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Abstract  

Fake news has become a serious concern as distributing misinformation has become easier 

and more impactful. A solution is critically required, but choosing the right solution is 

perhaps just as critical. One solution would be to ban fake news, but that approach could 

create more problems than it solves, and would also be problematic from the beginning, as 

it must first be identified to be banned. We propose a method to automatically recognize 

suspected fake news, and to provide news consumers, as well as researchers, historians, 

and journalists, with more information as to its veracity. It is suggested that fake news is 

comprised of two primary components: premises and misleading content. A fake news 

piece can be condensed down to a collection of premises, which may or may not be true, 

and to various forms of misleading material, including biased arguments and language, 

misdirection, and manipulation. Misleading content can be exposed for whatever biases it 

contains, regardless of the intent of the author. While this framework can be valuable, its 

utility may be limited by the rapid improvement in artificial intelligence, which can be used 

to alter fake news strategies at a rate that could exceed the ability to update the framework. 

Therefore, more immediately we propose a model for identifying echo chambers, which 

are widely reported to be havens for fake news producers and consumers. We simulate a 

social media interest group as a gravity well, through which we can identify the online 

groups most postured to become echo chambers, and thus a source for fake news 

consumption and replication. This echo chamber model is supported by three pillars related 

to the social media group: technology employed, topic explored, and confirmation bias of 

group members. The model is validated by modeling and analyzing 19 subreddits on the 

Reddit social media platform. Contributions include a working definition for fake news, a 
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framework for recognizing fake news, a generic model for social media echo chambers 

including three pillars central to echo chamber formation, and a gravity well simulation for 

social media groups, implemented for 19 subreddits. 

 

 

 

 

 

 

  



iv 

Acknowledgements 

First and foremost, I owe an extreme debt of gratitude to my advisor, Dr. Eugene Santos, 

Jr. I would not have even ventured forth on this journey without his prompting and 

sponsorship. His guidance and perception helped me find my way over and through several 

obstacles and challenges. Moreover, he managed to maintain confidence in my ability to 

soldier on and succeed, even and especially when I doubted myself. I genuinely have 

difficulty conceiving of any other advisor getting me to the finish line. 

Additionally, I am genuinely grateful to my committee, Dr. George Cybenko, Dr. Dr. 

Vikrant S. Vaze, and Dr. John Korah, who came through with insightful advice and 

improvements both before and after my defense. Their input undoubtedly improved the 

quality of this dissertation and granted me the gift of pride in my final product.  

Further, I would certainly be remiss if I failed to acknowledge the financial support 

provided by the Air Force Office of Scientific Research and their grants which helped fund 

my research. Without such support, the advancement of basic research and science would 

be far more difficult to accomplish. 

The list of colleagues who kept me going over the years is quite long. I will attempt 

to give credit where credit is due, but I am nearly certain I will fall short. First among these 

would have to be Jacob Russell, who amazingly managed to overlap my extended duration 

at Dartmouth significantly. He frequently provided encouragement when needed, and 

alternative perspectives and input when desired. I cannot begin to recall the number of 

instances where Jacob advised on programming, configuration, proofing, and version 

control. Over the years, many other colleagues have helped me along the road to success: 



v 

Fei, Yuki, Chase, JT, Jake, Suresh, and Mani. Each has had a unique and positive effect on 

me and my story, for which I am grateful. Many others are owed thanks as well, but I trust 

they know their contributions are appreciated if not highlighted. 

Thanks also to the undergraduate interns that contributed time and effort towards 

projects reviewed in the Explorations section: April Liu, Allyssa Austin, Divya Kopalle, 

and David Nesbitt. Additionally, thank you to the Women in Science Program, the Claire 

Booth Luce Fellowship, and the First Year Research in Engineering Experience program. 

Finally, I would be remiss if I did not mention family. My sisters Sheryl and Jennifer 

have provided encouragement and advice over the years. Likewise, my (grown) children 

Chris and Quin have been unfailing in cheering me on through the many years of my PhD 

pursuit, never doubting I would get there in the end. Unexpectedly, I also have a new wife 

to thank for providing support, distractions, sustenance, and affection these last few years 

when my doubts about finishing were peaking. Ling provided me with the energy and 

determination I needed to push through to success. 

 

 

  



vi 

Table of Contents 

Abstract ............................................................................................................................ ii 

Acknowledgements ......................................................................................................... iv 

Table of Contents ............................................................................................................ vi 

List of Tables ................................................................................................................ viii 

List of Figures ................................................................................................................. ix 

List of Acronyms ..............................................................................................................x 

1. Introduction ..................................................................................................................1 

2. Background ..................................................................................................................8 

2.1. Journalism ........................................................................................................... 8 

2.1.1. Gatekeeping ..................................................................................................................................... 8 

2.1.2. Objectivity ........................................................................................................................................ 9 

2.2. Fake News ......................................................................................................... 10 

2.3. Automatic Fake News Detection ...................................................................... 12 

2.4. Echo Chambers ................................................................................................. 16 

2.4.3. Studies of interest ....................................................................................................................... 17 

2.4.4. Simulations .................................................................................................................................... 18 

3. Steps Toward Fake News and Echo Chambers ..........................................................21 

3.1. Insights .............................................................................................................. 21 

3.2. Explorations ...................................................................................................... 23 

3.2.1. Behavioral Strategies ................................................................................................................. 23 

3.2.2. Corporate Psychopathy ............................................................................................................. 30 

4. Fake News Model Formation and Exploration ..........................................................35 

4.1. Document Graph Analysis ................................................................................ 44 

4.1.1. Betweenness Centrality (BC) .................................................................................................. 48 

4.1.2. Closeness Centrality (CC) ......................................................................................................... 50 

4.2. Premise Recognition ......................................................................................... 52 

4.3. Evaluation of Misleading Content .................................................................... 53 

4.3.3. Misdirection ................................................................................................................................... 54 

4.3.4. Bias .................................................................................................................................................... 55 



vii 

4.3.5. Manipulation ................................................................................................................................. 60 

4.4. Fake News Model Conclusions ........................................................................ 63 

5. Echo Chambers and Gravity Wells ............................................................................65 

5.1. Model Data........................................................................................................ 66 

5.2. Gravity Well Model .......................................................................................... 69 

5.3. Tuning the Model .............................................................................................. 74 

6. Gravity Well Simulation, Results, and Analysis ........................................................77 

6.1. Simulation ......................................................................................................... 77 

6.2. Results ............................................................................................................... 77 

6.3. Analysis............................................................................................................. 78 

6.3.1. Validity of Simulation ................................................................................................................ 78 

6.3.2. Statistical Significance of TSM Values ................................................................................. 80 

6.3.3. Differentiation of TSM Values ................................................................................................ 84 

7. Conclusions and Future ..............................................................................................89 

7.1. Conclusions ....................................................................................................... 89 

7.2. Future Work ...................................................................................................... 91 

Appendices ......................................................................................................................94 

Appendix A. Bayesian Knowledge Bases .............................................................. 94 

Appendix B. Gravity Well Code ............................................................................ 96 

Appendix B-1. par_process_pushshift_authors.py ....................................................................... 96 

Appendix B-2. par_process_pushshift_agreement.py ................................................................. 99 

Appendix B-3. sr_sim_ec.py ................................................................................................................ 105 

Appendix B-4. sr_tune_sim.py............................................................................................................ 120 

Appendix B-5. get_auths_last_posts.py .......................................................................................... 130 

Appendix B-6. analyze_exit_order.py ............................................................................................. 133 

Appendix B-7. sr_get_toxicity.py....................................................................................................... 137 

References .....................................................................................................................140 

 

  



viii 

List of Tables  

Table 3-1: Dictator game prediction methods .................................................................. 25 

Table 3-2: NMAE for various player game orderings ...................................................... 26 

Table 3-3: Prisoner's Dilemma Payoff .............................................................................. 28 

Table 3-4: Corporate psychopathy definitions .................................................................. 31 

Table 3-5: Voluntary prisoner’s dilemma payoff [116] .................................................... 32 

Table 4-1: Betweenness Centrality Compared ................................................................. 48 

Table 4-2: Closeness Centrality Compared ...................................................................... 50 

Table 4-3: Replication of Research Published Previously* .............................................. 58 

Table 4-4: Bigram SVC Binary Classification of Fake News .......................................... 60 

Table 4-5: LIWC Results for Sample Real and Fake Stories ........................................... 62 

Table 5-1: Average TSM for modeled subreddits ............................................................ 68 

Table 6-1: Mean Absolute Percent Error of Agent Exit Ordering .................................... 79 

Table 6-2: Multiple comparison of means for subject subreddits..................................... 83 

Table 6-3: Minimal TSM subreddit descriptions .............................................................. 85 

Table 6-4: Maximal TSM subreddit descriptions ............................................................. 86 

Table 6-5: Minimal and Maximal Subreddit Group Perspective Analysis ....................... 88 

  



ix 

List of Figures 

Figure 1-1: Example gravity well ....................................................................................... 6 

Figure 3-1: Individual payoff vs individual traits ............................................................. 29 

Figure 3-2: Summed paired player payoff vs. summed paired player traits ..................... 29 

Figure 3-3: Fraction of cooperators, defectors, and loners from [116] over time ............ 33 

Figure 3-4: Replicated results ........................................................................................... 33 

Figure 4-1: Fake News Framework .................................................................................. 36 

Figure 4-2 : Sample Real News – Common Definition .................................................... 38 

Figure 4-3: Sample Real News – Framework Definition ................................................. 39 

Figure 4-4: Sample Fake News ......................................................................................... 40 

Figure 4-5: Unbalanced Argument for Real News Citation in Figure 4-2 ....................... 41 

Figure 4-6: More-Balanced Argument for Real News in Figure 4-3 ................................ 42 

Figure 4-7: Unbalanced Argument for Fake News in Figure 4-4 ..................................... 43 

Figure 4-8: Sample Real News Document Graph ............................................................. 45 

Figure 4-9: Sample More Real News Document Graph ................................................... 46 

Figure 4-10: Sample Fake News Document Graph .......................................................... 47 

Figure 4-11: Betweenness Centrality of Real and Fake News ......................................... 49 

Figure 4-12: Closeness Centrality of Real and Fake News .............................................. 51 

Figure 5-1: Gravity well structure..................................................................................... 73 

Figure 5-2: Tuning process ............................................................................................... 76 

Figure 6-1: QQ Plot of ANOVA residuals versus normal line ......................................... 80 

Figure 6-2: Histogram of ANOVA Residuals .................................................................. 82 



x 

List of Acronyms 

analysis of variance        ANOVA 

application programmer interface      API 

Bayesian Knowledge Bases       BKBs 

betweenness centrality       BC 

Bidirectional Encoder Representations from Transformers  BERT 

bidirectional long short-term memory     bi-LSTM 

closeness centrality        CC 

convolutional neural networks     CNNs 

document graphs        DGs 

generative pre-trained transformer      GPT 

instantiation node        I-node  

Islamic Court Union        ICU 

Islamic State in Iraq and Syria     ISIS 

large language model       LLM 

Linguistic Inquiry and Word Count      LIWC 

long short term-memory      LSTM 

maximum entropy        MaxEnt 

mean average percent error       MAPE 

normalized mean absolute error     NMAE 

random variable       RV 

Perspective Comment Analyzer      PCA 

support node        S-node 

support vector classification       SVC 

support vector machine      SVM 



xi 

technology modifier        𝑇𝑀 

topic source modifier        𝑇𝑆𝑀 

term frequency/inverse document frequency     TFIDF 



1 

1. Introduction 

It is no secret that fake news has become a serious concern [1]–[3]. Some note that it has 

become a danger to democratic society [4]–[9]. For a democracy to function healthily, it 

must rely on an educated, well-informed voting public. Differences in opinions, values, 

and priorities will naturally exist, but those differences can only be legitimately debated 

and resolved if the voting public has access to information, and if they have some 

reasonable means for distinguishing the validity and accuracy of that information. This is 

not a new problem, of course. Voters in the U.S. have been swayed and manipulated by the 

newspaper industry essentially from the beginning [10, Ch. I], and fake news in the form 

of propaganda has been traced all the way back to the Roman Empire [11]. However, with 

the advent of social media, access to a vulnerable public has become widespread, and 

distributing misinformation has become a trivial endeavor with noticeable effect [1], [12].  

The threat is not just to the democratic process, but to a functioning, safe society in 

general. Instances of panic and violence have been prompted by the spread of fake news, 

such as the shooting at Comet Ping Pong spawned from a story that the pizza restaurant in 

Washington, D.C. was the haven of a child sex ring [13], a hoax surrounding a fictional 

attack on a chemical plant in Louisiana by Islamic State in Iraq and Syria (ISIS) [14], lynch 

mobs in India as the result of false videos spread on WhatsApp [15], and the massacre of 

between 86 and 238 individuals in Nigeria fueled by fake news generated on Facebook 

[16]. More recently, threats to public health have emerged in the guise of rampant 

misinformation surrounding the COVID-19 pandemic [17]–[19]. 

Social media has been under pressure to remedy the spread of fake news, with only 

modest results. Mark Zuckerberg, CEO of Facebook, was called to testify by the U.S. 
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House of Representatives. In his testimony [20], Mr. Zuckerberg acknowledged the 

problem of fake news, specifically with respect to U.S. election interference, and proposed 

essentially two approaches to remedy the situation. First, he asserted that Facebook would 

increase efforts to identify and remove fake accounts, which are suspected of being used 

by actors, including foreign nations, to spread content aimed at affecting election outcomes. 

Second, he declared that advertisers wishing to run political or issue ads must be registered, 

with their identity and location confirmed. This effort at advertising transparency online is 

not currently required by U.S. law and remains a glaring loophole in current political 

advertising legislation. While admittedly this is a difficult problem to address, the efficacy 

of Facebook’s approach remains to be determined. Some recent indications are 

encouraging [21]. However, one study [22] found “Facebook’s current enforcement 

appears imprecise: 61% more ads are missed than are detected worldwide, and 55% of U.S. 

detected ads are in fact non-political.” 

Similarly, when YouTube was recently challenged concerning its platform being a 

haven for the spread of conspiracy theories, Susan Wojcicki, then CEO of YouTube, 

declared her company’s approach would be to accompany suspect videos with a link to 

more reliable information, such as Wikipedia [23]. Beyond the concerns about Wikipedia 

being able to sustain its current, sometimes questioned, level of reliability as mentioned in 

the cited article, it seems conspiracy theories continue to flourish on YouTube, [24], [25]. 

It should be evident that a remedy is critically required, but choosing the right remedy 

or remedies is perhaps just as critical. An impulsive answer might be to ban fake news. It 

is not difficult to imagine how banning fake news could backfire and produce more 

problems than solutions. Censorship in any form must be approached with temerity and 
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caution. The remedy advocated here is to provide more information to the public, not less. 

Ultimately, an “education for freedom” as proposed in Brave New World Revisited [26] 

could be the panacea for a healthy, democratic society. As Huxley notes, education for 

freedom should be “an education first of all in facts and in values…” However, to aim more 

realistically in the short-term, a method for recognizing suspected fake news, and providing 

news consumers with the tools to consume a healthier diet of information, should they 

choose to, would be a significant step in the right direction. 

In order to accomplish this, we propose that a framework be applied to recognize 

misleading information in news stories. The most essential insight into the approach 

proposed here is that fake news can be broken down into critical components which point 

to its misleading character. The macro components are premises and misleading content.  

While the premises are initially planned to be simply identified and highlighted, it is 

possible that methods could be employed to investigate the validity of the premises. That 

approach is deferred to other research, as it has a danger of spiraling into a subjective 

dispute based on political, moral, or personal values. Instead, it is suggested that 

highlighting the premises will serve well to allow a reader or researcher to gauge how 

firmly any arguments begin. The associated misleading content could then be recognized 

by contextual indicators, including misdirection, bias, and manipulation. Based on current 

literature searches, this is not only a promising approach to the problem, but also a unique 

one.  

The uniqueness stems from the insight of discovering what makes up fake news, not 

just attempting to find an automated rule that will separate out fake from real. With no 
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understanding of the phenomena of fake news, nor of the rule, any automated solution 

would be a temporary one, as fake news producers adapt and change their methodology. 

Instead, the fake news framework as outlined here applies the concept of methodological 

reductionism [27], striving both to understand what comprises fake news and to apply that 

understanding to recognizing fake news. The framework is not a static solution. As our 

understanding of fake news grows, that understanding can be added to the framework to 

increase its efficacy. The two primary components of the framework—premises and 

misleading content—are unlikely to change. However, new indicators for misleading 

content may be identified, which can then be readily integrated into the framework.  

However, to aim more realistically in the short-term, a method for recognizing 

suspected fake news, and providing news consumers with the tools to consume a healthier 

diet of information, would be significant steps in the right direction. We will relate our 

investigations into forming this framework here as it informs the problem and retains its 

merit, but ultimately decided that a more effective way forward, at least in the short-term, 

if not also for the long-term, due to its resiliency to intentional obfuscation and 

manipulation by malefactors, involves modeling consumers of fake news and where they 

congregate rather than modeling or recognizing fake news itself. 

As stated, after some investigations into the construction of the fake news framework, 

the immediate remedy we propose as an effective and dynamic solution to combatting fake 

news is to determine a method of recognizing the breeding grounds for fake news. While 

keeping up with the latest techniques employed by the originators of fake news is 

problematic, especially for a small team, we suggest the real concern lies with the adoption 

and repetition of the fake news by social media users. Researchers report much of this 
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process occurs in social media echo chambers [28], [29]. By echo chamber in this context, 

we mean the oft cited “bounded, enclosed media space that has the potential to both 

magnify the messages delivered within it and insulate them from rebuttal” (emphasis 

added) [28, p. 76]. 

Thus, to get to the crux of the problem, we propose identifying the environs where 

fake news can flourish as a key step to informing the public as to their exposure to 

potentially unhealthy, unbalanced, and unexamined discourse. To effectuate that goal, we 

endeavor to develop a model that can identify the hallmarks of an echo chamber by the 

behavior and posts of the members of a social media group, without the need to determine 

the precise veracity of every post, thus providing a more universal solution for multiple 

social media platforms, as well as for multiple subject domains. Ultimately, this approach 

could be combined with other analyses to inform readers of their exposure to fake news.  

Our primary hypothesis is that an interest group on a social media platform can be 

effectively modeled as a gravity well [30], a similitude for the gravitational pull exerted by 

a large mass in space. A gravity well is effectively a metaphor for Einstein’s geodetic 

effect, commonly visualized as a bowling ball distorting the planar surface of a trampoline 

due to its weight [31]. An illustration of this concept can be found in Figure 1-11. The 

analogy here is that an echo chamber in a social media interest group essentially captures 

its audience, with elements of the social media platform—the precise topic of the forum 

 

 

1This Photo by Unknown Author is licensed under CC BY-SA-NC 
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Figure 1-1: Example gravity well 

and characteristics of the audience constituting the attractive force that holds users within 

the grip of the gravity well. As indicated by the title of our work, we further theorize that 

an echo chamber could then be detected by particular aspects of that gravity well.  

Contributions of this research are our working definition for fake news and our 

proposed framework for recognizing fake news. Further contributions include the  

definition of a generic method for modeling echo chambers, to include the proposal of three 

pillars essential for an environment conducive to the formation of echo chambers. 

Moreover, this proposed model employs a novel approach using the concept of a gravity 

well to represent social media groups in a multiagent simulation. This generic model aims 
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to be equally applicable to multiple social medial platforms. More immediately, we 

demonstrated the use of our echo chamber simulation to nineteen different subreddits 

within the Reddit social media platform.  

In the remainder of this document, the research is discussed in greater detail. 

Background information is provided, followed by a section describing Steps Toward Fake 

News and Echo Chambers. We next outline the Fake News Model Formation and 

Exploration. With that foundation in place, we introduce the concepts of Echo Chambers 

and Gravity Wells, followed by Gravity Well Simulation, Results, and Analysis. Lastly, 

we address Conclusions and possibilities for Future Work.  
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2. Background 

In this section, some topics central to addressing the problem of fake news will be 

reviewed. First, the profession of journalism will be discussed, including the aspects of 

journalism that have, to some extent, kept fake news historically in check, which 

unregulated or unprofessional writings arguably do not. Next, fake news will be analyzed, 

including common definitions adopted thus far and a treatment on why a novel definition 

is required. Finally, a discussion on the automatic detection of fake news will naturally 

segue to a discussion on the concept of echo chambers, where relevant research is reviewed. 

2.1. Journalism 

Unofficial news sources are springing up worldwide, causing journalists and traditional 

news organizations to struggle to remain relevant [32]–[34]. With so much of fake news 

being false news intentionally crafted to resemble real news [3], [12], [35]–[39], it is 

beneficial to review some essential aspects of professional journalism.  

2.1.1. Gatekeeping 

Gatekeeping is conceptually one role that a newspaper editor has traditionally filled. The 

duties of an editor are to select (or reject) news stories based on the priorities of the 

publication. This is not to say that an editor is the only gatekeeper in the news media [40]. 

There are many gates through which a story must pass before it appears in print (or in 

digital). However, editors are one of the most powerful and visible gatekeepers. This is 

vividly illustrated in [41], where Dr. White analyzes the stories accepted and rejected by a 

newspaper editor, and the reasons given for each. The reasons for rejecting an article vary 

from the quality of the writing to an overabundance of stories on the topic, to the story 

being dull or trivial. There are arguments for and against this type of formal gatekeeping, 
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with advocates arguing that without this sort of gatekeeping, we would see something like 

what we are seeing on social news sites—an overabundance of fake news. On the contrary, 

opponents argue that gatekeepers determine what is newsworthy, and often what is 

newsworthy is determined by those in power [42, p. 101] according to the ‘official line’. 

This has been most evident during times of war, when propaganda comes into primacy [43, 

Sec. One].   

With the advent of non-traditional news reporting, most gatekeeping has disappeared, 

and everyone must be their own gatekeeper. This can be advantageous, as much news that 

was historically unavailable has now become a trove of information for any seeking it. 

However, as the advocates of formal gatekeeping expected, false and dishonest news 

reporting is also flourishing, and the public has not been well-equipped to sort through 

volumes of misinformation for the occasional nugget of truth. Expectations have been set 

for social media to address this problem [23], [38], [44], but others argue that asking private 

corporations to take on the mantle of gatekeepers is fraught with problems, including the 

self-interest of corporations, the likely inefficacy of that approach in the end, and threats 

to freedom of expression [45].  

2.1.2. Objectivity 

Objectivity as it applies to journalism is tied to the idea that, in order to report the news as 

it is, without being colored with bias or prejudice, one must be impartial, balanced, factual, 

fair, and detached [46].  It is aimed at allowing reported news to reflect a common world 

view, upon which all can agree [47, Ch. 1]. The objectivity norm in journalism was 

developed early in the 20th century in the U.S. and became a central tenet of journalism in 

the Western world [46]. While it commanded respect for much of the 20th century, it began 
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to suffer much criticism later in the century, being described as an unattainable and even 

dangerous ideal [48]. This criticism began to invade the world of journalism, to the point 

where the Society of Professional Journalists removed the term from its code of ethics in 

the 1990s [49, p. 5].  

Despite objectivity’s rise and fall [42, Ch. 3], it must necessarily play some part in 

the handling of fake news. Though arguments have been presented that a new generation 

of news consumers are not rejecting truthful news [33], but only desire a more opinionated 

form absent objectivity, this appears to be a more unobtainable truth than the dream of 

objectivity. As the authors of [50] show, not only is a segment of the users of social news 

sites drawn to hoax news, but it is also possible to predict hoax news based on which users 

“liked” them on Facebook. The good news here is that not all news consumers are rejecting 

objectivity and gravitating to fake news. A possible approach to remedy this situation is to 

encourage a healthier diet of news consumption, just as to alleviate the growing health 

problems in the US, promoting a healthier diet of food consumption could work wonders. 

2.2. Fake News 

To fully explore the motivation for this research, we must first discuss the central concern, 

that of fake news. Firstly, the motivation for studying this problem will be discussed. As 

indicated previously in the Introduction, the prevalence of fake news and its influence has 

become a prominent concern across the globe [1], [2], [5], [12]–[16], [51]. Moreover, in 

the United States, the seriousness of the issue cannot be better illustrated than the findings 

of multiple U.S. government agencies assessing that a foreign government (Russia) applied 

cyber warfare tools and techniques to undermine the democratic process [35]. Much of that 

effort was focused on the spread of false information on social media platforms. While the 
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U.S. agencies made no conclusions as to the efficacy of those efforts, other researchers 

have determined that fake news was voraciously read by some sectors of the population 

[2], some noting a definite impact on the elections from same [1], [52], and one finding 

fake news was more widely shared on Facebook during the election than real news pieces 

[53]. Perhaps even more disturbing, a recent study by Stanford researchers [54] found that 

7,804 young people in schools across twelve states demonstrated a bleak ability to reason 

about information they encountered on the internet.  

It is important to make clear what is meant by fake news. In some literature, fake 

news begins with the political satire famously demonstrated by the television program The 

Daily Show [37]. While that program often labeled itself fake news, the news presented 

there was, on the whole, quite accurate. The show provided entertainment by ridiculing the 

news and the players involved. While some would certainly argue the show exhibits a 

(liberal) bias, the fact that it does not try to pass itself off as a legitimate news source 

suggests that it is not of primary concern to the current research.  

Similarly, the authors in [37] lump news parodies in their typology of fake news. A 

prime example of this would be the parody site The Onion2. Again, this type of source, one 

primarily for entertainment and openly declared as such, is not of interest to this research. 

Of course, there are some who might be taken in by humor news, but the cure for that 

resides somewhere other than technological approaches to rooting out misleading news 

 

 

2 https://www.theonion.com/ 

https://www.theonion.com/
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content. This definition of fake news, excluding satire and parody, is more in line with the 

explanation provided in [52]. Thus, we arrive at our working definition of fake news: 

“False or misleading content represented as news, regardless of the intent to deceive.” 

The emphasis we focus on here is on the claim of “news”. If an article presents itself 

as news, yet has an agenda to persuade rather than inform, it would be considered fake 

news. An article could be completely true and factual, but if it, through omission, makes 

no attempt at a balanced discussion or debate, it would fall within the fake news spectrum 

defined for the current research. For this reason, only articles of some length will be 

considered. As shorter headlines and breaking news may only have the briefest discussions 

on a topic, a balanced discussion would be difficult. This is not to say that such short 

articles, tweets, and headlines could not be fake, but that they do not fall within the scope 

of analysis for this work. It is conceivable, though, that a collection of tweets from a single 

author could be analyzed using the framework. Such an effort is reserved for later 

consideration. Many examples of misleading and completely false sensationalist headlines 

exist, but there have also been efforts to address this problem [55], [56]. Simple fact-

checking could be an effective bastion against such limited pieces, especially with the 

assistance of network analysis for automated fact checking [57], as well as source 

reliability measures [58], both of which have become common, though laborious, 

approaches to identifying fake news. 

