
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Ph.D Dissertations Theses and Dissertations

Winter 2023

Combating Fake News: A Gravity Well Simulation to Model Echo Combating Fake News: A Gravity Well Simulation to Model Echo

Chamber Formation In Social Media Chamber Formation In Social Media

Jeremy E. Thompson
Dartmouth College, jeremy.e.thompson.th@dartmouth.edu

Follow this and additional works at: https://digitalcommons.dartmouth.edu/dissertations

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Thompson, Jeremy E., "Combating Fake News: A Gravity Well Simulation to Model Echo Chamber
Formation In Social Media" (2023). Dartmouth College Ph.D Dissertations. 221.
https://digitalcommons.dartmouth.edu/dissertations/221

This Thesis (Ph.D.) is brought to you for free and open access by the Theses and Dissertations at Dartmouth Digital
Commons. It has been accepted for inclusion in Dartmouth College Ph.D Dissertations by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/dissertations
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/dissertations?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/dissertations/221?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

COMBATING FAKE NEWS: A GRAVITY WELL SIMULATION TO MODEL ECHO

CHAMBER FORMATION IN SOCIAL MEDIA

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

in

Engineering Sciences

by Jeremy E. Thompson

Thayer School of Engineering

Guarini School of Graduate and Advanced Studies

Dartmouth College

Hanover, New Hampshire

OCTOBER 2023

 Examining Committee:

 Chairman_______________________

 Dr. Eugene Santos, Jr.

 Member________________________

 Dr. George Cybenko

 Member________________________

 Dr. Vikrant S. Vaze

 Member________________________

 Dr. John Korah

F. Jon Kull, Ph.D.

Dean of the Guarini School of Graduate and Advanced Studies

ii

Abstract

Fake news has become a serious concern as distributing misinformation has become easier

and more impactful. A solution is critically required, but choosing the right solution is

perhaps just as critical. One solution would be to ban fake news, but that approach could

create more problems than it solves, and would also be problematic from the beginning, as

it must first be identified to be banned. We propose a method to automatically recognize

suspected fake news, and to provide news consumers, as well as researchers, historians,

and journalists, with more information as to its veracity. It is suggested that fake news is

comprised of two primary components: premises and misleading content. A fake news

piece can be condensed down to a collection of premises, which may or may not be true,

and to various forms of misleading material, including biased arguments and language,

misdirection, and manipulation. Misleading content can be exposed for whatever biases it

contains, regardless of the intent of the author. While this framework can be valuable, its

utility may be limited by the rapid improvement in artificial intelligence, which can be used

to alter fake news strategies at a rate that could exceed the ability to update the framework.

Therefore, more immediately we propose a model for identifying echo chambers, which

are widely reported to be havens for fake news producers and consumers. We simulate a

social media interest group as a gravity well, through which we can identify the online

groups most postured to become echo chambers, and thus a source for fake news

consumption and replication. This echo chamber model is supported by three pillars related

to the social media group: technology employed, topic explored, and confirmation bias of

group members. The model is validated by modeling and analyzing 19 subreddits on the

Reddit social media platform. Contributions include a working definition for fake news, a

iii

framework for recognizing fake news, a generic model for social media echo chambers

including three pillars central to echo chamber formation, and a gravity well simulation for

social media groups, implemented for 19 subreddits.

iv

Acknowledgements

First and foremost, I owe an extreme debt of gratitude to my advisor, Dr. Eugene Santos,

Jr. I would not have even ventured forth on this journey without his prompting and

sponsorship. His guidance and perception helped me find my way over and through several

obstacles and challenges. Moreover, he managed to maintain confidence in my ability to

soldier on and succeed, even and especially when I doubted myself. I genuinely have

difficulty conceiving of any other advisor getting me to the finish line.

Additionally, I am genuinely grateful to my committee, Dr. George Cybenko, Dr. Dr.

Vikrant S. Vaze, and Dr. John Korah, who came through with insightful advice and

improvements both before and after my defense. Their input undoubtedly improved the

quality of this dissertation and granted me the gift of pride in my final product.

Further, I would certainly be remiss if I failed to acknowledge the financial support

provided by the Air Force Office of Scientific Research and their grants which helped fund

my research. Without such support, the advancement of basic research and science would

be far more difficult to accomplish.

The list of colleagues who kept me going over the years is quite long. I will attempt

to give credit where credit is due, but I am nearly certain I will fall short. First among these

would have to be Jacob Russell, who amazingly managed to overlap my extended duration

at Dartmouth significantly. He frequently provided encouragement when needed, and

alternative perspectives and input when desired. I cannot begin to recall the number of

instances where Jacob advised on programming, configuration, proofing, and version

control. Over the years, many other colleagues have helped me along the road to success:

v

Fei, Yuki, Chase, JT, Jake, Suresh, and Mani. Each has had a unique and positive effect on

me and my story, for which I am grateful. Many others are owed thanks as well, but I trust

they know their contributions are appreciated if not highlighted.

Thanks also to the undergraduate interns that contributed time and effort towards

projects reviewed in the Explorations section: April Liu, Allyssa Austin, Divya Kopalle,

and David Nesbitt. Additionally, thank you to the Women in Science Program, the Claire

Booth Luce Fellowship, and the First Year Research in Engineering Experience program.

Finally, I would be remiss if I did not mention family. My sisters Sheryl and Jennifer

have provided encouragement and advice over the years. Likewise, my (grown) children

Chris and Quin have been unfailing in cheering me on through the many years of my PhD

pursuit, never doubting I would get there in the end. Unexpectedly, I also have a new wife

to thank for providing support, distractions, sustenance, and affection these last few years

when my doubts about finishing were peaking. Ling provided me with the energy and

determination I needed to push through to success.

vi

Table of Contents

Abstract .. ii

Acknowledgements ... iv

Table of Contents .. vi

List of Tables .. viii

List of Figures ... ix

List of Acronyms ..x

1. Introduction ..1

2. Background ..8

2.1. Journalism ... 8

2.1.1. Gatekeeping ... 8

2.1.2. Objectivity .. 9

2.2. Fake News ... 10

2.3. Automatic Fake News Detection .. 12

2.4. Echo Chambers ... 16

2.4.3. Studies of interest ... 17

2.4.4. Simulations .. 18

3. Steps Toward Fake News and Echo Chambers ..21

3.1. Insights .. 21

3.2. Explorations .. 23

3.2.1. Behavioral Strategies ... 23

3.2.2. Corporate Psychopathy ... 30

4. Fake News Model Formation and Exploration ..35

4.1. Document Graph Analysis .. 44

4.1.1. Betweenness Centrality (BC) .. 48

4.1.2. Closeness Centrality (CC) ... 50

4.2. Premise Recognition ... 52

4.3. Evaluation of Misleading Content .. 53

4.3.3. Misdirection ... 54

4.3.4. Bias .. 55

vii

4.3.5. Manipulation ... 60

4.4. Fake News Model Conclusions .. 63

5. Echo Chambers and Gravity Wells ..65

5.1. Model Data.. 66

5.2. Gravity Well Model .. 69

5.3. Tuning the Model .. 74

6. Gravity Well Simulation, Results, and Analysis ..77

6.1. Simulation ... 77

6.2. Results ... 77

6.3. Analysis... 78

6.3.1. Validity of Simulation .. 78

6.3.2. Statistical Significance of TSM Values ... 80

6.3.3. Differentiation of TSM Values .. 84

7. Conclusions and Future ..89

7.1. Conclusions ... 89

7.2. Future Work .. 91

Appendices ..94

Appendix A. Bayesian Knowledge Bases .. 94

Appendix B. Gravity Well Code .. 96

Appendix B-1. par_process_pushshift_authors.py ... 96

Appendix B-2. par_process_pushshift_agreement.py ... 99

Appendix B-3. sr_sim_ec.py .. 105

Appendix B-4. sr_tune_sim.py.. 120

Appendix B-5. get_auths_last_posts.py .. 130

Appendix B-6. analyze_exit_order.py ... 133

Appendix B-7. sr_get_toxicity.py... 137

References ...140

viii

List of Tables

Table 3-1: Dictator game prediction methods .. 25

Table 3-2: NMAE for various player game orderings .. 26

Table 3-3: Prisoner's Dilemma Payoff .. 28

Table 3-4: Corporate psychopathy definitions .. 31

Table 3-5: Voluntary prisoner’s dilemma payoff [116] .. 32

Table 4-1: Betweenness Centrality Compared ... 48

Table 4-2: Closeness Centrality Compared .. 50

Table 4-3: Replication of Research Published Previously* .. 58

Table 4-4: Bigram SVC Binary Classification of Fake News .. 60

Table 4-5: LIWC Results for Sample Real and Fake Stories ... 62

Table 5-1: Average TSM for modeled subreddits .. 68

Table 6-1: Mean Absolute Percent Error of Agent Exit Ordering 79

Table 6-2: Multiple comparison of means for subject subreddits..................................... 83

Table 6-3: Minimal TSM subreddit descriptions .. 85

Table 6-4: Maximal TSM subreddit descriptions ... 86

Table 6-5: Minimal and Maximal Subreddit Group Perspective Analysis 88

ix

List of Figures

Figure 1-1: Example gravity well ... 6

Figure 3-1: Individual payoff vs individual traits ... 29

Figure 3-2: Summed paired player payoff vs. summed paired player traits 29

Figure 3-3: Fraction of cooperators, defectors, and loners from [116] over time 33

Figure 3-4: Replicated results ... 33

Figure 4-1: Fake News Framework .. 36

Figure 4-2 : Sample Real News – Common Definition .. 38

Figure 4-3: Sample Real News – Framework Definition ... 39

Figure 4-4: Sample Fake News ... 40

Figure 4-5: Unbalanced Argument for Real News Citation in Figure 4-2 41

Figure 4-6: More-Balanced Argument for Real News in Figure 4-3 42

Figure 4-7: Unbalanced Argument for Fake News in Figure 4-4 43

Figure 4-8: Sample Real News Document Graph ... 45

Figure 4-9: Sample More Real News Document Graph ... 46

Figure 4-10: Sample Fake News Document Graph .. 47

Figure 4-11: Betweenness Centrality of Real and Fake News ... 49

Figure 4-12: Closeness Centrality of Real and Fake News .. 51

Figure 5-1: Gravity well structure... 73

Figure 5-2: Tuning process ... 76

Figure 6-1: QQ Plot of ANOVA residuals versus normal line ... 80

Figure 6-2: Histogram of ANOVA Residuals .. 82

x

List of Acronyms

analysis of variance ANOVA

application programmer interface API

Bayesian Knowledge Bases BKBs

betweenness centrality BC

Bidirectional Encoder Representations from Transformers BERT

bidirectional long short-term memory bi-LSTM

closeness centrality CC

convolutional neural networks CNNs

document graphs DGs

generative pre-trained transformer GPT

instantiation node I-node

Islamic Court Union ICU

Islamic State in Iraq and Syria ISIS

large language model LLM

Linguistic Inquiry and Word Count LIWC

long short term-memory LSTM

maximum entropy MaxEnt

mean average percent error MAPE

normalized mean absolute error NMAE

random variable RV

Perspective Comment Analyzer PCA

support node S-node

support vector classification SVC

support vector machine SVM

xi

technology modifier 𝑇𝑀

topic source modifier 𝑇𝑆𝑀

term frequency/inverse document frequency TFIDF

1

1. Introduction

It is no secret that fake news has become a serious concern [1]–[3]. Some note that it has

become a danger to democratic society [4]–[9]. For a democracy to function healthily, it

must rely on an educated, well-informed voting public. Differences in opinions, values,

and priorities will naturally exist, but those differences can only be legitimately debated

and resolved if the voting public has access to information, and if they have some

reasonable means for distinguishing the validity and accuracy of that information. This is

not a new problem, of course. Voters in the U.S. have been swayed and manipulated by the

newspaper industry essentially from the beginning [10, Ch. I], and fake news in the form

of propaganda has been traced all the way back to the Roman Empire [11]. However, with

the advent of social media, access to a vulnerable public has become widespread, and

distributing misinformation has become a trivial endeavor with noticeable effect [1], [12].

The threat is not just to the democratic process, but to a functioning, safe society in

general. Instances of panic and violence have been prompted by the spread of fake news,

such as the shooting at Comet Ping Pong spawned from a story that the pizza restaurant in

Washington, D.C. was the haven of a child sex ring [13], a hoax surrounding a fictional

attack on a chemical plant in Louisiana by Islamic State in Iraq and Syria (ISIS) [14], lynch

mobs in India as the result of false videos spread on WhatsApp [15], and the massacre of

between 86 and 238 individuals in Nigeria fueled by fake news generated on Facebook

[16]. More recently, threats to public health have emerged in the guise of rampant

misinformation surrounding the COVID-19 pandemic [17]–[19].

Social media has been under pressure to remedy the spread of fake news, with only

modest results. Mark Zuckerberg, CEO of Facebook, was called to testify by the U.S.

2

House of Representatives. In his testimony [20], Mr. Zuckerberg acknowledged the

problem of fake news, specifically with respect to U.S. election interference, and proposed

essentially two approaches to remedy the situation. First, he asserted that Facebook would

increase efforts to identify and remove fake accounts, which are suspected of being used

by actors, including foreign nations, to spread content aimed at affecting election outcomes.

Second, he declared that advertisers wishing to run political or issue ads must be registered,

with their identity and location confirmed. This effort at advertising transparency online is

not currently required by U.S. law and remains a glaring loophole in current political

advertising legislation. While admittedly this is a difficult problem to address, the efficacy

of Facebook’s approach remains to be determined. Some recent indications are

encouraging [21]. However, one study [22] found “Facebook’s current enforcement

appears imprecise: 61% more ads are missed than are detected worldwide, and 55% of U.S.

detected ads are in fact non-political.”

Similarly, when YouTube was recently challenged concerning its platform being a

haven for the spread of conspiracy theories, Susan Wojcicki, then CEO of YouTube,

declared her company’s approach would be to accompany suspect videos with a link to

more reliable information, such as Wikipedia [23]. Beyond the concerns about Wikipedia

being able to sustain its current, sometimes questioned, level of reliability as mentioned in

the cited article, it seems conspiracy theories continue to flourish on YouTube, [24], [25].

It should be evident that a remedy is critically required, but choosing the right remedy

or remedies is perhaps just as critical. An impulsive answer might be to ban fake news. It

is not difficult to imagine how banning fake news could backfire and produce more

problems than solutions. Censorship in any form must be approached with temerity and

3

caution. The remedy advocated here is to provide more information to the public, not less.

Ultimately, an “education for freedom” as proposed in Brave New World Revisited [26]

could be the panacea for a healthy, democratic society. As Huxley notes, education for

freedom should be “an education first of all in facts and in values…” However, to aim more

realistically in the short-term, a method for recognizing suspected fake news, and providing

news consumers with the tools to consume a healthier diet of information, should they

choose to, would be a significant step in the right direction.

In order to accomplish this, we propose that a framework be applied to recognize

misleading information in news stories. The most essential insight into the approach

proposed here is that fake news can be broken down into critical components which point

to its misleading character. The macro components are premises and misleading content.

While the premises are initially planned to be simply identified and highlighted, it is

possible that methods could be employed to investigate the validity of the premises. That

approach is deferred to other research, as it has a danger of spiraling into a subjective

dispute based on political, moral, or personal values. Instead, it is suggested that

highlighting the premises will serve well to allow a reader or researcher to gauge how

firmly any arguments begin. The associated misleading content could then be recognized

by contextual indicators, including misdirection, bias, and manipulation. Based on current

literature searches, this is not only a promising approach to the problem, but also a unique

one.

The uniqueness stems from the insight of discovering what makes up fake news, not

just attempting to find an automated rule that will separate out fake from real. With no

4

understanding of the phenomena of fake news, nor of the rule, any automated solution

would be a temporary one, as fake news producers adapt and change their methodology.

Instead, the fake news framework as outlined here applies the concept of methodological

reductionism [27], striving both to understand what comprises fake news and to apply that

understanding to recognizing fake news. The framework is not a static solution. As our

understanding of fake news grows, that understanding can be added to the framework to

increase its efficacy. The two primary components of the framework—premises and

misleading content—are unlikely to change. However, new indicators for misleading

content may be identified, which can then be readily integrated into the framework.

However, to aim more realistically in the short-term, a method for recognizing

suspected fake news, and providing news consumers with the tools to consume a healthier

diet of information, would be significant steps in the right direction. We will relate our

investigations into forming this framework here as it informs the problem and retains its

merit, but ultimately decided that a more effective way forward, at least in the short-term,

if not also for the long-term, due to its resiliency to intentional obfuscation and

manipulation by malefactors, involves modeling consumers of fake news and where they

congregate rather than modeling or recognizing fake news itself.

As stated, after some investigations into the construction of the fake news framework,

the immediate remedy we propose as an effective and dynamic solution to combatting fake

news is to determine a method of recognizing the breeding grounds for fake news. While

keeping up with the latest techniques employed by the originators of fake news is

problematic, especially for a small team, we suggest the real concern lies with the adoption

and repetition of the fake news by social media users. Researchers report much of this

5

process occurs in social media echo chambers [28], [29]. By echo chamber in this context,

we mean the oft cited “bounded, enclosed media space that has the potential to both

magnify the messages delivered within it and insulate them from rebuttal” (emphasis

added) [28, p. 76].

Thus, to get to the crux of the problem, we propose identifying the environs where

fake news can flourish as a key step to informing the public as to their exposure to

potentially unhealthy, unbalanced, and unexamined discourse. To effectuate that goal, we

endeavor to develop a model that can identify the hallmarks of an echo chamber by the

behavior and posts of the members of a social media group, without the need to determine

the precise veracity of every post, thus providing a more universal solution for multiple

social media platforms, as well as for multiple subject domains. Ultimately, this approach

could be combined with other analyses to inform readers of their exposure to fake news.

Our primary hypothesis is that an interest group on a social media platform can be

effectively modeled as a gravity well [30], a similitude for the gravitational pull exerted by

a large mass in space. A gravity well is effectively a metaphor for Einstein’s geodetic

effect, commonly visualized as a bowling ball distorting the planar surface of a trampoline

due to its weight [31]. An illustration of this concept can be found in Figure 1-11. The

analogy here is that an echo chamber in a social media interest group essentially captures

its audience, with elements of the social media platform—the precise topic of the forum

1This Photo by Unknown Author is licensed under CC BY-SA-NC

6

Figure 1-1: Example gravity well

and characteristics of the audience constituting the attractive force that holds users within

the grip of the gravity well. As indicated by the title of our work, we further theorize that

an echo chamber could then be detected by particular aspects of that gravity well.

Contributions of this research are our working definition for fake news and our

proposed framework for recognizing fake news. Further contributions include the

definition of a generic method for modeling echo chambers, to include the proposal of three

pillars essential for an environment conducive to the formation of echo chambers.

Moreover, this proposed model employs a novel approach using the concept of a gravity

well to represent social media groups in a multiagent simulation. This generic model aims

7

to be equally applicable to multiple social medial platforms. More immediately, we

demonstrated the use of our echo chamber simulation to nineteen different subreddits

within the Reddit social media platform.

In the remainder of this document, the research is discussed in greater detail.

Background information is provided, followed by a section describing Steps Toward Fake

News and Echo Chambers. We next outline the Fake News Model Formation and

Exploration. With that foundation in place, we introduce the concepts of Echo Chambers

and Gravity Wells, followed by Gravity Well Simulation, Results, and Analysis. Lastly,

we address Conclusions and possibilities for Future Work.

8

2. Background

In this section, some topics central to addressing the problem of fake news will be

reviewed. First, the profession of journalism will be discussed, including the aspects of

journalism that have, to some extent, kept fake news historically in check, which

unregulated or unprofessional writings arguably do not. Next, fake news will be analyzed,

including common definitions adopted thus far and a treatment on why a novel definition

is required. Finally, a discussion on the automatic detection of fake news will naturally

segue to a discussion on the concept of echo chambers, where relevant research is reviewed.

2.1. Journalism

Unofficial news sources are springing up worldwide, causing journalists and traditional

news organizations to struggle to remain relevant [32]–[34]. With so much of fake news

being false news intentionally crafted to resemble real news [3], [12], [35]–[39], it is

beneficial to review some essential aspects of professional journalism.

2.1.1. Gatekeeping

Gatekeeping is conceptually one role that a newspaper editor has traditionally filled. The

duties of an editor are to select (or reject) news stories based on the priorities of the

publication. This is not to say that an editor is the only gatekeeper in the news media [40].

There are many gates through which a story must pass before it appears in print (or in

digital). However, editors are one of the most powerful and visible gatekeepers. This is

vividly illustrated in [41], where Dr. White analyzes the stories accepted and rejected by a

newspaper editor, and the reasons given for each. The reasons for rejecting an article vary

from the quality of the writing to an overabundance of stories on the topic, to the story

being dull or trivial. There are arguments for and against this type of formal gatekeeping,

9

with advocates arguing that without this sort of gatekeeping, we would see something like

what we are seeing on social news sites—an overabundance of fake news. On the contrary,

opponents argue that gatekeepers determine what is newsworthy, and often what is

newsworthy is determined by those in power [42, p. 101] according to the ‘official line’.

This has been most evident during times of war, when propaganda comes into primacy [43,

Sec. One].

With the advent of non-traditional news reporting, most gatekeeping has disappeared,

and everyone must be their own gatekeeper. This can be advantageous, as much news that

was historically unavailable has now become a trove of information for any seeking it.

However, as the advocates of formal gatekeeping expected, false and dishonest news

reporting is also flourishing, and the public has not been well-equipped to sort through

volumes of misinformation for the occasional nugget of truth. Expectations have been set

for social media to address this problem [23], [38], [44], but others argue that asking private

corporations to take on the mantle of gatekeepers is fraught with problems, including the

self-interest of corporations, the likely inefficacy of that approach in the end, and threats

to freedom of expression [45].

2.1.2. Objectivity

Objectivity as it applies to journalism is tied to the idea that, in order to report the news as

it is, without being colored with bias or prejudice, one must be impartial, balanced, factual,

fair, and detached [46]. It is aimed at allowing reported news to reflect a common world

view, upon which all can agree [47, Ch. 1]. The objectivity norm in journalism was

developed early in the 20th century in the U.S. and became a central tenet of journalism in

the Western world [46]. While it commanded respect for much of the 20th century, it began

10

to suffer much criticism later in the century, being described as an unattainable and even

dangerous ideal [48]. This criticism began to invade the world of journalism, to the point

where the Society of Professional Journalists removed the term from its code of ethics in

the 1990s [49, p. 5].

Despite objectivity’s rise and fall [42, Ch. 3], it must necessarily play some part in

the handling of fake news. Though arguments have been presented that a new generation

of news consumers are not rejecting truthful news [33], but only desire a more opinionated

form absent objectivity, this appears to be a more unobtainable truth than the dream of

objectivity. As the authors of [50] show, not only is a segment of the users of social news

sites drawn to hoax news, but it is also possible to predict hoax news based on which users

“liked” them on Facebook. The good news here is that not all news consumers are rejecting

objectivity and gravitating to fake news. A possible approach to remedy this situation is to

encourage a healthier diet of news consumption, just as to alleviate the growing health

problems in the US, promoting a healthier diet of food consumption could work wonders.

2.2. Fake News

To fully explore the motivation for this research, we must first discuss the central concern,

that of fake news. Firstly, the motivation for studying this problem will be discussed. As

indicated previously in the Introduction, the prevalence of fake news and its influence has

become a prominent concern across the globe [1], [2], [5], [12]–[16], [51]. Moreover, in

the United States, the seriousness of the issue cannot be better illustrated than the findings

of multiple U.S. government agencies assessing that a foreign government (Russia) applied

cyber warfare tools and techniques to undermine the democratic process [35]. Much of that

effort was focused on the spread of false information on social media platforms. While the

11

U.S. agencies made no conclusions as to the efficacy of those efforts, other researchers

have determined that fake news was voraciously read by some sectors of the population

[2], some noting a definite impact on the elections from same [1], [52], and one finding

fake news was more widely shared on Facebook during the election than real news pieces

[53]. Perhaps even more disturbing, a recent study by Stanford researchers [54] found that

7,804 young people in schools across twelve states demonstrated a bleak ability to reason

about information they encountered on the internet.

It is important to make clear what is meant by fake news. In some literature, fake

news begins with the political satire famously demonstrated by the television program The

Daily Show [37]. While that program often labeled itself fake news, the news presented

there was, on the whole, quite accurate. The show provided entertainment by ridiculing the

news and the players involved. While some would certainly argue the show exhibits a

(liberal) bias, the fact that it does not try to pass itself off as a legitimate news source

suggests that it is not of primary concern to the current research.

Similarly, the authors in [37] lump news parodies in their typology of fake news. A

prime example of this would be the parody site The Onion2. Again, this type of source, one

primarily for entertainment and openly declared as such, is not of interest to this research.

Of course, there are some who might be taken in by humor news, but the cure for that

resides somewhere other than technological approaches to rooting out misleading news

2 https://www.theonion.com/

https://www.theonion.com/

12

content. This definition of fake news, excluding satire and parody, is more in line with the

explanation provided in [52]. Thus, we arrive at our working definition of fake news:

“False or misleading content represented as news, regardless of the intent to deceive.”

The emphasis we focus on here is on the claim of “news”. If an article presents itself

as news, yet has an agenda to persuade rather than inform, it would be considered fake

news. An article could be completely true and factual, but if it, through omission, makes

no attempt at a balanced discussion or debate, it would fall within the fake news spectrum

defined for the current research. For this reason, only articles of some length will be

considered. As shorter headlines and breaking news may only have the briefest discussions

on a topic, a balanced discussion would be difficult. This is not to say that such short

articles, tweets, and headlines could not be fake, but that they do not fall within the scope

of analysis for this work. It is conceivable, though, that a collection of tweets from a single

author could be analyzed using the framework. Such an effort is reserved for later

consideration. Many examples of misleading and completely false sensationalist headlines

exist, but there have also been efforts to address this problem [55], [56]. Simple fact-

checking could be an effective bastion against such limited pieces, especially with the

assistance of network analysis for automated fact checking [57], as well as source

reliability measures [58], both of which have become common, though laborious,

approaches to identifying fake news.

