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Abstract. We consider the problem of rotational shallow-water flow for
which non-trivial rotating steady-state solutions are of great importance.
In particular, we investigate a high-resolution central-upwind scheme
that is well-balanced for a subset of these stationary solutions and show
that the well-balanced design is the source of numerical artifacts when
applied to more general problems. We propose an alternative flux evalua-
tion that sacrifices the well-balanced property and demonstrate that this
gives qualitatively better results for relevant test cases and real-world
oceanographic simulations.
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1 Introduction

Over the past few years, we have developed a GPU-accelerated simulation frame-
work [1] for oceanographic applications and ensemble prediction systems. At the
core of the framework is a simplified ocean model based on the shallow-water
equations in a rotational frame of reference. This hyperbolic system is solved
using a slightly modified version of the numerical scheme proposed by Chertock
et al. [2] (abbreviated as CDKLM). This is an explicit high-resolution finite-
volume scheme that is conservative, second order, and consistent, formulated on
Cartesian grids. Its main advantage compared to similar schemes is that it is well-
balanced with respect to some non-trivial steady-state solutions in geostrophic
balance, namely geostrophic jets along the coordinate axes. Hereby, the rota-
tional pull on the jets is equal to the gravity-induced potential energy from a
non-flat ocean surface. The geostrophic jets are however not the only steady-
state solutions based on geostrophic balance, and in real-world oceanographic
applications, rotational steady-states are often of greater importance.

The CDKLM scheme is based on central-upwind schemes [3], which are at-
tractive as “black-box” solvers as they do not require solutions to the Riemann
problem. An alternative to CDKLM is the earlier scheme proposed by Kurganov
and Petrova [4] (abbreviated as KP), which also uses central-upwind flux evalu-
ations but is not well-balanced for any non-trivial rotational steady-state solu-
tions. When considering alternative numerical schemes, one that is well-balanced
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for some geostrophic steady-state solutions and one that is not, it is easy to
choose to implement the former also for more complex applications. However, as
we will show in this paper, one should be more careful in this selection.

In this work, we demonstrate that the CDKLM scheme gives oscillatory ar-
tifacts and show that we can achieve solutions that are qualitatively better for
rotational flow by using a non-well-balanced variation of CDKLM. Thereafter,
we continue by investigating how to tune the resulting finite-volume scheme
when applied to real-world oceanographic problems.

2 Rotational Shallow Water Equations

The shallow water equations in a rotational frame of reference are given by η
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and conserve mass and momentum. The variable η represents the water surface
as a deviation from the mean equilibrium depth H, so that h = H + η becomes
the total water depth. Momentum is given by hu and hv in x- and y-direction,
respectively. Furthermore, g is the gravitational constant, and f is the Coriolis
parameter, which is a function of latitude. We define the vector q = [η, hu, hv]T

to contain the conserved variables, so that we can write (1) as

qt +F(q)x + G(q)y = S(q) . (2)

Rotating steady-states solutions of (1) are given by geostrophic balances, where

ux + vy = 0 , gηx = fv , and gηy = −fu . (3)

In [2], the last two expressions are rewritten in terms of potential energies as

K(x, y) := g
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)
, (4)

so that they can be written as Kx = 0 and Ly = 0. In particular, the CDKLM
scheme is well-balanced with respect to the geostrophic jets

u ≡ 0, vy ≡ 0, ηy ≡ 0, Hy ≡ 0, K ≡ const, (5)

v ≡ 0, ux ≡ 0, ηx ≡ 0, Hx ≡ 0, L ≡ const, (6)

which are special cases of (3).

3 Finite Volume Schemes

In the following, we summarize only the relevant parts of the CDKLM scheme;
the reader can find all details in [2]. We start by discretizing the domain in a
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regular Cartesian grid with cells of size (∆x,∆y), and define Qj,k to be the
average of q within the cell with center at

(
(j + 1

2 )∆x, (k + 1
2 )∆y

)
. Equation

(2) can then be written in semi-discrete form as

∂Qj,k

∂t
= −

Fj+1/2,k − Fj−1/2,k

∆x
−

Gj,k+1/2 −Gj,k−1/2

∆y
+ S(Qj,k). (7)

The system is solved in time with the second-order total-variation-diminishing
Runge-Kutta scheme [5] with time steps satisfying the CFL condition. In the
rest of the paper, we focus on the spatial reconstruction and fluxes.

