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A B S T R A C T

Fluid–structure interaction models for drill-string vibrations are often of reduced order. However, both the
structure and the surrounding fluid are non-linear, which can lead to complex coupled dynamic. In this paper,
a coupled fluid–structure model is developed, where the flow is reduced to multiple cross-sections and solved
with the lattice-Boltzmann method, while the finite element method is employed to discretize a region of the
drill-string. In sequence, the whirling dynamics and the fluid forces are analysed for different configurations.
The process is repeated disregarding the fluid-interaction with the aim of evaluating the fluid forces. The fluid
forces estimated through the solution of the Navier–Stokes equation shows that the fluid acts in both dissipation
and excitation of the vibrations. The dissipation is seen when high frequency dynamics is expected, whereas
the lower frequencies are excited.
1. Introduction

When drilling to produce hydrocarbon resources or to create a
geothermal well, a drill-string is used to connect the drill-bit to the
drilling rig. The drill-string is composed of hollow pipes that allows to
pump drilling fluids in the inside and to transport formation cuttings
on the outside, in the space between the drill-string and the borehole,
also referred as the annulus. The drill-string axial position is controlled
by the hoisting system of the drilling rig, while its rotation is typically
ensured by a top-drive motor. The drilling fluid that is circulated
during the drilling operation is formulated to have a non-Newtonian
rheological behaviour, and more specifically is shear thinning, such that
the pressure losses inside the drill-string are not too excessive in view
of the small cross-sectional area of the interior of the string, and at the
same time has a high apparent viscosity at low shear rates to facilitate
the transport of cuttings in the large cross-sectional area corresponding
to the annulus.

The drill-string is an extremely slender structure. Estimation of
the forces involved on the operation is relevant to proper control
the process as it provides a tool for diagnosing harmful phenomena.
While drilling, the structure is prone to vibrations which often lead to
contact or collision with neighbouring walls. These impacts can lead
to high-frequency vibrations, such as the rolling of the string around
the borehole – the backward whirl – or in the opposite direction,
forward whirl with sliding. Torsional oscillations in the drill-string can
also happen due to the slenderness, which is directly connected to
efficiency loss. Simultaneously, drilling fluids are pumped through the

∗ Corresponding author at: Universitetet i Stavanger, Kjell Arholms gate 41, Stavanger, 4021, Norway.
E-mail addresses: lucas.volpi@uis.no (L.P. Volpi), erca@norceresearch.no (E. Cayeux), rune.time@uis.no (R.W. Time).

structure to transport cuttings out of the borehole. Even though it is an
extremely important activity for the drilling process, it not only creates
complex interactions with the surrounding fluid, but also generates
large pressure difference between the inner region of the drill-string
and its surroundings.

There are several models for drill-string vibrations. Lumped pa-
rameter models, such as the one described by Jansen (1993), have
been broadly adopted in the literature with different levels of complex-
ity. Yigit and Christoforou (2000) explored a similar model considering
coupled torsional–lateral vibrations to aid in the control of the drilling
operation. In a similar fashion, Melakhessou et al. (2003) provided
a lumped model for lateral–torsional, with the addition of a bending
degree of freedom. This model captured chaotic behaviour, with strong
bouncing of the drill-pipes. These reduced order models are not limited
to lateral and torsional vibrations. In the last years, de Moraes and
Savi (2019) used a similar approach to model lateral–torsional–axial
vibrations in the drill-string. While these reduced order models can
describe accurately some of the phenomena, it often over-simplifies
lateral interactions (Germay et al., 2009). This commonly reduces the
analysis to a reduced section of the problem unless several degrees of
freedom are used, such as provided by Liu et al. (2014). An alternative
is to use continuous approaches. Ghasemloonia et al. (2014) conducted
a continuous analysis of a coupled lateral–axial section of the drill-
string. In this case, strong interaction between axial forces and the
vibration modes – and natural frequencies – can be observed. Another
popular approach is the use of the Finite Element Method (FEM) to
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discretize the continuous system. Khulief et al. (2007) provided a non-
linear model for coupled vibrations. This model, while computationally
expensive, could be reduced by a modal truncation method, which
limits the size of the system. Ritto (2010) provided another FEM-based
model, with the addition of fluid forces due to the flow both inside and
outside the drill-string. By including both the inner flow and pressure,
there was a change in the modal behaviour of the drill-string, similar
to what was observed with the inclusion of axial forces. A similar
approach was taken by Tran et al. (2019) to model directional drilling
with non-Newtonian rheological properties for the fluid.

When the fluid is concerned, two models are recurrent. The model
provided by Jansen (1993) uses the concept of fluid drag and added
fluid mass. In practice, it yields a nonlinear damping in which the
damping coefficient escalates with the magnitude of the translation
velocity as well as a modification in the inertia of the flow. The
model from Fritz (1970) was initially provided for rotors and ultimately
borrowed for drill-string vibrations. It consists in a reduced order model
considering the flow in an annulus. Whereas the formulation accounts
for quite complex behaviour, it does not directly regard non-Newtonian
rheological fluids.

Often, the fluid-interaction models for drill-string vibrations do not
take into account the fluid dynamic surrounding the structure. Given
that many coupled nonlinear effects – such as collision – interacts
with the flow, the fluid dynamic is often a source of uncertainties. In
order to account for these effects, other computational methods can
be employed to model the fluid. While the Finite Volume and Finite
Difference Methods are common options, having a moving boundary
condition – and a deformable mesh – can deteriorate the accuracy
of the analysis (Busch and Johansen, 2020). An alternative is the
lattice-Boltzmann Method (LBM), as it enables straightforward imple-
mentation of complex, moving boundaries. This method is based on the
mesoscopic theory of the flow, which can recover the Navier–Stokes
equation. From the mesoscopic point of view, convoluted boundary
conditions can be dealt with simple approaches, such as the reflection
of incoming fluid particles as it reaches a solid wall. One major charac-
teristic is that this method is intrinsically transient. This makes the LBM
a strong candidate for transient problems with moving boundaries.

Methods such as the one developed by Ladd (1994) and Noble and
Torczynski (1998) can be used to directly estimate the fluid forces at
the interface, resorting to neither simplified forcing schemes nor direct
integration of the shear-stress at the surface of the structure. A third
method, which is not limited to the LBM, is the immersed boundary
method (Peskin, 1972). The method developed by Ladd consists in an
extension to the traditional bounce-back method, which is the simplest
form of solid boundary condition in the LBM. The method provided by
Noble considers a separate collision operator for the solid phase and
an averaging scheme which defines both solid and fluid regions, as
well as the transition between them. This implies a smooth transition
to the solid phase, hence the method is often referred to as the Partially
Saturated Method (PSM). The immersed boundary (IB) is achieved
by treating the interface as external forces. The IB method actually
defines a family of methods, each using different forcing schemes or
sub-methods. While all methods are known to be accurate with the
proper discretization (Rettinger and Rüde, 2017), the second method
is stable and does not require additional procedures to guarantee
mass conservation. The main downside is that all solid nodes must be
solved, which increases the computational time considerably for high
solid–fluid area ratios.