2.3. Automatic Fake News Detection

Automatic fake news detection is a relatively new field of study, coming to the forefront

in concert with the recent concerns over the negative effects of unreliable news spreading

via social networks [1], [12]–[16], [59]. Many researchers have been attempting to find

13

solutions to this problem. A brief overview of some of the most successful approaches is

provided below. Of interest for the current research are studies which attempt to classify

text based purely on the content of the text, as other metadata is often not available or is

exclusive to a particular social network.

In [60], the author introduces a publicly available fake news dataset called LIAR3

that could be advantageous. The database is comprised of 12,836 short statements from the

PolitiFact website4. These statements have been classified on a discrete six-point spectrum

from “pants on fire” to “true”, with the labels “false”, “barely true”, “half true”, and

“mostly true” falling between. The author then tested several classification approaches,

reporting the greatest success with convolutional neural networks (CNNs), with a reported

accuracy of 0.270 for the test set, compared to an accuracy of 0.208 by exclusively selecting

the majority label. The other models, including support vector machine (SVM), logistic

regression, and bidirectional long short-term memory (bi-LSTM) networks models, fell

between these two extremes. The author also found some modest improvement by

including select metadata (subject, speaker, job, state, party, context, and history) related

to the original texts, but the improvement was modest indeed, with an accuracy 0.274.

Subsequent studies have methodically improved on this baseline with the advent of

more capable classification models. Of recent note, through the use of Google’s

Bidirectional Encoder Representations from Transformers (BERT), the authors of [61]

3 http://www.cs.ucsb.edu/~william/data/liar_dataset.zip

4 http://www.politifact.com/

14

reported a classification accuracy of 0.70 on the LIAR dataset. This reflects the giant strides

made recently in large language models (LLMs), which we will address later.

The authors of [62] conducted some interesting analysis into the uses of particular

categories of words by news articles classified as either “trusted”, or one of three types of

fake news: “satire”; “hoax”; and “propaganda”. According to the fake news definition

identified in the current study, the primary interest is in hoax and propaganda news, but the

ability to recognize or at least separate out satire is also of value. The authors made use of

the Linguistic Inquiry and Word Count (LIWC) lexicon, as well as sentiment, hedging, and

intensifying lexicons, all of which could prove useful in the fake news framework

described in Section 4. The authors also applied what they learned to predicting the

truthfulness of news articles. Of particular interest is their application of classifiers to a

PolitiFact5 database which labels news in a discrete spectrum from “pants on fire” to “true”,

as in [60]. They report an F1 score of 0.20 for the long short-term memory (LSTM)

classifier, compared with a score of 0.06 for the majority baseline. Oddly, when they added

LIWC feature vectors as input, the results suffered for the LSTM solution, scoring only

0.19, despite the other models, naïve Bayes and maximum entropy (MaxEnt), improving

markedly. The best result was that of the MaxEnt model with LIWC, with an F1 score of

0.22. Unfortunately, direct comparison with [60] is not possible since that author reported

classification accuracy and not F1 scores.

5 http://www.politifact.com/

15

Another investigation of interest is the one detailed in [63], as the authors also attempt

to find language identifiers for misleading content. The authors focused on Twitter as a

data source and compiled a corpus of more than 130 thousand retweets6, which they then

labeled according to the original tweeter’s account veracity—either verified (by Twitter7)

or suspicious (with the help of two publicly available tools that annotate suspicious Twitter

accounts8). The authors focused on two linguistically infused neural network models,

LSTM and CNN, as compared to two logistic regression models employing term

frequency/inverse document frequency (TFIDF) features or Doc2Vec vectors [64], [65]. It

is perhaps no surprise that the LSTM and CNN methods both outstripped the logistic

regression models on a binary classification task, both returning an accuracy of 0.95 and

precision of 0.99 when utilizing not just the tweet text and linguistic cues, but also Twitter

user network information. While this looks impressive on the surface, what is not clear is

how much overlap exists between the text of the original tweets and the retweets.

Additionally, the subject matter of the tweets was specifically scoped by including tweets

only from one week before and after the Brussels bombing occurring on 22 March 2016.

The primary interest for the current research is the set of linguistic cues the authors

employed in their study, including bias, subjectivity, psycholinguistic, and moral

foundation cues. The authors performed a detailed linguistic analysis of the linguistic

6 http://www.cs.jhu.edu/~svitlana/data/fakenews_dataset.zip

7 Twitter verification has changed substantially since this research was published:

https://help.twitter.com/en/managing-your-account/about-twitter-verified-accounts

8 http://www.propornot.com/p/the-list.html and http://www.fakenewswatch.com/

http://www.cs.jhu.edu/~svitlana/data/fakenews_dataset.zip
https://help.twitter.com/en/managing-your-account/about-twitter-verified-accounts
http://www.propornot.com/p/the-list.html

16

markers and reported their findings in detail. Their aim was to help explain the results of

their neural network models, which of course do not provide explanations for outcomes

given. The authors’ linguistic analysis could prove beneficial to our fake news framework.

2.4. Echo Chambers

While the originators of fake news may be at fault for the production of misinformation,

perhaps what is most problematic about fake news is that it appears to thrive and readily

replicate in today’s society. One possible cause for this is the proliferation of phenomena

known as echo chambers on modern social media platforms. As previously referenced, we

can define an echo chamber as a “bounded, enclosed media space that has the potential to

both magnify the messages delivered within it and insulate them from rebuttal” (emphasis

added) [28, p. 76]. That definition perhaps intimates why social media would be a breeding

ground for such situations, as social media users often elect to insulate themselves.

One of the earliest references to social media and echo chambers identifies that very

propensity concerning blogs [66]. The authors note the prevalence of comment agreement

relative to disagreement with the original blogger, finding that ratio varied from 2 to 1

upwards to 9 to 1. This study focused on the question of whether blogs might be considered

echo chambers, and whether any such echo chambers were more likely to form according

to the genre of the blog. The most disturbing result in the context of this thesis is that among

the genres with the highest ratios of agreement to disagreement—i.e., the strongest echo

chambers—was the group of political blogs, with a ratio of 9 to 1.

Many other studies of echo chambers and social media have followed [29], [67]–

[80], making it clear that this is a concerning trend, and one the study of which that society

17

might benefit. To learn more about echo chambers in social media, we must first be able

to recognize them. Many researchers have already attempted this task, which is what we

shall review in the remainder of this section.

2.4.1. Studies of interest

Perhaps the most straightforward approach would be to attempt to identify echo

chambers using the actual content within the potential echo chamber. This is the approach

explored by the authors in [75], combining content-based sentiment analysis to identify

argument stance and the emotions elicited by a subject. Their combined approach was

successful in scoring highest the leftmost- and rightmost-leaning news fan pages. While

this approach shows some promise, it was only trialed on ten fan pages, so more evidence

is needed to determine its efficacy.

In another approach, the authors of [80] suggest that applying a community detection

strategy to tweets can be effective in identifying echo chambers. Both the topology of

relationship networks and conversation graphs are employed to identify pockets of

polarization within discussions related to COVID-19. Ultimately, the investigators

concluded that, while the addition of semantic information may have improved

identification of echo chambers, further research is required to determine the vibrancy of

the echo chambers identified. This unfortunately is a harbinger of a similar limitation we

have found with our own research.

Yet another approach was tried in [77]. The authors strove for a general framework

for identifying echo chambers across multiple online social networks. They focused on

topologies but from a macro-level. They incorporated other indicators of echo chambers

18

which may be found across a variety of social medial platforms, specifically: controversial

topics, user posts, and user comments. The authors identified the existence of several echo

chambers on the Reddit platform. However, their results are mixed and do not correspond

clearly with another prominent echo chamber research effort [73]. Their mixed results only

indicate that the problem is far from solved. Furthermore, as noted by the authors and

relevant to the research reported here, there is no standard for determining the veracity of

echo chamber detection. More research is required on all fronts to meet this challenge.

In direct contrast to the previous effort, the authors of [73] concluded the Reddit

platform was essentially absent of echo chambers, at least with respect to two political

camps. Their methodology involved reconstructing the political interaction networks of

users within Trump and Clinton subreddits to determine whether there were substantial

interactions between these opposite political groups. The authors found significant

asymmetric heterophily and a preference for cross-cutting political interactions between

them. This is counter to expectations set by the echo chamber narrative, but once again,

ground truth is difficult to establish. Moreover, this was a study limited to only two

potential echo chambers.

2.4.2. Simulations

In addition to finding ways to aggregate and analyze real data from potential echo

chambers, sometimes it can be beneficial to produce a simulation that provides insights

into the data used to seed the simulation. One such effort can be found in [76], where

Törnberg models social media networks and searches for associations between echo

chambers and viral misinformation spread. To that end, the author characterizes viral

misinformation spread as the diffusion of complex contagions. By examining data from the

19

perspective of echo chambers being defined by polarization of both opinions and networks,

the author was able to identify potential echo chambers, then relate those chambers

(network clusters) to the virality of a contagion (misinformation spread). In the end, the

study concludes that the identified echo chambers may be linked to misinformation spread.

While the research adds to existing literature on network diffusion, the entire simulation is

based on synthetic network data generated to study the proposed characteristics echo

chambers may have in social networks. At this juncture, there is no tie to real-world

observations. Application to real social network data remains to be demonstrated, assuming

availability of the data required to generate this simulation based on real-world social

media networks.

In another research effort based on simulation, the authors of [81] propose a model

that focuses on the dynamics of radicalization as a reinforcing mechanism leading to

extreme opinions from otherwise moderate initial conditions. Their model focuses on the

influences of homophily and heterogeneous activities on echo chamber formation. The

authors aim to reduce the contradictions exposed between observations of real-world social

media networks and the predictions of classical models of opinion dynamics. Once again,

this is purely a theoretical simulation based on synthesized data. However, the research has

significant findings regarding the similarity of their theoretical results to actual data from

polarized political discussions on Twitter. The similarities between the model data and the

political discussions are striking. Further research could prove helpful in identifying the

characteristics of echo chambers in online social media platforms.

Speaking of further research, the authors of [82] employed the simulation in [81] to

explore a bilayer topology for the network, then studied the dynamics of the polarization

20

as it relates to interlayer couplings. They essentially operate from the assumption that the

system is initially polarized, with the layers representing different opinions on a particular

topic. The study focuses on three scenarios: unidirectional coupling, symmetric coupling,

and nonsymmetric coupling. As is likely already evident, this is yet another theoretical

approach to studying characteristics of what might represent echo chambers using synthetic

data, with a bit more complexity literally layered on the previous model. The authors do

strive to draw parallels between each scenario and the real world, but much work remains

to close the distance between the two if we are to rely on the simulation as a viable predictor

or indicator of existent echo chambers.

This same trend continues even among agent-based models of echo chambers—the

simulations are based on synthetic data which then are compared and contrasted to real

data, such as in [83]–[86]. Efforts to incorporate real data into echo chamber simulations

are rare indeed, if existing at all.

Having examined some background topics and research conducted by others, we will

now reflect on prior work in which we have been involved, noting how those efforts

affected our outlook and influenced our research interests.

21

3. Steps Toward Fake News and Echo Chambers

Much work was accomplished in researching other projects which inspired and fed our

interest in addressing the problem of fake news. Several publications reflect that work,

specifically [87]–[92]. In the next section, we will review those that had the most direct

and notable impacts on the direction of this research.

3.1. Insights

The research associated with “Intent-Driven Behavioral Modeling during Cross-Border

Epidemics” [92] and “Modeling Emergent Border-Crossing Behaviors during Pandemics”

[90] was particularly influential to the direction of our research. In [92], we employed

dynamic, multi-domain modeling to explain the decisions and actions taken by actors in a

scenario. We validated our approach by modeling and analyzing migration behaviors

during the 2009 H1N1 pandemic in Mexico. This research fueled our interest in modeling

human behavior, while the pandemic theme was relevant, as modeling the spread of

information and opinions has often been related to disease-spread dynamics and vice versa

[93]–[96].

Likewise, efforts towards [90] were formative, as the research employed a novel

intent-driven modeling paradigm for real-world scenarios by causally mapping beliefs,

goals, and actions of individuals and groups to overall behavior. We validated this approach

by examining emergent behavior occurring near a national border during pandemics,

specifically the 2009 H1N1 pandemic in Mexico. We accomplished this through

representing the dynamism of the complex situation at multiple scales by including both

coarse-grained (events at the national level) and fine-grained (events at two separate border

locations) information. Such experience and insights were invaluable to addressing the

22

multifaceted problem of fake news in social media as that problem surfaced in American

and global society.

Furthermore, the social network material explored in “Infusing Social Networks with

Culture” [91] was highly relevant to the topic of social media in general. For this study, we

systematically represented cultural influences in the form of relevant factors and

relationships, while leveraging relevant social theories, and then infused them into social

networks to obtain more realistic and complete analyses. Through highlighting the

dynamics involved in complex networks, our understanding of the interplay of forces

within the same was greatly improved. It is apparent that this effort was influential when

considering the effects of social media on the emerging problem popularly known as fake

news.

Beyond those influences, the research conducted to produce “Modeling Complex

Social Scenarios Using Culturally Infused Social Networks” [97] had its own unique effect

on our focus. This study explored the formation and dissolution of coalitions and groups in

the face of competing and conflicting opinions, both inside and outside those groups, in the

specific context of the rise and fall of the Islamic Court Union (ICU) in the 2006 Somali

conflict. In a similar context, [88] explored the ability for a community to remain resilient

against dramatic changes, such as those encountered by fishing communities in Somalia

during the peak of Somalian piracy from 1999 to 2012. Both works contributed directly to

the formation of thoughts and theories related to modeling the echo chambers to be

discussed later in this work.

23

3.2. Explorations

As our insights developed into researching fake news detection and deterrence, we

explored some topics of interest that also fueled our interest in addressing fake news.

3.2.1. Behavioral Strategies

The prevailing model in economics based on game theory relies on humans behaving as

rational actors, yet this paradigm often fails to predict actual behavior, both in games and

in real-life. People are neither perfectly nor equally rational; the same is true of all other

traits. This research was spawned to close the void between perfectly rational predictors

such as that produced by game theory versus actual human behaviors driven by the

complex interplay of reasoning, learned behaviors, character traits, and emotions.

Our research aimed to improve modeling of decision-making in competitive

scenarios by using Bayesian Knowledge Bases (BKBs) [98] to account for individual

characteristics in strategies employed and resultant outcomes. BKBs are founded on Bayes’

theorem, which allows probabilities to be updated as new or updated information is

obtained. BKBs unify “if-then" style rule formation with probability theory, providing the

ability to reason over complex situations and present probabilistic outcomes even in the

face of incompleteness. Additional background on BKB use is provided in Appendix A.

Initially, we reviewed numerous studies in human behavior and game theory,

searching for suitable data with which to explore the aforementioned topics. We also began

with investigating options for representing cultural information about players in BKBs to

improve our understanding and forecasting of the logic and influences affecting the

decisions of those players in game theory scenarios. These initial forays into BKB

24

representations of player cultural backgrounds, traits, and strategies fed directly into the

following experiments.

The first study we undertook involved data obtained from Andreoni and Miller in

[99], where the authors engaged 176 subjects in a modified Dictator Game. The classic

Dictator Game reported in [100] asked subjects to divide a set sum of money between

themselves and an anonymous second player in a one-shot game, with the second player

having no opportunity to rebut or address the decision of the first player. The modified

Dictator Game employed by Andreoni and Miller differed in that the subjects played a

series of games and the payoffs varied from game to game. Subjects were given tokens

rather than actual money, and the consequences of sharing tokens varied from game to

game, where sometimes a token held would be worth more than a token shared and vice

versa.

Initially, the expectation was to apply BKBs to develop models for each player based

on the sequence of decisions made in the series of games, as linked to three broad play

strategies, those being selfish, optimizing, and egalitarian. With the selfish strategy, players

would always keep (nearly) all the tokens, regardless of the value to the other player.

Optimizers would give (nearly) all tokens to whomever would gain the most for each token,

while the egalitarian strategy dictates that players would divide the tokens so the payout

each player received would be equal. The BKB model is updated after each game to “learn”

the style of that player, details of which are provided in Appendix A. For this study, we

identified six different prediction methods to consider, as outlined in Table 3-1.

25

While our results from this modeling at first appeared significant, with the BKB-

based predictions from probable strategy and probable play having the first- and second-

least normalized mean absolute error (NMAE), further examination of the data revealed a

critical flaw with the setup. It was belatedly discovered that the actual sequence of the game

turns was not preserved with the data, so the approach for sequentially learning the play

style of each player was invalidated. In response, multiple attempts were made to complete

related analysis that did not rely on the sequence of play. Table 3-2 shows the results of

this effort.

Row 1 reflects the results with the original, unaltered data from [99]. As mentioned,

the probable strategy and probable play prediction methods—both based on training a BKB

player beginning with the probability of each strategy profile being equal to the percentage

of players exhibiting that profile—performed first- and second-best, respectively. Noting

Table 3-1: Dictator game prediction methods

Random play Randomly choose a number of tokens to keep and to share,

between zero and total tokens allotted

Random strategy Randomly choose between the three strategies identified:

selfish, optimizer, and egalitarian

Last strategy Repeat the last strategy identified for this player. For first,

“guess” play is exactly half of tokens allotted

Probable strategy Apply most probable strategy as identified by a BKB initially

formed based on average player strategy distribution, but

updated with each round for each individual player

Probable play Apply a weighted move based on probability of each strategy

per same BKB as for probable strategy

Max strategy Use the most frequently used strategy by that player up until

that game

26

Table 3-2: NMAE for various player game orderings

Ordering

Random

Play

Random

Strategy

Probable

Strategy

Probable

Play

Last

Strategy

Max

Strategy

1 w/o opt order (6) 0.392 (5) 0.307 (1) 0.177 (2) 0.185 (3) 0.188 (4) 0.190

2 with opt order (6) 0.388 (5) 0.296 (3) 0.170 (4) 0.181 (1) 0.108 (2) 0.143

3 all permutations (6) 0.329 (5) 0.278 (1) 0.177 (2) 0.186 (4) 0.192 (3) 0.191

4 perms w/egal (6) 0.329 (5) 0.278 (3) 0.202 (4) 0.219 (2) 0.192 (1) 0.191

5 perms w/opt (6) 0.329 (5) 0.278 (3) 0.193 (4) 0.204 (2) 0.192 (1) 0.191

6 perms w/even (6) 0.329 (5) 0.278 (3) 0.198 (4) 0.214 (2) 0.192 (1) 0.191

that the game orderings for each player in the original data did not necessarily reflect the

actual order of the games presented to each player, we then applied the analysis in row 2,

where all the orderings found in the original data were tried with each player’s results, then

the optimal ordering was selected for each individual player, where optimality was

determined by matching the least error for the last strategy prediction method. Predictably,

the last strategy prediction method performed best, followed by the max strategy

prediction, then probable strategy and probable play. It is logical that max strategy would

outperform the BKB-based predictions, as the most-used strategy for each player would

naturally frequently match the last strategy used by that player. While it is reassuring that

the BKB-based predictions continue to outperform random strategies, this analysis is not

otherwise particularly informative.

In row 3 of Table 3-2, we computed the average NMAE obtained by applying each

strategy in turn to every possible permutation of the game order. Interestingly, the two

27

BKB-based prediction methods performed first- and second-best for all possible

permutations, which demonstrates the power of the BKB to learn patterns of behavior, even

when all but one of those patterns would not match the ordering of games the player saw.

Note that for rows 4, 5, and 6, the NMAE only changes for the BKB-based predictions

because the only change from row 3 is that the bootstrap BKB for each player, rather than

being based on player strategy distribution, is instead 100% probable to be egalitarian,

100% probable to be optimizing, or equally probable of being selfish, optimizing, and

egalitarian, respectively for rows 4 – 6. Here, it is interesting to note that the BKB-based

predictors lose their first and second place performance once the BKB is no longer based

on the distribution of player profiles.

We learned a great deal about modeling individuals and their decision-making

approaches with this study, but unfortunately were limited in the conclusions we could

draw about our success due to the unknown ordering of games presented to each player.

Thus, perhaps the most important lesson learned was to investigate any externally obtained

data as fully as possible before transitioning to experiments.

Our second study in behavioral strategies is based on data collected from an iterated

prisoner’s dilemma game found in [101]. A total of 167 participants played 10 rounds

against anonymous partners, after which they completed a Big Five personality trait survey

and Raven’s progressive matrices intelligence test. Psychologists often make use of the Big

Five personality traits taxonomy to group or categorize personalities, which are: Openness

to experience; Conscientiousness; Extraversion; Agreeableness; and Neuroticism [102].

Raven’s Progressive Matrices [103] is a popular, non-verbal test of general human

intelligence and abstract reasoning. Additional demographic data (age, sex, education, etc.)

28

were also collected. Our goal was to employ BKBs as a tool to model the likelihoods of

individual strategies and outcomes in games based on the personal characteristics of

competitors.

As mentioned, subjects were required to complete ten rounds of an iterated prisoner’s

dilemma game. The classic prisoner’s dilemma was formalized by A. W. Tucker in 1950

[104], being a prisoner-themed scenario based on a payoff structure devised by Melvin

Dresher and Merrill Flood to illustrate the properties of two-person, zero-sum games.

Tucker’s prisoner’s dilemma describes a setup where two prisoners are charged with a

crime and held separately by the police. Each prisoner is informed that if they confess and

the other does not, they will be given a reward of one unit, while their partner will be fined

two units. If both confess, each of them will be fined one unit, but if neither confesses, both

will be released with no payment nor fine. In [101], the payoff matrix appeared as in Table

3-3. To be clear, in this scenario, if both prisoners cooperate (do not confess), they receive

$1 each, if only one cooperates, the cooperator receives nothing while the other receives

$1.50, and if both defect (confess), they both receive $0.25. Since both players know the

payoff schedule but are not allowed to communicate with one another, they can both choose

to cooperate for a modest payoff, but if one tries defecting in hopes of maximizing their

payoff at the expense of the other player, it can backfire with both players receiving a mere

$0.25 payoff.

Table 3-3: Prisoner's Dilemma Payoff

 Cooperate Defect

Cooperate $1, $1 $0, $1.50

Defect $1.50, $0 $0.25, $0.25

29

Figure 3-1: Individual payoff vs individual traits

Figure 3-2: Summed paired player payoff vs. summed paired player traits

The planned direction for this study was to first analyze the payoffs of the games with

traditional statistical analysis, followed by employing BKB models of the players to mimic

player strategies and moves. Analysis from the perspective of individual and paired player

traits yielded no insights into the prediction of player payoffs. The results of our individual

player analysis can be found in Figure 3-1, while our paired player payoff analysis can be

30

found in Figure 3-2. These results, along with the original authors’ study, convinced us that

straightforward statistical analysis was unlikely to yield meaningful conclusions beyond

those already published. Our hypothesis was, however, that further modeling using BKBs

to investigate individual game strategies would prove more insightful. Unfortunately, the

planned BKB models were never produced as this study was discontinued at this point.

The intern assisting on this research completed their internship and the PhD candidate

leading the research transitioned from full-time study to “in absentia” status, so only one

focus for study was possible going forward, which is where the research into fake news

comes into the picture. Despite the limited results from each of these studies, these forays

into behavioral strategy were not without their rewards. It is hoped we may return to the

topic in future. Most importantly, these efforts whetted our interest in better understanding

human motivations, decisions, and outcomes—topics essential to the study of fake news.

3.2.2. Corporate Psychopathy

Concurrent with the investigations into behavioral strategies, we also examined the

phenomenon of psychopathy and its occurrence in the corporate world. To start with, we

explored definitions of sociopath, psychopath, and corporate versions of each. The results

of this literature review [105]–[114] are summarized in Table 3-4.

Based on this review, for the purposes of this research, we defined a corporate

psychopath as “a successful psychopath within an organization,” where a psychopath is, in

layman’s terms, “a person having an egocentric and antisocial personality marked by a lack

of remorse for one's actions, an absence of empathy for others, and often criminal

tendencies.” [115] While our survey revealed this to be an area of interest and concern for

researchers, with related articles found in Australia, Canada, Great Britain, Israel, Turkey,

31

and the United States, such studies tend to rely on self-reporting of characteristics to

provide input to the assessment of the existence of psychopathy, and the participation from

corporations, and particularly corporate leaders, to allow for such assessments is rare. Thus,

there exists a paucity of reliable data to allow effective analysis of corporate psychopathy.

 Table 3-4: Corporate psychopathy definitions

Sourcee Definition

[105] Individuals in the workplace whom coworkers have described as “creative,

strategic, having good communication skills, low management skills, poor

team member, appraising lower performance, self-serving, opportunistic,

manipulative, ruthless, shameless, charming, grandiose, and ambitious.”

[106] Psychopathy in the workplace where likely the individual’s psychopathic

traits relate more to good impression management as opposed to good job

performance.

[107] A psychopathic individual who works for an organization but is more

concerned with personal success and self-enrichment instead of that of the

organization for which they work.

[108] Someone with a lack of conscience, a key feature of psychopathy*, who

manages to avoid legal confrontation with authorities and works for an

organization.

[109] A psychopath who successfully evades the attention of the authorities and

works within an organization.

[110] An individual who presents manifestation of psychopathic traits, who has

not been incarcerated in the judicial or mental health systems, and is more

likely to engage in manipulative and antisocial behavior and works in a

corporate setting.

[111] A dysfunctional leader with psychopathic traits, which are likely

underlying factors in their deviant interpersonal behaviors.

[112] Someone who displays sociopathic characteristics and works for an

organization.

[113] Someone who works in the business sector and exhibits psychopathic

characteristics. These people have implications in counterproductive

workplace behaviors, white collar crime, ethical decision-making in the

corporate world, and leadership.

[114] An employee, often a leader, who demonstrates aggressive behavior in the

workplace. A person who manages employees and manifests deviant

behavior characterized by bullying, using violence, and performing

passive or active acts of aggression.

32

To overcome this lack of data, we focused on trying to understand the patterns and

origins of psychopathic corporations, then appled game theoretics to explore implications

of the existence of corporate psychopathy. Our initial foray into this realm began with

modeling the emotional gameplay of participants in a voluntary prisoner’s dilemma game.

Wang et al. [116] posited that players imitate emotional profiles of opponents rather than

imitating opponent strategies. For the voluntary prisoner’s dilemma, rather than simply

having the strategies of cooperate or defect, players also have a third strategy dubbed

“loner”, where a player could temporarily withdraw from the game but still receive a small,

fixed income 𝜎. The payoff matrix for this voluntary prisoner’s dilemma is outlined in

Table 3-5.

