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Abstract
As the power system is becoming more weather-dependent and integrated to meet 
decarbonization targets, the level and severity of uncertainty increase and inevitably 
introduce higher risk of demand rationing or economic loss. This paper reviews the 
representation of uncertainty in power market models for operational planning and 
forecasting. A synthesis of previous reviews is used to find the prevalence of sto-
chastic tools in power and energy system applications, and it concludes that most 
approaches are deterministic. A selection of power market tools handling uncer-
tainty is reviewed in terms of the uncertain parameters they capture, and the meth-
ods used to describe them. These all use probabilistic methods and typically cover 
weather-related uncertainty, including demand. Random outages are also covered by 
several short-term power market models, while uncertainty in fuel and CO

2
 emission 

prices were generally not found to be included, nor other types of uncertainty. A gap 
in power market models representing multiple dimensions of uncertainty, solvable 
on a realistic, large-scale system in a reasonable time, is identified. The paper con-
cludes with a discussion on topics to address when representing uncertainty, where 
the main challenges are that uncertainty can be difficult to describe and quantify, 
and including uncertainty adds additional complexity and computational burden to 
the problem.
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1 Introduction

Current power system development makes modeling electricity markets more 
challenging due to increasing penetration of intermittent and uncertain power 
production caused by variable renewable energy sources (VRE), electrification 
of energy systems and sector-coupling, climate change, and liberalization of mar-
kets. In addition, other developments, such as geopolitics, can significantly affect 
markets, as demonstrated lately by the Russian war in Ukraine and the energy 
shortage in Europe. The impact on the power markets of these factors, in combi-
nation with increasing demand in the wake of the COVID-19 pandemic and more 
extreme weather events, has been record-high European electricity prices [1]. 
This situation was hardly accounted for in any of the analyses a year ahead [2].

The timely question is, which types of uncertainty and unforeseen events are 
current power market models suitable to capture? Extreme and coincidental 
unfortunate incidents might be impossible to handle with modeling tools. There 
are various tools available for analyzing power systems and markets, many of 
which are based on a physical description of the power system and underlying 
costs. These tools are fundamental and can provide transparent explanations to 
complex relationships, enabling the analysis of the market clearing process by 
matching supply and demand and forecasting power prices for both present and 
future systems [3]. However, several assumptions are made when forecasting 
electricity markets due to the numerous uncertain parameters affecting the power 
system and power markets.

Uncertainty arises when describing future outcomes using modeling param-
eters. There are various power market uncertainties emerging from different 
sources, including demand forecasts, wind and solar power production, hydro 
inflow, fuel prices, CO

2
 emission prices, market behavior, and generation and 

transmission capacity availability. Historically, price forecasting and production 
planning in hydrothermal power systems need to account for uncertainty, thus 
it is one of the fields developing and applying stochastic modeling [4]. As the 
power system is experiencing rapid changes to meet decarbonization targets, it is 
expected that uncertainties will impact the operation and planning of the power 
system to a larger extent than previously, and thus there is a need to account for 
uncertainty in modeling tools. The level of uncertainty increases due to the exten-
sive deployment of VRE production, changing policy and regulations, demand 
side management programs, technology development, and a tighter connection 
to other sectors and markets. Moreover, climate change affects weather-driven 
power production and temperature-related demand. Important questions include 
if and how the uncertainty can be described, if and how it affects results and thus 
whether or not it should be accounted for in modeling.

The above-mentioned uncertain factors are different and have distinct char-
acteristics. Some are technological/physical, some are economical, and others 
are regulatory/geopolitical. They differ by what timescales they become impor-
tant and are revealed, by what decisions they affect, and by how they might be 
mathematically described and represented in a model. The description of the 
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uncertain parameter may also depend on the time horizon and the perspective 
of the decision-maker [5]. Uncertainty can thus be classified according to sev-
eral dimensions [6, 7]. Velasquez et al. classify uncertainty in one conceptual and 
three practical dimensions, by its nature, timescale, structure, and source, and it 
serves as a background for how to consider different uncertainties in the transmis-
sion expansion planning modeling process [6], though it is also suitable in other 
contexts. The presence of uncertainty affects decisions on all time scales, includ-
ing operational decisions, planning and expansion decisions, and more long-term 
strategic decisions, and makes decision-making in power markets more challeng-
ing, and the forecasting more complex. An overview of how the Nordic power 
markets are structured, the decision-making process of power producers, and 
what uncertainties affect the different decisions are given by [8].

Uncertainty inevitably introduces risk [6]. Higher levels of uncertainty in power 
systems and power markets therefore lead to increased risk for decision-makers. 
However, this risk will be of a different character depending on the decision-maker’s 
perspective. The reliability and resilience of the power system are of the highest 
priority for system operators [9]. From a system perspective, the risk is therefore 
related to the secure operation of the system, and the system operator will try to 
reduce the risk of blackouts and rationing. From the perspective of a market actor, 
risk due to uncertainty can be in the form of a financial risk, which can entail both 
positive and negative outcomes, or a risk of failing to supply contracted electricity. 
However, growing uncertainty from a system perspective can also provide an oppor-
tunity for market actors, to compete to develop tools accounting for uncertainty in 
forecasting and planning.

Möst et al. point out that the need for decision-support tools in the energy busi-
ness has significantly increased [10]. The literature also suggests that despite adding 
model complexity, decision-makers in power systems should consider uncertainty 
as both the severity of uncertainty increases and new uncertain factors are intro-
duced through market liberalization and higher shares of VRE [11, 12]. Represent-
ing uncertainty will give a more realistic representation of the power markets and 
can provide valuable insight and decision-support. Handling uncertainty, both in the 
long-term and short-term, is critical for many types of decisions and analysis in the 
power system: e.g., operational decisions of a VRE producer, investment decisions, 
evaluating the impact of different energy policies, and the security, reliability, and 
resilience of a power system.

This paper focuses on uncertainty and assesses the representation of uncertainty 
in power market models used by decision-makers in operational planning and fore-
casting today. The review primarily focuses on models developed in Europe or 
applied specifically to hydrothermal power systems. The aim is to identify important 
uncertainties and how these are modeled today, plus to suggest what should be taken 
into account in future research and development.

This paper presents a three-fold contribution. Firstly, it summarizes previous 
review articles on power and energy system models, aiming to determine the preva-
lence of models that account for uncertainty and identify challenges in simulating 
future power systems, specifically focusing on uncertainty. Secondly, it evaluates 
13 power market tools currently used by decision-makers in operational planning 
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and forecasting. The assessment focuses on the consideration of uncertain param-
eters and the methods utilized to address them. Finally, the paper offers a discussion 
regarding the essential factors to consider when conducting forecasts in the presence 
of uncertainty. This includes determining the types of uncertainty to incorporate, 
describing the uncertainty and its correlations, and formulating and solving large-
scale problems efficiently.

The paper is structured as follows: Sect. 2 provides a short overview of methods 
used to describe and manage uncertainty in power systems, including both deter-
ministic and stochastic approaches. Section 3 presents a survey of previous reviews 
of energy and power system tools. The review of power market models handling 
uncertainty is given in Sect. 4, specifically focusing on stochastic optimization tech-
niques implemented in power markets with high penetration of renewable energy, 
particularly hydropower. Section  5 discusses critical considerations and trade-offs 
when formulating power market models under uncertainty. The article concludes in 
Sect. 6.

2  Methods to describe and handle uncertainty

2.1  Uncertainty modeling

Uncertainty modeling generally revolves around different methods to measure the 
impact of uncertain input parameters on the system output parameters [13]. A classi-
fication of uncertainty modeling for decision-making in energy systems is proposed 
by Soroudi and Amraee and includes probabilistic, possibilistic, hybrid possibil-
istic–probabilistic approaches, information gap decision theory, robust optimiza-
tion, and interval analysis [14]. These classifications have been applied in several 
review papers. Figure 1 provides a brief overview of these methods, including how 
the uncertain parameters are described and the advantages or disadvantages of each 
method. The reader is referred to the provided references for a detailed review of 
these methods, as it is outside the scope of this paper.

