
© 2023. Rishabh Chopda, Saket Pradhan & Anuj Goenka. This research/review article is distributed under the terms of the
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BYNCND 4.0). You must give appropriate credit to authors and
reference this article if parts of the article are reproduced in any manner. Applicable licensing terms are at https://creative
commons. org/ licenses/by-nc-nd/4.0/.

Global Journal of Computer Science and Technology: A
Hardware & computation
Volume 23 Issue 1 Version 1.0 Year 2023
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Design and Development of an Autonomous Car using Object
Detection with YOLOv4

 Strictly as per the compliance and regulations of:

By Rishabh Chopda, Saket Pradhan & Anuj Goenka
Abstract- Future cars are anticipated to be driverless; point-to-point transportation services

capable of avoiding fatalities. To achieve this goal, auto-manufacturers have been investing to
realize the potential autonomous driving. In this regard, we present a self-driving model car
capable of autonomous driving using object-detection as a primary means of steering, on a track
made of colored cones. This paper goes through the process of fabricating a model vehicle,
from its embedded hardware platform, to the end-to-end ML pipeline necessary for automated
data acquisition and model-training, thereby allowing a Deep Learning model to derive input from
the hardware platform to control the car’s movements. This guides the car autonomously and
adapts well to real-time tracks without manual feature-extraction.

Keywords: autonomous, self-driving, computer vision, YOLO, object detection, embedded
hardware.

GJCST-A Classification: LCC Code: QA76.9.C65

 DesignandDevelopmentofanAutonomousCarusingObjectDetectionwithYOLOv4

Design and Development of an Autonomous
Car using Object Detection with YOLOv4

Rishabh Chopda α, Saket Pradhan σ & Anuj Goenka

ρ

Abstract-

Future cars are anticipated to be driverless; point-to-
point transportation services capable of avoiding fatalities. To
achieve

this goal, auto-manufacturers have been investing to
realize the potential autonomous driving. In this regard, we
present a self-driving model car capable of autonomous
driving using object-detection as a primary means of steering,
on a track made of colored cones. This paper goes through
the process of fabricating a model vehicle, from its embedded
hardware platform, to the end-to-end ML pipeline necessary
for automated data acquisition and model-training, thereby
allowing a Deep Learning model to derive input from the
hardware platform to control the car’s movements. This guides
the car autonomously and adapts well to real-time tracks
without manual feature-extraction. This paper presents a
Computer Vision model that learns from video data and
involves Image Processing, Augmentation, Behavioral Cloning
and a Convolutional Neural Network model. The Darknet
architecture is used to detect objects through a video segment
and convert it into a 3D navigable path. Finally, the paper
touches upon the conclusion, results and scope of future
improvement in the technique used.

Keywords:

autonomous,

self-driving, computer vision,
YOLO, object detection, embedded

hardware.

I.

INTRODUCTION

‘Self-Driving Car’ is one that is able to sense its
immediate surroundings and operate
independently without human intervention. The

main motivation behind the topic at hand is the
expeditious progress of applied Artificial Intelligence and
the foreseeable significance of autonomous driving
ventures in the future of humanity, from independent
mobility for non-drivers to cheap transportation services
to low-income individuals. The emergence of driverless
cars and their amalgamation with electric cars promises
to help minimize road fatalities, air and small-particle
pollution, being able to better manage parking spaces,
and free people from the mundane and monotonous
task of having to sit behind the wheel. Autonomous
navigation holds quite a lot of promise as

it offers a
range of applications going far beyond a car driven

autonomously. The main effort here is to keep the
humans out of the vehicle control loop and to relieve
them from the task of driving. The prime requisite of self-
driving vehicles are the visual sensors (for acquiring
traffic insight of vehicle surroundings), microprocessors
or computers (for processing the sensor information and
transmitting vehicle control instructions) and actuators
(to receive said instructions and be responsible for the
longitudinal and lateral control of the car) [1-4].
Autonomous vehicles are also expected to be
manoeuvred in many of the most complex human
planned endeavours, such as asteroid mining [5]. The
meteoric rise of AI along with deep learning (DL)
methods and frameworks, have made possible the
development of such autonomous vehicles by many
venture companies at the same time.