The aim of this work is to provide a coupled fluid–structure inter-
action model for a section of the drill-string. To achieve this, a region
of the drill-string is discretized with the finite-element method and a
cross-section of the fluid domain is solved in the centre of each element
of the model in order to find a distributed force for the structure.
In sequence, whirling behaviours are analysed with different work
conditions, i.e.: axial loads and inner pressures. The analysis is repeated
for similar configurations where the fluid is disregarded. This way, the
2

impact of the fluid in the overall dynamics is evaluated.
2. Models and methods

In this section, the development of the model is presented, as well
as the methods used to discretize it. In Fig. 1 a simplified description
of the problem is shown. The drill-string is composed by drill-pipes
that are joined together by the tool-joints while it is immersed in the
drilling fluid. The whole system is confined inside the borehole, which
causes an eccentric annular cross-section. At the same time, there is a
flow inside the drill-pipes which often causes a large pressure difference
between the inner section of the pipe and the flow outside.

In this work, the axial flow properties are tackled separately from
the tangential flow and is treated directly in the structure (Ritto, 2010;
Tran et al., 2019). This is hereby obtained by considering the virtual
work of the pressure gradient and the flow which, in practise, modifies
the stiffness of the drill-string, similar to an axial compression. The
tangential flow is modelled through the Navier–Stokes equation and
is coupled with both the lateral and torsional vibrations. Treating the
lateral interaction separately is a common simplification (Leine et al.,
2002; Khulief and Al-Sulaiman, 2009; Yigit and Christoforou, 2000).
In this case, this enables the creation of a fluid cross-section in each
degree of freedom, where the fluid is to be solved independently.

As the problem regards both solid and fluid dynamics, two frames of
references are used. One in the Lagrangian reference is defined by the
Cartesian coordinate system with 𝑥, 𝑦 and 𝑧 and a second framework,
which is Eulerian, is defined by 𝑋, 𝑌 and 𝑍. Relevant values are shown
in Appendix D and a list with the nomenclature can be found at the end.

2.1. Tool-joint vibration model

The drill-pipes are thinner and much longer than the tool-joints.
Due to the larger radius, most of the impact and damage is expected
at the tool-joints, which causes unbalances. Thus, the model assumes
that the drill-pipes are slender and flexible, while the tool-joints are
rigid and the only source of imbalance in the model. This eccentricity
is considered to be aligned between tool-joints, as it is reasonable to
assume that they come from abrasion. The drill-pipes are considered
to be 9.7 m long, where 1.0 m corresponds to the tool-joint, this
is repeated for a section of approximately 100 m of the drill-string.
The extremities of the section are considered to be pinned, as it was
observed in wells with large borehole irregularities. This lead to the
isolation of the lateral vibrations of sections of the drill-string (Cayeux
et al., 2018).

In Fig. 2, a schematic of the simplified model is presented, as
well as the system of coordinates. The model includes lateral bending
and torsion in the main axis, totalling 5 degrees of freedom (𝐪̂ =
𝑢𝑥, 𝑢𝑦, 𝜑𝑥, 𝜑𝑦, 𝜑𝑧}𝑇 ). Even though the cross-section is symmetric,
he mass is considered to be off-centred by an arbitrary distance 𝐞(𝑧, 𝑡)

of the neutral line (Nelson and McVaugh, 1976).
Through the same figure, the relations between the undeformed

and deformed cross-sections can be explicited. In the main axis, 𝑧,
the displacement of a cross-section can be written according to the
Euler–Bernoulli beam relations (Khulief et al., 2007):

⎧

⎪

⎨

⎪

⎩

𝑢𝑖 = 𝑢𝑥 + 𝑦(cos𝜑𝑧 − 1) + 𝑥 sin𝜑𝑧

𝑢𝑗 = 𝑢𝑦 + 𝑥(cos𝜑𝑧 − 1) + 𝑦 sin𝜑𝑧

𝑢𝑘 = 𝑥𝑢′𝑦 − 𝑦𝑢′𝑥,

(1)

where 𝐮 = {𝑢𝑖, 𝑢𝑗 , 𝑢𝑘}𝑇 are the displacements in the 𝑖, 𝑗 and 𝑘 directions
in the global frame of reference, and 𝑢′ = 𝜕𝑢

𝜕𝑧 .
With the Hamilton’s principle, the weak form of the problem can be

estimated as:

∫

𝑡𝑓

0
 𝑑𝑡 = ∫

𝑡𝑓

0
(𝛿𝐾 − 𝛿𝑈 + 𝛿𝑊 + 𝛿𝑄)𝑑𝑡 = 0, (2)

where 𝛿 is the variational operator and, 𝐾 and 𝑈 are the kinetic
and potential energy, the work is represented by 𝑊 and the energy
exchanged at the inlet–outlet is 𝑄.
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Fig. 1. Schematic of the drill-string and fluid problem.
Fig. 2. Schematic of the continuous model for the structure. In (a) there is the tool-joint and the boundary conditions and in (b) the torsional degree of freedom and an arbitrary
the eccentricity in mass.
The potential energy can be expressed as:

𝑈 = 1
2 ∫

[𝐸𝜖2𝑧𝑧 + 4𝐺(𝛾𝑥𝑧 + 𝛾𝑦𝑧) + 𝜌𝑠𝐠 ⋅ 𝐮]𝑑 , (3)

here, 𝜖2𝑧𝑧 = 𝑢′2𝑘 + 𝑢′𝑘(𝑢
′2
𝑖 + 𝑢′2𝑗 + 𝑢′2𝑘 ) +𝛥(𝜃3), and only the shown nonlinear

term is used as to acknowledge the large axial forces which are known
to affect the lateral stiffness (Ghasemloonia et al., 2014; Khulief et al.,
2007; Tran et al., 2019). The gravitational acceleration is 𝐠.

