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Abstract: Adolescent idiopathic scoliosis (AIS) is a prevalent musculoskeletal disorder that causes
abnormal spinal deformities. The early screening of children and adolescents is crucial to identify
and prevent the further progression of AIS. In clinical examinations, scoliometers are often used to
noninvasively estimate the primary Cobb angle, and optical 3D scanning systems have also emerged
as alternative noninvasive approaches for this purpose. The recent advances in low-cost 3D scanners
have led to their use in several studies to estimate the primary Cobb angle or even internal spinal
alignment. However, none of these studies demonstrate whether such a low-cost scanner satisfies
the minimal requirements for capturing the relevant deformities of the human back. To practically
quantify the minimal required spatial resolution and camera resolution to capture the geometry
and shape of the deformities of the human back, we used multiple 3D scanning methodologies
and systems. The results from an evaluation of 30 captures of AIS patients and 76 captures of
healthy subjects showed that the minimal required spatial resolution is between 2 mm and 5 mm,
depending on the chosen error tolerance. Therefore, a minimal camera resolution of 640 × 480 pixels
is recommended for use in future studies.

Keywords: three-dimensional imaging; back surface; trunk asymmetry; back shape analysis; depth
camera; trunk surface reconstruction

1. Introduction

Adolescent idiopathic scoliosis (AIS) is an abnormal spinal deformity in adolescents.
Scoliosis is defined as a lateral curvature of the spine with a Cobb angle greater than
10 degrees. The Cobb angle is the angle of the lateral curvature between the two most tilted
vertebrae. If AIS is left untreated, it can lead to cosmetic changes, pulmonary dysfunction,
and pain [1]. To detect AIS, some countries have introduced school screening programs
where visual assessments, scoliometers, or 3D scanners are used to estimate the primary
Cobb angle [2]. In these screening programs, adolescents are evaluated to determine
whether a full radiograph is necessary for further examination. Depending on the severity
or risk of progression, AIS patients undergo a radiograph every 6 months [3]. Modern
X-ray imaging systems, especially the EOS imaging system, significantly reduce ionizing
radiation [4]. However, such systems are very expensive, and several studies show that
cancer incidence in AIS patients is five times higher than that in healthy adolescents [5]. As
an alternative approach, rasterstereography is investigated and implemented worldwide,
but there remains a gap between the estimations using rasterstereography and results
obtained using radiographic imaging [6]. With the advances in modern 3D imaging
systems, this topic has experienced a recent revival, especially for low-cost consumer 3D
capturing systems such as Kinect from Microsoft, Xtion Pro from ASUS, Intel D415 from
Intel, Orbbec Astra from Orbbec, and many more. Kinect was proposed and used to obtain
the spinous process line and spine midline [7–9]. The methods that the authors used are

Sensors 2023, 23, 7808. https://doi.org/10.3390/s23187808 https://www.mdpi.com/journal/sensors

s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
2
4
4
5
1
/
a
r
b
o
r
.
2
0
7
7
0
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
0
.
1
.
2
0
2
4

https://doi.org/10.3390/s23187808
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8763-5003
https://orcid.org/0000-0003-0525-2197
https://orcid.org/0000-0003-4060-4098
https://doi.org/10.3390/s23187808
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187808?type=check_update&version=3


