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Abstract 

The article addresses the challenge of reconstructing 2D broken pictorial objects 

by automating the search for matching elements, which is particularly relevant in fields 

like archaeology and forensic science. The authors propose a method to match 

such elements and streamline the search process by detecting and filtering out 

low quality matches.  

The study delves into optimizing the search process in terms of duration and assembly 

quality. It examines factors like comparison window length, Levenshtein measure 

margin, and number of variants to check, using theoretical calculations and 

experiments on synthetic elements. The experimental results demonstrate enhanced 

method effectiveness, yielding more useful solutions and significantly reducing 

the complexity of element comparisons by up to 100 times in extreme cases. 

1. INTRODUCTION 

Methods of reconstructing objects by searching for ways to connect their fragments are 

used, among others, to reconstruct artifacts of the past, such as broken ceramics, textile 

materials. Furthermore, they are used in the process of restoring destroyed or damaged 

elements of infrastructure, for example construction or water supply. The process of finding 

solutions can be tedious and is subject to the possibility of error, for example by oversight. 

The risk of error increases the more fragments have to be checked and combined. 

Therefore, any method of even partial automation significantly improves the overall results. 
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There are many methods for classifying and reconstructing broken 2D and 3D objects 

(Andreadis et al., 2015; Rasheed & Nordin, 2015a, 2015b). Description methods most often 

refer to the color, texture and shape of fragments. These methods can be defined as a form 

of dimensions reduction. To reduce complexity, 3D objects are often projected and only 

the features of the selected cross-section (Chang & Chow, 1973) or depth buffer 

(Papaioannou et al., 2001) are examined. In the case of 2D objects, edges can be saved as 

a one-dimensional string containing data, for example, of the edge color (Oxholm & 

Nishino, 2013).  

In terms of limiting number of possible connections to check, search methods used for 

fragments reassembly can be exhaustive (Brown, 2008) or hierarchical (Vendrell-Vidal & 

Sánchez-Belenguer, 2014). The process of testing and assembling of elements can be carried 

out with polynomial functions (Rasheed & Nordin, 2014), statistical methods, fuzzy logic, 

or even by an artificial neural network (Rasheed & Nordin, 2020). 

The developed method of supporting the process of assembling apictorial 2D elements 

represent a group of polygon packing puzzle methods. In this method the contours of 

individual elements are represented in the form of a chain codes consisting of vectors of 

the same length and directions consistent with the assumed rose of directions with an even 

number of arms. The available directions are described by the letters of the alphabet, 

which causes the obtained string codes to form abstract words (Fig. 1). 

 

a) 

 

{A,B,C,D,E,F,G,H} 

b) 

 

CEDDFFEEDFGGGFGHAGAGAHACCACBCCB 

Fig. 1. The method of writing the contour of an element: a) an eight-way star and signs representing 

available directions, b) an example element and their chain code describing its contour. 

The occurrence of code fragments in two compared elements that match after certain 

transformations is checked using the Levenshtein measure (Montusiewicz & Skulimowski, 

2020; Skulimowski & Montusiewicz, 2020). What distinguishes the developed method from 

other existing puzzle-solving methods, is heuristic approach that allows recording many 

possible ways of combining elements in searchable and traversable graph structure, the so-

called Great Puzzle Graph, or assembly graph. Moreover, the general structure of the method 

means that no domain knowledge is required at the stage of the search process. 

It should be noted that the problem of comparing all elements in all possible settings of 

individual elements in relation to each other belongs to the so-called NP-complete problems 

(Demaine & Demaine, 2007). In practice, this means that with the available hardware and 

time resources, it is not possible to check all possible combinations. Moreover the 

cardinality, the uncertainty of the completeness of the set, the uncertainty of the element 

belonging to the set, the uncertainty of interpretation, the radiation uncertainty (Freeman & 

Garder, 1964) can affect the extension of the reassembly process or the decision to abandon 
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such a process (Stanco et al., 2018). Thus, in addition to checking the current Levenshtein 

measure as the main method of evaluating the quality of the found potential bonds of 2D 

elements, there is a need to introduce ways to limit the number of considered potential bonds. 

To limit the growth of the Great Puzzle Graph, it is necessary to determine: 

− Where the selection can be made? – Selection of a group of potential assemblies that 

can be evaluated relative to each other. 