A comprehensive review of the six uncertainty modeling techniques for power 
system studies is given by [13]. Jordehi et  al. focus on the first three approaches 
in their review and find that probabilistic methods based on probability distribution 
functions (PDFs) are the most used methods to deal with uncertainties in electric 
power systems [11]. Such methods, including Monte Carlo simulation [15] and 
scenario-based analysis, are simple to implement, but the challenge is their com-
putational expensiveness. These methods also require the uncertain input to be 
described by PDFs and do not support uncertain parameters that cannot be described 
probabilistically.

Zakaria et al. give a thorough overview of uncertainty modeling, sampling meth-
ods for scenario generation, and stochastic optimization methods in renewable 
energy applications focusing primarily on Monte Carlo simulations, importance 
sampling, and (approximate) stochastic dynamic programming [12]. Singh et  al. 
review power system uncertainties and approaches to handle uncertainty, focusing 
mainly on probabilistic power flow [7].
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2.2  Deterministic models

The classification of uncertainty modeling provided in Fig. 1 is based on how the 
uncertainty is described, e.g., by PDFs, membership functions, or intervals. There 
are also different methods for dealing with and evaluating uncertainty in power 
system and power market models, and it is common to classify these methods into 
deterministic methods and stochastic methods [16]. A deterministic tool optimizes a 
single deterministic scenario but can be run many times with varying assumptions 
on input data to assess the effects on the results.

Scenario analysis is often used to gain insight into the development of the power 
system under various assumptions. Different values or forecasts for uncertain param-
eters are manually chosen to obtain several scenarios, and the model is solved for 
each scenario [17, 18]. In sensitivity analysis, uncertain parameters are varied one 
at a time to test the impact on model outcomes. Sensitivity analysis is also used 
to test decisions made by the model under varying assumptions to evaluate which 
input parameters impact the output variables most and to find parameter ranges over 
which the decisions remain optimal [18]. However, sensitivity and scenario analysis 
do not give any insight into the probabilities of different events. Probabilistic meth-
ods take into account these probabilities and require that probability distributions 
represent the random parameters. As such, probabilistic methods include both deter-
ministic and stochastic approaches.

Monte Carlo simulation is similar to scenario analysis, but it is a probabilistic 
method that can provide information about the distribution and probabilities of the 
results. A deterministic model is run several times and the scenarios are sampled in 
a structured way based on the PDFs of the uncertain parameters [14]. This method 
is popular, as it allows researchers to analyze a wide range of scenarios, including 
extreme probability scenarios, and provides statistics on the optimal solutions. How-
ever, a large number of scenarios typically have to be considered to obtain stable 
results [19], and different sampling methods exist to reduce the computational bur-
den (e.g., importance sampling) [20]. Scenario analysis, sensitivity analysis, and 
Monte Carlo simulation are standard methods for evaluating uncertainty in power 
system applications, as stochastic models quickly become intractable, especially if 
considering multiple uncertain parameters.

2.3  Stochastic models

In stochastic models, uncertainty is included in the formulation of the model and 
is taken into account in the decision-making. Scenario-based analysis includes 
stochastic programming [21], and similar to Monte Carlo simulation, such meth-
ods also describe uncertainty using PDFs and generate scenarios. However, as 
the uncertainty is represented inside the model, the number of scenarios that 
can be handled within the computational limits of the model is limited. For 
Monte Carlo simulation, the solution time increases proportionally with the 
number of scenarios or samples, while for stochastic programming, the solution 
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time increases exponentially. This typically leads to an unmanageable increase 
in computation time. In stochastic programming, appropriate scenario gen-
eration and reduction techniques are therefore essential to capture the possible 
outcomes by as few scenarios as possible [12]. This area of research has been 
paid increased attention in recent years [22, 23]. When stochastic parameters 
described by PDFs evolve over time, they follow a stochastic process. Scenarios 
can be generated from simulation of the uncertain parameters described by sto-
chastic processes (e.g., mean-reversion processes, auto-regressive processes or 
Markov processes) [3]. Equiprobable scenarios can be determined based directly 
on historical data. Scenarios for short-term models can also be based on weather 
forecasts.

Stochastic models can be formulated as single-stage or multi-stage problems 
[3]. In single-stage formulations, decisions are made at the beginning of the 
planning period, prior to the realization of uncertainty, and no recourse actions 
can be taken. In multi-stage formulations, decisions are taken at several points 
in time as the uncertainty is gradually revealed, and decisions can be adjusted 
when new information arrives. Most problems in power markets resemble multi-
stage problems, but due to the rapid increase in scenarios when there are many 
decision stages and branches in the scenario tree or lattice, these problems are 
often formulated as two-stage problems.

Roald et al. focus on two-stage stochastic optimization and give an overview 
of methods for optimization under uncertainty in power systems, including sto-
chastic programming, chance-constrained optimization, robust optimization, and 
distributionally robust optimization [5]. The authors also discuss some methods 
for representing uncertainty depending on data availability. The different formu-
lations of optimization problems under uncertainty depends on how the uncer-
tainty is described (through scenarios based on PDFs, a set of possible PDFs, 
or an uncertainty set), but also on the risk-preference of the decision-maker. 
How the decision-maker relates to risk, i.e., risk-neutral or risk-averse, can be 
incorporated in decision-support tools by different risk measures. A popular risk 
measure is Conditional Value-at-Risk (CVaR), which is both convex and coher-
ent [24]. The problem can also be formulated in a way that enhances certain 
risk-preferences. Chance-constraint optimization limits the risk of constraint 
violation to a chosen probability [25], while robust optimization and distribu-
tionally robust optimization will find the optimal solution to a problem that min-
imizes the cost of the worst case scenario or distribution [26].

Stochastic methods used in power system operations with high penetration 
of renewable energy, with a particular focus on unit commitment problems, are 
reviewed by [27]. The report emphasizes the stochastic programming formula-
tions, including uncertainty modeling, scenario generation and reduction, solu-
tion algorithms, and chance-constrained, robust, interval, and fuzzy set-based 
formulations. An overview of the deterministic and stochastic methods to handle 
uncertainty in power system applications is illustrated in Fig. 2.
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3  Previous reviews of energy and system models

Several review papers and reports on modeling tools for energy and power systems 
are found in the literature. An overview of this work and its coverage of uncertainty 
is presented in this section. The literature is reviewed to determine the prevalence of 
stochastic tools used in energy and power systems (Sect. 3.1), and to pinpoint trends 
and obstacles related to modeling of the future power system in general (Sect. 3.3), 
with a particular focus on the representation of uncertainty (Sect. 3.2). The review 
papers were also used to identify power market models addressing uncertainty, 
which were then considered for inclusion in the model review of Sect. 4.

The predominant approach of review papers is to review existing literature. 
However, some studies are based on surveys where model developers or users have 
answered a questionnaire [28–30]. The majority of the papers study named models 
or frameworks, while some assess models proposed by academia, or both, and oth-
ers focus more on general findings and not particular tools. The following list sum-
marizes some typical aspects covered by model review papers. The most common 
perspective is to provide a classification of the models, identify trends and highlight 
challenges, or address the suitability of the frameworks for specific applications:

Fig. 2  Deterministic and stochastic methods for addressing uncertainty in power system applications [5, 
27]
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• Provide a classification, taxonomy, or mapping of models [16, 28, 29, 31–40].
• Help analysts and decision-makers choose the appropriate model for their appli-

cations [9, 28, 30, 33, 41–44].
• Focus on a subset of models or specific applications, for example:

– open-source models [45]
– agent-based models [46–48]
– stochastic models [3]
– operational decisions [40]
– planning [49], expansion planning [9], generation expansion planning [18, 50, 

51], or storage expansion planning [17]
– smart grids [36]
– hydrogen energy systems [39]
– storage modeling [52]
– models used in a specific country/region [29, 33, 34]

• Address the suitability of current models for different energy and power system 
applications, for example:

– VRE integration [30, 32, 42, 43, 50]
– developing county applications [53, 54]
– application at island level [38]
– policy analysis [9, 34, 44]
– modeling the impact of electric vehicles [55]
– hybrid renewable energy systems [56]
– integrated community energy systems [57]

• Focus on trends and challenges in tools and approaches [17, 28, 35] or current 
status [49, 58].

• Present a new model and review other models for comparison [52, 59, 60].

