
p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2023 61

artykuł recenzowany/revised paper IAPGOS, 4/2023, 61–65

http://doi.org/10.35784/iapgos.5374 received: 24.07.2023 | revised: 18.08.2023 | accepted: 09.09.2023 | available online: 20.12.2023

BROWSERSPOT – A MULTIFUNCTIONAL TOOL FOR TESTING

THE FRONT-END OF WEBSITES AND WEB APPLICATIONS

Szymon Binek
1,2

, Jakub Góral
3

1ClickRay Sp. z o.o., Cracow, Poland, 2Kozminski University, Warsaw, Poland, 2University of Economics, Cracow, Poland

Abstract. The article presents the multifunctional BrowserSpot tool, which serves as an automated environment for testing websites and web applications

for Android and iOS systems. It highlights and describes the individual stages of research and development work, the issues with solutions currently

available on the market, as well as the project's results. The article also discusses the reasons for undertaking work on the tool, its functionalities,
and the methods of its usage.

Keywords: automation testing, bug tracking, smart test automation, responsive website

BROWSERSPOT – MULTIFUNKCJONALNE NARZĘDZIE DO TESTOWANIA FRONT-ENDU

STRON INTERNETOWYCH ORAZ APLIKACJI SIECIOWYCH

Streszczenie. W artykule zaprezentowano multifunkcyjne narzędzie BrowserSpot stanowiące zautomatyzowane środowisko do testowania stron
internetowych oraz aplikacji webowych dla systemów Android i iOS. Wyróżnione i opisane zostały poszczególne etapy prac badawczo rozwojowych,

problemy aktualnych rozwiązań dostępnych na rynku, a także rezultaty projektu. Przedstawiono również powody podjęcia się prac nad narzędziem,

funkcjonalności narzędzia, oraz sposoby jego użytkowania.

Słowa kluczowe: automatyzacja testowania, śledzenie błędów, inteligentna automatyzacja testów, responsywna strona internetowa

Introduction

This publication is the result of an R&D project carried

out under a grant from the European Union between years

2017- 2019. The aim of our R&D project was to introduce a new

"Software as a Service" (commonly known as SaaS) solution to

the market. More specifically, it could be considered as a Testing

as a Service platform [1]. It’s main purpose is to automate

the process of validation of website pages in the context of proper

visibility on different devices and resolution types and generate

automated reports regarding the results of the performed tests.

We recognized the lack of modern automatic testing systems [3]

that could work on testing different devices, process large amounts

of data and also be a cloud based solution. The solution would

also be much more user friendly thanks to the simple UX and UI

design, codeless workflow and a drag&drop interface. The result

of the R&D project was a fully working cloud based application,

ready to be launched on the market for customers, as well

as for corporate clients.

1. Literature and market review

During the start of our R&D project, there were already some

solutions that offered automated tests of website pages but they

either required technical knowledge to program and execute

requests or they were not cloud-based. Since then, it has changed

and we see more simulated solutions being present on the market.

One of the industry's problems during the start of our R&D project

was the lack of growth in noticeable increases in the efficiency

and effectiveness of software testing. Most testing systems were

designed on the basis of systems developed in the early

21st century. A big problem for the industry was the ever-

increasing amount of data, making manual testing ineffective,

and the increasing complexity of applications requiring more

and more testing effort [4]. It was therefore necessary to redefine

the work of testers, implementing new methods and practices.

The industry's problems were illustrated by the so-called

Test Gap or the coverage testing gap (Fig. 1). It reveals areas that

should have been tested, but could not be analysed due to time

constraints, human resource limitations or high frequency

of builds. An additional obstacle was that the testing gap

is constantly widening, and the complexity of testing increases

exponentially as new features are released. More code is produced

than testers can test, leading to a gap in test coverage [2].