− What can be cut? – Define the characteristics that will determine the quality of 

the potential gluing. 

−  How much can be cut? – Possibility to sort potential assemblies according to their 

quality and their selection. 

2. METHOD AND MATERIALS 

2.1. Selected methods to enhance the efficiency 

The authors describe enhancing the efficiency of the puzzle-solving method by more 

accurately assessing correct potential assemblies and by reducing the calculations to be 

performed and the combinations to be checked in order to achieve the results. To increase 

the accuracy of the qualitative assessment of the potential assemblies, the authors developed 

a global fuzzy evaluation system. The assessment constructed based on nine classification 

rules (using, among others, compact factors) allows to change the multi-criteria sorting of 

results to single scalar sorting. The fuzzy evaluation system is described in the article 

(Skulimowski et al., 2022). 

The developed method allows for reducing the number of potential assemblies considered 

and, consequently, reducing the calculations performed by limiting the growth rate of the 

Great Puzzle Graph in two ways: 

− by limiting the number of considered variants that can be added to the assembly graph 

- MVN (MaxVariantsNumber), 

− by limiting the number of potential assemblies that can be added to the assembly 

graph as assemblies of the next order - MLW (MaxLocalWidth). 

Radical cut-offs strategy, RCO, determined with MVN and MLW, promote the retention 

and development of higher quality assemblies. The direct effect of using RCO is to reduce 

the number of comparisons necessary to perform in subsequent steps of the search, and 

to reduce the cardinality of all possible sets of potential higher assemblies. The number 

of possible variants of two objects can be expressed by the formula: 

| 𝐾𝑜,𝑒 
𝑅𝐶𝑂 | = min(|𝐾𝑜,𝑒|,𝑀𝑉𝑁) 

𝑜 ∈ (𝐸 ∪ 𝑆)     , 𝑒 ∈ 𝐸    ,      𝑜 ≠ 𝑒            (3) 

where: |𝐾𝑜,𝑒| – the number of combinations of combining objects o and e that meet the 

criteria of formal, qualitative and linguistic evaluation, 

𝑀𝑉𝑁 – constant, specifying the maximum number of variants allowed, 

𝐸– a set of basic elements, 

𝑆 – a set of assemblies. 
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The number of possible assemblies combinations that can be achieved using the RCO 

strategy can be expressed by a formula: 

| 𝑆𝑚 
𝑅𝐶𝑂 | =

{
 
 
 
 
 
 

 
 
 
 
 
 𝑚𝑖𝑛 (

(|𝐸|−1)|𝐸|

2
∗ 𝑀𝑉𝑁  ,𝑀𝐿𝑊)

⟺
| 𝐾𝑒2𝑖 
𝑅𝐶𝑂 |,

for  𝑚 = 2   
 
 
 
 

   𝑚𝑖𝑛(| 𝑆𝑚−1 
𝑅𝐶𝑂 | ∗ (|𝐸| −𝑚 + 1) ∗ 𝑀𝑉𝑁  ,𝑀𝐿𝑊)

⟺ 

𝑚𝑖𝑛 (∑ (∑  (| 𝐾( 𝑆𝑖
𝑚−1

 
𝑅𝐶𝑂 ,𝑒) 

𝑅𝐶𝑂 |)𝑒∈(𝐸− 𝑆𝑖
𝑚−1

 
𝑅𝐶𝑂 ) )

| 𝑆𝑚−1 
𝑅𝐶𝑂 |

𝑖=1 , 𝑀𝐿𝑊) ,

for  2 < 𝑚 < |𝐸|

     (4) 

    

where: 𝑀𝑉𝑁 – a constant specifying the maximum number of variants allowed, 

𝑀𝐿𝑊 – a constant specifying the maximum number of potential assemblies 

allowed to be added to the next row of the assembly graph, 

| 𝐾𝑒2𝑖
𝑅𝐶𝑂 | – a radically limited number of combinations of the i-th pair of 

two primitives e, 

| 𝐾( 𝑆𝑖
𝑚−1

 
𝑅𝐶𝑂 ,𝑒)

𝑅𝐶𝑂 | – a radically limited number of combinations that can be made 

from i-th assembly (m-1) order with object e, 

𝐸 − 𝑆𝑖
𝑚−1

 
𝑅𝐶𝑂  – the set of primitive elements not belonging to the i-th assembly 

(m-1) of the order. 