2.3. Automatic Fake News Detection 

Automatic fake news detection is a relatively new field of study, coming to the forefront 

in concert with the recent concerns over the negative effects of unreliable news spreading 

via social networks [1], [12]–[16], [59]. Many researchers have been attempting to find 
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solutions to this problem. A brief overview of some of the most successful approaches is 

provided below. Of interest for the current research are studies which attempt to classify 

text based purely on the content of the text, as other metadata is often not available or is 

exclusive to a particular social network. 

In [60], the author introduces a publicly available fake news dataset called LIAR3 

that could be advantageous. The database is comprised of 12,836 short statements from the 

PolitiFact website4. These statements have been classified on a discrete six-point spectrum 

from “pants on fire” to “true”, with the labels “false”, “barely true”, “half true”, and 

“mostly true” falling between. The author then tested several classification approaches, 

reporting the greatest success with convolutional neural networks (CNNs), with a reported 

accuracy of 0.270 for the test set, compared to an accuracy of 0.208 by exclusively selecting 

the majority label. The other models, including support vector machine (SVM), logistic 

regression, and bidirectional long short-term memory (bi-LSTM) networks models, fell 

between these two extremes. The author also found some modest improvement by 

including select metadata (subject, speaker, job, state, party, context, and history) related 

to the original texts, but the improvement was modest indeed, with an accuracy 0.274. 

Subsequent studies have methodically improved on this baseline with the advent of 

more capable classification models. Of recent note, through the use of Google’s 

Bidirectional Encoder Representations from Transformers (BERT), the authors of [61] 

 

 

3 http://www.cs.ucsb.edu/~william/data/liar_dataset.zip 

4 http://www.politifact.com/ 
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reported a classification accuracy of 0.70 on the LIAR dataset. This reflects the giant strides 

made recently in large language models (LLMs), which we will address later.   

The authors of [62] conducted some interesting analysis into the uses of particular 

categories of words by news articles classified as either “trusted”, or one of three types of 

fake news: “satire”; “hoax”; and “propaganda”. According to the fake news definition 

identified in the current study, the primary interest is in hoax and propaganda news, but the 

ability to recognize or at least separate out satire is also of value. The authors made use of 

the Linguistic Inquiry and Word Count (LIWC) lexicon, as well as sentiment, hedging, and 

intensifying lexicons, all of which could prove useful in the fake news framework 

described in Section 4. The authors also applied what they learned to predicting the 

truthfulness of news articles. Of particular interest is their application of classifiers to a 

PolitiFact5 database which labels news in a discrete spectrum from “pants on fire” to “true”, 

as in [60]. They report an F1 score of 0.20 for the long short-term memory (LSTM) 

classifier, compared with a score of 0.06 for the majority baseline. Oddly, when they added 

LIWC feature vectors as input, the results suffered for the LSTM solution, scoring only 

0.19, despite the other models, naïve Bayes and maximum entropy (MaxEnt), improving 

markedly. The best result was that of the MaxEnt model with LIWC, with an F1 score of 

0.22. Unfortunately, direct comparison with [60] is not possible since that author reported 

classification accuracy and not F1 scores.  

 

 

5 http://www.politifact.com/ 



15 

Another investigation of interest is the one detailed in [63], as the authors also attempt 

to find language identifiers for misleading content. The authors focused on Twitter as a 

data source and compiled a corpus of more than 130 thousand retweets6, which they then 

labeled according to the original tweeter’s account veracity—either verified (by Twitter7) 

or suspicious (with the help of two publicly available tools that annotate suspicious Twitter 

accounts8). The authors focused on two linguistically infused neural network models, 

LSTM and CNN, as compared to two logistic regression models employing term 

frequency/inverse document frequency (TFIDF) features or Doc2Vec vectors [64], [65]. It 

is perhaps no surprise that the LSTM and CNN methods both outstripped the logistic 

regression models on a binary classification task, both returning an accuracy of 0.95 and 

precision of 0.99 when utilizing not just the tweet text and linguistic cues, but also Twitter 

user network information. While this looks impressive on the surface, what is not clear is 

how much overlap exists between the text of the original tweets and the retweets. 

Additionally, the subject matter of the tweets was specifically scoped by including tweets 

only from one week before and after the Brussels bombing occurring on 22 March 2016. 

The primary interest for the current research is the set of linguistic cues the authors 

employed in their study, including bias, subjectivity, psycholinguistic, and moral 

foundation cues. The authors performed a detailed linguistic analysis of the linguistic 

 

 

6 http://www.cs.jhu.edu/~svitlana/data/fakenews_dataset.zip 

7 Twitter verification has changed substantially since this research was published: 

https://help.twitter.com/en/managing-your-account/about-twitter-verified-accounts 

8 http://www.propornot.com/p/the-list.html and http://www.fakenewswatch.com/ 

http://www.cs.jhu.edu/~svitlana/data/fakenews_dataset.zip
https://help.twitter.com/en/managing-your-account/about-twitter-verified-accounts
http://www.propornot.com/p/the-list.html
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markers and reported their findings in detail. Their aim was to help explain the results of 

their neural network models, which of course do not provide explanations for outcomes 

given. The authors’ linguistic analysis could prove beneficial to our fake news framework.  

2.4. Echo Chambers 

While the originators of fake news may be at fault for the production of misinformation, 

perhaps what is most problematic about fake news is that it appears to thrive and readily 

replicate in today’s society. One possible cause for this is the proliferation of phenomena 

known as echo chambers on modern social media platforms. As previously referenced, we 

can define an echo chamber as a “bounded, enclosed media space that has the potential to 

both magnify the messages delivered within it and insulate them from rebuttal” (emphasis 

added) [28, p. 76]. That definition perhaps intimates why social media would be a breeding 

ground for such situations, as social media users often elect to insulate themselves.  

One of the earliest references to social media and echo chambers identifies that very 

propensity concerning blogs [66]. The authors note the prevalence of comment agreement 

relative to disagreement with the original blogger, finding that ratio varied from 2 to 1 

upwards to 9 to 1. This study focused on the question of whether blogs might be considered 

echo chambers, and whether any such echo chambers were more likely to form according 

to the genre of the blog. The most disturbing result in the context of this thesis is that among 

the genres with the highest ratios of agreement to disagreement—i.e., the strongest echo 

chambers—was the group of political blogs, with a ratio of 9 to 1. 

Many other studies of echo chambers and social media have followed [29], [67]–

[80], making it clear that this is a concerning trend, and one the study of which that society 
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might benefit. To learn more about echo chambers in social media, we must first be able 

to recognize them. Many researchers have already attempted this task, which is what we 

shall review in the remainder of this section. 

2.4.1. Studies of interest 

Perhaps the most straightforward approach would be to attempt to identify echo 

chambers using the actual content within the potential echo chamber. This is the approach 

explored by the authors in [75], combining content-based sentiment analysis to identify 

argument stance and the emotions elicited by a subject. Their combined approach was 

successful in scoring highest the leftmost- and rightmost-leaning news fan pages. While 

this approach shows some promise, it was only trialed on ten fan pages, so more evidence 

is needed to determine its efficacy. 

In another approach, the authors of [80] suggest that applying a community detection 

strategy to tweets can be effective in identifying echo chambers. Both the topology of 

relationship networks and conversation graphs are employed to identify pockets of 

polarization within discussions related to COVID-19. Ultimately, the investigators 

concluded that, while the addition of semantic information may have improved 

identification of echo chambers, further research is required to determine the vibrancy of 

the echo chambers identified. This unfortunately is a harbinger of a similar limitation we 

have found with our own research. 

Yet another approach was tried in [77]. The authors strove for a general framework 

for identifying echo chambers across multiple online social networks. They focused on 

topologies but from a macro-level. They incorporated other indicators of echo chambers 
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which may be found across a variety of social medial platforms, specifically: controversial 

topics, user posts, and user comments. The authors identified the existence of several echo 

chambers on the Reddit platform. However, their results are mixed and do not correspond 

clearly with another prominent echo chamber research effort [73]. Their mixed results only 

indicate that the problem is far from solved. Furthermore, as noted by the authors and 

relevant to the research reported here, there is no standard for determining the veracity of 

echo chamber detection. More research is required on all fronts to meet this challenge. 

In direct contrast to the previous effort, the authors of [73] concluded the Reddit 

platform was essentially absent of echo chambers, at least with respect to two political 

camps. Their methodology involved reconstructing the political interaction networks of 

users within Trump and Clinton subreddits to determine whether there were substantial 

interactions between these opposite political groups. The authors found significant 

asymmetric heterophily and a preference for cross-cutting political interactions between 

them. This is counter to expectations set by the echo chamber narrative, but once again, 

ground truth is difficult to establish. Moreover, this was a study limited to only two 

potential echo chambers. 

2.4.2. Simulations 

In addition to finding ways to aggregate and analyze real data from potential echo 

chambers, sometimes it can be beneficial to produce a simulation that provides insights 

into the data used to seed the simulation. One such effort can be found in [76], where 

Törnberg models social media networks and searches for associations between echo 

chambers and viral misinformation spread. To that end, the author characterizes viral 

misinformation spread as the diffusion of complex contagions. By examining data from the 
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perspective of echo chambers being defined by polarization of both opinions and networks, 

the author was able to identify potential echo chambers, then relate those chambers 

(network clusters) to the virality of a contagion (misinformation spread). In the end, the 

study concludes that the identified echo chambers may be linked to misinformation spread. 

While the research adds to existing literature on network diffusion, the entire simulation is 

based on synthetic network data generated to study the proposed characteristics echo 

chambers may have in social networks. At this juncture, there is no tie to real-world 

observations. Application to real social network data remains to be demonstrated, assuming 

availability of the data required to generate this simulation based on real-world social 

media networks. 

In another research effort based on simulation, the authors of [81] propose a model 

that focuses on the dynamics of radicalization as a reinforcing mechanism leading to 

extreme opinions from otherwise moderate initial conditions. Their model focuses on the 

influences of homophily and heterogeneous activities on echo chamber formation. The 

authors aim to reduce the contradictions exposed between observations of real-world social 

media networks and the predictions of classical models of opinion dynamics. Once again, 

this is purely a theoretical simulation based on synthesized data. However, the research has 

significant findings regarding the similarity of their theoretical results to actual data from 

polarized political discussions on Twitter. The similarities between the model data and the 

political discussions are striking. Further research could prove helpful in identifying the 

characteristics of echo chambers in online social media platforms. 

Speaking of further research, the authors of [82] employed the simulation in [81] to 

explore a bilayer topology for the network, then studied the dynamics of the polarization 
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as it relates to interlayer couplings. They essentially operate from the assumption that the 

system is initially polarized, with the layers representing different opinions on a particular 

topic. The study focuses on three scenarios: unidirectional coupling, symmetric coupling, 

and nonsymmetric coupling. As is likely already evident, this is yet another theoretical 

approach to studying characteristics of what might represent echo chambers using synthetic 

data, with a bit more complexity literally layered on the previous model. The authors do 

strive to draw parallels between each scenario and the real world, but much work remains 

to close the distance between the two if we are to rely on the simulation as a viable predictor 

or indicator of existent echo chambers. 

This same trend continues even among agent-based models of echo chambers—the 

simulations are based on synthetic data which then are compared and contrasted to real 

data, such as in [83]–[86]. Efforts to incorporate real data into echo chamber simulations 

are rare indeed, if existing at all.  

Having examined some background topics and research conducted by others, we will 

now reflect on prior work in which we have been involved, noting how those efforts 

affected our outlook and influenced our research interests. 
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3. Steps Toward Fake News and Echo Chambers 

Much work was accomplished in researching other projects which inspired and fed our 

interest in addressing the problem of fake news. Several publications reflect that work, 

specifically [87]–[92]. In the next section, we will review those that had the most direct 

and notable impacts on the direction of this research. 

3.1. Insights 

The research associated with “Intent-Driven Behavioral Modeling during Cross-Border 

Epidemics” [92] and “Modeling Emergent Border-Crossing Behaviors during Pandemics” 

[90] was particularly influential to the direction of our research. In [92], we employed 

dynamic, multi-domain modeling to explain the decisions and actions taken by actors in a 

scenario. We validated our approach by modeling and analyzing migration behaviors 

during the 2009 H1N1 pandemic in Mexico. This research fueled our interest in modeling 

human behavior, while the pandemic theme was relevant, as modeling the spread of 

information and opinions has often been related to disease-spread dynamics and vice versa 

[93]–[96].  

Likewise, efforts towards [90] were formative, as the research employed a novel 

intent-driven modeling paradigm for real-world scenarios by causally mapping beliefs, 

goals, and actions of individuals and groups to overall behavior. We validated this approach 

by examining emergent behavior occurring near a national border during pandemics, 

specifically the 2009 H1N1 pandemic in Mexico. We accomplished this through 

representing the dynamism of the complex situation at multiple scales by including both 

coarse-grained (events at the national level) and fine-grained (events at two separate border 

locations) information. Such experience and insights were invaluable to addressing the 



22 

multifaceted problem of fake news in social media as that problem surfaced in American 

and global society.  

Furthermore, the social network material explored in “Infusing Social Networks with 

Culture” [91] was highly relevant to the topic of social media in general. For this study, we 

systematically represented cultural influences in the form of relevant factors and 

relationships, while leveraging relevant social theories, and then infused them into social 

networks to obtain more realistic and complete analyses. Through highlighting the 

dynamics involved in complex networks, our understanding of the interplay of forces 

within the same was greatly improved. It is apparent that this effort was influential when 

considering the effects of social media on the emerging problem popularly known as fake 

news. 

Beyond those influences, the research conducted to produce “Modeling Complex 

Social Scenarios Using Culturally Infused Social Networks” [97] had its own unique effect 

on our focus. This study explored the formation and dissolution of coalitions and groups in 

the face of competing and conflicting opinions, both inside and outside those groups, in the 

specific context of the rise and fall of the Islamic Court Union (ICU) in the 2006 Somali 

conflict. In a similar context, [88] explored the ability for a community to remain resilient 

against dramatic changes, such as those encountered by fishing communities in Somalia 

during the peak of Somalian piracy from 1999 to 2012. Both works contributed directly to 

the formation of thoughts and theories related to modeling the echo chambers to be 

discussed later in this work. 
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3.2.  Explorations 

As our insights developed into researching fake news detection and deterrence, we 

explored some topics of interest that also fueled our interest in addressing fake news.  

3.2.1. Behavioral Strategies  

The prevailing model in economics based on game theory relies on humans behaving as 

rational actors, yet this paradigm often fails to predict actual behavior, both in games and 

in real-life. People are neither perfectly nor equally rational; the same is true of all other 

traits. This research was spawned to close the void between perfectly rational predictors 

such as that produced by game theory versus actual human behaviors driven by the 

complex interplay of reasoning, learned behaviors, character traits, and emotions. 

Our research aimed to improve modeling of decision-making in competitive 

scenarios by using Bayesian Knowledge Bases (BKBs) [98] to account for individual 

characteristics in strategies employed and resultant outcomes. BKBs are founded on Bayes’ 

theorem, which allows probabilities to be updated as new or updated information is 

obtained.  BKBs unify “if-then" style rule formation with probability theory, providing the 

ability to reason over complex situations and present probabilistic outcomes even in the 

face of incompleteness. Additional background on BKB use is provided in Appendix A.  

Initially, we reviewed numerous studies in human behavior and game theory, 

searching for suitable data with which to explore the aforementioned topics. We also began 

with investigating options for representing cultural information about players in BKBs to 

improve our understanding and forecasting of the logic and influences affecting the 

decisions of those players in game theory scenarios. These initial forays into BKB 
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representations of player cultural backgrounds, traits, and strategies fed directly into the 

following experiments.  

The first study we undertook involved data obtained from Andreoni and Miller in 

[99], where the authors engaged 176 subjects in a modified Dictator Game. The classic 

Dictator Game reported in [100] asked subjects to divide a set sum of money between 

themselves and an anonymous second player in a one-shot game, with the second player 

having no opportunity to rebut or address the decision of the first player. The modified 

Dictator Game employed by Andreoni and Miller differed in that the subjects played a 

series of games and the payoffs varied from game to game. Subjects were given tokens 

rather than actual money, and the consequences of sharing tokens varied from game to 

game, where sometimes a token held would be worth more than a token shared and vice 

versa.   

Initially, the expectation was to apply BKBs to develop models for each player based 

on the sequence of decisions made in the series of games, as linked to three broad play 

strategies, those being selfish, optimizing, and egalitarian. With the selfish strategy, players 

would always keep (nearly) all the tokens, regardless of the value to the other player. 

Optimizers would give (nearly) all tokens to whomever would gain the most for each token,  

while the egalitarian strategy dictates that players would divide the tokens so the payout 

each player received would be equal. The BKB model is updated after each game to “learn” 

the style of that player, details of which are provided in Appendix A. For this study, we 

identified six different prediction methods to consider, as outlined in Table 3-1. 



25 

While our results from this modeling at first appeared significant, with the BKB-

based predictions from probable strategy and probable play having the first- and second-

least normalized mean absolute error (NMAE), further examination of the data revealed a 

critical flaw with the setup. It was belatedly discovered that the actual sequence of the game 

turns was not preserved with the data, so the approach for sequentially learning the play 

style of each player was invalidated. In response, multiple attempts were made to complete 

related analysis that did not rely on the sequence of play.  Table 3-2 shows the results of 

this effort.  

Row 1 reflects the results with the original, unaltered data from [99]. As mentioned, 

the probable strategy and probable play prediction methods—both based on training a BKB 

player beginning with the probability of each strategy profile being equal to the percentage 

of players exhibiting that profile—performed first- and second-best, respectively. Noting  

Table 3-1: Dictator game prediction methods 

Random play Randomly choose a number of tokens to keep and to share, 

between zero and total tokens allotted 

Random strategy Randomly choose between the three strategies identified: 

selfish, optimizer, and egalitarian 

Last strategy Repeat the last strategy identified for this player. For first, 

“guess” play is exactly half of tokens allotted 

Probable strategy Apply most probable strategy as identified by a BKB initially 

formed based on average player strategy distribution, but 

updated with each round for each individual player 

Probable play Apply a weighted move based on probability of each strategy 

per same BKB as for probable strategy 

Max strategy Use the most frequently used strategy by that player up until 

that game 
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Table 3-2: NMAE for various player game orderings 

 
Ordering 

Random 

Play 

Random 

Strategy 

Probable 

Strategy 

Probable 

Play 

Last 

Strategy 

Max 

Strategy 

1 w/o opt order (6) 0.392 (5) 0.307 (1) 0.177 (2) 0.185 (3) 0.188 (4) 0.190 

2 with opt order (6) 0.388 (5) 0.296 (3) 0.170 (4) 0.181 (1) 0.108 (2) 0.143 

3 all permutations (6) 0.329 (5) 0.278 (1) 0.177 (2) 0.186 (4) 0.192 (3) 0.191 

4 perms w/egal (6) 0.329 (5) 0.278 (3) 0.202 (4) 0.219 (2) 0.192 (1) 0.191 

5 perms w/opt (6) 0.329 (5) 0.278 (3) 0.193 (4) 0.204 (2) 0.192 (1) 0.191 

6 perms w/even (6) 0.329 (5) 0.278 (3) 0.198 (4) 0.214 (2) 0.192 (1) 0.191 

      

that the game orderings for each player in the original data did not necessarily reflect the 

actual order of the games presented to each player, we then applied the analysis in row 2, 

where all the orderings found in the original data were tried with each player’s results, then 

the optimal ordering was selected for each individual player, where optimality was 

determined by matching the least error for the last strategy prediction method. Predictably, 

the last strategy prediction method performed best, followed by the max strategy 

prediction, then probable strategy and probable play. It is logical that max strategy would 

outperform the BKB-based predictions, as the most-used strategy for each player would 

naturally frequently match the last strategy used by that player. While it is reassuring that 

the BKB-based predictions continue to outperform random strategies, this analysis is not 

otherwise particularly informative.  

In row 3 of Table 3-2, we computed the average NMAE obtained by applying each 

strategy in turn to every possible permutation of the game order. Interestingly, the two 
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BKB-based prediction methods performed first- and second-best for all possible 

permutations, which demonstrates the power of the BKB to learn patterns of behavior, even 

when all but one of those patterns would not match the ordering of games the player saw. 

Note that for rows 4, 5, and 6, the NMAE only changes for the BKB-based predictions 

because the only change from row 3 is that the bootstrap BKB for each player, rather than 

being based on player strategy distribution, is instead 100% probable to be egalitarian, 

100% probable to be optimizing, or equally probable of being selfish, optimizing, and 

egalitarian, respectively for rows 4 – 6. Here, it is interesting to note that the BKB-based 

predictors lose their first and second place performance once the BKB is no longer based 

on the distribution of player profiles. 

We learned a great deal about modeling individuals and their decision-making 

approaches with this study, but unfortunately were limited in the conclusions we could 

draw about our success due to the unknown ordering of games presented to each player. 

Thus, perhaps the most important lesson learned was to investigate any externally obtained 

data as fully as possible before transitioning to experiments. 

Our second study in behavioral strategies is based on data collected from an iterated 

prisoner’s dilemma game found in [101]. A total of 167 participants played 10 rounds 

against anonymous partners, after which they completed a Big Five personality trait survey 

and Raven’s progressive matrices intelligence test. Psychologists often make use of the Big 

Five personality traits taxonomy to group or categorize personalities, which are: Openness 

to experience; Conscientiousness; Extraversion; Agreeableness; and Neuroticism [102]. 

Raven’s Progressive Matrices [103] is a popular, non-verbal test of general human 

intelligence and abstract reasoning. Additional demographic data (age, sex, education, etc.) 
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were also collected. Our goal was to employ BKBs as a tool to model the likelihoods of 

individual strategies and outcomes in games based on the personal characteristics of 

competitors.  

As mentioned, subjects were required to complete ten rounds of an iterated prisoner’s 

dilemma game. The classic prisoner’s dilemma was formalized by A. W. Tucker in 1950 

[104], being a prisoner-themed scenario based on a payoff structure devised by Melvin 

Dresher and Merrill Flood to illustrate the properties of two-person, zero-sum games. 

Tucker’s prisoner’s dilemma describes a setup where two prisoners are charged with a 

crime and held separately by the police. Each prisoner is informed that if they confess and 

the other does not, they will be given a reward of one unit, while their partner will be fined 

two units. If both confess, each of them will be fined one unit, but if neither confesses, both 

will be released with no payment nor fine. In [101], the payoff matrix appeared as in Table 

3-3. To be clear, in this scenario, if both prisoners cooperate (do not confess), they receive 

$1 each, if only one cooperates, the cooperator receives nothing while the other receives 

$1.50, and if both defect (confess), they both receive $0.25. Since both players know the 

payoff schedule but are not allowed to communicate with one another, they can both choose 

to cooperate for a modest payoff, but if one tries defecting in hopes of maximizing their 

payoff at the expense of the other player, it can backfire with both players receiving a mere 

$0.25 payoff. 

 

Table 3-3: Prisoner's Dilemma Payoff 

 Cooperate Defect 

Cooperate $1, $1 $0, $1.50 

Defect $1.50, $0 $0.25, $0.25 
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Figure 3-1: Individual payoff vs individual traits 

 

Figure 3-2: Summed paired player payoff vs. summed paired player traits 

The planned direction for this study was to first analyze the payoffs of the games with 

traditional statistical analysis, followed by employing BKB models of the players to mimic 

player strategies and moves.  Analysis from the perspective of individual and paired player 

traits yielded no insights into the prediction of player payoffs. The results of our individual 

player analysis can be found in Figure 3-1, while our paired player payoff analysis can be 
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found in Figure 3-2. These results, along with the original authors’ study, convinced us that 

straightforward statistical analysis was unlikely to yield meaningful conclusions beyond 

those already published. Our hypothesis was, however, that further modeling using BKBs 

to investigate individual game strategies would prove more insightful. Unfortunately, the 

planned BKB models were never produced as this study was discontinued at this point. 

The intern assisting on this research completed their internship and the PhD candidate 

leading the research transitioned from full-time study to “in absentia” status, so only one 

focus for study was possible going forward, which is where the research into fake news 

comes into the picture. Despite the limited results from each of these studies, these forays 

into behavioral strategy were not without their rewards. It is hoped we may return to the 

topic in future. Most importantly, these efforts whetted our interest in better understanding 

human motivations, decisions, and outcomes—topics essential to the study of fake news. 

3.2.2. Corporate Psychopathy 

Concurrent with the investigations into behavioral strategies, we also examined the 

phenomenon of psychopathy and its occurrence in the corporate world. To start with, we 

explored definitions of sociopath, psychopath, and corporate versions of each. The results 

of this literature review [105]–[114] are summarized in Table 3-4.  

Based on this review, for the purposes of this research, we defined a corporate 

psychopath as “a successful psychopath within an organization,” where a psychopath is, in 

layman’s terms, “a person having an egocentric and antisocial personality marked by a lack 

of remorse for one's actions, an absence of empathy for others, and often criminal 

tendencies.” [115] While our survey revealed this to be an area of interest and concern for 

researchers, with related articles found in Australia, Canada, Great Britain, Israel, Turkey,  
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and the United States, such studies tend to rely on self-reporting of characteristics to 

provide input to the assessment of the existence of psychopathy, and the participation from 

corporations, and particularly corporate leaders, to allow for such assessments is rare. Thus, 

there exists a paucity of reliable data to allow effective analysis of corporate psychopathy. 

   Table 3-4: Corporate psychopathy definitions 

Sourcee Definition 

[105] Individuals in the workplace whom coworkers have described as “creative, 

strategic, having good communication skills, low management skills, poor 

team member, appraising lower performance, self-serving, opportunistic, 

manipulative, ruthless, shameless, charming, grandiose, and ambitious.”  

[106] Psychopathy in the workplace where likely the individual’s psychopathic 

traits relate more to good impression management as opposed to good job 

performance.  

[107] A psychopathic individual who works for an organization but is more 

concerned with personal success and self-enrichment instead of that of the 

organization for which they work. 

[108] Someone with a lack of conscience, a key feature of psychopathy*, who 

manages to avoid legal confrontation with authorities and works for an 

organization.  

[109] A psychopath who successfully evades the attention of the authorities and 

works within an organization.  