Some review papers give a thorough overview of previous review papers on energy 
and power system models [28, 44, 51]. The first two references provide a classifica-
tion of the review papers according to their purpose. Savvidis et al. use four catego-
ries focusing on model description, classification scheme, field of use, and identi-
fication of suitable models [44]. Chang et al. build on the categorization from [44] 
and use seven categories including descriptive overview, classification, practical 
application, inter-comparison and suitability, transparency, accessibility and usabil-
ity, policy relevance, and model linking [28]. Both papers find that almost all review 
papers contain elements from several of these categories. Siala et al. emphasize the 
difference between model reviews and model comparisons. Model reviews discuss 
qualitative properties and usually cover many models or frameworks, while model 
comparisons seek to quantify the impact of different modeling features on the out-
comes [51].

This review paper will not classify review papers but instead address whether 
these papers cover aspects of uncertainty. Table 1 summarizes a diverse selection of 
existing review papers and their primary focus, and indicates if the topic of uncer-
tainty is addressed. Several papers address uncertainty, however only [3] focuses 
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solely on stochastic tools. In the listed work, models are classified according to sev-
eral dimensions. They can be mapped according to their mathematical structure, 
application or purpose, technical detail, availability, technologies they represent, 
grid modeling, spatiotemporal characteristics, treatment of uncertainty, etc. Even 
though addressing uncertainty is seen as increasingly important in decision-making, 
several papers classify models without addressing whether they treat uncertainty or 
not. The following subsection summarizes findings of review papers that have cat-
egorized specific power, or both power and energy system models, to determine how 
frequently stochastic approaches are used.

3.1  Most tools are deterministic

Möst and Keles focus on stochastic methods to support decision-making in liberal-
ized electricity markets [3]. The paper covers the stochastic processes of electric-
ity prices and other relevant commodities, scenario generation and reduction, and 
review 20 stochastic optimization models found in recent literature. The models are 
reviewed in terms of their application (investment decisions, short-/mid-term power 
production planning, and long-term system optimization), uncertain parameters, and 
the stochastic process used to describe the uncertain parameters. However, the main 
focus is modeling uncertainty in electricity prices and other commodities, and most 
of the reviewed tools take electricity prices as an input and are thus not fundamental 
power market models, which is the focus of this review.

Foley et al. also target liberalized markets, and review trends in electricity sys-
tem modeling moving towards increased market complexity from, e.g., VRE inte-
gration [42]. They provide an overview of techniques and models for power systems 
(AURORAxmp, EMCAS, GTMax, PLEXOS, UPLAN, WASP IV, and WILMAR). 
Uncertainty is mentioned for some of the tools related to what parameters are con-
sidered uncertain, and the overall methodology. However, they conclude that in gen-
eral the stochastic nature of VRE is not realistically represented, and that uncertainty 
due to risk and error has not been fully quantified in the modeling [42].

The readiness to analyze increasing levels of VRE is also covered by several 
other review papers, as seen in the introduction of this chapter. Connolly et al. pre-
sent 37 tools suitable for analyzing renewable energy integration [30]. The review 
comprises both energy system and power system models, and several characteristics, 
like type of tool, sectors covered, geographical area, and length of model time-step, 
are given together with a more detailed description of each tool. A structured over-
view of whether the tools are stochastic or deterministic is not provided. However, 
uncertainty is mentioned for about 20% of the tools.

In the same context, Després et al. focus on both long-term energy and power sys-
tem models, and present a topology that includes the general context and positioning 
of the model, the spatiotemporal characteristics, and details on technical and eco-
nomic features [32]. Five modeling tools for the power sector (PRIMES, SWITCH, 
ReEDS, E2M2, and ELMOD) are reviewed and compared according to the proposed 
topology. The topology includes what approach is used to represent production from 
renewable energy sources, i.e., historical, statistically determined, or stochastic, but 
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the aspect of uncertainty is not covered beyond this. Only E2M2 uses a stochastic 
representation of VRE, and this model is further discussed in Sect. 4.

Ringkjøb et al. review 75 state-of-the-art modeling tools for energy and electric-
ity systems capable of addressing challenges faced in today’s energy system, rang-
ing from small-scale power systems to long-term global energy systems [43]. They 
categorize the models into power system analysis tools, operational decision-support 
tools, investment decision-support tools, and scenario tools, and the review aims to 
help decision-makers find the appropriate tool for their problems. They build on the 
topology presented by [32], and conclude that most tools are deterministic and only 
a few of the models take into account the uncertainty of VRE generation.

Planning is an important task in energy and power systems. Both operational 
planning and expansion planning of transmission, generation, and storage capacity 
are covered by works listed in Table 1. Oikonomou et al. focus on models for opera-
tional planning and propose a taxonomy based on four core processes [40]. Twenty-
three operational models are reviewed based on the taxonomy. Generally, uncer-
tainty is incorporated in the optimisation procedures by deterministic or stochastic 
approaches, as depicted in Fig.  2, but only eight of the reviewed tools are found 
to be stochastic. According to Pourbeik et  al., transmission and operational plan-
ning have historically been primarily deterministic, but increased attention has been 
drawn to probabilistic methods as uncertainties in the power system have increased 
[49]. The report reviews 18 planning tools primarily using Monte Carlo simulation 
methods and identifies the limited capability to address market-related uncertainties 
as a gap in commercial software.

Siala et al. review five power market models (DIMENSION, EUREGEN, E2M2, 
Urbs, and HECTOR) used for capacity expansion planning [51]. A comparison is 
made along the four axes of model type, planning horizon, temporal resolution, 
and spatial resolution. The planning horizon can be either intertemporal or myopic, 
which has consequences for the representation of uncertainty. Intertemporal mod-
els assume perfect foresight as the whole time horizon is known. Myopic formula-
tions solve consecutive sub-problems, and decisions made in a certain period are 
arrived at without knowledge of future investment periods. Myopic models avoid 
the unrealistic assumption of perfect foresight. However, a myopic approach does 
not account for the information available regarding the future, such as expected out-
comes. Beyond this, uncertainty is not covered by the paper. Another study, looking 
into long-term uncertainties in generation expansion models, found that uncertainty 
is often overlooked or simplified, that very few papers cover uncertainty in more 
than one input dimension, and that primarily short-term uncertainties are considered 
[61].

Haas et al. review trends and challenges in storage expansion planning models by 
analyzing and classifying 87 papers from 1970 to 2016 [17]. Uncertainty treatment 
and solution method are some of the classification criteria, and they review whether 
the proposed models are deterministic, use scenario analysis, Monte Carlo simula-
tion, or stochastic optimization. The paper gives an overview of how the treatment 
of uncertainty in storage expansion planning models has evolved from 1970 to 2016, 
and what methods are used for different types of uncertainties. They find that uncer-
tainties in capital costs, CO

2
 emission prices, energy costs, VRE integration, and 
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maximum curtailment levels are mainly studied by scenario analysis, but that the 
use of stochastic modeling in research has increased in the last couple of decades. 
However, most storage expansion planning models still have a deterministic formu-
lation, and scenario analysis is the preferred method to account for uncertainty.

Gacitua et al. also review the literature on expansion planning models, but from 
the perspective of energy policy analysis [9]. The authors claim that handling uncer-
tainty is critical when evaluating different energy policies, as uncertainty in, e.g., 
VRE production, load and load growth, technology costs, fuel costs, and water avail-
ability increases the risk associated with investments, and that stochastic modeling 
should be used to increase insight in the results obtained. They find an increased 
focus on stochastic programming, and robust optimization, to account for uncer-
tainty on different timescales. However, a review of 21 existing decision-support 
tools finds that only six of them handle a stochastic representation of VRE. Like-
wise, Koppelaar et  al. found a limited use of techniques dealing with uncertainty 
among 11 German electricity models used for scenario studies [34]. The survey was 
performed to investigate the ability and necessary improvements of available power 
system models to provide system-wide insights for policy purposes. Uncertainty is 
one of the six characteristics covered in the paper, in addition to system scope and 
modeling paradigms (optimization, equilibrium, and simulation), decision structure, 
technological change, and socio-political-technical interactions.