Sensors 2023, 23, 7808 2 of 14

based on a back shape curvature analysis, i.e., Gaussian curvature and mean curvature,
and the anatomical landmarks used to estimate the spine midline are characterized by
specific trunk surface curvature. Xtion Pro was used to obtain an asymmetry map and
index via Adam’s bending test, which is often performed in visual assessments of AIS
patients [10,11]. The asymmetry index is based on the root mean square error (RMSE)
between the captured 3D back shape and a mirrored version. The authors demonstrated
a high correlation between the asymmetry index and the Cobb angle. The Cobb angles
obtained using DIERS formetric 4D (DIERS International GmbH, Schlangenbad, Germany)
were compared with those obtained using radiography [12]. The DIERS formetric 4D uses
rasterstereophotogrammetry to reconstruct the shape of the back. Curvature analysis, i.e., a
curvature map, is used to detect various anatomical landmarks and symmetry lines. This
symmetry line divides the back into two halves with minimal left–right asymmetry and
estimates the spinous processes line used to estimate 3D spinal alignment [13]. Mobile
phone RGBD capturing, i.e., iPhone 13’s LIDAR, in combination with the use of a Spine
Priors Model and deep learning, has been proposed [14]. The proposed method fits the
Spine Priors Model to the spine-related features on the back surface. The features used
include the back surface spinous curve and the back surface local symmetry close to the
spinous curve. The spinous curve is automatically detected using deep learning (HRNet)
and nearby local symmetry as mirror points on the lines perpendicular to the spinous
curve. Thus far, no research has explored the minimal required spatial resolution and the
corresponding camera resolution to capture the geometry and shape of the human back.
The minimal required spatial resolution defines how many sample points are required on
the human back to capture all relevant features. The minimal required camera resolution is
the corresponding camera resolution in pixels necessary to satisfy the minimal required
spatial resolution.

In this paper, we address this issue and present a practical approach for identifying
the minimal resolution required to capture the topography of the human back. We used
multiple 3D scanning methodologies and systems to acquire a quantification of the minimal
resolution required to capture the deformities of the human back (Figure 1). In this paper,
we also show that using systems that do not meet the minimal required resolution will lead
to suboptimal results.
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Figure 1. Three-dimensional back shape captures from (a) Photoneo MotionCam-3D; (b) structured
light with TIDA-00254; (c) active stereo with BoofCV; (d) Orbbec Astra Mini; (e) Intel D415.

2. Materials and Methods

Our evaluation is based on a dataset [6] of scoliotic patients (AIS) obtained from
the University Children’s Hospital Basel (UKBB, Basel, Switzerland), which consists of
30 optical captures of the human back. Data collection was approved by the cantonal
Ethics Committee (EKNZ 2020-02496). The mean age of the AIS patients was 13 ± 3 years.
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The capturing was carried out using an Artec Eva 3D optical scanner (Artec 3D, Luxem-
bourg). A second dataset containing 76 healthy subjects (adults without any diagnosis
or surgical treatments of a spine pathology) was acquired, and this was approved by the
ETH Zurich Ethics Commission (EK 2022-N-179). The mean age of the healthy subjects
was 54 ± 16 years. The capturing was carried out using different 3D acquisition systems
(Figure 1): Photoneo MotionCam-3D M+ [15], structured light (SL) with TIDA-00254
(DLP Lightcrafter 4500) [16] and a monochrome 2D camera from HIKROBOT (MV-CA023-
10UM) [17], active stereo (AS) with Lightcrafter 4500 and two monochrome 2D cameras
from HIKROBOT, single-shot structured light with the Orbbec Astra Mini [18], and active
stereo with Intel D415 [19]. The Photoneo MotionCam-3D is an expensive industrial 3D
scanner that produces very accurate 3D representations (3D point clouds), and thus is
used as a reference and ground truth. TIDA-00254 is a DLP light engine and is used in
combination with structured light (machine vision application from Texas Instruments)
and active stereo (BoofCV). Intel D415 and Orbbec Astra Mini are two of the latest low-
cost consumer systems. Data were processed in MATLAB R2022a on an HP Elitebook
840 G8 (Intel i7-1165G7, 16GB RAM). We provide the full code with a sample for illustration
purposes (see Supplementary Materials).

Data were processed using three approaches. The first approach (Approach A) uses
a frequency analysis of a ground-truth 3D representation to obtain an initial estimate of
its contained frequencies. This estimate was used in the second and third approaches as
the initial cut-off frequency. The second approach (Approach B) compares the shape of the
reduced-quality 3D representation with the ground-truth shape, and the third approach
(Approach C) compares the symmetry line of the reduced-quality 3D representation with
its benchmark.

