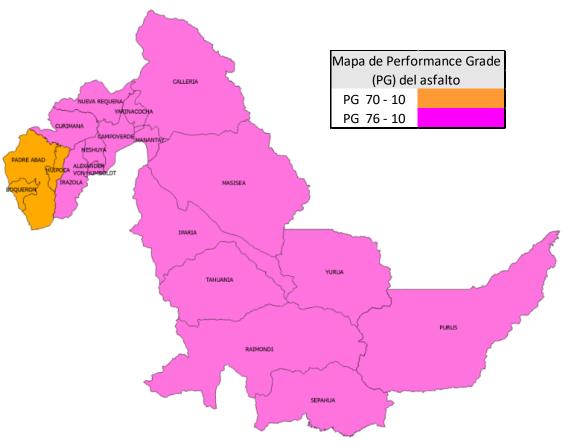

Así también, en cuanto a las temperaturas mínimas, el modelo que presentó valores menores es el LTPPBind 1998-2000.

Por lo tanto, esto sirvió para tomar de referencia que modelos serían ideales para poder tomar sus resultados y con ellos poder realizar el Mapa de Performance Grade (PG) tanto para la confiabilidad del 98% como del 50%.


5.3.2 Mapa de Performance Grade (PG)

Teniendo los cálculos del Performance Grade (PG) de Ucayali, Loreto y San Martín ya corregidos, los cuales se indicaron en las tablas 51, 52 y 53, se procedió a realizar el mapa de Performance Grade (PG) con dichos resultados para cada distrito mediante el software ArcGIS, tal como se puede ver en las figuras 24, 25 y 26 respectivamente para el 98% de confiabilidad y las figuras 27, 28 y 29 para el 50% de confiabilidad respectivamente.

Figura 24Mapa de Performance Grade (PG) con confiabilidad del 98% – Región Ucayali


Figura 25Mapa de Performance Grade (PG) con confiabilidad del 98% – Región Loreto

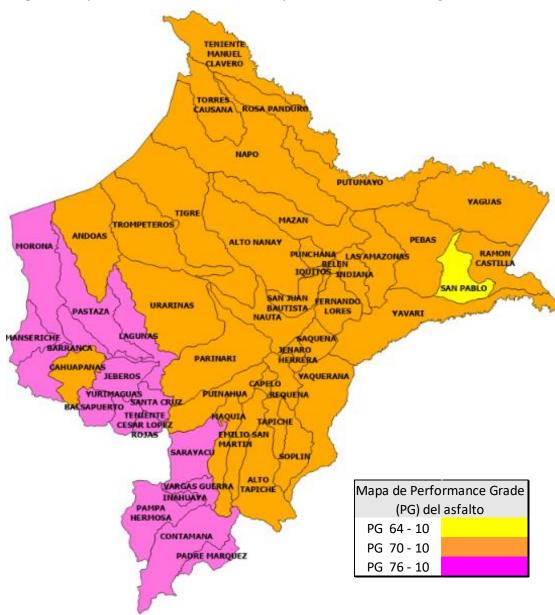

Figura 26Mapa de Performance Grade (PG) con confiabilidad del 98% – Región San Martín

Figura 27Mapa de Performance Grade (PG) con confiabilidad del 50% – Región Ucayali

Figura 28Mapa de Performance Grade (PG) con confiabilidad del 50% – Región Loreto

Nota. Elaboración propia

Figura 29Mapa de Performance Grade (PG) con confiabilidad del 50% – Región San Martín

Nota. Elaboración propia

5.4 Contrastación de hipótesis

5.4.1 Hipótesis específica 1

H1-1: Con los datos identificados se puede calcular el Performance Grade (PG) en las regiones de Ucayali, Loreto y San Martín para la realización del Mapa de Performance Grade (PG) del asfalto.

H0-1: Con los datos identificados no se puede calcular el Performance Grade (PG) en las regiones de Ucayali, Loreto y San Martín para la realización del Mapa de Performance Grade (PG) del asfalto.

Según Najar & Serrano (2022), para realizar los cálculos con los modelos matemáticos, es necesario la data de las temperaturas máximas y mínimas de las estaciones meteorológicas en un rango de 20 años.

Por otro lado, Orellano & Pilco (2021) señalan que:

La data meteorológica que brinda la ANA y SENAMHI están incompletos y no cumplen con las especificaciones de la metodología SUPERPAVE, por lo que la mejor alternativa a ello es el uso del Proyecto Merra-2 de la NASA. De igual manera, consideraron como estaciones meteorológicas a los distritos de las regiones de Cuzco y Puno, indicando que de este modo se obtuvo un resultado más completo al realizar el Mapa de Performance Grade (PG) para dichas zonas. (pp. 19-20)

Así, mediante el uso del Proyecto Merra-2 de la NASA se realizó la recopilación de la data meteorológica (ver anexo J) usando los distritos de las regiones de Ucayali, Loreto y San Martín como estaciones, como se presentan en las tablas 4, 5 y 6. Así, al procesar esa información se pudo calcular el Performance Grade (PG) de cada distrito para la realización del Mapa de Performance Grade (PG).

Por lo tanto, H1-1 es válida.

5.4.2 Hipótesis específica 2

H1-2: Aplicando los modelos matemáticos SHRP y LTPP se calcula el Performance Grade (PG) para la realización del Mapa de Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín para su clasificación mediante la metodología SUPERPAVE.