The main difference between the available solutions

and our R&D project was that all of our tests would be performed

on our cloud therefore we would not use the computing resources

of our user's computers. In short, compared to the available

solutions on the market, the user had to connect to a virtual

machine and stay with the internet connection until the test

finished. If the test failed for some reason, the automated test was

stopped. A broken internet connection also caused the test to stop.

Our solution, on the other hand, works based fully in the cloud,

where the test scenario is created by the user using a drag&drop

interface, and once finished, the test is sent to the cloud, where

the algorithm distributes the test on the available devices. This

also produces much better efficiency as compared to the available

solution, which requires a constant connection to the internet

and to the virtual machine according to the scheme one user-one

virtual machine. The aim of the R&D project was to develop

and prepare for market deployment a solution to address

the challenges in test automation identified above, for which

the name BrowserSpot was adopted.

Fig. 1. The coverage testing gap theory [2]

2. Research and development

This chapter presents conducted research and development

during the project. It was divided into eight stages that represent

the goals and aims of individual stages of the project. Each stage

was a combination of tasks related to both the research

and development stages of this project.

First stage of the project focused on creating a code structure

for the Selenium server, connecting it to browsers and devices.

Key developments included algorithms for desktop and mobile

browser operations, along with emulators for various platforms.

The stage also aimed to verify technology functionality and

browser compatibility with the Selenium server.

The aim of second stage was to research the possibility

of effective separation of virtual environment technologies

(created in stage 1) into physical machines and whether it will

be possible to seamlessly communicate and exchange data

user
Stempel

62 IAPGOŚ 4/2023 p-ISSN 2083-0157, e-ISSN 2391-6761

between the server and these machines in ranges of the hypotheses

described in stage 1. The research will lead to knowledge

of the technical possibilities of the server in conjunction with

physical devices. A local environment will be created in which

the technical capabilities of the server will be tested.

During the third stage of the project, research was carried out

in terms of the introduction of cloud computing to the application.

We also developed the user interface needed to run a SaaS

solution at this stage. The conducted research gave an unequivocal

answer to whether SaaS's cloud computing is a more optimal

arrangement for the BrowserSpot solution. A report was produced

to showcase the performance of the cloud base solution.

The fourth stage aimed to enhance the module's technical

capabilities for improved site performance. This involved

creating a component for page display performance, enabling

the verification of page links, assessing rendering quality, error

detection, and generating a detailed list of page element loading

information. Key tasks included recording data to a database,

enabling data export to the frontend, developing test generation

capabilities, designing frontend components, implementing

the project via API, testing module functionality, and creating

and verifying necessary databases.

The fifth stage focused on expanding the capabilities

of the language correctness testing module within

BrowserSpot/component. This involved connecting it to external

databases for research on grammatical correctness, stylistic

accuracy, and content adaptation on websites. Activities included

data handling, frontend integration, algorithm development,

design, API implementation, testing, and database development.

 The sixth stage aimed to enhance the module's capabilities

for comparing elements on rendered web pages across different

browsers. It involved developing a component to identify errors

in individual page elements and generate descriptive reports about

differences in their display. The module extracted data from

the server and processed it to detect errors related to specific

elements on web pages. Key tasks included algorithm

development, test generation for error detection, element

comparison, error presentation, integration with the frontend,

and technology verification.

The seventh stage involved conducting industrial research to

acquire knowledge and skills in data conversion, communication,

and presentation. A component was developed to retrieve errors

in various website elements and generate descriptive reports

on differences in element display across different browsers.

Research included developing a communication algorithm

and protocol for handling website rendering data and presenting

it in the user interface.

The technical solutions obtained would be part of a prototype

for the BrowserSpot service. Goals for this stage included

generating comprehensive reports combining correctness checks

for page display, linguistic correctness, and individual element

examination, as well as creating partial reports as notifications

for user activities related to verification.

Activities included developing algorithms for data retrieval

and export to the frontend, conducting tests on data processing

and report generation, PDF report generation, frontend component

design, API implementation, integration, and various tests

to ensure module and tool correctness. A database algorithm was

also developed for module operation.