Approach A—Frequency analysis of the ground-truth 3D representation

The first approach is generic and can be applied to many research questions concerning
the shape analysis of specific objects of interest. Approach A involves the Fourier transform
of the object of interest into the frequency domain, where its contained frequencies can be
analyzed. In our case, the frequency analysis process is as follows (Figure 2): the ground-
truth 3D representation is sliced into multiple horizontal slices (Figure 3). Each slice is then
represented as a function z = f(x), where z is the depth value, and x is the horizontal axis
from left to right. The spacing between the sampling points in the x-direction is regularized.
This is necessary for the Fourier transform. The fast Fourier transform (fft function in
MATLAB) can then be directly applied to the function z = f(x). The Fourier transform
provides the frequency domain representation as the output.

According to the Nyquist theorem, a sampling frequency (in our case, a spatial sam-
pling frequency in [1/mm]) of twice the maximal frequency contained in the signal must
be used [20]. The object of interest in our case is the human back, which is mostly a smooth
surface, and thus its contained spatial frequencies are limited. The Nyquist theorem only
holds true for a perfect signal without noise, measurement error, influences from the camera
systems, etc. In practice, every camera system introduces additional frequencies through
sampling, artifacts, and noise, especially in the higher frequency range. To keep this in-
fluence to a minimum, the camera system must be of high quality in order to produce
a ground-truth 3D representation. Furthermore, these additional frequencies have to be
considered when interpreting the resulting frequency-domain representation by checking
the magnitudes of all frequencies. The lower frequencies with the highest magnitudes
correspond to the captured back shape. Approaches B and C heavily rely on low-pass
filtering, and thus the high-quality camera system can be modelled as a black box. For
practical purposes, its influence on higher frequencies in the signal can be neglected. The
results from approach A provide a good basis for further evaluation with approaches B
and C.
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Approach B—Comparison of the shape of reduced-quality 3D representation with the
ground-truth shape

The second approach is also generic and can be applied to other research scenarios
with respect to the minimal required resolution of optical 3D acquisition systems. Approach
B takes a ground-truth 3D representation of the object of interest (in our case, the human
back) as the input. The ground-truth 3D representation can be either captured using
a very accurate 3D acquisition system (in our case, Photoneo MotionCam-3D, with a
point size of 0.52 mm, @z = 900 mm, and accuracy < 0.3 mm) or delivered as a CAD
representation (e.g., for artificial objects). An evaluation metric is then calculated using the
ground-truth 3D representations to obtain the baseline (Step B1). The chosen evaluation
metric is the mean absolute error (MAE) between the 3D representation and baseline 3D
representation. The next step (Step B2) is to apply different methods to artificially reduce
the quality of the 3D representation. We used downsampling (pcdownsample method in
MATLAB), reduced the spatial frequency with a low-pass Butterworth filter (butter and
filtfilt methods in MATLAB), limited the depth resolution (z-axis), and added both random
spatial noise and sinusoidal spatial noise. The full list of all methods used to artificially
reduce quality is presented in Table 1. We chose the reduction in spatial frequency as our
main parameter because, according to the Nyquist theorem, there is a direct and strong
relationship between the minimal required resolution and the frequencies to be captured.
Furthermore, the reduction in spatial frequencies showed the strongest influence on the
chosen error metric. The shape quality reduction process is as follows (Figure 4): the highest
frequency from approach A is used as the starting cut-off frequency for the Butterworth
low-pass filter [21]. With each chosen cut-off frequency, all 3D representations are filtered
with the low-pass filter (Figure 5), and the MAE between each filtered 3D representation
and its corresponding ground-truth 3D representation is used as the error metric. Next, the
cut-off frequency is reduced, and the procedure is repeated (Step B3). The level of reduction
in frequency depends on the starting frequency, the level of desired accuracy of the final
result, and the available resources for simulation. The result is a function of MAE values
depending on the cut-off frequency. Reducing the cut-off frequency leads to a slow but
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steady increase in MAE values. As soon as the cut-off frequency reaches lower frequencies,
which are essential for the 3D representation, the error metric starts to increase rapidly. In
the context of this paper, this is called the slope break-point and is determined using the
error tolerance chosen by the user.