H0-2: Aplicando los modelos matemáticos SHRP y LTPP no se calcula el Performance Grade (PG) para la realización del Mapa de Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín para su clasificación mediante la metodología SUPERPAVE.

Polanco (2022), señala que las estaciones meteorológicas brindan las temperaturas de aire, sin embargo, se debe calcular la temperatura máxima y mínima del pavimento mediante los modelos matemáticos SHRP Original 1994, SHRP Canadiense, LTPPBind 1996, LTPPBind 1998-2000 y LTPPBind 2004 para luego buscar con cual Performance Grade (PG) encajan.

Así, se obtuvo dichas temperaturas en la región de Ucayali, tal como se ve en las tablas 21, 27, 33, 39 y 45, de Loreto, tal como se ve en las tablas 22, 28, 34, 40 y 46 y San Martín, tal como se ve en las tablas 23, 29, 35, 41 y 47, respectivamente.

E igualmente para cada modelo matemático mencionado se presentan los resultados del Performance Grade (PG) en las tablas 24, 30, 36, 42 y 48 para la región de Ucayali, en las tablas 25, 31, 37, 43 y 49 para la región de Loreto y en las tablas 26, 32, 38, 44 y 50 para San Martín respectivamente. Así, se eligieron las temperaturas mínimas y máximas de los modelos matemáticos LTPPBind 1998-2000 y LTPPBind 2004 respectivamente, para la realización del mapa de Performance Grade (PG).

Por lo tanto, H1-2 es válida.

5.4.3 Hipótesis específica 3

H1- 3: Aplicando las variaciones de acuerdo al tráfico y la velocidad se rectifica el Mapa de Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín. H0-3: Aplicando las variaciones de acuerdo al tráfico y la velocidad no se rectifica el Mapa de Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín.

Según Medina & Terroba (2021), señalan que las correcciones por Grado de Desempeño en relación al tráfico y velocidad en las vías de los expedientes técnicos, los valores de Grado de Desempeño (PG) fueron rectificados tomando en consideración los resultados ESAL y velocidades de diseño, debido a factores por tráfico lento que son influyentes para la corrección del Grado de Desempeño.

De acuerdo a la tesis de Meléndez (2016) "Mejoramiento de las Vías alternas desde la Av. Sáenz Peña hasta la Av. Aeropuerto distrito de Callería y Yarinacocha – Provincia de Coronel Portillo – Región de Ucayali" (p. 1), la aplicación de las variaciones por velocidad de diseño y nivel de tráfico modificará el Grado de Desempeño (PG) en 1 en dicha región, del mismo modo se realizó en las otras regiones en estudio según data de la zona, obteniendo así la misma la rectificación. Todo esto está desarrollado en el capítulo 5.2.8 Corrección del Performance Grade (PG) por Tráfico y Velocidad.

Así, comparando las tablas 48, 49 y 50 las cuales presentan el Performance Grade (PG) sin corrección de Ucayali, Loreto y San Martín respectivamente, con las tablas 51, 52 y 53 las cuales presentan el Performance Grade (PG) corregido de las regiones mencionadas, se puede ver que hay las rectificaciones indicadas previamente. Por lo tanto, H1-3 es válida.

CONCLUSIONES

- 1. Se logró realizar los mapas de Performance Grade (PG) mediante el software ArcGIS para las regiones de Ucayali, Loreto y San Martín las cuales se hicieron con la data de Merra-2 de la NASA tanto para el 98% de confiabilidad, tal como se puede ver en las figuras 24, 25 y 26 respectivamente, como para el 50% de confiabilidad, así como se puede ver en las figuras 27, 28 y 29.
- 2. Durante el desarrollo de la investigación, en vista que el SENAMHI tiene muy poca información referidas a estaciones meteorológicas, se realizaron mediciones satelitales de los 19 distritos de Ucayali, 53 distritos de Loreto y 78 distritos de San Martín, obteniendo así información de 150 puntos en total referidos a las coordenadas geográficas de las zonas en estudio.
- 3. Se aplicaron los modelos matemáticos SHRP Original 1994, SHRP Canadiense, LTPPBind 1996, LTPPBind 1998-2000 y LTPPBind 2004 para las regiones de Ucayali, Loreto y San Martín. Es así que, mediante una comparativa de los mismos, se verificó que el modelo LTPPBind 1998-2000 tenía valores críticos de mínimas temperaturas y que el LTPPBind 2004 tenía valores críticos de máximas temperaturas, ambos en comparación a los demás modelos mencionados; por lo tanto, se tomaron en cuenta dichos modelos para realizar el Mapa de Performance Grade (PG).
- 4. Se realizó la corrección del Performance Grade (PG) por tráfico y velocidad para las regiones de Ucayali, Loreto y San Martín, obteniendo así una rectificación de 1 PG equivalente a 6°C en las tres regiones. Con dichas correcciones se calcularon los valores de las tablas 51, 52 y 53, obteniendo así los resultados presentados en la tabla 54, 55 y 56 respectivamente para las regiones antes mencionadas.