The authors’ simulation results are reflected in Figure 3-3, which we were able to

successfully replicate (Figure 3-4). The aim of this effort was to eventually tie the emotions

the researchers identified for weaker players in this game, those of sympathy, harshness,

and apathy, and for stronger players, those of respect, jealousy, and fear, to emotional

profiles for corporate psychopaths through the application of game theory. Future research

was envisioned as applying research of corporate decision making to agent-based

modeling, creating a simulation embodying corporate decisions, and looking at long-run

Table 3-5: Voluntary prisoner’s dilemma payoff [116]

Player 2

Player 1

C D L

C R/R S/T 𝜎/ 𝜎

D T/S P/P 𝜎/ 𝜎

L 𝜎/ 𝜎 𝜎/ 𝜎 𝜎/ 𝜎

R(reward)=1, S(sucker)=0=P(penalty), 1≤T(temptation)≤2, and 𝜎=0.3

33

effects and trends.

Figure 3-3: Fraction of cooperators, defectors, and loners from [116] over time

Figure 3-4: Replicated results

34

Unfortunately, once again this research was discontinued for several reasons. Most

pressing were the limitations in studies that included senior corporate personnel which

limited the ability to analyze the most influential leaders in corporate business, but also due

to personnel changes and shifts in focus. Nevertheless, the insights gained into human

behaviors in the corporate world would prove exceptionally relevant to our ultimate focus

on fake news, which is where our research picks up in the next section.

35

4. Fake News Model Formation and Exploration

In order to usefully provide a method for recognizing fake news, individual biases and

opinions must be considered. The labeling of fake news is a subjective effort, as the

identification of “truth” in our complex world is not always straightforward. Moreover,

with the increasingly polarizing effect of modern politics, what is accepted as truth and

what is rejected as fake has often become more a personal issue than an evidentiary effort

[117]. What one person may accept for fact, another may argue is fiction, as succinctly

argued in [118]. For this reason, it is proposed that the problem of fake news be partitioned

into two pieces: premises and misleading content. Those two parts then form a framework

to effectively evaluate the validity of any potential news.

The value of this research and the accompanying framework lies not only in its

practical utility to potential users, but also in the light it will shed on the prevalence of bias

and the absence of balance in many news stories. It is conceivable it could also be applied

to historical news sources, to gauge if news has truly become less objective in recent years.

Furthermore, its biggest eventual contribution to science could be in plainly identifying

attempts at undermining actual science with biased reporting and pseudoscience.

The foundation of this research is in identifying the components of a fake news item.

While there are numerous approaches to fake news and numerous ways to try to identify

or rate fake news as discussed in Sections 2.1 and 2.3, there are only a limited number of

ways that the information in fake news can be automatically and reliably parsed for signs

of counterfeit. This proposal contends that a fake news piece, as defined previously, can be

condensed down to a collection of assertions, which may or may not be true, and various

methods of deception, including biased arguments and language, misdirection, and

36

Figure 4-1: Fake News Framework

manipulation. While these components are not comprehensive, it is believed they are some

of the most recognizable and most critical. Further components may be added as this

research progresses. A brief description of that framework follows, and an illustration of

its composition can be found in Figure 4-1.

Although the intent here is to identify discrete components, some overlap and

blurring of definitions is unavoidable. For example, emotional and manipulative language

may be employed to support a biased argument. Regardless, if both manipulative language

and a biased argument are present, they magnify the effect of either alone. Additionally,

every effort is made to ensure the framework is all-inclusive, but that is a tall order. One

approach to help meet this objective is to employ the typology of fake news defined in [37].

The authors note that after a survey of 34 academic articles focused on fake news,

Premises

• Facts

• Assertions

• Beliefs

• Testimonies

Misleading Content

Bias
• Unbalanced

Arguments

• Connotative Language

Manipulation
• Emotional Language

• Manipulative

Misdirection
• Flawed

Arguments

37

they found the following fake news types: satire, parody, fabrication, manipulation,

propaganda, and advertising.

For the purposes of this research, the first two types, satire and parody, do not fit the

chosen definition for fake news, as they do not represent themselves as genuine news.

While the “fake news” sobriquet is often applied to works of satire and parody, even by

the creators of said works, they are clearly provided for entertainment. Moreover, as noted

in [37, p. 142], “the core content of political satires is based on actual events.” The parodies

are of course a different story. They emphasize “the ludicrousness of issues…by making

up entirely fictitious news stories.” A similar argument applies for the last type, advertising,

which is clearly not labeled as news, except in the relatively rare instances when advertising

attempts to pass itself off as a news item in some publications. While that does occur at

times, that can be easily remedied through requiring advertising to be transparently labeled.

For these reasons, advertising is not considered within the scope of this study.

The remaining three types—fabrication, manipulation, and propaganda—are central

to the subject of study and will be addressed. In short, fabrication would fall within the

premise category, unless there is an attempt to support the fabrication with argument, in

which case any or all the other components of fake news could be employed in that effort:

bias, misdirection, and manipulation. The manipulation type of fake news is obviously

captured by the manipulation component identified in the fake news framework. However,

the primary focus of the authors of this typology [37] was image manipulation, whereas

the focus here is on manipulative language. Propaganda could employ any or all four

components of fake news. These three types primarily differ from the others in their

motivations—they all intend to mislead, which is of interest to this study, but not

38

exclusively so.

Figure 4-2 : Sample Real News – Common Definition

As a demonstration for discussion, Figure 4-29, Figure 4-1210, and Figure 4-411

contain sample news articles from a fake news analysis database [39], [119], which will be

9 “House oversight panel votes Clinton IT chief in contempt” cited at 'http://cnn.it/2deaH2d'.

10 “NY Gov. Andrew Cuomo disputes Trump's claim cops are 'afraid' to do their jobs” cited at

‘http://cnn.it/2d3tTeL’.

11 “The DEA Just Raided A United States Senator–Dems In A Panic – News Feed Hunter” cited at

'http://newsfeedhunter.com/the-dea-just-raided-a-united-states-senator-dems-in-a-panic/'.

'House oversight panel votes Clinton IT chief in contempt'

'Story highlights The House Oversight panel voted 19-15 to hold Bryan Pagliano in

contempt.

Pagliano failed to show for a second hearing on Clinton's emails and private server

Washington (CNN) Members of the House Oversight and Government Reform

Committee voted along party lines Thursday to hold the architect of Hillary Clinton's

private email server in contempt for failing to appear before them.

The panel's 19-15 vote came after Bryan Pagliano failed to attend a second hearing on

Clinton's emails and use of a private server while leading the State Department.

Republicans blasted his decision as an act of defiance, but Pagliano's lawyers said the

demand that he appear "betrays a naked political agenda."

House Oversight Chairman Jason Chaffetz, a Utah Republican, argued that previous

testimony from another one of Clinton's IT workers, Justin Cooper, made it imperative

for Pagliano to testify.

"I explained Mr. Pagliano was uniquely qualified to provide testimony to help the

committee better understand Secretary Clinton's use of a private email server. This is

indisputable," Chaffetz said. "I also made clear the committee would consider all

options regarding Mr. Pagliano's failure to appear, including consideration of

recommending he be held in contempt."

39

referenced in the following subsections. These citations were chosen specifically for their

similar lengths but dissimilar real-news contents. Note that the citation in Figure 4-2 was

assessed by the fact-checking website PolitiFact12 to be a fact-based real news story, as was

the citation in Figure 4-12. While both are considered real news according to the source

repository, we will highlight their distinctness later. The citation in Figure 4-4 was assessed

12 https://www.politifact.com/

Figure 4-3: Sample Real News – Framework Definition

'Governor defends providing medical care for bombing suspect '
Story highlights "I don't know how you could have been more aggressive than we were here,"

Cuomo said

Ahmad Khan Rahami was captured Monday after a manhunt and shootout

Washington (CNN) New York Gov. Andrew Cuomo said Tuesday that Republican presidential

candidate Donald Trump is wrong to suggest that the New York bombing suspect shouldn't

receive medical care.

"I understand the anger that Donald Trump is speaking to (but) this is America and this is our

system and you are innocent until proven guilty and you have a right to counsel and that is the

Constitution of the United States of America," he said on CNN's "New Day."

"And that's what makes us who we are. That's what makes us special. And if you give that up,

Alisyn, then you have defeated yourself," Cuomo, a Democrat who has endorsed Hillary Clinton

for president this cycle, told CNN's Alisyn Camerota. "That is the code of democracy and

freedom. That is what they resent about us. So don't lose your soul in the process. Because

that is the soul of America."

Trump complained Monday about Ahmad Khan Rahami being offered medical treatment and

legal assistance following his shootout with police. Rahami, the suspect in Saturday's bombings

in New York and New Jersey, was captured Monday. Following a frantic manhunt and shootout,

Rahami was shot multiple times before being taken to a hospital for surgery.

"He will be taken care of by some of the best doctors in the world. He will be given a fully

modern and updated hospital room. And he will probably even have room service, knowing the

way our country is. And on top of all of that, he will be represented by an outstanding lawyer,"

Trump said at a Florida rally.

https://www.politifact.com/

40

to be a fake news story. Figure 4-5, Figure 4-6, and Figure 4-713 contain example argument

structures for those citations, which will also be referenced in the forthcoming subsections.

In the diagrams, a red box indicates a refutation to the linked argument, and all subordinate

boxes to the red box are supports for the refutation.

Figure 4-4: Sample Fake News

13 Argument structures produced using Araucaria, found at

http://araucaria.computing.dundee.ac.uk/doku.php or https://www.softpedia.com/get/Others/Home-

Education/Araucaria.shtml.

'The DEA Just Raided A United States Senator–Dems In A Panic – News Feed

Hunter'
'The DEA just raided the vacation ranch of Democrat Senator Hal Lindsay (D-NJ), seizing more

than 400 marijuana plants, 2 greenhouses full of opium-producing poppies and a small lab that

was pumping out massive amounts of refined, finished product. The ranch, just a few hundred

miles north of anything in Wyoming, was also seized along with a fleet of automobiles,

recreational vehicles and other property now considered the spoils of the drug trade.

The bust itself yielded more than $6 million in finished drugs alone, never mind the plants and

raw product waiting for packaging. All in all, Senator Lindsay is looking at 70 years behind bars

on the opium alone. He was taken into custody at his office in Washington DC and has since

been booked and released on $10 million bail.

Lindsay’s office isn’t commenting on the ordeal but New Jersey Governor Chris Christie has

already called for his removal and a special election as soon as possible. The loss of yet another

seat, especially in the northeast, would be devastating to the Democrats.

The DEA says their investigation isn’t over and that there are potentially more politicians

involved. We’ll keep you updated.'

http://araucaria.computing.dundee.ac.uk/doku.php
https://www.softpedia.com/get/Others/Home-Education/Araucaria.shtml
https://www.softpedia.com/get/Others/Home-Education/Araucaria.shtml

41

Figure 4-5: Unbalanced Argument for Real News Citation in Figure 4-2

42

Figure 4-6: More-Balanced Argument for Real News in Figure 4-3

43

To continue with this section, we introduce the concept of document graphs, which

opens the door to argument construction and analysis. We then examine the potential for

premise recognition, which also aids in argument analysis. Finally, we review options for

evaluating misleading content in fake news before discussing conclusions from our

proposed fake news model.

Figure 4-7: Unbalanced Argument for Fake News in Figure 4-4

44

4.1. Document Graph Analysis

Document graphs (DGs) are a method devised to analyze text structures and employed for

text summarization [120], [121]. A DG is a directed acyclic graph with nodes representing

the concepts or entities contained in a document, and edges representing the relationship

between those nodes. The application of DGs was explored in this research because it does

not rely on the vocabulary used within documents, but instead explores the structure of the

language used. This is valuable because once the specific language is introduced into the

analysis, particularly with machine learning and neural network approaches, it is difficult

to generalize across domains. Many of the language cues selected by automatic classifiers

tend to be topic-specific and thus not useful for fake news recognition for unrestricted news

subjects.

The DG is automatically constructed by parsing a document for noun phrases, which

become the nodes in the DG, and then labeling the edges between the nodes with one of

two relationships, either “is a” or “related to”. This in essence provides a spatial element

to visualizing the structure of a text document. In this research, the Stanford parser14 [122]

was employed to parse for noun phrases. Subsequently, the noun phrases are processed to

generate the relations between and within the noun phrases, as described in [120]. For

example, the simple noun phrase “State Department” generates the relations “State –

related to – State Department” and “State Department – is a – Department.” Figure 4-8,

14 https://nlp.stanford.edu/software/lex-parser.shtml version 3.6.0

https://nlp.stanford.edu/software/lex-parser.shtml

45

Figure 4-9, and Figure 4-10 contain the DGs generated from the news samples in Figure

4-2, Figure 4-3, and Figure 4-4, respectively. These citations were in fact chosen partly to

ensure that each example had a similar length and similar DG complexity.

As evidenced in Figure 4-8, Figure 4-9, and Figure 4-10, we now have a spatial

representation of the texts of interest. On the surface, these three DGs have many

Figure 4-8: Sample Real News Document Graph

46

similarities—they all have multiple subgraphs, some smaller, some larger and more

complex. The question which we investigated was: “Are there structural components which

Figure 4-9: Sample More Real News Document Graph

47

might set real news stories apart from fake?” Examining just these three DGs is not useful

in answering that question but examining certain network characteristics of the entire sets

of data might. Since initially the data is only coarsely characterized as real or fake

according to the criteria established by PolitiFact, that is the classification examined. The

goal is to establish whether a straightforward application of DGs to the existing definitions

of real and fake news can distinguish between the groups. To accomplish this, DGs were

generated for the entirety of data presented in [119], including real and fake news from

Figure 4-10: Sample Fake News Document Graph

48

both the BuzzFeed and the PolitiFact sites.

Two possible network measures that might help distinguish between fake and real

DGs are betweenness centrality and closeness centrality. These two are used as a first

glimpse into the utility of DGs for application to this study. They were selected to explore

because they are standard measures, are well-understood, and can provide information on

the overall structure of the document graphs.

4.1.1. Betweenness Centrality (BC)

BC is a measure of

the centrality of

the nodes in a

connected graph,

where the shortest

path between all

pairs of nodes in the graph is calculated, and then for each node, BC is calculated as the

total number of shortest paths that pass through it. This number can then be normalized by

the total number of nodes in the graph. BC can provide insight into which nodes are most

important to a graph and give an indication of the distinctness of that importance in the

graph. To make use of this metric, because the DGs are not necessarily connected, as

evidenced in Figure 4-11, the betweenness centrality was aggregated for the entire DG.

Two aggregations were explored: the statistical mean and maximum. Table 4-1 shows that

the p-value for the difference in means of the real versus fake news BCs suggests the means

are not significantly different. Furthermore, both the mean and maximum BCs do not

distinguish between the real and fake news datasets. The standard deviations for both the

Table 4-1: Betweenness Centrality Compared

Betweenness

Centrality

mean BC max BC

mean std p-val mean std

Real News 0.00076 0.002
0.1340

0.00716 0.01297

Fake News 0.00052 0.00118 0.00558 0.00928

49

mean and maximum BCs completely overlap the separation between the two groups’

means and maximums. This overlap or lack of separation is visibly evident in the

histograms in Figure 4-11.

Figure 4-11: Betweenness Centrality of Real and Fake News

50

These results suggest that the BC of DGs for real and fake news is unlikely to provide

distinguishing information for recognizing fake news. While it is possible that looking at

what nodes have the maximum centrality for each DG might provide some insights, it is

more likely that delving into the individual nodes, and therefore the specific noun phrases

that are most central to each document, will devolve into words and phrases specific to the

topic of that document, which is undesirable when trying to produce a general solution for

recognizing fake news.

4.1.2. Closeness Centrality (CC)

CC is a measure of

the closeness of each

node to all the other

nodes in a connected

graph. It is calculated

by taking the sum of

the length of the

shortest path from a node to every other node in the graph, and then inverting it. Thus, CC

is greatest for the node with the smallest sum of shortest paths. Because the DGs are not

necessarily connected, the mean and maximum CC for each DG will again be utilized when

comparing the fake and real news. As with BC, Table 4-2 and Figure 4-12 reveal that CC

does not provide sufficient separation for distinguishing between real and fake news, at

least by the definition used in this dataset. The difference of means p-value reveals that the

means are not significantly different. Once again, the standard deviations indicate there is

not significant distinction between the means and maximums to provide differentiation.

Table 4-2: Closeness Centrality Compared

Closeness

Centrality

mean CC max CC

mean std p-val mean std

Real

News 0.02652 0.03348
0.1803

0.15747 0.13727

Fake

News 0.03269 0.05779 0.1717 0.15878

51

The individual nodes could be examined for the CC measure, but this would likely only

yield document-specific details not useful for a generalized discriminator for fake news.

Thus, DG analysis in this small foray has not yielded significant results, but that does not

Figure 4-12: Closeness Centrality of Real and Fake News

52

preclude the possibility that further explorations of DGs using other network techniques

could be more effective. At this time, we reserve this approach for future studies.

4.2. Premise Recognition

To aid defining argument structure, an automated method to identify the premises (or

claimed facts) in an article must be produced. It is suggested that using argumentation

analysis, premises be identified and clearly revealed to the user. This will allow the user to

know where the discussion begins, and under what assumptions. It is then up to the user to

determine whether to accept those premises or whether to fact-check them in some manner.

These premises could be completely true and factual, wholly false and fabricated, or range

anywhere between. Interestingly, it may also be argued that the reader will have his or her

own premises which could interfere with or distort the premises of the author. By

identifying the premises of the article, this tendency can at least be partially controlled or

averted, should the reader be motivated to genuinely identify the message of the news

piece.

It is also feasible an automated or online fact-checking capability could be

incorporated into the framework, but this is not essential, and could possibly introduce

undesirable subjectivity. While it would appear at first glance that fact-checking would be

the foundation for guarding against fake news, as will be discussed later, facts can be

employed with misleading logic and manipulative language to produce an erroneous or, at

the very least, false conclusion.

Another point to note at this juncture is the concept of intent. Some might consider a

person’s intent is to deceive because they promote a falsity as truth. An extreme counter

53

example is that of the group of people who continue to contend the earth is flat [123].

While scientists and scientific-minded people firmly agree that the earth is in fact not flat,

authors of flat-earth articles presumably believe their position and will passionately argue

it in their publications. Measuring whether they intend to deceive or not is not productive.

Likewise, measuring intent to deceive is not useful for recognizing fake news. A sincere

persuasive argument based on ill-founded premises can be just as misleading and harmful

as an insincere one intending to deceive.

Identifying premises will provide a foundation for the stability of any arguments

presented, and then recognizing the remaining components will provide further

illumination on the strength and legitimacy of the entire piece. Identification of the

premises and conclusion of an argument has been described as one of the four primary

tasks of argumentation [124], as is a second task labeled analysis, which is to discover

implicit premises and conclusions. Clearly, premise recognition is a fundamental part of

argumentation and will provide significant assistance to the fake news framework. In the

sample news stories, unsupported assertions exist in all of the arguments, and are evident

in Figure 4-5, Figure 4-6, and Figure 4-7. The premises are the “leaves” on the argument

tree, i.e. the boxes with no arrows pointing to them.

Having viewed the potential for inclusion of argumentation in our fake news model,

we will now explore methods for identifying misleading content.

4.3. Evaluation of Misleading Content

Finally, a process for recognizing misleading news must be developed, which presents the

most challenging aspect of this approach to recognizing fake news. Misleading information

54

can take many forms and have numerous origins. The most significant approaches to

misleading news, according to the framework for fake news, are bias, manipulation, and

misdirection.

The concept of deception has been a subject of study and thought for centuries [125,

Bk. III], [126]. Moreover, there exist numerous studies of deception and manipulation

detection, yet deception recognition remains a difficult challenge. Several approaches have

the potential to yield some success in automated identification, including recognizing

linguistic features such as misleading language [127], [128], ambiguous syntax [129] and

selective vocabulary [130]–[133]. Additionally, applying document graphs and

argumentation structures [134]–[137] to articles may help identify deceptive arguments.

4.3.3. Misdirection

The validity of the text may be evaluated from a few angles. Most straightforwardly, flaws

in logic progression may be presented. Errors in logic are commonly referred to as fallacies

[124]. It should be noted that fallacious and therefore potentially misleading arguments are

not evaluated for the author’s intention—the fallacies could be due to weaknesses in the

author’s logic, or they could be due to intentional deception. Regarding the consumption

of fake news, the intent is secondary to understanding whether valid arguments are being

presented. This may be the rarest method for misleading readers, perhaps more common in

scientific hoaxes than in political writings. For the current study, most of the focus will be

on political writings, as that is where the greatest volume of fake news data currently

resides.

55

4.3.4. Bias

In addition to that direct approach, however, others such as the objectivity and balance of

the discussion may be explored. News articles often lack any real argumentation, and are

more properly about reporting information, not debating issues. However, those reports

can either provide information from a balanced perspective, reporting on multiple

viewpoints, or they can be provided from a biased perspective. In [42], the authors define

objectivity as comprised of truthfulness, neutrality, and detachment. They argue, however,

that objectivity is an unobtainable ideal, one that has essentially been abandoned by

journalism. In contrast, it might be argued that (objective) journalists have been abandoned

by the consuming public [33], [34], [42, Ch. 3]. If slanted, self-congratulating news is in

fact what the paying public demands, then that is a social ill that wants addressing, but

again must remain outside the scope of this effort. Here, the goal is to aid concerned news

consumers in recognizing how balanced (or unbalanced) is their news diet.

Because bias can be communicated both through argument structure and language

choice, bias recognition could be derived from argument analysis and from language

analysis. Both of these methods of presenting (and detecting) bias would be considered

presentation bias, as defined in [138, p. 134]. The selection bias defined by Groeling is not

addressed in this research, as this research endeavors to recognize fake news in individual

news pieces, whereas selection bias addresses what news is being presented versus

potential news that is not selected for publication. Nevertheless, selection bias clearly falls

within the bias component of fake news, and could be detected in a similar manner, but

just at a different scale and through the application of the fake news framework to a

collection of documents individually and compiling statistics.

56

While a bias can be expected in what might be clearly labeled as an editorial in

journalism, news should not be so slanted as to completely forego objectivity. Likewise,

when consuming news stories, if an article abandons objectivity but does not represent

itself as an editorial or opinion piece, the reader should certainly be aware, and most

probably should be on guard. Consider the citation in Figure 4-2, for example. The

argument diagram for it is revealed in Figure 4-5. While the article makes some attempt to

report on both “sides” of the issue, citing Bryan Pagliano’s lawyer’s explanation for his

client’s no-show and the House Oversight Chairman’s argument for requesting Mr.

Pagliano to testify, the two sides are clearly not evenly discussed. From the diagram, one

can see there are essentially eight propositions supporting the theme (the title of the article),

versus only three to counter it.

Compare that with Figure 4-12 and Figure 4-6. There are 15 clearly supportive

propositions for the thesis statement, and 7 refutations. While this is still perhaps not a

balanced news article, it gives the appearance that it is more balanced than the one in Figure

4-2. It is interesting to note, however, that both real news articles clearly state their thesis

in their headlines and maintain their position throughout the documents. It is also

interesting to focus on one proposition: “Cuomo, a Democrat who has endorsed Hillary

Clinton for president this cycle”. This is, perhaps, a prime example where the reader’s

premises might define the actual function of the statement. A Trump supporter might view

this as support for the refutation, noting that Cuomo is a political opponent, or at least not

a supporter, of Donald Trump. Equally, though, a reader who does not support Trump

might instead view this as a refutation of Donald Trump’s position, considering it as

evidence that Trump’s position is biased.

57

The news story in Figure 4-4 has a problem not only with balance, but with source

support. It essentially provides only one external reference to the news story, citing a

prominent conservative governor, with no discussion from the liberal point of view. While

this example is built on complete fabrication, and thus would be difficult to gauge without

fact-checking the event, the construction of the article also reveals itself to be considerably

unbalanced. Figure 4-7 vividly illustrates the dramatic contrast between this fake news

article and the two real ones. Only a single refutation is provided compared to twelve

supporting propositions, and that sole refutation is only a disclaimer that an opposing

viewpoint was unavailable.

4.3.4.1. Support Vector Classification (SVC) Analysis

Support vector machines (SVMs) have been demonstrated to be effective in pattern

recognition, regression estimation, and solving linear operator equations [139]. More

recently, SVMs have been successfully applied to text categorization [140] and

classification [141]. In [142], the authors apply support vector classification (SVC) to

automatic detection of fake negative hotel reviews. This is a direct follow-on to the study

of fake positive hotel reviews provided in [143]. By limiting the study to not only reviews,

but hotel reviews, the subject matter and therefore much of the language remains consistent

throughout the database—advantageous to the study, but not useful for addressing the more

general challenging of classifying fake news articles. It should be noted that additional

research efforts are reviewed in Section 2.3, including investigations applying SVC, deep

learning neural networks, and Doc2Vec [64], [65]. These approaches were also

investigated in the prior work but resulted in similar overall findings and have not been

reported here. The overall conclusion is much room for improvement remains for automatic

58

fake news recognition.

Table 4-3 reflects the replication results compared to the originally published results.

Interestingly, the results from a straightforward implementation using the SVC module in

Table 4-3: Replication of Research Published Previously*

TRUTHFUL DECEPTIVE

Model Test Sentiment Accuracy P R F P R F

Original*

results,

trained on

positive and

negative

reviews

POSITIVE

(800 reviews,

Cross Val.)

88.4% 87.7 89.3 88.5 89.1 87.5 88.3

NEGATIVE

(800 reviews,

Cross Val.)

86.0% 85.3 87.0 86.1 86.7 85.0 85.9

Replication Both (1600

reviews, 0.8

train/test split)

90% 94 87 90 86 93 90

Replication

with 5-fold

cross-val

Both

(1600 reviews,

no test

reserved)

69% 70 67 68 68 71 69

Replication

with 10-fold

cross-val

Both

(1600 reviews,

no test

reserved)

80% 80 79 79 79 80 80

* M. Ott, C. Cardie, and J. T. Hancock, “Negative Deceptive Opinion Spam,” in

Proceedings of NAACL-HLT, 2013.

Abbreviations - P: Precision; R: Recall; F: F-score

59

the Python scikit learn library15 produced improved results on the original, when using an

0.8/0.2 train and test split on both positive and negative reviews. This advantage

disappeared, however, when progressing to cross-validation classification, and so was

possibly due to a particularly fortunate draw on the training and testing data. Regardless,

the results with 10-fold cross-validation are comparable to the original study, though

slightly less favorable. The difference could be lessened with additional tuning but was

judged unnecessary for demonstrating a comparable implementation.