For the kinetic energy, the mass is considered concentrated in a
distance from the neutral line 𝐝̇ = 𝐮̇(0, 0, 𝑧) + 𝐞̇(0, 0, 𝑧), thus:

𝐾 = 1
2 ∫

𝜌𝑠𝐝̇ ⋅ 𝐝̇ 𝑑 + 1
2 ∫𝐿

𝜌𝑠𝝎𝑇 𝐈𝝎𝑑𝑧 + 1
2 ∫𝑓

𝜌𝑓 𝐮̇ ⋅ 𝐮̇ 𝑑 (4)

where 𝜌𝑠 and 𝜌𝑓 are the densities of the structure and fluid,

𝐞 = {𝑒𝑥, 𝑒𝑦, 0}𝑇 = |𝐞|(𝑧){cos𝜑𝑧, sin𝜑𝑧, 0}𝑇 (5)

is the position of the imbalanced concentrated mass of the tool-joints,
with 𝐞(𝑧) being the imbalance vector. This value is constant at the
tool-joint and zero at drill-pipe regions, enforcing the aligned imbal-
ance. The Young modulus, 𝐸, comes from the isotropic linear-elastic
assumption. The vector 𝝎 is the angular velocity in the global system
of coordinates (Khulief et al., 2007; Ritto, 2010).

The terms regarding the fluid be defined as the energy exchanged
at the inlets and outlets, which is expressed as a function of velocity
inside the pipe 𝐕𝑖𝑛 (Paidoussis, 1998; Ritto, 2010; Tran et al., 2019):

𝛿𝑄 = ∫𝑆
[(𝐮̇ + 𝐕𝑖𝑛) ⋅ 𝛿𝐮̇] 𝐕𝑖𝑛 ⋅ 𝑑𝑺, (6)

and the work due to pressure:

𝛿𝑊 = ∫𝑆
𝛥𝑃 ⋅ (𝛿𝐮 ⋅ 𝑑𝑺). (7)

Expanding the Hamiltonian, , and manipulating the derivatives, it
can be rewritten as:

∫ 𝑡𝑓
0 ∫𝐿𝑠

[𝐸𝐼(𝛿𝑢′′𝑥 𝑢′′𝑥 + 𝛿𝑢′′𝑦 𝑢′′𝑦 ) + 𝐺𝐽𝛿𝜑′′
𝑧𝜑

′′
𝑧

+(𝐴𝑓𝛥𝑃 + 𝜌𝑠𝐴𝑓𝑉 2
𝑖𝑛 + 𝐹𝑎)(𝛿𝑢′𝑥 𝑢′𝑥 + 𝛿𝑢′𝑦 𝑢

′
𝑦)

+(𝜌𝑠𝐴𝑠 + 𝜌𝑓𝐴𝑓 )(𝛿𝑢𝑥{𝑢̈𝑥 + 𝑔𝑥} + 𝛿𝑢𝑦{𝑢̈𝑦 + 𝑔𝑦}) + 𝜌𝑠𝐽𝛿𝜑𝑧𝜑̈𝑧
−𝜌𝑠𝐴𝑠𝜑̇2

𝑧(𝛿𝑢𝑥 𝑒𝑥 + 𝛿𝑢𝑦 𝑒𝑦)]𝑑𝑧 𝑑𝑡 = 0,

(8)

where 𝐼 is the area inertia and 𝐴𝑠 is the area of the cross-section and
𝐴𝑓 is the inner-fluid area. For this case, the geometrical non-linearities
were disregarded, such as gyroscopic terms and inertial terms. Here,
the term 𝛥𝑃 represents the difference in pressure between the inside
3

and the outside of the pipe, and 𝐹𝑎 is the resulting axial force in the
section. The fluid is considered to be steady, removing transient terms
in regard of 𝛥𝑃 and 𝐕𝑖𝑛.

In this weak form, Finite Element Method (FEM) can be used to
approximate the solution in of the equations of motion in terms of 𝑧,
hence, it is assumed that 𝑞𝑙 =

∑

𝐍𝑇
𝑙 (𝑧)𝐪𝑙(𝑡) and 𝛿𝑞𝑙 =

∑

𝛿𝐪𝑙(𝑡)𝑇𝐍𝑙(𝑧),
where 𝐍𝑙 describes a family of shape function that follows Hermite
polynomials used to discretize space, 𝐪̂(𝑧, 𝑡) is a generalized displace-
ment vector containing the 5 degrees of freedom, and 𝐪(𝑡) is the discrete
version thereof.

This yields a global system of the form:

𝐌𝐪̈ + (𝐊 +𝐊𝐹 )𝐪 = 𝐅𝐠 + 𝐅𝐞, (9)

composed by the generalized inertia matrix, two stiffness matrices,
the gravitational force vector and the imbalance force. At the neutral
line, 𝐮 becomes a subset of 𝐪̂ thus from here onward, 𝐮 will be used
when referencing to lateral displacements, and any angle will be made
explicit.

The first stiffness matrix is due to the elasticity of the material, while
the second is due to the combination of inner pressure, axial forces and
inner flow. In this case, the effects of both pressure and axial force can
be condensed into a single variable 𝐹𝑘 = (𝐴𝑓𝛥𝑃 +𝐹𝑎 + 𝜌𝑓𝐴𝑓𝑉 2

𝑖𝑛). These
terms will be hereby explored as different combinations of force and
pressure.

In addition, impact forces are considered if a section of the drill-
string collides with the wall. In the direction normal to the contact, the
force is assumed to be elastic during the collision:

𝐅(𝑛)
𝑙 = −𝐻(𝑟𝑙 − 𝛥𝑟𝑔𝑎𝑝)[𝑘𝑤(𝑟𝑙 − 𝛥𝑟𝑔𝑎𝑝) + 𝑐𝑤𝐮̇ ⋅ 𝒏]𝒏 (10)

where 𝑟𝑙 is the lateral displacement in the 𝑙th node, and 𝛥𝑅 is the
contact gap. 𝐻(𝑟𝑙 − 𝛥𝑅) is the step function, the constant 𝑘𝑤 is the
wall stiffness and is chosen as to emulate a no-displacement boundary
condition at the wall. 𝑐𝑤 is a wall damping that arises from a partially
elastic impact.

The unit vector 𝐧 points towards the contact direction. The tangen-
tial force follows the Coulomb’s friction:

𝐅(𝑡)
𝑙 =

⎧

⎪

⎨

⎪

⎩

−(
∑

𝑭 ⋅ 𝐭)𝐭, if |∑𝐅 ⋅ 𝐭| ≤ 𝜇𝑠|𝐅
(𝑛)
𝑙 |

−𝜇𝑘|𝐅
(𝑛)
𝑙 |𝐭, otherwise

(11)

where 𝜇𝑠 and 𝜇𝑘 are the static and kinetic friction coefficients, and 𝐭
is the unit vector in the direction tangential to the contact, pointing
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towards the tangential velocity. The torque is calculated at the contact
point as 𝐓 = 𝑅 (𝒏 × 𝐹 (𝑡)

𝑙 ).
The final forces added to the system are the fluid forces. At first, a

buoyancy force is added, and distributed, along the system. This model
only consider the displaced fluid mass, and can be directly inserted in
the body force by subtracting from the linear density term (𝜌𝑠𝐴𝑠+𝜌𝑓𝐴𝑓 )
the displaced fluid ((𝐴𝑠 + 𝐴𝑓 )𝜌𝑓 ).