Tabla 54Resumen del PG corregido de Ucayali

Región Ucayali					
Performance Grade (PG) Corregido					
Confiabilidad 98%	Confiabilidad 50%				
PG 76 - 10	PG 70 - 10				
PG 82 - 10	PG 76 - 10				

Nota. Elaboración propia

Tabla 55Resumen del PG corregido de Loreto

Región Loreto				
Performance Grade (PG) Corregido				
Confiabilidad 98%	Confiabilidad 50%			
PG 70 - 10	PG 64 - 10			
PG 76 - 10	PG 70 - 10			
PG 82 - 10	PG 76 - 10			

Nota. Elaboración propia

Tabla 56Resumen del PG corregido de San Martín

Región San Martín				
Performance Grade (PG) Corregido				
Confiabilidad 98%	Confiabilidad 50%			
PG 70 - 10	PG 64 - 10			
PG 76 - 10	PG 70 - 10			
PG 82 - 10	PG 76 - 10			

Nota. Elaboración propia

RECOMENDACIONES

- 1. Se recomienda que los investigadores utilicen el proyecto Merra-2 de la NASA para obtener los datos de las temperaturas máximas y mínimas de los departamentos del Perú, ya que proporciona una data más completa y precisa respecto a SENAMHI. Y aún más si usarán la metodología SUPERPAVE ya que en este sitio podrán obtener datos en el rango de 20 años que es lo que se requiere para dicha metodología.
- 2. Se recomienda tomar como estaciones meteorológicas a los distritos de cada región del Perú, esto para tener valores más precisos al momento de obtener los resultados de Performance Grade (PG), por ende, un Mapa de Performance Grade (PG) que se ajuste más a la realidad climática de la zona.
- 3. Se recomienda evaluar y comparar los resultados de varios modelos matemáticos con el fin de encontrar los resultados más críticos y así realizar una mejor investigación.
- 4. Se recomienda usar el Performance Grade (PG) como el principal tipo de clasificación del asfalto en el Perú, ya que brinda una mejor información sobre su comportamiento frente a esas temperaturas a las que puede estar expuesto. De este modo se ajustará a la realidad climática de la zona donde se aplicará, sobre todo en zonas con climas extremos como es el caso de Ucayali, Loreto y San Martín.
- 5. Se recomienda tener un Mapa de Performance Grade (PG) de todo el Perú ya que facilitaría la obtención del correcto ligante asfáltico a utilizar en la construcción de los pavimentos asfálticos; además, es importante que cada cierto tiempo se actualice dicho mapa con las actualizaciones de las temperaturas y modelos matemáticos.

REFERENCIAS

- Abreu Hernández, D., Alonso Aenlle, A., Garrido Acosta, C., Martínez Rojo, T. & Morales Fournier, J. (22 de agosto de 2020). Determinación & zonificación del grado de desempeño de los asfaltos para Cuba según la metodología Superpave. *Rcientificas*. http://dx.doi.org/10.14482/inde.38.2.620.19
- Aguiar Moya, J., Camacho Garita, E. & Leiva Villacorta, F. (18 de Julio del 2016). Simulación de variables climáticas en ensayos de daño acelerado de pavimentos a escala natural. *LanammeUCR*. https://revistas.ucr.ac.cr/index.php/vial/article/view/29774/29806
- Alcalá Pascual, R. & Delgado Ramirez, C. (2020). *Mapa de Grado de Desempeño (PG)* para ligantes asfálticos según clasificación SUPERPAVE, aplicado en las regiones Lima, Ancash e Ica [Tesis de pregrado, Universidad Ricardo Palma, Lima, Perú]. https://repositorio.urp.edu.pe/handle/20.500.14138/3670
- Arias Sánchez, D., Loría Salazar, L., Sanabria Sandino, J., Velásquez Garnica, P. & Villegas Villegas, R. (2017). Determinación del cemento asfáltico óptimo de acuerdo a su grado de desempeño adecuado a la zona climática del altiplano boliviano.

 lanamme.

 https://www.lanamme.ucr.ac.cr/repositorio/bitstream/handle/50625112500/1025
 /Determinacion%20del%20cemento%20asflatico%20optimo%20de%20acuerdo
 %20a%20su%20grado%20de%20desempe%C3%B1o.pdf?sequence=1&isAllow ed=y
- Arteaga Jaramillo, L. (2017) Comparación de zonificaciones SUPERPAVE para Chile y cuantificación de la influencia del cambio climático en la selección del ligante asfáltico [Tesis de Pregrado, Universidad Técnica Federico Santa María]. https://repositorio.usm.cl/bitstream/handle/11673/24011/3560900258239UTFS
 https://repositorio.usm.cl/bitstream/handle/11673/24011/3560900258239UTFS
 https://repositorio.usm.cl/bitstream/handle/11673/24011/3560900258239UTFS
- Bariani Bernucci, L., Barbosa Soares, J., Goretti da Motta, L. & Pereira Ceratti, J. (2008).

 *Pavimentação asfáltica, Formação Básica para Engenheiros. Abeda. (PDF)

 *Pavimentação Asfáltica: Formação Básica para Engenheiros | Liedi Bernucci and Pereira Ceratti Academia.edu
- Banco Central de Reserva del Perú. (s.f.). *Estadísticas. Información regional*. https://www.bcrp.gob.pe/estadisticas/informacion-regional.html