Table 4-4 reveals that for training on PolitiFact and testing BuzzFeed data, the binary

classification accuracy is merely 64%. This could perhaps be improved with parameter

tuning, but as the datasets are equally balanced between real and fake news, the achieved

accuracy is only slightly better than an expected accuracy of 50% for random guessing.

Much greater accuracy is required to successfully recognize fake news.

15 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

60

Table 4-4: Bigram SVC Binary Classification of Fake News

TRUTHFUL DECEPTIVE

Model Accuracy P R F P R F

BuzzFeed 10-

fold CV

prediction

65% 68 58 63 63 73 68

PolitiFact 10-

fold CV

prediction

76% 79 70 74 73 82 77

BuzzFeed

predict;

PolitiFact

training

64% 62 73 67 67 55 60

PolitiFact

predict;

BuzzFeed

training

74% 75 72 74 73 76 75

Abbreviations - P: Precision; R: Recall; F: F-score

4.3.5. Manipulation

Another possible approach is to analyze news stories for their manipulative content,

especially from the angle of emotional manipulation. Walton [144] proposed a method for

determining when persuasive arguments can be classified as deceptive. As Walton states,

“By a careful selection of terms with emotive meanings, a speaker can make an argument

more powerfully persuasive by evoking positive or negative attitudes of the audience.”

Thus, through careful use of connotative language, an author can manipulate while not

deviating from the denotative truth. This demonstrates why simple fact-checking is not

enough for guarding against fake news. Both misleading arguments and manipulative

61

language can be employed to turn fact-based statements into fake news.

As noted in [42, pp. 78–79], [144]–[146], the language used to report a news item

can add bias, either intentionally or unintentionally. Furthermore, the research in [62], [63],

[147] shows some promise in applying manipulative linguistic cues to recognizing

deceptive, misleading, and fake news through the use of machine learning or deep learning

neural network models. A significant portion of the remaining research for the current

study will be to explore the most effective way to incorporate such findings into automated

processes for flagging manipulative text in news articles.

4.3.5.1. Linguistic Inquiry and Word Count (LIWC) Results

 Linguistic Inquiry and Word Count (LIWC) is a method and commercial product for

evaluating the psychometric property of texts basically through tracking the count of words

used in the documents [148], [149]. Its goal is to provide an “efficient and effective method

for studying the various emotional, cognitive, and structural components present in

individuals’ verbal and written speech samples…” [149]. It has been shown to be

somewhat effective in distinguishing liars from truth-tellers [133], succeeding 61% of the

time for the binary classification task. More importantly, the research yielded some insights

into the psychometric differences between the two groups. Since this study was

accomplished in 2003, the LIWC dictionary and software has been significantly updated,

with new summary variables to explore. As previously discussed, the authors of [62] and

[63] also made use of LIWC, resulting in some useful insights into misleading language.

In order to take advantage of the full capability of this software, a license must be purchased

62

or rented. An abbreviated version is available online16 for short texts of no more than 5000

characters, which was employed for this study to gauge whether further efforts using this

tool might be gainful.

Table 4-5: LIWC Results for Sample Real and Fake Stories

Traditional LIWC

dimension

Real data More

Real

Data

Fake data Avg for

Social media

Avg for

professional or

scientific writing

I-words (I, Me,

My)
0.9 0.7 0.0 5.51 0.63

Social Words 11.2 12.3 5.0 9.71 7.62

Positive Emotions 0.9 2.0 0.5 4.57 2.32

Negative Emotions 3.7 3.1 2.0 2.10 1.45

Cognitive

Processes
8.4 6.5 9.5 10.77 7.52

LIWC Summary

Variables

Analytic 98.4 50.1 91.3 55.92 92.57

Clout 83.7 92.4 56.0 55.45 68.17

Authenticity 1.6 10.0 25.2 55.66 24.84

Emotional tone 2.0 12.3 8.1 63.35 43.61

16 http://liwc.wpengine.com/

http://liwc.wpengine.com/

63

Table 4-5 shows the results of running the online tool on the three sample texts in

Figure 4-2, Figure 4-3, and Figure 4-4. The LIWC dimensions of Social Words and Positive

Emotions show some possibilities, as do the summary variables Analytic and Clout. This

is of course strictly anecdotal at this juncture, as only three sample texts were tested at this

time, but these preliminary results appear to warrant further investigation with the full

software license, which will also provide a much larger selection of dimensions and

summary variables than the online version.

4.4. Fake News Model Conclusions

While much promise is revealed in the proposition and investigation of the fake news

framework, it has also revealed some serious hindrances. Firstly, argument mining remains

particularly intractable [150], with the many advances being limited to domain-specific

arguments, notably with respect to legal arguments [151]–[156]. As large language models

(LLMs) take hold, argument mining will hopefully advance rapidly into a tractable

problem. While the approach of examining the validity and solidity of arguments presented

within (fake) news articles remains a substantial goal, for the present, even with the aid of

LLMs, it remains effectively out of reach.

In contrast, while the power of LLMs can aid mightily in the effort to categorize and

classify news as real or fake (or somewhere between), that same tool can be employed as

a weapon to constantly invent and adapt new approaches to producing fake news to defeat

efforts at detection. The nature of this ongoing battle and its many intricacies is outlined

effectively in [118]. This has all the hallmarks of a long-running arms race, where each

new effort to identify and dismiss either perpetrators of fake news or the fake news content

itself will be quickly met with adaptations to further obscure the deceitful nature of the

64

producers or the product. Pitting deep learning (or other advanced) AI fake news detectors

against generative AI fake news generators promises to be a perpetual battle for some time,

with money and resources largely dictating the outcomes of each battle. While it might be

a necessary endeavor to engage in that struggle, it outpaces the capacity and usefulness of

this researcher to contribute meaningfully to that battle, at least in the short term.

Completion of the proposed fake news framework could very well assist in this effort, but

unfortunately the resources required to keep it relevant are not currently available.

Moreover, as revealed in recent research [157], steps taken to prevent or prohibit access to

misinformation can instead backfire. Further labeling news as fake or real may only fuel

the fire of those with opposing views.

A more practical and manageable approach is, instead, to identify the hallmarks of a

fake news breeding ground—the regions of the internet where, once fake news “seeds” are

planted, the contagion of misinformation grows and thrives. What we now propose as an

immediate necessity, more dire and essential than identifying the fake news itself, is

identifying where and when we can expect fake news to gain a foothold, and thus try to

combat it early, or, at the very least, detect and monitor it as it grows. Thus, we now propose

an approach to identifying echo chambers, where fake news might be introduced and

readily repeated. The next section will introduce a methodology for doing exactly that.

Note though, that it does not remove the need for the fake news framework as a means to

classify fake news—that in time will be essential as well. However, we suggest that even

more immediate is the need to understand and identify the conditions under which a social

media platform, or special interest group on the same, might offer ideal conditions for the

dissemination and replication of fake news.

65

5. Echo Chambers and Gravity Wells

If we accept the assertion that fake news is often incubated in social structures commonly

known as echo chambers, then successfully identifying echo chambers would be a great

stride towards combating the ill-effects of fake news. Certainly, research has shown that

the echo chamber effect is often reinforced by social media algorithms [29], [68], [158],

[159].

As identified in the Introduction, we propose that a social media group may be

effectively modeled as a gravity well [30], where an echo chamber might reveal itself by

its overwhelming ability to attract and retain users within such a well. Furthermore, we

postulate that the composition of that gravity well would be self-sorting, where members

within the echo chamber would necessarily maintain similar views to remain comfortable

within the well and not be drawn to some other nexus. An echo chamber in a social media

interest group essentially captures its audience, where the attractive force of the well is

composed of elements of the social media platform, the precise topic of the forum, and

characteristics of the audience characteristics of the audience. It is this insight into what

creates the overwhelming force of echo chambers, as well as the simulation of social media

interest groups as gravity wells, that constitutes a significant contribution to the study of

fake news in general and of echo chambers more specifically.

In this section, we will outline the functioning of the gravity well model and its

employment for the purposes of this experiment. To accomplish this, we will discuss the

formation of the social media interest group gravity well and then the subsequent tuning of

variables designed to identify the contribution of different aspects of the modeled social

media groups. It will be useful to first introduce the data used for the entirety of this

66

experiment.

5.1. Model Data

After considering numerous social media platforms for our initial experiment, including

Facebook, YouTube, Twitter, and Reddit, we chose to use Reddit data due to the (formerly)

publicly available archives of subreddit submissions17 and comments18 online via the

Pushshift archives. Certainly, other social media providers have publicly accessible

application programmer interfaces (APIs) and some also have data repositories, which will

prove useful for future research. Though some researchers [29], [73], [158] have found

evidence that Reddit may be less likely than other social media platforms to encourage the

formation of echo chambers, it is our expectation that the phenomenon nevertheless exists

on Reddit, though less so than on other platforms.

For this effort, we accessed the data repositories to obtain all submissions and

comments for all users in a target set of subreddits for an entire month. The selection of

these subreddits was initially aimed at some of the most popular and active subreddits, e.g.

‘memes’ and ‘Market76’, but it was determined through experimentation that the volume

of data (607/6639 and 1134/2839 posts/comments per day for ‘memes’ and ‘Market76’,

respectively) would require specialized handling—a focus reserved for later efforts.

Moreover, simply selecting from the most popular subreddits yielded topics that were

popular, but not necessarily rich in conversation and opinions, as evidenced by the

17 https://files.pushshift.io/reddit/submissions/

18 https://files.pushshift.io/reddit/comments/

67

aforementioned ‘memes’ and ‘Market76’. The subreddit ‘memes’ includes a rule that

specifies “No memes that are text only.” This of course limits the amount of conversation

content that can be extracted from that subreddit’s posts. As another example, the subreddit

‘Market76’ is “A subreddit dedicated to trading for Fallout 76,” a popular computer game.

Thus, it is a subreddit which focuses on material trading, not conversation.

 Instead, we targeted average-sized but clearly active subreddits for this initial effort,

such as ‘science’, with a manageable 42/923 posts/comments per day. Apart from one

subreddit, namely ‘globeskepticism’, all subreddit data came from the same time span, for

the month of January in 2019. Because ‘globeskepticism’ is a somewhat new subreddit,

the data for it in 2019 lacked volume. Consequently, we used data from June of 2020 for

the ‘globeskepticism’ subreddit. In total, we ran our simulation for 19 different subreddits,

selected for their practicable size and range of topics, with the deliberate intention of

including both political and apolitical interests.

The subreddits are listed in Table 5-1. Note that there are many other data items

available. beyond just the text of posts and comments particular to Reddit, such as

submission scores, but the goal here is to remain as social media platform agnostic as

possible, so that a similar treatment may be applied to other social media platforms in

future. The Python 3.8 code used to retrieve and preprocess the subreddit data can be found

in Appendix B-1 and Appendix B-2.

68

Table 5-1: Average TSM for modeled subreddits

Subreddit mass

coefficient
of
variation

std dev
(TM = 6)

Avg
TSM
(TM = 6)

SandersForPresident 5558 0.068623 4.386 63.91

flatearth 1569 0.026245 2.901 110.52

trump 410 0.199327 49.252 247.09

globeskepticism 211 0.230475 92.252 400.27

science 34473 0.562384 200.495 356.51

cars 21296 0.338548 270.981 800.42

Republican 2170 0.900966 1492.658 1656.73

SocialDemocracy 157 0.899004 1652.935 1838.63

Freethought 155 0.674719 970.306 1438.09

travel 12175 0.314357 568.333 1807.92

math 5951 0.304073 802.086 2637.81

NeutralPolitics 1822 0.842791 1997.171 2369.71

PoliticalDiscussion 5709 0.393189 982.197 2498.03

democrats 3279 0.332461 1244.097 3742.08

hiking 3309 0.258738 994.055 3841.94

republicans 84 0.864630 2821.868 3263.67

mlb 1641 0.392950 2038.180 5186.87

progressive 639 0.591066 3370.690 5702.73

AmericanPolitics 141 0.318009 1837.753 5778.94

69

5.2. Gravity Well Model

In examining the characteristics of echo chambers, it was determined that identifying the

requirements for the formation of an echo chamber would be necessary to facilitate

modeling social media groups to ascertain the presence, or absence, of an echo chamber.

Following on our agreed definition of an echo chamber [28, p. 76], the keys of

“magnifying” and “insulating” appeared central to these requirements. Considering those

key terms, we posit that the foundation for the echo chamber effect is formed by three

pillars that when combined create a synergistic effect difficult to resist for many social

media users. These three pillars are: 1) technology, which acts as magnifier and insulator;

2) topic, which serves as the initial draw and holding force; and 3) confirmation bias, which

reflects the individual participant’s “seeking or interpreting of evidence in ways that are

partial to existing beliefs, expectations, or a hypothesis in hand” [160].

As with the genesis of physics exploration, we begin our gravity well model using a

Newtonian approach, with the aim of adding complexity as need arises. To start, we

employed Newton's law of universal gravitation [161, p. 141]:

 𝐹 = 𝐺
𝑚1𝑚2

𝑟2 ()

where 𝐺 is the universal gravitational constant, 𝑚1 and 𝑚2 are the masses of the bodies

involved, and 𝑟 is the distance between the bodies. Translating this to the context of social

media interest groups, we conceive that 𝑚1 would be the mass of the gravity well 𝑚w,

nominally represented by the number of social media users (hereafter referred to as

“simulation agents” or simply “agents”, being constructs of individual user data retrieved

from social media) subscribed to or active in the interest group, while 𝑚2 would be

70

represented by the mass, 𝑚a, of a single agent of interest, to which we correspondingly

affix a unitary value. Regarding the distance separating the masses, we conceived that the

distance would be well represented by determining the distance between an individual and

the aggregate echo chamber with respect to opinion or sentiment.

With respect to this measure, by comparing the sentiment of an individual agent’s

posts to the average of other agents’ posts within the same subreddit, we expected to arrive

at a reasonable estimation of the social or opinion distance 𝑟 between the overall subreddit

and the target agent, i.e., between 𝑚1 and 𝑚2 in (1). Ultimately, we employed the ratio of

the disagreement between posts to the affinity of the agent for the overall topic of the social

media interest group, i.e., for the subreddit topic. We will now explain how we obtain the

disagreement and affinity measures.

To accomplish these measurements, we employed the language representation model

called Bidirectional Encoder Representations from Transformers (BERT). BERT is a pre-

trained transformer-based natural language processing tool created by authors at Google.

Unlike many pre-trained language models, BERT uses bidirectional encoding to capture

the context of usage of a given word, thus enabling it to distinguish between alternate uses

of identical words. For our purposes, obtaining text embeddings for sentences provided us

the capability to compare different posts, which we accomplished using a Sentence-BERT

[162] library provided for Python.

The disagreement measure was computed by first obtaining BERT text embeddings

for all posts made within the time span of the initial data for the simulation (1 month). Each

text embedding was then pairwise compared with every other text embedding using cosine

71

similarity. The disagreement for a single post was derived by taking the average cosine

similarity of that post with all posts made by the entirety of the social media group, in this

case various subreddits, and then taking its additive inverse, as the range of the similarity

varies from −1 to 1. All such values are then averaged for all posts by a single author to

obtain that author’s disagreement score.

Likewise, we used BERT to estimate the affinity of an individual user to the topic of

a subreddit by averaging the similarity between all the user’s posts and the published

subreddit description. It is recognized that this measure of affinity has some obvious

shortcomings with respect to any posts made that are essentially nonreflective of the

subreddit description, not to mention that some subreddit descriptions are not particularly

reflective of the group topic, but it is expected this shortcoming would be shared by all

users. This has been flagged as an issue for further refinement in future efforts. With this

approach, we arrive at a new “radius” based on the ratio of disagreement to affinity that we

label 𝑟𝑑𝑎.

The final remaining component within (1) is the universal gravitational constant 𝐺.

As with the physical proportionality constant, it must be obtained through observation. For

the purposes of our simulation, it serves as a tuning point for our simulation equation to

return manageable results for the magnitudes and ranges of our input data. Thus far, it has

been tuned to a value of 𝐺𝑤 = 10−6, though it may very well need adjustment as data from

different social media platforms are added to the mix.

Taking the analogies discussed thus far, we arrive at a new equation for the force in

the gravity well simulation:

72

 𝐹𝑤 = 𝐺𝑤
𝑚𝑤𝑚𝑎

𝑟𝑑𝑎
2 , ()

where 𝐺w = 10−6, 𝑚w is the number of agents in the well, 𝑚a = 1, and 𝑟𝑑𝑎 is the ratio of

the disagreement of the agent’s posts with the entirety of posts in the well to the affinity of

the agent’s posts to the published subject of the social media group.

Returning now to the implementation of our three pillars of an echo chamber, a user’s

confirmation bias is intended as a modifier affecting the calculation of their affinity and

thus affecting the value of 𝑟𝑑𝑎 in (2). Confirmation bias’s effect is currently earmarked for

future study, and as such has been fixed at unity for all agents for the duration of this

experiment. It was necessary to postpone implementation of confirmation bias due to the

required effort to introduce a measure of a tendency towards confirmation bias that was

both effective and translatable across most, if not all, social media platforms. Our survey

of materials related to confirmation bias and social media revealed a paucity of results,

where more studies like that reported in [163] would be of most benefit, by relating

individual characteristics to a preference for confirmation bias. To embark on such studies

ourselves would be an unwelcome distraction from the main thrust of this thesis, and we

hypothesized that the model could provide meaningful insights without that pillar

implemented, though it might necessarily limit the accuracy of prediction of individual

behaviors.

To incorporate the effects of the other two pillars, technology and topic, a technology

modifier (𝑇𝑀) and a topic source modifier (𝑇𝑆𝑀) were introduced into (2), such that their

magnitudes would be inversely proportional to the effect of that pillar on the echo chamber.

𝑇𝑀, being representative of the magnifying and insulating action of the echo chamber,

73

logically affects the mass of the echo chamber, 𝑚1. Likewise, 𝑇𝑆𝑀 amplifies the affinity

a user has for the social media group topic and thus affects the value of 𝑟𝑑𝑎. We considered

implementing these modifiers instead as directly proportional to their effects by inverting

them and limiting their ranges to 0 ≤ 𝑇𝑀 ≤ 1 and 0 ≤ 𝑇𝑆𝑀 ≤ 1, which would have been

extremely convenient for tuning, but chose to avoid the potential for complications with

analysis and manipulation should some of these values approach zero. Incorporating these

adjustments into (2) yields:

 𝐹𝑤 = 𝐺𝑤
𝑇𝑀∙𝑚𝑤∙𝑚𝑎

(
𝑟𝑑𝑎
𝑇𝑆𝑀

)
2 , ()

 Figure 5-1 provides a visual overview of the gravity well construction.

All the above outlines the basic construction of the gravity well simulation, except

for what the equation yields. In the simulation, the expectation is that all agents within the

gravity well at initialization, i.e., all users active in the modeled subreddit, will remain

within the well until such time as the value 𝐹𝑤 in (2), that is the simulated force of gravity,

falls below a threshold and permits the agent to escape the well. Here again, it was

Figure 5-1: Gravity well structure

74

necessary to choose a threshold which worked well with the magnitude of values

encountered during the simulation. This value was held constant for the duration of this

experiment but may be adjusted in future as additional social media platforms are modeled.

The Python code for the gravity well simulation can be found in Appendix B-3.

5.3. Tuning the Model

Having established the construction of the social media interest group gravity well, we can

now turn to the use of the well to determine values of interest for the selected social media

platform, Reddit. For each subreddit, a month’s worth of submissions and comments from

all users in the subreddit are used to initialize agents for that simulated gravity well. The

simulation is then run for 90 iterations, where, for each iteration, a subset of the agents is

selected to attempt to exit the echo chamber. Currently, the only deliberate updates to an

agent’s force equation (1) during simulation iterations are updates to an agent’s affinity

and disagreement. An agent’s disagreement randomly varies around its original value.

Individual affinity is likewise allowed to randomly vary, but that variation is designed to

favor increasing over time, as research has indicated that biases tend to become more

extreme within like-minded groups [164]–[167]. Additionally, though, the mass of the

entire gravity well, 𝑚1 in (1), will naturally reduce as agents leave the echo chamber—for

the current research, agents are allowed to leave but do not consider rejoining, though that

capability exists and will be explored in future efforts.

When tuning, we ran multiple instances of each social media group, i.e., for each

subreddit. In tuning, we focus on the turning point where the first agents go from remaining

in the gravity well to exiting. This is necessary, as either outcome—all agents remain in

the well versus all agents exit the well—can be associated with an infinity of variable

75

values. The goals in tuning via running multiple simulations are, in turn:

1. Determine a value for the universal gravitational constant 𝐺 that produces

reasonable results for the range of data being explored and fixed values of 𝑇𝑀

and 𝑇𝑆𝑀.

2. Simultaneously tune all subreddits, using a fixed TSM value, to obtain a common

value for TM, which is intended to represent the influence Reddit’s technology

has on the echo chamber effect. To accomplish this, we set a goal of finding the

minimum 𝑇𝑀 value that would result in approximately 10% of the agents

escaping the gravity well within the 90 iterations. We were essentially seeking

the turning point of each subreddit’s well going from holding all agents to

initially allowing a few to escape, then selecting the minimum among these 𝑇𝑀

values to represent the overall technological effect of Reddit, with any

differences between subreddits attributed to each subreddit’s attraction to its

members.

3. Finally, tune for a unique 𝑇𝑆𝑀 value for each subreddit. To that end, once a 𝑇𝑀

value was decided, we initiated 100 runs of the model for each subreddit, again

for 90 iterations using that established 𝑇𝑀 value. The goal now was to tune the

𝑇𝑆𝑀 for each run to allow approximately 1% of the agents to escape and thus

again find the turning point. It is hypothesized that identifying the average 𝑇𝑆𝑀

value for each subreddit’s turning point will yield insights into the nature of the

gravity well associated with each subreddit.

Figure 5-2 depicts the tuning process for the model, while the Python 3.8 code used

76

for tuning the simulation can be found in Appendix B-4. In the next section, we will discuss

the results of running our gravity well simulation of echo chambers on subreddits.

Figure 5-2: Tuning process

77

6. Gravity Well Simulation, Results, and Analysis

Having produced a gravity well simulation designed to model the users in social media

interest groups, it yet remains to demonstrate this model and determine its efficacy in

identifying those groups which have the hallmarks of an echo chamber or have the potential

to become destructive echo chamber should fake news be introduced into those chambers.

6.1. Simulation

To begin tuning, we chose to tune the TM first, as we require a constant value for Reddit

in general to obtain relative TSM values for each subreddit. Thus, we first fixed the TSM

to a constant value of 25 to ensure we would obtain a TM for Reddit with sufficient

magnitude to allow tuning for individual TSM scores for each subreddit. It is the relative

measures for TM and TSM that are of interest, so fixing the TSM at 25 was simply a

convenient nominal value which we knew would be replaced with tuning later. Next, we

tuned across all 19 subreddits, selecting the minimum TM value thus obtained as the TM

for Reddit in general. After 100 independent tuning runs for all subreddits using 𝐺𝑤 =

10−6 and 𝑇𝑆𝑀 = 25, we arrived at a minimum value of 6 for the technology modifier

(𝑇𝑀) for Reddit. As this value has no units and is simply intended to serve as a relative

measure of the impact this social medial platform is having on the echo chamber, this value

will suffice for our current experiment. In future, as more subreddits or other social media

platforms are introduced into the model, this value may require adjustment. Using these

values, 𝐺 = 10−6 and 𝑇𝑀 = 6, we then ran 100 simulations of each subreddit, to

determine the average 𝑇𝑆𝑀 value that resulted from tuning according to 5.3.

6.2. Results

The results from tuning 𝑇𝑆𝑀 values for all the subject subreddits can be viewed in Table

78

5-1. As is evident in the table, with the subreddits sorted by ascending average 𝑇𝑆𝑀 and

thus decreasing gravitational affect, the 𝑇𝑆𝑀 does not linearly correspond to the mass (or

effectively the size) of the subreddit. The coefficients of variation and standard deviation

are likewise relatively evenly distributed through the sorted TSM values, with no obvious

clustering related to the 𝑇𝑆𝑀 results. There are clearly other things at play, with average

𝑇𝑆𝑀 values ranging between 63.91 and 5778.94 for these 19 subreddits. The issue we wish

to explore is whether these distinctions illuminate the occurrence of echo chambers in these

subreddits. Our expectation is that subreddits with smaller 𝑇𝑆𝑀 values would suggest a

more powerful hold on members, keeping them bound to the gravity well. Thus, those

subreddits would be more prone to forming echo chambers. In contrast, the subreddits with

larger 𝑇𝑆𝑀 values would essentially allow members to come and go at will. As mentioned

previously, this does not imply the potential echo chamber is harmful or unhealthy, just

that it has the hallmarks of an echo chamber.

6.3. Analysis

6.3.1. Validity of Simulation

While the simulation seems to perform reasonably and in an expected manner, validation

of the gravity well’s performance with respect to real data is needed to prove our primary

hypothesis.

To this end, we compared the exiting behavior of each agent in the simulation to the

exiting behavior of its associated subreddit user. Table 6-1 highlights the results of this

Hypothesis 1: An interest group on a social media
platform can be effectively modeled as a gravity well.

79

comparison, where we can see that the mean average percent error (MAPE) of exiting

behavior for all agents in each subreddit falls well below 5%, thus convincingly

demonstrating that the gravity well simulation of the subreddits performs realistically and

emphatically confirming Hypothesis 1. The Python 3.8 code used for calculating the MAPE

values in Table 6-1 can be found in Appendix B-5 and Appendix B-6.

Table 6-1: Mean Absolute Percent Error of Agent Exit Ordering

subreddit MAPE (%) TSM Mass

Freethought 1.15 1438 155

republicans 1.55 3264 84

AmericanPolitics 1.62 5779 141

globeskepticism 2.40 400 211

SocialDemocracy 2.49 1839 157

trump 2.95 247 410

travel 3.02 1808 12175

Republican 3.10 1657 2170

NeutralPolitics 3.13 2370 1822

math 3.15 2638 5951

progressive 3.17 5703 639

flatearth 3.20 111 1569

mlb 3.26 5187 1641

democrats 3.93 3742 3279

PoliticalDiscussion 4.09 2498 5709

hiking 4.16 3842 3309

cars 4.35 800 21296

SandersForPresident 4.37 64 5558

science 4.90 357 34473

80

6.3.2. Statistical Significance of TSM Values

We first wish to establish if there is a statistically significant variation in calculated TSM

values for the 19 subreddits. This is in essence our second hypothesis.