Savvidis et al. also center their research around energy policy questions and pre-
sent a comparison method for energy system models based on four main catego-
ries: model-theoretic specifications, detail of modeling, market representation, and 
general information [44]. The model-theoretic specifications are based on a classi-
fication scheme proposed by [33]. This scheme comprises 14 categories accounting 
for the purpose, structure, approach, mathematical, and technological detail. Uncer-
tainty is only addressed in the criterion describing the underlying methodology, 
which can be stochastic or Monte Carlo. Analysis and categorization of 22 energy 
system models used in the UK reveals that only one of the models uses Monte Carlo, 
and none of the models are stochastic [33]. Savvidis et al. include three additional 
criteria compared to [33], one of which is the representation of uncertainty and risk. 
However, this criterion is merely a yes/no question and does not allow for any infor-
mation on how the uncertainty is modeled. The author provides a linkage between 
policy issues and model features to aid in identifying suitable energy system models 
for specific policy research questions. However, due to the small set of policy ques-
tions and the limited number of models, the modeling of uncertainty is not identified 
as an essential feature nor a gap in addressing the policy issues analyzed.

A broader, but systematic, mapping of 82 power system models available in, or 
used by, European organizations has been developed by [29] and concludes that most 
applied power system tools are deterministic. Both software- and model-related fea-
tures, problems addressed, technologies represented, sectors covered, and applicabil-
ity have been mapped to provide an overview of the models and their applications. 
The survey finds that 37 tools solve stochastic or probabilistic problems, but only 
23 use stochastic programming (the rest use probabilistic Monte Carlo approaches). 
According to the survey, uncertainty in load and renewable energy are given most 
consideration, followed by fuel prices.
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Another review providing a thorough classification is offered by Groissböck et al., 
where 81 functions are proposed to assess the detailed technical capability of mod-
eling tools, including model foresight, risk level, and uncertainty [45]. However, the 
paper only covers whether the functions are considered or not, with no details on 
how they are considered. Despite the high number of functions, the authors state 
that additional aspects could be included, for example, within uncertainty, by con-
sidering scenario tree generation and scenario tree reduction methods. Thirty-one 
open-source optimization models for energy systems are reviewed according to the 
proposed functions. Uncertainty in profiles is considered in eight of the tools, but 
risk is not considered.

From the reviewed literature including uncertainty in the classification or descrip-
tion of the models, it can be concluded that most approaches used in decision-mak-
ing today are deterministic. Several review papers have noted a growing emphasis 
on stochastic techniques and the importance of addressing uncertainty in future 
power and energy system forecasting. However, few of the papers listed in Table 1 
focus on the details of what and how uncertainty is handled in each reviewed tool. 
This review paper explores fundamental power market models for operational use 
that take into account uncertain input data, and it will provide details on the types of 
uncertainty considered and how they are described. First, the next subsections will 
summarize our findings on why uncertainty is often overlooked or simplified, and 
the competing considerations that complicate the modeling of future power systems.

3.2  Challenges and trends in accounting for uncertainty

The main reason for using deterministic approaches over stochastic is the increased 
computational burden from including stochastic parameters [18, 40]. In addition, 
there are challenges related to data availability and data management [40, 49], and 
describing different uncertain parameters and their associated probabilities is not 
straight-forward. When modeling several uncertainties, questions arise regarding 
their correlations and how the occurrences of these uncertain parameters combine 
[3, 18]. The decision-maker must also decide if the tool should convey an attitude 
toward risk, and defining appropriate and acceptable risk-levels can be challenging 
[49]. Lastly, when including uncertainty in models, challenges related to balancing 
uncertainty and transparency [16], and how to interpret results [49], must also be 
addressed.

Many identify uncertainty as a key challenge or gap in power system modeling 
[16, 18, 45] and contend that further efforts in this field are needed, primarily when 
stochastic models are used in supporting decision-making on a daily basis [3, 49]. 
Several directions for future research related to uncertainty modeling are proposed 
in the literature. Fernandez et al. conclude that stochastic or probabilistic approaches 
should be used to deal with the stochastic nature of renewable energy sources, but 
that more attention should be devoted to other uncertain parameters such as hydro 
inflows, thermal power plant availability, investment costs, or policy impacts [29]. 
Möst and Keles find that CO

2
 emission prices are rarely considered uncertain and 

suggest this topic for future research [3]. Treatment of uncertainty both in the 
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long-term and short-term is identified by [18] as one of three gaps offering interest-
ing opportunities for future research on generation expansion models, in addition 
to enhanced representation of operational flexibility and smart grid technologies. 
Developing more efficient scenario reduction and decomposition techniques and 
improving solution methods are areas of future research to address the challenges in 
increased computation time [3, 17].

Some papers also highlight the extreme outcomes of uncertain events. Unex-
pected events that can have a high impact on the power system, but are character-
ized by very low probabilities, are called high-impact low-probability (HILP) events 
[49]. Pourbeik et al. argue that HILP events should be considered in both planning 
and operational studies, and that there are several improvements related to methods, 
data, and software to analyze HILP events adequately [49]. Sufficient knowledge of 
such events is needed, including methods to appropriately represent such events in 
modeling tools. A review focusing on risk assessment in state-of-the-art generation 
expansion models found that investment decisions are significantly influenced by a 
series of economic, political, regulatory, environmental, technical, social, and cli-
mate uncertainties and that they should be considered, at least partially, in the mod-
els to account for the increased level of risk [62]. In addition, extreme events such 
as fluctuations in fuel prices, problems with natural gas or nuclear energy supply, 
and sudden outages from, e.g., terror attacks on energy infrastructure, should also be 
taken into account, especially if the focus of the models is to evaluate investments or 
support security-of-supply.

3.3  General modeling challenges and trends

Several other challenges in power system modeling are identified in the review pro-
cess. The literature suggests that power system models must develop along many 
axes to adapt to the ongoing changes in the power system. To summarize, models 
should have a finer temporal and spatial detail to be able to represent the flexibility 
of storage [17] and the variability and decentralized production of VRE [16, 28, 32]. 
Short-term dynamics must be included in long-term models to verify investments 
and properly evaluate storage assets [43, 52]. Energy storage will play a critical role 
in future power systems as a flexibility provider, and a detailed representation of dif-
ferent storage assets and the time-linking constraints introduced by storage needs to 
be considered to adequately capture the dynamics of future power markets [17, 42, 
52].

A tighter integration between the electricity sector and other sectors such as heat, 
transport, and gas, mainly due to electrification and sector-coupling, must also be 
taken into account in power system models as it adds flexibility to the system but 
also introduces additional uncertainty and risk [28, 40, 43, 63].

In energy and power system models, technical and economic aspects are typi-
cally considered. However, how human behavior (e.g., consumer behavior and tech-
nology deployment) and social aspects (e.g., local opposition to wind farms) affect 
power markets and the development of the power system is challenging to incor-
porate. Social and environmental aspects have been a factor in the development of 
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hydropower projects for a long time, and it is expected that restrictions will become 
tighter in the future. More attention should be paid to human, social, environmental, 
and political factors as they are a primary driver for uncertainty, especially on longer 
time scales [16, 43].

The behavior of different market participants also adds uncertainty in electric-
ity markets, and this behavior is not taken into account in optimization models that 
assume a perfect market. With the transition to deregulated electricity markets, 
there has been a notable increase in the utilization of agent-based models (ABM) 
for simulating strategic behavior and gaining valuable insights [64], and future work 
should focus on reducing the complexity of such models [48] and developing suit-
able learning algorithms [46]. As decision-makers can have several objectives, e.g., 
emission reductions in addition to the most cost-optimal solution, multi-objective 
optimization has gained increased interest to fulfill multiple goals [17, 18]. There is 
also an increased focus on openness, accessibility, and transparency within energy 
and power system modeling [16, 28].