- Bejarano Benites, W. (2020) Ampliación de pavimentos flexibles reciclados en la construcción de nuevos pavimentos económicos en el Perú-2020 [Tesis de Bachiller, Universidad de Privada del Norte]. https://repositorio.upn.edu.pe/bitstream/handle/11537/24758/Bejarano%20Benites%20Wilson%20Valerio.pdf?sequence=2&isAllowed=n
- Bonilla Miranda, E. (2013) Determinación del tipo de cemento asfáltico según el grado de desempeño, de acuerdo con la zonificación climática y las cargas de tránsito del país [Tesis de Pregrado, Universidad de Costa Rica]. http://repositorio.sibdi.ucr.ac.cr:8080/jspui/handle/123456789/3115
- Cáceres Morales, C. (2007) Análisis de la Metodología SUPERPAVE para el diseño de mezclas asfálticas en México [Tesis de Pregrado, Universidad de las Américas Puebla]. http://catarina.udlap.mx/u_dl_a/tales/documentos/lic/caceres_m_ca/
- Carrasco Rodríguez, A. (2022) Mapa de Grado de Desempeño (PG) de ligantes asfálticos según la metodología SUPERPAVE para la región Cusco al 2021 [Tesis de Pregrado, Universidad Nacional del Cusco]. https://repositorio.uandina.edu.pe/bitstream/handle/20.500.12557/4850/Araceli-Tesis bachiller 2022.pdf?sequence=1&isAllowed=y
- Chang Albitres, C. & Huamán Guerrero, N. (23 de noviembre de 2016). La deformación permanente en las mezclas asfálticas y el consecuente deterioro de los pavimentos asfálticos en el Perú. *Revista urp*.

 http://revistas.urp.edu.pe/index.php/Perfiles_Ingenieria/article/view/402
- Chávez Pisco, J. & Pinedo Hidalgo, A. (2027) Propuesta de diseño de pavimentos y obras de drenaje pluvial en la reconstrucción de los jirones: Miraflores, Huallaga y otros, distrito de Tarapoto, provincia y región de San Martín [Tesis de Pregrado, Universidad Nacional de San Martín-Tarapoto]. https://core.ac.uk/download/pdf/287331833.pdf
- Colegio de Ingenieros del Perú Consejo Nacional. (29 de septiembre de 2000). Webinar Determinación del Grado de Desempeño PG del Asfalto para los Proyectos de Infraestructura Vi [Archivo de Vídeo].

 https://www.youtube.com/watch?v=OYrCzN7ahhA
- Duarte Suarez, L. & Lizcano Carreño, E. (2012). Evaluación de las ventajas y desventajas de usar en Colombia las Especificaciones Técnicas de SUPERPAVE para diseño de mezcla asfáltica convencional [Tesis de Pregrado, Universidad Pontificia Bolivariana Seccional].

- https://repository.upb.edu.co/bitstream/handle/20.500.11912/2157/digital_23947 .pdf?sequence=1&isAllowed=y
- Durand Estrada, A. (2019) Aseguramiento de la calidad en el armado de prefabricado y montaje de tuberías en las unidades HTN-RCA, HTD, FCK Y TGLRG2 para el proyecto de modernización refinería Talara [Tesis de Pregrado, Universidad Nacional de Piura].

 https://repositorio.unp.edu.pe/bitstream/handle/UNP/1809/MIN-DUR-EST-19.pdf?sequence=1&isAllowed=y
- Fernández Gómez, W., Reyes Lizcano, F. & Rondón Quintana, H. (31 de Julio de 2017). Effects of aging by UV radiation on chemical and rheological properties of asphalt cements extracted from two Hot Mixed Asphalts. *Ion.* https://revistas.uis.edu.co/index.php/revistaion/article/view/8205/8208
- Fernández, M. (2008). La energía fósil en el Perú. *Ingeniería Industrial*, (13), 24-60. https://revistas.ulima.edu.pe/index.php/Ingenieria industrial/article/view/2765/2 661
- Galvis, R.(2006). *Mezclas asfálticas y patológicas de las mismas* [Archivo PDF]. https://bdigital.uniquindio.edu.co/bitstream/handle/001/5947/FINAL%20DE%2 0PASANTIA.pdf?sequence=1&isAllowed=y
- Geoportal (2023). *Gobierno Regional de San Martín*. https://geoportal.regionsanmartin.gob.pe
- GOREL (2023). Gobierno Regional de Loreto. https://regionloreto.gob.pe/
- Hinojosa Benavides, R., Parejas Garavito, M., Rojas Carrizales, A. & Torres Gonzales, Y. (agosto 2021). Acción del agua y la temperatura ambiental extrema sobre el pavimento flexible. *gnosiswisdom*.
 - https://journal.gnosiswisdom.pe/index.php/revista/article/view/17/12
- Huamán, N. (2022). Tecnología de los ligantes asfálticos [Diapositiva Power Point].
- Huamán, N. (2022). Los pavimentos y su comportamiento estructural y funcional [Diapositiva Power Point].
- Ibáñez Maldonado, W. (2015) Uso de polímeros en un nuevo diseño para mejorar las propiedades físico mecánicas del asfalto: Contribución para el tramo de la carretera Chilete Cajamarca [Tesis de Pregrado, Universidad Nacional de Cajamarca]. https://repositorio.unc.edu.pe/handle/20.500.14074/1639
- Infraestructura de datos espaciales del Gobierno Regional de Ucayali. (2023). *Región Ucayali*. http://ider.regionucayali.gob.pe/