The last step (Step B4) is to calculate the MAE from all 3D representations captured
using all other camera systems compared to the corresponding ground-truth 3D represen-
tation. This was carried out to practically evaluate our artificial findings using existing 3D
acquisition systems. The error value can then be compared to the simulated approach and
classified accordingly.
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Figure 4. Approach B—Shape quality reduction to calculate the minimal required spatial resolution.

Table 1. Shape quality reduction methods.

Method MATLAB Method Description

Downsampling pcdownsample Random downsampling
Reduction in spatial frequencies Butter/filtfilt Filtering with a low-pass filter
Limiting depth resolution round Rounding to the next allowed value
Adding random spatial noise rand Adding random spatial noise
Adding sinusoidal spatial noise Sin Adding spatial noise in sinusoidal form
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Approach C—Comparison of the symmetry line of the reduced-quality 3D representa-
tion with its benchmark

The third approach is application-specific, which has to be selected according to
a specific research question. Our research project aims to estimate the internal spinal
alignment (i.e., the line that passes through the centroids of vertebral bodies) from the
human back shape (from back shape to spine approach). In the literature, there are two
main approaches to address this problem. The first is a so-called asymmetry map [10],
where the left side of the human back is compared to the right side of the back. The
differences between the left and right sides lead to an asymmetrical map. This approach
requires the back shape of sufficient quality (minimal required spatial resolution) and
thus is already covered by approach B. The second is the so-called symmetry line [22].
This is very similar to the asymmetry map, where the left and right sides are compared
with each other, except here we are only interested in the mid-line, the line with maximal
symmetry. Ideally, this line coincides with the line above the spinous processes of the spine.
Based on this symmetry line, the internal spinal alignment is estimated [23–29]. Since this
approach does not require the full 3D shape of the human back in full detail, the procedure
is as follows (Figure 6): First, the symmetry line is calculated for the ground-truth 3D
representation to obtain a benchmark symmetry line (Step C1). We chose the symmetry
line algorithm according to Drerup/Hierholzer [29,30] due to its simplicity. Most modern
symmetry line algorithms are based on similar curvature analysis of the back shape. To
calculate the symmetry line, the 3D representation is sliced into multiple horizontal slices.
Each horizontal slice is then written as a function, z = f(x), where z is the depth value
and x is the horizontal axis. For each horizontal slice, the symmetry point is calculated
according to the formula presented in [30]. The vertical connection of each symmetry point
from each slice results in the symmetry line (Figure 7). Second, the different methods from
approach B are applied to artificially reduce the quality of the 3D representation (Figure 8)
and calculate the symmetry line for each representation once more (Step C2). The MAE
of the difference between the symmetry line from the reduced-quality 3D representation
and the corresponding ground-truth 3D representation is used as the error metric. The
last step (Step C3) is to repeat the procedure with the 3D acquisitions from the different
camera systems.
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Practical oversampling

According to the Nyquist theorem, a sampling frequency of twice the maximal fre-
quency contained in the signal must be used [20]. The Nyquist theorem only holds true
for a perfect signal, and thus, in practice, an oversampling with respect to the minimal
required resolution is required. In the literature, an oversampling of at least five times the
required sampling frequency is recommended for similar practical applications [31–35].
This level of oversampling leads to a required sampling frequency ten times higher than
the highest frequency of interest.