Many of the proposed improvements will, similar to uncertainty treatment, 
increase model complexity. The increasing complexity of power and energy system 
models is evaluated according to temporal, spatial and mathematical complexity, 
and system scope by [37]. The approach to account for uncertainty is a part of the 
mathematical complexity of a model, but it is not discussed further in the paper. The 
study finds that complexity is allocated to prioritize those features and properties 
that are particularly important for the purpose of the tool. Pfenninger et al. suggest 
that complexity can be reduced to allow for more extensive uncertainty and sensi-
tivity analysis [16]. They find it challenging to extend existing large-scale energy 
system models to include stochastic parameters, as only a few scenarios can be con-
sidered within the computational limits. Increased complexity leads to increased 
computational burden and reduced transparency. Computational tractability is iden-
tified as a critical challenge. Scenario reduction and clustering-techniques, decom-
position techniques like Benders decomposition [65], and progressive hedging [66] 
are methods used to make optimization problems tractable [9]. Due to the increased 
complexity and related computational burden of models adapting to address these 
challenges, research should also focus on solution methods and techniques to solve 
these problems [9, 17]. Linking models with different scope and strengths can be 
used to improve modeling without adding complexity [28, 32].

4  Power market models with uncertainty representation

Based on the literature study presented in the previous section (Sect. 3), it can be 
concluded that a proper representation of uncertainty is seen as crucial when devel-
oping power market models. Still, only a few existing frameworks take uncertainty 
into account. Furthermore, many of the presented papers and reports identify if 
uncertainty is regarded, but details on what types of uncertainties are represented 
and how they are described and revealed to the model are not covered. A contribu-
tion to bridging this gap is provided in this section with a more detailed review of 
fundamental power market models handling uncertainty.



 M. Haugen et al.

1 3

Around 200 models for energy and power system applications were identified in 
the initial process of this review, where most tools were found to be either purely 
deterministic or covering several energy sectors, and thus not included in this study 
on fundamental power market models handling uncertainty. To limit the selection 
further, we distinguish between models supporting operational decisions and invest-
ment decisions. However, this distinction is not absolute as some tools can include 
elements of both. Nonetheless, frameworks primarily addressing expansion planning 
problems are not included.

Historically, representation of uncertainty in models for operational planning 
has been important in hydrothermal power systems [4]. With the increasing pen-
etration of intermittent energy sources, uncertainty during the operational phase in 
power systems is likely to increase. Therefore, tools simulating the operation of the 
power system or power market under uncertainty over short or long time horizons 
are reviewed. Furthermore, another challenge in the application of models to realis-
tically sized problems is striking a balance between incorporating modeling details 
and ensuring the problem remains tractable for effective solution. This trade-off 
is most prominent for larger-scaled systems. Therefore, this review’s scope is also 
limited to operational models applied or applicable to a realistic, large-scale system 
typically covering one or several countries. These tools are used for analyzing sys-
tem and market dynamics, in addition to operational decisions and planning. Hence, 
they are used for decision-making or decision-support. This implies that the models 
must be solvable within a reasonable time with realistic input data (e.g., ENTSO-E 
system or Nordic system).

The power market models presented in Table 2 are chosen based on the above 
criteria. Still, the list is not exhaustive, as some models were not included due to 
the limited availability of proper technical/scientific documentation. Furthermore, 
applied tools can have a lot of functionality to fulfill different use cases, but the 
availability of detailed information about all functionalities can be limited. There-
fore, we aim to describe how the model is presented in the provided references 
instead of trying to outline all possible functionality.

This section starts by describing the main characteristics of the tools in Sect. 4.1, 
followed by a review of the uncertain parameters considered and how they are 
described in Sect. 4.2.

4.1  Model overview

Table 2 shows the reviewed models, including the time horizon, the country or 
region in which the tool is primarily used, the main problem addressed, and how 
the model is formulated and solved. Operational tools covering uncertainty are 
found for all time horizons, from models solving the hydrothermal coordina-
tion problem (HTC) or analyzing system adequacy (SA) for long time horizons 
(years), to short-term (days) models solving unit commitment and economic dis-
patch (UC &D) problems or modeling multiple markets (MM). Several coun-
tries and regions are represented, but the majority are developed and applied in 
Europe. The problem formulation describes the structure of the problem that 
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is solved, including how uncertainty is represented on a general level. Most 
reviewed tools are based on stochastic programming, and either solve a multi-
stage/two-stage stochastic linear problem (MSSLP/TSSLP) or a stochastic mixed 
integer linear problem (SMILP). Others use agent-based or Monte Carlo simula-
tion. In agent-based models (ABM), several optimization problems are solved to 
represent the behavior of market participants. These small optimization problems 
can be stochastic, and data from the past and forecasts for the future can be used 
to support the decision-making process of each agent. Notice that all frameworks 
are based on probabilistic approaches, e.g., stochastic programming or Monte 
Carlo simulation, and none use the other stochastic methods shown in Fig. 2.

The recent attention on accounting for weather-related unpredictability in 
renewable power production is not novel to systems that heavily rely on hydro-
power technology. For decades, sophisticated tools solving the long-term hydro-
thermal coordination problem have been implemented in hydropower-dominated 
power systems. These models can be used as benchmarks for introducing uncer-
tainty into power market models. The representation of uncertainty is crucial in 
the long-term operational planning of hydropower assets due to uncertainty about 
future inflow. Hydropower inflow varies on both short and long time scales and 
can have strong seasonal patterns. The long-term storage capacity of reservoirs 
gives rise to the question of whether to produce today or store the water for later. 
The concept of employing stochastic methods for optimal scheduling of reser-
voir hydropower can be traced back to 1946, where Massé [67] argues why deter-
ministic models are too optimistic and the necessity of considering the stochas-
tic nature of future conditions [4]. Today, state-of-the-art hydropower planning 
involves finding the value of the stored water using stochastic multi-stage long-
term power market models, traditionally solved by variants of stochastic dynamic 
programming (SDP) [68] or stochastic dual dynamic programming (SDDP) [69], 
as we see for EMPS, VALORAGUA, NEWAVE, PSR-SDDP, and DOASA. A 
proposed methodology, applied by FanSi, solves a two-stage stochastic problem 
using a rolling horizon approach and Benders decomposition [70]. These models 
are applied in, e.g., the power systems of the Nordic countries, Portugal, Bra-
zil, and New Zealand. In addition to operational planning, such long-term power 
market models are applied by hydropower producers, regulators, and transmission 
system operators for analyzing power systems and investments, and making pre-
dictions about the future.

The ANTARES simulator was developed to address system adequacy and trans-
mission efficiency in the long-term [71]. To analyze system adequacy, a large num-
ber of random variables and possible combinations must be modeled, and sequential 
Monte Carlo simulation is suitable for analyzing all these possible outcomes. E2M2 
is used for both generation expansion (GE) and unit commitment (UC) and has been 
applied to estimate the operational and investment costs associated with integrat-
ing more wind power in the German power system [72]. The problem horizon is 
long-term, but to limit the computational burden, each year is solved sequentially 
in a myopic planning horizon where each year is described by 12 representative 
days. The EMCAS model is used to model electricity market dynamics on several 
time-scales [73]. Agent-based modeling is used to represent the strategic behavior of 
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different market participants with limited knowledge interacting on different layers 
over different planning periods where decisions are made.

Due to increased levels of uncertainty in power markets, representation of uncer-
tainty in short-term market models is becoming more important when solving unit 
commitment and economic dispatch problems [74]. WILMAR and stELMOD solve 
the stochastic mixed-integer linear optimization problem for unit commitment with 
a rolling horizon approach, and cover several markets [75, 76]. Multiple markets are 
also modeled in the short-term tool SiSTEM, where optimization and agent-based 
simulation are combined to sequentially model the day-ahead market, intraday mar-
ket, balancing activation, and imbalance settlement [77]. METIS is a modular tool 
covering the electricity, gas, and heat sector, and it is used by the European Com-
mission to support policy making for electricity and gas [78]. A fundamental power 
market module simulates the successive clearing of markets for reserves, day-ahead, 
intraday, and balancing.

4.2  Uncertain parameters

Table 3 offers an overview of the parameters considered uncertain in the reviewed 
tools. Uncertainty in demand, hydro inflow, VRE production (wind and solar), fuel 
prices, and forced outages were the uncertain parameters found to be represented 
by the reviewed models, i.e., other uncertain factors are represented by one single 
outcome. Most models represent uncertainty in demand and wind power produc-
tion, and all long-term power market models focusing on solving the hydrothermal 
coordination problem include uncertainty in inflow. Random outages of generat-
ing units (or transmission lines) are covered by most of the models not addressing 
hydrothermal coordination. Few power market models include stochastic fuel prices, 
and no models were found to address uncertainty in CO

2
 prices or other uncertain 

parameters.