- Lombardi, A., Montuori, P. y Palmerio, G. (2010). Lima The Historic Center. Analysis and Restoraon Centro histórico. Conocimiento y restauración Centro storico. Conoscenza e restauro. *Gangemi*.
 - https://www.wmf.org/sites/default/files/article/pdfs/Lima-Centro-Storico.pdf
- Matamala Carrasco, C. (2016) Zonificación Climática Sector Lo Orozco, Provincia de Marga Marga para la Clasificación PG SUPERPAVE y su Influencia en el Diseño Estructural del Pavimento de un Tramo de la Ruta F-50: Sector Lo Orozco-Quilpué [Tesis de Pregrado, Universidad de Valparaíso]. http://repositoriobibliotecas.uv.cl/handle/uvscl/10138?locale-attribute=es_ES
- Maxil Coyopotl, R. & Salinas Hernández, M. (2006). *Ventajas y desventajas para el uso de polímeros en el asfalto* [Tesis de Pregrado, Universidad de las Américas Puebla]. http://catarina.udlap.mx/u_dl_a/tales/documentos/lic/maxil_c_r/
- Medina Quispe, R. & Terroba Flores, K. (2021). *Mapa de Grado de Desempeño (PG)*para ligantes asfálticos según la clasificación SUPERPAVE [Tesis de pregrado,
 Universidad Ricardo Palma, Lima, Perú].

 https://repositorio.urp.edu.pe/handle/20.500.14138/4808
- Medium. (30 de Julio de 2018). *La avenida Venezuela*. https://medium.com/@culturaparalima/la-avenida-venezuela-7532e75bd08e
- Meléndez Suarez, P. (2016) Mejoramiento de las vías alternas desde la Av. Sáenz peña hasta la Av. Aeropuerto distrito de Callería y Yarinacocha provincia de Coronel Portillo Región de Ucayali [Tesis de Pregrado, Universidad Alas Peruanas]. https://repositorio.uap.edu.pe/bitstream/handle/20.500.12990/3415/Tesis_Mejoramiento_V%C3%ADas_Distrito.pdf?sequence=1&isAllowed=y
- Mena Abadía, W. (2013) Implementación del modelo climático de la mepdg —aashto 2008 en Colombia para tres condiciones climáticas [Tesis de Maestría, Universidad Eafit]. https://repository.eafit.edu.co/handle/10784/1277
- Ministerio de Transportes y Comunicaciones. (Junio de 2013). *Manual de carreteras*. Especificaciones técnicas generales para construcción EG 2013. <a href="https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/documentos/manuales/MANUALES%20DE%20CARRETERAS%202019/MC-01-13%20Especificaciones%20Tecnicas%20Generales%20para%20Construcci%C3%B3n%20-%20EG-2013%20-%20(Versi%C3%B3n%20Revisada%20-%20JULIO%202013).pdf

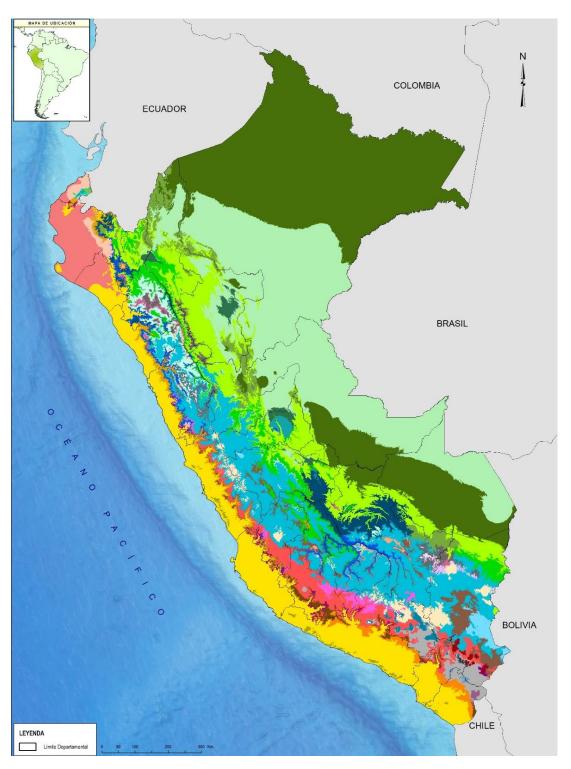
- Najar Alcántara, A. & Serrano Chávez, C. (2022). Mapa de grados de desempeño para ligantes asfálticos según clasificación Superpave, regiones Huancavelica, Ayacucho y Apurímac [Tesis de pregrado, Universidad Ricardo Palma, Lima, Perú]. https://repositorio.urp.edu.pe/handle/20.500.14138/5894
- National Aeronautics and Space Administration. (9 de septiembre de 2022). *Merra* 2. https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
- Orellano Rojas, Y. & Pilco Cáceres, C. (2021). Mapa de Zonificación por Grado de Desempeño (PG) para Cementos Asfalticos de Acuerdo a la Clasificación SUPERPAVE [Tesis de pregrado, Universidad Ricardo Palma, Lima, Perú]. https://repositorio.urp.edu.pe/bitstream/handle/20.500.14138/4976/T030_75677 https://repositorio.urp.edu.pe/bitstream/handle/20.500.14
- Ortiz Henshcell, G. (2021) Análisis del clima para la predicción de Grados de Desempeño empleando el método SUPERPAVE en la carretera Tramo Chincha Alta Huancavelica [Tesis de Pregrado, Universidad de San Martín de Porres]. https://repositorio.usmp.edu.pe/bitstream/handle/20.500.12727/7334/ortiz_mhg.pdf?sequence=1&isAllowed=y
- Perera Lizano, A. (2015) Determinación y análisis de los factores climáticos críticos para el diseño de pavimentos flexibles en Costa Rica [Tesis de Pregrado, Universidad de Costa Rica]. http://repositorio.sibdi.ucr.ac.cr:8080/jspui/handle/123456789/2685
- PETROPERÚ. (2023). *Descripción tipos de sólidos*. https://asfaltos.petroperu.com.pe/descripcion-tipos-solidos.php
- Polanco Peñate, C. A. (2022) Grados de Desempeño PG SUPERPAVE de los ligantes asfálticos requeridos en las principales carreteras pavimentadas de El Salvador [Tesis de Pregrado, Universidad de El Salvador]. https://ri.ues.edu.sv/id/eprint/29648/1/GRADOS%20DE%20DESEMPE%C3%910%20PG%20%20SUPERPAVE%20DE%20LOS%20LIGANTES%20ASF%C3%81LTICOS%20REQUERIDOS%20EN%20LAS%20PRINCIPALES%20CARRE.pdf
- Rubio Torres, E. (2018) Metodología para la construcción de mapas de temperatura basada en la influencia termo-topográfica y el grado de desempeño(PG) aplicada en la selección de cementos asfálticos [Tesis de Pregrado, Universidad