The eighth stage focused on integrating all technology

elements and conducting real-world testing for the BrowserSpot

service pilot. The goal was to complete a prototype

of the BrowserSpot tool and test it in real conditions, including

demonstrations among a selected group of users.

Prior to the demonstrations, activities included integrating

technological components, addressing errors in information

generation and browser operations, improving the API, finalizing

the design of components and the prototype, making frontend

adjustments, and verifying the tool's operation in terms of error

generation, API functionality, frontend performance, and overall

workload.

The prototype demonstrations aimed to verify assumptions

regarding performance, user support, and concurrent testing,

the correctness of error generation, report generation in various

software components, interface functionality, and identifying and

resolving any performance bottlenecks in the tool.

3. Results

The aim of this chapter is to present results of each individual

stage of the project in order to give an insight on which aims

and goals have been properly achieved, and which were more

problematic.

During the first stage of the project, a virtual machine

was created as the runtime environment and the core of the entire

project. A virtual machine is an isolated environment running

on a host computer, and simulating the operation of a physical

device with a separate operating system, freely chosen

independently of the host computer system. The main component

running in such a prepared environment was an engine based

on Selenium technology. Selenium is a framework that automates

tasks related to functional testing of web applications. It allows

you to control web browsers from the code level and define sets

of actions to execute within them. Selenium itself includes a set

of tools - among them, WebDriver was used in the project.

Its integration with Java was used. After the creation of a working

prototype of the BrowserSpot tool engine with such features as:

configuration and readiness of the virtual environment for further

development, server startup, creation of an algorithm to unify

support for different browsers, the ability to remotely operate

browsers (Google Chrome, Mozilla Firefox, Opera, Safari,

Internet Explorer) (Fig. 2) on the virtual machine, the ability

to remotely operate browsers on mobile devices emulated within

the virtual machine, logging of the course of action of browsers,

the end of this stage have been reached.

After the first stage of work, the system used virtual machines

supported by standard desktop operating systems and a set of

mobile device emulators. The operation of the latter offered an

approximation of the behavior of the devices, and thus the ability

to test the operation of sites in their environments, but did not

correspond 1:1 to real use cases due to a number of drawbacks that

the use of emulators entails. So at this stage, as much of the

emulators as possible were replaced with physical devices. This

required designing proprietary mechanisms for integrating

physical devices into the tool engine. The algorithm had to

provide reliable two-way communication with the device. A

solution was implemented to support physical devices from the

desktop computer and display the screen content of the mobile

device on the computer screen - the ability to perform real-time

operations - latency was reduced to a minimum. A similar solution

was applied to desktop systems. New functions were designed and

implemented, such as downloading screenshots containing web

pages rendered by different browsers, downloading codes of tested

sites, comparing how sites are displayed by different

environments. Implementation of new functionalities and

development of existing ones allowed the creation of a database.

The database was to be used to store all data necessary for the

operation of the site and arising during its use. At this stage of the

project's advancement, these included user data, logs, screenshot

data, and test history. Due to the proliferation of system functions

and the connection of new devices to the system, the need to

implement load balancing methods was recognized. To this end, a

load balancer was used, which is a solution for distributing tasks

among devices in the infrastructure. To conclude the second stage

of the project, a working prototype was developed with the

following features: use of physical devices alongside emulators,

ability to remotely operate physical devices in real time,

downloading screenshots, comparing page renders, implemented

and secured database, use of load balancer.

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2023 63

Fig. 2. Ability to run tests on multiple devices, browsers and systems using

Table 1. Traditional and SaaS model comparison

Traditional model (on premise) SaaS model

 The user has to maintain the entire

system manually in order to

conduct tests (different browser

versions, etc.).

 The performance of the software

(speed of conducting tests and task

execution) is limited by the user's

computer computational power.

 Blocking other user activities while

conducting tests (tests do not work

in the background).