We can establish this through an analysis of variance (ANOVA) calculation. With a

null hypothesis that all the subreddit mean TSM values are equal and thus not statistically

significant, we obtained a 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.0. Thus, we reject the null hypothesis and conclude

Figure 6-1: QQ Plot of ANOVA residuals versus normal line

Hypothesis 2: The calculated TSM values serve as
statistically significant discriminators for each

subreddit.

81

there exists a statistically significant variation in the TSM values among the 19 subreddits.

This result therefore confirms Hypothesis 2.

To confirm that the data reasonably conforms to the ANOVA assumptions of

normality, we first performed a Shapiro-Wilk test for normality by applying the

scipy.stats.shapiro() function to the ANOVA residuals. This yielded a disturbingly small

p-value of 1.059e-33, indicating that the null hypothesis of normality should be rejected.

However, we also generated a QQ-plot (Figure 6-1) and a histogram (Figure 6-2) of the

residuals from the ANOVA analysis. The residuals in Figure 6-1 follow the reference

normal line in the QQ-plot; likewise, the histogram of residuals in Figure 6-2 looks

approximately normal. Considering that research has shown that ANOVA is reasonably

robust to nonnormality [168] and unequal variances [169], we are confident that ANOVA

is appropriate for this analysis.

82

Figure 6-2: Histogram of ANOVA Residuals

83

Table 6-2: Multiple comparison of means for subject subreddits

TSM-

1 group1

TSM-

2 group2 meandiff p-adj lower upper reject

64 SandersForPresident 111 flatearth 46.61 1 -688.0985 781.3185 FALSE

64 SandersForPresident 400 globeskepticism 336.36 0.9848 -398.3485 1071.0685 FALSE

64 SandersForPresident 357 science 292.6 0.9969 -442.1085 1027.3085 FALSE

64 SandersForPresident 247 trump 183.18 1 -551.5285 917.8885 FALSE

111 flatearth 400 globeskepticism 289.75 0.9973 -444.9585 1024.4585 FALSE

111 flatearth 357 science 245.99 0.9997 -488.7185 980.6985 FALSE

111 flatearth 247 trump 136.57 1 -598.1385 871.2785 FALSE

357 science 247 trump -109.42 1 -844.1285 625.2885 FALSE

400 globeskepticism 357 science -43.76 1 -778.4685 690.9485 FALSE

400 globeskepticism 247 trump -153.18 1 -887.8885 581.5285 FALSE

800 cars 111 flatearth -689.9 0.0965 -1424.6085 44.8085 FALSE

800 cars 400 globeskepticism -400.15 0.9196 -1134.8585 334.5585 FALSE

800 cars 357 science -443.91 0.8221 -1178.6185 290.7985 FALSE

800 cars 247 trump -553.33 0.4402 -1288.0385 181.3785 FALSE

1438 Freethought 1657 Republican 218.64 0.9999 -516.0685 953.3485 FALSE

1438 Freethought 1839 SocialDemocracy 400.54 0.9189 -334.1685 1135.2485 FALSE

1438 Freethought 800 cars -637.67 0.1889 -1372.3785 97.0385 FALSE

1438 Freethought 1808 travel 369.83 0.9603 -364.8785 1104.5385 FALSE

1657 Republican 1839 SocialDemocracy 181.9 1 -552.8085 916.6085 FALSE

1657 Republican 1808 travel 151.19 1 -583.5185 885.8985 FALSE

1839 SocialDemocracy 1808 travel -30.71 1 -765.4185 703.9985 FALSE

2370 NeutralPolitics 2498 PoliticalDiscussion 128.32 1 -606.3885 863.0285 FALSE

2370 NeutralPolitics 1657 Republican -712.98 0.0694 -1447.6885 21.7285 FALSE

2370 NeutralPolitics 1839 SocialDemocracy -531.08 0.522 -1265.7885 203.6285 FALSE

2370 NeutralPolitics 2638 math 268.1 0.999 -466.6085 1002.8085 FALSE

2370 NeutralPolitics 1808 travel -561.79 0.4101 -1296.4985 172.9185 FALSE

2498 PoliticalDiscussion 1839 SocialDemocracy -659.4 0.1447 -1394.1085 75.3085 FALSE

2498 PoliticalDiscussion 2638 math 139.78 1 -594.9285 874.4885 FALSE

2498 PoliticalDiscussion 1808 travel -690.11 0.0962 -1424.8185 44.5985 FALSE

2638 math 3264 republicans 625.86 0.2166 -108.8485 1360.5685 FALSE

3742 democrats 3842 hiking 99.86 1 -634.8485 834.5685 FALSE

3742 democrats 3264 republicans -478.41 0.7147 -1213.1185 256.2985 FALSE

3842 hiking 3264 republicans -578.27 0.354 -1312.9785 156.4385 FALSE

5187 mlb 5703 progressive 515.86 0.579 -218.8485 1250.5685 FALSE

5779 AmericanPolitics 5187 mlb -592.07 0.3101 -1326.7785 142.6385 FALSE

5779 AmericanPolitics 5703 progressive -76.21 1 -810.9185 658.4985 FALSE

84

6.3.3. Differentiation of TSM Values

 With this outcome, we are assured there are significant differences in the subreddits

with respect to their 𝑇𝑆𝑀 values, but we do not know which subreddits differ from one

another. To learn this, we performed a multiple pairwise comparison of means using

Tukey’s HSD test. Of the 171 pairings, a full 135 rejected the null hypothesis with p=

0.05, indicating they were significantly different. The remaining 36 pairs appear equivalent

and provide the most interesting insights into the simulation outcome. The results for the

36 equivalent pairs that failed to reject the null hypothesis are provided in Table 6-2 – we

omit the results for the 171 mismatched pairs due to space considerations.

The results in Table 6-2 are sorted in ascending order of 𝑇𝑆𝑀 for the first subreddit

of each pairing. Further, the magnitudes of the 𝑇𝑆𝑀s are highlighted on a color spectrum

beginning with green for minimal values, yellow for mean values, and red for maximal

values. This contrast aids observing the trends in the results. We have two extreme

groupings, those pairs with minimal 𝑇𝑆𝑀 values in the first 14 pairings and those with

maximal 𝑇𝑆𝑀 values in the last 6 pairings, with the remaining 16 moderate pairs standing

between. Once again, we note that a small value for 𝑇𝑆𝑀 indicates a disproportionate

ability to attract and keep agents within the well. Thus, we conclude that the first 14 pairs

have the greatest potential to form echo chambers.

The question now becomes, are these results reasonable and informative? While we

do not currently have quantifiable measurements to inarguably determine if a particular

subreddit is functioning as an echo chamber, we can make some observations on the

makeup of these groupings.

85

 The first 14 pairings involve six unique subreddits, which we can think of as a

minimal 𝑇𝑆𝑀 group. To understand the import of this group, it is informative to examine

the descriptions of the involved subreddits (Table 6-3). Reviewing the text, we might

conclude that these subreddits make little to no effort to hide their bias or intent. It becomes

quickly evident that the cars and science subreddits are for enthusiasts and, as such, are

intended to hold well-established positions on their subject matter. They are thus unlikely

to be echo chambers of concern, though still possibly meeting the most innocuous

definition of an echo chamber. We can also likely add flatearth to the list of innocuous

subreddits, as it is apparent from Table 6-3 that it is a satirical interest group regarding the

implausibility of the earth being flat.

In contrast, though, the remaining subreddits in this group do have potential for not

only being echo chambers, but also for being the type of echo chamber that could be abused

Table 6-3: Minimal TSM subreddit descriptions

subreddit description

SandersForPresident Bernie Sanders 2024

cars /r/Cars is the largest automotive enthusiast community on the Internet. We are

Reddit's central hub for vehicle-related discussion including industry news,

reviews, projects, videos, DIY guides, stories, and more.

flatearth Is the Earth actually flat?

Where's the edge?

How come we don't fall out?

What about gravity?

Learn all of this and more at this very serious subreddit.

globeskepticism This is a safe community to discuss the shape of the earth, skeptics and

researchers welcome. We've examined all the evidence supporting spinning

ball earth over the years and we're not convinced. Disrespectful contributors

will be banned. Other conspiracy talk also welcome.

science This community is a place to share and discuss new scientific research. Read

about the latest advances in astronomy, biology, medicine, physics, social

science, and more. Find and submit new publications and popular science

coverage of current research.

trump This community is for discussing the 45th US president and all things

associated.

86

to introduce and incubate fake news items. This does not mean they have, just that they are

primed for that possibility. Further analysis on the quality and reliability of the actual

content being generated would be required to ascertain if these subreddits have been

exploited for those purposes. These remaining three, SandersForPresident,

globeskepticism, and trump, all have the potential to push a very targeted agenda.

Continuing to the maximal 𝑇𝑆𝑀 group in the last six pairings, it also consists of six

unique subreddits, despite being a smaller group of pairings. Those six subreddits appear

in Table 6-4. It is interesting that this much smaller grouping has an equal number of unique

subreddits as the minimal 𝑇𝑆𝑀 group. While there is a preponderance of political

subreddits in this second group, those political subreddits (AmericanPolitics, progressive,

republicans, and democrats) are either more party-centered or intentionally party-agnostic,

while the political subreddits in the minimal 𝑇𝑆𝑀 group were more personality focused.

The remaining two subreddits in this group are purely recreational. It is interesting that

Table 6-4: Maximal TSM subreddit descriptions

subreddit description

democrats The Democratic Party is building a better future for everyone and you can help.

Join us today and help elect more Democrats nationwide!

This sub offers daily news updates, policy analysis, links, and opportunities to

participate in the political process. We are here to get Democrats elected up and

down the ballot.

hiking The hikers' subreddit.

mlb Subreddit for Major League Baseball. From discussions, news, and highlights

from all thirty MLB teams.

AmericanPolitics A place to discuss the American political process, American political topics, the

political parties, elected officials, candidates, and American foreign policy.

republicans PRO-REPUBLICAN SUBREDDIT FOR ADULTS!

progressive A community to share stories related to the growing Modern Political and Social

Progressive Movement.

The Modern Progressive Movement advocates change and reform through

directed governmental action. The Modern Progressive Movement stands in

opposition of conservative or reactionary ideologies.

87

these two recreational subreddits, mlb and hiking, should produce large 𝑇𝑆𝑀 values, while

the two recreational subreddits in the minimal 𝑇𝑆𝑀 group, cars and science, produce the

opposite.

To establish the likenesses and differences between the minimal and maximal TSM

groups, we submitted the entirety of the posts from each subreddit, both original

submissions and comments, to Google’s Perspective Comment Analyzer (PCA) API19. As

noted by the API website, the aim for the PCA is to use the power of machine learning to

reduce online toxicity. In short, the PCA API seeks to rate text according to seven

measures: toxicity, severe toxicity, insult, profanity, identify attack, threat, and sexually

explicit. For our purposes, we focused on using the API to determine if one group tended

to be more severe than another according to four of those labels: toxic, severely toxic,

insulting, and threatening. Our expectation is that potentially harmful echo chambers would

score higher on these indices.

The results of this analysis may be viewed in Table 6-5. Again, the subreddits are

ordered by increasing TSM value to facilitate comparing the minimal and maximal TSM

groups. It is immediately apparent that those groups do not separate themselves based on

these negative criteria of being toxic, severely toxic, insulting, or threatening. What is

apparent is that the groups formed around political themes do tend to score higher in the

toxic, severely toxic, and insulting categories, with two notable exceptions: the

19 https://www.perspectiveapi.com/

88

SandersForPresident subreddit, while clearly political, scores relatively low in those

categories, and the flatearth subreddit, which would generally not be considered a political

topic but rather a satire, scores relatively high. Finally, it is notable that the only standout

result in the threatening category is in the republicans subreddit, which scores

comparatively high. Further analysis of the subreddits in these two groups is certainly

warranted. Appendix B-7 contains the Python 3.8 code used to retrieve the toxicity data for

the posts for each subreddit from Google’s Perspective Comment Analyzer API.

Table 6-5: Minimal and Maximal Subreddit Group Perspective Analysis

TSM subreddit tox sev_tox insult threat

64 SandersForPresident 0.145977 0.012856 0.100261 0.017066

111 flatearth 0.210197 0.035424 0.157614 0.019701

247 trump 0.219781 0.033391 0.172795 0.024620

357 science 0.091539 0.005029 0.050391 0.016454

400 globeskepticism 0.091412 0.008832 0.061091 0.010954

800 cars 0.094910 0.007934 0.055654 0.013554

2638 hiking 0.062757 0.005289 0.030742 0.014378

3264 republicans 0.177229 0.011559 0.123996 0.035883

3742 democrats 0.195538 0.020979 0.142528 0.022767

5187 mlb 0.121920 0.012256 0.081324 0.015289

5703 progressive 0.193169 0.020748 0.140391 0.023045

5779 AmericanPolitics 0.207802 0.017407 0.163453 0.016617

89

7. Conclusions and Future

7.1. Conclusions

The full spectrum and impact of this thesis is difficult to capture. The overall goal of this

study was to discover ways to combat the onslaught of fake news plaguing American and

global society. That began with framing a model for representing fake news in its many

guises. The fake news model proposed here is ambitious and comprehensive. As the

research progressed many useful perspectives were gained, and the potential for the model

explored.

One key takeaway was the insight that identifying premises is a critical step in

determining whether a news article is helpful or hurtful. If the premises of an article

disagree with one’s understanding of truth, then it is unlikely that any subsequent

arguments could be convincing. However, as previously noted, premises could be

completely true and factual, wholly false and fabricated, or anywhere between. Thus,

premises in themselves can be used for manipulation and misinformation. Unfortunately,

premise recognition, and argument mining as a whole, remains a thorny problem. Likewise,

furthering the goal of identifying misleading content using misdirection falls in that same

category of relying on improvements to argument mining. Both these contributions are

significant in theory, but as yet unproven in application.

On the topic of identifying misleading content, recognizing bias and manipulation

are much closer to being realizable. While bias identification might rely on argumentation,

which wraps back to concerns just raised, it can also be tackled from a linguistic

perspective. Sentiment analysis has advanced rapidly in recent years, though it still

sometimes struggles with accuracy [170]. Simply identifying the balance of pro and con

90

statements in an article can highlight the balance of an article. Similarly, recognizing

manipulation can rely heavily on linguistic approaches. Thus, these two aspects of the fake

news model could be effectively realized and represent ready contributions to the overall

fake new model once the hurdle of argument mining is overcome. Since argument

identification is not ready for implementation, a more foundational contribution to the fake

new problem was sought. This is how we arrived at investigating echo chambers.

While much work remains to demonstrate the full potential of employing a gravity

well model to simulate the behavior of social media platforms, our initial results encourage

further investigation. Our primary hypothesis, that interest groups within social media

platforms can be effectively modeled with a gravity well simulation, was convincingly

confirmed for subreddits (interest groups) within the Reddit social media platform by our

analysis of the exiting behavior of the agents in our simulation in 6.3.1 and in Table 6-1. It

is interesting to note that this approach is thoroughly dynamic in its approach, relying on

the effects of a simulation evolving over time to trace the waxing and waning of interest

groups within social media platforms.

Further, per our discussion in the Results, Analysis, and Discussion section regarding

identifying echo chambers, it can be seen that the ranking and grouping of subreddits by

TSM does not equate simply to an ordering of the groups by size, which one might suspect

of a gravity-based model, nor does it correspond to the toxicity of the conversations

contained within individual subreddits. Thus, we conclude that associating low TSM

values with echo chamber propensity has some promise. As previously mentioned, there is

currently no standard for conclusively identifying echo chambers, so determining the

validity of our findings remains somewhat open to interpretation and subjectivity. All of

91

which points to several goals for future work, the subject of the next subsection.

7.2. Future Work

An obvious next step for the echo chamber model will be to apply the gravity well

simulation to other social media platforms. This will entail fine-tuning the model and its

parameters further to enable the incorporation of these additional social media platforms,

as well as adjusting the gravitational force thresholds required for entry to and exit from

the gravity well. For this study, the entry threshold was set to ensure no agents re-entered

the gravity well once they exited. Future work will enable agents to rejoin the gravity well

should conditions warrant it. Finally, the universal gravitational constant might also require

tuning to allow for a wider spectrum of social media platforms. Throughout these

adjustments, the results obtained for Reddit should remain stable between the subreddits,

despite their magnitudes shifting to accommodate additional social media platforms.

As previously identified, there is also room for improvement with the calculation of

the affinity of an individual for a given group topic. The current calculation makes use of

a subreddit’s own description, which sometimes is relevant to the content of submissions,

but sometimes is only guidance for the participants with little relevance to the actual

content of submissions. Additionally, while subreddits have a published group description,

there is no guarantee as to their existence or accuracy for other social media platforms.

Developing a general measure of affinity between a group’s users and the central theme or

purpose of the group would enhance the effectiveness of the simulation. This requires a

cross-platform analysis of a spectrum of social media platforms to yield a suitable measure

of affinity that works for most if not all social media platforms.

92

Another area for improvement in the gravitational model is to flesh out the definition

and use of the tendency for confirmation bias for each user (agent) in the simulation.

Confirmation bias has been well-studied in academia [160], [171], [172], but measuring

that tendency for individual social media users remains a challenge, though a highly

desirable goal.

Finally, an immediate goal is to continue exploring methods for concretely

identifying the existence of echo chambers, no matter how laborious, so that we have a

method for establishing the efficacy of our proposed echo chamber model. Corresponding

with that is the desire to further distinguish the results and findings from this current

experiment, particularly with respect to identifying what separates the minimal and

maximal TSM groups. One possibility that occurs is to attempt further analysis of text

postings for hints of fake news content or influences could prove especially helpful. A

return to the spatial aspects of texts yielded by DGs might prove an effective addition to

the temporal strengths of the simulation. As our initial investigation into DGs was quite

limited, revisiting DGs and additional network analysis could potentially yield insights on

the type of content being generated in the low- and high-TSM subreddits, and thus help

with distinguishing harmful echo chambers from innocuous ones.

Beyond all those goals for the echo chamber model, there remains the subject of the

overarching fake news framework. Much work remains to produce a completely

functioning version of that framework. Some of that is a matter of effort and resources, as

well as speed, if there is any hope of competing with the rapid advances in fake news

generation. Generative artificial intelligence [173], such as that found in OpenAI’s

93

generative pre-trained transformers (GPTs) and ChatGPT20 [174], and in Google Bard21,

hold a great deal of promise, both for positive efforts and destructive efforts like fake news.

Beyond that, some aspects of the framework are still very much in the research stage.

Argumentation analysis requires yet more basic research to advance the concept to the

point where it might be employed in a production suite. Therefore, a long-term goal for

fake news identification is the production of a framework for readily and reliably

identifying fake news, and we firmly believe our proposed framework could be a

significant contributor to that effort, but a much larger, well-financed effort would be

required to turn that proposed framework into reality. Hence, for a more immediate

contribution, the gravity well model for echo chambers promises a much speedier path to

actionable outcomes.

20 https://openai.com/blog/chatgpt

21 https://bard.google.com/

https://openai.com/blog/chatgpt
https://bard.google.com/

94

Appendices

Appendix A. Bayesian Knowledge Bases

When reasoning with BKBs representing a

probabilistic complex system, there are typically

three different questions to answer that may be the

goal of the analysis [98]:

1. What is the most probable state of the world

given the evidence?

2. What is the most likely state of an RV given

the evidence?

3. What is the most probable composite state of

a set of RVs given the evidence?

For the analysis in this thesis, the question to

be answered was that of number 2 – what is the

probable value of an RV given an initial state of

the model updated by player information as time

progresses? The updated information in this

context was gained by observing player moves

over time.

To accomplish this, an initial BKB was built

to represent the desired starting conditions,

including a first estimate of probabilities for all

RVs. Figure A-1 represents one such initial BKB.

As can be observed, a BKB consists of

Figure A-1: Initial BKB

95

instantiation nodes (I-nodes) and support nodes (S-nodes), connected by directed edges.

Each I-node represents a particular state of some random variable. S-nodes may have zero

or more incoming edges and only one outgoing edge. Each S-node encodes the if-then rule

consisting of these I-nodes and which represents the probability value of the rule.

Once an initial BKB is formed, it can be updated through a process known as belief

updating. Belief updating employs Bayes’ theorem to perform Bayesian inferencing [175]

to incorporate new information as it becomes available. Belief updating can be used to

identify probable states and their statistical probabilities. This will change as new

information, in this case in the form of an action BKB generated for each player’s most

recent action, is incorporated into the model using a process called BKB fusion—explained

in detail in [176]. For the example at hand, the model is also fused with a strategy identifier

BKB, the goal of which was to provide an updated estimate of the current strategy

(weak/strong egalitarian, weak/strong selfish, or weak/strong maximizer) and therefore the

probable next play for a given player, based on updates to the player’s actions. Updates

such as these can then be performed for each new action to provide updated predictions of

each player’s move for the next turn.

96

Appendix B. Gravity Well Code

Appendix B-1. par_process_pushshift_authors.py

'''

Parallel process specified .zst archive file for specified subreddit auths.json

file. Essentially retrieves list of authors from auths.json file to

search for through .zst archive file and retrieve all posts and comments

by those authors. Must call script from commandline with .zst filename and

auths.json filename as parameters.

'''

import zstandard as zstd # for .zst compressed files

import argparse # for parsing commandline arguments

import json # for processing json files

import pandas as pd # use pandas Python Data Analysis Library

import datetime as dt

import pathlib # for current execution directory info

from multiprocessing import Pool # multiprocessor pool

from multiprocessing import cpu_count # get cpu count

import sys # for sys.exit

def process_line(line):

global posts_df

 obj = json.loads(line)

 # do something with the object here

 if obj['author'] in authors_list:

 # return DF with only desired keys/columns

 return pd.DataFrame([{k: obj[k] for k in keys_to_keep}])

Begin processing for call from command line with optional output folder name

if __name__ == "__main__":

 if not len(sys.argv) > 1:

 sys.exit("Must call script from commandline with .zst filename and " +

 "auths.json filename as parameters.")

Use auto python doc description

 my_parser = argparse.ArgumentParser(description=__doc__,

 formatter_class=argparse.RawDescriptionHelpFormatter)

process zst file parameter

 my_parser.add_argument('zstfile',

 help="specify .zst filename to be decompressed and streamed",

 type=str)

97

process authors json file parameter

 my_parser.add_argument('authsfile',

 help="specify authors json filename for filtering authors",

 type=str)

 my_args = my_parser.parse_args()

 try:

 zstfp = pathlib.Path(my_args.zstfile)

 if not zstfp.exists():

 raise FileNotFoundError(f'zstfile {str(zstfp)} does not exist!')

 authsfp = pathlib.Path(my_args.authsfile)

 if not authsfp.exists():

 raise FileNotFoundError(f'authsfile {str(authsfp)} does not

exist!')

 # Create found author posts json file from file arguments

 json_fp = pathlib.Path(zstfp.parent, authsfp.stem + '_' + zstfp.stem +

'.json')

 json_fp.touch(exist_ok=False) # create file to mark eventual output

file

 except FileExistsError:

 raise FileExistsError(f'\n\n*** {str(json_fp)} already exists! Exiting

script...')

columns to be saved from input file

 keys_to_keep = ['author', 'author_created_utc','author_fullname',

 'created_utc','id','permalink','subreddit','subreddit_id']

create list of authors with whose posts we are concerned

 with open(authsfp, 'r') as af:

 auth_df = pd.DataFrame(json.load(af))

 authors_list = list(auth_df['author'])

 authors_list.remove('[deleted]') # remove deleted author posts

#authors_list = ["bethanyk98","shingofan","_Renlor"]

code snippet from Watchful at

https://www.reddit.com/r/pushshift/comments/ajmcc0/information_and_code_example

s_on_how_to_use_the/ef012vk/

 obj = None # placeholder to ensure obj is accessible in iPython

 posts_df = pd.DataFrame() # create empty DF for incrementally adding

objects

 processes = cpu_count() # identify nbr of processors available

98

 print('Utilizing %d cores' % processes)

 pool = Pool(processes) # create pool of processes

 with open(zstfp, 'rb') as fh:

 dctx = zstd.ZstdDecompressor(max_window_size=2147483648)

 with dctx.stream_reader(fh) as reader:

 chunk_ctr = 1 # show progress when processing chunks

 previous_line = ""

 print('Processing chunks...' + dt.datetime.now().strftime(

 "%Y/%m/%d %H:%M:%S"))

 while True:

if True: # added to leave indents with 'while' commented out

 chunk = reader.read(2**24) # 16mb chunks

 if not chunk:

 break

 print(f'\tProcessing chunk number: {chunk_ctr:10d}',end='\r')

 chunk_ctr += 1

 string_data = chunk.decode('utf-8')

 lines = string_data.split("\n")

 lines[0] = previous_line + lines[0] # chunk broken in middle

of line

 # don't process last (incomplete) line

 results = pool.map(process_line,lines[:-1])

 posts_df = pd.concat([posts_df]+results,ignore_index=True)

 previous_line = lines[-1] # chunk may have broken in middle

of line

Write found author posts to json file

 print(f'\nWriting dataframe to json file {str(json_fp)}.')

 posts_df.to_json(json_fp, orient='records')

 print("\nFinished: " + dt.datetime.now().strftime("%Y/%m/%d %H:%M:%S"))

99

Appendix B-2. par_process_pushshift_agreement.py

'''

Parallel process specified month and year .zst comment and submission archive

files for specified subreddit, examining (dis)agreement among author posts and

comments with entire subreddit. Search .zst archive files for subreddit posts

and comments, then evaluate (dis)agreement among all posts for that month for

that subreddit. If json file already exists, reads processed data from file.

Must call script from commandline with year, month, and subreddit name as

parameters. The script expects to run in same directory where files will be

accessed and stored. This script is a precursor to the "sr_sim_ec.py" script.