[110] An individual who presents manifestation of psychopathic traits, who has 

not been incarcerated in the judicial or mental health systems, and is more 

likely to engage in manipulative and antisocial behavior and works in a 

corporate setting. 

[111] A dysfunctional leader with psychopathic traits, which are likely 

underlying factors in their deviant interpersonal behaviors.  

[112] Someone who displays sociopathic characteristics and works for an 

organization.  

[113] Someone who works in the business sector and exhibits psychopathic 

characteristics. These people have implications in counterproductive 

workplace behaviors, white collar crime, ethical decision-making in the 

corporate world, and leadership.  

[114] An employee, often a leader, who demonstrates aggressive behavior in the 

workplace. A person who manages employees and manifests deviant 

behavior characterized by bullying, using violence, and performing 

passive or active acts of aggression. 
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To overcome this lack of data, we focused on trying to understand the patterns and 

origins of psychopathic corporations, then appled game theoretics to explore implications 

of the existence of corporate psychopathy. Our initial foray into this realm began with 

modeling the emotional gameplay of participants in a voluntary prisoner’s dilemma game. 

Wang et al. [116] posited that players imitate emotional profiles of opponents rather than 

imitating opponent strategies. For the voluntary prisoner’s dilemma, rather than simply 

having the strategies of cooperate or defect, players also have a third strategy dubbed 

“loner”, where a player could temporarily withdraw from the game but still receive a small, 

fixed income 𝜎. The payoff matrix for this voluntary prisoner’s dilemma is outlined in 

Table 3-5. 

The authors’ simulation results are reflected in Figure 3-3, which we were able to 

successfully replicate (Figure 3-4). The aim of this effort was to eventually tie the emotions 

the researchers identified for weaker players in this game, those of sympathy, harshness, 

and apathy, and for stronger players, those of respect, jealousy, and fear, to emotional 

profiles for corporate psychopaths through the application of game theory. Future research 

was envisioned as applying research of corporate decision making to agent-based 

modeling, creating a simulation embodying corporate decisions, and looking at long-run 

Table 3-5: Voluntary prisoner’s dilemma payoff [116] 

Player 2 

Player 1 

C D L 

C R/R S/T 𝜎/ 𝜎 

D T/S P/P 𝜎/ 𝜎 

L 𝜎/ 𝜎 𝜎/ 𝜎 𝜎/ 𝜎 

R(reward)=1, S(sucker)=0=P(penalty), 1≤T(temptation)≤2, and 𝜎=0.3 
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effects and trends.  

 

Figure 3-3: Fraction of cooperators, defectors, and loners from [116] over time 

 

 

Figure 3-4: Replicated results 
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Unfortunately, once again this research was discontinued for several reasons. Most 

pressing were the limitations in studies that included senior corporate personnel which 

limited the ability to analyze the most influential leaders in corporate business, but also due 

to personnel changes and shifts in focus. Nevertheless, the insights gained into human 

behaviors in the corporate world would prove exceptionally relevant to our ultimate focus 

on fake news, which is where our research picks up in the next section. 
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4. Fake News Model Formation and Exploration 

In order to usefully provide a method for recognizing fake news, individual biases and 

opinions must be considered. The labeling of fake news is a subjective effort, as the 

identification of “truth” in our complex world is not always straightforward. Moreover, 

with the increasingly polarizing effect of modern politics, what is accepted as truth and 

what is rejected as fake has often become more a personal issue than an evidentiary effort 

[117]. What one person may accept for fact, another may argue is fiction, as succinctly 

argued in [118]. For this reason, it is proposed that the problem of fake news be partitioned 

into two pieces: premises and misleading content. Those two parts then form a framework 

to effectively evaluate the validity of any potential news.  

The value of this research and the accompanying framework lies not only in its 

practical utility to potential users, but also in the light it will shed on the prevalence of bias 

and the absence of balance in many news stories. It is conceivable it could also be applied 

to historical news sources, to gauge if news has truly become less objective in recent years. 

Furthermore, its biggest eventual contribution to science could be in plainly identifying 

attempts at undermining actual science with biased reporting and pseudoscience.  

The foundation of this research is in identifying the components of a fake news item. 

While there are numerous approaches to fake news and numerous ways to try to identify 

or rate fake news as discussed in Sections 2.1 and 2.3, there are only a limited number of 

ways that the information in fake news can be automatically and reliably parsed for signs 

of counterfeit. This proposal contends that a fake news piece, as defined previously, can be 

condensed down to a collection of assertions, which may or may not be true, and various 

methods of deception, including biased arguments and language, misdirection, and  
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Figure 4-1: Fake News Framework 

manipulation. While these components are not comprehensive, it is believed they are some 

of the most recognizable and most critical. Further components may be added as this 

research progresses. A brief description of that framework follows, and an illustration of 

its composition can be found in Figure 4-1. 

Although the intent here is to identify discrete components, some overlap and 

blurring of definitions is unavoidable. For example, emotional and manipulative language 

may be employed to support a biased argument. Regardless, if both manipulative language 

and a biased argument are present, they magnify the effect of either alone. Additionally, 

every effort is made to ensure the framework is all-inclusive, but that is a tall order. One 

approach to help meet this objective is to employ the typology of fake news defined in [37].  

The authors note that after a survey of 34 academic articles focused on fake news, 

Premises 

• Facts 

• Assertions 

• Beliefs 

• Testimonies 

Misleading Content 

Bias 
• Unbalanced 

Arguments 

• Connotative Language 

Manipulation 
• Emotional Language 

• Manipulative 

Misdirection 
• Flawed 

Arguments 
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they found the following fake news types: satire, parody, fabrication, manipulation, 

propaganda, and advertising. 

For the purposes of this research, the first two types, satire and parody, do not fit the 

chosen definition for fake news, as they do not represent themselves as genuine news. 

While the “fake news” sobriquet is often applied to works of satire and parody, even by 

the creators of said works, they are clearly provided for entertainment. Moreover, as noted 

in [37, p. 142], “the core content of political satires is based on actual events.” The parodies 

are of course a different story. They emphasize “the ludicrousness of issues…by making 

up entirely fictitious news stories.” A similar argument applies for the last type, advertising, 

which is clearly not labeled as news, except in the relatively rare instances when advertising 

attempts to pass itself off as a news item in some publications. While that does occur at 

times, that can be easily remedied through requiring advertising to be transparently labeled. 

For these reasons, advertising is not considered within the scope of this study.  

The remaining three types—fabrication, manipulation, and propaganda—are central 

to the subject of study and will be addressed. In short, fabrication would fall within the 

premise category, unless there is an attempt to support the fabrication with argument, in 

which case any or all the other components of fake news could be employed in that effort: 

bias, misdirection, and manipulation. The manipulation type of fake news is obviously 

captured by the manipulation component identified in the fake news framework. However, 

the primary focus of the authors of this typology [37] was image manipulation, whereas 

the focus here is on manipulative language. Propaganda could employ any or all four 

components of fake news. These three types primarily differ from the others in their 

motivations—they all intend to mislead, which is of interest to this study, but not 
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exclusively so. 

 

Figure 4-2 : Sample Real News – Common Definition 

As a demonstration for discussion, Figure 4-29, Figure 4-1210, and Figure 4-411 

contain sample news articles from a fake news analysis database [39], [119], which will be  

 

 

9 “House oversight panel votes Clinton IT chief in contempt” cited at 'http://cnn.it/2deaH2d'. 

10 “NY Gov. Andrew Cuomo disputes Trump's claim cops are 'afraid' to do their jobs” cited at 

‘http://cnn.it/2d3tTeL’. 

11 “The DEA Just Raided A United States Senator–Dems In A Panic – News Feed Hunter” cited at 

'http://newsfeedhunter.com/the-dea-just-raided-a-united-states-senator-dems-in-a-panic/'. 

'House oversight panel votes Clinton IT chief in contempt' 

'Story highlights The House Oversight panel voted 19-15 to hold Bryan Pagliano in 

contempt.  

 

Pagliano failed to show for a second hearing on Clinton's emails and private server 

 

Washington (CNN) Members of the House Oversight and Government Reform 

Committee voted along party lines Thursday to hold the architect of Hillary Clinton's 

private email server in contempt for failing to appear before them. 

 

The panel's 19-15 vote came after Bryan Pagliano failed to attend a second hearing on 

Clinton's emails and use of a private server while leading the State Department. 

Republicans blasted his decision as an act of defiance, but Pagliano's lawyers said the 

demand that he appear "betrays a naked political agenda." 

 

House Oversight Chairman Jason Chaffetz, a Utah Republican, argued that previous 

testimony from another one of Clinton's IT workers, Justin Cooper, made it imperative 

for Pagliano to testify. 

 

"I explained Mr. Pagliano was uniquely qualified to provide testimony to help the 

committee better understand Secretary Clinton's use of a private email server. This is 

indisputable," Chaffetz said. "I also made clear the committee would consider all 

options regarding Mr. Pagliano's failure to appear, including consideration of 

recommending he be held in contempt." 
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referenced in the following subsections. These citations were chosen specifically for their 

similar lengths but dissimilar real-news contents. Note that the citation in Figure 4-2 was 

assessed by the fact-checking website PolitiFact12 to be a fact-based real news story, as was 

the citation in Figure 4-12. While both are considered real news according to the source 

repository, we will highlight their distinctness later. The citation in Figure 4-4 was assessed 

 

 

12 https://www.politifact.com/ 

 

Figure 4-3: Sample Real News – Framework Definition  

'Governor defends providing medical care for bombing suspect ' 
Story highlights "I don't know how you could have been more aggressive than we were here," 

Cuomo said 

 

Ahmad Khan Rahami was captured Monday after a manhunt and shootout 

 

Washington (CNN) New York Gov. Andrew Cuomo said Tuesday that Republican presidential 

candidate Donald Trump is wrong to suggest that the New York bombing suspect shouldn't 

receive medical care. 

 

"I understand the anger that Donald Trump is speaking to (but) this is America and this is our 

system and you are innocent until proven guilty and you have a right to counsel and that is the 

Constitution of the United States of America," he said on CNN's "New Day." 

 

"And that's what makes us who we are. That's what makes us special. And if you give that up, 

Alisyn, then you have defeated yourself," Cuomo, a Democrat who has endorsed Hillary Clinton 

for president this cycle, told CNN's Alisyn Camerota. "That is the code of democracy and 

freedom. That is what they resent about us. So don't lose your soul in the process. Because 

that is the soul of America." 

 

Trump complained Monday about Ahmad Khan Rahami being offered medical treatment and 

legal assistance following his shootout with police. Rahami, the suspect in Saturday's bombings 

in New York and New Jersey, was captured Monday. Following a frantic manhunt and shootout, 

Rahami was shot multiple times before being taken to a hospital for surgery. 

 

"He will be taken care of by some of the best doctors in the world. He will be given a fully 

modern and updated hospital room. And he will probably even have room service, knowing the 

way our country is. And on top of all of that, he will be represented by an outstanding lawyer," 

Trump said at a Florida rally. 

https://www.politifact.com/


40 

to be a fake news story. Figure 4-5, Figure 4-6, and Figure 4-713 contain example argument 

structures for those citations, which will also be referenced in the forthcoming subsections. 

In the diagrams, a red box indicates a refutation to the linked argument, and all subordinate 

boxes to the red box are supports for the refutation.  

 

Figure 4-4: Sample Fake News 

 

 

 

13 Argument structures produced using Araucaria, found at 

http://araucaria.computing.dundee.ac.uk/doku.php or https://www.softpedia.com/get/Others/Home-

Education/Araucaria.shtml. 

'The DEA Just Raided A United States Senator–Dems In A Panic – News Feed 

Hunter' 
'The DEA just raided the vacation ranch of Democrat Senator Hal Lindsay (D-NJ), seizing more 

than 400 marijuana plants, 2 greenhouses full of opium-producing poppies and a small lab that 

was pumping out massive amounts of refined, finished product. The ranch, just a few hundred 

miles north of anything in Wyoming, was also seized along with a fleet of automobiles, 

recreational vehicles and other property now considered the spoils of the drug trade. 

 

The bust itself yielded more than $6 million in finished drugs alone, never mind the plants and 

raw product waiting for packaging. All in all, Senator Lindsay is looking at 70 years behind bars 

on the opium alone. He was taken into custody at his office in Washington DC and has since 

been booked and released on $10 million bail. 

 

Lindsay’s office isn’t commenting on the ordeal but New Jersey Governor Chris Christie has 

already called for his removal and a special election as soon as possible. The loss of yet another 

seat, especially in the northeast, would be devastating to the Democrats. 

 

The DEA says their investigation isn’t over and that there are potentially more politicians 

involved. We’ll keep you updated.' 

http://araucaria.computing.dundee.ac.uk/doku.php
https://www.softpedia.com/get/Others/Home-Education/Araucaria.shtml
https://www.softpedia.com/get/Others/Home-Education/Araucaria.shtml
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Figure 4-5: Unbalanced Argument for Real News Citation in Figure 4-2 
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Figure 4-6: More-Balanced Argument for Real News in Figure 4-3 
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To continue with this section, we introduce the concept of document graphs, which 

opens the door to argument construction and analysis. We then examine the potential for 

premise recognition, which also aids in argument analysis. Finally, we review options for 

evaluating misleading content in fake news before discussing conclusions from our 

proposed fake news model.  

     

 

Figure 4-7: Unbalanced Argument for Fake News in Figure 4-4 
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4.1. Document Graph Analysis 

Document graphs (DGs) are a method devised to analyze text structures and employed for 

text summarization [120], [121]. A DG is a directed acyclic graph with nodes representing 

the concepts or entities contained in a document, and edges representing the relationship 

between those nodes. The application of DGs was explored in this research because it does 

not rely on the vocabulary used within documents, but instead explores the structure of the 

language used. This is valuable because once the specific language is introduced into the 

analysis, particularly with machine learning and neural network approaches, it is difficult 

to generalize across domains. Many of the language cues selected by automatic classifiers 

tend to be topic-specific and thus not useful for fake news recognition for unrestricted news 

subjects. 

The DG is automatically constructed by parsing a document for noun phrases, which 

become the nodes in the DG, and then labeling the edges between the nodes with one of 

two relationships, either “is a” or “related to”. This in essence provides a spatial element 

to visualizing the structure of a text document. In this research, the Stanford parser14 [122] 

was employed to parse for noun phrases. Subsequently, the noun phrases are processed to 

generate the relations between and within the noun phrases, as described in [120]. For 

example, the simple noun phrase “State Department” generates the relations “State – 

related to – State Department” and “State Department – is a – Department.” Figure 4-8,  

 

 

14 https://nlp.stanford.edu/software/lex-parser.shtml version 3.6.0 

https://nlp.stanford.edu/software/lex-parser.shtml
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Figure 4-9, and Figure 4-10 contain the DGs generated from the news samples in Figure 

4-2, Figure 4-3, and Figure 4-4, respectively. These citations were in fact chosen partly to 

ensure that each example had a similar length and similar DG complexity.  

As evidenced in Figure 4-8, Figure 4-9, and Figure 4-10, we now have a spatial 

representation of the texts of interest. On the surface, these three DGs have many 

     

 

Figure 4-8: Sample Real News Document Graph 
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similarities—they all have multiple subgraphs, some smaller, some larger and more 

complex. The question which we investigated was: “Are there structural components which  

     

 

Figure 4-9: Sample More Real News Document Graph 
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might set real news stories apart from fake?” Examining just these three DGs is not useful 

in answering that question but examining certain network characteristics of the entire sets 

of data might. Since initially the data is only coarsely characterized as real or fake 

according to the criteria established by PolitiFact, that is the classification examined. The 

goal is to establish whether a straightforward application of DGs to the existing definitions 

of real and fake news can distinguish between the groups. To accomplish this, DGs were 

generated for the entirety of data presented in [119], including real and fake news from 

 

Figure 4-10: Sample Fake News Document Graph 
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both the BuzzFeed and the PolitiFact sites.  

Two possible network measures that might help distinguish between fake and real 

DGs are betweenness centrality and closeness centrality. These two are used as a first 

glimpse into the utility of DGs for application to this study. They were selected to explore 

because they are standard measures, are well-understood, and can provide information on 

the overall structure of the document graphs.  

4.1.1. Betweenness Centrality (BC) 

BC is a measure of 

the centrality of 

the nodes in a 

connected graph, 

where the shortest 

path between all 

pairs of nodes in the graph is calculated, and then for each node, BC is calculated as the 

total number of shortest paths that pass through it. This number can then be normalized by 

the total number of nodes in the graph. BC can provide insight into which nodes are most 

important to a graph and give an indication of the distinctness of that importance in the 

graph. To make use of this metric, because the DGs are not necessarily connected, as 

evidenced in Figure 4-11, the betweenness centrality was aggregated for the entire DG. 

Two aggregations were explored: the statistical mean and maximum. Table 4-1 shows that 

the p-value for the difference in means of the real versus fake news BCs suggests the means 

are not significantly different. Furthermore, both the mean and maximum BCs do not 

distinguish between the real and fake news datasets. The standard deviations for both the  

Table 4-1: Betweenness Centrality Compared 

Betweenness 

Centrality 

mean BC max BC 

mean std p-val mean std 

Real News 0.00076 0.002 
0.1340 

0.00716 0.01297 

Fake News 0.00052 0.00118 0.00558 0.00928 
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mean and maximum BCs completely overlap the separation between the two groups’ 

means and maximums. This overlap or lack of separation is visibly evident in the 

histograms in Figure 4-11.  

     

 

Figure 4-11: Betweenness Centrality of Real and Fake News 
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These results suggest that the BC of DGs for real and fake news is unlikely to provide 

distinguishing information for recognizing fake news. While it is possible that looking at 

what nodes have the maximum centrality for each DG might provide some insights, it is 

more likely that delving into the individual nodes, and therefore the specific noun phrases 

that are most central to each document, will devolve into words and phrases specific to the 

topic of that document, which is undesirable when trying to produce a general solution for 

recognizing fake news. 

4.1.2. Closeness Centrality (CC) 

CC is a measure of 

the closeness of each 

node to all the other 

nodes in a connected 

graph. It is calculated 

by taking the sum of 

the length of the 

shortest path from a node to every other node in the graph, and then inverting it. Thus, CC 

is greatest for the node with the smallest sum of shortest paths. Because the DGs are not 

necessarily connected, the mean and maximum CC for each DG will again be utilized when 

comparing the fake and real news. As with BC, Table 4-2 and Figure 4-12 reveal that CC 

does not provide sufficient separation for distinguishing between real and fake news, at 

least by the definition used in this dataset. The difference of means p-value reveals that the 

means are not significantly different. Once again, the standard deviations indicate there is 

not significant distinction between the means and maximums to provide differentiation.  

Table 4-2: Closeness Centrality Compared 

Closeness 

Centrality 

mean CC max CC 

mean std p-val mean std 

Real 

News 0.02652 0.03348 
0.1803 

0.15747 0.13727 

Fake 

News 0.03269 0.05779 0.1717 0.15878 
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The individual nodes could be examined for the CC measure, but this would likely only 

yield document-specific details not useful for a generalized discriminator for fake news. 

Thus, DG analysis in this small foray has not yielded significant results, but that does not 

     

 

Figure 4-12: Closeness Centrality of Real and Fake News 
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preclude the possibility that further explorations of DGs using other network techniques 

could be more effective. At this time, we reserve this approach for future studies. 

4.2. Premise Recognition 

To aid defining argument structure, an automated method to identify the premises (or 

claimed facts) in an article must be produced. It is suggested that using argumentation 

analysis, premises be identified and clearly revealed to the user. This will allow the user to 

know where the discussion begins, and under what assumptions. It is then up to the user to 

determine whether to accept those premises or whether to fact-check them in some manner. 

These premises could be completely true and factual, wholly false and fabricated, or range 

anywhere between. Interestingly, it may also be argued that the reader will have his or her 

own premises which could interfere with or distort the premises of the author. By 

identifying the premises of the article, this tendency can at least be partially controlled or 

averted, should the reader be motivated to genuinely identify the message of the news 

piece.  

It is also feasible an automated or online fact-checking capability could be 

incorporated into the framework, but this is not essential, and could possibly introduce 

undesirable subjectivity. While it would appear at first glance that fact-checking would be 

the foundation for guarding against fake news, as will be discussed later, facts can be 

employed with misleading logic and manipulative language to produce an erroneous or, at 

the very least, false conclusion. 

Another point to note at this juncture is the concept of intent. Some might consider a 

person’s intent is to deceive because they promote a falsity as truth. An extreme counter 
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example is that of the group of people who continue to contend the earth is flat [123].  

While scientists and scientific-minded people firmly agree that the earth is in fact not flat, 

authors of flat-earth articles presumably believe their position and will passionately argue 

it in their publications. Measuring whether they intend to deceive or not is not productive. 

Likewise, measuring intent to deceive is not useful for recognizing fake news. A sincere 

persuasive argument based on ill-founded premises can be just as misleading and harmful 

as an insincere one intending to deceive.  

Identifying premises will provide a foundation for the stability of any arguments 

presented, and then recognizing the remaining components will provide further 

illumination on the strength and legitimacy of the entire piece. Identification of the 

premises and conclusion of an argument has been described as one of the four primary 

tasks of argumentation [124], as is a second task labeled analysis, which is to discover 

implicit premises and conclusions. Clearly, premise recognition is a fundamental part of 

argumentation and will provide significant assistance to the fake news framework. In the 

sample news stories, unsupported assertions exist in all of the arguments, and are evident 

in Figure 4-5, Figure 4-6, and Figure 4-7. The premises are the “leaves” on the argument 

tree, i.e. the boxes with no arrows pointing to them.  

Having viewed the potential for inclusion of argumentation in our fake news model, 

we will now explore methods for identifying misleading content. 

4.3. Evaluation of Misleading Content 

Finally, a process for recognizing misleading news must be developed, which presents the 

most challenging aspect of this approach to recognizing fake news. Misleading information 
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can take many forms and have numerous origins. The most significant approaches to 

misleading news, according to the framework for fake news, are bias, manipulation, and 

misdirection. 

The concept of deception has been a subject of study and thought for centuries [125, 

Bk. III], [126]. Moreover, there exist numerous studies of deception and manipulation 

detection, yet deception recognition remains a difficult challenge. Several approaches have 

the potential to yield some success in automated identification, including recognizing 

linguistic features such as misleading language [127], [128], ambiguous syntax [129] and 

selective vocabulary [130]–[133]. Additionally, applying document graphs and 

argumentation structures [134]–[137] to articles may help identify deceptive arguments.  

4.3.3. Misdirection 

The validity of the text may be evaluated from a few angles. Most straightforwardly, flaws 

in logic progression may be presented. Errors in logic are commonly referred to as fallacies 

[124]. It should be noted that fallacious and therefore potentially misleading arguments are 

not evaluated for the author’s intention—the fallacies could be due to weaknesses in the 

author’s logic, or they could be due to intentional deception. Regarding the consumption 

of fake news, the intent is secondary to understanding whether valid arguments are being 

presented. This may be the rarest method for misleading readers, perhaps more common in 

scientific hoaxes than in political writings. For the current study, most of the focus will be 

on political writings, as that is where the greatest volume of fake news data currently 

resides. 
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4.3.4. Bias 

In addition to that direct approach, however, others such as the objectivity and balance of 

the discussion may be explored. News articles often lack any real argumentation, and are 

more properly about reporting information, not debating issues. However, those reports 

can either provide information from a balanced perspective, reporting on multiple 

viewpoints, or they can be provided from a biased perspective. In [42], the authors define 

objectivity as comprised of truthfulness, neutrality, and detachment. They argue, however, 

that objectivity is an unobtainable ideal, one that has essentially been abandoned by 

journalism. In contrast, it might be argued that (objective) journalists have been abandoned 

by the consuming public [33], [34], [42, Ch. 3]. If slanted, self-congratulating news is in 

fact what the paying public demands, then that is a social ill that wants addressing, but 

again must remain outside the scope of this effort. Here, the goal is to aid concerned news 

consumers in recognizing how balanced (or unbalanced) is their news diet. 

Because bias can be communicated both through argument structure and language 

choice, bias recognition could be derived from argument analysis and from language 

analysis. Both of these methods of presenting (and detecting) bias would be considered 

presentation bias, as defined in [138, p. 134]. The selection bias defined by Groeling is not 

addressed in this research, as this research endeavors to recognize fake news in individual 

news pieces, whereas selection bias addresses what news is being presented versus 

potential news that is not selected for publication. Nevertheless, selection bias clearly falls 

within the bias component of fake news, and could be detected in a similar manner, but 

just at a different scale and through the application of the fake news framework to a 

collection of documents individually and compiling statistics. 



56 

While a bias can be expected in what might be clearly labeled as an editorial in 

journalism, news should not be so slanted as to completely forego objectivity. Likewise, 

when consuming news stories, if an article abandons objectivity but does not represent 

itself as an editorial or opinion piece, the reader should certainly be aware, and most 

probably should be on guard. Consider the citation in Figure 4-2, for example. The 

argument diagram for it is revealed in Figure 4-5. While the article makes some attempt to 

report on both “sides” of the issue, citing Bryan Pagliano’s lawyer’s explanation for his 

client’s no-show and the House Oversight Chairman’s argument for requesting Mr. 

Pagliano to testify, the two sides are clearly not evenly discussed. From the diagram, one 

can see there are essentially eight propositions supporting the theme (the title of the article), 

versus only three to counter it.  

Compare that with Figure 4-12 and Figure 4-6. There are 15 clearly supportive 

propositions for the thesis statement, and 7 refutations. While this is still perhaps not a 

balanced news article, it gives the appearance that it is more balanced than the one in Figure 

4-2. It is interesting to note, however, that both real news articles clearly state their thesis 

in their headlines and maintain their position throughout the documents. It is also 

interesting to focus on one proposition: “Cuomo, a Democrat who has endorsed Hillary 

Clinton for president this cycle”. This is, perhaps, a prime example where the reader’s 

premises might define the actual function of the statement. A Trump supporter might view 

this as support for the refutation, noting that Cuomo is a political opponent, or at least not 

a supporter, of Donald Trump. Equally, though, a reader who does not support Trump 

might instead view this as a refutation of Donald Trump’s position, considering it as 

evidence that Trump’s position is biased. 
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The news story in Figure 4-4 has a problem not only with balance, but with source 

support. It essentially provides only one external reference to the news story, citing a 

prominent conservative governor, with no discussion from the liberal point of view. While 

this example is built on complete fabrication, and thus would be difficult to gauge without 

fact-checking the event, the construction of the article also reveals itself to be considerably 

unbalanced. Figure 4-7 vividly illustrates the dramatic contrast between this fake news 

article and the two real ones. Only a single refutation is provided compared to twelve 

supporting propositions, and that sole refutation is only a disclaimer that an opposing 

viewpoint was unavailable.  