Table 3  Parameters considered uncertain by the reviewed models

Name and reference Demand VRE Hydro inflow Fuel price Outages

ANTARES [71, 79] x x x x
DOASA [80] x
E2M2 [72, 81] x x
EMCAS [73] x x
EMPS [83] x x x (x)
FanSi [70] x x x (x)
METIS [78] x x x
NEWAVE [84] x x
PSR-SDDP [85] x x x
SiSTEM [77] x x x
stELMOD [76] x
VALORAGUA [87] x x
WILMAR [75] x x x
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Uncertainty in demand, VRE, and hydro inflow is typically represented by most 
of the models included in this review. These are uncertain parameters that can be 
described and represented by PDFs, and often these are estimated based on histori-
cal data. Using historical time series directly as scenarios in stochastic models has 
the benefit that correlations in both time and space are captured. This property is 
hard to identify using sampling methods [70]. Historical series are used for inflow 
scenarios in VALORAGUA, and the uncertainty is revealed in weekly time peri-
ods (weekly perfect foresight) [87]. Historical data is also used in the EMPS model, 
where the probability distributions for the stochastic variables in different weeks are 
calculated based on statistics for actual outcomes for these variables in the past [83], 
and the uncertainty is revealed in weekly decision stages. In DOASA, weekly deci-
sion stages incorporate the use of inflow series sampled from the historical weekly 
inflow series. The inflows are assumed to be stage-wise independent in the model. 
However, inflow is typically stage-wise dependent, and the model can take this 
dependency into account by using an approach called Dependent Inflow Adjustment 
to adjust the inflows, while still assuming they are independent [80].

In the NEWAVE model, uncertainty is revealed in monthly stages, and the energy 
inflows are generated from a statistical monthly energy inflow model based on a 
periodic auto-regressive (PAR(p)) model [84, 88]. This synthetic inflow genera-
tion model has recently been extended to generate monthly multivariate synthetic 
sequences of both inflows and wind speeds, while also considering their correla-
tions [89]. A periodic auto-regressive model is also used to generate inflow data for 
PSR-SDDP [85]. Scenarios for VRE can be provided directly to the model or gener-
ated in a Time Series Lab where a statistical model uses historical data, either from 
real measurements or from synthetic historical records created based on reanalysis 
data, to generate future scenarios for the model. The model supports both weekly 
and monthly decision stages. Uncertainty in demand can be represented by a normal 
distribution. The PSR-SDDP model has the functionality to handle fuel price sce-
narios, but no information is found on how these scenarios combine with the other 
uncertain parameters. In addition, the scenarios are user-defined, and the question 
arises of how to generate good scenarios for fuel prices.

For ANTARES, uncertainty in monthly hydro energies is estimated by a random 
process where the distribution of the monthly energies follows a Log-Normal fit-
ting of the historical data [71]. The auto-correlation of the successive monthly 
hydro energies follows an exponential fitting. Randomized time series for wind 
and load data is generated based on the historical data of wind and temperature. 
The uncertainty is revealed in weekly stages, and correlations in time and space are 
maintained.

For short-term models, uncertainty is typically revealed between the clearing of 
sequential markets. A Scenario Tree Tool is used in the WILMAR model to gener-
ate a multi-stage scenario tree based on historical generation profiles or wind speed 
data, data on electricity demand, and data on outages and the mean time to repair 
[75]. Forecast errors for wind and demand are simulated using an auto-regressive 
moving average (ARMA) time series model. Scenario reduction is performed by 
combining the individual forecast scenarios with the smallest Euclidean distance. 
A scenario tree is also used to represent the stochastic generation from renewable 
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energy sources in stELMOD, where the same Scenario Tree Tool is used to simu-
late forecast errors. In E2M2, uncertainty in wind power production is represented 
by a recombining tree. The method used to generate the tree is also based on the 
Scenario Tree Tool. METIS includes a stochastic module, which simulates power 
plant outages and forecast errors for demand and VRE generation from day-ahead 
to 1-h ahead. The spatial and temporal correlation between temperature (affecting 
demand), wind, and irradiance are preserved, as it builds on historical time series 
[78].

Derating the capacities of power plants and power lines is an easy method to 
take into account random outages in long-term models. However, this method only 
accounts for the loss of production and transmission capacity on average, and the 
actual uncertainty from random outages is not taken into account in the decisions 
made by the model. As a result, this method does not catch the variations that occur 
due to such random outages. This method is used by, e.g., VALORAGUA. It is chal-
lenging to make scenarios for both planned and especially unplanned outages, and to 
know the correlations between such events or the combined probability of failures. 
The forced outages of power plants in the WILMAR tool are simulated with semi-
Markov chains [75]. For ANTARES, both planned and unplanned outages of ther-
mal power plants are also modeled as a semi-Markovian process [71].

From a system perspective, the traditional measure of dealing with uncertainty 
from load forecast errors and unexpected outages of transmission and generation 
capacity has been to allocate reserve capacity in the markets to ensure system secu-
rity. Reserve capacity is activated in the balancing markets to maintain the balance 
between supply and demand in real-time. Reserve requirements can be included in 
deterministic models, and are often based on simple heuristics (e.g., N-1 criteria) 
and static reserve rules, but the trend is moving toward dynamic reserve require-
ments based on forecast uncertainty [27]. In such approaches, uncertainty is not 
explicitly represented when solving a model and procuring reserves, as it would be 
with a stochastic market clearing or a stochastic model. The E2M2 model indirectly 
handles the uncertainty in availability of power plants by estimating reserve require-
ments. These requirements are determined by a probabilistic method where a cumu-
lative outage distribution is calculated for similar generation units that are assumed 
to have the same probability for an unscheduled outage [81].

5  Discussion

The level of uncertainty in decision-making processes in power markets is increas-
ing. To handle the risks associated with uncertainty, knowledge of how the outcome 
of a decision is affected by different realizations of uncertainty, and the probabil-
ity of different unfortunate events, is highly valuable for decision-makers to obtain 
robust and flexible solutions. Such insights can and should be provided by using 
modeling tools. However, there are several questions that must be answered and 
challenges to address when tackling uncertainty, including: 

1. What types of uncertainty have the most impact on the problem being solved?
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2. How can this uncertainty, and its possible correlations, be described?
3. How should the problem be formulated and the uncertainty be revealed to the 

model?
4. How can this large-scale problem be solved in a reasonable time at a desired level 

of accuracy?

In the following, we elaborate on these topics. The questions and challenges should 
not be addressed in isolation as they are highly dependent on each other. The process 
of formulating a power market model to make decisions under uncertainty can be 
summarized in four main steps, as illustrated in Fig. 3.

5.1  Representation of uncertainty

Most often several types of uncertainty are found to have an impact on decision-
making, and a number of assumptions on input data is made when solving a math-
ematical model of the power market. Some assumptions will typically have a higher 
impact on the results than others. What type of uncertainty has the most impact on 
an outcome is highly dependent on the problem that is being solved, and the char-
acteristics of the power system, market design, and policy and regulatory frame-
works. For problems with a long time horizon, some of these factors may them-
selves be uncertain. For example, for VRE investment decisions, uncertainty about 
load growth, support schemes, and emission reduction targets can be important, in 
addition to technology cost. How the impact of uncertain parameters is measured, 
i.e., what risk measure and problem formulation is used, will also guide the decision 
regarding what uncertainty to include or analyze [5].

The time horizon analyzed is also highly relevant to the question of what uncer-
tainties to include. Velasquez et al. categorize uncertainty based on in what time-
scales they are revealed [6]. Short-term uncertainties like hourly load, VRE pro-
duction, and outages are important for short-term operation hours to months ahead. 
Looking years ahead, demand growth, fuel costs, and hydro inflow are examples 
of medium-term uncertainties affecting medium-term planning, like generation 
expansion planning or hydro reservoir operation. For long-term strategic planning 
over decades, consumption patterns, disruptive technologies, and the effects of 
climate change are difficult to predict. Depending on the decision-support needed 
and analysis made, e.g., investment decisions, different policy analysis, power sys-
tem adequacy, hydropower scheduling, or bidding in sequential markets, different 
parameters should therefore be considered uncertain. Due to the increased model 
complexity from adding uncertainty and limited computational resources, care 

Fig. 3  Questions and challenges exist within all steps in the process of developing a power market model 
handling uncertainty
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should be taken in representing the randomness of the uncertain parameters that 
have the strongest effect on the results. Uncertainty that is hard to describe are in 
danger of being left out. One study warns against modeling what is easily quantifi-
able rather than the essential driving variables of the system [16].