In sequence, other fluid forces are estimated at the centre of the
elements by solving the Navier–Stokes equation of the corresponding
cross-section. Thus, it is expressed as:

𝐅𝐟𝑙
= 𝜕𝑧𝐹

(𝑥)
𝑙𝑏𝑙

𝐅(𝐱)
𝐟 𝑙

+ 𝜕𝑧𝐹
(𝑦)
𝑙𝑏𝑙

𝐅(𝐲)
𝐟 𝑙

, (12)

where 𝐅(𝐱)
𝐟 𝑙

and 𝐅(𝐲)
𝐟 𝑙

are obtained considering a uniform distribution of

the force throughout each element while discretizing with the FEM, and
𝜕𝑧𝐹

(𝑥)
𝑙𝑏 and 𝜕𝑧𝐹

(𝑦)
𝑙𝑏 are the components of the force distribution estimated

at each cross-section through the lattice-Boltzmann method. All of the
lateral dissipation is assumed to be from the fluid forces. To obtain
Eq. (12), it is necessary to calculate the forces in the middle of the
element and then create the global forcing 𝐅𝐟𝑙

. The torsional degrees

of freedom assumed a Rayleigh proportional damping instead of fluid
torques:

𝐂𝜑𝑧
= 10−4𝐌𝜑𝑧

+ 10−6𝐊𝜑𝑧
. (13)

In order to limit the presence of high-frequencies, a modal trun-
ation is applied to the model, where only the eigenmodes associated
ith eigenfrequencies close to or lower than the excitation frequency
re used during the numerical integration (Khulief et al., 2007). This
s achieved by calculating the forces in the physical domain and trans-
orming it to the modal base using only the eigenvectors associated with
he desired eigenfrequency range.

Both extremities of the structure are considered pinned, while a
onstant rotation is prescribed at the top. Whereas this last condition
an be set as an external force, care must be taken to assure that the
orsional rigid body mode is present in the system when transforming
o the modal base.

.2. Fluid field model

The fluid fields are limited to the lateral cross-sections at the centre
f each element. Here, it is assumed that most of the flow is lateral
nd any axial component is disregarded. In Fig. 3, both Eulerian
nd Lagrangian descriptions are presented, the former contains the
luid field and boundary conditions and the latter the kinematic of
he geometric centre. The boundary conditions are dependent on the
elocities of the inner and outer solid regions, 𝑖 and 𝑜. The velocity of
he inner boundary depends directly on the velocity of the drill-string.

hile there is a bending of the drill-pipes, it is considered small and
hus, the cross-section is assumed to be kept constant throughout the
imulation. In order to solve the fluid dynamics, the lattice-Boltzmann
ethod is used (LBM). This method is based on the discretization of

he Boltzmann equation in space, time and velocity domains. It tracks
he density distribution of the fluid, which can be used to recover
acroscopic properties of the flow, such as pressure and velocity.

The density distribution defines the density of the flow in the
ontrol volume with velocity at a given direction. Briefly, the LBM
onsists in two main steps: (i) collision and (ii) propagation of the
istribution. Outside the boundaries, both steps can be expressed by
single equation:

(𝐗 + 𝒄𝛥𝑡, 𝑡 + 𝛥𝑡) = 𝐟 (𝐗, 𝑡) + (𝐗, 𝑡), (14)

here 𝐟 = {𝑓0,… , 𝑓𝛼 ,…}𝑇 is the density distribution function in the
irection 𝛼, 𝐗 is the spatial position in a Eulerian framework, 𝛥𝑡 is
he time-step, 𝒄 = {𝐜0,… , 𝐜𝛼 ,…} is the lattice velocity set, containing
ectors in the direction 𝛼. Finally, the term (𝐗, 𝑡) is the collision
4

Table 1
Choice of inner pressure and resulting axial force.

Case 𝛥𝑃 [MPa] 𝐹𝑎 [kN]

1 0 0
2 5 0
3 5 20

operator. It is hereby divided into two operators, one for the fluid-
covered region and another for the solid-covered area (Noble and
Torczynski, 1998):  = (𝑓 )+(𝑠). The first operator considers multiple
relaxation times, and is described as (Lallemand and Luo, 2000):

(𝑓 ) = (1 − 𝜖)[−1𝜦(𝜂) (𝐟 (𝑒)(𝜌,𝐕) − 𝐟 (𝐗, 𝑡))], (15)

where 𝐟 (𝑒) is the equilibrium density distribution, the matrix  trans-
forms 𝐟 to the momentum base (𝐦 = 𝐟). 𝜦 is a diagonal matrix which
contains multiple relaxation parameters. The solid collision operator is
defined as:

(𝑠) = 𝜖 ([𝐟 (𝑒)(𝜌,𝐕𝑖 ) − 𝐟 (𝐗, 𝑡)] +
[

1 − 𝛥𝑡
𝜏(𝜂)

]

[𝐟 (𝑒)(𝜌,𝐕) − 𝐟 (𝐗, 𝑡)]). (16)

ere, a linear averaging parameter 𝜖 ∈ [0, 1] is used to weight
etween solid and fluid regions, i.e.: 𝜖 = 0 for a fluid region and
= 1 for solid (Noble and Torczynski, 1998). 𝜏 is one of the relaxation
arameters, which depends on the discretization of the system and the
inematic viscosity of the fluid (𝜂). The term 𝐕𝑖 indicates the velocity
n the region inside the contour 𝑖, which is defined by:

𝑖 = 𝐮̇ + (𝐗𝑖 − 𝐫) × 𝝎. (17)

q. (17) simply rewrites the cross-section velocity in a field.
The force distributions along the main axis can be calculated as a

unction of the solid collision operator (Noble and Torczynski, 1998):

𝑧𝐅𝐥𝐛 = −𝛥𝑋2

𝛥𝑡
∑

𝐗𝑖

𝜖(𝐗)
∑

𝛼
𝐜𝛼(𝑠)

𝛼 . (18)

Other details for the method, such as estimation of macroscopic prop-
erties and choice of other relaxation parameters, are defined in Ap-
pendix A.

Regarding the fluid rheological behaviour, it is considered to be
shear-thinning, and is modelled by the Quemada constitutive rela-
tion (Quemada, 1998):

𝜂 = 𝜂∞

(

1 + [𝛾̇∕𝛾̇𝑐 ]𝑝

𝜒 + [𝛾̇∕𝛾̇𝑐 ]𝑝

)2
, (19)

here 𝜂∞, 𝛾̇𝑐 , 𝑝 and 𝜒 are model constants. One advantage of this
odel is that, while it can recover a power-law-like fluid, it does not

equire any regularization as it does not present a singularity point at
𝛾̇ = 0 ∀ 𝜒 ≠ 0. The change in viscosity is interpreted as a change in one
f the relaxation parameters of the problem.