4.3.4.1. Support Vector Classification (SVC) Analysis 

Support vector machines (SVMs) have been demonstrated to be effective in pattern 

recognition, regression estimation, and solving linear operator equations [139]. More 

recently, SVMs have been successfully applied to text categorization [140] and 

classification [141]. In [142], the authors apply support vector classification (SVC) to 

automatic detection of fake negative hotel reviews. This is a direct follow-on to the study 

of fake positive hotel reviews provided in [143]. By limiting the study to not only reviews, 

but hotel reviews, the subject matter and therefore much of the language remains consistent 

throughout the database—advantageous to the study, but not useful for addressing the more 

general challenging of classifying fake news articles. It should be noted that additional 

research efforts are reviewed in Section 2.3, including investigations applying SVC, deep 

learning neural networks, and Doc2Vec [64], [65]. These approaches were also 

investigated in the prior work but resulted in similar overall findings and have not been 

reported here. The overall conclusion is much room for improvement remains for automatic  
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fake news recognition. 

Table 4-3 reflects the replication results compared to the originally published results. 

Interestingly, the results from a straightforward implementation using the SVC module in 

Table 4-3: Replication of Research Published Previously* 

   
TRUTHFUL DECEPTIVE 

Model Test Sentiment Accuracy P R F P R F 

Original* 

results, 

trained on 

positive and 

negative 

reviews 

POSITIVE 

(800 reviews, 

Cross Val.) 

88.4% 87.7 89.3 88.5 89.1 87.5 88.3 

NEGATIVE 

(800 reviews, 

Cross Val.) 

86.0% 85.3 87.0 86.1 86.7 85.0 85.9 

Replication Both (1600 

reviews, 0.8 

train/test split) 

90% 94 87 90 86 93 90 

Replication 

with 5-fold 

cross-val 

Both 

(1600 reviews, 

no test 

reserved) 

69% 70 67 68 68 71 69 

Replication 

with 10-fold 

cross-val 

Both 

(1600 reviews, 

no test 

reserved) 

80% 80 79 79 79 80 80 

* M. Ott, C. Cardie, and J. T. Hancock, “Negative Deceptive Opinion Spam,” in 

Proceedings of NAACL-HLT, 2013. 

Abbreviations - P: Precision; R: Recall; F: F-score   
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the Python scikit learn library15 produced improved results on the original, when using an 

0.8/0.2 train and test split on both positive and negative reviews. This advantage 

disappeared, however, when progressing to cross-validation classification, and so was 

possibly due to a particularly fortunate draw on the training and testing data. Regardless, 

the results with 10-fold cross-validation are comparable to the original study, though 

slightly less favorable. The difference could be lessened with additional tuning but was 

judged unnecessary for demonstrating a comparable implementation. 

Table 4-4 reveals that for training on PolitiFact and testing BuzzFeed data, the binary 

classification accuracy is merely 64%. This could perhaps be improved with parameter 

tuning, but as the datasets are equally balanced between real and fake news, the achieved 

accuracy is only slightly better than an expected accuracy of 50% for random guessing. 

Much greater accuracy is required to successfully recognize fake news. 

 

 

 

15 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html 
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Table 4-4: Bigram SVC Binary Classification of Fake News 

  
TRUTHFUL DECEPTIVE 

Model Accuracy P R F P R F 

BuzzFeed 10-

fold CV 

prediction 

65% 68 58 63 63 73 68 

PolitiFact 10-

fold CV 

prediction 

76% 79 70 74 73 82 77 

BuzzFeed 

predict;  

PolitiFact 

training 

64% 62 73 67 67 55 60 

PolitiFact 

predict;  

BuzzFeed 

training 

74% 75 72 74 73 76 75 

Abbreviations - P: Precision; R: Recall; F: F-score 

4.3.5. Manipulation 

Another possible approach is to analyze news stories for their manipulative content, 

especially from the angle of emotional manipulation. Walton [144] proposed a method for 

determining when persuasive arguments can be classified as deceptive. As Walton states, 

“By a careful selection of terms with emotive meanings, a speaker can make an argument 

more powerfully persuasive by evoking positive or negative attitudes of the audience.” 

Thus, through careful use of connotative language, an author can manipulate while not 

deviating from the denotative truth. This demonstrates why simple fact-checking is not 

enough for guarding against fake news. Both misleading arguments and manipulative 
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language can be employed to turn fact-based statements into fake news. 

As noted in [42, pp. 78–79], [144]–[146], the language used to report a news item 

can add bias, either intentionally or unintentionally. Furthermore, the research in [62], [63], 

[147] shows some promise in applying manipulative linguistic cues to recognizing 

deceptive, misleading, and fake news through the use of machine learning or deep learning 

neural network models. A significant portion of the remaining research for the current 

study will be to explore the most effective way to incorporate such findings into automated 

processes for flagging manipulative text in news articles. 

4.3.5.1. Linguistic Inquiry and Word Count (LIWC) Results 

 Linguistic Inquiry and Word Count (LIWC) is a method and commercial product for 

evaluating the psychometric property of texts basically through tracking the count of words 

used in the documents [148], [149]. Its goal is to provide an “efficient and effective method 

for studying the various emotional,  cognitive, and structural components present in 

individuals’ verbal and written speech samples…” [149]. It has been shown to be 

somewhat effective in distinguishing liars from truth-tellers [133], succeeding 61% of the 

time for the binary classification task. More importantly, the research yielded some insights 

into the psychometric differences between the two groups. Since this study was 

accomplished in 2003, the LIWC dictionary and software has been significantly updated, 

with new summary variables to explore. As previously discussed, the authors of [62] and 

[63] also made use of LIWC, resulting in some useful insights into misleading language. 

In order to take advantage of the full capability of this software, a license must be purchased 
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or rented. An abbreviated version is available online16 for short texts of no more than 5000 

characters, which was employed for this study to gauge whether further efforts using this 

tool might be gainful. 

Table 4-5: LIWC Results for Sample Real and Fake Stories 

Traditional LIWC  

dimension 

Real data More 

Real 

Data 

Fake data Avg for 

Social media  

Avg for 

professional or 

scientific writing 

I-words (I, Me, 

My) 
0.9 0.7 0.0 5.51 0.63 

Social Words 11.2 12.3 5.0 9.71 7.62 

Positive Emotions 0.9 2.0 0.5 4.57 2.32 

Negative Emotions 3.7 3.1 2.0 2.10 1.45 

Cognitive 

Processes 
8.4 6.5 9.5 10.77 7.52 

LIWC Summary 

Variables 
     

Analytic 98.4 50.1 91.3 55.92 92.57 

Clout 83.7 92.4 56.0 55.45 68.17 

Authenticity 1.6 10.0 25.2 55.66 24.84 

Emotional tone 2.0 12.3 8.1 63.35 43.61 

   

 

 

16 http://liwc.wpengine.com/ 

http://liwc.wpengine.com/


63 

Table 4-5 shows the results of running the online tool on the three sample texts in 

Figure 4-2, Figure 4-3, and Figure 4-4. The LIWC dimensions of Social Words and Positive 

Emotions show some possibilities, as do the summary variables Analytic and Clout. This 

is of course strictly anecdotal at this juncture, as only three sample texts were tested at this 

time, but these preliminary results appear to warrant further investigation with the full 

software license, which will also provide a much larger selection of dimensions and 

summary variables than the online version. 

4.4. Fake News Model Conclusions 

While much promise is revealed in the proposition and investigation of the fake news 

framework, it has also revealed some serious hindrances. Firstly, argument mining remains 

particularly intractable [150], with the many advances being limited to domain-specific 

arguments, notably with respect to legal arguments [151]–[156]. As large language models 

(LLMs) take hold, argument mining will hopefully advance rapidly into a tractable 

problem. While the approach of examining the validity and solidity of arguments presented 

within (fake) news articles remains a substantial goal, for the present, even with the aid of 

LLMs, it remains effectively out of reach.  

In contrast, while the power of LLMs can aid mightily in the effort to categorize and 

classify news as real or fake (or somewhere between), that same tool can be employed as 

a weapon to constantly invent and adapt new approaches to producing fake news to defeat 

efforts at detection. The nature of this ongoing battle and its many intricacies is outlined 

effectively in [118]. This has all the hallmarks of a long-running arms race, where each 

new effort to identify and dismiss either perpetrators of fake news or the fake news content 

itself will be quickly met with adaptations to further obscure the deceitful nature of the 
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producers or the product. Pitting deep learning (or other advanced) AI fake news detectors 

against generative AI fake news generators promises to be a perpetual battle for some time, 

with money and resources largely dictating the outcomes of each battle. While it might be 

a necessary endeavor to engage in that struggle, it outpaces the capacity and usefulness of 

this researcher to contribute meaningfully to that battle, at least in the short term. 

Completion of the proposed fake news framework could very well assist in this effort, but 

unfortunately the resources required to keep it relevant are not currently available. 

Moreover, as revealed in recent research [157], steps taken to prevent or prohibit access to 

misinformation can instead backfire. Further labeling news as fake or real may only fuel 

the fire of those with opposing views. 

A more practical and manageable approach is, instead, to identify the hallmarks of a 

fake news breeding ground—the regions of the internet where, once fake news “seeds” are 

planted, the contagion of misinformation grows and thrives. What we now propose as an 

immediate necessity, more dire and essential than identifying the fake news itself, is 

identifying where and when we can expect fake news to gain a foothold, and thus try to 

combat it early, or, at the very least, detect and monitor it as it grows. Thus, we now propose 

an approach to identifying echo chambers, where fake news might be introduced and 

readily repeated. The next section will introduce a methodology for doing exactly that. 

Note though, that it does not remove the need for the fake news framework as a means to 

classify fake news—that in time will be essential as well. However, we suggest that even 

more immediate is the need to understand and identify the conditions under which a social 

media platform, or special interest group on the same, might offer ideal conditions for the 

dissemination and replication of fake news.  
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5. Echo Chambers and Gravity Wells 

If we accept the assertion that fake news is often incubated in social structures commonly 

known as echo chambers, then successfully identifying echo chambers would be a great 

stride towards combating the ill-effects of fake news. Certainly, research has shown that 

the echo chamber effect is often reinforced by social media algorithms [29], [68], [158], 

[159]. 

As identified in the Introduction, we propose that a social media group may be 

effectively modeled as a gravity well [30], where an echo chamber might reveal itself by 

its overwhelming ability to attract and retain users within such a well. Furthermore, we 

postulate that the composition of that gravity well would be self-sorting, where members 

within the echo chamber would necessarily maintain similar views to remain comfortable 

within the well and not be drawn to some other nexus. An echo chamber in a social media 

interest group essentially captures its audience, where the attractive force of the well is 

composed of elements of the social media platform, the precise topic of the forum, and 

characteristics of the audience characteristics of the audience. It is this insight into what 

creates the overwhelming force of echo chambers, as well as the simulation of social media 

interest groups as gravity wells, that constitutes a significant contribution to the study of 

fake news in general and of echo chambers more specifically. 

In this section, we will outline the functioning of the gravity well model and its 

employment for the purposes of this experiment. To accomplish this, we will discuss the 

formation of the social media interest group gravity well and then the subsequent tuning of 

variables designed to identify the contribution of different aspects of the modeled social 

media groups. It will be useful to first introduce the data used for the entirety of this 
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experiment. 

5.1. Model Data 

After considering numerous social media platforms for our initial experiment, including 

Facebook, YouTube, Twitter, and Reddit, we chose to use Reddit data due to the (formerly) 

publicly available archives of subreddit submissions17 and comments18 online via the 

Pushshift archives. Certainly, other social media providers have publicly accessible 

application programmer interfaces (APIs) and some also have data repositories, which will 

prove useful for future research. Though some researchers [29], [73], [158] have found 

evidence that Reddit may be less likely than other social media platforms to encourage the 

formation of echo chambers, it is our expectation that the phenomenon nevertheless exists 

on Reddit, though less so than on other platforms. 

For this effort, we accessed the data repositories to obtain all submissions and 

comments for all users in a target set of subreddits for an entire month. The selection of 

these subreddits was initially aimed at some of the most popular and active subreddits, e.g. 

‘memes’ and ‘Market76’, but it was determined through experimentation that the volume 

of data (607/6639 and 1134/2839 posts/comments per day for ‘memes’ and ‘Market76’, 

respectively) would require specialized handling—a focus reserved for later efforts. 

Moreover, simply selecting from the most popular subreddits yielded topics that were 

popular, but not necessarily rich in conversation and opinions, as evidenced by the 

 

 

17 https://files.pushshift.io/reddit/submissions/ 

18 https://files.pushshift.io/reddit/comments/ 
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aforementioned ‘memes’ and ‘Market76’. The subreddit ‘memes’ includes a rule that 

specifies “No memes that are text only.” This of course limits the amount of conversation 

content that can be extracted from that subreddit’s posts. As another example, the subreddit 

‘Market76’ is “A subreddit dedicated to trading for Fallout 76,” a popular computer game. 

Thus, it is a subreddit which focuses on material trading, not conversation.  

 Instead, we targeted average-sized but clearly active subreddits for this initial effort, 

such as ‘science’, with a manageable 42/923 posts/comments per day. Apart from one 

subreddit, namely ‘globeskepticism’, all subreddit data came from the same time span, for 

the month of January in 2019. Because ‘globeskepticism’ is a somewhat new subreddit, 

the data for it in 2019 lacked volume. Consequently, we used data from June of 2020 for 

the ‘globeskepticism’ subreddit. In total, we ran our simulation for 19 different subreddits, 

selected for their practicable size and range of topics, with the deliberate intention of 

including both political and apolitical interests.  

The subreddits are listed in Table 5-1. Note that there are many other data items 

available. beyond just the text of posts and comments particular to Reddit, such as 

submission scores, but the goal here is to remain as social media platform agnostic as 

possible, so that a similar treatment may be applied to other social media platforms in 

future. The Python 3.8 code used to retrieve and preprocess the subreddit data can be found 

in Appendix B-1 and Appendix B-2. 
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Table 5-1: Average TSM for modeled subreddits 

Subreddit mass 

coefficient 
of 
variation 

std dev  
(TM = 6) 

Avg 
TSM  
(TM = 6) 

SandersForPresident 5558 0.068623 4.386 63.91 

flatearth 1569 0.026245 2.901 110.52 

trump 410 0.199327 49.252 247.09 

globeskepticism 211 0.230475 92.252 400.27 

science 34473 0.562384 200.495 356.51 

cars 21296 0.338548 270.981 800.42 

Republican 2170 0.900966 1492.658 1656.73 

SocialDemocracy 157 0.899004 1652.935 1838.63 

Freethought 155 0.674719 970.306 1438.09 

travel 12175 0.314357 568.333 1807.92 

math 5951 0.304073 802.086 2637.81 

NeutralPolitics 1822 0.842791 1997.171 2369.71 

PoliticalDiscussion 5709 0.393189 982.197 2498.03 

democrats 3279 0.332461 1244.097 3742.08 

hiking 3309 0.258738 994.055 3841.94 

republicans 84 0.864630 2821.868 3263.67 

mlb 1641 0.392950 2038.180 5186.87 

progressive 639 0.591066 3370.690 5702.73 

AmericanPolitics 141 0.318009 1837.753 5778.94 
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5.2. Gravity Well Model 

In examining the characteristics of echo chambers, it was determined that identifying the 

requirements for the formation of an echo chamber would be necessary to facilitate 

modeling social media groups to ascertain the presence, or absence, of an echo chamber. 

Following on our agreed definition of an echo chamber [28, p. 76], the keys of 

“magnifying” and “insulating” appeared central to these requirements. Considering those 

key terms, we posit that the foundation for the echo chamber effect is formed by three 

pillars that when combined create a synergistic effect difficult to resist for many social 

media users. These three pillars are: 1) technology, which acts as magnifier and insulator; 

2) topic, which serves as the initial draw and holding force; and 3) confirmation bias, which 

reflects the individual participant’s “seeking or interpreting of evidence in ways that are 

partial to existing beliefs, expectations, or a hypothesis in hand” [160]. 

As with the genesis of physics exploration, we begin our gravity well model using a 

Newtonian approach, with the aim of adding complexity as need arises.  To start, we 

employed Newton's law of universal gravitation [161, p. 141]: 

 𝐹 = 𝐺
𝑚1𝑚2

𝑟2  ()  

where 𝐺 is the universal gravitational constant, 𝑚1 and 𝑚2 are the masses of the bodies 

involved, and 𝑟 is the distance between the bodies. Translating this to the context of social 

media interest groups, we conceive that 𝑚1 would be the mass of the gravity well 𝑚w, 

nominally represented by the number of social media users (hereafter referred to as 

“simulation agents” or simply “agents”, being constructs of individual user data retrieved 

from social media) subscribed to or active in the interest group, while 𝑚2 would be 
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represented by the mass, 𝑚a, of a single agent of interest, to which we correspondingly 

affix a unitary value. Regarding the distance separating the masses, we conceived that the 

distance would be well represented by determining the distance between an individual and 

the aggregate echo chamber with respect to opinion or sentiment.   

With respect to this measure, by comparing the sentiment of an individual agent’s 

posts to the average of other agents’ posts within the same subreddit, we expected to arrive 

at a reasonable estimation of the social or opinion distance 𝑟 between the overall subreddit 

and the target agent, i.e., between 𝑚1 and 𝑚2 in (1). Ultimately, we employed the ratio of 

the disagreement between posts to the affinity of the agent for the overall topic of the social 

media interest group, i.e., for the subreddit topic. We will now explain how we obtain the 

disagreement and affinity measures. 

To accomplish these measurements, we employed the language representation model 

called Bidirectional Encoder Representations from Transformers (BERT). BERT is a pre-

trained transformer-based natural language processing tool created by authors at Google. 

Unlike many pre-trained language models, BERT uses bidirectional encoding to capture 

the context of usage of a given word, thus enabling it to distinguish between alternate uses 

of identical words. For our purposes, obtaining text embeddings for sentences provided us 

the capability to compare different posts, which we accomplished using a Sentence-BERT 

[162] library provided for Python. 

The disagreement measure was computed by first obtaining BERT text embeddings 

for all posts made within the time span of the initial data for the simulation (1 month). Each 

text embedding was then pairwise compared with every other text embedding using cosine 
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similarity. The disagreement for a single post was derived by taking the average cosine 

similarity of that post with all posts made by the entirety of the social media group, in this 

case various subreddits, and then taking its additive inverse, as the range of the similarity 

varies from −1 to 1. All such values are then averaged for all posts by a single author to 

obtain that author’s disagreement score.  

Likewise, we used BERT to estimate the affinity of an individual user to the topic of 

a subreddit by averaging the similarity between all the user’s posts and the published 

subreddit description. It is recognized that this measure of affinity has some obvious 

shortcomings with respect to any posts made that are essentially nonreflective of the 

subreddit description, not to mention that some subreddit descriptions are not particularly 

reflective of the group topic, but it is expected this shortcoming would be shared by all 

users. This has been flagged as an issue for further refinement in future efforts. With this 

approach, we arrive at a new “radius” based on the ratio of disagreement to affinity that we 

label 𝑟𝑑𝑎. 

The final remaining component within (1) is the universal gravitational constant 𝐺. 

As with the physical proportionality constant, it must be obtained through observation. For 

the purposes of our simulation, it serves as a tuning point for our simulation equation to 

return manageable results for the magnitudes and ranges of our input data. Thus far, it has 

been tuned to a value of 𝐺𝑤 = 10−6, though it may very well need adjustment as data from 

different social media platforms are added to the mix. 

Taking the analogies discussed thus far, we arrive at a new equation for the force in 

the gravity well simulation: 
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 𝐹𝑤 = 𝐺𝑤
𝑚𝑤𝑚𝑎

𝑟𝑑𝑎
2 , () 

where 𝐺w = 10−6, 𝑚w is the number of agents in the well, 𝑚a = 1, and 𝑟𝑑𝑎 is the ratio of 

the disagreement of the agent’s posts with the entirety of posts in the well to the affinity of 

the agent’s posts to the published subject of the social media group. 

Returning now to the implementation of our three pillars of an echo chamber, a user’s 

confirmation bias is intended as a modifier affecting the calculation of their affinity and 

thus affecting the value of 𝑟𝑑𝑎 in (2). Confirmation bias’s effect is currently earmarked for 

future study, and as such has been fixed at unity for all agents for the duration of this 

experiment. It was necessary to postpone implementation of confirmation bias due to the 

required effort to introduce a measure of a tendency towards confirmation bias that was 

both effective and translatable across most, if not all, social media platforms. Our survey 

of materials related to confirmation bias and social media revealed a paucity of results, 

where more studies like that reported in [163] would be of most benefit, by relating 

individual characteristics to a preference for confirmation bias. To embark on such studies 

ourselves would be an unwelcome distraction from the main thrust of this thesis, and we 

hypothesized that the model could provide meaningful insights without that pillar 

implemented, though it might necessarily limit the accuracy of prediction of individual 

behaviors. 

To incorporate the effects of the other two pillars, technology and topic, a technology 

modifier (𝑇𝑀) and a topic source modifier (𝑇𝑆𝑀) were introduced into (2), such that their 

magnitudes would be inversely proportional to the effect of that pillar on the echo chamber. 

𝑇𝑀, being representative of the magnifying and insulating action of the echo chamber, 
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logically affects the mass of the echo chamber, 𝑚1. Likewise, 𝑇𝑆𝑀 amplifies the affinity 

a user has for the social media group topic and thus affects the value of 𝑟𝑑𝑎. We considered 

implementing these modifiers instead as directly proportional to their effects by inverting 

them and limiting their ranges to 0 ≤ 𝑇𝑀 ≤ 1 and 0 ≤ 𝑇𝑆𝑀 ≤ 1, which would have been 

extremely convenient for tuning, but chose to avoid the potential for complications with 

analysis and manipulation should some of these values approach zero. Incorporating these 

adjustments into (2) yields: 

 𝐹𝑤 = 𝐺𝑤
𝑇𝑀∙𝑚𝑤∙𝑚𝑎

(
𝑟𝑑𝑎
𝑇𝑆𝑀

)
2 , () 

 Figure 5-1 provides a visual overview of the gravity well construction. 

All the above outlines the basic construction of the gravity well simulation, except 

for what the equation yields. In the simulation, the expectation is that all agents within the 

gravity well at initialization, i.e., all users active in the modeled subreddit, will remain 

within the well until such time as the value 𝐹𝑤 in (2), that is the simulated force of gravity, 

falls below a threshold and permits the agent to escape the well. Here again, it was 

 

Figure 5-1: Gravity well structure 
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necessary to choose a threshold which worked well with the magnitude of values 

encountered during the simulation. This value was held constant for the duration of this 

experiment but may be adjusted in future as additional social media platforms are modeled. 

The Python code for the gravity well simulation can be found in Appendix B-3. 

5.3. Tuning the Model 

Having established the construction of the social media interest group gravity well, we can 

now turn to the use of the well to determine values of interest for the selected social media 

platform, Reddit. For each subreddit, a month’s worth of submissions and comments from 

all users in the subreddit are used to initialize agents for that simulated gravity well. The 

simulation is then run for 90 iterations, where, for each iteration, a subset of the agents is 

selected to attempt to exit the echo chamber. Currently, the only deliberate updates to an 

agent’s force equation (1) during simulation iterations are updates to an agent’s affinity 

and disagreement. An agent’s disagreement randomly varies around its original value. 

Individual affinity is likewise allowed to randomly vary, but that variation is designed to 

favor increasing over time, as research has indicated that biases tend to become more 

extreme within like-minded groups [164]–[167]. Additionally, though, the mass of the 

entire gravity well, 𝑚1 in (1), will naturally reduce as agents leave the echo chamber—for 

the current research, agents are allowed to leave but do not consider rejoining, though that 

capability exists and will be explored in future efforts. 

When tuning, we ran multiple instances of each social media group, i.e., for each 

subreddit. In tuning, we focus on the turning point where the first agents go from remaining 

in the gravity well to exiting. This is necessary, as either outcome—all agents remain in 

the well versus all agents exit the well—can be associated with an infinity of variable 



75 

values. The goals in tuning via running multiple simulations are, in turn: 

1. Determine a value for the universal gravitational constant 𝐺 that produces 

reasonable results for the range of data being explored and fixed values of 𝑇𝑀 

and 𝑇𝑆𝑀. 

2. Simultaneously tune all subreddits, using a fixed TSM value, to obtain a common 

value for TM, which is intended to represent the influence Reddit’s technology 

has on the echo chamber effect. To accomplish this, we set a goal of finding the 

minimum 𝑇𝑀 value that would result in approximately 10% of the agents 

escaping the gravity well within the 90 iterations. We were essentially seeking 

the turning point of each subreddit’s well going from holding all agents to 

initially allowing a few to escape, then selecting the minimum among these 𝑇𝑀 

values to represent the overall technological effect of Reddit, with any 

differences between subreddits attributed to each subreddit’s attraction to its 

members. 

3. Finally, tune for a unique 𝑇𝑆𝑀 value for each subreddit. To that end, once a 𝑇𝑀 

value was decided, we initiated 100 runs of the model for each subreddit, again 

for 90 iterations using that established 𝑇𝑀 value. The goal now was to tune the 

𝑇𝑆𝑀 for each run to allow approximately 1% of the agents to escape and thus 

again find the turning point. It is hypothesized that identifying the average 𝑇𝑆𝑀 

value for each subreddit’s turning point will yield insights into the nature of the 

gravity well associated with each subreddit. 

Figure 5-2 depicts the tuning process for the model, while the Python 3.8 code used 
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for tuning the simulation can be found in Appendix B-4. In the next section, we will discuss 

the results of running our gravity well simulation of echo chambers on subreddits. 

     

 

Figure 5-2: Tuning process 
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6. Gravity Well Simulation, Results, and Analysis 

Having produced a gravity well simulation designed to model the users in social media 

interest groups, it yet remains to demonstrate this model and determine its efficacy in 

identifying those groups which have the hallmarks of an echo chamber or have the potential 

to become destructive echo chamber should fake news be introduced into those chambers. 

