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ABSTRACT KEYWORDS

This study reviews the methodologies used in the literature to SME; default; failure;
predict failure in small and medium-sized enterprises (SMEs). We bankruptcy; methodology
identified 145 SMEs’ default prediction studies from 1972 to early review

2023. We summarized the methods used in each study. The focus

points are estimation methods, sample re-balancing methods,

variable selection techniques, validation methods, and variables

included in the literature. More than 1,200 factors used in failure

prediction models have been identified, along with 54 unique

feature selection techniques and 80 unique estimation methods.

Over one-third of the studies do not use any feature selection

method, and more than one-quarter use only in-sample valida-

tion. Our main recommendation for researchers is to use feature

selection and validate results using hold-out samples or cross-

validation. As an avenue for further research, we suggest in-depth

empirical comparisons of estimation methods, feature selection

techniques, and sample re-balancing methods based on some

large and commonly used datasets.

Introduction

The literature on bankruptcy prediction started in the 1930s (Bellovary et al., 2007).
Altman (1968) employed multivariate analysis for predicting corporate bank-
ruptcy. Before Altman (1968), the literature focused on univariate analysis
(Bellovary et al., 2007). Small and medium-sized enterprises (SMEs) default pre-
diction literature has begun with a study of small business failure by Edmister
(1972). According to Edmister (1972), the lack of small businesses failure predic-
tion research was due to the difficulty in obtaining data on small businesses. SMEs
are considered the main block of the economy for many countries. Despite their
essential role in the economy, SMEs often have no access to the capital markets
when it comes to raising funds; this makes banks an imperative source of credit.
To obtain financing for SMEs, whether credit from financial institutions or
funds from investors, it is crucial to understand the factors contributing to business
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failure. This can help financial institutions and investors to make more informed
decisions about lending and investing in these businesses. By predicting the like-
lihood of SME default, financial institutions can better assess the risk associated
with lending to these businesses and make more accurate decisions about whether
to approve a loan or not. This can help reduce the number of loan defaults, which
benefits both the lender and the borrower. Moreover, studying SME default
prediction can also help researchers understand the underlying factors contribut-
ing to business failure. A better understanding of the factors that affect SMEs’
failures can be used to develop policies and programs that support their growth
and success. This is particularly important as SMEs significantly drive economic
growth and job creation in many countries. Furthermore, studying SME default
prediction can also contribute to developing more accurate and effective predictive
models. With the increasing availability of data and the development of machine
learning and other advanced analytical techniques, there is a growing need for
accurate and effective predictive models to help businesses and financial institu-
tions make better decisions. By studying SME default prediction, researchers can
develop and test new models and techniques that can be applied to other areas of
finance and business.

Following the implementation of the Basel Capital Accord II in 2004, banks
were required to use internal rating systems to assign ratings to their bor-
rowers and compute their capital requirements based on those ratings.
Consequently, SME failure prediction regained the interest of academics and
practitioners. Using the available default prediction models on SME informa-
tion for large corporations at the time might have looked like an instant
solution for predicting SME failure. However, instead of using a model
established for large corporations’ failure prediction on SMEs' data, separating
default prediction models for SMEs and large corporates will result in models
with relatively higher predictive power (Altman & Sabato, 2007).

After Basel II, the global financial crisis of 2007-2009 increased the atten-
tion of academics to the topic of SME failure prediction, such that the number
of studies on this topic increased significantly in 2010 compared to that in
2009. The subsequent noticeable increase in scholarly attention happened after
COVID-19; the number of published articles in 2021 and 2022 are each
considerably higher than in 2020.

Although the importance of effective SME failure prediction is renowned,
there is only one up-to-date systematic literature review published in this field
of research by Ciampi et al. (2021). However, this study does not dive deep
into the methodologies. We therefore conduct a systematic methodology-
focused review in this domain, with a focus on the methods and predictors
used in the SME failure prediction literature. In particular, we provide a
summary of all the predictors, sample re-balancing methods (undersam-
pling/oversampling strategies), variable selection methods, estimation meth-
ods, and validation approaches used in the literature.
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It is important to emphasize the relation between Ciampi et al. (2021) and
our study. Our study is by no means an alternative to Ciampi et al. (2021). On
the contrary, we build upon it. Ciampi et al. (2021) is a very detailed and
insightful general review, and we highly recommend reading Ciampi et al.
(2021) first. The main goal of our study is not a general review on SME default
prediction, but a narrower review focused on methodologies used. Such a
review might be useful for researchers deciding which methodology to use.

Our paper systematically reviews the existing studies about SME failure predic-
tion from a methodological perspective. We reviewed 145 studies and identified
over twelve hundred factors used in the previous literature to predict SME failures
from 1973 to early 2023. Eighty estimation methods are employed in these studies.
We also listed six categories of data sources the researchers have used during the
past six decades, along with 54 unique feature selection techniques. We observed
that more than 37% of the studies do not include or report any feature selection
techniques for their models, more than 25% use in-sample validation techniques,
and more than 50% of studies do not report standard measures of the predictive
performance of models. It is recommended that future studies in this domain
construct their model using proper feature selection techniques and test their
models using either hold-out samples or cross-validation.

The rest of the paper is constructed as follows: we first define the research
problem and methodology used to answer the question. Then, we summarize
the studies and discuss the findings. Finally, conclusions with suggestions for
future research are presented.

Background and methodology

Since the start of bankruptcy prediction literature in the 1930s, the models
for predicting bankruptcy have shown great diversity. For instance, Altman
(1968) uses a five-factor multivariate discriminant analysis model. In con-
trast, Kou et al. (2021) test one hundred indicators using seven different
estimation methods: linear discriminant analysis, logistic regression, sup-
port vector machine, decision tree, random forests, XGBoost, and neural
network. In a review of bankruptcy prediction studies, Bellovary et al.
(2007) identified 752 variables (features/model factors), eight model types
(estimation methods), and two validation methods (hold-out sample and
in-sample). However, this study covers bankruptcy prediction studies from
1930 to 2004. Moreover, this study is not particularly focused on SME
bankruptcy prediction and is relatively old concerning the advances in
estimation techniques such as machine learning. An up-to-date systematic
literature review on SME:s is carried out by Ciampi et al. (2021). This study
analyzes more than one hundred peer-reviewed articles based on statistical
and bibliometric characteristics.
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While Ciampi et al. (2021) study is a comprehensive, systematic, and detailed
review of the SME failure prediction literature, it does not address the meth-
odologies that have been used in the literature in a similar way as the Bellovary et
al. (2007) study does for bankruptcy prediction literature. A systematic metho-
dology-focused review concerning SME failure prediction seems necessary to fill
this gap. Therefore, this study focuses on the methodologies used in predicting
SME default. Here, the word “methodologies” addresses estimation methods
(model types), variables (features/model factors), variable selection strategies, re-
balancing methods, and validating approaches. In order to provide a granular
overview and analysis of the methodologies in the literature concerning SME
default prediction, we applied a two-stage approach. In the first step, the relevant
literature is collected and filtered using a slightly modified version of Ciampi et
al. (2021) literature selection approach. Then a similar framework to Bellovary et
al. (2007) is used to summarize the literature.

For creating the research query, we used a modified version of the query used by
Ciampi et al. (2021). The main reason for following the Ciampi et al. (2021) query
structure is that the paper is the latest literature review concerning this topic, which
is reasonably up-to-date. The other reason is that we build upon their work from a
different aspect, a methodology-focused review. After a slight modification, we
composed this query: (“small and medium size enterprise*” OR “small enterprise*”
OR “small compan*” OR “small business*” OR SMEs OR SME) AND (“credit risk*”
OR “financial distress” OR default OR bankruptcy OR failure) AND (prediction OR
predicting OR “credit risk*”). We ran the above query in Scopus with the “TTTLE-
ABS-KEY” operator. The results were afterward limited to “articles.” Contrary to
Ciampi et al. (2021), we excluded “literature reviews” since the current paper aims
to address the methodologies used in the previous literature. The initial list of
published articles from Scopus, as the primary source of scientific database
(Balzano, 2022; Ciampi et al., 2021; Falagas et al., 2008), was retrieved on
December 1, 2022, and updated on January 20, 2023. There are 394 published
articles included in this list.

Although the above query retrieves relevant studies, it misses some when
the study uses a positive word in the keywords or title like “creditworthiness”
instead of “default,” “bankruptcy,” or “failure.” To account for this issue, the
following complementary query is also used: (“small and medium size enter-
prise*” OR “small enterprise*” OR “small compan*” OR “small business*” OR
SMEs OR SME) AND (creditworthiness OR “credit worthiness”) AND (evalua-
tion OR analysis OR assessment). The complementary list of published articles
from Scopus was retrieved on January 20, 2023, and included 39 published
articles with 28 nonduplicated articles. The total number of articles is, there-
fore, 422 articles."

"This number represents the articles found by the mentioned queries. However, a reviewer has suggested five
additional articles to be included in this study that we added to the final set of articles.
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The next step was to exclude studies outside this paper’s scope. In this step,
we read all the abstracts (introductions when no abstract was available). The
exclusion criteria in the cleaning process were based on (1) the unit of study,
(2) the default definition, and (3) the objective of the current study. For the
first point, the final set of articles includes every empirical study that addresses
SMEs as research units. If the unit of study is a portfolio of SMEs or a network
of SMEs, the study is excluded. Regarding the definition of SME, a paper is
included in the final article set as far as the definition of SME is within a
regional SME definition relevant to that research.” Regarding the default
definition, we considered four variations of failure:” financial distress, default,
tailure, and bankruptcy. A set of 217 articles is obtained at the end of this step.