- Michoacana de San Nicolás de Hidalgo]. http://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/3144
- SENAMHI, Ministerio del Ambiente (Mapa climático del Perú). Recuperado el año 2020 de https://www.senamhi.gob.pe/?p=mapa-climatico-del-peru
- Vega Pérrigo, D. (2018). *Diseño de los pavimentos de la carretera de acceso al nuevo puerto de Yurimaguas (km 1+000 a 2+000)* [Tesis de pregrado, Universidad Pontificia Católica del Perú, Lima, Perú]. https://tesis.pucp.edu.pe/repositorio/bitstream/handle/20.500.12404/12088/VEG
 <a href="https://tesis.pucp.edu.pe/repositorio/bitstream/handle/20.500.12404/12088/VEG
 <a href="https://tesis.pucp.edu.pe/repositorio/bitstr
- Vialidad y Transporte (2016) *Problemática y soluciones: Carretera Central.*http://www.institutoivia.org/vcisev/revista%20completa%20VIALIDAD%20Y
 %20TRANSPORTE.pdf
- Vides Berdugo, A. C. (2013) Comparación del desempeño entre mezclas asfálticas MDC

 -2 envejecidas en laboratorio y mezclas en servicio Bogotá [Tesis de Maestría,
 Pontificia Universidad Javeriana].

 https://renati.sunedu.gob.pe/bitstream/sunedu/1597810/1/VidesBerdugoAC.pdf
- Vílchez Carpio, L. & Yerén López, S. (2022). Condiciones meteorológicas que afectan a las propiedades de las mezclas asfálticas [Tesis de pregrado, Universidad Ricardo Palma, Lima, Perú]. https://repositorio.urp.edu.pe/bitstream/handle/20.500.14138/5793/T030_70887

 181_T%20LILIAN%20PATRICIA%20VILCHEZ%20CARPIOYER%C3%89N%20L%C3%93PEZ,%20SILVIA%20CRISTINA.pdf?sequence
 =1
- Witczak, M. & Sotil Chávez, A (2005). Últimos avances de SUPERPAVE: buscando un ensayo que acompañe al método. *Universidad San Ignacio de Loyola. Revista usil* https://repositorio.usil.edu.pe/entities/publication/d8ddf1d9-f4b2-49aa-9efd-74ea60dbd02f