6.1. Simulation 

To begin tuning, we chose to tune the TM first, as we require a constant value for Reddit 

in general to obtain relative TSM values for each subreddit. Thus, we first fixed the TSM 

to a constant value of 25 to ensure we would obtain a TM for Reddit with sufficient 

magnitude to allow tuning for individual TSM scores for each subreddit. It is the relative 

measures for TM and TSM that are of interest, so fixing the TSM at 25 was simply a 

convenient nominal value which we knew would be replaced with tuning later. Next, we 

tuned across all 19 subreddits, selecting the minimum TM value thus obtained as the TM 

for Reddit in general. After 100 independent tuning runs for all subreddits using  𝐺𝑤 =

10−6 and 𝑇𝑆𝑀 = 25, we arrived at a minimum value of 6 for the technology modifier 

(𝑇𝑀) for Reddit. As this value has no units and is simply intended to serve as a relative 

measure of the impact this social medial platform is having on the echo chamber, this value 

will suffice for our current experiment. In future, as more subreddits or other social media 

platforms are introduced into the model, this value may require adjustment. Using these 

values, 𝐺 = 10−6 and 𝑇𝑀 = 6, we then ran 100 simulations of each subreddit, to 

determine the average 𝑇𝑆𝑀 value that resulted from tuning according to 5.3. 

6.2. Results 

The results from tuning 𝑇𝑆𝑀 values for all the subject subreddits can be viewed in Table 
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5-1. As is evident in the table, with the subreddits sorted by ascending average 𝑇𝑆𝑀 and 

thus decreasing gravitational affect, the 𝑇𝑆𝑀 does not linearly correspond to the mass (or 

effectively the size) of the subreddit. The coefficients of variation and standard deviation 

are likewise relatively evenly distributed through the sorted TSM values, with no obvious 

clustering related to the 𝑇𝑆𝑀 results. There are clearly other things at play, with average 

𝑇𝑆𝑀 values ranging between 63.91 and 5778.94 for these 19 subreddits. The issue we wish 

to explore is whether these distinctions illuminate the occurrence of echo chambers in these 

subreddits. Our expectation is that subreddits with smaller 𝑇𝑆𝑀 values would suggest a 

more powerful hold on members, keeping them bound to the gravity well. Thus, those 

subreddits would be more prone to forming echo chambers. In contrast, the subreddits with 

larger 𝑇𝑆𝑀 values would essentially allow members to come and go at will. As mentioned 

previously, this does not imply the potential echo chamber is harmful or unhealthy, just 

that it has the hallmarks of an echo chamber.  

6.3. Analysis  

6.3.1. Validity of Simulation 

While the simulation seems to perform reasonably and in an expected manner, validation 

of the gravity well’s performance with respect to real data is needed to prove our primary 

hypothesis.  

 

 

To this end, we compared the exiting behavior of each agent in the simulation to the 

exiting behavior of its associated subreddit user. Table 6-1 highlights the results of this  

Hypothesis 1: An interest group on a social media 
platform can be effectively modeled as a gravity well. 
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comparison, where we can see that the mean average percent error (MAPE) of exiting 

behavior for all agents in each subreddit falls well below 5%, thus convincingly 

demonstrating that the gravity well simulation of the subreddits performs realistically and 

emphatically confirming Hypothesis 1. The Python 3.8 code used for calculating the MAPE 

values in Table 6-1 can be found in Appendix B-5 and Appendix B-6. 

Table 6-1: Mean Absolute Percent Error of Agent Exit Ordering 

subreddit MAPE (%) TSM Mass 

Freethought 1.15 1438 155 

republicans 1.55 3264 84 

AmericanPolitics 1.62 5779 141 

globeskepticism 2.40 400 211 

SocialDemocracy 2.49 1839 157 

trump 2.95 247 410 

travel 3.02 1808 12175 

Republican 3.10 1657 2170 

NeutralPolitics 3.13 2370 1822 

math 3.15 2638 5951 

progressive 3.17 5703 639 

flatearth 3.20 111 1569 

mlb 3.26 5187 1641 

democrats 3.93 3742 3279 

PoliticalDiscussion 4.09 2498 5709 

hiking 4.16 3842 3309 

cars 4.35 800 21296 

SandersForPresident 4.37 64 5558 

science 4.90 357 34473 
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6.3.2. Statistical Significance of TSM Values 

We first wish to establish if there is a statistically significant variation in calculated TSM 

values for the 19 subreddits. This is in essence our second hypothesis.  

 

 

We can establish this through an analysis of variance (ANOVA) calculation. With a 

null hypothesis that all the subreddit mean TSM values are equal and thus not statistically 

significant, we obtained a 𝑝𝑣𝑎𝑙𝑢𝑒 =  0.0. Thus, we reject the null hypothesis and conclude 

 

Figure 6-1: QQ Plot of ANOVA residuals versus normal line 

Hypothesis 2: The calculated TSM values serve as 
statistically significant discriminators for each 

subreddit. 
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there exists a statistically significant variation in the TSM values among the 19 subreddits. 

This result therefore confirms Hypothesis 2.  

To confirm that the data reasonably conforms to the ANOVA assumptions of 

normality, we first performed a Shapiro-Wilk test for normality by applying the 

scipy.stats.shapiro() function to the ANOVA residuals. This yielded a disturbingly small 

p-value of 1.059e-33, indicating that the null hypothesis of normality should be rejected. 

However, we also generated a QQ-plot (Figure 6-1) and a histogram (Figure 6-2) of the 

residuals from the ANOVA analysis. The residuals in Figure 6-1 follow the reference 

normal line in the QQ-plot; likewise, the histogram of residuals in Figure 6-2 looks 

approximately normal. Considering that research has shown that ANOVA is reasonably 

robust to nonnormality [168] and unequal variances [169], we are confident that ANOVA 

is appropriate for this analysis.  
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Figure 6-2: Histogram of ANOVA Residuals 
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Table 6-2: Multiple comparison of means for subject subreddits 

TSM-

1 group1 

TSM-

2 group2 meandiff p-adj lower upper reject 

64 SandersForPresident 111 flatearth 46.61 1 -688.0985 781.3185 FALSE 

64 SandersForPresident 400 globeskepticism 336.36 0.9848 -398.3485 1071.0685 FALSE 

64 SandersForPresident 357 science 292.6 0.9969 -442.1085 1027.3085 FALSE 

64 SandersForPresident 247 trump 183.18 1 -551.5285 917.8885 FALSE 

111 flatearth 400 globeskepticism 289.75 0.9973 -444.9585 1024.4585 FALSE 

111 flatearth 357 science 245.99 0.9997 -488.7185 980.6985 FALSE 

111 flatearth 247 trump 136.57 1 -598.1385 871.2785 FALSE 

357 science 247 trump -109.42 1 -844.1285 625.2885 FALSE 

400 globeskepticism 357 science -43.76 1 -778.4685 690.9485 FALSE 

400 globeskepticism 247 trump -153.18 1 -887.8885 581.5285 FALSE 

800 cars 111 flatearth -689.9 0.0965 -1424.6085 44.8085 FALSE 

800 cars 400 globeskepticism -400.15 0.9196 -1134.8585 334.5585 FALSE 

800 cars 357 science -443.91 0.8221 -1178.6185 290.7985 FALSE 

800 cars 247 trump -553.33 0.4402 -1288.0385 181.3785 FALSE 

1438 Freethought 1657 Republican 218.64 0.9999 -516.0685 953.3485 FALSE 

1438 Freethought 1839 SocialDemocracy 400.54 0.9189 -334.1685 1135.2485 FALSE 

1438 Freethought 800 cars -637.67 0.1889 -1372.3785 97.0385 FALSE 

1438 Freethought 1808 travel 369.83 0.9603 -364.8785 1104.5385 FALSE 

1657 Republican 1839 SocialDemocracy 181.9 1 -552.8085 916.6085 FALSE 

1657 Republican 1808 travel 151.19 1 -583.5185 885.8985 FALSE 

1839 SocialDemocracy 1808 travel -30.71 1 -765.4185 703.9985 FALSE 

2370 NeutralPolitics 2498 PoliticalDiscussion 128.32 1 -606.3885 863.0285 FALSE 

2370 NeutralPolitics 1657 Republican -712.98 0.0694 -1447.6885 21.7285 FALSE 

2370 NeutralPolitics 1839 SocialDemocracy -531.08 0.522 -1265.7885 203.6285 FALSE 

2370 NeutralPolitics 2638 math 268.1 0.999 -466.6085 1002.8085 FALSE 

2370 NeutralPolitics 1808 travel -561.79 0.4101 -1296.4985 172.9185 FALSE 

2498 PoliticalDiscussion 1839 SocialDemocracy -659.4 0.1447 -1394.1085 75.3085 FALSE 

2498 PoliticalDiscussion 2638 math 139.78 1 -594.9285 874.4885 FALSE 

2498 PoliticalDiscussion 1808 travel -690.11 0.0962 -1424.8185 44.5985 FALSE 

2638 math 3264 republicans 625.86 0.2166 -108.8485 1360.5685 FALSE 

3742 democrats 3842 hiking 99.86 1 -634.8485 834.5685 FALSE 

3742 democrats 3264 republicans -478.41 0.7147 -1213.1185 256.2985 FALSE 

3842 hiking 3264 republicans -578.27 0.354 -1312.9785 156.4385 FALSE 

5187 mlb 5703 progressive 515.86 0.579 -218.8485 1250.5685 FALSE 

5779 AmericanPolitics 5187 mlb -592.07 0.3101 -1326.7785 142.6385 FALSE 

5779 AmericanPolitics 5703 progressive -76.21 1 -810.9185 658.4985 FALSE 
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6.3.3. Differentiation of TSM Values 

 With this outcome, we are assured there are significant differences in the subreddits 

with respect to their 𝑇𝑆𝑀 values, but we do not know which subreddits differ from one 

another. To learn this, we performed a multiple pairwise comparison of means using 

Tukey’s HSD test. Of the 171 pairings, a full 135 rejected the null hypothesis with p=

0.05, indicating they were significantly different. The remaining 36 pairs appear equivalent 

and provide the most interesting insights into the simulation outcome. The results for the 

36 equivalent pairs that failed to reject the null hypothesis are provided in Table 6-2 – we 

omit the results for the 171 mismatched pairs due to space considerations. 

The results in Table 6-2 are sorted in ascending order of 𝑇𝑆𝑀 for the first subreddit 

of each pairing. Further, the magnitudes of the 𝑇𝑆𝑀s are highlighted on a color spectrum 

beginning with green for minimal values, yellow for mean values, and red for maximal 

values. This contrast aids observing the trends in the results. We have two extreme 

groupings, those pairs with minimal 𝑇𝑆𝑀 values in the first 14 pairings and those with 

maximal 𝑇𝑆𝑀 values in the last 6 pairings, with the remaining 16 moderate pairs standing 

between. Once again, we note that a small value for 𝑇𝑆𝑀 indicates a disproportionate 

ability to attract and keep agents within the well. Thus, we conclude that the first 14 pairs 

have the greatest potential to form echo chambers.  

The question now becomes, are these results reasonable and informative? While we 

do not currently have quantifiable measurements to inarguably determine if a particular 

subreddit is functioning as an echo chamber, we can make some observations on the 

makeup of these groupings.  
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 The first 14 pairings involve six unique subreddits, which we can think of as a 

minimal 𝑇𝑆𝑀 group. To understand the import of this group, it is informative to examine 

the descriptions of the involved subreddits (Table 6-3). Reviewing the text, we might 

conclude that these subreddits make little to no effort to hide their bias or intent. It becomes 

quickly evident that the cars and science subreddits are for enthusiasts and, as such, are 

intended to hold well-established positions on their subject matter. They are thus unlikely 

to be echo chambers of concern, though still possibly meeting the most innocuous 

definition of an echo chamber. We can also likely add flatearth to the list of innocuous 

subreddits, as it is apparent from Table 6-3 that it is a satirical interest group regarding the  

implausibility of the earth being flat.  

In contrast, though, the remaining subreddits in this group do have potential for not 

only being echo chambers, but also for being the type of echo chamber that could be abused 

Table 6-3: Minimal TSM subreddit descriptions 

subreddit description 

SandersForPresident Bernie Sanders 2024 

cars /r/Cars is the largest automotive enthusiast community on the Internet. We are 

Reddit's central hub for vehicle-related discussion including industry news, 

reviews, projects, videos, DIY guides,  stories, and more. 

flatearth Is the Earth actually flat? 

Where's the edge? 

How come we don't fall out? 

What about gravity? 

Learn all of this and more at this very serious subreddit. 

globeskepticism This is a safe community to discuss the shape of the earth, skeptics and 

researchers welcome.  We've examined all the evidence supporting spinning 

ball earth over the years and we're not convinced.  Disrespectful contributors 

will be banned.  Other conspiracy talk also welcome. 

science This community is a place to share and discuss new scientific research. Read 

about the latest advances in astronomy, biology, medicine, physics, social 

science, and more. Find and submit new publications and popular science 

coverage of current research. 

trump This community is for discussing the 45th US president and all things 

associated. 
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to introduce and incubate fake news items. This does not mean they have, just that they are 

primed for that possibility. Further analysis on the quality and reliability of the actual 

content being generated would be required to ascertain if these subreddits have been 

exploited for those purposes. These remaining three, SandersForPresident, 

globeskepticism, and trump, all have the potential to push a very targeted agenda. 

Continuing to the maximal 𝑇𝑆𝑀 group in the last six pairings, it also consists of six 

unique subreddits, despite being a smaller group of pairings. Those six subreddits appear 

in Table 6-4. It is interesting that this much smaller grouping has an equal number of unique 

subreddits as the minimal 𝑇𝑆𝑀 group. While there is a preponderance of political 

subreddits in this second group, those political subreddits (AmericanPolitics, progressive, 

republicans, and democrats) are either more party-centered or intentionally party-agnostic, 

while the political subreddits in the minimal 𝑇𝑆𝑀 group were more personality focused. 

The remaining two subreddits in this group are purely recreational. It is interesting that 

Table 6-4: Maximal TSM subreddit descriptions 

subreddit description 

democrats The Democratic Party is building a better future for everyone and you can help. 

Join us today and help elect more Democrats nationwide! 

This sub offers daily news updates, policy analysis, links, and opportunities to 

participate in the political process. We are here to get Democrats elected up and 

down the ballot. 

hiking The hikers' subreddit. 

mlb Subreddit for Major League Baseball. From discussions, news, and highlights 

from all thirty MLB teams. 

AmericanPolitics A place to discuss the American political process, American political topics, the 

political parties, elected officials, candidates, and American foreign policy. 

republicans PRO-REPUBLICAN SUBREDDIT FOR ADULTS! 

progressive A community to share stories related to the growing Modern Political and Social 

Progressive Movement. 

The Modern Progressive Movement advocates change and reform through 

directed governmental action. The Modern Progressive Movement stands in 

opposition of conservative or reactionary ideologies. 
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these two recreational subreddits, mlb and hiking, should produce large 𝑇𝑆𝑀 values, while 

the two recreational subreddits in the minimal 𝑇𝑆𝑀 group, cars and science, produce the 

opposite. 

To establish the likenesses and differences between the minimal and maximal TSM 

groups, we submitted the entirety of the posts from each subreddit, both original 

submissions and comments, to Google’s Perspective Comment Analyzer (PCA) API19. As 

noted by the API website, the aim for the PCA is to use the power of machine learning to 

reduce online toxicity. In short, the PCA API seeks to rate text according to seven 

measures: toxicity, severe toxicity, insult, profanity, identify attack, threat, and sexually 

explicit. For our purposes, we focused on using the API to determine if one group tended 

to be more severe than another according to four of those labels: toxic, severely toxic, 

insulting, and threatening. Our expectation is that potentially harmful echo chambers would 

score higher on these indices.  

The results of this analysis may be viewed in Table 6-5. Again, the subreddits are 

ordered by increasing TSM value to facilitate comparing the minimal and maximal TSM 

groups. It is immediately apparent that those groups do not separate themselves based on 

these negative criteria of being toxic, severely toxic, insulting, or threatening. What is 

apparent is that the groups formed around political themes do tend to score higher in the 

toxic, severely toxic, and insulting categories, with two notable exceptions: the 

 

 

19 https://www.perspectiveapi.com/ 
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SandersForPresident subreddit, while clearly political, scores relatively low in those 

categories, and the flatearth subreddit, which would generally not be considered a political 

topic but rather a satire, scores relatively high. Finally, it is notable that the only standout 

result in the threatening category is in the republicans subreddit, which scores 

comparatively high. Further analysis of the subreddits in these two groups is certainly 

warranted. Appendix B-7 contains the Python 3.8 code used to retrieve the toxicity data for 

the posts for each subreddit from Google’s Perspective Comment Analyzer API. 

 

Table 6-5: Minimal and Maximal Subreddit Group Perspective Analysis 

TSM subreddit tox sev_tox insult threat 

64 SandersForPresident 0.145977 0.012856 0.100261 0.017066 

111 flatearth 0.210197 0.035424 0.157614 0.019701 

247 trump 0.219781 0.033391 0.172795 0.024620 

357 science 0.091539 0.005029 0.050391 0.016454 

400 globeskepticism 0.091412 0.008832 0.061091 0.010954 

800 cars 0.094910 0.007934 0.055654 0.013554 

2638 hiking 0.062757 0.005289 0.030742 0.014378 

3264 republicans 0.177229 0.011559 0.123996 0.035883 

3742 democrats 0.195538 0.020979 0.142528 0.022767 

5187 mlb 0.121920 0.012256 0.081324 0.015289 

5703 progressive 0.193169 0.020748 0.140391 0.023045 

5779 AmericanPolitics 0.207802 0.017407 0.163453 0.016617 
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7. Conclusions and Future  

7.1. Conclusions 

The full spectrum and impact of this thesis is difficult to capture. The overall goal of this 

study was to discover ways to combat the onslaught of fake news plaguing American and 

global society. That began with framing a model for representing fake news in its many 

guises. The fake news model proposed here is ambitious and comprehensive. As the 

research progressed many useful perspectives were gained, and the potential for the model 

explored.  

One key takeaway was the insight that identifying premises is a critical step in 

determining whether a news article is helpful or hurtful. If the premises of an article 

disagree with one’s understanding of truth, then it is unlikely that any subsequent 

arguments could be convincing. However, as previously noted, premises could be 

completely true and factual, wholly false and fabricated, or anywhere between. Thus, 

premises in themselves can be used for manipulation and misinformation. Unfortunately, 

premise recognition, and argument mining as a whole, remains a thorny problem. Likewise, 

furthering the goal of identifying misleading content using misdirection falls in that same 

category of relying on improvements to argument mining. Both these contributions are 

significant in theory, but as yet unproven in application. 

On the topic of identifying misleading content, recognizing bias and manipulation 

are much closer to being realizable. While bias identification might rely on argumentation, 

which wraps back to concerns just raised, it can also be tackled from a linguistic 

perspective. Sentiment analysis has advanced rapidly in recent years, though it still 

sometimes struggles with accuracy [170]. Simply identifying the balance of pro and con 
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statements in an article can highlight the balance of an article. Similarly, recognizing 

manipulation can rely heavily on linguistic approaches. Thus, these two aspects of the fake 

news model could be effectively realized and represent ready contributions to the overall 

fake new model once the hurdle of argument mining is overcome. Since argument 

identification is not ready for implementation, a more foundational contribution to the fake 

new problem was sought. This is how we arrived at investigating echo chambers. 

While much work remains to demonstrate the full potential of employing a gravity 

well model to simulate the behavior of social media platforms, our initial results encourage 

further investigation. Our primary hypothesis, that interest groups within social media 

platforms can be effectively modeled with a gravity well simulation, was convincingly 

confirmed for subreddits (interest groups) within the Reddit social media platform by our 

analysis of the exiting behavior of the agents in our simulation in 6.3.1 and in Table 6-1. It 

is interesting to note that this approach is thoroughly dynamic in its approach, relying on 

the effects of a simulation evolving over time to trace the waxing and waning of interest 

groups within social media platforms.  

Further, per our discussion in the Results, Analysis, and Discussion section regarding 

identifying echo chambers, it can be seen that the ranking and grouping of subreddits by 

TSM does not equate simply to an ordering of the groups by size, which one might suspect 

of a gravity-based model, nor does it correspond to the toxicity of the conversations 

contained within individual subreddits. Thus, we conclude that associating low TSM 

values with echo chamber propensity has some promise. As previously mentioned, there is 

currently no standard for conclusively identifying echo chambers, so determining the 

validity of our findings remains somewhat open to interpretation and subjectivity. All of 
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which points to several goals for future work, the subject of the next subsection. 

7.2. Future Work 

An obvious next step for the echo chamber model will be to apply the gravity well 

simulation to other social media platforms. This will entail fine-tuning the model and its 

parameters further to enable the incorporation of these additional social media platforms, 

as well as adjusting the gravitational force thresholds required for entry to and exit from 

the gravity well. For this study, the entry threshold was set to ensure no agents re-entered 

the gravity well once they exited. Future work will enable agents to rejoin the gravity well 

should conditions warrant it. Finally, the universal gravitational constant might also require 

tuning to allow for a wider spectrum of social media platforms. Throughout these 

adjustments, the results obtained for Reddit should remain stable between the subreddits, 

despite their magnitudes shifting to accommodate additional social media platforms. 

As previously identified, there is also room for improvement with the calculation of 

the affinity of an individual for a given group topic. The current calculation makes use of 

a subreddit’s own description, which sometimes is relevant to the content of submissions, 

but sometimes is only guidance for the participants with little relevance to the actual 

content of submissions. Additionally, while subreddits have a published group description, 

there is no guarantee as to their existence or accuracy for other social media platforms. 

Developing a general measure of affinity between a group’s users and the central theme or 

purpose of the group would enhance the effectiveness of the simulation. This requires a 

cross-platform analysis of a spectrum of social media platforms to yield a suitable measure 

of affinity that works for most if not all social media platforms. 
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Another area for improvement in the gravitational model is to flesh out the definition 

and use of the tendency for confirmation bias for each user (agent) in the simulation. 

Confirmation bias has been well-studied in academia [160], [171], [172], but measuring 

that tendency for individual social media users remains a challenge, though a highly 

desirable goal.  

Finally, an immediate goal is to continue exploring methods for concretely 

identifying the existence of echo chambers, no matter how laborious, so that we have a 

method for establishing the efficacy of our proposed echo chamber model. Corresponding 

with that is the desire to further distinguish the results and findings from this current 

experiment, particularly with respect to identifying what separates the minimal and 

maximal TSM groups. One possibility that occurs is to attempt further analysis of text 

postings for hints of fake news content or influences could prove especially helpful. A 

return to the spatial aspects of texts yielded by DGs might prove an effective addition to 

the temporal strengths of the simulation. As our initial investigation into DGs was quite 

limited, revisiting DGs and additional network analysis could potentially yield insights on 

the type of content being generated in the low- and high-TSM subreddits, and thus help 

with distinguishing harmful echo chambers from innocuous ones.  

Beyond all those goals for the echo chamber model, there remains the subject of the 

overarching fake news framework. Much work remains to produce a completely 

functioning version of that framework. Some of that is a matter of effort and resources, as 

well as speed, if there is any hope of competing with the rapid advances in fake news 

generation. Generative artificial intelligence [173], such as that found in OpenAI’s 
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generative pre-trained transformers (GPTs) and ChatGPT20 [174], and in Google Bard21, 

hold a great deal of promise, both for positive efforts and destructive efforts like fake news. 

Beyond that, some aspects of the framework are still very much in the research stage. 

Argumentation analysis requires yet more basic research to advance the concept to the 

point where it might be employed in a production suite. Therefore, a long-term goal for 

fake news identification is the production of a framework for readily and reliably 

identifying fake news, and we firmly believe our proposed framework could be a 

significant contributor to that effort, but a much larger, well-financed effort would be 

required to turn that proposed framework into reality. Hence, for a more immediate 

contribution, the gravity well model for echo chambers promises a much speedier path to 

actionable outcomes.  

 

 

20 https://openai.com/blog/chatgpt 

21 https://bard.google.com/ 

https://openai.com/blog/chatgpt
https://bard.google.com/
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Appendices 

Appendix A. Bayesian Knowledge Bases 

When reasoning with BKBs representing a 

probabilistic complex system, there are typically 

three different questions to answer that may be the 

goal of the analysis [98]: 

1. What is the most probable state of the world 

given the evidence? 

2. What is the most likely state of an RV given 

the evidence? 

3. What is the most probable composite state of 

a set of RVs given the evidence? 

For the analysis in this thesis, the question to 

be answered was that of number 2 – what is the 

probable value of an RV given an initial state of 

the model updated by player information as time 

progresses? The updated information in this 

context was gained by observing player moves 

over time. 

To accomplish this, an initial BKB was built 

to represent the desired starting conditions, 

including a first estimate of probabilities for all 

RVs. Figure A-1 represents one such initial BKB. 

As can be observed, a BKB consists of 

 

Figure A-1: Initial BKB 



95 

instantiation nodes (I-nodes) and support nodes (S-nodes), connected by directed edges. 

Each I-node represents a particular state of some random variable. S-nodes may have zero 

or more incoming edges and only one outgoing edge. Each S-node encodes the if-then rule 

consisting of these I-nodes and which represents the probability value of the rule.  

Once an initial BKB is formed, it can be updated through a process known as belief 

updating. Belief updating employs Bayes’ theorem to perform Bayesian inferencing [175] 

to incorporate new information as it becomes available. Belief updating can be used to 

identify probable states and their statistical probabilities. This will change as new 

information, in this case in the form of an action BKB generated for each player’s most 

recent action, is incorporated into the model using a process called BKB fusion—explained 

in detail in [176]. For the example at hand, the model is also fused with a strategy identifier 

BKB, the goal of which was to provide an updated estimate of the current strategy 

(weak/strong egalitarian, weak/strong selfish, or weak/strong maximizer) and therefore the 

probable next play for a given player, based on updates to the player’s actions. Updates 

such as these can then be performed for each new action to provide updated predictions of 

each player’s move for the next turn. 
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Appendix B. Gravity Well Code 

Appendix B-1. par_process_pushshift_authors.py 

''' 

Parallel process specified .zst archive file for specified subreddit auths.json  

file. Essentially retrieves list of authors from auths.json file to  

search for through .zst archive file and retrieve all posts and comments 

by those authors. Must call script from commandline with .zst filename and  

auths.json filename as parameters. 

''' 

 

import zstandard as zstd    # for .zst compressed files 

import argparse     # for parsing commandline arguments 

import json     # for processing json files 

import pandas as pd     # use pandas Python Data Analysis Library 

import datetime as dt 

import pathlib  # for current execution directory info 

from multiprocessing import Pool    # multiprocessor pool 

from multiprocessing import cpu_count   # get cpu count 

import sys      # for sys.exit 

 

def process_line(line): 

#   global posts_df 

    obj = json.loads(line) 

    # do something with the object here 

    if obj['author'] in authors_list: 

        # return DF with only desired keys/columns 

        return pd.DataFrame([{k: obj[k] for k in keys_to_keep}]) 

 

# Begin processing for call from command line with optional output folder name 

if __name__ == "__main__": 

    if not len(sys.argv) > 1: 

        sys.exit("Must call script from commandline with .zst filename and " + 

                "auths.json filename as parameters.") 