The second round of screening required a more in-depth reading of each
study. In this round, we identified 145 studies relevant to our methodology-
focused review. A list of all the studies included in the current study is available
in Table B1 in Appendix B.

While doing a systematic review, the papers included must be based on a
clear and objective rule. Some systematic reviews consider all papers in a broad
database, such as Scopus (Ciampi et al., 2021) or Web of Science (Marzi et al.,
2017). Other systematic reviews narrow down the list of selected papers by
considering only articles published in journals included in some prestigious
journal ranking, such as The Academic Journal Guide of the Association of
Business Schools (Balzano, 2022).

We combine these two approaches. We include all the relevant papers from
the Scopus database. Still, at the same time, we divide papers into two groups:
those published in journals included in the Academic Journal Guide 2021 of
the Association of Business Schools (ABS) and the remaining papers. For
simplicity, the studies ranked in this hierarchy are denoted as “ABS” and
those not as “non-ABS” throughout this study. This allows us to review the
existing literature comprehensively. At the same time, readers interested only
in papers published in ABS-ranked journals can easily focus on these papers.

Figure 1 shows the distribution of the articles selected in the final stage. We
included the distribution of studies investigating the “Stock Market” (the
darker stair plot) to compare the trend of academic attention on this topic
and a more general case. We can see that the first increase in studies that
empirically investigate SME default prediction occurred in 2007. Considering
the time it takes for authors to write and publish an article, we can relate this
increase to implementing the Basel II accord. Following the 2007-2009 global
tinancial crisis, an increase in 2010 and 2011 is observable. And finally,

'This number represents the articles found by the mentioned queries. However, a reviewer has suggested five
additional articles to be included in this study that we added to the final set of articles.

ZCiampi et al. (2021) only included the studies where the SME definition was in line with the European definition of
SME. However, for this paper, this inclusion criteria seems not necessary as the main object of the research is the
method.

*Throughout this study, we use default and failure interchangeably for all definitions of failure we have considered.
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Figure 1. Distributions of the papers from 1972 to 2022. Note: The right axis shows the number of
SME default prediction studies per year included in this review’s final set of articles. The darker
color represents the articles published in journals listed by the Association of Business Schools
(ABS) 2021 ranking, and the lighter color represents those not published in journals listed in ABS
2021 ranking. The stair plot (left axis) shows the “Stock Market” papers distribution from 1972 to
2022, resulting from a query in Scopus with the “TITLE-ABS-KEY” operator that only contains “Stock
Market.”

another noticeable increase after COVID-19. However, the trend for stock
market research is consistently increasing.

In the final step, we went through all the selected articles and summarized
the methods used in each article. This summary includes (1) population
description, such as the geographical location/locations and the time horizon
of the research data, (2) data characteristics (for example, financial, nonfinan-
cial, firm characteristics, manager characteristics, and macroeconomics), (3)
generality of the study (that is, is the research focused on a specific subset of
SMEs or not) (4) variables (model factors) included in the research, (5) over-
and undersampling strategies, (6) variable selection strategies/methods, (7)
estimation method/methods used in the analyses (model types), (8) validation
method/methods used to validate the model/models prediction accuracy, (9)
proposed model/models performance, and (10) the source of data. This stage
uses a modified and expanded approach applied by Bellovary et al. (2007). The
added overview aspects are (1), (2), (5), (6), and (10).

By including an overview of the time horizons used in previous studies, we
can investigate if the data includes specific periods (for example, the 2007-
2009 global financial crisis and COVID-19). Data characteristics are relevant
since most research focuses on models requiring historical data, such as
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balance sheet information. However, these models are unsuitable for predict-
ing failure events when financial records are not available; for example, during
business planning and new venture creation. Moreover, collecting financial
information from small business entrepreneurs is often difficult. Lussier
(1995) developed a nonfinancial business success versus failure prediction
model including only nonfinancial variables. His model later has been tested
in seven other countries.

The sample re-balancing method can impact the predictive power of a
model; for example, some studies use a balanced (half defaulted firms and
half non-defaulted firms) sample (Altman et al. (2022) while some studies
show that an imbalanced sample performs better (Kou et al. (2021)). In
addition, an efficient variable selection is an essential step in modeling bank-
ruptcy (Du Jardin, 2009). Thus, an overview of variable selection techniques
from previous literature (point 6) is included in this review. Finally, data
sources are one driver of errors in estimations. For example, a dataset obtained
from a bank only contains the firms that applied for a loan. In worst-case
scenarios, it only contains accepted loan data (which may not be a sample
representing the whole population under the study). Thus, listing data sources
helps distinguish previous studies’ possible error sources.

Results

We present a detailed overview of each dimension of methodologies used in
previous literature in this section. The studies are classified into two groups:
ABS-ranked and non-ABS. Table 1 shows the distribution of studies based on
ABS ranking, where 4* is the highest ranking. Among the studies reviewed in
this paper, 94 are listed in ABS, and 51 are not listed.

Population description

We summarize the population distribution in terms of three dimensions:
geographical location under the study, the time horizon of the data in year
increments, and the sample size used for constructing the SME failure predic-
tion models (mainly number of firm-years).

Table 1. Distribution of papers based on the journals’
ranking (that is, ABS 2021 ranking).

Category Number of Studies
Ranked by ABS 94

4* 1

4 6

3 48

2 22

1 17
Not Ranked by ABS 51
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Geographical focus of the studies

A significant proportion of SME failure studies focused on European coun-
tries. For instance, 29 papers (19 ABS and 10 non-ABS) studied Italian firms,
11 (6 ABS and 5 non-ABS) investigated German firms, and 10 (6 ABS and 4
non-ABS) studied Portuguese firms. Figure 2 shows the concentration of SME
failure studies worldwide. South America, Africa, and the Middle East are
relatively less studied. Table Al in Appendix A includes a table of all countries
included in the studies. Some authors analyzed more than one country in their
research: Cathcart et al. (2020), Filipe et al. (2016), Karas and Reznakova
(2021), Karas (2022), Malakauskas and Lakstutiene (2021), Matthias et al.
(2019), Muthukumaran and Hariharanath (2023), Pederzoli et al. (2013),
and Tobback et al. (2017). Three studies did not explicitly specify any locations
for their data (Li et al., 2021; Zhang & Song, 2022a, 2022b).

Time horizon
Periods under study vary from only one year (for example, Lee et al.
(2020)) to 66 years of data (that is, Gupta and Gregoriou (2018)). The

Non-ABS

L.

Figure 2. Geographical distribution of data used in SME default papers. The top part shows the
ABS-ranked studies, and the bottom shows the non-ABS studies. Note: Three papers do not specify
the geographical attribute of the data, and one article only defines it as “a country in South
America.”
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average duration of the data under the study is 8.44 years (the average for
ABS-ranked studies is 8.92, and for non-ABS is 7.47 years). Data from 46
studies (36 ABS and 10 non-ABS) also includes the global credit crisis of
2007-2009. Although the COVID-19 issue is relatively recent, the data in
11 studies (3 ABS and 8 non-ABS) includes this period too. Twenty-nine
studies did not disclose the time horizon of their data, where 16 are ABS
and 13 are non-ABS.

The forecasting horizon for studies is usually 1 year. That is, 83% of the
studies predict default events within a year. Twenty-four studies, however,
explicitly tried to predict defaults in longer horizons. Altman et al. (2020)
models predict defaults for four different horizons: 1year, 2-3 years, 4-5
years, and 6-10 years. DiDonato and Nieddu (2015) have studied eight differ-
ent time frames for one to eight years. Lugovskaya (2010), Pacheco et al.
(2022), and Pierri and Caroni (2022) test models forecasting defaults up to
5-year forecasting windows. Abdullah et al. (2016a) and Abdullah et al. (2019)
built models for one to four-year prediction time frames. Glennon and Nigro
(2011), Cornée (2019), and Monelos et al. (2014) studied defaults within four
years. Altman et al. (2020), Ciampi et al. (2020), Laitinen (1993), Papik and
Papikova (2023), Park et al. (2021), Séverin and Veganzones (2021), and
Yazdanfar (2011) models forecast defaults for 1, 2, and 3-year time frames.
Dewaelheyns et al. (2021), and Modina and Pietrovito (2014) studied defaults
up to a 3-year horizon. The models in studies by Abdullah et al. (2016b),
Ma’aji et al. (2019), Norden and Weber (2010), Svabova et al. (2020), and Zizi
et al. (2021) predict financial distress within 2 years.