II. SOFTWARE DEVELOPMENT

In this section we elucidate the entire software
development process which includes data collection and
labelling, model training and model deployment.

a) Data Collection & Labelling
 Around 2,000 images were collected for two
types of coloured cones, namely: Orange and Blue. The
cones were made from craft paper and were 4.5
centimetres tall with a base diameter of 3cm. The
pictures included the cones laid out as track, single
colour cones, multiple same-coloured cones and a mix
of the two cones. A total of 16,382 cones were observed
in the collected images with LabelImg being later used to
label these cones from the images. ‘LabelImg’ is a
graphical image annotation tool [6]. It is written in Python
and uses Qt for its graphical interface. The LabelImg tool
was used to label the photographed images in the YOLO
format by drawing bounding boxes around the cones
and naming each cone with their respective class i.e.,
colour (orange or blue). After labelling via LabelImg, a
common class file was created to all images which
contained the two classes “Orange” and “Blue”. Another
file was created unique to each image which contained
the coordinates of each cone present in that image. For
example, 1 0.490809 0.647894 0.235628 0.342580 is an
entry from the class file created where the first parameter
determines the class of the cones, the second and third
parameters determine the midpoint of the bounding box
while the fourth and fifth parameters determine the height
and width of the bounding box. For the randomization

A

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
A
)
 X

X
II
I
Is
su

e
I
V
er
si
on

 I

 Y
ea

r
20

23

23

© 2023 Global Journals

Author α: Department of Computer Engineering Thakur College of
Engineering & Technology Mumbai, India.
e-mail: aaditchopda2@gmail.com
Author σ: Department of Information TechnologyThakur College Of
Engineering & Technology Mumbai, India.
e-mail: saketspradhan@gmail.com
Author ρ: Department of Computer Engineerin g Thakur College of
Engineering & Technology Mumbai, India.
e-mail: anujgoenka06@gmail.com

and renaming of the images, a software tool called
‘Rename Expert’ was used. It randomized the images
and then named them from 0-1681. Data augmentation
was used to increase the amount of data by adding
slightly modified copies of already existing data. It
involves injecting some noise, rotation and flipping of the
images to increase the number of images used for
training. It usually helps in preventing overfitting the
model and acts as a regularizer [7].

b) Model Training
 YOLOv4 Tiny, a version of YOLOv4 developed
for edge and lower-power devices, is a real-time object
detection algorithm capable of detecting and providing
bounding boxes for many different objects in a single
image [8-11]. The model achieves this by dividing an
image into regions and then predicting bounding boxes
in addition to the probabilities for each region. Relative to
inference speed, YOLOv4 outperforms other object
detection models by a significant margin. We needed a
model that prioritizes real-time detection and conducts
the training on a single GPU as well. ‘Darknet’ is a
framework like the Tensor Flow, PyTorch and Keras that
proved to be apt for the task at hand. While Darknet is
not as intuitive to use, it is immensely flexible, and it
advances state-of-the-art object detection results. We
train the model on darknet and then later convert it to
Tensor Flow for ease in usability. This model can be
tested on a physical model or on virtual simulators [12-
15].In terms of training the model, the labelled dataset
was segregated into training and validation datasets and
was uploaded on cloud VM. After that, the darknet was
cloned and built on which the model was trained. The
parameters were configured periodically to achieve the
best weights. It was important that we convert our
darknet framework into Tensor Flow because only then
could we make use of the Tensor Flow lite model which
is optimized for embedded devices such as Jetson Nano
to make the inference at the edge.

c) Deployment
Deployment includes reading the coordinate text

data generated from the YOlO4 model into a NumPy
framework and labelling the coordinate points according
to the two classes, blue and orange. This is done by
iterating through the text data line by line, and appending
the required point objects into a python array, and finally
converting the array into a NumPy format. Matplotlib is
used to visualize the set of data points from the camera’s
perspective, on a 10 x 10 cm2 adjusted screen. Using
the Scikit-Learn Library, a Linear Regression model is
trained using the NumPy data. Two different models are
to be trained; one for the blue set of cones, and one for
the orange. Using the ‘Linear Regression()’ predefined
method in the Scikit-Learn library, we could easily create
a simple regression model without having to build the
entire code for the model ourselves. The data is zipped
and iterated through using a for loop. The output
generated is explicitly converted into a list format. Two
lines are created that pass through the orange cones
and the blue cones. Again, a graph is plotted of
Matplotlib for visual aid of the lines. Next, the equations
of the previously formed lines are derived using simple
geometric calculations. Straight line equations of the
type: ax + by + c = 0 are obtained for both blue and
orange lines. Next, the point of intersection of the two
lines is calculated using the formula of point of
intersection. The offset of this line is calculated from the
centre of the screen and the x-coordinate of each point is
subtracted by the corresponding point on the centre of
the screen. This value is the mean deviation and will be
used further to calculate the angle by which servo
attached on the assembly is to be turned. Fig. 1 shows
the outcome of the entire video capture and path
mapping process.