 

# Use auto python doc description 

    my_parser = argparse.ArgumentParser(description=__doc__, 

            formatter_class=argparse.RawDescriptionHelpFormatter)                      

# process zst file parameter 

    my_parser.add_argument('zstfile', 

        help="specify .zst filename to be decompressed and streamed", 

        type=str)  
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# process authors json file parameter 

    my_parser.add_argument('authsfile', 

        help="specify authors json filename for filtering authors", 

        type=str)  

    my_args = my_parser.parse_args()  

 

    try: 

        zstfp = pathlib.Path(my_args.zstfile) 

        if not zstfp.exists(): 

            raise FileNotFoundError(f'zstfile {str(zstfp)} does not exist!') 

        authsfp = pathlib.Path(my_args.authsfile) 

        if not authsfp.exists(): 

            raise FileNotFoundError(f'authsfile {str(authsfp)} does not 

exist!') 

        # Create found author posts json file from file arguments 

        json_fp = pathlib.Path(zstfp.parent, authsfp.stem + '_' + zstfp.stem + 

'.json') 

        json_fp.touch(exist_ok=False)   # create file to mark eventual output 

file 

    except FileExistsError: 

        raise FileExistsError(f'\n\n*** {str(json_fp)} already exists! Exiting 

script...') 

 

# columns to be saved from input file 

    keys_to_keep = ['author', 'author_created_utc','author_fullname', 

            'created_utc','id','permalink','subreddit','subreddit_id'] 

 

# create list of authors with whose posts we are concerned 

    with open(authsfp, 'r') as af: 

       auth_df = pd.DataFrame(json.load(af)) 

    authors_list = list(auth_df['author']) 

    authors_list.remove('[deleted]')  # remove deleted author posts 

#authors_list = ["bethanyk98","shingofan","_Renlor"] 

 

# code snippet from Watchful at  

## 

https://www.reddit.com/r/pushshift/comments/ajmcc0/information_and_code_example

s_on_how_to_use_the/ef012vk/ 

    obj = None  # placeholder to ensure obj is accessible in iPython 

    posts_df = pd.DataFrame()   # create empty DF for incrementally adding 

objects 

    processes = cpu_count()     # identify nbr of processors available 
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    print('Utilizing %d cores' % processes) 

    pool = Pool(processes)      # create pool of processes 

    with open(zstfp, 'rb') as fh: 

        dctx = zstd.ZstdDecompressor(max_window_size=2147483648) 

        with dctx.stream_reader(fh) as reader: 

            chunk_ctr = 1   # show progress when processing chunks 

            previous_line = "" 

            print('Processing chunks...' + dt.datetime.now().strftime( 

                "%Y/%m/%d %H:%M:%S")) 

            while True:  

#       if True:    # added to leave indents with 'while' commented out 

                chunk = reader.read(2**24)  # 16mb chunks 

                if not chunk: 

                    break 

                print(f'\tProcessing chunk number: {chunk_ctr:10d}',end='\r') 

                chunk_ctr += 1 

                string_data = chunk.decode('utf-8') 

                lines = string_data.split("\n") 

                lines[0] = previous_line + lines[0]   # chunk broken in middle 

of line 

 

                # don't process last (incomplete) line 

                results = pool.map(process_line,lines[:-1]) 

                posts_df = pd.concat([posts_df]+results,ignore_index=True) 

 

                previous_line = lines[-1]   # chunk may have broken in middle 

of line 

         

# Write found author posts to json file 

    print(f'\nWriting dataframe to json file {str(json_fp)}.') 

    posts_df.to_json(json_fp, orient='records') 

             

    print("\nFinished: " + dt.datetime.now().strftime("%Y/%m/%d %H:%M:%S")) 
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Appendix B-2. par_process_pushshift_agreement.py 

''' 

Parallel process specified month and year .zst comment and submission archive  

files for specified subreddit, examining (dis)agreement among author posts and  

comments with entire subreddit. Search .zst archive files for subreddit posts  

and comments, then evaluate (dis)agreement among all posts for that month for  

that subreddit. If json file already exists, reads processed data from file. 

Must call script from commandline with year, month, and subreddit name as  

parameters. The script expects to run in same directory where files will be  

accessed and stored. This script is a precursor to the "sr_sim_ec.py" script. 

''' 

 

import par_zst_to_df as pz     # local module for converting zst to dataframe 

import praw     # for accessing reddit feeds 

import zstandard as zstd    # for .zst compressed files 

import argparse     # for parsing commandline arguments 

import json     # for processing json files 

import pandas as pd     # use pandas Python Data Analysis Library 

import datetime as dt 

import pathlib  # for current execution directory info 

import sys      # for sys.exit and sys.argv to check number of arguments 

import numpy as np 

from sentence_transformers import SentenceTransformer 

from tqdm import tqdm 

from sklearn.metrics.pairwise import cosine_similarity  # for similarity calc 

 

def get_sr_description(subreddit,fp): 

    ''' Method to retrieve subreddit description from reddit and save to file 

''' 

    secret = "hK8rMgJ801dpo6sMvpCqKyvwqXDMeA" 

    cid = "meUVxGWvFqe9xTaDZsWvsQ" 

    user = "EC-desc-scraper" 

 

    # create read-only app instance 

    reddit_ro = praw.Reddit(client_id=cid, 

            client_secret=secret, 

            user_agent=user) 

    sr = reddit_ro.subreddit(subreddit) 

    fp.write_text(sr.public_description) # write subreddit description to file 

 

def create_std_text_col(posts_df): 

# Create text column with strings from either selftext, title, or body 
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    # First set text column for all rows to body, as there are usually more 

    ## comments than submissions 

    if 'body' in posts_df.columns: 

        posts_df['text']=posts_df.body 

    # now set all rows from submissions to selftext column 

    if 'selftext' in posts_df.columns: 

        posts_df.loc[posts_df['text'].isna(), 'text'] = posts_df.selftext 

    # finally, set all rows with no selftext to title column 

    elif 'title' in posts_df.columns: 

        posts_df.loc[(posts_df['text']=='') | (posts_df['text']=='[removed]'),  

            'text'] = posts_df.title 

# Insert entry in first row containing the subreddit description as text 

# Will use similarity with description to determine author affinity 

    tdf = pd.DataFrame([[subr,subr,subr_desc]], columns=['author', 

        'subreddit','text']) 

    posts_df = pd.concat([tdf,posts_df]).reset_index(drop=True) 

 

BATCH = 8   # batch size of 8 seems imperically most efficient for intuition 

nodes 

 

# Begin processing for call from command line with optional output folder name 

if __name__ == "__main__": 

    if not len(sys.argv) > 1: 

        sys.exit("Must call script from commandline with year, month, and " + 

                "subreddit name as parameters.") 

    print("\nBegan: " + dt.datetime.now().strftime("%Y/%m/%d %H:%M:%S")) 

 

# Use auto python doc description 

    my_parser = argparse.ArgumentParser(description=__doc__, 

            formatter_class=argparse.RawDescriptionHelpFormatter)                      

# process zst file parameter 

    my_parser.add_argument('year', 

            help="specify 4-digit year of .zst files to be decompressed and " + 

            "streamed", 

            type=str)  

    my_parser.add_argument('month', 

            help="specify 2-digit month of .zst files to be decompressed " + 

            "and streamed", 

            type=str)  

    my_parser.add_argument('subreddit', 

            help="specify subreddit name to be analyzed", 

            type=str)  
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    my_parser.add_argument('-b', '--batch', 

        default=BATCH, 

        help="specify batch size for BERT sentencetransformer " + 

            "(default: '%(default)s')", 

        type=int, 

        required=False)                                                              

    my_args = my_parser.parse_args()  

    subr = my_args.subreddit 

    batch_sz = my_args.batch 

    posts_df = pd.DataFrame()   # create DF for storing posts 

     

    # retrieve subreddit description from file or reddit, as appropriate 

    desc_fp = pathlib.Path(subr + '_desc.txt') 

    if not desc_fp.is_file(): 

        get_sr_description(subr,desc_fp) 

    subr_desc = desc_fp.read_text() 

    print(f'{subr}:\t{subr_desc}\n') 

 

    try: 

        # Create author data json file from supplied arguments 

        auths_fp = pathlib.Path(subr + '_' + my_args.year + '-' +  

                my_args.month + '_auths_agree.json.gz')   # compress file 

        auths_fp.touch(exist_ok=False)   # create file to mark output  author 

file 

    except FileExistsError: 

        # if file already exists, issue warning and exit 

        print(f"\t*** File {auths_fp} already exists! Move or delete file and 

retry. ***") 

        raise SystemExit 

     

    try: 

        # Create found posts json file from supplied arguments 

        agree_fp = pathlib.Path(subr + '_' + my_args.year + '-' +  

                my_args.month + '_agree.json.gz')     # compress file 

        agree_fp.touch(exist_ok=False)   # create file to mark eventual output 

file 

    except FileExistsError: 

        # if file already exists, read it in rather than parsing zst files 

        print(f"\tReading dataframe from {agree_fp}") 

        with open(agree_fp, 'rb') as f:  # need 'rb' for zipped files! 

            posts_df = pd.read_json(f,compression='gzip') 

        print(f'\tRead {posts_df.shape} dataframe from json file {agree_fp}.') 
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    else:   # otherwise parse zst files for required data 

        print(f"\tCreating dataframe for output to {agree_fp}") 

        rs_zstfp = pathlib.Path("RS_"+my_args.year+"-"+my_args.month+".zst") 

        if not rs_zstfp.exists(): 

            raise FileNotFoundError(f'zstfile {rs_zstfp} does not exist!') 

        rc_zstfp = pathlib.Path("RC_"+my_args.year+"-"+my_args.month+".zst") 

        if not rc_zstfp.exists(): 

            raise FileNotFoundError(f'zstfile {rc_zstfp} does not exist!') 

        print(f'Decompressing data from {rs_zstfp} and {rc_zstfp}.') 

        for zstfp in [rs_zstfp,rc_zstfp]: 

            if zstfp == rs_zstfp: 

                # columns to be saved from RS input file 

                keys_to_keep = ['author', 

'author_created_utc','author_fullname', 

                    'created_utc','id','is_self','permalink','subreddit', 

                    'subreddit_id','selftext','title'] 

            else: 

                # columns to be save from RC input file 

                keys_to_keep = ['author', 

'author_created_utc','author_fullname', 

                    'created_utc','id','permalink','subreddit','subreddit_id', 

                    'parent_id','body'] 

            posts_df = 

pz.decompress_file_chunks(zstfp,posts_df,[subr],keys_to_keep) 

        create_std_text_col(posts_df) 

        # drop None text entries 

        posts_df.dropna(subset=['text'],inplace=True) 

        # Write found subreddit posts to json file 

        print(f'\nWriting {posts_df.shape} dataframe to json file 

{str(agree_fp)}.') 

        posts_df.to_json(agree_fp, orient='records', compression='infer') 

         

    finally: 

        # Process posts for input into echo chamber model 

        ## i.e. run Bert on all documents to measure similarity 

        print("\n\tProcess dataframe for echo chamber model: " +  

                dt.datetime.now().strftime("%Y/%m/%d %H:%M:%S")) 

        print('jet - exiting for testing...') 

        sys.exit() 

 

        documents = posts_df.text 

        model_name =  'all-mpnet-base-v2' 
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        print(f"\n\tmodel = 

SentenceTransformer({model_name}),batch={batch_sz}") 

        model = SentenceTransformer(model_name) 

        text_embeddings = model.encode(documents, batch_size = batch_sz,  

                show_progress_bar = True) 

        similarities = cosine_similarity(text_embeddings) 

        # change similarity range to [0,1] 

        mns = np.min(similarities)     # get bottom of range 

        if mns < 0:     # if bottom of range is less than zero 

            similarities = similarities - mns 

        mxs = np.max(similarities)     # get top of range 

        if mxs > 1:     # if top of range is greater than one 

            similarities = similarities/mxs 

        # Get number of items in upper triangle (minus main diagonal) 

        srow_len = np.size(similarities,1) 

        # Get number of items in upper triangle (minus main diagonal) 

        nbr_sims = srow_len*(srow_len-1)/2 

        # Find upper and lower triangles of similarities matrix (minus diag) 

        sim_ut = np.triu(similarities,1) 

        sim_lt = np.tril(similarities,-1) 

        sult = sim_ut + sim_lt  # Create sim array with zero diagonal 

        # Calculate the average overall similarity 

        s_avg = sim_ut.sum()/nbr_sims 

        # Calculate average similarity and dissimilarity for each document 

        s_doc_avg = np.array([r.mean() for r in sult]) 

        d_doc_avg = 1 - s_doc_avg 

        # Find all (unique) authors in database 

        #authors = list(posts_df[:100].author.unique()) #testing 

        authors = list(posts_df.author.unique()) 

        # Calculate average sim & dissimilarity for each author and store in 

dataframe 

        auth_df = pd.DataFrame() 

        auth_df['author'] = authors 

        auth_df['avg_sim'] = [s_doc_avg[posts_df.author[posts_df.author== 

            auth].index].mean() for auth in authors] 

        auth_df['avg_diss'] = [d_doc_avg[posts_df.author[posts_df.author== 

            auth].index].mean() for auth in authors] 

        # Try diss to sim ratio for each author and store in DF 

        auth_df['diss_sim_ratio'] = auth_df['avg_diss']/auth_df['avg_sim'] 

        # Use similarity of authors' posts to description to determine affinity 

        auth_df['affinity'] = [similarities[0][posts_df.author[posts_df. 

            author==auth].index].mean() for auth in authors] 



104 

        # Try diss to affinity ratio for each author and store in DF 

        auth_df['diss_affinity_ratio'] = 

auth_df['avg_diss']/auth_df['affinity'] 

 

        # Write author data to json file for input to sim_ec.py 

        print(f'\nWriting {auth_df.shape} dataframe to json file 

{str(auths_fp)}.') 

        auth_df.to_json(auths_fp, orient='records', compression='infer') 

 

        print("\nFinished: " + dt.datetime.now().strftime("%Y/%m/%d %H:%M:%S"))  
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Appendix B-3. sr_sim_ec.py 

'''  

Gravity well echo chamber simulation for subreddits 

e.g. call: %timeit python3 sim_ec.py 

 

Reads json files for simulation parameters, e.g. 

******************************************************** 

{ 

    "NUMBER_ITERATIONS": 30, 

    "TOPIC_SOURCE_MODIFIER": 0, 

    "TECHNOLOGY_MODIFIER": 0 

} 

******************************************************** 

This script makes required use of files generated by 

the par_process_pushshift_agreement.py script. 

''' 

from jetlogging import * # customized logging module 

import argparse # for parsing commandline arguments 

from scipy.stats import truncnorm 

import json 

import random 

import math 

import numpy as np 

import pandas as pd 

import datetime as dt 

import sys      # for sys.exit and sys.argv to check number of arguments 

import pathlib  # for current execution directory info  

import csv      # for writing and reading simulation results  

import operator as op   # fascilitate passing arithmetic operators as 

parameters 

from functools import reduce  

 

# Define which attributes from agents file will be used in model  

AGENT_ATTRIBUTES = 

['author','avg_sim','avg_diss','affinity','diss_affinity_ratio'] 

class Agent: 

    def __init__(self,author,affinity,dissimilarity,bias_seeking=1): 

        ''' Agent class for representing members of EC ''' 

        self._bias_seeking = bias_seeking   # confirmation bias-seeking (1 = 

normal/neutral)  

        self.captured_ctr(0)   # track how long an agent has been in EC 

        self._author = author 
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        self._affinity = affinity*bias_seeking 

        # dissimilarity is a measure of the dissimilarity of an agent's posts 

        ## wrt other EC members's posts 

        self._dissimilarity = dissimilarity 

         

    def __init__(self,agt_rec,bias_seeking=1): 

        ''' Agent class for representing members of EC ''' 

        self._bias_seeking = bias_seeking   # confirmation bias-seeking (1 = 

normal/neutral)  

        self._captured_ctr = 0   # track how long an agent has been in EC 

        self._author = agt_rec.Index    # author column has been set to Index 

        # affinity is a measure of the similarity of an agent's posts  with the 

        ## central theme of EC, including affirmation bias-seeking affinity 

        self._affinity=agt_rec.affinity*self._bias_seeking 

        ''' 

        # affinity is a measure of the similarity of an agent's posts 

        ## wrt other EC members's posts 

        # always use bias_seeking modifier when setting affinity 

        self._affinity = agt_rec.avg_sim*self._bias_seeking 

        ''' 

        # dissimilarity is a measure of the dissimilarity of an agent's posts 

        ## wrt other EC members's posts 

        self._dissimilarity = agt_rec.avg_diss 

         

    @property 

    def captured_ctr(self): 

        '''Author represents agent's name in the subreddit.''' 

        return self._captured_ctr 

    @captured_ctr.setter 

    def captured_ctr(self,ctr): 

        self._capture_ctr = ctr 

 

    @property 

    def author(self): 

        '''Author represents agent's name in the subreddit.''' 

        return self._author 

    @author.setter 

    def author(self,author): 

        self._author = author 

 

    @property 

    def affinity(self): 
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        ''' 

        Affinity represents agent's attraction to EC theme, including  

        affirmation bias. 

        ''' 

        return self._affinity  

    @affinity.setter 

    def affinity(self,affinity): 

        if affinity < 0.01: 

            # Affinity cannot be less than or equal to zero (div by zero) 

            affinity = 0.01 

        # always use bias_seeking modifier when setting affinity 

        self._affinity = affinity*self._bias_seeking 

 

    @property 

    def dissimilarity(self): 

        '''Dissimilarity represents agent's contrast to others in echo 

chamber.''' 

        return self._dissimilarity  

    @dissimilarity.setter 

    def dissimilarity(self,dissimilarity): 

        if dissimilarity <= 0.01: 

            # Dissimilarity cannot be less than or equal to zero (div by zero) 

            dissimilarity = 0.01 

        self._dissimilarity = dissimilarity 

 

class EchoChamber: 

    ''' EchoChamber represents the EC and the agents captured within ''' 

    def __init__(self,agents_df,src_mod=1,tech_mod=1,exit_frac=0.1): 

        '''  

        Generate initial captured agents from provided agents dataframe. Note 

        that synthetic model only started with a single captured agent, but 

        subreddit model begins with all users already in the subreddit, and no 

        "free" agents. 

        ''' 

        # create generator for agents to consider exiting EC 

        self.exit_gen = np.random.RandomState() 

        # find max affinity, then track as each agent is captured 

        self.max_affinity = max(agents_df.affinity) 

        self._src_mod = src_mod  # represents pull created by misinformation 

sources 

        self._tech_mod = tech_mod    # represents pull created by OSN news 

feeds 
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        self._exit_frac = exit_frac     # fraction of agents to try to leave 

        # create list of captured agents, which all of them are to start 

        self.captured_agents = [Agent(agent_record)  

                for agent_record in agents_df.itertuples()] 

 

    def capture_agent(self,agent): 

        ''' Add agent to the captured_agents list ''' 

        # note: max_affinity never decreases, even if agent with max leaves 

        self.max_affinity = max(agent.affinity,self.max_affinity) 

        self.captured_agents.append(agent) 

 

    def release_agent(self,agt): 

        ''' Release indexed agent from the captured_agents list ''' 

        #jet self.captured_agents[idx].captured_ctr = 0 

        self.captured_agents.remove(agt) 

 

    def update_captured_agents(self): 

        '''  

        Update affinity for captured agents based on random normal draw ranging  

        between current agent affinity minus one sd to max EC affinity, with  

        mean set to current agent affinity. Update dissimilarity based on the  

        current size of the EC and how long each agent has been captured by the  

        echo chamber 

        ''' 

        for agt in self.captured_agents: 

            agt.captured_ctr += 1 

            # dissimilarity is a randomized function of size of EC 

            # use min function here to ensure dissimilarity does not exceed 1 

            agt.dissimilarity = min(1, 

                self.exit_gen.poisson(agt.dissimilarity*self.mass)/self.mass) 

            # in the EC, affinity is further catalyzed by misinformation  

            ## <cite> Cinelli, M., De Francisci Morales, G., Galeazzi, A., 

Quattrociocchi,  

            ### W., & Starnini, M. (2021). The echo chamber effect on social 

media.  

            ### Proceedings of the National Academy of Sciences, 118(9), 

e2023301118.  

            ### https://doi.org/10.1073/pnas.2023301118  

            ## <cite> Lyons, B. A., Montgomery, J. M., Guess, A. M., Nyhan, B., 

&  

            ### Reifler, J. (2021). Overconfidence in news judgments is 

associated with  



109 

            ### false news susceptibility. Proceedings of the National Academy 

of Sciences  

            ### of the United States of America, 118(23).  

            ### https://doi.org/10.1073/pnas.2019527118  

            # and group polarization 

            ## <cite>Sunstein, C. R. (2005). The Law of Group Polarization.  

            ### SSRN Electronic Journal. https://doi.org/10.2139/ssrn.199668 

            # Research indicates viewpoints usually become more extreme in ECs 

            if (agt.affinity < self.max_affinity):   # max affinity agt doesn't 

change 

                mean = agt.affinity 

                high = min(1,self.max_affinity) # ensure high <= 1 

                # We are using the right portion of a normal distribution to 

reflect 

                ## diminishing likelihood as the bias (affinity) becomes more  

                ## extreme, with some probability that the affinity could 

decrease 

                sd = (high - mean)/2 

                low = mean - sd 

                # use min to ensure affinity does not exceed 1 

                agt.affinity = min(1,truncnorm( 

                        a=(low-mean)/sd, b=(high-mean)/sd, loc=mean, 

scale=sd).rvs()) 

 

    def nbr_exiting(self): 

        '''  

        nbr_exiting represents the number of members considering exiting 

        the EC, ranging from zero to a given fraction of captured members, with 

        bias towards zero 

        ''' 

        return abs(random.randint(0,math.ceil(self.EXIT_FRAC*self.mass))- 

                random.randint(0,math.floor(self.EXIT_FRAC*self.mass))) 

 

    @property 

    def mass(self): 

        ''' mass represents size of EC and is number of captured agents ''' 

        return len(self.captured_agents) 

     

    @property 

    def eff_mass(self): 

        '''  

        eff_mass represents mass of EC multiplied by the social media's  
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        tech modifier  

        ''' 

        return self.mass*self._tech_mod 

 

    @property 

    def affin_mod(self): 

        '''  

        Property reflecting EC's ability to affect agent's affinity due to the  

        source/topic pillars. Coded to allow for dynamism if desired later  

        ''' 

        return self._src_mod 

 

    @property 

    def EXIT_FRAC(self): 

        '''  

        Fraction of captured agents to figure into determining nbr_exiting 

        ''' 

        return self._exit_frac 

 

    @property 

    def capt_DA_ratio(self): 

        capt_cnt = self.mass 

        if capt_cnt == 0: 

            return (0,0) 

        else: 

            # include affinity modifier for calculations within ec 

            return (sum(ag.dissimilarity for ag in 

self.captured_agents)/capt_cnt, 

                    sum(ag.affinity*self.affin_mod for ag in 

self.captured_agents)/capt_cnt) 

            ''' jet - simpler implementation ^there^ 

            return tuple(map(op.truediv,reduce(lambda x,y:  

                # include affinity modifier for calculations within ec 

                

(x[0]+y[0],x[1]+y[1]),[(agt.dissimilarity,agt.affinity*self.affin_mod) for  

                agt in self.captured_agents],(0,0)),(capt_cnt,capt_cnt))) 

            ''' 

             

class Simulation: 

    ''' Simulation represents the agents and environment outside the EC ''' 

 

    def __init__(self, agents_df, n_iterations, grav_const, src_mod,  
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            tech_mod, decay_rate, exit_frac, join_frac=0.1): 

        self._G = grav_const    # gravitational constant 

        # decay rate for dissimilarity and affinity after leaving EC 

        self._DECAY_RATE = decay_rate      

        self.agents_df = agents_df 

        self._NUM_ITERATIONS = n_iterations 

        self._JOIN_FRAC = join_frac 

         

        # create EC containing initial captured agents 

        self.ec = EchoChamber(self.agents_df,src_mod,tech_mod,exit_frac) 

 

        self.free_agents = []   # no free agents to start 

    # end of def __init__(self, ... 

 

    def liberate_agent(self,agent): 

        ''' Add agent to free_agents list ''' 

        self.free_agents.append(agent) 

 

    def remove_agent(self,agent): 

        ''' Remove indexed agent from the free_agents list ''' 

        self.free_agents.remove(agent) 

 

    def update_free_agents(self): 

        '''  

        For free agents, decay dissimilarity, affinity, and captured counter  

        based on time away from EC. 