Sample size

Sample sizes range from four observations (Angilella & Mazzu, 2015) to over
six million (Cathcart et al., 2020). Some studies defined their sample sizes
regarding the number of firms, primarily when the research focuses on the
default event relevant to a loan. Other studies reported their sample size in
terms of the number of firm-year observations. The only study in the 1970s has
a sample size equal to 42. The median for the 1980s (based on three observa-
tions) is 146. For the 1990s, there are two studies with sample sizes of 80
(Laitinen, 1993) and 216 (Lussier, 1995). The median for the 2000s is con-
siderably higher than before, equal to 1,003. The median for the 2010s is 3,158,
three times larger than the sample size median for the 2000s. The median for
the 2020s is 4,039 observations. Comparing the last two decades, the 2010s and
2020s, for ABS and non-ABS, the sample size median for 2010s for ABS studies
is considerably larger than for non-ABS studies; 4,262 for ABS versus 968 for
non-ABS. However, in the 2020s, the median for non-ABS studies sample size
is larger than ABS studies, that is, 4,354 for non-ABS studies and 2,686
for ABS.
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Data sources

Obtaining data has been an essential aspect of SME research since Edmister
(1972). However, SME data became more accessible during the two previous
decades; as reported earlier, the number of observations per study has
increased significantly. Regarding resources for SME failure research, more
than 40% of the studies are based on data obtained from data service firms,
such as Bureau van Dijk, Thomson Reuters, and Compustat. The other
significant sources are ministries, public offices, and universities, which pro-
vided 20.7% of the data for ABS studies and 29.2% for non-ABS studies. Banks
and financial institutions account for 19.8% of the data for ABS and 13.9% for
non-ABS, where banks have the most significant share in this category in both
ABS and non-ABS. Qualitative data is often collected through surveys and
interviews in this domain. The percentage of surveys, questionnaires, and
interviews is 12.1% for ABS and 8.3% for non-ABS. Publicly available data,
like web pages or published public reports, has a share of 5.2% for ABS and
2.8% for non-ABS. Figure 3 shows the percentages of sources in SME default
studies. Detailed lists of data sources and the number of studies that used those
sources are available in Appendix C, see Tables C2-C6. Note that some studies
have multiple data sources as they studied more than one category of factors.
For example, Ciampi (2015), Ciampi (2017), and Ciampi (2018) used data
from CERVED together with surveys; Ciampi et al. (2020) used CERVED
along with data obtained from the Central Credit Register of Italy; and Karas
and Reznakova (2021) obtained data from Amadeus (by Bureau Van Dijk),
EUROSTAT, and the Transparency International Database.

Data characteristics

Financial ratios have been the most used factors in SME default models since
the beginning of this research domain, such that 120 studies out of 145 used
financial ratios. In contrast, 109 studies used at least one category of variables
that is not in the financial ratios category. However, 93 out of the 109 studies
used financial ratios and at least one type of nonfinancial ratio information.
Within the nonfinancial ratio category, firm and owner/manager character-
istics information is used in 43 studies, macroeconomics data in 25, and credit
record information in 21 studies. Table 2 shows categories used in three or
more studies. “N” denotes the number of studies (ABS plus non-ABS) in the
tables where it appears.

Focus of the studies

The main focus of 91 studies is SMEs in general, while 33 studies cover small
enterprises. For narrowly focused models, five studies: Abdullah et al. (2016b),
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ABS

Bureau van Dijk

Banks

Non-ABS

Bureau van Dijk

Figure 3. Distribution of data sources used in SME default papers by types. Note: There is one non-
ABS paper that used “data from another paper,” which is not presented in this figure.
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Table 2. Categories of information used in three or more studies.

Data Type ABS Non-ABS N
(Number of Studies) (94) (51) (145)
Financial Ratios 77 43 120
Non-financial 73 41 114
Firm and Manager/Owner Characteristics 27 16 43
Macroeconomics Information 13 12 25
Credit Information 16 5 21
Relational Information 3 5 8
Loan Characteristics 4 1 5
Textual 1 2 3

Abdullah et al. (2019), Ma’aji et al. (2019), Pacheco et al. (2022), and Yin et al.
(2020) cover only manufacturing SMEs. Three studies: Angilella and Mazzu
(2015), Angilella and Mazzu (2019), and Pederzoli et al. (2013) study “inno-
vative SMEs”. Micro and small enterprises are studied in two papers:
Bangarigadu and Nunkoo (2022), and Li et al. (2021). Mittal et al. (2011)
investigate only micro-enterprises. Conversely, Dewaelheyns et al. (2021)
study SMEs excluding micro-enterprises. Small industrial enterprises are
studied by Sun et al. (2022), and small manufacturing enterprises are investi-
gated by Ciampi et al. (2020). Table C1 in Appendix C shows a list of all
studies’ focuses.

Sample imbalance

Regarding the imbalance proportion of defaults and nondefaults, 28 studies
(19 ABS and 9 non-ABS) used balanced samples, seven (4 ABS and 3 non-
ABS) used almost balanced samples (the split is not exactly but close to 1:1),
and 105 papers (67 ABS and 38 non-ABS) used imbalanced samples.* The
imbalance problem is often addressed using undersampling techniques, either
random undersampling or stratified random undersampling. The main dif-
ference between these two methods is that random undersampling only
arbitrarily matches the number of nondefaults with the existing defaults in
the sample. For instance, Altman and Sabato (2007) used undersampling by
selecting the firms over the same period to match the average default rate in
the sample to the expected average default rate for SMEs in the USA. However,
stratified random undersampling matches the observation based on the simi-
larity of some characteristics in both defaults and nondefaults. For example,
Abdullah et al. (2016b) matched the distressed and nondistressed firms based
on the asset size and industry group.

The other possible solution for the imbalance problem is to over sample.
Synthetic minority oversampling technique (SMOTE), which is the most used
oversampling technique in SMEs default prediction studies, is an oversam-
pling method in that each minority class (defaults) observation creates a

“Four ABS studies and one non-ABS study did not disclose their sample composition.
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percentage of artificial observations comparable to the majority class observa-
tions (nondefaults). This augmentation in the minority observations may
enhance the trained model’s classification accuracy.

Random undersampling is used by seven studies (all ABS), while 10 studies
(6 ABS and 4 non-ABS) employ stratified random undersampling. However,
SMOTE is used by six studies (3 ABS and 3 non-ABS’). Some authors used
these techniques to balance the sample to 1:1 splits (Altman et al., 2022;
Ciampi et al., 2020; Lee et al.,, 2020), while other authors tried to replicate
the distribution of defaults to nondefaults in the population under study
(Altman & Sabato, 2007; Calabrese et al., 2016).

Factors, features or variables included in the main models

We identified 1,205 unique factors, excluding the studies’ time, sector, and
location identifiers. These factors denote those that are used in the studies’
tinal models. Among the factors, 971 are employed in one study, 124 are used
in two studies, and 110 are utilized in three or more studies. A complete list of
the variables used by three or more studies is available in Appendix A, see
Tables A3-A5. We presented the variables under four main classes, general
features (balance sheet items, financial ratios, and time-varying firm perfor-
mance measures), firm characteristics (for example, size, legal form, and age),
owner/manager characteristics (for instance, gender, age, and education of the
manager/owner), and macroeconomics variables (such as GDP growth and
interest rate). Among the main class, the quick ratio is utilized in 30 studies,
the current ratio in 26 studies, net income to total assets in 26 studies, retained
earnings to total assets in 22 studies, and sales to total assets in 20 studies. The
most used firm characteristics are firm age (31 studies), the natural logarithm
of total assets (17 studies), the number of partners (11 studies), the natural
logarithm of firm age (10 studies), and number of employees (nine studies). It
is worth noting that the natural logarithm of the total assets, the number of
employees, and the natural logarithm of sales are taken as size measures
among studies. The top four employed owner/manager characteristic features
are education (14 studies), management experience (12 studies), age of owner/
debtor/legal representative (11 studies) of the owner/manager, and if the
owner’s parents owned a business (11 studies). The most used macroeco-
nomics variable is GDP growth, utilized in six studies.

Moreover, time, sector, and location identifiers are used in several studies.
Time dummies are utilized in nine studies, varying from year dummies to
dummies for a certain period. Sector dummies are used in 34 studies, mainly
identifiers for a firm’s business sector. Geographical location identifiers are

>One non-ABS study used SMOTE and six variations of under and oversampling ("WSMOTE, nWSMOTE-ensemble,
nRUS, nMChanUS, nUSOS, and nRUSSMOTE); that is, Abedin et al. (2022).
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utilized in 27 studies, such as country identifiers, county identifiers, city
identifiers, dummies for cardinal locations within a country, and district
identifiers.

Number of factors in the main models

The number of predictor factors used in the final models per study ranges from
one to 52 for ABS studies and one to 79 for non-ABS studies. On average, 13
factors are presented in the primary models among all ABS studies and 12 for
non-ABS studies. Dividing the period under the review into two sub-periods,
that is, pre- and post-2000, the average features per model for the first period is
approximately seven. The second-period models utilize 13 features per model.
Table 3 shows the number of variables per model grouped by decades. The
maximum number of variables per model shows an upward trend.® This can be
due to the ability of the advanced estimation methods to work with highly
correlated variables and having relatively fewer assumptions about the distribu-
tion of indicators such that models can accommodate more features.

Variable transformation and winsorization

Regarding dealing with outliers, 35 studies (24 ABS and 11 non-ABS) used a
technique to deal with them. Fifteen studies utilized winsorization.
Winsorizing at the 1st and 99th percentiles is the most popular method,
which is used by 11 studies; for example, Altman et al. (2020), Gupta et al.
(2014a), Karas and Reznakova (2021), and Karas (2022). Three studies win-
sorized their factors at 5th and 95th percentiles, that is, Andrikopoulos and
Khorasgani (2018), El Kalak and Hudson (2016), and Wilson et al. (2016).
Another transformation like logarithmic transformation is used by four

Table 3. Number of variables that are used in SME default models.