'''

import par_zst_to_df as pz # local module for converting zst to dataframe

import praw # for accessing reddit feeds

import zstandard as zstd # for .zst compressed files

import argparse # for parsing commandline arguments

import json # for processing json files

import pandas as pd # use pandas Python Data Analysis Library

import datetime as dt

import pathlib # for current execution directory info

import sys # for sys.exit and sys.argv to check number of arguments

import numpy as np

from sentence_transformers import SentenceTransformer

from tqdm import tqdm

from sklearn.metrics.pairwise import cosine_similarity # for similarity calc

def get_sr_description(subreddit,fp):

 ''' Method to retrieve subreddit description from reddit and save to file

'''

 secret = "hK8rMgJ801dpo6sMvpCqKyvwqXDMeA"

 cid = "meUVxGWvFqe9xTaDZsWvsQ"

 user = "EC-desc-scraper"

 # create read-only app instance

 reddit_ro = praw.Reddit(client_id=cid,

 client_secret=secret,

 user_agent=user)

 sr = reddit_ro.subreddit(subreddit)

 fp.write_text(sr.public_description) # write subreddit description to file

def create_std_text_col(posts_df):

Create text column with strings from either selftext, title, or body

100

 # First set text column for all rows to body, as there are usually more

 ## comments than submissions

 if 'body' in posts_df.columns:

 posts_df['text']=posts_df.body

 # now set all rows from submissions to selftext column

 if 'selftext' in posts_df.columns:

 posts_df.loc[posts_df['text'].isna(), 'text'] = posts_df.selftext

 # finally, set all rows with no selftext to title column

 elif 'title' in posts_df.columns:

 posts_df.loc[(posts_df['text']=='') | (posts_df['text']=='[removed]'),

 'text'] = posts_df.title

Insert entry in first row containing the subreddit description as text

Will use similarity with description to determine author affinity

 tdf = pd.DataFrame([[subr,subr,subr_desc]], columns=['author',

 'subreddit','text'])

 posts_df = pd.concat([tdf,posts_df]).reset_index(drop=True)

BATCH = 8 # batch size of 8 seems imperically most efficient for intuition

nodes

Begin processing for call from command line with optional output folder name

if __name__ == "__main__":

 if not len(sys.argv) > 1:

 sys.exit("Must call script from commandline with year, month, and " +

 "subreddit name as parameters.")

 print("\nBegan: " + dt.datetime.now().strftime("%Y/%m/%d %H:%M:%S"))

Use auto python doc description

 my_parser = argparse.ArgumentParser(description=__doc__,

 formatter_class=argparse.RawDescriptionHelpFormatter)

process zst file parameter

 my_parser.add_argument('year',

 help="specify 4-digit year of .zst files to be decompressed and " +

 "streamed",

 type=str)

 my_parser.add_argument('month',

 help="specify 2-digit month of .zst files to be decompressed " +

 "and streamed",

 type=str)

 my_parser.add_argument('subreddit',

 help="specify subreddit name to be analyzed",

 type=str)

101

 my_parser.add_argument('-b', '--batch',

 default=BATCH,

 help="specify batch size for BERT sentencetransformer " +

 "(default: '%(default)s')",

 type=int,

 required=False)

 my_args = my_parser.parse_args()

 subr = my_args.subreddit

 batch_sz = my_args.batch

 posts_df = pd.DataFrame() # create DF for storing posts

 # retrieve subreddit description from file or reddit, as appropriate

 desc_fp = pathlib.Path(subr + '_desc.txt')

 if not desc_fp.is_file():

 get_sr_description(subr,desc_fp)

 subr_desc = desc_fp.read_text()

 print(f'{subr}:\t{subr_desc}\n')

 try:

 # Create author data json file from supplied arguments

 auths_fp = pathlib.Path(subr + '_' + my_args.year + '-' +

 my_args.month + '_auths_agree.json.gz') # compress file

 auths_fp.touch(exist_ok=False) # create file to mark output author

file

 except FileExistsError:

 # if file already exists, issue warning and exit

 print(f"\t*** File {auths_fp} already exists! Move or delete file and

retry. ***")

 raise SystemExit

 try:

 # Create found posts json file from supplied arguments

 agree_fp = pathlib.Path(subr + '_' + my_args.year + '-' +

 my_args.month + '_agree.json.gz') # compress file

 agree_fp.touch(exist_ok=False) # create file to mark eventual output

file

 except FileExistsError:

 # if file already exists, read it in rather than parsing zst files

 print(f"\tReading dataframe from {agree_fp}")

 with open(agree_fp, 'rb') as f: # need 'rb' for zipped files!

 posts_df = pd.read_json(f,compression='gzip')

 print(f'\tRead {posts_df.shape} dataframe from json file {agree_fp}.')

102

 else: # otherwise parse zst files for required data

 print(f"\tCreating dataframe for output to {agree_fp}")

 rs_zstfp = pathlib.Path("RS_"+my_args.year+"-"+my_args.month+".zst")

 if not rs_zstfp.exists():

 raise FileNotFoundError(f'zstfile {rs_zstfp} does not exist!')

 rc_zstfp = pathlib.Path("RC_"+my_args.year+"-"+my_args.month+".zst")

 if not rc_zstfp.exists():

 raise FileNotFoundError(f'zstfile {rc_zstfp} does not exist!')

 print(f'Decompressing data from {rs_zstfp} and {rc_zstfp}.')

 for zstfp in [rs_zstfp,rc_zstfp]:

 if zstfp == rs_zstfp:

 # columns to be saved from RS input file

 keys_to_keep = ['author',

'author_created_utc','author_fullname',

 'created_utc','id','is_self','permalink','subreddit',

 'subreddit_id','selftext','title']

 else:

 # columns to be save from RC input file

 keys_to_keep = ['author',

'author_created_utc','author_fullname',

 'created_utc','id','permalink','subreddit','subreddit_id',

 'parent_id','body']

 posts_df =

pz.decompress_file_chunks(zstfp,posts_df,[subr],keys_to_keep)

 create_std_text_col(posts_df)

 # drop None text entries

 posts_df.dropna(subset=['text'],inplace=True)

 # Write found subreddit posts to json file

 print(f'\nWriting {posts_df.shape} dataframe to json file

{str(agree_fp)}.')

 posts_df.to_json(agree_fp, orient='records', compression='infer')

 finally:

 # Process posts for input into echo chamber model

 ## i.e. run Bert on all documents to measure similarity

 print("\n\tProcess dataframe for echo chamber model: " +

 dt.datetime.now().strftime("%Y/%m/%d %H:%M:%S"))

 print('jet - exiting for testing...')

 sys.exit()

 documents = posts_df.text

 model_name = 'all-mpnet-base-v2'

103

 print(f"\n\tmodel =

SentenceTransformer({model_name}),batch={batch_sz}")

 model = SentenceTransformer(model_name)

 text_embeddings = model.encode(documents, batch_size = batch_sz,

 show_progress_bar = True)

 similarities = cosine_similarity(text_embeddings)

 # change similarity range to [0,1]

 mns = np.min(similarities) # get bottom of range

 if mns < 0: # if bottom of range is less than zero

 similarities = similarities - mns

 mxs = np.max(similarities) # get top of range

 if mxs > 1: # if top of range is greater than one

 similarities = similarities/mxs

 # Get number of items in upper triangle (minus main diagonal)

 srow_len = np.size(similarities,1)

 # Get number of items in upper triangle (minus main diagonal)

 nbr_sims = srow_len*(srow_len-1)/2

 # Find upper and lower triangles of similarities matrix (minus diag)

 sim_ut = np.triu(similarities,1)

 sim_lt = np.tril(similarities,-1)

 sult = sim_ut + sim_lt # Create sim array with zero diagonal

 # Calculate the average overall similarity

 s_avg = sim_ut.sum()/nbr_sims

 # Calculate average similarity and dissimilarity for each document

 s_doc_avg = np.array([r.mean() for r in sult])

 d_doc_avg = 1 - s_doc_avg

 # Find all (unique) authors in database

 #authors = list(posts_df[:100].author.unique()) #testing

 authors = list(posts_df.author.unique())

 # Calculate average sim & dissimilarity for each author and store in

dataframe

 auth_df = pd.DataFrame()

 auth_df['author'] = authors

 auth_df['avg_sim'] = [s_doc_avg[posts_df.author[posts_df.author==

 auth].index].mean() for auth in authors]

 auth_df['avg_diss'] = [d_doc_avg[posts_df.author[posts_df.author==

 auth].index].mean() for auth in authors]

 # Try diss to sim ratio for each author and store in DF

 auth_df['diss_sim_ratio'] = auth_df['avg_diss']/auth_df['avg_sim']

 # Use similarity of authors' posts to description to determine affinity

 auth_df['affinity'] = [similarities[0][posts_df.author[posts_df.

 author==auth].index].mean() for auth in authors]

104

 # Try diss to affinity ratio for each author and store in DF

 auth_df['diss_affinity_ratio'] =

auth_df['avg_diss']/auth_df['affinity']

 # Write author data to json file for input to sim_ec.py

 print(f'\nWriting {auth_df.shape} dataframe to json file

{str(auths_fp)}.')

 auth_df.to_json(auths_fp, orient='records', compression='infer')

 print("\nFinished: " + dt.datetime.now().strftime("%Y/%m/%d %H:%M:%S"))

105

Appendix B-3. sr_sim_ec.py

'''

Gravity well echo chamber simulation for subreddits

e.g. call: %timeit python3 sim_ec.py

Reads json files for simulation parameters, e.g.

**

{

 "NUMBER_ITERATIONS": 30,

 "TOPIC_SOURCE_MODIFIER": 0,

 "TECHNOLOGY_MODIFIER": 0

}

**

This script makes required use of files generated by

the par_process_pushshift_agreement.py script.

'''

from jetlogging import * # customized logging module

import argparse # for parsing commandline arguments

from scipy.stats import truncnorm

import json

import random

import math

import numpy as np

import pandas as pd

import datetime as dt

import sys # for sys.exit and sys.argv to check number of arguments

import pathlib # for current execution directory info

import csv # for writing and reading simulation results

import operator as op # fascilitate passing arithmetic operators as

parameters

from functools import reduce

Define which attributes from agents file will be used in model

AGENT_ATTRIBUTES =

['author','avg_sim','avg_diss','affinity','diss_affinity_ratio']

class Agent:

 def __init__(self,author,affinity,dissimilarity,bias_seeking=1):

 ''' Agent class for representing members of EC '''

 self._bias_seeking = bias_seeking # confirmation bias-seeking (1 =

normal/neutral)

 self.captured_ctr(0) # track how long an agent has been in EC

 self._author = author

106

 self._affinity = affinity*bias_seeking

 # dissimilarity is a measure of the dissimilarity of an agent's posts

 ## wrt other EC members's posts

 self._dissimilarity = dissimilarity

 def __init__(self,agt_rec,bias_seeking=1):

 ''' Agent class for representing members of EC '''

 self._bias_seeking = bias_seeking # confirmation bias-seeking (1 =

normal/neutral)

 self._captured_ctr = 0 # track how long an agent has been in EC

 self._author = agt_rec.Index # author column has been set to Index

 # affinity is a measure of the similarity of an agent's posts with the

 ## central theme of EC, including affirmation bias-seeking affinity

 self._affinity=agt_rec.affinity*self._bias_seeking

 '''

 # affinity is a measure of the similarity of an agent's posts

 ## wrt other EC members's posts

 # always use bias_seeking modifier when setting affinity

 self._affinity = agt_rec.avg_sim*self._bias_seeking

 '''

 # dissimilarity is a measure of the dissimilarity of an agent's posts

 ## wrt other EC members's posts

 self._dissimilarity = agt_rec.avg_diss

 @property

 def captured_ctr(self):

 '''Author represents agent's name in the subreddit.'''

 return self._captured_ctr

 @captured_ctr.setter

 def captured_ctr(self,ctr):

 self._capture_ctr = ctr

 @property

 def author(self):

 '''Author represents agent's name in the subreddit.'''

 return self._author

 @author.setter

 def author(self,author):

 self._author = author

 @property

 def affinity(self):

107

 '''

 Affinity represents agent's attraction to EC theme, including

 affirmation bias.

 '''

 return self._affinity

 @affinity.setter

 def affinity(self,affinity):

 if affinity < 0.01:

 # Affinity cannot be less than or equal to zero (div by zero)

 affinity = 0.01

 # always use bias_seeking modifier when setting affinity

 self._affinity = affinity*self._bias_seeking

 @property

 def dissimilarity(self):

 '''Dissimilarity represents agent's contrast to others in echo

chamber.'''

 return self._dissimilarity

 @dissimilarity.setter

 def dissimilarity(self,dissimilarity):

 if dissimilarity <= 0.01:

 # Dissimilarity cannot be less than or equal to zero (div by zero)

 dissimilarity = 0.01

 self._dissimilarity = dissimilarity

class EchoChamber:

 ''' EchoChamber represents the EC and the agents captured within '''

 def __init__(self,agents_df,src_mod=1,tech_mod=1,exit_frac=0.1):

 '''

 Generate initial captured agents from provided agents dataframe. Note

 that synthetic model only started with a single captured agent, but

 subreddit model begins with all users already in the subreddit, and no

 "free" agents.

 '''

 # create generator for agents to consider exiting EC

 self.exit_gen = np.random.RandomState()

 # find max affinity, then track as each agent is captured

 self.max_affinity = max(agents_df.affinity)

 self._src_mod = src_mod # represents pull created by misinformation

sources

 self._tech_mod = tech_mod # represents pull created by OSN news

feeds

108

 self._exit_frac = exit_frac # fraction of agents to try to leave

 # create list of captured agents, which all of them are to start

 self.captured_agents = [Agent(agent_record)

 for agent_record in agents_df.itertuples()]

 def capture_agent(self,agent):

 ''' Add agent to the captured_agents list '''

 # note: max_affinity never decreases, even if agent with max leaves

 self.max_affinity = max(agent.affinity,self.max_affinity)

 self.captured_agents.append(agent)

 def release_agent(self,agt):

 ''' Release indexed agent from the captured_agents list '''

 #jet self.captured_agents[idx].captured_ctr = 0

 self.captured_agents.remove(agt)

 def update_captured_agents(self):

 '''

 Update affinity for captured agents based on random normal draw ranging

 between current agent affinity minus one sd to max EC affinity, with

 mean set to current agent affinity. Update dissimilarity based on the

 current size of the EC and how long each agent has been captured by the

 echo chamber

 '''

 for agt in self.captured_agents:

 agt.captured_ctr += 1

 # dissimilarity is a randomized function of size of EC

 # use min function here to ensure dissimilarity does not exceed 1

 agt.dissimilarity = min(1,

 self.exit_gen.poisson(agt.dissimilarity*self.mass)/self.mass)

 # in the EC, affinity is further catalyzed by misinformation

 ## <cite> Cinelli, M., De Francisci Morales, G., Galeazzi, A.,

Quattrociocchi,

 ### W., & Starnini, M. (2021). The echo chamber effect on social

media.

 ### Proceedings of the National Academy of Sciences, 118(9),

e2023301118.

 ### https://doi.org/10.1073/pnas.2023301118

 ## <cite> Lyons, B. A., Montgomery, J. M., Guess, A. M., Nyhan, B.,

&

 ### Reifler, J. (2021). Overconfidence in news judgments is

associated with

109

 ### false news susceptibility. Proceedings of the National Academy

of Sciences

 ### of the United States of America, 118(23).

 ### https://doi.org/10.1073/pnas.2019527118

 # and group polarization

 ## <cite>Sunstein, C. R. (2005). The Law of Group Polarization.

 ### SSRN Electronic Journal. https://doi.org/10.2139/ssrn.199668

 # Research indicates viewpoints usually become more extreme in ECs

 if (agt.affinity < self.max_affinity): # max affinity agt doesn't

change

 mean = agt.affinity

 high = min(1,self.max_affinity) # ensure high <= 1

 # We are using the right portion of a normal distribution to

reflect

 ## diminishing likelihood as the bias (affinity) becomes more

 ## extreme, with some probability that the affinity could

decrease

 sd = (high - mean)/2

 low = mean - sd

 # use min to ensure affinity does not exceed 1

 agt.affinity = min(1,truncnorm(

 a=(low-mean)/sd, b=(high-mean)/sd, loc=mean,

scale=sd).rvs())

 def nbr_exiting(self):

 '''

 nbr_exiting represents the number of members considering exiting

 the EC, ranging from zero to a given fraction of captured members, with

 bias towards zero

 '''

 return abs(random.randint(0,math.ceil(self.EXIT_FRAC*self.mass))-

 random.randint(0,math.floor(self.EXIT_FRAC*self.mass)))

 @property

 def mass(self):

 ''' mass represents size of EC and is number of captured agents '''

 return len(self.captured_agents)

 @property

 def eff_mass(self):

 '''

 eff_mass represents mass of EC multiplied by the social media's

110

 tech modifier

 '''

 return self.mass*self._tech_mod

 @property

 def affin_mod(self):

 '''

 Property reflecting EC's ability to affect agent's affinity due to the

 source/topic pillars. Coded to allow for dynamism if desired later

 '''

 return self._src_mod

 @property

 def EXIT_FRAC(self):

 '''

 Fraction of captured agents to figure into determining nbr_exiting

 '''

 return self._exit_frac

 @property

 def capt_DA_ratio(self):

 capt_cnt = self.mass

 if capt_cnt == 0:

 return (0,0)

 else:

 # include affinity modifier for calculations within ec

 return (sum(ag.dissimilarity for ag in

self.captured_agents)/capt_cnt,

 sum(ag.affinity*self.affin_mod for ag in

self.captured_agents)/capt_cnt)

 ''' jet - simpler implementation ^there^

 return tuple(map(op.truediv,reduce(lambda x,y:

 # include affinity modifier for calculations within ec

(x[0]+y[0],x[1]+y[1]),[(agt.dissimilarity,agt.affinity*self.affin_mod) for

 agt in self.captured_agents],(0,0)),(capt_cnt,capt_cnt)))

 '''

class Simulation:

 ''' Simulation represents the agents and environment outside the EC '''

 def __init__(self, agents_df, n_iterations, grav_const, src_mod,

111

 tech_mod, decay_rate, exit_frac, join_frac=0.1):

 self._G = grav_const # gravitational constant

 # decay rate for dissimilarity and affinity after leaving EC

 self._DECAY_RATE = decay_rate

 self.agents_df = agents_df

 self._NUM_ITERATIONS = n_iterations

 self._JOIN_FRAC = join_frac

 # create EC containing initial captured agents

 self.ec = EchoChamber(self.agents_df,src_mod,tech_mod,exit_frac)

 self.free_agents = [] # no free agents to start

 # end of def __init__(self, ...

 def liberate_agent(self,agent):

 ''' Add agent to free_agents list '''

 self.free_agents.append(agent)

 def remove_agent(self,agent):

 ''' Remove indexed agent from the free_agents list '''

 self.free_agents.remove(agent)

 def update_free_agents(self):

 '''

 For free agents, decay dissimilarity, affinity, and captured counter

 based on time away from EC.

 '''

 for agt in self.free_agents:

 if agt.captured_ctr > 0:

 agt.captured_ctr -= 1

 # dissimilarity decays gradually to original value

 orig_diss = self.agents_df.loc[agt.author].avg_diss

 if agt.dissimilarity > orig_diss/self.DECAY_RATE:

 agt.dissimilarity *= self.DECAY_RATE # decay dissimilarity

 else:

 agt.dissimilarity = orig_diss

 # affinity decays gradually to original value

 orig_aff = self.agents_df.loc[agt.author].affinity

 if agt.affinity > orig_aff/self.DECAY_RATE:

 agt.affinity *= self.DECAY_RATE # decay affinity

 else:

 agt.affinity = orig_aff

112

 def run_sim(self,join_exit_fn,join_force_threshold,exit_force_threshold,

 rnd_exit,rnd_join,tune=-1,DEBUG=False):

 # begin simulation

 random.seed() # needed to ensure unique RNG for child processes

 if tune>-1: # if tune parameter provided, can exit early when limit

blown

 logger.debug("Beginning tuning simulation for max of " +

 f"{self.NUM_ITERATIONS} iterations")

 else:

 logger.debug(f"\nBeginning simulation for {self.NUM_ITERATIONS}

iterations\n")

 pr_format='''{0}\t {1} \t\t{2[0]:0.4f}/{2[1]:0.4f}\t\t {3}\

 \t{4[0]:0.4f}/{4[1]:0.4f}'''

 # prepare csv file for writing results for debugging

 if DEBUG:

 je_f = open(join_exit_fn,'w',newline='')

 je_file_writer = csv.writer(je_f)

 je_file_writer.writerow(

 ["Epoch","Joined","Joining","Join pct","Avg Join

Force","Exited"

 ,"Exiting", "Exit pct","Avg Exit Force","EC-size-pct"]

)

 for epoch in range(self.NUM_ITERATIONS):

 # periodic output to show progress and trends

 if DEBUG:

 if (epoch%10==0):

 if (epoch%400==0):

 logger.trace("Epoch \t#free \t\tavgD/avgA" +

 "\t\t#captured\t\tavgD/avgA")

 logger.trace(pr_format.format(epoch,self.freedom,

 self.free_DA_ratio,self.ec.mass,self.ec.capt_DA_ratio))

 # update time in EC and values for affinity and dissimilarity

 self.ec.update_captured_agents()

 # decay dissimilarity and captured counter based on time away from

EC

 self.update_free_agents()

 # need to select 'nbr_joining' agents to check if actually join

 nbr_joining = self.nbr_joining()

113

 j_a_l = [] # list of joining agents

 if rnd_join: # randomly select joiners

 # Evenly random selection

 j_a_l = random.sample(self.free_agents,nbr_joining) # joiner

agents

 else: # select nbr_joing agents with highest affinity

 j_a_l = sorted(self.free_agents,key=lambda a:

 a.affinity,reverse=True)[:nbr_joining]

 # iterate through the joining agents to see if they join the EC

 nbr_joined = 0

 f_jtot = 0 # use to calculate average joining force for this epoch

 for j_a in j_a_l:

 # use ratio of dissimilarity to affinity (D/A) to influence

prob of agents

 # being selected to be among the joining agents _considering_

joining EC

 # F = G*((m1*m2)/r^2) to calculate force pulling joining agents

into EC

 # where G = gravitation constant (set to 1 for convenience)

 # m1 = 1 (mass of solo joining agent)

 # m2 = self.ec.eff_mass, nbr of captured agents * science

modifier

 # r = radius represented by ratio of dissimilarity to

affinity (D/A)

 jf =

self.G*self.ec.eff_mass/(j_a.dissimilarity/j_a.affinity)**2

 f_jtot += jf # summing the joining forces

 logger.trace("JF = {:.2f}".format(jf))

 if (jf>join_force_threshold) & (self.freedom>1): # joiner

captured if not last

 logger.trace(f'joining agent = {j_a.author}, ' +

 f'eff mass = {self.ec.eff_mass}, ' +

 f'diss = {j_a.dissimilarity}, '+

 f'affinity = {j_a.affinity}')

 logger.trace(f'join force F = {jf:.2f}')

 self.ec.capture_agent(j_a)

 self.remove_agent(j_a)

 nbr_joined += 1

 # now calculate the average joining force

 f_javg = 0 if nbr_joining == 0 else f_jtot/nbr_joining

 # need to select 'nbr_exiting' agents to check if actually exit

 nbr_exiting = self.ec.nbr_exiting()

114

 x_a_l = [] # list of exiting agents

 if rnd_exit: # randomly select exiters

 # Evenly random selection

 x_a_l = random.sample(self.ec.captured_agents,nbr_exiting) #

exiter agents

 else: # select nbr_exiting agents with highest dissimilarity

 x_a_l = sorted(self.ec.captured_agents,key=lambda a:

 a.dissimilarity,reverse=True)[:nbr_exiting]

 # iterate through the exiting agents to see if they join the EC

 nbr_exited = 0

 f_xtot = 0 # use to calculate average exiting force for this epoch

 # Select 'nbr_exiting' agents to check if actually exiting

 for x_a in x_a_l:

 # use ratio of dissimilarity to affinity (D/A) to influence

prob of agents

 # being selected to be among the joined agents _considering_

exiting EC

 # F = G*((m1*m2)/r^2) to calculate force pulling joining agents

into EC

 # where G = 1 (gravitation constant)

 # m1 = 1 (mass of solo joining agent)

 # m2 = self.ec.mass, representing nbr of captured agents

 # r = radius represented by ratio of dissimilarity to

affinity (D/A)

 # Introduce an affinity modifier that incorporates the

characteristics of EC

 ## only in effect within the EC

 xf =

self.G*self.ec.eff_mass/(x_a.dissimilarity/(x_a.affinity*self.ec.affin_mod))**2

 f_xtot += xf # summing the exiting forces

 logger.trace("XF = {:.2f}".format(xf))

 if (xf<exit_force_threshold) & (self.ec.mass>1): # exiter

released if not last

 logger.trace(f'exiting agent = {x_a.author}, ' +

 f'eff mass = {self.ec.eff_mass}, ' +

 f'diss = {x_a.dissimilarity}, '+

 f'affinity = {x_a.affinity}, ' +

 f'aff*mod = {x_a.affinity*self.ec.affin_mod}')

 logger.trace(f'exit force F = {xf:.2f}')

 self.liberate_agent(x_a)

 self.ec.release_agent(x_a)

 nbr_exited += 1

115

 # now calculate the average exiting force

 f_xavg = 0 if nbr_exiting == 0 else f_xtot/nbr_exiting

 logger.trace("'nbr joined' = {}/{},\t'nbr exited' = {}/{}".format(

 nbr_joined,nbr_joining,nbr_exited,nbr_exiting))

 # write data to csv, while avoiding div by zero

 joined_pct = 0 if nbr_joining == 0 else nbr_joined/nbr_joining

 exited_pct = 0 if nbr_exiting == 0 else nbr_exited/nbr_exiting

 outstr1 =

f'{epoch},{nbr_joined},{nbr_joining},{joined_pct*100:.2f},'

 outstr2 =

f'{f_javg:.3f},{nbr_exited},{nbr_exiting},{exited_pct*100:.2f},'

 outstr3 = f'{f_xavg:.3f},{self.ec.mass/self.NUM_AGENTS*100:.2f}'

 if DEBUG:

 je_file_writer.writerow([outstr1+outstr2+outstr3])

 if tune>-1: # if tuning, check to exit early

 if len(self.free_agents)>tune:

 logger.debug(f'\tExiting early after {epoch+1}

iterations.')

 return epoch+1 # no point in tuning now!