3.1 Well-balanced scheme

To design a well-balanced finite-volume scheme for (1) with respect to (5) and
(6), Chertock et al. [2] propose to reconstruct the face values of q by computing
the slopes of the equilibrium variables p = [u, v,K,L]T rather than the slopes
of q directly. Values for Kj,k and Lj,k are obtained by evaluating the integrals
in (4) by a recursive sum starting from zero at the boundary. Note that the
recursive sums for K and L mostly cancel in the reconstruction and are reduced
to local operations [1, Sect. 3.1]. The slopes are then found by the generalized
minmod limiter (c.f. [6]), which in the x-direction is

(px)j,k = minmod

(
θ
pj+1,k − pj,k

∆x
,
pj+1,k − pj−1,k

2∆x
, θ

pj,k − pj−1,k
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)
, (8)

where θ ∈ [1, 2] controls numerical dissipation.
Using (px)j,k and (px)j+1,k, we can reconstruct one-sided point values for q

at the face between the two cells as Qr
j+1/2,k and Ql

j+1/2,k from the right and

left, respectively, using the discretized version of (4) to reconstruct values for η.
The flux terms in (7) are computed using the central-upwind (CU) scheme [3]

F
(i)
j+1/2,k =

a+F
(
Ql

)
− a−F (Qr)

a+ − a−
+

a+a−

a+ − a−
(
Qr −Ql

)
(9)

for i = 1, 2, where we have omitted the subscript (·)j+1/2,k for all Q (including
its entries) and a variables for readability. The variables a+ and a− represent
the largest positive and negative wave speeds at the cell interface, respectively,

a± =
max
min

{
ul ±

√
ghl, ur ±

√
ghr, 0

}
. (10)

For the scheme to be well-balanced with respect to (6), however, Chertock et

al. [2] propose to use a standard-upwind (SU) scheme for F
(3)
j+1/2,k, given by

F
(3)
j+1/2,k =

{
hrurvr, if ur + ul > 0,

hlulvl, otherwise.
(11)

The scheme is defined analogously in the y-direction, where the CU flux in (9)

is used for G
(i)
j,k+1/2, i = 1, 3, and the SU in (11) is used for G

(2)
j,k+1/2.
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3.2 Unbalanced alternatives

As we will see in Section 4, the use of the SU flux in (11) produces artifacts
when applying CDKLM to rotational and realistic problems. To investigate the
problem, we consider a convex combination of the two fluxes

F
(3)
j+1/2,k = ϕ(FSU )

(3)
j+1/2,k + (1− ϕ)(FCU )

(3)
j+1/2,k, (12)

in which FCU comes from (9), FSU comes from (11), and ϕ ∈ [0, 1].
In contrast to CDKLM, KP reconstructs the slopes of q using the conserved

variables directly and evaluates all flux components using the central-upwind
scheme. We implement (12) also for KP and compare it with CDKLM to better
assess the effects of different reconstructions and flux terms in isolation.

4 Numerical Experiments

We consider five experiments to evaluate the pros and cons of using the recon-
struction and flux that make the scheme well-balanced for geostrophic jets.

Case A: Radial wave without rotation. First, we consider a simple radial
wave in a non-rotating domain (meaning f = 0), initialized by

η(x, y, 0) = exp−10−5(x2+y2), and hu(x, y, 0) = hv(x, y, 0) = 0. (13)

The domain consists of 400× 400 cells with ∆x = ∆y = 100m, centered at the
origin. The equilibrium depth is H(x, y) = 60m.

Figure 1 shows hv at t = 1000 s in the central part of the domain after most
of the energy has traveled outwards. In the plots of the y-momentum shown
in the two leftmost plots for the CDKLM scheme with SU and CU fluxes, we
clearly see an oscillating artifact when using SU. This is even more pronounced
in the right-hand plot of Fig. 1, which shows a cross section at y = −1 km. The
CU flux gives numerical artifacts along the grid diagonals, but these are smooth
in contrast to the SU artifacts. Both solutions are symmetric in hv and hu, and
the artifacts are observed for any spatiotemporal resolution satisfying the CFL
conditions with Courant number less or equal to 0.5.
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Fig. 1. Artifacts in hv from an initial bump using CDKLM with SU flux (left) and CU
flux (center), and cross section of hv at y = −1 km (right).
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Fig. 2. Numerical steady-states in hv from an initial bump with different ϕ-values in
flux (12) in the presence of Coriolis forces.

Note that with f = 0, the CDKLM reconstruction reduces to that of the
the KP scheme. We have implemented the KP scheme independently, and get
exactly the same results as for CDKLM using both types of fluxes. This excludes
the possibility that the artifacts are caused by a programming bug.

Case B: Rossby adjustment. We continue by considering Rossby adjustment,
in which a rotational steady state is generated when running Case A with f =
0.0012 s−1. The presence of Coriolis forces will establish a rotating bump in the
center of the domain and create a steady-state that is not covered by the jets
described in (5) and (6).

In Fig. 2, we consider the flux in (12) and assess different values for ϕ. The
leftmost plot uses ϕ = 1.0, which corresponds to a pure SU flux as in the original
CDKLM scheme, whereas ϕ = 0.0 to the far right corresponds to the CU flux.
Again, hu and hv are symmetric, so we only show results for hv. We see a similar
nonphysical oscillation pattern as in Case A when using the SU flux, and the
rotating bump is dragged along the grid axes. In contrast, the CU flux results
in a circular bump that captures (3) much better. It is interesting that it is
sufficient to introduce just a small CU contribution to the SU flux to improve
the numerical behavior, and the results are already significantly better with
ϕ = 0.9. The figures are visually the same when using KP.