Minimal spatial resolution

Approaches A, B, and C deliver a function e = f(fc), where for approach A, e is the
frequency magnitude and fc is the frequency, and for approaches B and C, e is the error
and fc is the cut-off frequency of the low-pass filter. These functions exhibit an exponential
behavior, whereas, for higher cut-off frequencies, the error increases steadily but slowly, and
for lower cut-off frequencies, the error grows exponentially. The definition of the minimal
required spatial resolution depends on the acceptable error, i.e., the cut-off frequency where
the error is still within an acceptable range; thus, this is a somewhat practical design choice.
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Minimal camera resolution

Approaches B and C can be used to define the minimal required spatial resolution. The
last step is to translate this result into the minimal required resolution for the 3D capturing
system. The equations for the minimal required resolution of the 3D system are as follows:

rc,min,x =
WROI

(cf × Rs,min,x)
(1)

rc,min,y =
HROI(

cf × Rs,min,y
) (2)

where rc,min is the minimal required resolution for the 3D system in pixels, WROI and HROI
are the width and height of the region of interest (in our case, the human back), cf is the
fill factor (ratio between the image region covering the object of interest and background),
and Rs,min is the minimal required spatial resolution. The width and height of the region of
interest is found in literature, especially NASA published various parameters regarding
anthropometry [36], including the width and height of the human back. The fill factor
depends on the field of view (FOV) of the camera and the distance between the 3D capturing
system and the object of interest. Ideally, the fill factor is close to 1 to optimize the resolution
of the 3D capturing system.

3. Results

Approach A—Frequency analysis of the ground-truth 3D representation

The resulting function from the Fourier transform of 30 AIS and 76 healthy optically
digitalized human backs is shown in Figure 9. The ground truths were captured using
Artec EVA 3D (AIS patients) and Photoneo MotionCam-3D (healthy subjects). The highest
contained frequencies are around 0.87 mm−1, corresponding to the capturing limit of the
Photoneo MotionCam-3D. The most power (magnitude of frequencies) is contained in
frequencies smaller than 0.1 mm−1, resulting in a wavelength of 10 mm. According to the
Nyquist criteria, in theory, a sampling frequency of 0.2 mm−1 is sufficient to capture the
relevant frequencies contained in the signal. This translates to one sampling point every
5 mm. The Nyquist criteria, however, is only valid for a perfect signal without noise, and
thus, in practice, oversampling must be used.
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Some studies propose a practical oversampling of five times (×5) for similar appli-
cations [31–35]. With this, the required sampling frequency is 1 mm−1, which translates
to one sampling point every millimeter (oversampling of at least five times leads to a
frequency that is ten times higher). The resulting frequency of 0.1 mm−1 is used as the
initial cut-off frequency for approaches B and C.

Approach B—Comparison of the shape of the reduced-quality 3D representation
with the ground-truth shape

The resulting function of the shape quality reduction process is shown in Figure 10. At
a cut-off frequency of 0.1 mm−1 from approach A, the error (MAE) is small (0.04 mm). With
a cut-off frequency of 0.05 mm−1, the error remains small (0.13 mm). Applying a five-times
oversampling to this cut-off frequency results in a required sampling point every 2 mm.
With a cut-off frequency of 0.02 mm−1, the error starts to increase exponentially (1.33 mm).
Applying a five-fold oversampling to this cut-off frequency results in a required sampling
point every 5 mm. Therefore, the slope breakpoint is between 0.05 mm−1 and 0.02 mm−1.
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Approach C—Comparison of the symmetry line of the reduced-quality 3D repre-
sentation with its benchmark

The resulting function from the comparison of back symmetry lines from reduced-
quality 3D representations and the ground-truth representation is shown in Figure 11. The
symmetry line algorithm is inherently sensitive to high-frequency noise because it is based
on the curvature analysis of a shape, and thus approach C is only evaluated with a cut-off
frequency of 0.1 mm−1 and lower. The largest cut-off frequency of 0.1 mm−1 was used
as a reference, and thus the error (MAE between symmetry lines) is 0 mm. With a cut-off
frequency of 0.05 mm−1, the error is small (2.1 mm). Applying a five-times oversampling
to this cut-off frequency requires a sampling point every 2 mm. With a cut-off frequency
of 0.02 mm−1, the error starts to increase exponentially (6.6 mm). Applying a five-fold
oversampling to this cut-off frequency requires a sampling point every 5 mm. Therefore,
the slope breakpoint is between 0.05 mm−1 and 0.02 mm−1.
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symmetry line.