 # print result at end of simulation

 logger.debug("Epoch \t#free \t\tavgD/avgA\t\t#captured\t\tavgD/avgA")

 logger.debug(pr_format.format(self.NUM_ITERATIONS-1,self.freedom,

 self.free_DA_ratio,self.ec.mass,self.ec.capt_DA_ratio))

 logger.debug(f"\n\t\tSimulation complete.")

 if DEBUG:

 je_f.close()

 return epoch+1

 # end of def run_sim(self):

 def nbr_joining(self):

 '''

 nbr_joining represents the number of members considering (re)joining

 the EC, ranging from zero to a given fraction of free members, with

 bias towards zero

 '''

 return abs(random.randint(0,math.floor(self.JOIN_FRAC*self.freedom))-

 random.randint(0,math.floor(self.JOIN_FRAC*self.freedom)))

 @property

 def freedom(self):

 ''' Freedom represents the number of free agents '''

 return len(self.free_agents)

116

 @property

 def free_DA_ratio(self):

 free_cnt = self.freedom

 if free_cnt == 0:

 return (0,0)

 else:

 return (sum(ag.dissimilarity for ag in self.free_agents)/free_cnt,

 sum(ag.affinity for ag in self.free_agents)/free_cnt)

 ''' jet - simpler implementation ^there^

 return tuple(map(op.truediv,reduce(lambda x,y:

 (x[0]+y[0],x[1]+y[1]),[(agt.dissimilarity,agt.affinity) for

 agt in self.free_agents],(0,0)),(free_cnt,free_cnt)))

 '''

 # following properties represent object constants, as there are getters but

no setters

 @property

 def G(self):

 return self._G # gravitational constant

 @property

 def DECAY_RATE(self):

 return self._DECAY_RATE # decay rate for affinity and dissimilarity

 @property

 def NUM_AGENTS(self):

 return len(self.agents_df)

 @property

 def NUM_ITERATIONS(self):

 return self._NUM_ITERATIONS

 @property

 def JOIN_FRAC(self):

 return self._JOIN_FRAC

end class Simulation:

def exit_prog():

 logger.debug("Exiting...")

def get_agents(agfile):

117

 '''

 Read simulation agent data.

 '''

 try: # try reading from uncompressed file first

 with open(agfile, 'r') as f:

 logger.debug(f'Reading agents from {agfile}.')

 # Load only columns desired for agent definition and index by

author

 agents_df = pd.read_json(f)[AGENT_ATTRIBUTES].set_index('author')

 except FileNotFoundError: # unsuccessful -- try compressed file

 agfile2 = agfile + '.gz'

 logger.debug(f'File {agfile} not found. Trying {agfile2}')

 try: # try reading from compressed file

 with open(agfile2, 'rb') as f: # need 'rb' for zipped files!

 logger.debug(f'Reading agents from {agfile}.')

 # Load only columns desired for agent definition and index by

author

 agents_df = pd.read_json(f,compression='gzip')\

 [AGENT_ATTRIBUTES].set_index('author')

 except FileNotFoundError:

 logger.error(f'Neither {agfile} nor {agfile2} found.')

 raise

 return agents_df

def get_dat(rcfile,DEBUG=False):

 '''

 Read simulation parameters and agent data.

 # "FILE_BASE": filename base used for creating in/output filenames

 # "NUMBER_ITERATIONS": number of iterations for simulation

 # "GRAVITY_CONSTANT": constant set to produce "reasonable" forces

 # "TOPIC_SOURCE_MODIFIER": modifier multiplied to affinity

 ## 0 <= TSM < 1 has dampening effect

 ## TSM = 1 has no effect

 ## TSM > 1 has magnifying effect

 # "TECHNOLOGY_MODIFIER": modifier multiplied to ec's mass

 ## 0 <= TM < 1 has dampening effect -- perhaps correction by social

media

 ## TM = 1 has no effect (neutral)

 ## TM > 1 has magnifying effect -- likely standard mode for most social

media

 # "DECAY_RATE": decay rate for dissimilarity and affinity after leaving

EC

118

 # "JOIN_FORCE_THRESHOLD": value gravity force must exceed to join EC

 # "EXIT_FORCE_THRESHOLD": value gravity force must fall below to exit

EC

 # "RANDOM_JOINERS": boolean for whether random or prioritized joiners

used

 # "RANDOM_EXITERS": boolean for whether random or prioritized exiters

used

 '''

 logger.debug("Reading simulation parameters from {}/{}".format(

 pathlib.Path().resolve(),rcfile))

 with open(rcfile,'r') as f:

 parms = json.load(f)

 basefn = parms.get('FILE_BASE')

 # print out all values to record sim settings

 for key,value in parms.items():

 logger.debug(f'{key} = {value}')

 agfile = basefn + '_auths_agree.json'

 agents_df = get_agents(agfile)

 return (parms,agents_df)

if __name__ != "__main__":

 logger = logging.getLogger('jetlogger')

Begin processing for call from command line with optional json filename

argument

if __name__ == "__main__":

 if not len(sys.argv) > 1:

 sys.exit("Must call script from commandline with rc filename")

 my_parser = argparse.ArgumentParser(description=__doc__, # Use auto python

doc description

 formatter_class=argparse.RawDescriptionHelpFormatter)

 my_parser.add_argument('-d', '--debug',dest='debug',action='store_true',

 help="specify '-d' to enable extra debugging output")

 my_parser.add_argument('-nd','--no-

debug',dest='debug',action='store_false',

 help="specify '-nd' to disable extra debugging output")

 my_parser.set_defaults(debug=False)

 my_parser.add_argument('rcfile',

 help="specify 'run commands' file containing sim parameters ",

 type=str)

 my_args = my_parser.parse_args()

 logger = jetlogger(pathlib.Path(my_args.rcfile).stem+'.log',my_args.debug)

119

 logger.debug('Began')

 (parms,agents_df) = get_dat(my_args.rcfile,my_args.debug)

 '''jet - hold off on following change for now

 # Find agents' exiting date (assumed last date means no exit)

 # First, loop through all RC.zst files in reverse date order

 paths = list(pathlib.Path('.').glob('RC*.zst'))

 paths.sort(reverse=True)

 for path in paths:

 # now, for each file, look for last post made by each author

 jet'''

 # Create simulation. Unlike with synthetic data, the subreddit agents

 # all start in the echo chamber.

 # pass parameters (or default) to new sim object

 sim = Simulation(

 agents_df,

 parms.get('NUMBER_ITERATIONS',90), # defaults to nominal number

 parms.get('GRAVITY_CONSTANT'),

 parms.get('TOPIC_SOURCE_MODIFIER',1), # one default has no effect

 parms.get('TECHNOLOGY_MODIFIER',1), # one default has no effect

 parms.get('DECAY_RATE',0.9), # 0.9 is a slow decay

 parms.get('EXIT_FRAC',0.1), # 1/10th of capt members try to

leave

 parms.get('JOIN_FRAC',0.1), # 1/10th of free members try to

join

)

 sim.run_sim(

 parms.get('FILE_BASE') + '_je.csv',

 parms.get('JOIN_FORCE_THRESHOLD',500),

 parms.get('EXIT_FORCE_THRESHOLD',500),

 parms.get('RANDOM_EXITERS',False),

 parms.get('RANDOM_JOINERS',False),

 -1, # not tuning

 my_args.debug

)

 logger.debug('Finished')

 exit_prog()

120

Appendix B-4. sr_tune_sim.py

'''

Tuning for gravity well echo chamber simulation for subreddits

'''

from sr_sim_ec import *

import argparse # for parsing commandline arguments

import sys # for sys.argv to check number of arguments

from jetlogging import * # customized logging module

from multiprocessing import Pool # multiprocessor pool

from multiprocessing import cpu_count # get cpu count

from multiprocessing import Queue # add Queues for comm

from multiprocessing import Manager # needed to manage queues

import numpy as np # used for getting mean value

from random import randint # used to generate random integer

from tqdm import tqdm # Progress Bar Made Easy

import pathlib # for current execution directory info

from concurrent.futures import ThreadPoolExecutor, as_completed

def get_agfile(filebase):

 ''' Ensure consistent setting of agents filename '''

 return filebase + '_auths_agree.json'

def cntr(num1,num2):

 ''' split difference between two nums, with rounding '''

 return round((num1+num2)/2)

def tune_tm(subr_fb,tm_Q=None,DEBUG=False):

 TM_NUDGE_LIM = 20

 agents_df = get_agents(get_agfile(subr_fb))

 # Create simulation.

 tm_val = tm_floor = 1 # use tm_val for tech mod; set lower limit to

tuning

 tm_ceil = TM_TUNE_MIN # set upper limit to tuning

 tm_prev = tm_val # use prev to track last value

 tm_ctr = 0 # use ctr to track nbr times prev and current are equal

 tm_nudge_ctr = 0 # use nudge_ctr to track nbr times we've nudged

 #tot_cnt = sys.maxsize # ensure we enter the while loop

 tm_targ = round(TM_TUNE_MOD*len(agents_df)) # reduce exiters according to

mod

121

 targ_upper_rng = round(1.05*tm_targ+1) # upper bound for acceptable

target range

 targ_lower_rng = round(0.9*tm_targ) # lower bound for acceptable

target range

 #iters = 0

 sim = None

 logger.debug(f'*** Tuning {subr_fb} tm to allow escapes ~' +

 f'{round(TM_TUNE_MOD*100)}% of EC ({len(agents_df)}) = {tm_targ}:

***')

 #return (randint(1,15)) #jet debug

 #while tm_targ<tot_cnt and tm_val<TM_TUNE_MIN: # exit if tm_val gets too

large

 while True:

 logger.debug(f'\tStarted {subr_fb} loop for tm val = {tm_val} for ' +

 f'~{targ_lower_rng} - {targ_upper_rng} allowed escapes')

 sim = Simulation(

 agents_df,

 NBR_ITERS,

 GC,

 TSM, # use tsm value from rc file

 tm_val, # use tm_val in place of tm

 DR, # decay rate

 X_FRAC,

 J_FRAC,

)

 sim.run_sim(

 subr_fb + '_je.csv',

 JFT,

 XFT,

 RX,

 RJ,

 targ_upper_rng, # break early if tuning limit exceeded

 DEBUG

)

 tot_cnt = len(sim.free_agents)

 logger.debug(f'*** Finished {subr_fb} with {tot_cnt} free agents for '

+

 f'target of {targ_lower_rng} - {targ_upper_rng} on tm val ' +

 f'= {tm_val}')

 if tot_cnt in range(targ_lower_rng,targ_upper_rng):

 break # good enough

122

 elif tm_targ < tot_cnt: # tm_val too small

 if tm_val < tm_ceil: # retune with new floor

 tm_floor = tm_val # reset floor

 elif tm_ceil < TM_TUNE_MIN: # retune with reset ceiling

 tm_ceil = cntr(tm_ceil,TM_TUNE_MIN)

 else: # ceiling reached -- no need to tune further

 tm_val = tm_ceil # ensure tm_val is at ceiling

 break

 else: # tm_val too large

 if tm_val > tm_floor: # retune with new ceiling

 tm_ceil = tm_val # reset ceiling

 elif tm_floor > 1: # retune with reset floor

 tm_floor = cntr(tm_floor,1)

 else: # floor too large

 tm_val = tm_floor # ensure tm_val is at floor

 break

 if tm_nudge_ctr>TM_NUDGE_LIM: # too many nudges

 break

 tm_val = cntr(tm_floor,tm_ceil)

 if tm_val == tm_prev: # nudge tm_val to change repetitive outcome

 tm_ctr += 1

 if tm_ctr > 2:

 tm_nudge_ctr += 1

 tm_val += randint(-tm_ctr,tm_ctr) # nudge

 logger.debug(f'\t\tnudged {subr_fb} tm {tm_nudge_ctr} times')

 else: # reset ctr

 tm_ctr = 0

 tm_prev = tm_val

 logger.debug(f'*** Tuned {subr_fb} tm to {tm_val} for ' +

 f'target escapes of ~{targ_lower_rng} - {targ_upper_rng} with ' +

 f'actual of {tot_cnt} ***')

 if tm_Q: # if queue present from parallel processing

 if tm_nudge_ctr>TM_NUDGE_LIM: # too many nudges

 tm_Q.put((subr_fb,0)) # return zero to indicate failed run

 else:

 tm_Q.put((subr_fb,tm_val)) # add tm_val to queue of results

 if tm_nudge_ctr>TM_NUDGE_LIM: # too many nudges

 return 0 # return zero to indicate failed run

 else:

 return tm_val

end of def tune_tm(subr_fb,DEBUG=False):

123

def tune_tsm(subr_fb,tuned_tm,tsm_Q=None,DEBUG=False):

 TSM_NUDGE_LIM = 20

 agents_df = get_agents(get_agfile(subr_fb))

 tsm_floor = tsm_ceil = tsm_val = 1 # use tsm_val for topic source mod

 tot_cnt = sys.maxsize # ensure we enter the while loop

 tsm_prev = tsm_val # use prev to track last value

 tsm_ctr = 0 # use ctr to track nbr times prev and current are equal

 tsm_nudge_ctr = 0 # use nudge_ctr to track nbr times we've nudged

 tsm_targ = round(TSM_TUNE_MOD*len(agents_df)) # reduce exiters according

to mod

 targ_upper_rng = round(1.02*tsm_targ+1) # upper bound for acceptable

target range

 targ_lower_rng = round(0.96*tsm_targ) # lower bound for acceptable

target range

 sim = None

 logger.debug(f'*** Tuning {subr_fb} tsm to allow escapes ~ ' +

 f'{round(TSM_TUNE_MOD*100)}% of EC ({len(agents_df)}) = {tsm_targ}:

***')

 #return (randint(1,15)) #jet debug -- uncomment to skip this calculation

 # for tuning, TSM*LLM sets the maximum times tuning will try to converge

 ## before aborting the tuning effort

 while True:

 logger.debug(f'\tStarted {subr_fb} loop for tsm val = {tsm_val} for ' +

 f'~{targ_lower_rng} - {targ_upper_rng} allowed escapes')

 sim = Simulation(

 agents_df,

 NBR_ITERS,

 GC,

 tsm_val, # use tsm_val in place of tsm

 tuned_tm,

 DR, # decay rate

 X_FRAC,

 J_FRAC,

)

 sim.run_sim(

 subr_fb + '_je.csv',

 JFT,

 XFT,

 RX,

 RJ,

 targ_upper_rng # allow sim to break early if tuning limit

exceeded

124

)

 tot_cnt = len(sim.free_agents)

 logger.debug(f'\tFinished {subr_fb} with {tot_cnt} free agents for ' +

 f'target of {tsm_targ} on tsm val = {tsm_val}')

 logger.trace(f'tsm_floor={tsm_floor},tsm_ceil={tsm_ceil},' +

 f'tsm_val={tsm_val},targ_low={targ_lower_rng},' +

 f'targ_high={ targ_upper_rng},freed={tot_cnt}')

 if tot_cnt in range(targ_lower_rng,targ_upper_rng+1):

 break # good enough

 elif tsm_targ < tot_cnt: # tsm_val too small

 if tsm_val < tsm_ceil: # retune with new floor

 tsm_floor = tsm_val # reset floor

 else:

 tsm_ceil *= 10 # retune with reset ceiling

 tsm_floor = tsm_val # raise the floor

 else: # tsm_val too large

 if tsm_val > tsm_floor: # retune with new ceiling

 tsm_ceil = tsm_val # reset ceiling

 elif tsm_floor > 1: # retune with reset floor

 tsm_floor = cntr(tsm_floor,1)

 tsm_ceil = tsm_val # reset ceiling

 else: # tsm floor of '1' too large

 tsm_val = tsm_floor # ensure tsm_val is at floor

 logger.info(f'\n\t***Unable to tune {subr_fb} tsm small

enough!')

 break

 if tsm_nudge_ctr>TSM_NUDGE_LIM: # too many nudges

 break

 tsm_val = cntr(tsm_floor,tsm_ceil)

 if tsm_val == tsm_prev: # nudge tsm_val to change repetitive outcome

 tsm_ctr += 1

 if tsm_ctr > 2:

 tsm_nudge_ctr += 1

 tsm_val += randint(-tsm_ctr,tsm_ctr) # nudge

 logger.debug(f'\t\tnudged {subr_fb} tsm {tsm_nudge_ctr} times')

 else: # reset ctr

 tsm_ctr = 0

 tsm_prev = tsm_val

 logger.debug(f'*** Tuned {subr_fb} tsm to {tsm_val} for ' +

 f'target escapes of ~{targ_lower_rng} - {targ_upper_rng} with ' +

 f'actual of {tot_cnt} ***')

 if tsm_Q: # if queue present from parallel processing

125

 if tsm_nudge_ctr>TSM_NUDGE_LIM: # too many nudges

 tsm_Q.put((subr_fb,0)) # return zero to indicate failed run

 else:

 tsm_Q.put((subr_fb,tsm_val)) # add tsm_val to queue of results

 if tsm_nudge_ctr>TSM_NUDGE_LIM: # too many nudges

 return 0 # return zero to indicate failed run

 else:

 return tsm_val

end of def tune_tsm(subr_fb,tuned_tm,DEBUG=False):

if __name__ == "__main__":

 if not len(sys.argv) > 1:

 sys.exit("Must call script from commandline with rc filename")

 my_parser = argparse.ArgumentParser(

 description=__doc__, # Use auto python doc description

 formatter_class=argparse.RawDescriptionHelpFormatter)

 my_parser.add_argument('rcfile',

 help="specify 'run commands' file containing sim parameters ",

 type=str)

 my_args = my_parser.parse_args()

 print("Reading tuning parameters from {}/{}".format(

 pathlib.Path().resolve(),my_args.rcfile))

 with open(my_args.rcfile,'r') as f:

 tune_parms = json.load(f)

 subr_fbs = tune_parms.get("SUBREDDIT_FILEBASES")

 DEBUG = tune_parms.get("DEBUG_TUNE",False)

 PARALLEL = tune_parms.get("PAR_TUNE",True) # execute in parallel

 LLM = tune_parms.get("LOOP_LIMIT_MULTIPLIER",5) # to limit while loops

 NBR_ITERS = tune_parms.get("NUMBER_ITERATIONS_TUNE", 90)

 GC = tune_parms.get("GRAVITY_CONSTANT_TUNE", 0.00002)

 TM = tune_parms.get('TM_MOD_TUNE',1) # one default has no effect

 # for tuning, TSM dictates the value used while initially tuning TM

 ## in order to find a common (miniumum) TM value (specific to the

 ## technology--in this case Reddit) to use while tuning TSM for

 ## each specific subreddit

 TSM = tune_parms.get('TSM_MOD_TUNE',1) # one default has no effect

 DR = tune_parms.get("DECAY_RATE_TUNE", 0.9)

 X_FRAC = tune_parms.get("EXIT_FRAC_TUNE", 0.1)

 J_FRAC = tune_parms.get("JOIN_FRAC_TUNE", 0.1)

 JFT = tune_parms.get("JF_THRESHOLD_TUNE", 120)

 XFT = tune_parms.get("XF_THRESHOLD_TUNE", 20)

 RJ = tune_parms.get("RANDOM_J_TUNE", False) # defaults to prioritized

126

 RX = tune_parms.get("RANDOM_X_TUNE", False) # defaults to prioritized

 TM_TUNE_MIN = tune_parms.get("TM_TUNE_MIN",99) # used for mult tunings

 TM_TUNE_MOD = tune_parms.get("TM_TUNE_MOD",0.1) # default 10%

 TSM_TUNE_MOD = tune_parms.get("TSM_TUNE_MOD",0.01) # default 1%

 # use to skip TM tuning and just use val in rc file

 TSMONLY = tune_parms.get("TSMONLY", False)

 # use to tune TM only and update val in rc file

 TMONLY = tune_parms.get("TMONLY", False)

 SR = tune_parms.get("SIM_REPS", 3)

 COLORS = ['blue','green']

 logger = jetlogger(pathlib.Path(my_args.rcfile).stem+'.log',DEBUG)

 logger.info(f'\n\tFrom {my_args.rcfile}, tuning {", ".join(subr_fbs)}')

 if not TSMONLY: # tune technology modifier

 logger.debug(f'\n\tBegin tuning with current TM MIN = {TM_TUNE_MIN}')

 for key,value in tune_parms.items():

 logger.debug(f'\t{key} = {value}')

 if PARALLEL: # execute parallel tuning

 # create all processes to run in parallel

 with Pool() as tmpool:

 tmbar = dict()

 for idx,subr in enumerate(subr_fbs):

 # initialize tm_result with empty lists

 tm_result = {subr: [] for subr in subr_fbs}

 # create progress bars for each subreddit

 kwargs = {

 'total': SR,

 'unit': 'it',

 'unit_scale': True,

 'position': idx,

 'leave': True,

 'colour': COLORS[idx%2],

 'dynamic_ncols': True,

 'desc': f'TM tuning {subr}'

 }

 tmbar[subr] = tqdm(**kwargs)

 tm_m = Manager()

 tm_Q = tm_m.Queue()

 # Start load operations and mark each proc with its subreddit

 procs_tm = {tmpool.apply_async(tune_tm,(subr,tm_Q,DEBUG)):

 subr for subr in subr_fbs for __ in range(SR)}

 # Create a (dynamic) list to iterate over

127

 procs_tml = [(p,sr) for p,sr in procs_tm.items()]

 for proc,subr in procs_tml:

 try:

 (sr,r) = tm_Q.get()

 logger.debug(f'TM tune subreddit {sr}, result = {r}')

 if r: # if a valid result queued

 logger.debug(f'TM tune {sr}, {r}')

 tm_result[sr].append(r)

 tmbar[sr].update(1)

 if tmbar[sr].n==SR: # done with this bar

 tmbar[sr].close()

 else: # requeue the job

 logger.debug(f'TM tune resubmit {sr}, result =

{r}')

 p = tmpool.apply_async(tune_tm,(sr,tm_Q,DEBUG))

 procs_tm[p]=sr

 procs_tml.append((p,sr))

 except Exception as e:

 logger.error(f'tuning tm {sr,r} generated an exception:

{e}')

 #for bar in tmbar: tmbar[bar].close()

 else: # tune serially

 tm_result = {}

 logger.warning("\n\t***Tuning TM _serially_***")

 for subr in tqdm(subr_fbs,desc='TM subreddits',colour="blue"):

 tm_result[subr] = [tune_tm(subr,DEBUG=DEBUG)

 for __ in tqdm(range(SR),

 desc=f'TM reps for {subr}',colour="magenta")]

 tuned_tm = min([min(tml) for tml in tm_result.values()]) # min tm for

all sims

 if tuned_tm < TM_TUNE_MIN: # update TM_TUNE_MIN in json

 procs_keylist = list(procs_tm)

 logger.info(f'\n\tReplacing TM_TUNE_MIN {TM_TUNE_MIN} with

{tuned_tm} ' +

 f'found for ' + ', '.join({key

 for key in tm_result for i,j in enumerate(tm_result[key])

 if j==tuned_tm}))

 tune_parms['TM_TUNE_MIN'] = tuned_tm

 with open(my_args.rcfile,'w') as f:

 json.dump(tune_parms,f,indent=2) # use indent to make

readable

 else: # replace with TM_TUNE_MIN

128

 tuned_tm = TM_TUNE_MIN

 logger.info(f'\n\tUsing prev technology modifier = {tuned_tm}')

 sys.exit(f'JET - exiting for checking TM={tuned_tm} modification')

 else: # replace with TM_TUNE_MIN since did not tune TM

 tuned_tm = TM_TUNE_MIN

 logger.info(f'\n\tSkipped tuning TM. Using prev TM = {tuned_tm}')

 if not TMONLY:

 # now tune topic source modifier based on tuned_tm

 if PARALLEL: # tune in parallel

 with Pool() as tsmpool:

 tsmbar = dict()

 for idx,subr in enumerate(subr_fbs):

 # initialize tsm_result with empty lists

 tsm_result = {subr: [] for subr in subr_fbs}

 # create progress bars for each subreddit

 kwargs = {

 'total': SR,

 'unit': 'it',

 'unit_scale': True,

 'position': idx,

 'leave': True,

 'colour': COLORS[idx%2],

 'dynamic_ncols': True,

 'desc': f'TSM tuning {subr}'

 }

 tsmbar[subr] = tqdm(**kwargs)

 tsm_m = Manager()

 tsm_Q = tsm_m.Queue()

 # Start load operations and mark each proc with its subreddit

 procs_tsm = {tsmpool.apply_async(tune_tsm,(subr_fb,tuned_tm,

 tsm_Q,DEBUG)): subr_fb for subr_fb in subr_fbs for __ in

range(SR)}

 # Create a (dynamic) list to iterate over

 procs_tsml = [(p,sr) for p,sr in procs_tsm.items()]

 for proc,subr in procs_tsml:

 try:

 (sr,r) = tsm_Q.get()

 if r: # if a valid result queued

 logger.debug(f'TSM tune subreddit {sr}, result =

{r}')

 tsm_result[sr].append(r)

 tsmbar[sr].update(1)

129

 if tsmbar[sr].n==SR: # done with this bar

 tsmbar[sr].close()

 else: # requeue the job

 logger.debug(f'TSM tune resubmit {sr}, result =

{r}')

 p =

tsmpool.apply_async(tune_tsm,(sr,tuned_tm,tsm_Q,DEBUG))

 procs_tsm[p]=sr

 procs_tsml.append((p,sr))

 except Exception as e:

 logger.error(f'tuning tsm {sr,r} generated an

exception: {e}')

 #for bar in tsmbar: tsmbar[bar].close()

 else: # tune serially

 tsm_result = {}

 logger.warning("/n/t***Tuning TSM _serially_***")

 for subr_fb in tqdm(subr_fbs,desc='TSM subreddits',colour="green"):

 tsm_result[subr_fb] = [tune_tsm(subr_fb,tuned_tm,DEBUG=DEBUG)

 for __ in tqdm(range(SR),

 desc=f'TSM reps for {subr_fb}',colour="cyan")]

 # END OF if not TMONLY:

summarize tuning results

 if not TSMONLY: # tuned technology modifier

 logger.debug(f'*** Tuned tm to allow ~{round(TM_TUNE_MOD*100)}% ' +

 'escapes of EC size: ***')

 logger.debug(f'\ttm_result = {tm_result}')

 if not TMONLY: # tuned topic source modifier

 logger.debug(f'*** Tuned tsm to ~{round(TSM_TUNE_MOD*100)}% escapes ' +

 'of EC size: ***')

 logger.debug(f'\ttsm_result = {tsm_result}')

 logger.info(f'\n\taverage topic source modifier for:\n\t\t' +

 '\n\t\t'.join(f'{sr} = {round(np.mean(tsm_result[sr]))}'

 for sr in subr_fbs))

130

Appendix B-5. get_auths_last_posts.py

'''

Script to retrieve all authors in first mo/yr provided (hardcoded for now)

for the list of subreddits provided (again hardcoded), then process all

remaining

months in that year, searching for last post made by each of the initial

authors.