 

The rationality of using the RCO must be justified by an appropriate and effective method 

of selecting potential assemblies, such as the previously described fuzzy evaluation method. 

2.2. Detecting where the selection can be made 

The developed method can be implemented using depth-first search, DFS and breadth-

first search, BFS. The DFS used to expand the assembly-graph allows omitting 

the determination of all possible assemblies of each row. For the currently checked matches, 

the possibility of its extension with another original element is checked. When a solution is 

obtained, a return is made to the closest, lower assemblies row, for which it is possible to 

check the possibility of creating variants or linking with another primary element, Fig. 2. 

BFS, on the other hand, allows determining all assemblies of a given row. 

Adding higher assemblies is possible only when the current row is complete, Fig. 3. 

This strategy allows for comparing splines of a given row with each other, selecting and 

developing only selected branches. 
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Fig. 2. An example presenting the sequence of adding splines to a graph using DFS. The assembly 

possibilities of the elements are checked in order from left to right. The numbers indicate the order in 

which assemblies are added to the Great Puzzle Graph.  

 

Fig. 3. An example presenting the sequence of adding splines to a graph using BFS. The assembly 

possibilities of the elements are checked in order from left to right. The numbers indicate the order in 

which assemblies are added to the Great Puzzle Graph. 

The limitation of the growth of a graph built according to the DFS strategy can be made 

dependent on the maximum number of admissible assembly variants. The internal 

assessment of the quality of potential bonds is relative and can only be carried out in relation 

to the bonds of a given row selected for a given moment. Qualitative assessment using BFS 

can be performed on a set of all potential assemblies of a given order. This enables the 

absolute selection of the best potential bonds. 
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2.3. Deciding which elements can be discarded 

The basic criteria for evaluating potential assemblies are the allowable margin of 

matching elements with respect to the Levenshtein method (Maximal Acceptable Value, 

MAV) and the allowable margin of difference between similar assemblies regarding 

the Levenshtein method (Minimal Acceptable Value, MIV). The MAV value is used to 

assess the degree of matching of the fragments of the checked elements. The MIV value is 

used to assess the degree of dissimilarity of assemblies and is used in the process of detecting 

and removing assemblies that are very similar to each other, in order to preserve the 

uniqueness of nodes in the assembly-graph. 

Potential assemblies that meet the MAV and MIV margins are subject to further quality 

checks and selection based on their compactness factors. For the two compared elements 'o' 

and 'e', the coefficient of compactness of the first type 𝐶𝑆
𝐼 and the second type 𝐶𝑆

𝐼𝐼 

are expressed by formulas (1) and (2): 

𝐶𝑆
𝐼 = 𝑐𝑙(𝑜) + 𝑐𝑙(𝑒) − 2 ∗ 𝑐𝑤𝑜,𝑒             (1) 

where: 𝑐𝑙(𝑜), 𝑐𝑙(𝑒) – Contour length of objects o and e, 

𝑐𝑤𝑜,𝑒  – The length of the comparison window used when comparing 

objects o and e. 

The lower the 𝐶𝑆
𝐼 the better the match. The 𝐶𝑆

𝐼𝐼 is expressed by the formula: 

𝐶𝑆
𝐼𝐼 =

𝑐𝑙(𝑜)+𝑐𝑙(𝑒)

𝐶𝑆
𝐼                (2) 

Markings as in formula (1). The higher the 𝐶𝑆
𝐼𝐼 the better the match. 

Tables 1 and 2 show examples of possible values of coefficients 𝐶𝑆
𝐼 and 𝐶𝑆

𝐼𝐼 for a set of 

elements consisting of the same number of characters. 