        ''' 

        for agt in self.free_agents: 

            if agt.captured_ctr > 0: 

                agt.captured_ctr -= 1 

            # dissimilarity decays gradually to original value 

            orig_diss = self.agents_df.loc[agt.author].avg_diss 

            if agt.dissimilarity > orig_diss/self.DECAY_RATE: 

                agt.dissimilarity *= self.DECAY_RATE  # decay dissimilarity 

            else: 

                agt.dissimilarity = orig_diss 

            # affinity decays gradually to original value 

            orig_aff = self.agents_df.loc[agt.author].affinity 

            if agt.affinity > orig_aff/self.DECAY_RATE: 

                agt.affinity *= self.DECAY_RATE  # decay affinity 

            else: 

                agt.affinity = orig_aff 
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    def run_sim(self,join_exit_fn,join_force_threshold,exit_force_threshold, 

            rnd_exit,rnd_join,tune=-1,DEBUG=False): 

        # begin simulation 

        random.seed()    # needed to ensure unique RNG for child processes 

        if tune>-1:     # if tune parameter provided, can exit early when limit 

blown 

            logger.debug("Beginning tuning simulation for max of " + 

                    f"{self.NUM_ITERATIONS} iterations") 

        else: 

            logger.debug(f"\nBeginning simulation for {self.NUM_ITERATIONS} 

iterations\n") 

        pr_format='''{0}\t {1} \t\t{2[0]:0.4f}/{2[1]:0.4f}\t\t {3}\ 

                \t{4[0]:0.4f}/{4[1]:0.4f}''' 

        # prepare csv file for writing results for debugging 

        if DEBUG: 

            je_f = open(join_exit_fn,'w',newline='') 

            je_file_writer = csv.writer(je_f) 

            je_file_writer.writerow( 

                    ["Epoch","Joined","Joining","Join pct","Avg Join 

Force","Exited" 

                        ,"Exiting", "Exit pct","Avg Exit Force","EC-size-pct"] 

                    ) 

        for epoch in range(self.NUM_ITERATIONS): 

            # periodic output to show progress and trends 

            if DEBUG: 

                if (epoch%10==0): 

                    if (epoch%400==0): 

                        logger.trace("Epoch \t#free \t\tavgD/avgA" +  

                                "\t\t#captured\t\tavgD/avgA") 

                    logger.trace(pr_format.format(epoch,self.freedom, 

                        self.free_DA_ratio,self.ec.mass,self.ec.capt_DA_ratio)) 

             

            # update time in EC and values for affinity and dissimilarity 

            self.ec.update_captured_agents() 

 

            # decay dissimilarity and captured counter based on time away from 

EC 

            self.update_free_agents() 

 

            # need to select 'nbr_joining' agents to check if actually join 

            nbr_joining = self.nbr_joining() 
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            j_a_l = []  # list of joining agents 

            if rnd_join:    # randomly select joiners 

                # Evenly random selection  

                j_a_l = random.sample(self.free_agents,nbr_joining)    # joiner 

agents 

            else:       # select nbr_joing agents with highest affinity 

                j_a_l = sorted(self.free_agents,key=lambda a:  

                        a.affinity,reverse=True)[:nbr_joining] 

            # iterate through the joining agents to see if they join the EC 

            nbr_joined = 0 

            f_jtot = 0  # use to calculate average joining force for this epoch 

            for j_a in j_a_l: 

                # use ratio of dissimilarity to affinity (D/A) to influence 

prob of agents 

                #   being selected to be among the joining agents _considering_ 

joining EC 

                # F = G*((m1*m2)/r^2) to calculate force pulling joining agents 

into EC  

                #   where G = gravitation constant (set to 1 for convenience) 

                #   m1 = 1 (mass of solo joining agent) 

                #   m2 = self.ec.eff_mass, nbr of captured agents * science 

modifier 

                #   r = radius represented by ratio of dissimilarity to 

affinity (D/A) 

                jf = 

self.G*self.ec.eff_mass/(j_a.dissimilarity/j_a.affinity)**2 

                f_jtot += jf     # summing the joining forces 

                logger.trace("JF = {:.2f}".format(jf)) 

                if (jf>join_force_threshold) & (self.freedom>1):     # joiner 

captured if not last 

                    logger.trace(f'joining agent = {j_a.author}, ' + 

                            f'eff mass = {self.ec.eff_mass}, ' + 

                            f'diss = {j_a.dissimilarity}, '+ 

                            f'affinity = {j_a.affinity}') 

                    logger.trace(f'join force F = {jf:.2f}') 

                    self.ec.capture_agent(j_a) 

                    self.remove_agent(j_a) 

                    nbr_joined += 1 

            # now calculate the average joining force 

            f_javg = 0 if nbr_joining == 0 else f_jtot/nbr_joining 

            # need to select 'nbr_exiting' agents to check if actually exit 

            nbr_exiting = self.ec.nbr_exiting() 
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            x_a_l = []  # list of exiting agents 

            if rnd_exit:    # randomly select exiters 

                # Evenly random selection 

                x_a_l = random.sample(self.ec.captured_agents,nbr_exiting)    # 

exiter agents 

            else:       # select nbr_exiting agents with highest dissimilarity 

                x_a_l = sorted(self.ec.captured_agents,key=lambda a:  

                        a.dissimilarity,reverse=True)[:nbr_exiting] 

            # iterate through the exiting agents to see if they join the EC 

            nbr_exited = 0 

            f_xtot = 0  # use to calculate average exiting force for this epoch 

            # Select 'nbr_exiting' agents to check if actually exiting 

            for x_a in x_a_l: 

                # use ratio of dissimilarity to affinity (D/A) to influence 

prob of agents 

                #   being selected to be among the joined agents _considering_ 

exiting EC 

                # F = G*((m1*m2)/r^2) to calculate force pulling joining agents 

into EC  

                #   where G = 1 (gravitation constant) 

                #   m1 = 1 (mass of solo joining agent) 

                #   m2 = self.ec.mass, representing nbr of captured agents 

                #   r = radius represented by ratio of dissimilarity to 

affinity (D/A) 

                # Introduce an affinity modifier that incorporates the 

characteristics of EC  

          ## only in effect within the EC 

                xf = 

self.G*self.ec.eff_mass/(x_a.dissimilarity/(x_a.affinity*self.ec.affin_mod))**2 

                f_xtot += xf     # summing the exiting forces 

                logger.trace("XF = {:.2f}".format(xf)) 

                if (xf<exit_force_threshold) & (self.ec.mass>1):     # exiter 

released if not last 

                    logger.trace(f'exiting agent = {x_a.author}, ' + 

                            f'eff mass = {self.ec.eff_mass}, ' + 

                            f'diss = {x_a.dissimilarity}, '+ 

                            f'affinity = {x_a.affinity}, ' + 

                            f'aff*mod = {x_a.affinity*self.ec.affin_mod}') 

                    logger.trace(f'exit force F = {xf:.2f}') 

                    self.liberate_agent(x_a) 

                    self.ec.release_agent(x_a) 

                    nbr_exited += 1 
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            # now calculate the average exiting force 

            f_xavg = 0 if nbr_exiting == 0 else f_xtot/nbr_exiting 

            logger.trace("'nbr joined' = {}/{},\t'nbr exited' = {}/{}".format( 

                nbr_joined,nbr_joining,nbr_exited,nbr_exiting)) 

            # write data to csv, while avoiding div by zero 

            joined_pct = 0 if nbr_joining == 0 else nbr_joined/nbr_joining 

            exited_pct = 0 if nbr_exiting == 0 else nbr_exited/nbr_exiting 

            outstr1 = 

f'{epoch},{nbr_joined},{nbr_joining},{joined_pct*100:.2f},' 

            outstr2 = 

f'{f_javg:.3f},{nbr_exited},{nbr_exiting},{exited_pct*100:.2f},' 

            outstr3 = f'{f_xavg:.3f},{self.ec.mass/self.NUM_AGENTS*100:.2f}' 

            if DEBUG: 

                je_file_writer.writerow([outstr1+outstr2+outstr3]) 

            if tune>-1:     # if tuning, check to exit early 

                if len(self.free_agents)>tune:  

                    logger.debug(f'\tExiting early after {epoch+1} 

iterations.') 

                    return epoch+1    # no point in tuning now! 

        # print result at end of simulation 

        logger.debug("Epoch \t#free \t\tavgD/avgA\t\t#captured\t\tavgD/avgA") 

        logger.debug(pr_format.format(self.NUM_ITERATIONS-1,self.freedom, 

            self.free_DA_ratio,self.ec.mass,self.ec.capt_DA_ratio)) 

        logger.debug(f"\n\t\tSimulation complete.") 

        if DEBUG: 

            je_f.close() 

        return epoch+1 

    # end of def run_sim(self): 

 

    def nbr_joining(self): 

        '''  

        nbr_joining represents the number of members considering (re)joining  

        the EC, ranging from zero to a given fraction of free members, with 

        bias towards zero 

        ''' 

        return abs(random.randint(0,math.floor(self.JOIN_FRAC*self.freedom))- 

                random.randint(0,math.floor(self.JOIN_FRAC*self.freedom))) 

 

    @property 

    def freedom(self): 

        ''' Freedom represents the number of free agents ''' 

        return len(self.free_agents) 
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    @property 

    def free_DA_ratio(self): 

        free_cnt = self.freedom 

        if free_cnt == 0: 

            return (0,0) 

        else: 

            return (sum(ag.dissimilarity for ag in self.free_agents)/free_cnt, 

                    sum(ag.affinity for ag in self.free_agents)/free_cnt) 

            ''' jet - simpler implementation ^there^ 

            return tuple(map(op.truediv,reduce(lambda x,y:  

                (x[0]+y[0],x[1]+y[1]),[(agt.dissimilarity,agt.affinity) for  

                agt in self.free_agents],(0,0)),(free_cnt,free_cnt))) 

            ''' 

 

    # following properties represent object constants, as there are getters but 

no setters 

    @property 

    def G(self): 

        return self._G    # gravitational constant 

 

    @property 

    def DECAY_RATE(self): 

        return self._DECAY_RATE     # decay rate for affinity and dissimilarity 

     

    @property 

    def NUM_AGENTS(self): 

        return len(self.agents_df) 

 

    @property 

    def NUM_ITERATIONS(self): 

        return self._NUM_ITERATIONS 

 

    @property 

    def JOIN_FRAC(self): 

        return self._JOIN_FRAC 

# end class Simulation: 

 

def exit_prog(): 

    logger.debug("Exiting...") 

 

def get_agents(agfile): 
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    '''  

    Read simulation agent data. 

    ''' 

    try:    # try reading from uncompressed file first 

        with open(agfile, 'r') as f: 

            logger.debug(f'Reading agents from {agfile}.') 

            # Load only columns desired for agent definition and index by 

author 

            agents_df = pd.read_json(f)[AGENT_ATTRIBUTES].set_index('author') 

    except FileNotFoundError:     # unsuccessful -- try compressed file 

        agfile2 = agfile + '.gz' 

        logger.debug(f'File {agfile} not found. Trying {agfile2}') 

        try:    # try reading from compressed file 

            with open(agfile2, 'rb') as f:  # need 'rb' for zipped files! 

                logger.debug(f'Reading agents from {agfile}.') 

                # Load only columns desired for agent definition and index by 

author 

                agents_df = pd.read_json(f,compression='gzip')\ 

                        [AGENT_ATTRIBUTES].set_index('author') 

        except FileNotFoundError: 

            logger.error(f'Neither {agfile} nor {agfile2} found.') 

            raise 

    return agents_df 

 

def get_dat(rcfile,DEBUG=False): 

    '''  

    Read simulation parameters and agent data. 

        # "FILE_BASE": filename base used for creating in/output filenames 

        # "NUMBER_ITERATIONS": number of iterations for simulation 

        # "GRAVITY_CONSTANT": constant set to produce "reasonable" forces 

        # "TOPIC_SOURCE_MODIFIER": modifier multiplied to affinity  

        ## 0 <= TSM < 1 has dampening effect 

        ## TSM = 1 has no effect 

        ## TSM > 1 has magnifying effect 

        # "TECHNOLOGY_MODIFIER": modifier multiplied to ec's mass 

        ## 0 <= TM < 1 has dampening effect -- perhaps correction by social 

media 

        ## TM = 1 has no effect (neutral) 

        ## TM > 1 has magnifying effect -- likely standard mode for most social 

media 

        # "DECAY_RATE": decay rate for dissimilarity and affinity after leaving 

EC 
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        # "JOIN_FORCE_THRESHOLD": value gravity force must exceed to join EC 

        # "EXIT_FORCE_THRESHOLD": value gravity force must fall below to exit 

EC 

        # "RANDOM_JOINERS": boolean for whether random or prioritized joiners 

used 

        # "RANDOM_EXITERS": boolean for whether random or prioritized exiters 

used 

    ''' 

    logger.debug("Reading simulation parameters from {}/{}".format( 

        pathlib.Path().resolve(),rcfile)) 

    with open(rcfile,'r') as f: 

        parms = json.load(f) 

    basefn = parms.get('FILE_BASE') 

    # print out all values to record sim settings 

    for key,value in parms.items(): 

        logger.debug(f'{key} = {value}') 

    agfile = basefn + '_auths_agree.json' 

    agents_df = get_agents(agfile) 

    return (parms,agents_df) 

 

if __name__ != "__main__": 

    logger = logging.getLogger('jetlogger') 

 

# Begin processing for call from command line with optional json filename 

argument 

if __name__ == "__main__": 

    if not len(sys.argv) > 1: 

        sys.exit("Must call script from commandline with rc filename") 

    my_parser = argparse.ArgumentParser(description=__doc__, # Use auto python 

doc description 

        formatter_class=argparse.RawDescriptionHelpFormatter)                      

    my_parser.add_argument('-d', '--debug',dest='debug',action='store_true', 

            help="specify '-d' to enable extra debugging output") 

    my_parser.add_argument('-nd','--no-

debug',dest='debug',action='store_false', 

            help="specify '-nd' to disable extra debugging output") 

    my_parser.set_defaults(debug=False) 

    my_parser.add_argument('rcfile', 

        help="specify 'run commands' file containing sim parameters ", 

        type=str) 

    my_args = my_parser.parse_args() 

    logger = jetlogger(pathlib.Path(my_args.rcfile).stem+'.log',my_args.debug) 
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    logger.debug('Began') 

    (parms,agents_df) = get_dat(my_args.rcfile,my_args.debug) 

    '''jet - hold off on following change for now 

    # Find agents' exiting date (assumed last date means no exit) 

    # First, loop through all RC.zst files in reverse date order 

    paths = list(pathlib.Path('.').glob('RC*.zst')) 

    paths.sort(reverse=True) 

    for path in paths: 

        # now, for each file, look for last post made by each author 

    jet''' 

         

    # Create simulation. Unlike with synthetic data, the subreddit agents  

    # all start in the echo chamber. 

 

    # pass parameters (or default) to new sim object 

    sim = Simulation( 

            agents_df, 

            parms.get('NUMBER_ITERATIONS',90),    # defaults to nominal number 

            parms.get('GRAVITY_CONSTANT'), 

            parms.get('TOPIC_SOURCE_MODIFIER',1),   # one default has no effect 

            parms.get('TECHNOLOGY_MODIFIER',1),     # one default has no effect 

            parms.get('DECAY_RATE',0.9),     # 0.9 is a slow decay 

            parms.get('EXIT_FRAC',0.1),     # 1/10th of capt members try to 

leave 

            parms.get('JOIN_FRAC',0.1),     # 1/10th of free members try to 

join 

            ) 

    sim.run_sim( 

            parms.get('FILE_BASE') + '_je.csv', 

            parms.get('JOIN_FORCE_THRESHOLD',500),  

            parms.get('EXIT_FORCE_THRESHOLD',500), 

            parms.get('RANDOM_EXITERS',False), 

            parms.get('RANDOM_JOINERS',False), 

            -1,     # not tuning 

            my_args.debug 

            ) 

    logger.debug('Finished') 

    exit_prog() 
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Appendix B-4. sr_tune_sim.py 

'''  

Tuning for gravity well echo chamber simulation for subreddits 

''' 

from sr_sim_ec import * 

import argparse # for parsing commandline arguments 

import sys      # for sys.argv to check number of arguments 

from jetlogging import * # customized logging module 

from multiprocessing import Pool    # multiprocessor pool 

from multiprocessing import cpu_count   # get cpu count 

from multiprocessing import Queue   # add Queues for comm 

from multiprocessing import Manager   # needed to manage queues 

import numpy as np  # used for getting mean value 

from random import randint  # used to generate random integer 

from tqdm import tqdm   # Progress Bar Made Easy 

import pathlib  # for current execution directory info  

from concurrent.futures import ThreadPoolExecutor, as_completed 

 

def get_agfile(filebase): 

    ''' Ensure consistent setting of agents filename ''' 

    return filebase + '_auths_agree.json' 

 

def cntr(num1,num2): 

    ''' split difference between two nums, with rounding ''' 

    return round((num1+num2)/2) 

 

def tune_tm(subr_fb,tm_Q=None,DEBUG=False): 

    TM_NUDGE_LIM = 20 

    agents_df = get_agents(get_agfile(subr_fb)) 

    # Create simulation.  

    tm_val = tm_floor = 1    # use tm_val for tech mod; set lower limit to 

tuning 

    tm_ceil = TM_TUNE_MIN   # set upper limit to tuning 

    tm_prev = tm_val    # use prev to track last value  

    tm_ctr = 0     # use ctr to track nbr times prev and current are equal 

    tm_nudge_ctr = 0     # use nudge_ctr to track nbr times we've nudged 

    #tot_cnt = sys.maxsize   # ensure we enter the while loop 

    tm_targ = round(TM_TUNE_MOD*len(agents_df))   # reduce exiters according to 

mod 
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    targ_upper_rng = round(1.05*tm_targ+1)    # upper bound for acceptable 

target range 

    targ_lower_rng = round(0.9*tm_targ)      # lower bound for acceptable 

target range 

 

    #iters = 0 

    sim = None 

    logger.debug(f'*** Tuning {subr_fb} tm to allow escapes ~' + 

            f'{round(TM_TUNE_MOD*100)}% of EC ({len(agents_df)}) = {tm_targ}: 

***') 

    #return (randint(1,15))   #jet debug 

    #while tm_targ<tot_cnt and tm_val<TM_TUNE_MIN:   # exit if tm_val gets too 

large 

    while True: 

        logger.debug(f'\tStarted {subr_fb} loop for tm val = {tm_val} for ' + 

            f'~{targ_lower_rng} - {targ_upper_rng} allowed escapes') 

        sim = Simulation( 

                agents_df, 

                NBR_ITERS, 

                GC, 

                TSM,    # use tsm value from rc file 

                tm_val,     # use tm_val in place of tm 

                DR,     # decay rate 

                X_FRAC, 

                J_FRAC, 

                ) 

        sim.run_sim( 

                subr_fb + '_je.csv', 

                JFT, 

                XFT, 

                RX, 

                RJ, 

                targ_upper_rng,    # break early if tuning limit exceeded 

                DEBUG 

                ) 

        tot_cnt = len(sim.free_agents) 

        logger.debug(f'*** Finished {subr_fb} with {tot_cnt} free agents for ' 

+ 

                f'target of {targ_lower_rng} - {targ_upper_rng} on tm val ' + 

                f'= {tm_val}') 

        if tot_cnt in range(targ_lower_rng,targ_upper_rng): 

            break   # good enough 
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        elif tm_targ < tot_cnt:   # tm_val too small 

            if tm_val < tm_ceil:    # retune with new floor 

                tm_floor = tm_val   # reset floor 

            elif tm_ceil < TM_TUNE_MIN:     # retune with reset ceiling 

                tm_ceil = cntr(tm_ceil,TM_TUNE_MIN) 

            else:   # ceiling reached -- no need to tune further 

                tm_val = tm_ceil    # ensure tm_val is at ceiling 

                break 

        else:   # tm_val too large 

            if tm_val > tm_floor:   # retune with new ceiling 

                tm_ceil = tm_val    # reset ceiling 

            elif tm_floor > 1:  # retune with reset floor  

                tm_floor = cntr(tm_floor,1) 

            else:   # floor too large 

                tm_val = tm_floor   # ensure tm_val is at floor 

                break 

        if tm_nudge_ctr>TM_NUDGE_LIM:     # too many nudges 

            break 

        tm_val = cntr(tm_floor,tm_ceil) 

        if tm_val == tm_prev:  # nudge tm_val to change repetitive outcome 

            tm_ctr += 1 

            if tm_ctr > 2: 

                tm_nudge_ctr += 1 

                tm_val += randint(-tm_ctr,tm_ctr)    # nudge 

                logger.debug(f'\t\tnudged {subr_fb} tm {tm_nudge_ctr} times') 

        else:   # reset ctr 

            tm_ctr = 0 

            tm_prev = tm_val 

    logger.debug(f'*** Tuned {subr_fb} tm to {tm_val} for ' + 

            f'target escapes of ~{targ_lower_rng} - {targ_upper_rng} with ' +  

            f'actual of {tot_cnt} ***') 

    if tm_Q:    # if queue present from parallel processing 

        if tm_nudge_ctr>TM_NUDGE_LIM:     # too many nudges 

            tm_Q.put((subr_fb,0))    # return zero to indicate failed run 

        else: 

            tm_Q.put((subr_fb,tm_val))    # add tm_val to queue of results 

    if tm_nudge_ctr>TM_NUDGE_LIM:     # too many nudges 

        return 0    # return zero to indicate failed run 

    else: 

        return tm_val 

# end of def tune_tm(subr_fb,DEBUG=False): 
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def tune_tsm(subr_fb,tuned_tm,tsm_Q=None,DEBUG=False): 

    TSM_NUDGE_LIM = 20 

    agents_df = get_agents(get_agfile(subr_fb)) 

    tsm_floor = tsm_ceil = tsm_val = 1    # use tsm_val for topic source mod 

    tot_cnt = sys.maxsize   # ensure we enter the while loop 

    tsm_prev = tsm_val    # use prev to track last value  

    tsm_ctr = 0     # use ctr to track nbr times prev and current are equal 

    tsm_nudge_ctr = 0     # use nudge_ctr to track nbr times we've nudged 

    tsm_targ = round(TSM_TUNE_MOD*len(agents_df))   # reduce exiters according 

to mod 

    targ_upper_rng = round(1.02*tsm_targ+1)    # upper bound for acceptable 

target range 

    targ_lower_rng = round(0.96*tsm_targ)      # lower bound for acceptable 

target range 

    sim = None 

    logger.debug(f'*** Tuning {subr_fb} tsm to allow escapes ~ ' + 

            f'{round(TSM_TUNE_MOD*100)}% of EC ({len(agents_df)}) = {tsm_targ}: 

***') 

    #return (randint(1,15))   #jet debug -- uncomment to skip this calculation 

    # for tuning, TSM*LLM sets the maximum times tuning will try to converge  

    ## before aborting the tuning effort 

    while True: 

        logger.debug(f'\tStarted {subr_fb} loop for tsm val = {tsm_val} for ' + 

            f'~{targ_lower_rng} - {targ_upper_rng} allowed escapes') 

        sim = Simulation( 

                agents_df, 

                NBR_ITERS, 

                GC, 

                tsm_val,   # use tsm_val in place of tsm 

                tuned_tm, 

                DR,  # decay rate 

                X_FRAC, 

                J_FRAC, 

                ) 

        sim.run_sim( 

                subr_fb + '_je.csv', 

                JFT, 

                XFT, 

                RX, 

                RJ, 

                targ_upper_rng    # allow sim to break early if tuning limit 

exceeded 
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                ) 

        tot_cnt = len(sim.free_agents) 

        logger.debug(f'\tFinished {subr_fb} with {tot_cnt} free agents for ' + 

                f'target of {tsm_targ} on tsm val = {tsm_val}') 

        logger.trace(f'tsm_floor={tsm_floor},tsm_ceil={tsm_ceil},' + 

                f'tsm_val={tsm_val},targ_low={targ_lower_rng},' + 

                f'targ_high={ targ_upper_rng},freed={tot_cnt}') 

        if tot_cnt in range(targ_lower_rng,targ_upper_rng+1): 

            break   # good enough 

        elif tsm_targ < tot_cnt:   # tsm_val too small 

            if tsm_val < tsm_ceil:    # retune with new floor 

                tsm_floor = tsm_val   # reset floor 

            else: 

                tsm_ceil *= 10     # retune with reset ceiling 

                tsm_floor = tsm_val # raise the floor 

        else:   # tsm_val too large 

            if tsm_val > tsm_floor:   # retune with new ceiling 

                tsm_ceil = tsm_val    # reset ceiling 

            elif tsm_floor > 1:  # retune with reset floor  

                tsm_floor = cntr(tsm_floor,1) 

                tsm_ceil = tsm_val    # reset ceiling 

            else:   # tsm floor of '1' too large 

                tsm_val = tsm_floor   # ensure tsm_val is at floor 

                logger.info(f'\n\t***Unable to tune {subr_fb} tsm small 

enough!') 

                break 

        if tsm_nudge_ctr>TSM_NUDGE_LIM:     # too many nudges 

            break 

        tsm_val = cntr(tsm_floor,tsm_ceil) 

        if tsm_val == tsm_prev:  # nudge tsm_val to change repetitive outcome 

            tsm_ctr += 1 

            if tsm_ctr > 2: 

                tsm_nudge_ctr += 1 

                tsm_val += randint(-tsm_ctr,tsm_ctr)    # nudge 

                logger.debug(f'\t\tnudged {subr_fb} tsm {tsm_nudge_ctr} times') 

        else:   # reset ctr 

            tsm_ctr = 0 

            tsm_prev = tsm_val 

    logger.debug(f'*** Tuned {subr_fb} tsm to {tsm_val} for ' + 

            f'target escapes of ~{targ_lower_rng} - {targ_upper_rng} with ' +  

            f'actual of {tot_cnt} ***') 

    if tsm_Q:    # if queue present from parallel processing 
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        if tsm_nudge_ctr>TSM_NUDGE_LIM:     # too many nudges 

            tsm_Q.put((subr_fb,0))    # return zero to indicate failed run 

        else: 

            tsm_Q.put((subr_fb,tsm_val))    # add tsm_val to queue of results 

    if tsm_nudge_ctr>TSM_NUDGE_LIM:     # too many nudges 

        return 0   # return zero to indicate failed run  

    else: 

        return tsm_val 

# end of def tune_tsm(subr_fb,tuned_tm,DEBUG=False): 

 

if __name__ == "__main__": 

    if not len(sys.argv) > 1: 

        sys.exit("Must call script from commandline with rc filename") 

    my_parser = argparse.ArgumentParser( 

        description=__doc__, # Use auto python doc description 

        formatter_class=argparse.RawDescriptionHelpFormatter)                      

    my_parser.add_argument('rcfile', 

        help="specify 'run commands' file containing sim parameters ", 

        type=str) 

    my_args = my_parser.parse_args() 

    print("Reading tuning parameters from {}/{}".format( 

        pathlib.Path().resolve(),my_args.rcfile)) 

    with open(my_args.rcfile,'r') as f: 

        tune_parms = json.load(f) 

    subr_fbs = tune_parms.get("SUBREDDIT_FILEBASES") 

    DEBUG = tune_parms.get("DEBUG_TUNE",False) 

    PARALLEL = tune_parms.get("PAR_TUNE",True)  # execute in parallel 

    LLM = tune_parms.get("LOOP_LIMIT_MULTIPLIER",5) # to limit while loops 

    NBR_ITERS = tune_parms.get("NUMBER_ITERATIONS_TUNE", 90) 

    GC = tune_parms.get("GRAVITY_CONSTANT_TUNE", 0.00002) 

    TM = tune_parms.get('TM_MOD_TUNE',1)     # one default has no effect 

    # for tuning, TSM dictates the value used while initially tuning TM 

    ## in order to find a common (miniumum) TM value (specific to the  

    ## technology--in this case Reddit) to use while tuning TSM for 

    ## each specific subreddit 

    TSM = tune_parms.get('TSM_MOD_TUNE',1)   # one default has no effect 

    DR = tune_parms.get("DECAY_RATE_TUNE", 0.9) 