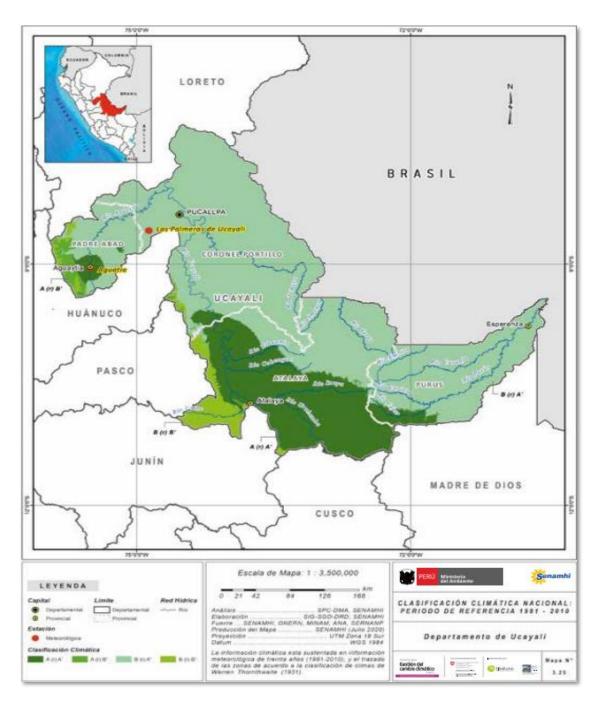

ANEXOS

Anexo A: Matriz de Consistencia

PROBLEMA GENERAL	OBJETIVO GENERAL	HIPÓTESIS GENERAL	VARIABLE INDEPENDIENTE	DIMENSIONES	INDICADORES	METODOLOGÍA
¿Cómo crear el Mapa de Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín	Crear el Mapa de Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín aplicando modelos matemáticos para su	Se puede crear el Mapa de Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín aplicando modelos	Clasificación SUPERPAVE	Modelos Matemáticos para la determinación del	SHRP	
aplicando modelos matemáticos para su clasificación mediante la metodología SUPERPAVE?	clasificación por zonas mediante la metodología SUPERPAVE, año 2023	matemáticos para su clasificación por zonas mediante la metodología SUPERPAVE	SUPERFAVE	Performance Grade (PG).	LTPP	_
PROBLEMAS ESPECÍFICOS	OBJETIVOS ESPECÍFICOS	HIPÓTESIS ESPECÍFICAS	VARIABLE DEPENDIENTE	DIMENSIONES	INDICADORES	
a) ¿Cuáles son los datos que se requieren para calcular el Performance Grade (PG) en las regiones de Ucayali, Loreto y San Martín para la realización del Mapa de Performance Grade (PG) del asfalto? b) ¿Cómo calcular el Performance Grade (PG) al aplicar los modelos matemáticos SHRP y LTPP para la realización del Mapa de Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín para su clasificación mediante la metodología SUPERPAVE?	Mapa de Performance Grade (PG) del asfalto b) Calcular el Performance Grade (PG) aplicando los modelos matemáticos SHRP y LTPP para la realización del Mapa de Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín para su clasificación mediante la metodología SUPERPAVE	a) Con los datos identificados se puede calcular el Performance Grade (PG) en las regiones de Ucayali, Loreto y San Martín para la realización del Mapa de Performance Grade (PG) del asfalto b) Aplicando los modelos matemáticos SHRP y LTPP se calcula el Performance Grade (PG) para la realización del Mapa de Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín para su clasificación mediante la metodología SUPERPAVE	Mapa de Performance Grade (PG)	Delimitación de zonas del Performance Grade (PG)	Clima	Orientación: Aplicada Enfoque: Cuantitativo Nivel: Descriptivo Diseño: No experimental
c) ¿Cuáles serán las correcciones en función al tráfico y la velocidad para el Mapa de	c) Aplicar las correcciones en función al tráfico y la velocidad para el Mapa de Performance Grade (PG) del asfalto	c) Aplicando las correcciones en función al tráfico y la velocidad se rectifica el Mapa de Performance			Tráfico	
Performance Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín	en las regiones de Ucayali, Loreto y San Martín	Grade (PG) del asfalto en las regiones de Ucayali, Loreto y San Martín			Velocidad	

Nota. Elaboración propia

Anexo B: Clasificación de climas del Perú

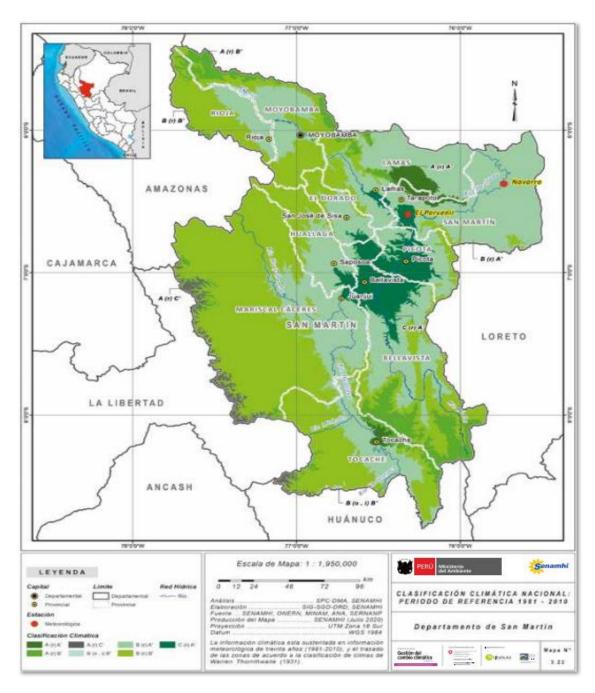

Nota: El anexo muestra un mapa sobre la clasificación realizada por SENAMHI. Tomado de *Mapa de clasificación climática del Perú 1981 - 2010*, por SENAMHI, 2020.