Tab. 1. An example of calculating the value of 𝑪𝑺
𝑰  for various assumed lengths of the 𝒄𝒘, when the length 

of the contours of the elements of the original set is equal.  

|𝑬| = 𝟏𝟎 

𝒄𝒍(𝒆) = 𝟑𝟎 

𝐩𝒅𝒄𝒘 value, 

corresponding 

to current 𝒄𝒘 

The number of elements included in the assembly 

𝟐 𝟑 4 5 6 7 8 9 10 

𝑐𝑤 = 5 16,7 50 70 90 110 130 150 170 190 210 

𝑐𝑤 = 6 20 48 66 84 102 120 138 156 174 192 

𝑐𝑤 = 8 26,6 44 58 72 86 100 114 128 142 156 

𝑐𝑤 = 9 30 42 54 66 78 90 102 114 126 138 

 The value of 𝐶𝑆
𝐼 

 

When the comparison window is extended, it is clear that the value of 𝐶𝑆
𝐼 decreases 

significantly for a certain number of glued elements, e.g. for 2 elements and the value of 

cw = 5, and then cw = 9, it decreases by 16%, and in the case of assembling 10 elements, 

it decreases by as much as by 34%. The obtained results indicate the preference for using 

windows of greater length. 
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Table 2. An example of calculating the value of 𝑪𝑺
𝑰𝑰 for various assumed lengths of the 𝒄𝒘, when the length 

of the contours of the elements of the original set is equal. 

|𝑬| = 𝟏𝟎 

𝒄𝒍(𝒆)
= 𝟑𝟎 

𝐩𝒅𝒄𝒘 

value, 

corres-

ponding 

to 

current 

𝒄𝒘 

The number of elements included in the assembly 

𝟐 𝟑 4 5 6 7 8 9 10 

𝑐𝑤 = 5 16.7 1.2 1.286 1.333 1.364 1.385 1.4 1.412 1.421 1.429 

𝑐𝑤 = 6 20 1.25 1.364 1.429 1.471 1.5 1.522 1.538 1.552 1.563 

𝑐𝑤 = 8 26.6 1.364 1.552 1.667 1.744 1.8 1.842 1.875 1.901 1.923 

𝑐𝑤 = 9 30 1.429 1.667 1.818 1.923 2 2.059 2.105 2.143 2.174 

 The value of 𝐶𝑆
𝐼𝐼 

 

The presented results indicate that the 𝐶𝑆
𝐼𝐼 index prefers assemblies carried out with an 

extended comparison window, e.g. for 2 elements and cw = 5 and cw = 9, an increase of 

about 19% was obtained, and for assembling 10 elements by as much as 53%. Thus, the 𝐶𝑆
𝐼𝐼 

well reflects the quality of the assembly. 

2.4. Deciding how many items will be discarded  

An exemplary comparison of the increase in the number of possible assemblies without 

and with the use of RCO is presented in Table 3. 

Table 3. Comparison of the number of assemblies possible to create with and without the use of RCO. 

 1 2 3 4 5 6 

Initial 

values 

 

Number of 

possible pairs 

control strategy 

All 

possible 

pairs 

𝒎 = 𝟐 

All 

possible 

threes 

𝒎 = 𝟑 

All 

possible 

fours 

𝒎 = 𝟒 

All 

possible 

fives 

𝒎 = 𝟓 

Sum of all 

assemblies 

|𝐸| = 5 

𝑐𝑙(𝑒)
= 15 

𝑐𝑤 = 6 

none 640 1.690e5 3.785e7 5.147e9 5.185e9 

𝑀𝑉𝑁 = 3 

𝑀𝐿𝑊 = ∞ 

45 540 6.804e4 1.094e8 1.095e8 

𝑀𝑉𝑁 = ∞ 

𝑀𝐿𝑊 = 5 

5 5 5 5 20 

𝑀𝑉𝑁 = 3 

𝑀𝐿𝑊 = 5 

5 5 5 5 20 

𝑀𝑉𝑁 = 5 

𝑀𝐿𝑊 = 10 

10 10 10 10 40 

𝑀𝑉𝑁 = 5 

𝑀𝐿𝑊 = 2000 

75 1500 2000 2000 5575 

 

The use of the MLW mechanism allows to significantly reduce the growth rate of 

the assembly-graph, which is shown in Table 3. The number of possible combinations has 

been reduced dramatically by 2 orders of magnitude for column No. 3 (possible threes) by 

even 6 orders of magnitude for column No. 6 (possible fives). In addition, the use of 
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the second MVN mechanism allows maintaining a higher variety of matches by limiting 

the number of possible branches of one node. 

Due to the design assumptions of the method of creating an assembly-graph, the 

legitimacy of using the MLW parameter can be justified only in the case of using BFS. This 

is due to the need to create a cutoff against the set of potential assemblies found for all 

currently checked nodes of the graph. It also implies the need to sort potential assemblies. 