Fig. 1: Video Capture and Path Mapping Process

Design and Development of an Autonomous Car using Object Detection with YOLOv4

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
A
)
 X

X
II
I
Is
su

e
I
V
er
si
on

 I

 Y
ea

r
20

23

24

© 2023 Global Journals

III. HARDWARE DESIGN

Before The car was designed and built with the
proper placement and positioning of electronic
components, such as the camera, in mind. It consists of
three main parts, the steering assembly, the spur gear
gearbox and the wheels. The steering system has a rack
and pinion type design, chosen for its simple assembly
and for providing easier and more compact control over
the car. A 3-sided gear box ensures the effortless
placement and positioning of the axles and larger gears.
Given the opposing forces caused by the axles and front
chassis, it also stays strong and sturdy. Spur gears are
used in the gear box as they have high power
transmission efficiencies (95% to 99%) and are simple to
design and install. The wheels are designed and entirely
3D printed to have built-in suspension providing
additional steering stability. Because the wheels must be
flexible, TPU (Thermoplastic Polyurethane) is used to
produce them. All other 3D printed components were
produced using PLA (Polylactic acid) as it’s easy to use,
has a remarkably low printing temperature compared to

other thermoplastics and produces better surface details
and sharper features. A list of all materials is given
below:

List of Materials: All components required for the
prototype, including sensors, actuators, power supply,
and hardware, are listed here. Fig. 2 and Fig. 3 show all
the 3D printed parts and their assembly in Soild Works
Simscape respectively.

• 3D Printed Parts

• 608zz Bearings (4x)

• Nvidia Jetson Nano
• 1200KV Brushless DC Motor

• 20A ESC (Electronic Speed Controller)

• 5000mAh Power Bank

• 11.1V - 2200mAH (Lithium Polymer) LiPo Recharge-
able Battery

• PCA9685 16 Channel Servo Driver

• TowerPro SG90 180° Rotation Servo Motor

• Logitech C615 HD Webcam

Fig. 2:

3D Printed Parts

Fig. 3:

Car Assembly on Solid Works Simscape

Design and Development of an Autonomous Car using Object Detection with YOLOv4

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
A
)
 X

X
II
I
Is
su

e
I
V
er
si
on

 I

 Y
ea

r
20

23

25

© 2023 Global Journals

IV. FUNCTIONALITY

A Nvidia Jetson Nano single-board computer
(SBC) serves as both the brain and the communication
node in the prototype control system. This SBC receives
data from the camera, analyses them, and integrates
them into the navigation system to determine the
steering angle. A 11.1V - 2200mAH LiPo battery is used
solely to power the vehicle’s propulsion system, that is,

the 1200KV Brushless DC Motor with a 20A ESC. A 180°
rotation servo motor with a torque of 1.2KgCm,
controlled by the PCA9685 16 Channel Servo Driver, is
used to steer the car. Fig. 4 and Fig. 5 show a flowchart
of the instruction feedback loop and a schematic
diagram of the hardware connections respectively. Fig.
6shows the entire assembled car.

Fig. 4: Flowchart of the Instruction Feedback Loop

Fig. 5: Circuit Diagram

Fig. 6: Assembled Car

V. CONCLUSION

Through this paper, we present an approach for
designing and building a model self-driving car based on

the concept of Behavioural Cloning. This approach being
an end-to-end one does not require any of the
conventional tasks of feature extraction or connection of
various modules, which are often monotonous, manual

Design and Development of an Autonomous Car using Object Detection with YOLOv4

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
A
)
 X

X
II
I
Is
su

e
I
V
er
si
on

 I

 Y
ea

r
20

23

26

© 2023 Global Journals

in nature and necessary for efficient working. Our model
car is tried and tested in real life against various standard
models such as DenseNet-201, Resnet-50, and VGG19
for the comparison and performance. The final proposed
model is a convolution-based, ten 2D-Convolutional
Layers, one Flat Layer and four Dense Layers model.
When compared with other Deep Learning based
models, our model seems to have outperformed all of
the aforementioned standard models by a substantial
margin. The work presented through this paper can be
realized to build vehicles capable of autonomous
steering and driving. Additional training data of real-world
obstacles with different track situations and conditions
may be required to increase the agility and robustness of
the system.