Minimum Maximum Average (rounded)
ABS (94 Studies)
1970s 7 7 7
1980s 5 6 6
1990s 3 15 8
2000s 4 29 13
2010s 1 50 12
2020s 5 52 16
Overall 1 52 13
Non-ABS (51 Studies)
1970s
1980s 5 9 7
1990s
2000s 16 16 16
2010s 3 24 11
2020s 1 79 12
Overall 1 79 12

SPlease note that there is only one paper for the 1970s and two studies for the 1990s.
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studies: Altman and Sabato (2007), Angelini et al. (2008), Lextrait (2023), and
Sigrist and Hirnschall (2019); hyperbolic tangent transformation is utilized in
two studies: Inekwe (2016), and Piatti et al. (2015). Removing outliers is used
in five studies; for example, Pacheco et al. (2022), and Grishunin et al. (2021).

Feature selection techniques

Although more advanced estimation methods might be able to deal with more
input features without causing severe problems, collecting information involves
considerable costs. Moreover, some studies show that having fewer variables in
models results in better predictive performance or the same performance level
with the models including more variables (Kou et al. 2021). Only 88 out of 145
studies utilized at least one feature selection method, which accounts for 56 out of
94 ABS and 33 out of 51 for non-ABS. Furthermore, 33 ABS and 14 non-ABS
studies used more than one technique. In total, 54 unique variable selection
techniques are used in the studies. Table 4 shows variable selection methods
used in at least three studies. The most utilized techniques are the forward stepwise
method and correlation analysis. In the forward stepwise approach, one starts with
an empty model, and the model is constructed by adding the most significant
features. In correlation analysis, when a pair of variables are highly correlated, the
one with the highest significance level is kept in the model. The third most utilized
approach is removing a variable with strong multicollinearity.

Estimation methods

The first model for small business bankruptcy prediction in a study by
Edmister (1972) employed multiple discriminant analysis (MDA). Keasey

Table 4. Feature selection techniques utilized in two or more studies.

Variable Selection Method ABS Non-ABS N

(Number of Studies) (94) (51) (145)
Correlation Analysis 18 8 26
Forward Stepwise Selection 17 9 26
VIF 9 4 13
Backward Stepwise Elimination 4 5 9
Stepwise Method? 6 3 9
PCA 4 3 7
Univariate Analysis 4 2 6
Average Marginal Effect (AME) 4 0 4
Significance 3 1 4
Wrapper Method 2 2 4
LASSO 2 1 3
RF Feature Selection Method 3 0 3

VIF stands for variance inflation factor, which shows the multicollinearity between the features. PCA stands for
principal component analysis. It is often used to find a subset of variables that explains most of the variation in the
data. LASSO stands for least absolute shrinkage and Selection operator. Significance stands for keeping only (the
most) significant variables in the model. RF in RF feature selection method stands for random forests.

%It is not specified if the method is forward or backward.
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and Watson (1986) and Keasey and Watson (1988) also used discriminant
analysis in this subject. However, after the conditional logit model was applied
to the default prediction studies by Ohlson (1980) for the first time, logit
became and remained the most utilized estimation method in this research
domain. Table 5 shows estimation methods utilized in two or more SMEs
failure studies grouped by decades. Logit is used in 77 studies (46 ABS and 31
non-ABS), neural network (NN) and discriminant analysis (DA) each in 14
studies, support vector machine (SVM) in 13 papers, and random forests (RF)
in 11 research. We identified 80 unique estimation methods utilized in SME
failure studies as the primary estimation method, where 59 of the model types
were only employed by one study. Most of the studies have only one primary
estimation method. However, 39 studies have more than one primary estima-

Table 5. Estimation methods that are used in two or more SME default papers as the primary
models.
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NN, neural network; SVM, support vector machines; RF, random forests; XGBoost, eXtreme gradient boosting; DA,
discriminant analysis; Cox P. H., Cox proportional hazards model; Disc-t H., for discrete-time hazards model; DT,
decision tree; LightGBM, light gradient boosting machine; k-NN, k-nearest neighbors algorithm; ELECTRE-TRI,
elimination and choice translating reality — tree; MURAME, multicriteria ranking method; MLP, multilayer percep-
tron; CART, classification trees, RSF, random survival forests; L-Reg, linear regression; CatBoost, categorical boost-
ing; CNN, convolutional neural network.

[=NeNeNeNoNoNoNooNoE=N=Ne NN N R

el NelelelelNe el el e Ne o o No Ne Nl
—_

e s s NNNNNWWWAUOU OGBS

o
w




JOURNAL OF SMALL BUSINESS MANAGEMENT . 17

tion method; for example, Altman et al. (2020), Ciampi et al. (2020), Figini et
al. (2017), Kou et al. (2021), and Zhang and Song (2022b). Table A2 in
Appendix A shows the number of papers, grouped by decade, which studied
more than one primary estimation method, along with studies that tested
more than one method but not as their primary methods (66 papers); for
instance, a different method tested as a robustness check of the primary
estimation method. We distinguished the studies as follows: in the case of
multiple model types, if a study compares model types and does not a priori
take a model as its primary model type, the study has more than one primary
estimation method.

Validation methods

Keasey and Watson (1987) used a hold-out sample to test their results for the
first time in this research domain. Although using hold-out samples was
known very early in this research subject, 36 studies used in-sample validation.
Some may justify their usage of in-sample validation by their small sample
size. However, Isaksson et al. (2008) suggest that even cross-validation and
bootstrapping are unreliable as validation approaches when the sample is
small and they suggested using a simple holdout test. Kim (2009) compared
bootstrapping and cross-validation (as a traditional validation method) and
concluded that cross-validation outperforms bootstrapping. Thus, using in-
sample validation when the goal is to predict failure is not justifiable in today’s
research.

Table 6 presents the validation methods used in SME default studies in each
decade. Seventy-seven studies (54 ABS and 23 non-ABS) utilize the hold-out
sample, and 15 (5 ABS and 10 non-ABS) use cross-validation. Using cross-
validation increased during the past 22 years, such that out of 10 studies in the
2000s, no study used cross-validation; in 2010s, only four out of 64 studies
utilized cross-validation, and from 2020 to early in 2023, 10 studies out of 49
employed cross-validations. A total of 12 studies either did not report their
validation strategies or validation was not necessary based on the nature of
their studies.

Model performance

Model performance is measured based on various measures. The two most
repeated measures are error rates, in terms of type I and type II errors, and the
area under the receiver operating characteristic (ROC) curve, known as AUC
in short or AUC(ROC). Table A6 in Appendix A shows the most repeated
performance measures. Type I and type II errors are reported in 74 studies,
and AUC(ROC) in 68 studies. Type I errors show the false-positive or when a
nondefaulted firm is classified as defaulted. Type II errors denote the false-
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Table 6. Validation methods that are used in SME default studies.

Hold out sample Cross-validation In-sample
ABS (94 Studies)
1970s 0 0 1
1980s 0 0 2
1990s 0 1 1
2000s 6 0 2
2010s 34 2 15
2020s 14 2 4
Overall 54 5 25
Non-ABS (51 Studies)
1970s
1980s 1 0 0
1990s
2000s 2 0 0
2010s 8 2 7
2020s 12 8 9
Overall 23 10 16

Seven ABS studies and one non-ABS study either did not report their validation strategies or the validation was not
required based on their study scope.

Two ABS studies did not use any validation methods.

Two studies (one ABS and one non-ABS) used another dataset with different variables to validate their results.

negative or when the model misclassifies the defaulted firm as nondefaulted.
Usually, studies report an “accuracy ratio” based on these two errors, which is
a weighted average of one minus each type of error. However, such an
accuracy ratio is subject to a cutoff point designated to the prediction model.
The cutoff point refers to a value between 0 and 1, separating defaulted and
nondefaulted firms based on the probability of defaults (PD). While the
accuracy ratio might seem to be sufficient on most occasions, AUC(ROC) is
superior since it is not impacted by the cutoff points; it reports the area under
the imaginary curve where all the cutoff points are accounted for.