The MVN parameter can be used for both BFS and DFS because it is used when 

considering possible branches of a single node of the graph, not branches of a group of nodes. 

Restricted options may or may not be subject to additional cumulative assessment at a later 

date, based on which they will be re-ranked and re-restricted - this time against the MLW. 

3. NUMERICAL EXPERIMENT 

The experiment used a set of synthetic data, characterized by repetitive fragments of 

contours, and thus enabling the creation of many correct potential assemblies (Montusiewicz 

& Skulimowski, 2020). The experiment was carried out using a proprietary application 

LiMePuRe-2D (Linguistic Methods for Puzzle Reassemble in 2D) that enables: calibrating 

parameter values affecting the process of searching for solutions, automating the process of 

searching for possible matches, filtering and browsing the found solutions, and step-by-step 

building instruction for each solution (Fig.4). The experiment was carried out using the BFS 

mechanism to take advantage of the MLW and MVN capabilities. 

 

Fig. 4. An example of using the LiMePuRe-2D UWP graphic application, view of the interactive list of 

found solutions in the form of a list of assemblies. 

The research was carried out on a synthetic primary subset with the number of 8 elements, 

taking elements with the numbers: 1, 2, 3, 4, 5, 11, 12, 13 (Fig. 5). In the experiment, 

a dynamic window was used, calculated as 20% of the shorter string describing the outline 

of the compared elements, which resulted in a primary window of 9 to 13. For the same 

parameter values, the search for assemblies was repeated after applying the fuzzy evaluation 

mechanism and radical cutoff. 
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Fig. 5. An example of assembling elements of a synthetic set. The elements are signed with a starting 

number, used for identification in the conducted experiments. 

3.1. Results of the experiments 

The experiment defined a way to directly control the number of generated intermediate 

bonds and solutions, and indirectly control the time available for the search process. 

The result of the comparisons is a set of potential matches, i.e. those that meet the specified 

Lev MAV criterion, but have not yet been subjected to a formal, qualitative and quantitative 

assessment. As a result of filtering the set of potential assemblies through formal, qualitative 

and quantitative assessment, some of the assemblies are rejected.  

Expansion of the assembly-graph using only the local evaluation of potential assemblies 

is conducive to finding all possible ways to connect elements, but does not take into account 

the verification of the quality of the connections themselves. The selection of the best 

assemblies of the kth order was done by selecting the q first potential assemblies from the 

list sorted according to the given criteria. Among the solutions selected, there were 

assemblies of 8 elements (Fig. 6) resembling the arrangement of elements in Fig. 5. 

 

Fig. 6. The solution consisting of 8 elements obtained during the experiments: a) - uniform contour of the 

obtained solution, b) - arrangement of the primary elements included in the solution. 

Among the selected solutions, there are those that can be described as "snake-like", i.e. 

solutions in which all or almost all of its elements form a string, cannot be combined with 
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more than two elements, and the shape of the assembly itself resembles a curve rather than 

a compact object, Fig. 7. The 𝐶𝑆
𝐼𝐼 turned out to be important for rejecting this type 

of assembly. 

 

Fig. 7. Images of solutions consisting of 8 elements obtained during experiments with a low value of 𝑪𝑺
𝑰𝑰. 

The total number of comparisons made exceeded 16.4 million, and the maximum number 

of comparisons made in a given row reaches its maximum only for the 7th order gluing. 

This means that almost the entire search process required more time and calculations 

necessary to determine potential assemblies of higher and higher degree. This makes it 

difficult to predict the allocation of memory resources or time. That should be allocated to 

the implementation of a given test scenario, and to predict the duration of calculations. 

The use of new mechanisms resulted in a significant reduction of the obtained potential 

assemblies, and the number of new splines stabilized at a constant level and corresponds to 

the specified maximum number of new assemblies that could be added to the next row in the 

Great Puzzle Graph - value 5. Only when creating assemblies 7 and 8. This number decreases 

to 4 and to 1. The qualitative ratio of rejected assemblies to new assemblies and solutions 

has increased. Without the use of fuzzy evaluation mechanisms and radical cut-offs, this 

ratio ranged from 1.24 to 1.941, however, after the implementation - from 2 to 9. As a result 

of the applied MLW constraints, not only the number of new assemblies decreased 

significantly (to a value not greater than MLW in each row of the graph), but also led to a 

reduction in the pool of potential assemblies that can be considered in subsequent search 

iterations from several dozen or several hundred to several. 