Minimal spatial resolution

Approach A results in the minimal required spatial resolution to capture all relevant
frequencies of the human back at one sampling point every 1 mm. Since this is only an
approximation from the lower frequencies with the highest magnitudes, and because the
influence of the camera system is modeled as a black box, this result is only used as an
initial estimation for approaches B and C. Approaches B and C result in a minimal required
spatial resolution of one sampling point every 2 mm to 5 mm.

Minimal camera resolution

NASA states the 95th percentile of the waist back of an American male as 51.6 cm and
of the interscye as 45.4 cm, and the 95th percentile of the waist back of a Japanese female as
41.0 cm and of the interscye as 39.0 cm [36]. Equation (1) results in

rc,min,x = 454 mm/(0.67 × (2 mm − 5 mm)) = 136 px − 339 px

for the horizontal resolution, and Equation (2) results in

rc,min,y = 516 mm / (0.67 × (2 mm − 5 mm)) = 154 px − 385 px

for the vertical resolution. The fill factor of 2/3 (0.67) was determined using practical
measurements. The measurements for the American male are taken as the limit because
the width and height of the male back are larger.

4. Discussion

The optical 3D systems evaluated in this paper are summarized in Table 2.

Table 2. Systems evaluated in this paper.

System Resolution Accuracy

Photoneo MotionCam-3D M+ 1680 × 1200 resp. 1120 × 800 error < 0.3 mm at 0.9 m
SL/AS with TIDA and HIKROBOT 912 × 1140 resp. 1920 × 1200 error ~1 mm at 1 m
Intel D415 1280 × 720 error < 2% up to 2 m
Orbbec Astra Mini 640 × 480 error < 3 mm at 1 m

All the systems satisfy the required minimal resolution to capture the human back. The
Photoneo MotionCam-3D also satisfies the minimal required spatial resolution. The results
confirm that the Photoneo MotionCam-3D is a valid choice as a ground-truth-capturing
device because the accuracy error of less than 0.3 mm is three times higher than the required
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spatial resolution resulting from approach A (1 mm) and seven to seventeen times higher
than the required spatial resolution resulting from approaches B and C (2 mm to 5 mm).
Texas Instruments does not specify the accuracy of the structured light and active stereo
system with TIDA-00254 and HIKROBOT cameras. Practical tests conducted by the authors
revealed error values of around 1 mm. Orbbec Astra Mini has an accuracy error of less
than 3 mm at a 1 m distance. The required spatial resolution resulting from approach A is
not satisfied; however, depending on the design choice for approaches B and C, Astra Mini
satisfies the minimal spatial resolution required to capture the human back. Intel D415
does not satisfy the minimal spatial resolution required to capture the human back. An
error of 2% at a distance of 1 m results in an error of up to 20 mm.

The presented results are based on the assumption of five-times practical oversampling.
Depending on the design choice for the allowed error for approaches B and C, and the
relaxation of practical oversampling (Table 3), both low-cost consumer systems can satisfy
the minimal required resolution. For Orbbec Astra Mini, this is already the case when
considering a practical oversampling of three times. For Intel D415, this is only the case
if we use the theoretical Nyquist criteria and allow for the upper bound on the minimal
required spatial frequency resulting from approaches B and C (0.02 mm−1). Depending
on the acceptable error, both Orbbec Astra Mini and Intel D415 can be used to capture
the human back, but the authors do not recommend using Intel D415. Astra Mini is also
only recommended if the low price of the 3D capturing system is weighted higher than
the quality of the results. The Photoneo MotionCam-3D and SL/AS with THE TIDA-00254
projector and HIKROBOT cameras are all valid options for capturing the human back.

Table 3. The dependency of minimal required spatial resolution on used oversampling.