We ranked the best models of each study, regardless of whether the study
has more than one primary estimation method, based on AUC(ROC) and
accuracy ratio; each study has only one model in the ranking. Only models
validated with hold-out samples or cross-validation are considered. The main
reason is that in-sample accuracy is often higher than hold-out sample accu-
racy, and in-sample validation is not an appropriate measure to report pre-
diction accuracy. Table 7 shows the top 10 ranked studies based on AUC
(ROC) and accuracy ratio grouped by the estimation method, such that the
best measure for each method is reported. Tables A7 and A8 in Appendix A
show the top 20 performing models grouped by studies. The top three models
based on AUC(ROC) are gradient boosting decision tree-convolutional neural
network-logistic regression (GBDT-CNN-LR), random forests (RF), support
vector machine (SVM) where the AUC(ROC)s are almost the same in the first
two (0.992 vs. 0.991) and not that lower in the third model (0.988). Based on
the accuracy ratio, the best-performing model is RF, with an overall accuracy
of 99.1% in a study by Abedin et al. (2022). The discrepancy between the two
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Table 7. Top 10 performing models based on the AUC(ROC) and accuracy ratio by estimation

methods.
Rank AUC(ROCQ) Estimation Method Study ABS
Panel A
1 0.992 GBDT-CNN-LR Zhang and Song (2022a) No
2 0.991 RF Abedin et al. (2022) No
3 0.988 SVM Sun et al. (2022) Yes
4 0.984 Soft voting Gao et al. (2021) No
5 0.973 CNN-Logistic-Stacking Zhang and Song (2022b) No
6 0.970 XGBoost (Focal Loss) Sun and Jiao (2022) No
7 0.963 Elman network Corazza et al. (2021) Yes
8 0.959 Logit Zizi et al. (2021) No
9 0.956 Cox Proportional Hazards Gupta and Gregoriou (2018) Yes
10 0.949 NN Da and Peng (2022) Yes
Rank Accuracy Ratio Estimation Method Study
Panel B
1 99.1% RF Abedin et al. (2022) No
2 97.7% MDA Terdpaopong and Mihret (2011) Yes
3 97.1% NN Da and Peng (2022) Yes
4 96.8% CNN Zeng (2022) No
6 96.2% Logit Abdullah et al. (2016a) Yes
8 93.8% XGBoost (Focal Loss) Sun and Jiao (2022) No
9 93.6% Elman network Corazza et al. (2021) Yes
1 91.6% CART DiDonato and Nieddu (2015) No
12 91.5% LPM Figini and Giudici (2011) Yes
15 90.8% CatBoost Papik and Papikova (2023) Yes

Panel A shows the AUC(ROC) results, and Panel B corresponds to accuracy ratio. studies that used hold-out samples
and cross-validation as their validation methods are shown in this table. The first column shows the model's
ranking grouped by studies. The AUC(ROC) ranking grouped by studies and estimation methods is the same.

GBDT-CNN-LR, gradient boosting decision tree-convolutional neural network-logistic regression; LPM, parametric
longitudinal models.

panels in Table 7 is due to some studies only reporting AUC(ROC) and some
only accuracy ratios.

Discussion
Potential bias from data sources

Data has been an issue from the beginning of SME default prediction research
area. However, technological development has changed the situation consid-
erably. Data collection and management became less complicated with the
introduction of computers and the Internet, and data service firms started to
serve data to researchers and practitioners. Nearly half of the papers we
reviewed obtained the data from data service firms. Moreover, technological
advances made it easier for public authorities and the private sector to store
information in a more efficient and accessible way.

Although data is relatively more readily available these days, it does not
necessarily mean that data accurately represents the population under study.
For example, data collected through a bank or financial institution often
includes firms that applied for financing and even only those firms that
received the funding. By the Basel Capital Accord II implementation in
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2004, banks were mandated to use internal rating systems. This means the
bank’s internal rating system has initially filtered firms in the bank portfolios.
Therefore, the sample of firms in the bank database may not represent the
whole population accurately due to this selection bias. This bias is less pro-
nounced when data is obtained from data service firms or public authorities
since those databases often include firms with various financing sources. For
example, Lussier (1995) introduced a two-step sampling process that can
potentially reduce the selection bias; that is, the positive cases (failures) were
collected at the first stage from bankruptcy court records, and the negative
cases (nonfailures) were matched based on industry and geographical location
in the second stage.

Dealing with sample imbalance

While sample imbalance has not been addressed at all or appropriately in more
than 70% of the studies on SME failure prediction, it appears to be a source of
inaccuracy. Veganzones and Séverin (2018) show that the performance of the
models, which are built on samples with the minority class representing less
than or equal to 20% of the whole population, are significantly inferior.
However, they reported that SVM is less sensitive to the imbalance than the
other estimation methods, only showing a noticeable decrease in performance
when the minority class is equal to or less than 10%. They also suggested that
oversampling is the optimal choice for dealing with sample imbalance as it is
the most suitable technique for all estimation methods and sample sizes.
Abedin et al. (2022) tested six different sample re-balancing strategies and
demonstrated the same conclusion that oversampling outperforms nonsam-
pling and undersampling. They also reported that the SVM does not signifi-
cantly benefit from sample re-balancing, confirming the result of Veganzones
and Séverin (2018). Moreover, Yin et al. (2020) show that oversampling
(SMOTE) significantly improves the performance of RF while it does not
impact the performance of XGBoost. Contrary to the abovementioned studies
in favor of oversampling, Piatt and Piatt (2002) concluded that oversampling
might cause choice-based sample bias due to a nonrandom sample created
from oversampling of the defaulted firms.

Feature selection

About 40% of the studies did not use any statistical variable selection methods.
Although Du Jardin (2009) discussed the importance of the variable selection
techniques in failure models performance, more than 85% of papers without
reporting any variable selection techniques were written after Du Jardin (2009)
study, that is, 2010 to early 2023. While some new estimation techniques
account for potential problems sourcing from collinearity, multicollinearity,
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and irrelevancy of a subset of variables, this does not mean that having
hundreds of variables does not impose the cost of collecting them.
Moreover, leaving the variable selection to some internal hidden features of
some advanced estimation methods reduces the generality of a model. That is,
a model assumes to be an appropriate prediction model if it works equally well
with the same subset of variables on another sample.

Validation methods

Although the issue of improper in-sample validation is discussed by Bellovary
et al. (2007), about 30% of studies published afterward still used in-sample
validation. Even though one may argue that the goal of a study may not be to
construct an excellent predictive model but a descriptive model, this argument
cannot wholly justify not using a hold-out sample or cross-validation.

Model performance

Regarding reporting predictive model performance, type I and type II errors
and AUC(ROC) are standard measures to report. However, about 50% of the
studies did not report type I and type II errors; this also holds for AUC(ROC).

Among the top five estimation methods used in the studies,” SVM has the
highest AUC(ROC) on average (0.9175), NN comes right after with AUC
(ROC) averages at 0.9143, RF with AUC(ROC) on average equal to (0.8288),
and logit is the last in the list by average equal to (0.8225). Models constructed
using discriminant analysis did not report AUC(ROC). For the accuracy ratio,
RF comes first (99.1% based on one study), discriminant analysis second
(88.35%), NN third (83.86%), and logit fourth (82.86%). Only one study
reported accuracy ratio for SVM, which is relatively lower than logit
(74.3%). While logit has been used the most, it has the lowest accuracy of
the most used models overall, the last under AUC(ROC), and fourth under
accuracy ratio. In general, RF, NN, CNN, and stacked models (CNN-LR, for
instance) are observed to outperform logit.

ABS versus non-ABS

We checked the difference between articles published in ABS-ranked journals
and non-ABS journals for each dimension of the methodology we presented
earlier in the results. We show pronounced differences between these two
groups in this subsection.

The largest difference between ABS and non-ABS studies is in the
country they study. ABS studies usually investigate Western coutries,

’Only models tested with hold out samples or cross-validation are considered.
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while non-ABS studies are usually focused on China and Eastern Europe.
About 15% of ABS-published articles have studied the UK, about 10.5%
studied the USA, and 7.5% studied France. These percentages are 6%, 4%,
and 4% for non-ABS published articles, respectively. Furthermore, 17.5%
of non-ABS articles studied China, while only 8.5% of ABS articles
focused on China. Moreover, non-ABS studies have focused relatively
more on Slovakia, Poland, the Czech Republic, Estonia, Latvia, and
Lithuania.

The median size of the samples used in ABS and non-ABS studies are
almost similar, 2,681 for ABS versus 2,558 for non-ABS. The time horizon
under study is longer for ABS papers, approximately 9 years on average, versus
7.5 years for non-ABS.

ABS and non-ABS studies obtained more than 40% of their data from data
service providers. However, the proportion of the data obtained from minis-
tries, public offices, and universities is 29% for non-ABS while 20% for ABS
articles. Banks, financial institutions, and firms provided data to 20% of ABS
studies and 14% of non-ABS studies. The sample imbalance problem has been
addressed in 17% of ABS studies and 13.5% of non-ABS studies. At least one
statistical feature selection method has been used by 60% of ABS studies and
65% of non-ABS articles. Comparing primary estimation methods, logit is
used in 49% of ABS studies and 61% in non-ABS studies. Although logit has
more pronounced domination in non-ABS studies, the newer estimation
methods, like XGBoost and LightGBM, are also used relatively more fre-
quently in non-ABS studies.

The hold-out sample has been used in 57.5% of ABS studies to validate the
results. However, only 45% of the non-ABS studies have used out-of-sample
validation. Cross-validation and in-sample validation are less used in ABS
studies compared to non-ABS studies. Finally, AUC has been reported more
often in non-ABS studies (55% versus 42.5% for ABS studies).

Limitations of this review and future research

In this section, we discuss the limitations of this review, and based on these
limitations, we suggest avenues for further research.

Limitations of this review

In this review, we summarized which methods and variables (features) are
used in existing studies, and how often. While in some cases, the number of
appearances of a variable in the final model of a study shows that the variable is
potentially a good predictor of failure, this is not necessarily applicable to the
number of appearances of an estimation method. The number of times an
estimation method has been used in previous studies does not represent
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whether it is superior. A particular method can be used frequently due to the
ease of implementation or because it was introduced relatively early to the
research community. Even though some methods were introduced for a long
time, some barriers existed to apply them. Those barriers can be, for example,
a lack of expertise to implement them and the limited computational power of
computers available to researchers at the time. Thus, the frequency that an
estimation method appears as the primary estimation method in previous
studies does not support that the estimation method is the best choice today.