. Results

In this section, the results are presented. This section is organized
nto two different parts. For the first part, the batch of simulations
oncerns the fully coupled model, while the choice of pressure and
xial force is shown in Table 1. In the second part, some of the
imulations are repeated without the fluid forces, in other words, only
he finite element model is used. In the uncoupled case, only one
mbalance value was used. The solutions are obtained by asynchronous
ntegration, where first one lattice-Boltzmann time-step is conducted
nd then several iterations of the FE model are executed by the adap-
ative Runge–Kutta–Fehlberg. Further details on the stability and the
umerical convergence are presented in Appendix B whereas details
n the numerical integration and coupling thereof are presented in
ppendix C.
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Fig. 3. Schematic of the cross-section with both Eulerian and Lagrangian descriptions.
Fig. 4. Sample simulation with the displacement of the drill-string. The colour gradient refers to the position in 𝑧, and is a reference for future plots.
The impact model used for the structure expects some small overlap.
This, however, can directly induce errors in the flow continuity, as
the total solid area can decrease — in other words, the fluid area
can increase. Hence the chosen contact gap is slightly smaller than
the physical gap. In addition, the first 5 s of simulation are used to
initialize the numerical integration, i.e.: the simulation would start with
a developed tangential flow. In this step, the drill-string is only allowed
to rotate. As there is no drill-string dynamic in this stage, the first 5 s
are omitted from every result.

For the simulations, a grid with 160 × 160 cells was used for the
fluid cross-section and the structure was divided into 42 elements,
with 5 degrees of freedom each. Each tool-joint is discretized as 2
elements and the drill-pipes with 2 elements. The number of elements
was defined by the numerical convergence of the natural frequencies
under 40 rad/s of the stable configuration.

The modal truncation was applied to remove higher order natural
frequencies (Khulief et al., 2007), and the criteria for truncation is that
all natural frequencies under the excitation frequency must be present.
The two extremities were considered pinned, and thus, their respective
displacements were removed from the problem and the rotation at one
of the end is prescribed as 𝜔 = 12.0 rad/s, which is introduced in the
model as an external force. The eccentric mass was considered to be
equivalent at 1% of the tool-joint outer diameter, i.e.: |𝐞| = 0.01𝑅𝑡𝑗 A
summary of other relevant values is presented in Appendix D.

Finally, every result here concerns the 6th tool-joint. This refers
to the first tool-joint after the centre of the section. Some results will
include the whole structure, and in those cases, it is stated explicitly.

To aid with the visualization, Fig. 4 is shown. It contains the
solution of a simulation where the colour gradient refers to the position
in 𝑧 and, whereas it corresponds to a simulation, the Figure is distorted,
as the high aspect-ratio of the model would compromise visualization.
The dashed line is the centre of the borehole, while the grey surface
represents the lateral gap for the respective section. The line with the
colour gradient is the centre-line of the deformed drill-string, and is
represented by the vector 𝐮. Note that, in this particular case, most
tool-joints are in contact with the wall, whereas the drill-pipes are not.
In addition, Fig. 5 shows another simulation case, where the use of the
cross-sections can be exemplified.

3.1. Coupled model

In this subsection, the results are presented for the simulations with
the fluid forces. In here, initially an imbalance of |𝐞| = 0.01𝑅 is used
5

𝑜𝑡𝑗
and a rotation of 𝜔 = 12 rad/s. In this setup, six different drilling
configurations are analysed — three vertical and three horizontal. In
sequence, a critical scenario where the imbalance is |𝐞| = 0.25𝑅𝑜𝑡𝑗
is used. The orbits for the geometrical centre of the 6th tool-joint
and the available gap are shown for each case in Fig. 6. Initially, a
vertical section is considered, where both buoyancy and gravitational
forces are incorporated in the resulting axial force (Figs. 6(a)–6(c)).
The Figs. 6(d)–6(f) corresponds to the case where the section is per-
fectly horizontal and hence, the gravity and buoyancy are considered
independently.

Fig. 7 shows the forces estimated for each dynamic. As seen in
Figs. 6(d)–6(f), the results for the vertical case are similar with each
other. This was repeated in relation to the results and, for this reason,
only the first horizontal case (𝐹𝑎 = 0 𝑁 and 𝛥𝑃 = 0 Pa) is presented.
Note that Figs. 7(b) and 7(c), there is a high peak which is highlighted
with a dashed line. This is connected to the collision of the tool-joint
in question with the borehole, which translates into the fluid forces.

Fig. 8 presents the torsional velocities at the central tool-joint. Each
plot includes a zoomed section to better describe the details of the
vibration.

In Fig. 9, the whirl frequency is shown for the cases 1 and 2 in the
vertical configuration. This was achieved by applying a fast Fourier
transform to the complex representation of the radial displacement
(𝑟̂ = 𝑢𝑥+ 𝑖𝑢𝑦). In this figures, the average magnitude along the structure
is presented, as well as the band defined by the maxima and minima.
This transformation was applied to only those two cases as the other
orbits in Fig. 6 presented simple dynamics.

Finally, the radial displacements of each node is displayed in
Fig. 10. The colour gradient presents different positions along the drill-
string, according to the colour gradient in Fig. 5. To better visualize,
the tool-joint degrees of freedom are shown in a different section of the
degrees of freedom of the drill-pipes, although both follow the same
colour scale.

After this first set of results, the unbalance is increased to 25% of the
outer tool-joint radius. If the maximum imbalance is in the magnitude
of |𝐞|𝑚𝑎𝑥 = 𝑅𝑜𝑡𝑗 − 𝑅𝑖𝑡𝑗 ≈ 42.7 mm (Table D.1), this new unbalance is
close to half this value |𝐞| = 0.5|𝐞|𝑚𝑎𝑥. This represents a severe case,
where strong unbalance was present (Cayeux et al., 2018). With the
new setup, only the vertical cases were simulated with the last two
configuration of axial force and pressure difference. This is presented
as those were considered the most critical cases. In Fig. 11 shows the
orbits of the 6th tool-joint in this new scenario.
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Fig. 5. Sample simulation with the displacement of the drill-string with cross-sections.
Fig. 6. Calculated orbits of geometric centre of the 6th tool-joint (a) case 1 in a vertical section, (b) case 2 in a vertical section, (c) case 3 in a vertical section, (d) case 1 in a
horizontal section, (e) case 2 in a horizontal section and (f) case 3 in a horizontal section.
Following a similar fashion, the forces are shown for each case in
Fig. 12 and the radial displacements are presented in Fig. 13.