In hydropower dominated areas, uncertainty in inflow will have a large impact on 
the outcome of the power market. Similarly, for power markets with a high penetra-
tion of wind power production, uncertainty in wind speed will have a high impact. 
Weather-patterns can vary a lot across all time-scales and, as illustrated in Sect. 3, 
weather-related uncertainty is the type of uncertainty most frequently covered by 
power market models handling uncertainty. To understand the possible future out-
comes of power prices, a correct representation of wind speed, solar radiation, 
inflow, and temperature is critical as the power systems become more weather-
dependent. In addition, uncertainty about the availability of transmission capacity 
and generation units is often included, especially in short-term models.

Some important price drivers associated with uncertainty are fuel and CO
2
 emis-

sion prices. This was especially prominent during 2021 when energy shortage and 
climbing fuel and CO

2
 emission prices resulted in record-high electricity prices 

in Europe. Uncertainty in fuel and CO
2
 prices is generally not represented in the 

reviewed power market models, and the impact of different outcomes has tradition-
ally been assessed by performing scenario or sensitivity analysis. However, the 
overall impact when several uncertain assumptions materialize in a strained power 
situation is difficult to model if the randomness of these factors is not included. In 
addition, the combination of several uncertain factors, including random outages 
of generation and transmission capacity, will help to more accurately capture the 
variation in electricity prices. When examining storage and other flexible assets, it 
is crucial to consider this variation. Moreover, uncertainties that are not considered 
in today’s tools may be of increased importance in future operational power mar-
ket models, and new uncertainties introduced in power systems (e.g., from demand 
response) should be investigated and modeled to obtain realistic results [7].

5.2  Description of uncertainty

There are many different types of uncertainty, and how they can be described will 
depend on the available knowledge and data, and on its structure. The structure of 
uncertainty can be classified as “known”, “unknow”, and “unknowable”, and per-
tains to how the uncertainty can be described mathematically [6]. This is connected 
to the methods for uncertainty modeling briefly presented in Sect. 2.1 and summa-
rized in Fig. 1. “Known” uncertainties are the most structured and can be described 
mathematically by PDFs. “Unknown” uncertainties do not follow a probabilistic pat-
tern and are harder to describe mathematically (e.g., investment costs, outages). A 
common approach is to use intervals or set bounds on the outcome. “Unknowable” 
uncertainties are the least structured type and represent unforeseen events called 
black swans. They can be terror, war, natural disasters, and are best described by 
scenarios. However, assigning probabilities to such scenarios is difficult.
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The relevant time frame will also affect how some parameters are described, as 
the short-term and long-term description might follow different distributions [5]. 
In addition, some parameters are highly correlated in the short-term to the current 
situation, like weather conditions and fuel prices, but the current situation may have 
limited impact on the parameter further into the future. Weather-related uncertainty 
can be predicted quite well a few days ahead based on forecasts, but looking years 
ahead, historic data will provide a better description of the possible outcomes of 
these parameters. However, a description of the past will never be a perfect descrip-
tion of the future, and future outcomes may be distinct from the historical ones. In 
addition, climate change affects weather-patterns, and the historical data may not 
fully represent future weather conditions [90, 91]. One example is the weather 
observed in Norway during 2020 and the preceding years, which is not found in the 
historical data [92]. This makes it questionable whether history is suited for accu-
rately predicting the future. Efforts should therefore be made to adjust the data for 
climate-related changes and develop appropriate techniques to account for this, such 
as evaluating synthetic future scenarios. However, as seen in Sect.  4.2, historical 
time series for weather-related uncertainties are frequently used as scenarios in a 
stochastic model due to their ability to effectively capture the geographic, cross-, 
and auto-correlation of various time series for renewable energy and temperature. 
This is particularly difficult to replicate in synthetic scenarios or probabilistic mod-
els [70, 93].

Regardless of where they come from, many scenarios are needed to accurately 
capture the possible realizations of uncertainty. The number of scenarios must, how-
ever, be limited in a stochastic model to make it tractable, and appropriate scenario 
reduction techniques must be applied. Random parameters that follow stochastic 
processes for which there exist large amounts of historical data can be fitted to prob-
ability distributions and simulated to generate a large amount of scenarios. However, 
the true distributions of the random parameters are not fully known, and distribu-
tionally robust optimization is a method that can handle several possible distribution 
functions. For other types of uncertainty where PDFs are hard to obtain, the possible 
outcomes can be described as intervals or scenarios. Such values can be obtained 
from experts in the field or from other modeling exercises.

Power market outcomes are to an increasing extent affected by weather condi-
tions. Due to the large amount of historical weather data, the stochastic nature of 
VRE, inflow, and temperature can be estimated and included in modeling tools. Ran-
dom outages can also be described relatively easily if their probabilities of occur-
rence, failure rate, and repair rate are known [7]. Although historical data exist for 
electricity prices, fuel prices, and partly CO

2
 prices, these time series cannot directly 

be used to estimate how future prices might develop as they are affected by several 
underlying factors. Alternatives can be to use forward prices, scenarios based on 
expert assessments, or other models to obtain forecasts, e.g., fundamental models of 
gas markets. Other uncertainties can be even harder to predict and describe, and this 
review found no models accounting for “unknowable” uncertainties.

Describing the individual uncertainties is one challenge, but in a power market 
where uncertainties are growing both in number and severity, a key challenge is how 
to capture and describe the combined uncertainty. According to [49], the probability 
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that several random outages happen simultaneously is larger than could be expected 
by assuming all events were independent. When modeling multiple uncertainties, 
there are often correlations that should be taken into account. However, many uncer-
tainty modeling methods are not suited to handling correlations. Weather-related 
uncertainty can be seen as one dimension of uncertainty as it is correlated in time 
and space. This uncertainty is often factored in, as seen in Sect. 4, but its correla-
tion to other uncertain factors are hard to estimate and most research assumes that 
there are no correlations [11]. Developing appropriate techniques for modeling the 
correlation among different uncertain power system parameters in a realistic way is 
identified as a future research need by [11, 94]. In addition, including several dimen-
sions of uncertainty will rapidly increase the number of scenarios in a model when 
these dimensions are combined. One possible solution is to adapt techniques that 
determine the worst or most extreme combinations, if the goal is to find solutions 
that are robust.

5.3  Problem formulation and solving approaches

In addition to what sources of uncertainty to include, how to formulate the prob-
lem under uncertainty is also an important choice [95]. How the uncertainty to con-
sider is described, and the risk preference of the model user, will impact how the 
model is formulated [5]. Two-stage or multi-stage stochastic problem formulations 
are often used as they resemble the interaction between decision-making and the 
arrival of new and updated information. In a short-term multi-market model, deci-
sions on how to bid into the markets are taken in a sequence moving closer to real-
time operations. Uncertainty is reduced between the clearing of different markets as 
more information becomes available and more certain. The long-term hydrothermal 
coordination problem is also often formulated as a multi-stage stochastic problem, 
where the decision stages are weekly or monthly.

Many electricity market models assume a perfect market where all participants 
have access to the same information, and the uncertainty of how different market 
participants will bid into the market is neglected. Under this assumption, optimiza-
tion models are often used. In markets where this assumption is weak, representing 
the behavior of agents can provide valuable insight. After market competition was 
introduced by the deregulation of electricity markets, agent-based modeling gained 
increased attention due to its suitability for representing the behavior of different 
market participants in the electricity markets [64].