Although we also have presented the performance of estimation methods
reported by previous studies, the degree to which the conclusion about the
method superiority is limited across different studies since the models are not
constructed uniformly, data compositions are dissimilar, and even the defini-
tion of failure among studies is different.® In some instances, conclusions can
be drawn relatively easily; for example, the superiority of the hold-out sample
validation approach is obvious. However, some suggestions are weaker. For
instance, we know that re-balancing the sample increases the model perfor-
mance. However, which strategy is superior combined with a specific estima-
tion method is still a question for future research.

In summary, the main limitation of our study is that it is a review.
Therefore, we can conclude which methods are used most frequently, but we
are not able to conclude which methods work the best. We elaborate more on
this in the next subsection.

Avenues for future research

Since researchers and practitioners need to know which method(s) work the
best, our main recommendation for future research is that future studies
should consider in-depth empirical comparisons of estimation methods, fea-
ture selection techniques, and sample re-balancing methods over large and
commonly used datasets so that it can be concluded which methods are
expected to work the best. This can be done by combining estimation meth-
ods, feature selection techniques, and sample re-balancing strategies. This way,
one can systematically check which sample re-balancing strategy is more
suitable for a specific estimation method. The same is true for the feature
selection technique and estimation method. Especially systematic studies that
compare re-balancing (under and oversampling) strategies can greatly con-
tribute to the field, as the number of bankrupt or defaulted firms, both in
existing datasets and in the real world, is usually significantly smaller than the
number of operational firms.

8t is worth mentioning that there are some studies within the reviewed papers that specifically compare various
aspects of methodologies. While the deduction can be relatively more straightforward in this case, the conclusion is
still not terminal. This is evident in the lack of consensus between the results of studies comparing estimation
methods.
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The Omega score (Altman et al., 2022, 2023) has lately been developed
using data from Croatia. This approach should be applied to the other nations’
data. Moreover, its out-of-sample predictive performance should be compared
with the performance of optimized predictive models employing various
estimations, feature selection, and re-balancing methods.

An additional avenue for future research on default prediction methodology
is to investigate how the data source bias in this research domain impacts the
predictive performance and generality of the models. This can be implemented
by validating the predictive power of models on independently collected data
from various sources. For example, within the same economy, if the model is
constructed based on data obtained from a bank, the predictive power is tested
on data collected from data service providers. Then, a comparison of how well
the model performs on predicting default on a test sample from the same data
source and the data from a different data source can reveal the potential
discrepancies.

Lastly, we note that the listed avenues for further research are from a
methodological perspective. For a reader searching for a broader set of possi-
ble research topics within the field of SME default prediction, we recommend
Ciampi et al. (2021).

Conclusion

An up-to-date methodology-focused review of the SME’s failure prediction
can help give researchers a clear overview of the methodologies used and the
methods’ constituents. Such an overview can save considerable time in this
field’s early stages of research. The present study contributes to the previous
research on review of the literature (Balcaen & Ooghe, 2006; Bellovary et al.,
2007; Du Jardin, 2009). The review is also narrowed down to only SME studies.
Moreover, the added contribution is that this paper summarized data sources
and imbalance problem solutions. This paper also contributes to Ciampi et al.
(2021) by reviewing the studies from the methodological aspects.

Compared to six decades ago, data availability is significantly higher for
SME studies, from less than 50 observations in the relatively low dimensional
dataset in Edmister (1972) to studies based on high dimensional datasets with
millions of observations. However, academics and practitioners should be
aware that some data sources may have idiosyncratic characteristics that
might not necessarily represent the intended population under study, such
as data that only includes accepted loans. Since the dimension of available data
has grown noticeably, the variable selection techniques are more critical than
before. A model with many factors may not be easily generalized.
Furthermore, having more data available sometimes means more majority
(nondefaults) cases and less proportion of minority cases (defaults).
Traditionally, random undersampling is employed in such cases. However,
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oversampling, particularly SMOTE, appears to be more appropriate for this
type of study (Abedin et al., 2022; Veganzones & Séverin, 2018), while Piatt
and Piatt (2002) argued that it might cause a choice-based sample bias.
Another benefit of the larger available datasets is that models can be tested
on hold-out samples or using cross-validation. This makes in-sample valida-
tion less credible than it used to be.

We observed that over one-third of studies do not report utilizing feature
selection methods. Thus, we recommend that future default forecasting
research and similar event prediction studies consider appropriate feature
selection methods. Although the necessity of using hold-out sample validation
was known from the very beginning of this research domain, more than one-
quarter of the studies use in-sample validation. Using hold-out samples or
cross-validation to validate the results is highly recommended since in-sample
validation often falsely shows higher predictive performance.

Moreover, technological advances bring about new estimation techniques,
often available to everyone. Although we identified 80 unique estimation
methods used as primary estimation methods in studies, logit is still used in
more than half of them, often as the sole primary estimation method. Even
though logit is the most popular model in this research area, its popularity
does not justify using it without testing at least one proven better-performing
estimation method. While the logit model’s predictive ability is often accep-
table, we recommend trying machine learning methods to improve the accu-
racy of the predictive models.

In addition, more than half of the studies do not report either type I and
type II errors or AUC(ROC). This makes it difficult, if not impossible, for
readers to compare the results of the studies that do not report standard
predictive performance measures with other studies’ results. Moreover, not
reporting type I and type II errors gives no information on how a model
misclassifies the defaults as healthy firms and vice versa. Therefore, the pre-
dictive ability of the models should be reported in a comparable form in terms
of AUC(ROC), type I, and type II errors.

We also investigate this topic separately for journals ranked in the ABS
ranking and remaining journals. From a methodological perspective, we do
not observe large differences between these two groups. The largest difference
is that Western countries are relatively more frequently studied in ABS
journals, while non-ABS studies are more often focused on China and
Eastern Europe.

Our review of SME default prediction methodologies gives researchers a
comprehensive gateway to potential data sources and commonly used techni-
ques, together with an overview of the most common methodological short-
comings in the existing literature. This will help researchers avoid these
shortcomings and contribute to faster development of this critical field.
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Appendix A

Table A1. Geographical distribution of data used in SME default papers. Some articles studied
more than one country. Thus, the total number of country-study listed is more than the number of

papers.

Country

ABS

Non-
ABS

Studies

Italy

China

UK

USA

Germany

Portugal

France

Belgium

Spain

South Korea
Slovakia
Finland
Poland
Croatia
Czech
Republic

Greece

India

(%]

10

Altman et al. (2020); Angelini et al. (2008); Angilella and Mazzu (2015); Angilella
and Mazzu (2019); Calabrese et al. (2016); Caselli et al. (2021); Cathcart et al.
(2020); Ciampi and Gordini (2013); Ciampi (2015); Ciampi (2017); Ciampi

(2018); Ciampi et al. (2020); Corazza et al. (2016); Corazza et al. (2021); Corazza

et al. (2021); DiDonato and Nieddu (2015); Figini et al. (2017); Filipe et al.

(2016); Gabbi et al. (2020); Gabbianelli (2018); Karas and Reznakova (2021);
Karas (2022); Matthias et al. (2019); Modina and Pietrovito (2014); Pederzoli
and Torricelli (2010); Pederzoli et al. (2013); Piatti et al. (2015); Pierri and Caroni
(2017); Pierri and Caroni (2022);

Abedin et al. (2022); Chai et al. (2019); Chi and Zhang (2017); Chi and Meng
(2019); Da and Peng (2022); Du et al. (2022a); Du et al. (2022b); Gao et al.
(2021); Kou et al. (2021); Li and Guo (2021); Long et al. (2022); Lu et al. (2022);
Luo et al. (2020); Meng et al. (2022); Sun et al. (2022); Yin et al. (2020); Zeng
(2022);

Andrikopoulos and Khorasgani (2018); Cathcart et al. (2020); Filipe et al. (2016);
Gupta et al. (2014b); Gupta et al. (2014a); Gupta et al. (2015); Karas and
Reznakova (2021); Karas (2022); Keasey and Watson (1986); Keasey and Watson
(1987); Keasey and Watson (1988); Lin et al. (2012); Matthias et al. (2019);
Pederzoli et al. (2013); Tobback et al. (2017); Wilson and Altanlar (2014); Zhang
and Thomas (2015);

Altman and Sabato (2007); Edmister (1972); El Kalak and Hudson (2016); Glennon
and Nigro (2005); Glennon and Nigro (2011); Gupta and Gregoriou (2018);
Gupta et al. (2018); Gupta et al. (2018) Inekwe (2016); Sun and Jiao (2022); Wu
and Wang (2000); Lussier (1995);

Behr and Giittler (2007); Fantazzini and Figini (2009b); Fantazzini and Figini
(2009a); Figini and Giudici (2011); Filipe et al. (2016); Karas and Reznakova
(2021); Karas (2022); Matthias et al. (2019); Muthukumaran and Hariharanath
(2023); Norden and Weber (2010); Pederzoli et al. (2013);

Cathcart et al. (2020); Costa et al. (2022); Duarte et al. (2018); Filipe et al. (2016);
Gama and Geraldes (2012); Karas and Reznidkova (2021); Karas (2022); Oliveira
et al. (2017); Pacheco et al. (2022); Pederzoli et al. (2013);