3.2. Uncoupled model

In this subsection, the analyses are repeated without hydraulic
calculations. The results are presented in a similar fashion, with the
orbits, torsional velocities and radial displacements. As the Navier–
Stokes equation was not solved, no fluid forces are calculated in this
part. Only the cases with smaller imbalance are present here, with the
force/pressure configurations from Table 1.

In Fig. 14 the orbits of the six cases are presented. The initial
conditions were the same as in the previous simulations, with the
centred positioning of the drill-string. In the sequence, Fig. 15 presents
the torsional velocities of all cases without fluid.

The radial displacements of fluid-less case is shown in Fig. 15 . As
before, the colour gradient refers to the position of the depicted node
whereas black lines are reserved for tool-joints. Finally, the frequency
6

domain analysis of the whirling is shown in Fig. 17 . Only cases 2 and
3 for the vertical setup are hereby presented as there is no evidence of
other relevant whirling phenomenon in the other cases.

4. Discussion

In this section, the results presented are discussed. The objective of
this study is to analyse the impact of hydraulic forces and torques on
the dynamic mechanical deformations of a portion of drill-string. This
is analysed by comparing Sections 3.1 and 3.2.

When the orbit of the vertical case, with neither axial forces nor
axial flow, is compared with the fluid-less case, it is visible that the
presence of fluid introduces vibrations, although of small intensity
(Figs. 6(a) and 14(a)).

When pressure difference is introduced (Figs. 6(b) and 14(b)), it
is observed that the fluid strongly reacts to the drill-string, retarding
the initial impact with the borehole wall. By analysing the forcing
terms in Fig. 7(b), a high-amplitude oscillation is present at a low
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Fig. 7. Calculated forces on the 6th tool-joint (a) case 1 in a vertical section, (b) case 2 in a vertical section, (c) case 3 in a vertical section, and (d) case 1 in a horizontal section.
Fig. 8. Calculated torsional velocities 𝜑̇𝑧 of geometric centre of the 6th tool-joint (a) case 1 in a vertical section, (b) case 2 in a vertical section, (c) case 3 in a vertical section,
(d) case 1 in a horizontal section.
frequency. This is an indication that, even at contact with the borehole,
the drill-string is at a low-frequency regime. This is re-iterated by the
whirling frequency shown in Fig. 9(a), which shows a low frequency
asynchronous forward whirl. In contrast, Fig. 17(a) shows a predomi-
nant negative whirl frequency of higher magnitude. This indicates that
7

the structure is mainly at a complex pattern of backward whirl. Thus,
in contrast with the previous case, where the fluid was exciting the
vibration, in this case the fluid is acting as a dissipative agent. From
the radial displacements in Figs. 10(a) and 16(a), it is noticeable how
the higher frequencies in displacement are damped. In addition, only



Geoenergy Science and Engineering 232 (2024) 212423L.P. Volpi et al.
Fig. 9. Frequency domain analysis of 𝑟̂ = 𝑢𝑥 + 𝑖𝑢𝑦 for cases (a) 2 and (b) 3.
Fig. 10. Radial displacements along the drill-string. The colour scale represents the position and the dashed-line the available gap — one for the drill-pipes and the other at the
tool-joint. The vertical cases are presented in: (a) for the second, and in (b) for the third. Likewise, the horizontal case is shown in (c).
the tool-joints collide with the wall when the fluid is present, whereas
without fluid, sections of drill-pipes also collide with the wall. The
occurrence of contact between pipe sections on the wall is extremely
relevant, as collision and even permanent contact can be a source of
damage through impact or even abrasion. At the same time, high-
frequency vibrations are directly connected with the fatigue of the
structure. When there is fluid, the drill-string has a larger overlap with
the borehole. While this is a side effect of the numerical method used, it
indicates that the flow dampens vibrations but also increases the forces
in the radial direction — flow-induced vibrations.

Much of the tendencies are repeated as the axial force is added.
In orbits (Figs. 6(c) 14(c)) show that the impact is delayed and the
frequency domain in Figs. 9(b) and 9(b) once again show signs of
8

different dynamics, where the fluid leads to a low-frequency vibration
while the fluid-less case shows high-frequency backward whirl. When
the drill-string collides with the wall, high peaks of fluid forces are
observed (Figs. 7(c) and 7(c)). The magnitude is much higher than for
the rest of the dynamic, with large fluctuations at a high frequency.

When the horizontal cases are analysed, it is observed that changes
in axial flow and axial force do not impact greatly the dynamic. An
analogy between Figs. 6(d)–6(f) and 14(d)–14(f) shows that the fluid
forces displace the drill-string asymmetrically – a manifestation of the
Magnus forces. At the same time, the fluid forces are extremely effective
in mitigating high-frequency oscillations in the drill-string.

The presence of the Magnus effect is confirmed through the pressure
and velocity gradients of the cross-section, shown in Fig. 18, as both
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Fig. 11. Calculated orbits of geometric centre of the 6th tool-joint with the larger
imbalance. In (a) is the case 2 in a vertical section, (b) the case 3 in a vertical section.

fields become asymmetric. Most fluid models, however, assumes that
the fluid acts as a viscous damper. This type of interaction models is
unable to capture the Magnus effect.

At the same time, through Fig. 8(d), it is observed that torsional
vibration is introduced to when there is fluid. The communication
between lateral and torsional degrees of freedom is solely done by the
impact torques. This means that the balance between lateral fluid forces
and the contact forces generates a high-frequency torque, which excites
the drill-string. Due to the lack of strong dissipation, this vibration
settles in a resonance-like behaviour, and thus, it is as the lateral forces
are inducing torsional vibrations.

The increase of the unbalance did not change most of the dynamic.
While qualitatively similar, the use of high pressures and high forces is
impacting the most. In a unstable case, any imbalance creates a large
disturbance in the model.

5. Concluding remarks

In this work, a fluid–structure interaction model for a drill-string is
provided based on the coupled solution of both the drill-string vibration
problem and the Navier–Stokes equation. The model provided is limited
to lateral and torsional vibrations, whereas axial flow is assumed to
interact to the structure independently of the lateral flow. For this,
the Finite Element Method is used to discretize the structure while the
Lattice-Boltzmann Method is used to solve the Navier–Stokes equation.

Six different configurations are analysed, with different drill-string
orientations, axial flows and axial forces. In order to evaluate the effects
of the fluid, all simulation were repeated without the fluid forces and
the results were compared.

It is observed that the fluid, while acting as a dissipative agent,
also generated vibrations. This effect is mostly noted in the torsional
degrees of freedom, while not limited to those. The fluid damped out
the vibrations with the exception of when low vibrations are expected.
When there is a horizontal section, the combination of fluid lateral
forces and contact forces acted as an excitation for the torsional degrees
of freedom, creating a severe vibration case.

When there is an asymmetric dynamic, the Magnus effect is ob-
served. This is relevant as this behaviour cannot be captured by simpler
viscous damping models.