 The user receives the whole package,

including the software and

infrastructure (devices in the cloud

with various browser versions,

different resolutions, without

incurring device maintenance costs).

 The model can be scaled by

enriching the cloud with new

devices; a single task is distributed

and executed simultaneously on

multiple computers, and traffic can

be balanced using a load balancer.

 The user's computer is not burdened

as the application natively launches

browsers, and tests are executed in

the background.

During the third stage, a performance comparison module has

been developed between an application running in a traditional

model (when the user installs the software on his computer) and

software delivered as a service (SaaS model). The analysis was

carried out from the perspective of user usability.

Performance calculations were carried out for a number

of test cases. Estimated software performance (speed of testing

and task execution) for an example test case – to test a page

of 57 subpages, on 3 browsers. Assumptions used for calculations:

average time to test 1 sub-page using one computer – 35 s

(averaged value, the exact time depends on the parameters

of the device such as the amount of RAM, processor speed, etc.).

The results of our SaaS model showed a drastic improvement

in performance. Depending on the complexity of the webpage

and the components of a compared traditional model computer,

we have noticed a performance increase of up to 70% using

our SaaS model solution.

Given these results, the focus was on moving the service

to the cloud and making it available in a SaaS model – Software

as a Service. This is a cloud computing model in which a service

is made available to users remotely over the Internet,

and all computing is done on the server side. Until now

the service operated locally, requiring installation and proper

configuration by the user, or rather, the developer. The key

advantages of moving the service to the SaaS model include

no need for the user to install the software which results in a lower

entry threshold for potential customers, no specific hardware

requirements, easier distribution of the solution, easier

maintenance of the service in the long term, increased scalability

of the system. To enable the service to operate in this model,

it was necessary to create a user interface. This part of the work

included: establishing the image of the application, designing

layouts, implementing layouts, designing and implementing

mechanisms for controlling remote devices, integrating the front-

end with the server's API, testing the interface, starting work

on the ongoing maintenance of the service.

The completion of stages form 4 to 6 have been reached after

the successful implementation and testing of: the performance

testing module, the language testing module and the render

comparison module. The automatic site quality (performance)

testing module allows you to verify a website for performance

and correct application of SEO practices, and suggests possible

improvements. The test is carried out completely automatically –

the user only enters the website address, and assigns a given test

to: the client, the project and a milestone he/she has set.

Following the performance test, a report is automatically

generated that contains a range of data, including, in particular:

information about the quantitative share of the server's individual

http response codes (200, 301,404), information about the amount

of data downloaded from the server along with detailed addresses

from which these data were downloaded, information about

the amount of data downloaded from the server taking into

account the type of data (html, css, js, etc.), basic summary

information about response and page load times, suggestions

for site improvements (YSLOW) taking into account Javascript

code optimization, file compression of the number of HTTP

requests, etc.

The second functionality introduced during these stages was

a module for testing the linguistic correctness of the site. Running

on the basis of the LanguageTool tool, the algorithm checks

all the text visible to the user and checks it for: grammar, spelling,

phraseology, punctuation, syntax. After the test, a report

is generated with suggestions for improvements. The third

functionality launched at this stage of work was a module

for comparing renders of different browsers. The tool is based on

previously developed functionalities – downloading screenshots,

html code and a tool looking for differences. When run,

the module returns a result containing previews of the page

rendered by each of the selected browsers. Each of them can be

freely viewed and manually compared. The main element

of the tool, however, is an automatic comparison of rendered

pages. The tool allows you to: select two renders and juxtapose

them against each other, synchronously scroll through

the rendered pages for visual comparison, automatically find

and list differences, set a tolerance for differences in element

sizes, review and locate differences, search for elements that

are missing, search for elements that appeared in the code, but you

are not sure about their display on the user's side. In addition,

we have developed component responsible for retrieving detected

errors in the scope of individual elements of the studied website

64 IAPGOŚ 4/2023 p-ISSN 2083-0157, e-ISSN 2391-6761

and generating reports automatically presenting information

in a descriptive manner on the differences in the display

of individual elements of the rendered page on different browsers.