Cathcart et al. (2020); Cornée (2019); Filipe et al. (2016); Karas and Reznakova
(2021); Karas (2022); Lextrait (2023); Pederzoli et al. (2013); Schalck and Yankol-
Schalck (2021); Séverin and Veganzones (2021);

Cathcart et al. (2020); Cultrera and Brédart (2016); Dewaelheyns et al. (2021);
Karas and Reznakové (2021); Karas (2022); Pederzoli et al. (2013); Shetty et al.
(2022); Tobback et al. (2017);

Baixauli and Médica-Milo (2010); Cathcart et al. (2020); Crosato et al. (2021); Filipe
et al. (2016); Karas and Reznakova (2021); Karas (2022); Monelos et al. (2014);
Pederzoli et al. (2013);

Kim and Sohn (2010); Lee et al. (2020); Moon and Sohn (2010); Park et al. (2021);
Sohn and Kim (2007); Sohn and Jeon (2010); Yoon and Kwon (2010);

Kécer et al. (2019); Karas and Reznakova (2021); Karas (2022); Papik and Papikova
(2023); Svabova et al. (2020); Wilson et al. (2016);

Altman et al. (2020); Karas and Reznakova (2021); Karas (2022); Laitinen (1993); Li
et al. (2016);

Filipe et al. (2016); Karas and Rezinakova (2021); Karas (2022); Ptak-Chmielewska
and Matuszyk (2018); Ptak-Chmielewska and Matuszyk (2020);

Altman et al. (2022); Karas and Reznakova (2021); Karas (2022); Lussier and Pfeifer
(2001);

Filipe et al. (2016); Karas and Reznakova (2020); Karas and Reznakova (2021);
Karas (2022);

Karas and Reziakova (2021); Karas (2022); Kosmidis and Stavropoulos (2014);
Pederzoli et al. (2013);

Mittal et al. (2011); Roy and Shaw (2021a); Roy and Shaw (2021b); Kumar Roy et
al. (2022);

(Continued)
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Non-

Country ABS ABS N Studies

Malaysia 2 2 4 Abdullah et al. (2016a); Abdullah et al. (2016b); Abdullah et al. (2019); Ma'aji et al.
(2019);

Netherlands 2 2 4 Karas and Reznakova (2021); Karas (2022); Pederzoli et al. (2013); Rikkers and
Thibeault (2011);

Denmark 1 2 3 Karas and Reznakova (2021); Karas (2022); Pederzoli et al. (2013);

Ireland 1 2 3 Karas and Reziakova (2021); Karas (2022); Pederzoli et al. (2013);

Luxembourg 1 2 3 Karas and Reznakova (2021); Karas (2022); Pederzoli et al. (2013);

Sweden 1 2 3 Karas and Reziakova (2021); Karas (2022); Yazdanfar (2011);

Thailand 1 2 3 Khermkhan and Chancharat (2015); Terdpaopong and Mihret (2011); Yoshino et
al. (2016);

Estonia 0 3 3 Karas and Reznakova (2021); Karas (2022); Malakauskas and Lakstutiene (2021);

Latvia 0 3 3 Karas and Reznakova (2021); Karas (2022); Malakauskas and Lakstutiene (2021);

Lithuania 0 3 3 Karas and Reznakova (2021); Karas (2022); Malakauskas and Lakstutiene (2021);

Chile 2 0 2 Halabi and Lussier (2014); Lussier and Halabi (2010);

Russia 1 1 2 Grishunin et al. (2021); Lugovskaya (2010);

Switzerland 2 0 2 Pederzoli et al. (2013); Sigrist and Hirnschall (2019);

Turkey 2 0 2 Arslan and Karan (2009); Dereliolu and Giirgen (2011);

Austria 0 2 2 Karas and Reziakova (2021); Karas (2022);

Bulgaria 0 2 2 Karas and Reznakova (2021); Karas (2022);

Cyprus 0 2 2 Karas and Reznakova (2021); Karas (2022);

Hungary 0 2 2 Karas and Reznakova (2021); Karas (2022);

Malta 0 2 2 Karas and Reziiakova (2021); Karas (2022);

Romania 0 2 2 Karas and Reznakova (2021); Karas (2022);

Slovenia 0 2 2 Karas and Reznakova (2021); Karas (2022);

Colombia 1 0 1 Castillo et al. (2018);

Ghana 1 0 1 Gyimah et al. (2020);

Mauritius 1 0 1 Bangarigadu and Nunkoo (2022);

Norway 1 0 1 Pederzoli et al. (2013);

Pakistan 1 0 1 Hyder and Lussier (2016);

Palestine 1 0 1 Baidoun et al. (2018);

Taiwan 1 0 1 Chen et al. (2015);

Australia 0 1 1 Muthukumaran and Hariharanath (2023);

Israel 0 1 1 Marom and Lussier (2014);

Mexico 0 1 1 Guzman and Lussier (2015);

Morocco 0 1 1 Zizi et al. (2021);

Sri Lanka 0 1 1 Lussier et al. (2016);

Table A2. An overview of papers that studied more than one country, tested more than one
estimation method and had more than one primary estimation method.

Country > 1 Estimation Methods Tested > 1 Primary Estimation Methods > 1
ABS (94 Studies)
1970s 0 0 0
1980s 0 2 2
1990s 0 1 0
2000s 0 2 0
2010s 4 17 8
2020s 1 16 12
Overall 5 38 22
Non-ABS (51 Studies)
1970s
1980s 0 0 0
1990s
2000s 0 2 0
2010s 0 7 5
2020s 4 19 12
Overal 4 28 17




38 H. CHERAGHALI AND P. MOLNAR

Table A3. General factors included in three or more studies.

Factor ABS Non-ABS N
Quick Ratio 13 17 30
Current Ratio 15 1 26
Net Income/Total Assets 15 1 26
Retained Earnings/Total Assets 19 22
Sales/Total Assets 1 20
Cash/Total Assets 15 16
Net Income/Equity 8 16
Working Capital/Total Assets 11 16
Earnings Before Interest and Taxes/Total Assets 9 15
Total Liabilities/Total Assets 1 15
EBITDA/Interest Expenses 12 14
Total Debt/Total Assets 9 13
Equity/Total Assets 12
Capital 1
EBITDA/Total Assets 1
Net Income/Sales 1
Cash Ratio 10
Product/Service Timing 10

Cash Flow/Total Debt

Marketing

Operating Profit/Sales

Planning

Trade Creditors/Total Assets

Cash Flow/Total Assets

Record Keeping And Financial Control
Short-term Debt/Equity Book Value
Staffing

Total Debt/Equity

Earnings Before Interest and Taxes/Interest Expenses
Taxes/Total Assets

Intangible Assets/Total Assets

Liquidity Ratio

Return on Investment

Short-term Debt/Equity

Capital Employed/Total Liabilities
Equity/Total Debt

Financial Expenses/Total Assets

Gross Profit Margin

Interest Expenses/Sales

Ln(Current Ratio)

Professional Advice

Current Liabilities/Total Assets

Profit After Tax/Sales

Tangible Assets/Total Assets

Total Assets Turnover

Trade Debtors/Total Assets

Cash Flow From Operations/Total Assets
Equity/Total Liabilities

Account Payable/Sales

Account Receivable/Total Liabilities
Capital Growth

Capital Tied Up

Cash And Short-term Investments/Total Assets
Cash Flow/Sales

Cash Flow/Total Liabilities

Current Liabilities/Sales

Debt Service Coverage

Earnings Before Interest and Taxes/Current Liabilities
Earnings Before Interest and Taxes/Sales
Earnings Before Taxes/Total Assets
EBITDA/Sales

Financial Expenses/Sales

= N=N=_NN_—2W_L,wWwWwWoOOoObhwWNWARWLWwULNNUVWULLEAED OO PUOULNOO PPN DNOOON

= =S N2, =2, =2 NNONOOCO RO LN —_,LONOWWONONNUO—_,WRARWOWO_,PWULWNWOORARNWOUANMNDOUVIOO = O W

WNWWWwWWwWwwwwwwwwpsrdbhr,pdDdphUuuouuuuuuo oo ON N00OOOOWWWWOUO

(Continued)
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Table A3. (Continued).
Factor ABS Non-ABS

Fixed Assets/Total Assets

Legal Dispute Number

Level of Brand Products
Leverage

Ln(Share Capital)

Long-term Liabilities/Total Assets
Net Profit/Equity

Non-current Liabilities/Total Assets
Outside Capital Structure

Patent Condition

Short-term Debt/Total Assets
Supplier Target Days

Total Assets Growth Rate

Total Liabilities/Equity

Total Revenue/Total Assets

S NN WN=_2N=_2N=_2NNNNNN
N == NO =N =N =N = = =
WWWWWWWWWWWWWWWZ

Table A4. Firm and owner/manager characteristics features used in three or more studies.
Factor ABS Non-ABS N

Firm Characteristics
Age

Ln(Total Assets)
Partners

Ln(Age)

Number of Employees
Ln(Sales)

Economic Timing
Legal Form

New Business
Number of Directors
Ln(Total Assets) Squared
Registered Capital
Date of Establishment
Family Ownership
Foreign Ownership
Management-Owner

_
=)}
_

_\
S AN, RANOWULINNN®N
NNN=WOWOPLAN=-NWWLIUL

Owner/Manager Characteristics
Education

Management Experience

Age (Owner/Debtor/Legal Representative)
Parents Owned a Business
Industry Experience

Gender

Minority

Residence Status

CEO Duality

Marital Status

_

—_ = NOOOVONNO
NNNNWSRNDOGD
—_

o
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Table A5. Macroeconomics factors included in three or more studies.