    X_FRAC = tune_parms.get("EXIT_FRAC_TUNE", 0.1) 

    J_FRAC = tune_parms.get("JOIN_FRAC_TUNE", 0.1) 

    JFT = tune_parms.get("JF_THRESHOLD_TUNE", 120) 

    XFT = tune_parms.get("XF_THRESHOLD_TUNE", 20) 

    RJ = tune_parms.get("RANDOM_J_TUNE", False)     # defaults to prioritized 
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    RX = tune_parms.get("RANDOM_X_TUNE", False)     # defaults to prioritized 

    TM_TUNE_MIN = tune_parms.get("TM_TUNE_MIN",99)     # used for mult tunings 

    TM_TUNE_MOD = tune_parms.get("TM_TUNE_MOD",0.1)     # default 10% 

    TSM_TUNE_MOD = tune_parms.get("TSM_TUNE_MOD",0.01)     # default 1% 

    # use to skip TM tuning and just use val in rc file 

    TSMONLY = tune_parms.get("TSMONLY", False)  

    # use to tune TM only and update val in rc file 

    TMONLY = tune_parms.get("TMONLY", False) 

    SR = tune_parms.get("SIM_REPS", 3) 

    COLORS = ['blue','green'] 

     

    logger = jetlogger(pathlib.Path(my_args.rcfile).stem+'.log',DEBUG) 

    logger.info(f'\n\tFrom {my_args.rcfile}, tuning {", ".join(subr_fbs)}') 

    if not TSMONLY: # tune technology modifier 

        logger.debug(f'\n\tBegin tuning with current TM MIN = {TM_TUNE_MIN}') 

        for key,value in tune_parms.items(): 

            logger.debug(f'\t{key} = {value}') 

        if PARALLEL:     # execute parallel tuning 

            # create all processes to run in parallel 

            with Pool() as tmpool: 

                tmbar = dict() 

                for idx,subr in enumerate(subr_fbs): 

                    # initialize tm_result with empty lists 

                    tm_result = {subr: [] for subr in subr_fbs} 

                    # create progress bars for each subreddit 

                    kwargs = { 

                        'total': SR, 

                        'unit': 'it', 

                        'unit_scale': True, 

                        'position': idx, 

                        'leave': True, 

                        'colour': COLORS[idx%2], 

                        'dynamic_ncols': True, 

                        'desc': f'TM tuning {subr}' 

                        } 

                    tmbar[subr] = tqdm(**kwargs) 

                tm_m = Manager() 

                tm_Q = tm_m.Queue() 

                # Start load operations and mark each proc with its subreddit 

                procs_tm = {tmpool.apply_async(tune_tm,(subr,tm_Q,DEBUG)):  

                        subr for subr in subr_fbs for __ in range(SR)} 

                # Create a (dynamic) list to iterate over 
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                procs_tml = [(p,sr) for p,sr in procs_tm.items()] 

                for proc,subr in procs_tml: 

                    try: 

                        (sr,r) = tm_Q.get() 

                        logger.debug(f'TM tune subreddit {sr}, result = {r}') 

                        if r:   # if a valid result queued 

                            logger.debug(f'TM tune {sr}, {r}') 

                            tm_result[sr].append(r) 

                            tmbar[sr].update(1) 

                            if tmbar[sr].n==SR:     # done with this bar 

                                tmbar[sr].close() 

                        else:   # requeue the job 

                            logger.debug(f'TM tune resubmit {sr}, result = 

{r}') 

                            p = tmpool.apply_async(tune_tm,(sr,tm_Q,DEBUG)) 

                            procs_tm[p]=sr 

                            procs_tml.append((p,sr)) 

                    except Exception as e: 

                        logger.error(f'tuning tm {sr,r} generated an exception: 

{e}') 

                #for bar in tmbar: tmbar[bar].close() 

        else:   # tune serially 

            tm_result = {} 

            logger.warning("\n\t***Tuning TM _serially_***") 

            for subr in tqdm(subr_fbs,desc='TM subreddits',colour="blue"): 

                tm_result[subr] = [tune_tm(subr,DEBUG=DEBUG)  

                        for __ in tqdm(range(SR), 

                            desc=f'TM reps for {subr}',colour="magenta")] 

        tuned_tm = min([min(tml) for tml in tm_result.values()])   # min tm for 

all sims 

        if tuned_tm < TM_TUNE_MIN:  # update TM_TUNE_MIN in json 

            procs_keylist = list(procs_tm) 

            logger.info(f'\n\tReplacing TM_TUNE_MIN {TM_TUNE_MIN} with 

{tuned_tm} ' + 

                f'found for ' + ', '.join({key 

                    for key in tm_result for i,j in enumerate(tm_result[key])  

                    if j==tuned_tm})) 

            tune_parms['TM_TUNE_MIN'] = tuned_tm 

            with open(my_args.rcfile,'w') as f: 

                json.dump(tune_parms,f,indent=2)    # use indent to make 

readable 

        else:   # replace with TM_TUNE_MIN 
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            tuned_tm = TM_TUNE_MIN 

            logger.info(f'\n\tUsing prev technology modifier = {tuned_tm}') 

        sys.exit(f'JET - exiting for checking TM={tuned_tm} modification') 

    else:   # replace with TM_TUNE_MIN since did not tune TM 

        tuned_tm = TM_TUNE_MIN 

        logger.info(f'\n\tSkipped tuning TM. Using prev TM = {tuned_tm}') 

    if not TMONLY: 

        # now tune topic source modifier based on tuned_tm 

        if PARALLEL:     # tune in parallel 

            with Pool() as tsmpool: 

                tsmbar = dict() 

                for idx,subr in enumerate(subr_fbs): 

                    # initialize tsm_result with empty lists 

                    tsm_result = {subr: [] for subr in subr_fbs} 

                    # create progress bars for each subreddit 

                    kwargs = { 

                        'total': SR, 

                        'unit': 'it', 

                        'unit_scale': True, 

                        'position': idx, 

                        'leave': True, 

                        'colour': COLORS[idx%2], 

                        'dynamic_ncols': True, 

                        'desc': f'TSM tuning {subr}' 

                        } 

                    tsmbar[subr] = tqdm(**kwargs) 

                tsm_m = Manager() 

                tsm_Q = tsm_m.Queue() 

                # Start load operations and mark each proc with its subreddit 

                procs_tsm = {tsmpool.apply_async(tune_tsm,(subr_fb,tuned_tm, 

                    tsm_Q,DEBUG)): subr_fb for subr_fb in subr_fbs for __ in 

range(SR)} 

                # Create a (dynamic) list to iterate over 

                procs_tsml = [(p,sr) for p,sr in procs_tsm.items()] 

                for proc,subr in procs_tsml: 

                    try: 

                        (sr,r) = tsm_Q.get() 

                        if r:   # if a valid result queued 

                            logger.debug(f'TSM tune subreddit {sr}, result = 

{r}') 

                            tsm_result[sr].append(r) 

                            tsmbar[sr].update(1) 
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                            if tsmbar[sr].n==SR:     # done with this bar 

                                tsmbar[sr].close() 

                        else:   # requeue the job 

                            logger.debug(f'TSM tune resubmit {sr}, result = 

{r}') 

                            p = 

tsmpool.apply_async(tune_tsm,(sr,tuned_tm,tsm_Q,DEBUG)) 

                            procs_tsm[p]=sr 

                            procs_tsml.append((p,sr)) 

                    except Exception as e: 

                        logger.error(f'tuning tsm {sr,r} generated an 

exception: {e}') 

                #for bar in tsmbar: tsmbar[bar].close() 

        else:   # tune serially 

            tsm_result = {} 

            logger.warning("/n/t***Tuning TSM _serially_***") 

            for subr_fb in tqdm(subr_fbs,desc='TSM subreddits',colour="green"): 

                tsm_result[subr_fb] = [tune_tsm(subr_fb,tuned_tm,DEBUG=DEBUG)  

                        for __ in tqdm(range(SR), 

                            desc=f'TSM reps for {subr_fb}',colour="cyan")] 

    # END OF     if not TMONLY: 

 

# summarize tuning results 

    if not TSMONLY:  # tuned technology modifier 

        logger.debug(f'*** Tuned tm to allow ~{round(TM_TUNE_MOD*100)}% ' + 

                'escapes of EC size: ***') 

        logger.debug(f'\ttm_result = {tm_result}') 

    if not TMONLY:  # tuned topic source modifier 

        logger.debug(f'*** Tuned tsm to ~{round(TSM_TUNE_MOD*100)}% escapes ' + 

                'of EC size: ***') 

        logger.debug(f'\ttsm_result = {tsm_result}') 

        logger.info(f'\n\taverage topic source modifier for:\n\t\t' + 

                '\n\t\t'.join(f'{sr} = {round(np.mean(tsm_result[sr]))}'  

                    for sr in subr_fbs)) 

 

  



130 

Appendix B-5. get_auths_last_posts.py 

'''  

Script to retrieve all authors in first mo/yr provided (hardcoded for now) 

for the list of subreddits provided (again hardcoded), then process all 

remaining 

months in that year, searching for last post made by each of the initial 

authors. 

After which, the list of authors for each subreddit is sorted by earliest 

departure (last date of posting for each author), ranked, then savd to the  

specified (hardcoded) file. 

''' 

import par_zst_to_df as pz     # local module for converting zst to dataframe 

import argparse     # for parsing commandline arguments 

import json     # for processing json files 

import pandas as pd     # use pandas Python Data Analysis Library 

import pathlib  # for current execution directory info 

from tqdm import tqdm   # Progress Bar Made Easy 

import numpy as np  # for NpEncoder class to convert Numpy Ints for JSON export 

import gzip     # to enable data export to compressed file 

from collections import OrderedDict     # for storing sorted dictionary of 

times 

from operator import itemgetter     # for sorting the dictionary of author 

times 

 

# Extend the JSONEncoder class to handle Numpy values 

class NpEncoder(json.JSONEncoder): 

    def default(self, obj): 

        if isinstance(obj, np.int64): 

            return int(obj) 

        if isinstance(obj, np.integer): 

            return int(obj) 

        if isinstance(obj, np.floating): 

            return float(obj) 

        if isinstance(obj, np.ndarray): 

            return obj.tolist() 

        return json.JSONEncoder.default(self, obj) 

 

pdf = pd.DataFrame() 

auths_filename = 'auths_by_subr.json.gz' 

auths_filename2 = 'auths_by_subr-sorted.json.gz' 

''' 

subrs = ["republicans"] 
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''' 

subrs = 

["SandersForPresident","flatearth","trump","science","cars","Republican", 

        "SocialDemocracy","Freethought","travel","math","NeutralPolitics", 

        "PoliticalDiscussion","democrats","hiking","republicans","mlb", 

        "progressive","AmericanPolitics"] 

# keep bare minimum to reduce memory usage 

keys_to_keep = ['author','created_utc','id','subreddit'] 

yr = 2019 

mo = 1 

zstcf = f'RC_{yr}-{mo:02}.zst' 

zstsf = f'RS_{yr}-{mo:02}.zst' 

 

# get data from first month of interest 

rs_zstfp = pathlib.Path(zstsf) 

if not rs_zstfp.exists(): 

    raise FileNotFoundError(f'zstfile {rs_zstfp} does not exist!') 

rc_zstfp = pathlib.Path(zstcf) 

if not rc_zstfp.exists(): 

    raise FileNotFoundError(f'zstfile {rc_zstfp} does not exist!') 

print(f'Decompressing data from {rs_zstfp} and {rc_zstfp}.') 

for zstfp in [rs_zstfp,rc_zstfp]: 

    pdf = pz.decompress_file_chunks(zstfp,pdf,subrs,keys_to_keep) 

# create dictionary of authors occurring in the first month for each subreddit 

## store maximum (latest) created_utc date in dict 

auths_by_subr = {} 

for s in (pbar:=tqdm(subrs,desc='subreddits',colour="blue")): 

    pbar.set_postfix_str(s)     # update label of progressbar 

    pdf_subr = pdf[pdf.subreddit==s] 

    auths_by_subr[s]={a: pdf_subr[pdf_subr.author==a].created_utc.max()  

            for a in set(pdf_subr.author)} 

# loop over remaining months in year to determine latest date each 

## author makes a post 

for m in range(mo+1,13): 

    pdf = pd.DataFrame() # reset working dataframe 

    zstcf = f'RC_{yr}-{m:02}.zst' 

    zstsf = f'RS_{yr}-{m:02}.zst' 

    rs_zstfp = pathlib.Path(zstsf) 

    if not rs_zstfp.exists(): 

        raise FileNotFoundError(f'zstfile {rs_zstfp} does not exist!') 

    rc_zstfp = pathlib.Path(zstcf) 

    if not rc_zstfp.exists(): 
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        raise FileNotFoundError(f'zstfile {rc_zstfp} does not exist!') 

    print(f'**Decompressing data from {rs_zstfp} and {rc_zstfp}.') 

    for zstfp in [rs_zstfp,rc_zstfp]: 

        pdf = pz.decompress_file_chunks(zstfp,pdf,subrs,keys_to_keep) 

    for s in (pbar0:=tqdm(subrs,desc='subreddits',colour="blue",position=0)): 

        pbar0.set_postfix_str(s)     # update label of progressbar 

        pdf_subr = pdf[pdf.subreddit==s] 

        # loop over the authors that appear in the new data only if they 

        ## were in the original set of authors 

        for auth in (pbar1:=tqdm(auths_by_subr[s].keys() & pdf_subr.author, 

                desc='authors',colour="green",position=1)): 

            

auths_by_subr[s][auth]=pdf_subr[pdf_subr.author==auth].created_utc.max()  

# writing dictionary of author dictionaries to disk 

with gzip.open(auths_filename, 'w') as fileout: 

    fileout.write(json.dumps(auths_by_subr,cls=NpEncoder).encode('utf-8')) 

# read dictionary back in to verify success 

with gzip.open(auths_filename, 'rt') as filein: 

    auths_by_subr = json.load(filein) 

# now sort dictionaries by earliest to latest date of posting, assuming  

## earlier dates represent users who have departed the subreddit, at least 

## temporarily 

for sr,dct in auths_by_subr.items():     # select each subreddit dict of auths  

    auths_by_subr[sr] = OrderedDict(sorted(dct.items(), key=itemgetter(1))) 

# now rank by order of departure, then save to dict 

for sr,dct in auths_by_subr.items():     # select each subreddit dict of auths  

    ptim = 0  # track previous time to see if it's same as current  

    pauth = ''  # track previous author (dict index)  

    ctr = 0     # create rank ctr for author departure order  

    for au,dtim in dct.items():  # select each author and latest post in dict  

        if dtim != ptim: 

            ctr+=1  # only incr ctr if curr timestamp differs from prev 

        ptim = dtim 

        pauth = au 

        auths_by_subr[sr][au]=(dtim,ctr)    # add rank as part of dict 

# writing sorted and ranked dictionary of author dictionaries to disk 

with gzip.open(auths_filename2, 'w') as fileout: 

    fileout.write(json.dumps(auths_by_subr,cls=NpEncoder).encode('utf-8')) 
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Appendix B-6. analyze_exit_order.py 

'''  

Script to compare the order that authors leave (at least temporarily) each 

subreddit, 

versus the order agents leave the echo chamber simulation of same subreddit. 

Code  

makes use of the "auths_by_subr-sorted.json.gz" file created by 

"get_auths_last_posts.py". 

''' 

from sr_sim_ec import * 

import json     # for processing json files 

import pandas as pd     # use pandas Python Data Analysis Library 

import pathlib  # for current execution directory info 

import shutil   # for file manipulation 

from tqdm import tqdm   # Progress Bar Made Easy 

import numpy as np  # for NpEncoder class to convert Numpy Ints for JSON export 

import gzip     # to enable data export to compressed file 

from collections import OrderedDict     # for storing sorted dictionary of 

times 

from operator import itemgetter     # for sorting the dictionary of author 

times 

from sklearn.metrics import mean_absolute_percentage_error  # error calc 

 

# Extend the JSONEncoder class to handle Numpy values 

class NpEncoder(json.JSONEncoder): 

    def default(self, obj): 

        if isinstance(obj, np.int64): 

            return int(obj) 

        if isinstance(obj, np.integer): 

            return int(obj) 

        if isinstance(obj, np.floating): 

            return float(obj) 

        if isinstance(obj, np.ndarray): 

            return obj.tolist() 

        return json.JSONEncoder.default(self, obj) 

 

pdf = pd.DataFrame() 

sorted_auths_filename = 'auths_by_subr-sorted.json.gz' 

sorted_agents_filename = 'agents_by_subr-sorted.json.gz' 

''' 

subrs = ["republicans"]     # test data 

''' 
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subrs = 

["SandersForPresident","flatearth","trump","science","cars","Republican", 

        "SocialDemocracy","Freethought","travel","math","NeutralPolitics", 

        "PoliticalDiscussion","democrats","hiking","republicans","mlb", 

        "progressive","AmericanPolitics"] 

its = 100 

#its = 10    # test data 

agents_by_subr = {}     # dict to track agent exit ranking by subreddit 

mape_by_subr = {}   # record mean avg pct error of exit rank by subreddit 

# read sorted dictionary of exiting authors for each subreddit 

with gzip.open(sorted_auths_filename, 'rt') as filein: 

    auths_by_subr = json.load(filein) 

# simulate repeatedly for each subreddit to determine common agent exiting 

order 

for sr in subrs: 

    rcfile = f'{sr}_2019-01_sim_rc.json' 

    debug = False 

    agent_dict = dict.fromkeys(list(auths_by_subr[sr].keys()),0) 

    logfile = pathlib.Path(pathlib.Path(rcfile).stem+'.rank.log') 

    logger = jetlogger(logfile,debug) 

    for it in (pbar:=tqdm(range(its),desc=sr,colour="blue")): 

        #pbar0.set_postfix_str(s)     # update label of progressbar 

    #for it in range(its):   # repeat for {its} iterations 

        logger.debug('Began') 

        (parms,agents_df) = get_dat(rcfile,debug) 

        parms['TOPIC_SOURCE_MODIFIER'] = 1  # override TSM 

        logger.debug(f"overrode TOPIC_SOURCE_MODIFIER = 

{parms.get('TOPIC_SOURCE_MODIFIER')}") 

        parms['TECHNOLOGY_MODIFIER'] = 1  # override TM 

        logger.debug(f"overrode TECHNOLOGY_MODIFIER = 

{parms.get('TECHNOLOGY_MODIFIER')}") 

        parms['JOIN_FRAC'] = 0.0  #override join fraction 

        logger.debug(f"overrode JOIN_FRAC = {parms.get('JOIN_FRAC')}") 

        # pass parameters (or default) to new sim object 

        sim = Simulation( 

                agents_df, 

                parms.get('NUMBER_ITERATIONS',90),    # defaults to nominal 

number 

                parms.get('GRAVITY_CONSTANT'), 

                parms.get('TOPIC_SOURCE_MODIFIER',1),   # 1 ensures agents will 

exit 
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                parms.get('TECHNOLOGY_MODIFIER',1),     # 1 ensures agents will 

exit 

                parms.get('DECAY_RATE',0.9),     # 0.9 is a slow decay 

                parms.get('EXIT_FRAC',0.1),     # 1/10th of capt members try to 

leave 

                parms.get('JOIN_FRAC',0.1),     # JOIN_FRAC=0 ensures no agents 

rejoin 

                ) 

        # run simulation 

        sim.run_sim( 

                parms.get('FILE_BASE') + '_je.csv', 

                parms.get('JOIN_FORCE_THRESHOLD',500),  

                parms.get('EXIT_FORCE_THRESHOLD',500), 

                parms.get('RANDOM_EXITERS',False), 

                parms.get('RANDOM_JOINERS',False), 

                -1,     # not tuning 

                debug 

                ) 

        logger.debug(f'Finished run {it} of sr_sim_ec for {sr}') 

        for idx,agt in enumerate(sim.free_agents):  # free_agents ordered by 

exit 

            agent_dict[agt.author] += idx+1     # update total exit rank 

        # should only be a few agents left in the EC, so they will have highest 

rank 

        max_rank = len(sim.free_agents)+1 

        logger.debug(f'Setting remaining {len(sim.ec.captured_agents)} ' + 

                f'captured agents to max rank of {max_rank}') 

        for agt in sim.ec.captured_agents: 

            agent_dict[agt.author] += max_rank 

    agent_dict.update((k,rank/its) for k,rank in agent_dict.items()) # avg rank 

    # now sort dictionary by earliest to latest average exit order 

    agent_dict = OrderedDict(sorted(agent_dict.items(), key=itemgetter(1))) 

    # now rank by order of departure, then save to dict 

    prnk = 0  # track previous rank to see if it's same as current  

    ctr = 0     # create rank ctr for author departure order  

    for agt,rnk in agent_dict.items():  # select each author and avg rank in 

dict 

        if rnk != prnk: 

            ctr+=1  # only incr ctr if curr rank differs from prev 

        prnk = rnk 

        agent_dict[agt]=(rnk,ctr)    # add rank ctr as part of dict 

    # calculate mean absolute error of rankings 
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    ## list of real exit rankings 

    y_true = [itemgetter(1)(item) for item in list(auths_by_subr[sr].values())] 

    ## list of simulation exit rankings 

    y_pred = [itemgetter(1)(agent_dict[agt]) for agt in auths_by_subr[sr]] 

    mape_by_subr[sr] = mean_absolute_percentage_error(y_true, y_pred) 

    logger.debug(f'{sr} ranking MAPE = {mape_by_subr[sr]}') 

    print(f'{sr} ranking MAPE = {mape_by_subr[sr]}') 

    # close logging for this subreddit 

    logs = list(logger.handlers) 

    for l in logs: 

        logger.removeHandler(l) 

        l.flush() 

        l.close() 

    # compress logfile then delete orig 

    with open(logfile, 'rb') as f_in: 

        with gzip.open(logfile.name+'.gz', 'wb') as f_out: 

            shutil.copyfileobj(f_in, f_out) 

    pathlib.Path.unlink(logfile)    # delete orig logfile 

    agents_by_subr[sr] = agent_dict     # preserve agent_dict for this 

subreddit 

# writing sorted and ranked dictionary of agent dictionaries to disk 

with gzip.open(sorted_agents_filename, 'w') as fileout: 

    fileout.write(json.dumps(agents_by_subr,cls=NpEncoder).encode('utf-8')) 
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Appendix B-7. sr_get_toxicity.py 

'''  

Calculate toxicity using the Google API Perspective Comment Analyzer.   

Reads Google API key from "tox_key.txt" file in current directory 

''' 

from googleapiclient import discovery 

import json     # for json files 

import pandas as pd     # for dataframes 

import numpy as np  # for np.nan 

import pathlib  # for path/file specification and manipulation 

import argparse     # for parsing commandline arguments 

import datetime     # for throttling Google App requests 

from time import sleep     # time.sleep for throttling 

from tqdm import tqdm   # Progress Bar Made Easy 

import sys  # for sys.exit and sys.argv 

from ratelimit import limits, sleep_and_retry 

 

# Define variables to keep track of throttling 

# 30 calls per minute 

CALLS = 60  # number of calls per minute 

RATE_LIMIT = 60     # time to wait when calls exceeded 

TXT_LIMIT = 20480   # text length limit for Google API query 

 

@sleep_and_retry 

@limits(calls=CALLS, period=RATE_LIMIT) 

def check_limit(): 

    ''' Empty function just to check for calls to API ''' 

    return 

 

@sleep_and_retry 

@limits(calls=CALLS, period=RATE_LIMIT) 

def get_post_attr(txt: str) -> (float,float,float): 

    ''' analyze text for toxicity ''' 

    analyze_request = { 

            'comment': { 'text': txt}, 

            'languages':[lang], 

            'requestedAttributes': { 

                'TOXICITY': {}, 

                'SEVERE_TOXICITY': {}, 

                'INSULT': {}, 

                'THREAT': {}, 

                } 
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            } 

    # get the attributes for this text 

    response = client.comments().analyze(body=analyze_request).execute()  

    # parse the results 

    tox=response['attributeScores']['TOXICITY']['summaryScore']['value'] 

    

sev_tox=response['attributeScores']['SEVERE_TOXICITY']['summaryScore']['value'] 

    insult=response['attributeScores']['INSULT']['summaryScore']['value'] 

    threat=response['attributeScores']['THREAT']['summaryScore']['value'] 

    return (tox,sev_tox,insult,threat) 

 

with open('tox_key.txt') as f: 

    API_KEY = f.read() 

lang = "en" 

 

if __name__ == "__main__": 

    if not len(sys.argv) > 1: 

        sys.exit("Must call script from commandline with filename as 

parameter.") 

 

    else: 

# Use auto python doc description 

        my_parser = argparse.ArgumentParser(description=__doc__,  

            formatter_class=argparse.RawDescriptionHelpFormatter)                      

        my_parser.add_argument('filename', 

            help="specify 'filename' from which to retrieve posts", 

            type=str) 

        my_parser.add_argument('-t', '--test',dest='test',action='store_true') 

        my_parser.add_argument('-nt','--no-

test',dest='test',action='store_false') 

        my_parser.set_defaults(test=False) 

        my_args = my_parser.parse_args() 

 

        fp = pathlib.Path(my_args.filename) 

        with open(fp, 'rb') as f:  # need 'rb' for zipped files! 

            posts_df = pd.read_json(f,compression='gzip') 

            print(f'\tRead {posts_df.shape} dataframe from json file {fp}.') 

        if my_args.test:    # truncate posts_df for testing 

            posts_df = posts_df[:100] 

# Limit text column to limit required by Google API 

        posts_df['text']=posts_df['text'].str.slice(0,TXT_LIMIT) 

        new_cols = ['tox','sev_tox','insult','threat'] 
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        posts_df[new_cols] = np.nan     # add new columns 

 

# create client connection to Google API Perspective library 

        client = discovery.build( 

                "commentanalyzer", 

                "v1alpha1", 

                developerKey=API_KEY, 

                discoveryServiceUrl="https://commentanalyzer.googleapis.com/" + 

\ 

                        "$discovery/rest?version=v1alpha1", 

                static_discovery=False, 

        ) 

# calculate toxicity for every posting in dataframe 

        tqdm.pandas(desc='Get toxicity',colour='blue')   # construct progress 

bar 

# use progress_apply from tqdm to show progress 

        posts_df.update(posts_df['text'].progress_apply(lambda txt:  

                pd.Series(dict(zip(new_cols,get_post_attr(txt)))))) 

# write updated dataframe to file 

        if my_args.test:    # write test results to another file 

            fp = pathlib.Path('test_tox.json.gz') 

        posts_df.to_json(fp, orient='records', compression='infer') 
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