During the seventh stage of the project, a component

responsible for generating reports for the end user was developed.

Functionalities related to storing and sharing historical and current

reports have been implemented. All reports are stored in a secured

database. The repository contains reports from 3 types of tests:

render tests, performance and SEO tests, and language tests.

Each of the reports is available in the BrowserSpot tool itself

under the "Reports" tab, as well as it is possible to download them

in the form of a formatted PDF document for presentation outside

the service or in paper form.

The eighth stage consisted of the merge of technology

components developed in earlier stages, a series of tests,

and a prototype of the BrowserSpot tool that was made available

to a closed group of users for UX testing. As a result of the work

carried out as part of the project, a complete IT product

was created with the following features and functionalities:

backend based on technologies: Java and Selenium, virtualization

of devices in an isolated environment, encrypted database storing

application and user data, support and functions for remote control

of selected physical devices making up the device testing lab,

control of network traffic with a load balancer, making the service

available in the SaaS model, mechanisms for handling user

accounts and workspaces, rendering web pages on emulated

devices, virtual machines and physical devices, downloading

rendered pages, downloading source code of pages, automatic

comparison of renders between browsers, automatic analysis

of text displayed by browsers for correctness and suggestions

for improvements, automatic creation of reports on performance

and meeting SEO standards organization of the above tests

by client, ability to plan tests for the future and create a schedule,

archiving of historical tests, creation of an API for the front-end

interface, creation of a front-end interface, tutorials, access

to documentation, modifiable interface of the management panel,

support for automatic performance testing functions, SEO,

language, renders, support for the report archive view, support for

the schedule, insight into statistics. The described functionalities

went through a cycle of tests and corrections to eliminate possible

errors in both the application design and its implementation.

Subsequently, UX testing was carried out in accordance with the

following methodological assumptions. The results of the survey

were collected using a dedicated questionnaire. The data source

was a task test with a framework scenario - each participant was

tasked with using BrowserSpot in a real - current or historical -

case. The requirements for the task were formulated as follows:

the task is related to the testing of any service, the object

of the task is a web application with an average level

of operational complexity, the task involves a single application

or its component. The group of respondents was selected from

among programmers, QA staff (software testers) and IT project

managers. The surveys were conducted asynchronously, without a

moderator. There were 3 areas of problem analysis: quality of

solutions provided, redundancy or functional deficiencies, bugs

and overall service performance. The study participants were

provided with a manual and basic user materials, and no guidance

or advice was given during the test. The study was anonymous,

the only data of the participants provided during the course

of the study was their position and seniority. The results obtained

were used to improve the BrowserSpot service before its full

rollout to the market.

4. Selected applications

4.1. Translation of the execution code

The code that is used to take a screenshot of the website has

to be translated based on the device, software version and used

application. The tool checks the selected parameters and does

the translation in the background, without user input in order

to ensure its ease of use. The translated code is then executed

on the website and the results are compared and verified.

Here are the examples of the translated code snippets for the use

in the chrome browser.

The function to scroll to the top of the page and wait 2 seconds

for the page to fully load:

{

this.driver.executeScript("document.querySelector('body').scrollTop=" +

(0) + ";document.querySelector('html').scrollTop=" + (0) + "");

 try {
 Thread.sleep(2000);

}

The function to take a screenshot of the page:

 {

TakesScreenshot takesScreenshot = (TakesScreenshot) new
Augmenter().augment(this.driver);

byte[] image = takesScreenshot.getScreenshotAs(OutputType.BYTES);

 }

4.2. Environment scalability

The tools environment has been developed in a way that

allows an easy expansion if necessary. New devices, software,

and versions can be added and quickly configured on the backend

of the tool, but also the new systems and machines that handle

the operation functions of the tool. That way the need for more

computation power can be solved by simply adding a new server

or computer and download the appropriate software that will

automatically set itself up and keep updated with the rest of the

environment.