ABS Non-ABS N
GDP Growth 5 1 6
Engel Coefficient 2 2 4
An Industry Weight of Evidence® 3 0 3
Consumer Price Index 1 2 3
Industry Sentiment Index 1 2 3
Insolvency Rate® 3 0 3
Interest Rate 1 2 3
Expresses the previous year's sector failure rate as a log odds of failure in each of the industrial sectors.
PDenotes the previous year's sector insolvency rate within the firm's industrial sectors.
Table A6. Models performance measure utilized in 10 or more studies.
Performance Measure ABS Non-ABS N
(Number of Studies) (94) (51) (145)
Error I and Il 49 25 74
AUC (ROCQ) 40 28 68
-2 Log L 14 5 19
Hosmer-Lemeshow 10 5 15
McFadden R2 6 5 1
Nagelkerke R2 9 2 1
Likelihood Ratio (LR) 7 3 10
Table A7. Top 20 performing models based on the AUC(ROC) by study.
AUC(ROQ) Estimation Method Study ABS
1 0.992 GBDT-CNN-LR Zhang and Song (2022a) No
2 0.991 RF Abedin et al. (2022) No
3 0.988 SVM Sun et al. (2022) Yes
4 0.984 Soft voting Gao et al. (2021) No
5 0.973 CNN-Logistic-Stacking Zhang and Song (2022b) No
6 0.970 XGBoost (Focal Loss) Sun and Jiao (2022) No
7 0.963 Elman network Corazza et al. (2021) Yes
8 0.959 Logit Zizi et al. (2021) No
9 0.956 Cox Proportional Hazards Gupta and Gregoriou (2018) Yes
10 0.949 NN Da and Peng (2022) Yes
11 0.941 CatBoost Papik and Papikova (2023) Yes
12 0.940 NN Altman et al. (2020) Yes
13 0.923 Logit Baixauli and Modica-Milo (2010)  Yes
14 0.922 LightGBM Lextrait (2023) Yes
15 0.920 LightGBM Luo et al. (2020) No
16 0.909 LPM Figini and Giudici (2011) Yes
17 0.903 Logit Altman et al. (2022) Yes
18 0.902 Two-stage Nonparametric Bayesian Discriminant  Li and Guo (2021) No
19 0.900 RF Figini et al. (2017) Yes
20 0.893 Logit Abdullah et al. (2016a) Yes

Studies that used hold-out samples and cross-validation as their validation methods are shown in this table.
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Table A8. Top 20 performing models based on the accuracy ratio by study.

Accuracy Estimation Method Study ABS
1 99.1% RF Abedin et al. (2022) No
2 97.7% MDA Terdpaopong and Mihret (2011) Yes
3 97.1% NN Da and Peng (2022) Yes
4 96.8% CNN Zeng (2022) No
5 96.7% NN Angelini et al. (2008) Yes
6 96.2% Logit Abdullah et al. (2016a) Yes
7 95.0% Logit Zizi et al. (2021) No
8 93.8% XGBoost (Focal Loss) Sun and Jiao (2022) No
9 93.6% Elman network Corazza et al. (2021) Yes
10 93.0% Logit Laitinen (1993) Yes
1 91.6% CART DiDonato and Nieddu (2015) No
12 91.5% LPM Figini and Giudici (2011) Yes
13 91.2% Logit Ma'aji et al. (2019) No
14 91.1% NN Meng et al. (2022) Yes
15 90.8% CatBoost Papik and Papikova (2023) Yes
16 90.0% Logit Abdullah et al. (2019) Yes
17 89.3% Logit Baixauli and Médica-Milo (2010) Yes
18 88.2% Logit Abdullah et al. (2016b) No
19 87.9% Logit Ciampi (2015) Yes
20 87.0% LightGBM Luo et al. (2020) No

Studies that used hold-out samples and cross-validation as their validation methods are shown in this table.
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Appendix C

Table C1. Focus of SMEs failure studies.

Focus ABS Non-ABS N
SMEs 57 34 91
Small enterprises 23 10 33
Manufacturing SMEs 2 3 5
Innovative SMEs 3 0 3
Micro and small enterprises 1 1 2
SMEs and large firms separately 1 1 2
Large firms, small firms, and individuals 1 0 1
Micro-enterprises 1 0 1
Small industrial enterprises 1 0 1
Small Manufacturing enterprises 1 0 1
Small wholesale and retail enterprises 1 0 1
SMEs operating in the food or beverage manufacturing sector 1 0 1
Technology-oriented micro and small enterprises 1 0 1
SMEs (excluding micro) 0 1 1
SMEs in the construction sector 0 1 1

Table C2. Detailed distribution of data sources used in SME default papers obtained by surveys,
questionnaires, and interviews.

Source ABS Non-ABS
2

Survey

Questionnaire

Personal interview survey
Interview

Panel interview

- =N b O
—_ =W N |Z

3
1
0
0

Table C3. Detailed distribution of data sources used in SME default papers obtained from public
sources and web-pages.

Non-
Source ABS ABS N
Published reports 2 1 3
Data was crawled using python programming from multiple platforms and sources 1 0 1
Online data obtained by web scraping companies websites 1 0 1
Rossiyskaya gazeta (newspaper that publishes announcements on all bankruptcy-related 1 0 1
news)
www.qcc.com 1 0

Publicly available external credit data 0 1 1
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Table C4. Detailed distribution of data sources used in SME default papers obtained from data
services.

Source ABS Non-ABS

AIDA (by Bureau Van Dijk)
Amadeus (by Bureau Van Dijk)
CERVED

Compustat

Datastream (by Thomson Reuters)
Capitaline Database
Creditreform

EUROSTAT

SABI (by Bureau Van Dijk)
BelFirst (by Bureau Van Dijk)
Diane (by bureau Van Dijk)
FAME (by Bureau Van Dijk)
Finstat

ORBIS (by Bureau Van Dijk)
Suomen Asiakastieto
CSMAR

Affarsdata

ATO

Bureau Van Dijk

Dun & Bradstreet (D&B)

ECB

EPO BULLETIN

ICAP

INPI opendata service

inter alia

K-VAN service

PATSTAT

SABI (by Informa SA)

SPARK

Albertina Platinum
AnalcatData

Australian Credit

CNINF

German Credit

KOSME

NEEQ SMEs dataset

Pordata

SPARK-Interfax
Transparency International databases
Wind database

N
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Table C5. Detailed distribution of data sources used in SME default papers obtained from banks,
financial institutions, and firms.

Source ABS Non-ABS

A Chinese bank

AChinese commercial bank

World Bank

A bank in China

A bank in Italy

A commercial bank

A commercial bank in a Chinese city
A commercial credit reference database
A credit card provider

A Dutch bank

A French social bank

A German universal bank

A leading bank in Central New York

A major Chinese city commercial bank
A major commercial bank operating in Portugal
A major German promotional bank

A specialized Micro and SME lender

A Taiwanese finance company

A UK Credit Reference Agency (CRA)
Advanon, a Swiss start-up company
An Italian bank

UniCredit bank

Yapi ve Kredi Bankasi A.S.

A consultancy firm

A large Italian commercial bank

Major banks

Swedbank AB

N
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Table C6. Detailed distribution of data sources used in SME default papers obtained from
ministries, public offices, and universities.

Non-
Source ABS  ABS

SBA (Small Business Administration)

Credit Management Research Center of the University of Leeds

the Companies Commission of Malaysia (CCM) database

China Judgements Online

Department of Business Development (DBD) Thailand

the Centres for Urban and Regional Development Studies — The University of Newcastle-upon-
Tyne (England)

GEM (the Growth Enterprise Market from Shenzhen Stock Exchange)

SB (the Small and Medium-Sized Enterprise Board from Shenzhen Stock Exchange)

STAR (the Science and Technology Innovation Board from Shanghai Stock Exchange)

The Chamber of Commerce of Perugia

Bankruptcy court records, obtained in person at 6 bankruptcy courts (see Lussier (1995))

Census datasets

Central Credit Register (Italy)

Centrale Rischi Finanziari (CRIF)

Fondo Nacional de Garantias (FNG)

Legal Execution Department, Ministry of Justice (Thailand)

Office for National Statistics (UK)

Superintendencia de Sociedades

Technology credit guarantee fund recipient data

Technology credit loan recipient data

The Chamber of Commerce

The National Board of Patents and Registration of Trademarks

The SIRENE system of INSEE (French National Statistics Office)

The Small Business Administration and Robert Morris Associate

International Monetary Fund (IMF)

Italian National Institute of Statistics (ISTAT)

Manufacturing SMEs dataset (China)

NSFC (National Natural Science Foundation of China)

Statistics of U.S. Businesses-Consensus Bureau

The Companies Commission of Malaysia (CCM)

The Korea Credit Guarantee Fund

The National Credit Bureau (Thailand)
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