Used Oversampling Corresponding Frequency Factor Resulting Minimal Required Spatial Resolution

1× (Nyquist limit) 2× 10 mm–25 mm
5× 10× 2 mm–5 mm
10× 20× 1 mm–2.5 mm

The fill factor (the ratio between the image region occupied by the object of interest
and the background) of 0.67 was determined using practical measurements. Accord-
ing to NASA, the ratios between the 95th percentile of the waist back and interscye are
1.05 (Japanese female) and 1.14 (American male). The aspect ratio of the systems under
evaluation ranges from 1.33 to 1.78, resulting in a maximal possible fill factor of 0.75. How-
ever, the human back is not rectangular, and thus the fill factor is lower in practice. To
better optimize the field of view of the camera in terms of pixel occupancy, a camera with
an aspect ratio closer to 1 is required. Off-the-shelf systems tend to have aspect ratios of
1.33 or higher, but since most modern 3D capturing systems have a resolution of at least
640 px × 480 px we did not pursue this issue further.

We distinguished three approaches. Approach A provides an initial estimate for the
minimal required spatial resolution and is used as input for approaches B and C. Approach
B focuses on the shape of the object of interest, and thus should be used if the shape of the
object is the relevant factor. Approach C focuses on a specific area of research, in our case,
the symmetry line. The results from approaches B and C range within a similar interval,
and thus no further investigation was carried out. We recommend that approaches B and
C are always followed. If the results from approaches B and C are not similar, it is up to
the researcher to select the criteria for the choice of the minimal required spatial resolution.
In the future, we could expand our methods and code to allow the entry of some design
parameters and combine approaches A, B, and C into a single evaluation that yields a
single result.

This paper presents a practical approach. In particular, the assumption that the
Photoneo MotionCam-3D is a valid choice for capturing ground-truth 3D data could be
investigated further. Furthermore, the assumption of a five-times oversampling, which is
based on practical experience and practical applications found in the literature, requires
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further research. The influence of the camera system on the signal, and thus the contained
frequencies from approach A could be investigated further. This could then be used to
achieve a better understanding of the required oversampling.

The choice of practical oversampling, design choice for acceptable errors, sampling
artifacts and noise of the camera, surface of the object of interest (e.g., skin color), and
distance and viewing angle between camera and object cause uncertainty in the results.
Furthermore, our results are mean values (MAE); in the future, we could also quantify
the uncertainty, as shown in Figure 11 (left). For the cut-off frequency of 0.02 mm−1, the
MAE is 6.6 mm; however, the individual error can be as large as 30 mm. In this uncertainty
quantification, we could also include models for camera noise, especially for approach A,
using a transfer function for the camera, which could improve the result.

Clearly, there are more influential factors to consider in practical applications such as
environmental conditions. All measurements were carried out indoors in an illuminated
room but with no direct sunlight. In particular, Intel D415 was strongly influenced by
ambient light; the darker the room, the smaller the accuracy error.

The approaches and recommendations in this paper can be used to obtain an ap-
proximate estimate of the minimal required spatial resolution and the minimal required
camera and projector resolution. However, the authors recommend additional practical
measurements with such systems to confirm the requirements for individual applications.
To support these practical measurements, we have provided the full code.

5. Conclusions

The presented methods, code, and results provide researchers with a practical ap-
proach to selecting a suitable 3D scanning setup. In our case, the minimal required spatial
resolution to capture the human back is between 2 mm and 5 mm, and thus the authors
recommend a 3D capturing system with an accuracy error of less than 2 mm. The minimal
required camera resolution to capture the human back is 136 px–339 px × 154 px–385 px.
Most modern 3D capturing systems have a resolution of at least 640 px × 480 px, and thus,
the authors recommend a 3D capturing system with a resolution of at least 640 px × 480 px.
However, the minimal required camera resolution is smaller than the concluded resolution.

Supplementary Materials: The MATLAB code presented in this study is openly available on GitHub
at https://github.com/mkaisereth/MinimalRequiredResolution (accessed on 5 September 2023).
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