VI. FUTURE SCOPE

Through this project, we aimed to provide proof
of concept for self-driving cars that can solely rely on
vision-based object detection techniques for navigation,
rather than the conventional feature extraction-based
lane detection techniques. Results obtained on our
model car made it clear that our approach towards
object detection as a means of steering has either
outclassed or is at-par with humans in the parameters
being tested for. Reinforcement learning methods can be
introduced in addition to this method to better
performance. This method can be used as a prototype
for future citywide self-driving cars projects. It can also
be used exclusively, or in addition to conventional lane
detection, to further improve on accuracy of self-driving
cars. Via these techniques, automobiles might truly serve
as end-to-end personal transportation devices and may
give rise to an entire ecosystem of car-pooling or car
sharing services as well as numerous start-ups thereby
making personal transport cheaper, faster and safer.
However, when implementing in the real world, many
more parameters might be introduced which may
increase the complexity of such a system while affecting
the performance of the car.

References Références Referencias

1. F. Endres, J. Hess, J. Sturm, D. Cremers, and W.
Burgard, “3-d mapping with an rgb-d camera,” IEEE
Transactions on Robotics, vol. 30, no. 1, pp. 177–
187, 2014.

2. M. Tipping, M. Hatton, and R. Herbrich, “Racing line
optimization,” in US Patent, March 2013.

3. L. Cardamone, D. Loiacono, P. Lanzi, and A.
Bardelli, “Searching for the optimal racing line using
genetic algorithms,” in Computational Intelligence
and Games (CIG), August 2010.

4. K. Kritayakirana and J. C. Gerdes, “Using the centre
of percussion to design a steering controller for an
autonomous race car,” Vehicle System Dynamics,
vol. 50, no. sup1, pp. 33–51, 2012.

5. H. Fujiyoshi, T. Hirakawa, and T. Yamashita, “Deep
learning-based image recognition for autonomous
driving,” IATSS Research. Elsevier B.V., Dec. 2019,
doi: 10.1016/j.iatssr.2019.11.008.

6. Darrenl, (2015) LabelImg (Version Window_v1.8.0)
[Source code]. https://github.com/tzutalin/labelImg

7. C. Nwankpa, W. Ijomah, A. Gachagan, and S.
Marshall, “Activation Functions: Comparison of
trends in Practice and Research for Deep Learning,”
Nov. 2018.

8. S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-
CNN: Towards Real-Time Object Detection with
Region Proposal Networks,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149,
Jun. 2017, doi: 10.1109/TPAMI.2016.2577031.

9. R. Kulkarni, S. Dhavalikar, and S. Bangar, “Traffic
Light Detection and Recognition for Self Driving
Cars Using Deep Learning,” Proc. - 2018 4th Int.
Conf. Comput. Commun. Control Autom. ICCUBEA
2018, pp. 1–4, 2019, doi: 10.1109/ICCUBEA. 2018.
8697819.

10. A. K. Jain, “Working model of Self-driving car using
Convolutional Neural Network, Raspberry Pi and
Arduino,” in Proceedings of the 2nd International
Conference on Electronics, Communication and
Aerospace Technology, ICECA 2018, Sep. 2018,
pp. 1630–1635, doi: 10.1109/ICECA.2018.8474620.

11. J. Kim, G. Lim, Y. Kim, B. Kim, and C. Bae, “Deep
Learning Algorithm using Virtual Environment Data
for Self-driving Car,” in 1st International Conference
on Artificial Intelligence in Information and
Communication, ICAIIC 2019, Mar. 2019, pp. 444–
448, doi: 10.1109/ICAIIC.2019.8669037.

12. Y. Kang, H. Yin, and C. Berger, “Test Your Self-
Driving Algorithm: An Overview of Publicly Available
Driving Datasets and Virtual Testing Environments,”
IEEE Trans. Intell. Veh., vol. 4, no. 2, pp. 171–185,
Mar. 2019, doi: 10.1109/tiv.2018.2886678.

13. S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim:
High-Fidelity Visual and Physical Simulation for
Autonomous Vehicles,” 2018, pp. 621–635.

14. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and
V. Koltun, “CARLA: An Open Urban Driving
Simulator,” Nov. 2017.

15. B. Wymann, C. Dimitrakakis, A. Sumner, E. Espié,
and C. Guionneau, “TORCS: The open racing car
simulator,” 2015.

Design and Development of an Autonomous Car using Object Detection with YOLOv4

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
A
)
 X

X
II
I
Is
su

e
I
V
er
si
on

 I

 Y
ea

r
20

23

27

© 2023 Global Journals

	Design and Development of an Autonomous Car using Object Detection with YOLOv4
	Author
	Keywords
	I. Introduction
	II. Software Development
	a) Data Collection & Labelling
	b) Model Training
	c) Deployment

	III. Hardware Design
	IV. Functionality
	V. Conclusion
	VI. Future Scope
	References Références Referencias