In summary, the coupled model shows that the fluid interaction
leads to both dissipation and excitation of drill-string vibrations. The
dissipative properties are mostly present at high-frequencies, whereas
the excitation is in the lower frequency region. Whirl analyses in
different scenarios also shows that the fluid has an important place in
prevention of backward whirl.
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Appendix A. Lattice-Boltzmann

A common two-dimensional lattice configuration is presented in
Fig. 19, where there are 9 possible lattice velocities (𝐜𝛼 with 𝛼 ∈ [0, 8])
represented by the 8 arrows and the 0 velocity at the centre and with
square lattices.

The lattice-Boltzmann has as a main variable the density distri-
bution with a given velocity. The density field, velocity field and
shear-rate tensor can be recovered from the statistical moments:

𝜌𝑓 =
∑

𝛼
𝑓𝛼 , 𝜌𝑓𝐕 =

∑

𝛼
𝐜𝛼𝑓𝛼 , (A.1)

and the rate-of-strain tensor (Chai et al., 2011):

𝜸̇ = − 1
2𝜌𝑓 𝑐2𝑠

∑

𝛼
𝐜𝛼𝐜𝛼(−1𝜦)(𝑓𝛼 − 𝑓 (𝑒)

𝛼 ). (A.2)

Those are used to calculate the equilibrium distribution:

𝑓 (𝑒)
𝛼 = 𝜌𝑓𝑤𝛼

[

1 +
𝐕 ⋅ 𝐜𝛼
𝑐2𝑠

(

1 +
𝐕 ⋅ 𝐜𝛼
2𝑐2𝑠

)

− 𝐕 ⋅ 𝐕
2𝑐2𝑠

]

, (A.3)

where 𝑤𝛼 is a weight constant and 𝑐2𝑠 = 𝛥𝑋2

3𝛥𝑡2 is the lattice sound
speed. Both are dependent on the type of lattice used. In this particular
case, the computations are directly conducted in the momentum base,
𝐦(𝑒) = 𝐟 (𝑒), as this yields into simplifications in the operations. Matrix
 is orthonormal and is obtained by applying the Gram–Schmidt
method into another matrix which defines the transformation to the
momentum base. This method allows the use of a diagonal matrix 𝜦
for the relaxation parameters.

The relaxation matrix 𝜦 = diag({0, 𝜔𝑒, 𝜔𝜖 , 0, 𝜔𝑒, 𝜔𝑞 , 0, 𝜔𝑞 , 𝜔𝜂 ,
𝜔𝜂}), where the choice of parameters 𝜔𝑖 directly affect the accuracy
and stability of the model. The last parameter is directly related with
the relaxation time 𝜔𝜂 =

𝛥𝑡
𝜏 . The other parameters were varied and did

not seem to greatly affect accuracy, with the exception of when close to
𝜔𝑖 → 2. For the sake of stability, they were chosen as 𝜔𝑒 = 1.1, 𝜔𝜖 = 1.0,
and 𝜔𝑞 = 1.0. This means that higher moments were fully – or close to
– relaxed.

Finally, the kinematic viscosity is related to the relaxation parame-
ter 𝜏:

𝜂 = 𝑐2𝑠 (𝜏 − 𝛥𝑡∕2). (A.4)

As a non-Newtonian rheology is considered, the shear-rate dependency
creates an implicit problem in Eqs. (A.2) and (A.4). A common way
to simplify the problem is to consider the values estimated from the
previous time step and simply recalculate 𝜏 and 𝜂 to be used in the
next iteration.

Finally, the method is usually regularized to obtain a dimensionless
system where 𝜌∗𝑓 = 1, 𝛥𝑋∗ = 1 and 𝛥𝑡∗ = 1. To do so, the conversion
constants are set to:

𝐶𝛥𝑋 = 𝛥𝑋
𝛥𝑋∗ , 𝐶𝜌𝑓 =

𝜌𝑓
𝜌∗𝑓

, and 𝐶𝜂 =
3 𝜂min

(𝜏∗ − 1∕2)
, (A.5)

which yields a (physical) time-step of 𝛥𝑡 = 𝐶2
𝛥𝑋∕𝐶𝜂 . With these conver-

sion constants defined, all variables can be rewritten in the LBM units.
The time conversion is dependent on the kinematic viscosity:

𝐶𝛥𝑡 =
𝐶2
𝛥𝑋 (A.6)

𝐶𝜂
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Fig. 12. Estimated forces orbits of the 6th tool-joint with the larger imbalance. In (a) is the case 2 in a vertical section, (b) the case 3 in a vertical section.
Fig. 13. Radial displacements along the drill-string with larger imbalance. The colour-scale represents the position and the dashed-line the available gap — one for the drill-pipes
and the other at the tool-joint. The vertical cases are presented in: (a) for the second, and in (b) for the third.
Fig. 14. Calculated orbits of geometric centre of the 6th tool-joint (a) case 1 in a vertical section, (b) case 2 in a vertical section, (c) case 3 in a vertical section, (d) case 1 in a
horizontal section, (e) case 2 in a horizontal section and (f) case 3 in a horizontal section.
The remaining conversion parameters use combinations of these,
e.g.:

𝐶𝑉 =
𝐶𝛥𝑋
𝐶𝛥𝑡

, 𝐶𝛺 = 1
𝐶𝛥𝑡

, 𝐶𝑚 = 𝐶𝜌𝑓𝐶
3
𝛥𝑋 , and 𝐶𝐹 =

𝐶𝑚𝐶𝛥𝑋

𝐶2
𝛥𝑡

(A.7)

for the velocity, rotational speed, mass, and force, respectively. Before
conducting the lattice-Boltzmann step, properties from the structure
10
are converted with the parameters above. The displacement 𝐮 is then
divided by 𝐶𝛥𝑋 , for example.

Appendix B. Stability and numerical convergence

The lattice-Boltzmann stability depends on the choice of relaxation
parameter 𝛥𝑡 and the number of cells. As 𝛥𝑡 → 1∕2, the method
𝜏 𝜏
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Fig. 15. Calculated torsional velocities 𝜑̇𝑧 of geometric centre of the 6th tool-joint (a) case 1 in a vertical section, (b) case 2 in a vertical section, (c) case 3 in a vertical section,
(d) case 1 in a horizontal section.