The number of assemblies in a given degree reached its maximum value at an early stage 

of the search. The cumulative data sets before and after the introduction of the fuzzy 

assessment and the RCO strategy are presented in Table 4. 

The difference in the number of comparisons made in a given degree of assemblies for 

different algorithms is 2 orders of magnitude. After the use of fuzzy evaluation mechanisms 

and RCO, both the number of comparisons and the number of potential assemblies changed 

from rapidly increasing to systematically extinguishing as the search process progressed. 

Furthermore, it can be noticed that the increase in cumulative number of comparisons before 

the implementation of the RCO mechanisms resembles the exponential function, while the 

increase after the introduction of the RCO mechanisms resembles the logarithmic function. 

Determining the limit for the latter is seemingly more intuitive and simpler. The ability to 

predict the time needed to complete the search process can be considered a valuable factor 

in starting the search process for a given set of parameter values. 
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Table 4. The number of comparisons made in a given row of assemblies for different algorithms. 

Assembly 

degree 

The number of comparisons made in a given degree of 

assembly 

Difference [%] 

Before adding of fuzzy 

evaluation and the RCO 

strategy 

After adding of fuzzy 

evaluation and the RCO 

strategy 

2nd degree 4.636e4 4.636e4 0 

3rd degree 2.760e5 8.857e4 212 

4th degree 9.844e5 9.595e4 926 

5th degree 2.459e6 9.118e4 2597 

6th degree 4.399e6 7.759e4 5570 

7th degree 5.368e6 5.638e4 9421 

8th degree 2.878e6 2.599e4 10973 

 

Relationships in the growth rate of the number of comparisons between successive 

degrees of assemblies were also observed, Fig. 8. Both in the variant using fuzzy logic and 

RCO as well as in the variant without additional evaluations and criteria, the largest 

difference in the number of comparisons (proportionally) occurs in the initial phase of 

the comparison process - for 3rd degree assemblies. The number of comparisons after 3rd 

order assembling continues to increase for the scenario without fuzzy evaluation, and for the 

scenario using fuzzy evaluation - the number of comparisons systematically decreases after 

4th degree assemblies. 

The number of performed comparisons reached its maximum value already for the 4th 

degree assemblies. This means that the assemblies of all higher orders were determined using 

fewer comparisons and in a shorter time. 

 

Fig. 8. Comparison of the increase in the number of comparisons carried out for assemblies of successive 

degrees (ratio of k-order to (k-1)-row) before and after applying the fuzzy and RCO evaluation 

mechanisms. 
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A significant reduction in calculation time was also achieved - it was able to quickly 

interrupt the function checking the suitability of a questionable gluing and proceed to 

checking the next one. However, due to the increase in computational complexity caused by 

the use of a script implementing fuzzy logic, the change in time is not linear. Nevertheless, 

the overall reduction in computation time reliably compensates for the additional 

computational overhead. On the computer set used, it was about a threefold reduction in the 

calculation time, from 66 seconds to 21.5 seconds. 

4. CONCLUSIONS 

Comparing the assemblies of a given degree to each other made it possible to narrow 

down the list of potential correct expansions of the graph more precisely, and consequently 

to reduce the number of considered cases, the number of comparisons and calculations 

performed. 

The change of the search strategy from the assumed maximum number of variants of 

assemblies of the kth order to the maximum number of unrolled assemblies of the kth order 

turned out to be a compelling tool for optimizing the operation of the method, directly 

reducing the number of checked joints. The advantage of using such a strategy can be 

achieved only if the criteria for evaluating the quality of k-th degree assemblies are good 

enough. Otherwise, it may happen that the only unrolled merges are those in doubt. Overly 

stringent calibrations led to distortion and rejection of most or even all potential assemblies. 

The authors are aware that adding a fuzzy evaluation module increases the computational 

complexity for each assemblies degree. The authors consider this to be an appropriate price 

for a more accurate selection of candidate assemblies and a reduction in the cumulative 

number of computations. The actual reduction in complexity must be based on the balance 

between the additional complexity of the fuzzy evaluation process and the number of 

comparisons that could be avoided by RCO. A detailed analysis of this phenomenon may be 

the subject of another article. 
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