The problem formulations can also be deterministic. Solving deterministic tools 
several times will provide insight into what different futures might look like. How-
ever, such methods provide limited support for how to plan as best as possible for 
different outcomes. In a deterministic framework, decisions will never be made 
“just in case”, and the solutions might be sub-optimal if they are based on wrong 
assumptions. The robustness and flexibility of a solution measures its effectiveness 
to withstand uncertainties [18]. The solutions provided by deterministic optimiza-
tion models can be too optimal, e.g., the solutions are vulnerable and hard to modify 
if assumptions on uncertain inputs turn out wrong. A method called modeling to 
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generate alternatives is a structured way to obtain and explore several solutions to an 
optimization problem that are close to optimal [16].

Lastly, as discussed in Sect. 3.3, when formulating a problem under uncertainty, 
the size of the problem increases significantly. To keep the problem manageable, 
it can be split into several problems with different time horizons, levels of detail, 
and time resolutions. Some of the models reviewed in Sect.  4 (e.g., WILMAR, 
NEWAVE, and EMPS) are part of a model hierarchy or scheduling toolchain where 
models with different scope are linked together, and information can be passed 
between the models to refine the results. This allows for different types of uncer-
tainty to be considered, as the problem formulation and time horizon can be custom-
ized for each model. However, as concluded in Sect. 3, the main reason for not using 
stochastic tools is the increased computational burden. Therefore, one of the greatest 
challenges when it comes to including uncertainty in power market models is within 
solving the problems.

Solving huge problems that include a stochastic representation of several uncer-
tain parameters and represent a realistic, large-scale system represents a significant 
task. As elaborated on in Sect. 3.3, the complexity of tools for modeling power sys-
tems and markets is increasing, and advancements in decomposition algorithms and 
solution methods are necessary to cope with the increased problem sizes. Differ-
ent decomposition techniques exist to divide the problem into several sub-problems. 
Examples are Benders decomposition and SDDP based on cutting plane methods 
or dual decomposition and progressive hedging based on Lagrangian relaxation [5]. 
When solving large problems, approximations can be made to obtain a solution at 
the cost of solution quality [21, 96]. Heuristic methods trade precision for speed and 
can also be applied to solve such problems.

In addition to the solution methods described, another challenge is to utilize hard-
ware development in an efficient way to be able to solve ever-growing problems.

5.4  Recommendations

From the reviewed work, it is evident that uncertainty is often covered in model 
reviews addressing expansion planning, policy analysis, system security and ade-
quacy, and long-term storage, or in papers focusing on modeling tools for VRE inte-
gration and liberalized markets. From the reviewed power market models, we find 
that uncertainty is represented in long-term tools for hydrothermal coordination, 
short-term multi-market models including unit commitment and dispatch, and mod-
els for analyzing system adequacy and market dynamics. Uncertainty is thus espe-
cially important to account for in weather-dependent power systems, in managing 
long-term energy storage, for planning investments and supporting decisions with 
limited possibility for recourse action, and for long-term system adequacy analysis.

The main goal of representing uncertainty in decision-support tools is to make 
better decisions, e.g., more cost-beneficial, secure, or risk-reducing, and to provide 
insight into how power markets will evolve under different assumptions. Incorpo-
rating uncertainty will not, however, automatically lead to better decision-making 
and analysis. Assumptions made regarding uncertainty can be based on insufficient 
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knowledge or data, and including uncertainty may come at the expense of other 
details, as discussed in Sect.  3. The trade-off between model detail, details in 
describing uncertain parameters, and the number of uncertain parameters to include 
should be carefully considered to obtain tractable problems. Proper assessment of 
the value of including different details (e.g., uncertainty versus granularity) for each 
unique problem is therefore recommended.

The diversity in markets and types of problems addressed in electricity market 
forecasting requires that tools are tailored to the specific area and application in 
mind to capture the dynamics of the market and uncertainties in the best possible 
way, instead of forcing all problems into the same framework. There is a danger 
that methods and tools will be chosen due to their familiarity, and not necessarily 
because they are best suited for the particular problem at hand [16]. To bridge the 
gap between research and real-world application, a close dialogue is recommended 
between tool developers and decision-makers to guide future research and to iden-
tify which features decision tools have and need [28].

By reviewing existing power market models, we identified a gap in models rep-
resenting multiple dimensions of uncertainty and that can be solved for a large sys-
tem in a reasonable time. Scott et  al. investigate the importance of representing a 
wide range of long-term uncertainties in electricity market modeling for generation 
expansion planning and descriptive market modeling [61]. They compare the solu-
tions of a deterministic model, the average solutions of performing scenario analy-
sis, and Monte Carlo analysis with the stochastic solution and find that the stochastic 
solution outperforms the deterministic approaches. In addition, they conclude that 
the value of the stochastic solution increases when several uncertain factors are con-
sidered, and that combining uncertainty sources outperforms adding additional sce-
narios to any individual source of uncertainty. In other words, representing a variety 
of uncertainty trumps more accuracy in the representation of individual uncertain-
ties in their study. Whether the same results hold for other types of both long- and 
short-term applications should be further addressed. Future research should also 
investigate the added value of accounting for uncertainty.

Powell reviews the different views of stochastic optimization and concludes that 
relatively little attention is given to how uncertainty is modeled in the literature on 
stochastic optimization [97]. It is proposed that more research efforts should focus 
on the intersection between uncertainty modeling and stochastic optimization. Sto-
chastic optimization literature is also found to be mostly focused on expectation-
based objectives, as was the case for the power market models reviewed in this work, 
where only the NEWAVE model was found to include a risk measure (CVaR) [98]. 
There is growing literature on the use of risk measures, but [97] recommends that 
research should dig deeper in terms of addressing issues related to specific appli-
cations. Additionally, related to an increased focus on system resilience and HILP 
events, exploring problem formulations that incorporate elements of robust optimi-
zation and distributionally robust optimization could be an interesting direction for 
future research.

In the end, not all parameters can be considered uncertain. Predictions will 
never capture all possible outcomes, and the results are only meant to support the 
decision-making process [42]. The unexpected events not represented can always 
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happen, and hedging against the unknown risk that cannot be predicted is valuable 
[16]. “Unknowable” events, often referred to as black swans, are difficult to capture 
in stochastic models that only deal with things that are known and can be described. 
Extreme events that are not thought of will not be considered with the traditional 
methods but can have a large impact on the market. With the increasing number 
of uncertain parameters affecting the power markets, other more common events 
that are disadvantageous can occur simultaneously and result in quite extreme situ-
ations. The energy crisis in Europe has been called a “perfect storm”, as it is driven 
by several coincident factors including increased CO

2
 prices, low wind power pro-

duction, dry conditions, and rising demand in addition to climbing fuel prices [99]. 
This development demonstrates that the combination of several uncertain factors, 
including HILP events, needs to be analyzed and taken into account to fully capture 
extreme outcomes. However, such situations are not adequately considered by the 
power market models reviewed in this paper, and the solutions provided by these 
models risk not being robust against such incidents.

6  Conclusion

From the literature survey presented above, we uncover that several review papers 
and reports focus on the classification and suitability of modeling tools for energy 
and power system applications. Stochastic modeling has gained increased attention 
in the literature on power system modeling in recent years, especially for studying 
VRE integration. However, an extensive review of the literature shows that uncer-
tainty is often overlooked or simplified in modeling tools due to the added complex-
ity and computational burden introduced by stochastic variables, and the impact of 
different scenarios are often analyzed using deterministic tools. In addition, repre-
senting uncertainty in models requires knowledge and data about the distribution 
and outcome space of uncertain parameters, including their correlations, and gener-
ating appropriate scenarios is challenging.

Previous model review papers addressing uncertainty primarily focus on whether 
uncertainty is treated by the tool, but they do not cover details on what types of 
uncertainties are represented and how they are described and revealed to the model. 
This paper reviews a selection of power market models handling uncertainty and 
finds that weather-related uncertainty, including demand, is typically covered. Ran-
dom outages are also covered by several short-term power market models, while 
uncertainty in fuel and CO

2
 emission prices were generally not found to be included, 

nor other types of uncertainty. Most reviewed tools are based on stochastic program-
ming, and we identified a lack of models covering multiple dimensions of uncer-
tainty and that are also suitable for realistic, large-scale applications. The effects of 
analyzing a larger outcome space by including more extreme events and multiple 
uncertain factors in the models should be further investigated, and model developers 
should keep in mind that balancing transparency, complexity, and computation time 
is crucial when adopting models for this purpose.
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