4.3. Tasks load balancer

The tool has been designed with task load balancing in mind.

The way this problem has been solved is by running a load check

before sending a task request to the specific machine. If the check

finds a machine that is currently under load it forwards the request

to the next one and the process begins again. The simplified way

is illustrated on the following chart (Fig 3).

4.4. Physical devices

The tests conducted using the tool are requested

to be performed on a series of physical devices that are connected

to the system. Usually these types of tests are performed

on an emulator on virtual machine that simulates the selected

device. The decision to use physical devices has been made

mainly due to the numerous problems with emulators but also

for the performance and accuracy of the tests and results.

5. Conclusions

As a result of the conducted R&D project, a comprehensive

testing tool has been developed, allowing for significant

automation and standardization of testing activities, particularly

in small and medium projects. The results of individual project

stages have verified the assumptions defined at the beginning

of the R&D project. The results have been implemented

in the market. The tool is offered under the commercial name

BrowserSpot in a SaaS/TaaS model. The tool addresses key

challenges faced by the automated testing industry, primarily

related to technical infrastructure and high costs of maintaining

device laboratories and human resources. The developed tool

helps alleviate staffing issues and is accessible to individuals who

do not possess extensive programming skills. After the completion

of the R&D project, the tool was further developed to better align

with user needs and expectations, such as enriching it with

a function for creating codeless automated tests using a graphical

user interface and drag-and-drop functionality and progress

tracking dashboard (Fig. 4).

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2023 65

Fig. 3. Load balancing method flowchart

Fig. 4. The function of progress tracking dashboard

Acknowledgments

The R&D project, the results of which were presented

in the article, was co-financed using a grant by the European

Union. Project was titled „Developing a unique rendering

mechanism to launch a proto-type BrowserSpot service”. Research

project no. RPMP.01.02.01-12-0487/16 co-financed from

the funds of Regional Operational Programme for the Malopolska

Region 2014-2020, Priority Axis Knowledge Economy,

Measure 1.2 Research and innovation in Enterprises, Sub-measure

1.2.1 R&D projects of Enterprises co-financed by the European

Regional Development Fund.

References

[1] Ali A. et al.: Automated Parallel GUI testing as a service for mobile

applications. Journal of Software: Evolution and Process 30(10), 2018

[http://doi.org/10.1002/smr.1963].

[2] Arbon J.: AI for Software Testing. Pacific NW Software Quality Conference,

Portland 2017.

[3] Moreira R. M. et al.: Pattern-based GUI testing: Bridging the gap between

design and Quality Assurance. Software Testing, Verification and Reliability

27(3), 2017, e1629 [http://doi.org/10.1002/stvr.1629].

[4] World Quality Report. Capgemini, 2019

[http://www.capgemini.com/news/press-releases/world-quality-report/]

(accessed 29 June 2023).

M.Sc. Szymon Binek

e-mail: s.binek@clickray.eu

He is the main originator and the co-founder

of ClickRay. He is a specialist in online and HubSpot

API development services and a truly wide range

of digital ventures and experiments for clients.

He supervised a research and development project

co-financed by European funds, which resulted

in the BrowserSpot platform.

Research interests: Artificial Intelligence and

Machine Learning, Software Test Automation.

http://orcid.org/0009-0001-7936-8056

B.Sc. Jakub Góral

e-mail: goral.jakub99@gmail.com

In 2022 he received a Bachelor of Science degree

(B.Sc.) at the University of Economics in Cracow

in the field of Business Management with

a specialization in Small Business Management.

Later on he continued his studies and is now

in the process of getting a Master’s degree

in International Business Management.

Research interests: technology, Industry 4.0, Artificial

Intelligence, Data science.

http://orcid.org/0009-0003-9634-4915