Case C: Kelvin wave. Kelvin waves are relatively fast travelling waves trapped
along the coast by the Coriolis forces. They are travelling with the coast to their
right on the Northern hemisphere and are important in realistic applications, as
the tides often form them. Here, we consider a periodic domain in the east-west
direction with wall boundary conditions in the north and south, and initialize a
wave travelling eastwards along the southern wall. Sufficiently small waves follow
linear physics and give periodic solutions, but the amplitudes used herein give
nonlinear responses that develop a shock over time; see [7, Sect. 4.4] for details.

Figure 3 compares the CDKLM and KP schemes when using the CU flux and
θ = 1.5 for both, meaning that the only difference is in the slope reconstruction.
The figure shows the solution after ten periods, corresponding to more than
60,000 time steps, at two cross sections for fixed y. We see how both schemes
capture the nonlinear behavior of large waves. CDKLM manages, however, to
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Fig. 3. Cross-sectional plots of a Kelvin wave after ten periods for CDKLM and KP
with CU flux and θ = 1.5. Tail on the left and wave center on the right panel.

maintain a taller wave front than KP, whereas KP produces a long nonzero tail.
We argue that these results favor CDKLM for this case.

Case D: Geostrophic jets. We consider a double geostrophic jet that satisfies
the steady-state given by (6), with one jet travelling eastward in the northern
part of the domain and an westward jet in the southern part. We use periodic
boundary conditions; the case is described in full in [8, Sect. 5]. This case exposes
what we lose by not using the well-balanced SU flux for CDKLM, as this flux
preserves this steady state for any slope limiter θ.

Figure 4 shows a cross section along y after running CDKLM for a long
time using the CU flux with different values for θ. With θ = 1.0, the numerical
dispersion smooths out the jet streams significantly, but a moderate increase in
θ compensates for using a non-balanced flux, and the jets stay captured and only
cap the extrema slightly. With the maximal possible θ = 2.0, we lose only 4.5%
of the momentum in the center of the jets.

To see how much of the CU flux we can incorporate without diminishing the
preservation of geostrophic jets, we run the experiment for decreasing values of
ϕ with fixed θ = 1.8. For all ϕ ≥ 0.52, we conserve the maximum momentum
within 4.5%.

Case E: Real-world simulation. Finally, we study the consequence of us-
ing different flux terms and slope limiters when using the CDKLM scheme for
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Fig. 4. A double jet state after 9 simulation days with the CU flux: the plots show
cross-sections of η (left) and hu (right).
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Fig. 5. Real-world simulation for the Lofoten archipelago in Northern Norway. The
axes show position within the computational domain in km.

simulating a real-world oceanographic scenario. Here, we utilize the full GPU-
accelerated framework from [1], in which land mask, bathymetry, initial and
boundary conditions, domain orientation, and wind forcing are taken from the
operational model NorKyst800 [9], with 800m horizontal resolution.

Figure 5 shows water velocity at 23 h for a few selected values of ϕ and θ for
CDKLM. The first thing to notice is how the SU flux gives visible artifacts around
the outermost islands at (100, 150). Secondly, the CU scheme gives visibly slower
currents than SU, e.g., at (300, 150). Since the tidal Kelvin wave follows the coast
from left towards right, the Lofoten islands trap the tidal wave, causing strong
currents in between the islands. With CU, we do not resolve this, but setting
ϕ = 0.8 helps significantly. It is hard to see visual differences between setting
θ = 1.3 and θ = 1.8, but examining cross sections (not shown) reveals that we
indeed get sharper fronts but no oscillations with the latter, which is preferred.

5 Conclusion

We have demonstrated numerical artifacts in the CDKLM scheme in cases that
differ from geostrophic balanced jets along the coordinate axes. We identified the
source of the oscillations to be the standard-upwind flux in the huv fluxes. By
combining the standard-upwind flux with the central-upwind flux with a factor
ϕ, we reduced unintended numerical behavior significantly and made the results
more physical, even though we lose the well-balanced property for the jets.
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We have illustrated the artifacts in Cases A and B, where Case B indicates
that combining the SU flux with a small factor of CU is sufficient to smooth out
these oscillations. In Case C, we see that the slope reconstruction in CDKLM
still gives a small advantage over the more standard reconstruction used by the
KP scheme. By using a large value θ in the slope limiter, we demonstrated that
also pure CU can preserve the geostrophic jets from Case D within acceptable
tolerances. Case E, however, shows that the pure CU flux is unable to capture
strong realistic currents in narrow straits. The conclusion is then to use values
close to ϕ = 0.8 and θ = 1.8 as flux parameter and slope limiter, respectively,
for real-world oceanographic applications. This reduces the observed artifacts
and gives a practical compromise between the well-balanced SU flux and the
smoother behaving CU flux.
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