Fig. 16. Radial displacements along the drill-string. The colour-scale represents the position and the dashed-line the available gap — one for the drill-pipes and the other at the
tool-joint. The vertical cases are presented in: (a) for the second, and in (b) for the third. Likewise, the horizontal case is shown in (c) for the first configuration.
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Fig. 17. Frequency domain analysis of 𝑟̂ = 𝑢𝑥 + 𝑖𝑢𝑦 for cases (a) 2 and (b) 3 without fluid forces.
Fig. 18. Fluid fields at the 6th tool-joint for (a) pressure, (b) velocity in the 𝑦-direction.
Fig. 19. Schematic of the lattice-Boltzmann discretization.

becomes unstable. The same is true if the flow velocity is large in
comparison to the lattice sound speed (𝑐𝑠), which leads to the compress-
ibility of the flow. If all relaxation times are considered the same, i.e.:
𝜦 = 𝛥𝑡

𝜏 𝐈, the collision operator returns the single relaxation time, or
the Bhatnagar–Gross–Krook (BGK) collision operator. However, using
different relaxation times allows to relax non-hydrodynamic moments,
which adds to the stability of the simulation, especially when 𝛥𝑡

𝜏 →

1∕2 (Dellar, 2003).
Given the stability constraints, the choice of time-step in the lattice-

Boltzmann is limited. It is reasonable to assume that the characteristic
times of the structure are smaller than those of the fluid, and thus, an
explicit numerical integration would require smaller time-steps. To deal
with this, both systems are integrated asynchronously and, in each LBM
time-step, multiple time-steps are employed for the drill-string.

The convergence of the lattice-Boltzmann solver was analysed at a
constant lattice velocity to guarantee that the flow velocity would be
much smaller than the lattice sound speed (|𝐕|max ≪ 𝑐𝑠). The lattice
size 𝛥𝑋 and 𝜏 were adjusted until the desired accuracy.

The convergence for the structure regarded the convergence of the
natural frequencies.

Appendix C. Numerical methods
12
As mentioned in Section 3, the numerical integration of the prob-
lem consists of two main, asynchronous, steps. The lattice-Boltzmann
consists in two main steps, collision and propagation. For parallel
implementation, the propagation is done in reverse, i.e.:

𝐟 (𝐗, 𝑡) = 𝐟∗(𝐗 − 𝒄𝛥𝑡, 𝑡 − 𝛥𝑡), (C.8)

where 𝐟∗ is the post-collision distribution. Two variables are used for
𝐟 , hereby defined as 𝑓 (1) and 𝑓 (2) to avoid rewriting a variable before
it is worked at the proper time-step. Thus, it goes as:

(1) Start lattice-Boltzmann step at 𝑡 with time-step 𝛥𝑡:

(I) Dispatch all LBM-related buffers to the acceleration unit
(e.g.: GPU).

(II) Identify position (𝑥, 𝑦) and use pre-collision distribution
𝑓 (1)(𝑥, 𝑦, 𝑙) for the following steps:

(A) Compute macroscopic fields from Eqs. (A.1) and
(A.2).

(B) Convert 𝑓𝑙(𝐗 − 𝑐𝑙𝛥𝑡, 𝑡 − 𝛥𝑡) to the momentum base,
using 𝐟 ,

(C) Compute the equilibrium of the momentum (𝑚(𝑒)
𝑙 ),

either by transforming 𝑓 (𝑒)
𝑙 or by estimating directly

in the momentum base,
(D) Estimate local volume fraction 𝜖 using FEM displace-

ments 𝑢𝑥 and 𝑢𝑦. Those are interpolated at the centre
of the element.

(E) Estimate local solid velocity field with Eq. (17).
(F) Collide using Eqs. (15) and (16).
(G) Mask fixed wall nodes and stream fluid nodes.
(H) Store new distributions at 𝑓 (2)

(III) Read buffers at the CPU level and synchronize domain.

(IV) Exchange pointers 𝑓 (1) = 𝑓 (2).
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Table D.1
Parametric information for the numerical simulations.

Name (symbol) Value [unit] Name (symbol) Value [unit]

Drill-pipe outer radius 0.0635 [m] Drill-pipe inner radius 0.0543 [m]
Tool-joint outer radius 0.0840 [m] Tool-joint inner radius 0.0413 [m]
Borehole wall radius 0.108 [m] Drill-string section length 105.7 [m]
Tool-joint length 2.0 [m] Young’s Modulus (𝐸) 220.0 [GPa]
Poisson ratio (𝜈) 0.30 Solid density (𝜌𝑠) 7800.0 [kg/m3]
Kinetic friction (𝜇𝑘) 0.30 Static friction (𝜇𝑠) 0.60
Unbalance (|𝐞|) 8.40 × 10−5 [m] Fluid density (𝜌𝑓 ) 1101.0 [kg/m3]
Infinity viscosity (𝜂∞) 2.36 × 10−2 [Pa s] Characteristic shear-rate (𝛾̇𝑐 ) 273.94 [1/s]
Quemada exponent (𝑝) 0.436 – –
(2) Start finite-element step at 𝑡 with time-step 𝑑𝑡 < 𝛥𝑡:

(I) Calculate accelerations for both 4th and 5th order Runge–
Kutta.

(II) Integrate for both 4th and 5th order Runge–Kutta.

(III) Evaluate convergence based on the solutions: ‖𝐮𝑟𝑘4−𝐮𝑟𝑘5‖
< tolerance.

(A) If true:
(i) 𝑡𝑛𝑒𝑤 = 𝑡 + 𝑑𝑡.

(a) Then, increase 𝑑𝑡𝑛𝑒𝑤 ≥ 𝑑𝑡

(b) Evaluate 𝑡𝑛𝑒𝑤 + 𝑑𝑡𝑛𝑒𝑤 > (𝑡 + 𝛥𝑡)𝑙𝑏𝑚:
(1) If 𝑡𝑛𝑒𝑤 + 𝑑𝑡𝑛𝑒𝑤 > (𝑡 + 𝛥𝑡)𝑙𝑏𝑚:

(I) correct 𝑑𝑡𝑛𝑒𝑤, to 𝑑𝑡𝑛𝑒𝑤 = (𝑡+𝛥𝑡)𝑙𝑏𝑚−𝑡𝑛𝑒𝑤.
(2) If 𝑡𝑛𝑒𝑤 + 𝑑𝑡𝑛𝑒𝑤 < (𝑡 + 𝛥𝑡)𝑙𝑏𝑚:

(I) go to step 2.I using the value of 𝑡𝑛𝑒𝑤 and
new step 𝑑𝑡𝑛𝑒𝑤.

(3) If 𝑡 = (𝑡 + 𝛥𝑡)𝑙𝑏𝑚 is:
(I) True, return to step 1.

(II) False, go back to 2.I using 𝑡 = 𝑡𝑛𝑒𝑤.
(B) If false:

(i) discard results, reduce (𝑑𝑡𝑛𝑒𝑤 < 𝑑𝑡) and re-start
from 2.I at the old time-step 𝑡.

Appendix D. Geometry and parameters

In this appendix, values regarding the geometry and other parame-
ters relevant to the simulation are summarized in Table D.1.
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