Anexo C: Simbología de los climas del Perú

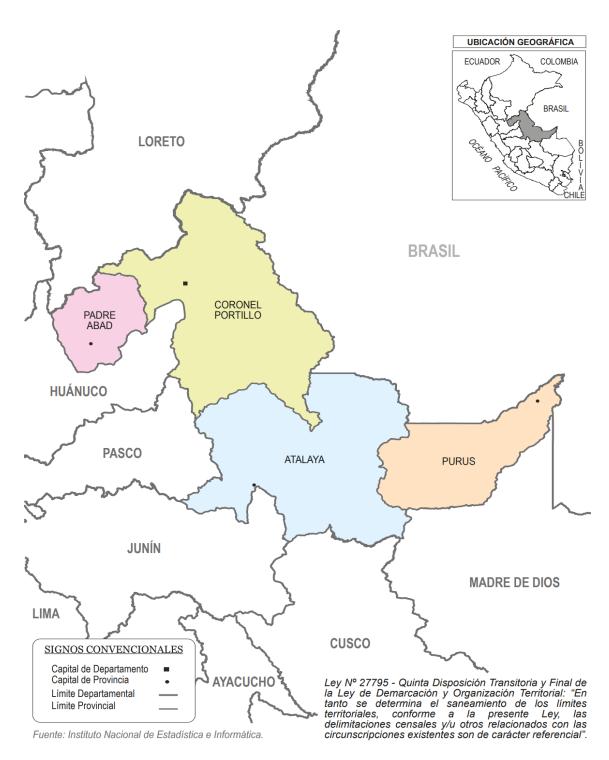
Color	Simbología	Descripción	Color	Simbología	Descripción
	A (r) A'	Muy lluvioso con humedad abundante todas las estaciones del año. Cálido		B (i) D'	Lluvioso con invierno seco. Semifrígido
	A (r) B'	Muy lluvioso con humedad abundante todas las estaciones del año. Templado		B (i) E'	Lluvioso con invierno seco. Frígido
	A (r) C'	Muy lluvioso con humedad abundante todas las estaciones del año. Frío		B (o , i) B'	Lluvioso con otoño e invierno secos. Templado
	A (r) D'	Muy lluvioso con humedad abundante todas las estaciones del año. Semifrígido		B (o , i) C'	Lluvioso con otoño e invierno secos. Frío
	B (i) B'	Lluvioso con invierno seco. Templado		B (o , i) D'	Lluvioso con otoño e invierno secos. Semifrígido
	B (i) C'	Lluvioso con invierno seco. Frío		B (r) A'	Lluvioso con humedad abundante todas las estaciones del año. Cálido
	C (o,i) D'	Semiseco con otoño e invierno secos. Semifrígido		B (r) B'	Lluvioso con humedad abundante todas las estaciones del año. Templado
	C (o,i) E'	Semiseco con otoño e invierno secos. Frígido		B (r) C'	Lluvioso con humedad abundante todas las estaciones del año. Frío
	C (r) A'	Semiseco con humedad abundante todas las estaciones del año. Cálido		B (r) D'	Lluvioso con humedad abundante todas las estaciones del año. Semifrígido
	C (r) B'	Semiseco con humedad abundante todas las estaciones del año. Templado Semiárido con invierno y primavera		C (i,p) A'	Semiseco con invierno y primavera secos. Cálido
	D (i,p) A'	secos. Cálido Semiárido con invierno y primavera		C (i,p) B'	Semiseco con invierno y primavera secos. Templado
	D (i,p) B'	secos. Templado Semiárido con invierno y primavera		C (i) A'	Semiseco con invierno seco. Cálido
	D (i) A'	secos. Frío Semiárido con invierno seco. Cálido		C (i) B'	Semiseco con invierno seco. Templado
	D (i) B'	Semiárido con invierno seco. Templado		C (i) C'	Semiseco con invierno seco. Frío
	D (i) C'	Semiárido con invierno seco. Frío		C (i) D'	Semiseco con invierno seco. Semifrígido
	D (i) D'	Semiárido con invierno seco. Semifrígido		C (i) E'	Semiseco con invierno seco. Frígido
	E (d) A'	Árido con deficiencia de humedad en todas las estaciones del año. Cálido		C (o,i) B'	Semiseco con otoño e invierno secos. Templado
	E (d) B'	Árido con deficiencia de humedad en todas las estaciones del año. Templado Hielo perenne		C (o,i) C'	Semiseco con otoño e invierno secos. Frío


Nota: El anexo muestra una tabla con las descripciones de las simbologías presentadas en la leyenda del anexo B, realizada por SENAMHI. Tomado de *Mapa de clasificación climática del Perú 1981 - 2010*, por SENAMHI, 2020.

Anexo D: Climas del departamento de Ucayali


Nota: El anexo muestra un mapa indicando que la región Ucayali presenta 4 tipos de climas: A (r) A', A (r) B', B (r) A' y B (r) B'. Tomado de *Mapa de clasificación climática del Perú 1981 - 2010*, por SENAMHI, 2020.

Anexo E: Climas del departamento de Loreto


Nota: El anexo muestra un mapa indicando que la región Loreto presenta 4 tipos de climas: A (r) A', A (r) B', B (r) A' y B (r) B'. Tomado de *Mapa de clasificación climática del Perú 1981 - 2010*, por SENAMHI, 2020.

Anexo F: Climas del departamento de San Martín

Nota: El anexo muestra un mapa indicando que la región San Martín presenta 7 tipos de climas: A (r) A', A (r) B', A (r) C', B (o, i) B', B (r) A', B (r) B' y C (r) A'. Tomado de *Mapa de clasificación climática del Perú 1981 - 2010*, por SENAMHI, 2020.

Anexo G: Provincias del departamento de Ucayali

Nota: Tomado de Mapa del departamento de Ucayali, por INEI, 2023.

Anexo H: Provincias del departamento de Loreto

Nota: Tomado de Mapa del departamento de Loreto, por INEI, 2023.

Anexo I: Provincias del departamento de San Martín

Nota: Tomado de Mapa del departamento de San Martín, por INEI, 2023.

Anexo J: Data meteorológica del Proyecto MERRA 2 de la NASA

Mediante el siguiente link se puede acceder a la data meteorológica de cada distrito de las regiones de Ucayali, Loreto y San Martín, la cual fue obtenida del proyecto MERRA 2 de la NASA.

 $\frac{https://drive.google.com/drive/folders/1Zp1tJEX1ONR9DD_ymQw4bYO5kFhuj061?u}{sp=drive_link}$

Anexo K: Cálculos detallados para el cálculo del Performance Grade (PG)

Mediante el siguiente link se puede acceder a la base de datos de los cálculos detallados para la obtención del Performance Grade (PG) de cada distrito de las regiones de Ucayali, Loreto y San Martín.

 $\frac{https://drive.google.com/drive/folders/1EFp6YhKr3NS1uQnoFXfljTQxZOryUHGw?us}{p=drive_link}$