After which, the list of authors for each subreddit is sorted by earliest

departure (last date of posting for each author), ranked, then savd to the

specified (hardcoded) file.

'''

import par_zst_to_df as pz # local module for converting zst to dataframe

import argparse # for parsing commandline arguments

import json # for processing json files

import pandas as pd # use pandas Python Data Analysis Library

import pathlib # for current execution directory info

from tqdm import tqdm # Progress Bar Made Easy

import numpy as np # for NpEncoder class to convert Numpy Ints for JSON export

import gzip # to enable data export to compressed file

from collections import OrderedDict # for storing sorted dictionary of

times

from operator import itemgetter # for sorting the dictionary of author

times

Extend the JSONEncoder class to handle Numpy values

class NpEncoder(json.JSONEncoder):

 def default(self, obj):

 if isinstance(obj, np.int64):

 return int(obj)

 if isinstance(obj, np.integer):

 return int(obj)

 if isinstance(obj, np.floating):

 return float(obj)

 if isinstance(obj, np.ndarray):

 return obj.tolist()

 return json.JSONEncoder.default(self, obj)

pdf = pd.DataFrame()

auths_filename = 'auths_by_subr.json.gz'

auths_filename2 = 'auths_by_subr-sorted.json.gz'

'''

subrs = ["republicans"]

131

'''

subrs =

["SandersForPresident","flatearth","trump","science","cars","Republican",

 "SocialDemocracy","Freethought","travel","math","NeutralPolitics",

 "PoliticalDiscussion","democrats","hiking","republicans","mlb",

 "progressive","AmericanPolitics"]

keep bare minimum to reduce memory usage

keys_to_keep = ['author','created_utc','id','subreddit']

yr = 2019

mo = 1

zstcf = f'RC_{yr}-{mo:02}.zst'

zstsf = f'RS_{yr}-{mo:02}.zst'

get data from first month of interest

rs_zstfp = pathlib.Path(zstsf)

if not rs_zstfp.exists():

 raise FileNotFoundError(f'zstfile {rs_zstfp} does not exist!')

rc_zstfp = pathlib.Path(zstcf)

if not rc_zstfp.exists():

 raise FileNotFoundError(f'zstfile {rc_zstfp} does not exist!')

print(f'Decompressing data from {rs_zstfp} and {rc_zstfp}.')

for zstfp in [rs_zstfp,rc_zstfp]:

 pdf = pz.decompress_file_chunks(zstfp,pdf,subrs,keys_to_keep)

create dictionary of authors occurring in the first month for each subreddit

store maximum (latest) created_utc date in dict

auths_by_subr = {}

for s in (pbar:=tqdm(subrs,desc='subreddits',colour="blue")):

 pbar.set_postfix_str(s) # update label of progressbar

 pdf_subr = pdf[pdf.subreddit==s]

 auths_by_subr[s]={a: pdf_subr[pdf_subr.author==a].created_utc.max()

 for a in set(pdf_subr.author)}

loop over remaining months in year to determine latest date each

author makes a post

for m in range(mo+1,13):

 pdf = pd.DataFrame() # reset working dataframe

 zstcf = f'RC_{yr}-{m:02}.zst'

 zstsf = f'RS_{yr}-{m:02}.zst'

 rs_zstfp = pathlib.Path(zstsf)

 if not rs_zstfp.exists():

 raise FileNotFoundError(f'zstfile {rs_zstfp} does not exist!')

 rc_zstfp = pathlib.Path(zstcf)

 if not rc_zstfp.exists():

132

 raise FileNotFoundError(f'zstfile {rc_zstfp} does not exist!')

 print(f'**Decompressing data from {rs_zstfp} and {rc_zstfp}.')

 for zstfp in [rs_zstfp,rc_zstfp]:

 pdf = pz.decompress_file_chunks(zstfp,pdf,subrs,keys_to_keep)

 for s in (pbar0:=tqdm(subrs,desc='subreddits',colour="blue",position=0)):

 pbar0.set_postfix_str(s) # update label of progressbar

 pdf_subr = pdf[pdf.subreddit==s]

 # loop over the authors that appear in the new data only if they

 ## were in the original set of authors

 for auth in (pbar1:=tqdm(auths_by_subr[s].keys() & pdf_subr.author,

 desc='authors',colour="green",position=1)):

auths_by_subr[s][auth]=pdf_subr[pdf_subr.author==auth].created_utc.max()

writing dictionary of author dictionaries to disk

with gzip.open(auths_filename, 'w') as fileout:

 fileout.write(json.dumps(auths_by_subr,cls=NpEncoder).encode('utf-8'))

read dictionary back in to verify success

with gzip.open(auths_filename, 'rt') as filein:

 auths_by_subr = json.load(filein)

now sort dictionaries by earliest to latest date of posting, assuming

earlier dates represent users who have departed the subreddit, at least

temporarily

for sr,dct in auths_by_subr.items(): # select each subreddit dict of auths

 auths_by_subr[sr] = OrderedDict(sorted(dct.items(), key=itemgetter(1)))

now rank by order of departure, then save to dict

for sr,dct in auths_by_subr.items(): # select each subreddit dict of auths

 ptim = 0 # track previous time to see if it's same as current

 pauth = '' # track previous author (dict index)

 ctr = 0 # create rank ctr for author departure order

 for au,dtim in dct.items(): # select each author and latest post in dict

 if dtim != ptim:

 ctr+=1 # only incr ctr if curr timestamp differs from prev

 ptim = dtim

 pauth = au

 auths_by_subr[sr][au]=(dtim,ctr) # add rank as part of dict

writing sorted and ranked dictionary of author dictionaries to disk

with gzip.open(auths_filename2, 'w') as fileout:

 fileout.write(json.dumps(auths_by_subr,cls=NpEncoder).encode('utf-8'))

133

Appendix B-6. analyze_exit_order.py

'''

Script to compare the order that authors leave (at least temporarily) each

subreddit,

versus the order agents leave the echo chamber simulation of same subreddit.

Code

makes use of the "auths_by_subr-sorted.json.gz" file created by

"get_auths_last_posts.py".

'''

from sr_sim_ec import *

import json # for processing json files

import pandas as pd # use pandas Python Data Analysis Library

import pathlib # for current execution directory info

import shutil # for file manipulation

from tqdm import tqdm # Progress Bar Made Easy

import numpy as np # for NpEncoder class to convert Numpy Ints for JSON export

import gzip # to enable data export to compressed file

from collections import OrderedDict # for storing sorted dictionary of

times

from operator import itemgetter # for sorting the dictionary of author

times

from sklearn.metrics import mean_absolute_percentage_error # error calc

Extend the JSONEncoder class to handle Numpy values

class NpEncoder(json.JSONEncoder):

 def default(self, obj):

 if isinstance(obj, np.int64):

 return int(obj)

 if isinstance(obj, np.integer):

 return int(obj)

 if isinstance(obj, np.floating):

 return float(obj)

 if isinstance(obj, np.ndarray):

 return obj.tolist()

 return json.JSONEncoder.default(self, obj)

pdf = pd.DataFrame()

sorted_auths_filename = 'auths_by_subr-sorted.json.gz'

sorted_agents_filename = 'agents_by_subr-sorted.json.gz'

'''

subrs = ["republicans"] # test data

'''

134

subrs =

["SandersForPresident","flatearth","trump","science","cars","Republican",

 "SocialDemocracy","Freethought","travel","math","NeutralPolitics",

 "PoliticalDiscussion","democrats","hiking","republicans","mlb",

 "progressive","AmericanPolitics"]

its = 100

#its = 10 # test data

agents_by_subr = {} # dict to track agent exit ranking by subreddit

mape_by_subr = {} # record mean avg pct error of exit rank by subreddit

read sorted dictionary of exiting authors for each subreddit

with gzip.open(sorted_auths_filename, 'rt') as filein:

 auths_by_subr = json.load(filein)

simulate repeatedly for each subreddit to determine common agent exiting

order

for sr in subrs:

 rcfile = f'{sr}_2019-01_sim_rc.json'

 debug = False

 agent_dict = dict.fromkeys(list(auths_by_subr[sr].keys()),0)

 logfile = pathlib.Path(pathlib.Path(rcfile).stem+'.rank.log')

 logger = jetlogger(logfile,debug)

 for it in (pbar:=tqdm(range(its),desc=sr,colour="blue")):

 #pbar0.set_postfix_str(s) # update label of progressbar

 #for it in range(its): # repeat for {its} iterations

 logger.debug('Began')

 (parms,agents_df) = get_dat(rcfile,debug)

 parms['TOPIC_SOURCE_MODIFIER'] = 1 # override TSM

 logger.debug(f"overrode TOPIC_SOURCE_MODIFIER =

{parms.get('TOPIC_SOURCE_MODIFIER')}")

 parms['TECHNOLOGY_MODIFIER'] = 1 # override TM

 logger.debug(f"overrode TECHNOLOGY_MODIFIER =

{parms.get('TECHNOLOGY_MODIFIER')}")

 parms['JOIN_FRAC'] = 0.0 #override join fraction

 logger.debug(f"overrode JOIN_FRAC = {parms.get('JOIN_FRAC')}")

 # pass parameters (or default) to new sim object

 sim = Simulation(

 agents_df,

 parms.get('NUMBER_ITERATIONS',90), # defaults to nominal

number

 parms.get('GRAVITY_CONSTANT'),

 parms.get('TOPIC_SOURCE_MODIFIER',1), # 1 ensures agents will

exit

135

 parms.get('TECHNOLOGY_MODIFIER',1), # 1 ensures agents will

exit

 parms.get('DECAY_RATE',0.9), # 0.9 is a slow decay

 parms.get('EXIT_FRAC',0.1), # 1/10th of capt members try to

leave

 parms.get('JOIN_FRAC',0.1), # JOIN_FRAC=0 ensures no agents

rejoin

)

 # run simulation

 sim.run_sim(

 parms.get('FILE_BASE') + '_je.csv',

 parms.get('JOIN_FORCE_THRESHOLD',500),

 parms.get('EXIT_FORCE_THRESHOLD',500),

 parms.get('RANDOM_EXITERS',False),

 parms.get('RANDOM_JOINERS',False),

 -1, # not tuning

 debug

)

 logger.debug(f'Finished run {it} of sr_sim_ec for {sr}')

 for idx,agt in enumerate(sim.free_agents): # free_agents ordered by

exit

 agent_dict[agt.author] += idx+1 # update total exit rank

 # should only be a few agents left in the EC, so they will have highest

rank

 max_rank = len(sim.free_agents)+1

 logger.debug(f'Setting remaining {len(sim.ec.captured_agents)} ' +

 f'captured agents to max rank of {max_rank}')

 for agt in sim.ec.captured_agents:

 agent_dict[agt.author] += max_rank

 agent_dict.update((k,rank/its) for k,rank in agent_dict.items()) # avg rank

 # now sort dictionary by earliest to latest average exit order

 agent_dict = OrderedDict(sorted(agent_dict.items(), key=itemgetter(1)))

 # now rank by order of departure, then save to dict

 prnk = 0 # track previous rank to see if it's same as current

 ctr = 0 # create rank ctr for author departure order

 for agt,rnk in agent_dict.items(): # select each author and avg rank in

dict

 if rnk != prnk:

 ctr+=1 # only incr ctr if curr rank differs from prev

 prnk = rnk

 agent_dict[agt]=(rnk,ctr) # add rank ctr as part of dict

 # calculate mean absolute error of rankings

136

 ## list of real exit rankings

 y_true = [itemgetter(1)(item) for item in list(auths_by_subr[sr].values())]

 ## list of simulation exit rankings

 y_pred = [itemgetter(1)(agent_dict[agt]) for agt in auths_by_subr[sr]]

 mape_by_subr[sr] = mean_absolute_percentage_error(y_true, y_pred)

 logger.debug(f'{sr} ranking MAPE = {mape_by_subr[sr]}')

 print(f'{sr} ranking MAPE = {mape_by_subr[sr]}')

 # close logging for this subreddit

 logs = list(logger.handlers)

 for l in logs:

 logger.removeHandler(l)

 l.flush()

 l.close()

 # compress logfile then delete orig

 with open(logfile, 'rb') as f_in:

 with gzip.open(logfile.name+'.gz', 'wb') as f_out:

 shutil.copyfileobj(f_in, f_out)

 pathlib.Path.unlink(logfile) # delete orig logfile

 agents_by_subr[sr] = agent_dict # preserve agent_dict for this

subreddit

writing sorted and ranked dictionary of agent dictionaries to disk

with gzip.open(sorted_agents_filename, 'w') as fileout:

 fileout.write(json.dumps(agents_by_subr,cls=NpEncoder).encode('utf-8'))

137

Appendix B-7. sr_get_toxicity.py

'''

Calculate toxicity using the Google API Perspective Comment Analyzer.

Reads Google API key from "tox_key.txt" file in current directory

'''

from googleapiclient import discovery

import json # for json files

import pandas as pd # for dataframes

import numpy as np # for np.nan

import pathlib # for path/file specification and manipulation

import argparse # for parsing commandline arguments

import datetime # for throttling Google App requests

from time import sleep # time.sleep for throttling

from tqdm import tqdm # Progress Bar Made Easy

import sys # for sys.exit and sys.argv

from ratelimit import limits, sleep_and_retry

Define variables to keep track of throttling

30 calls per minute

CALLS = 60 # number of calls per minute

RATE_LIMIT = 60 # time to wait when calls exceeded

TXT_LIMIT = 20480 # text length limit for Google API query

@sleep_and_retry

@limits(calls=CALLS, period=RATE_LIMIT)

def check_limit():

 ''' Empty function just to check for calls to API '''

 return

@sleep_and_retry

@limits(calls=CALLS, period=RATE_LIMIT)

def get_post_attr(txt: str) -> (float,float,float):

 ''' analyze text for toxicity '''

 analyze_request = {

 'comment': { 'text': txt},

 'languages':[lang],

 'requestedAttributes': {

 'TOXICITY': {},

 'SEVERE_TOXICITY': {},

 'INSULT': {},

 'THREAT': {},

 }

138

 }

 # get the attributes for this text

 response = client.comments().analyze(body=analyze_request).execute()

 # parse the results

 tox=response['attributeScores']['TOXICITY']['summaryScore']['value']

sev_tox=response['attributeScores']['SEVERE_TOXICITY']['summaryScore']['value']

 insult=response['attributeScores']['INSULT']['summaryScore']['value']

 threat=response['attributeScores']['THREAT']['summaryScore']['value']

 return (tox,sev_tox,insult,threat)

with open('tox_key.txt') as f:

 API_KEY = f.read()

lang = "en"

if __name__ == "__main__":

 if not len(sys.argv) > 1:

 sys.exit("Must call script from commandline with filename as

parameter.")

 else:

Use auto python doc description

 my_parser = argparse.ArgumentParser(description=__doc__,

 formatter_class=argparse.RawDescriptionHelpFormatter)

 my_parser.add_argument('filename',

 help="specify 'filename' from which to retrieve posts",

 type=str)

 my_parser.add_argument('-t', '--test',dest='test',action='store_true')

 my_parser.add_argument('-nt','--no-

test',dest='test',action='store_false')

 my_parser.set_defaults(test=False)

 my_args = my_parser.parse_args()

 fp = pathlib.Path(my_args.filename)

 with open(fp, 'rb') as f: # need 'rb' for zipped files!

 posts_df = pd.read_json(f,compression='gzip')

 print(f'\tRead {posts_df.shape} dataframe from json file {fp}.')

 if my_args.test: # truncate posts_df for testing

 posts_df = posts_df[:100]

Limit text column to limit required by Google API

 posts_df['text']=posts_df['text'].str.slice(0,TXT_LIMIT)

 new_cols = ['tox','sev_tox','insult','threat']

139

 posts_df[new_cols] = np.nan # add new columns

create client connection to Google API Perspective library

 client = discovery.build(

 "commentanalyzer",

 "v1alpha1",

 developerKey=API_KEY,

 discoveryServiceUrl="https://commentanalyzer.googleapis.com/" +

\

 "$discovery/rest?version=v1alpha1",

 static_discovery=False,

)

calculate toxicity for every posting in dataframe

 tqdm.pandas(desc='Get toxicity',colour='blue') # construct progress

bar

use progress_apply from tqdm to show progress

 posts_df.update(posts_df['text'].progress_apply(lambda txt:

 pd.Series(dict(zip(new_cols,get_post_attr(txt))))))

write updated dataframe to file

 if my_args.test: # write test results to another file

 fp = pathlib.Path('test_tox.json.gz')

 posts_df.to_json(fp, orient='records', compression='infer')

References

1. H. Allcott and M. Gentzkow, “Social Media and Fake News in the 2016

Election,” Journal of Economic Perspectives, vol. 31, no. 2, pp. 211–236, May

2017, doi: 10.1257/jep.31.2.211.

2. A. Guess, B. Nyhan, and J. Reifler, “Selective Exposure to Misinformation:

Evidence from the consumption of fake news during the 2016 US presidential

campaign,” European Research Council, 2018, Accessed: Dec. 02, 2018.

[Online]. Available: http://www.ask-force.org/web/Fundamentalists/Guess-

Selective-Exposure-to-Misinformation-Evidence-Presidential-Campaign-

2018.pdf

3. D. M. J. Lazer et al., “The science of fake news,” Science (1979), vol. 359, no.

6380, pp. 1094–1096, 2018, doi: 10.1126/science.aao2998.

4. J. L. Hochschild and K. L. Einstein, “Do Facts Matter? Information and

Misinformation in American Politics,” Polit Sci Q, vol. 130, no. 4, pp. 585–624,

Dec. 2015, doi: 10.1002/polq.12398.

5. M. Balmas, “When Fake News Becomes Real: Combined Exposure to Multiple

News Sources and Political Attitudes of Inefficacy, Alienation, and Cynicism,”

Communic Res, 2014, doi: 10.1177/0093650212453600.

6. M. Hosenball, “Russia used social media for widespread meddling in U.S.

politics: reports | Reuters.” Accessed: Dec. 17, 2018. [Online]. Available:

https://www.reuters.com/article/us-usa-trump-russia-socialmedia-

idUSKBN1OG257

7. J. Farkas and J. Schou, Post-Truth, fake news and democracy: Mapping the

politics of falsehood. 2019. doi: 10.4324/9780429317347.

8. H. Wasserman, “Fake news from Africa: Panics, politics and paradigms,”

Journalism, vol. 21, no. 1, 2020, doi: 10.1177/1464884917746861.

9. R. Rogers and S. Niederer, “The politics of social media manipulation,” in The

Politics of Social Media Manipulation, 2020. doi: 10.2307/j.ctv1b0fvs5.3.

10. J. L. Pasley, The Tyranny of Printers: Newspaper Politics in the Early American

Republic. in Jeffersonian America. University of Virginia Press, 2002. [Online].

Available: https://books.google.com/books?id=8xVMxjD0bv4C

11. N. Faulkner, “BBC - History - Ancient History in depth: The Official Truth:

Propaganda in the Roman Empire,” BBC History. Accessed: Nov. 23, 2018.

[Online]. Available:

http://www.bbc.co.uk/history/ancient/romans/romanpropaganda_article_01.shtml

141

12. L. Sydell, “We Tracked Down A Fake-News Creator In The Suburbs. Here’s

What We Learned,” NPR All Tech Considered. Accessed: Dec. 02, 2018.

[Online]. Available:

https://www.npr.org/sections/alltechconsidered/2016/11/23/503146770/npr-finds-

the-head-of-a-covert-fake-news-operation-in-the-suburbs

13. M. Fisher, J. W. Cox, and P. Hermann, “Pizzagate: From rumor, to hashtag, to

gunfire in D.C. - The Washington Post,” The Washington Post. Accessed: Nov.

23, 2018. [Online]. Available: https://www.washingtonpost.com/local/pizzagate-

from-rumor-to-hashtag-to-gunfire-in-dc/2016/12/06/4c7def50-bbd4-11e6-94ac-

3d324840106c_story.html

14. A. Chen, “The Agency,” The New York Times. Accessed: Nov. 23, 2018.

[Online]. Available: https://www.nytimes.com/2015/06/07/magazine/the-

agency.html

15. L. Frayer, “How The Spread Of Fake Stories In India Has Led To Violence :

NPR,” NPR. Accessed: Nov. 23, 2018. [Online]. Available:

https://www.npr.org/2018/07/17/629896525/how-the-spread-of-fake-stories-in-

india-has-led-to-violence

16. Y. Adegoke and BBC Africa Eye, “Nigerian police say ‘fake news’ on Facebook

is killing people - BBC News,” BBC News. Accessed: Nov. 23, 2018. [Online].

Available: https://www.bbc.co.uk/news/resources/idt-sh/nigeria_fake_news

17. J. Roozenbeek et al., “Susceptibility to misinformation about COVID-19 around

the world: Susceptibility to COVID misinformation,” R Soc Open Sci, vol. 7, no.

10, Oct. 2020, doi: 10.1098/RSOS.201199.

18. J. W. Ayers et al., “Spread of Misinformation About Face Masks and COVID-19

by Automated Software on Facebook.,” JAMA Intern Med, Jun. 2021, doi:

10.1001/jamainternmed.2021.2498.

19. Y. M. Rocha, G. A. de Moura, G. A. Desidério, C. H. de Oliveira, F. D.

Lourenço, and L. D. de Figueiredo Nicolete, “The impact of fake news on social

media and its influence on health during the COVID-19 pandemic: a systematic

review,” Journal of Public Health (Germany). 2021. doi: 10.1007/s10389-021-

01658-z.

20. C. Timberg and T. Romm, “Facebook CEO Mark Zuckerberg to Capitol Hill: ‘It

was my mistake, and I’m sorry.,’” The Washngton Post. [Online]. Available:

https://www.washingtonpost.com/news/the-switch/wp/2018/04/09/facebook-

chief-executive-mark-zuckerberg-to-captiol-hill-it-was-my-mistake-and-im-

sorry/?utm_term=.3c7bade6b6be

142

21. A. Guess, J. Nagler, and J. Tucker, “Less than you think: Prevalence and

predictors of fake news dissemination on Facebook,” Asian-Australas J Anim Sci,

vol. 32, no. 2, 2019, doi: 10.1126/sciadv.aau4586.

22. V. Le Pochat, L. Edelson, T. Van Goethem, W. Joosen, D. McCoy, and T.

Lauinger, “An Audit of Facebook’s Political Ad Policy Enforcement,” in 31st

USENIX Security Symposium (USENIX Security 22), 2022, pp. 607–624.

23. M. Field, “YouTube will use Wikipedia to tackle fake news - but failed to tell

Wikipedia.” Accessed: Nov. 22, 2018. [Online]. Available:

https://www.telegraph.co.uk/technology/2018/03/15/youtube-will-use-wikipedia-

tackle-fake-news-failed-tell-wikipedia/

24. BBC News Staff and R. Cellan-Jones, “California fire conspiracies a hit on

YouTube,” BBC News. [Online]. Available:

https://www.bbc.com/news/technology-46304972

25. D. Milmo, “YouTube is major conduit of fake news, factcheckers say | YouTube |

The Guardian,” The Guardian, Jan. 12, 2022. Accessed: Jan. 27, 2023. [Online].

Available: https://www.theguardian.com/technology/2022/jan/12/youtube-is-

major-conduit-of-fake-news-factcheckers-say

26. A. Huxley, Brave New World Revisited. Harper, 1958. [Online]. Available:

https://books.google.com/books?id=d7sOAQAAIAAJ&dq=editions:ISBN079531

1699&lr=

27. T. Honderich and M. Ruse, “Reductionism,” The Oxford companion to

philosophy. Oxford University Press, p. 793, 2005.

28. K. H. Jamieson and J. N. Cappella, Echo chamber: Rush Limbaugh and the

conservative media establishment. Oxford University Press, 2008.

29. M. Cinelli, G. De Francisci Morales, A. Galeazzi, W. Quattrociocchi, and M.

Starnini, “The echo chamber effect on social media,” Proceedings of the National

Academy of Sciences, vol. 118, no. 9, p. e2023301118, Mar. 2021, doi:

10.1073/pnas.2023301118.

30. J. E. Thompson and E. Santos, “Echo Chambers as Gravity Wells,” in 2023 IEEE

International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), IEEE, May 2023, pp. 848–857. doi:

10.1109/IPDPSW59300.2023.00141.

31. K. Than, “Einstein Theories Confirmed by NASA Gravity Probe,” National

Geographic News. Accessed: Jan. 01, 2023. [Online]. Available:

https://www.nationalgeographic.com/science/article/110505-einstein-theories-

confirmed-gravity-probe-nasa-space-

science?loggedin=true&rnd=1672690762546

143

32. N. Newman, R. Fletcher, A. Kalogeropoulos, D. A. L. Levy, and R. K. Nielsen,

“Reuters Institute digital news report 2017,” 2017.

33. R. Marchi, “With Facebook, blogs, and fake news, teens reject journalistic

‘objectivity,’” Journal of Communication Inquiry, 2012, doi:

10.1177/0196859912458700.

34. P. J. Boczkowski and E. Mitchelstein, The news gap: When the information

preferences of the media and the public diverge. MIT press, 2013.

35. The Central Intelligence Agency, The Federal Bureau of Investigation, and The

National Security Agency, “Background to Assessing Russian Activities and

Intentions in Recent US Elections: The Analytic Process and Cyber Incident

Attribution,” CreateSpace Independent Publishing Platform, 2017.

36. V. L. Rubin, Y. Chen, and N. J. Conroy, “Deception detection for news: Three

types of fakes,” Proceedings of the Association for Information Science and

Technology, 2015, doi: 10.1002/pra2.2015.145052010083.

37. E. C. Tandoc Jr., Z. W. Lim, and R. Ling, “Defining ‘Fake News,’” Digital

Journalism, vol. 6, no. 2, pp. 137–153, Feb. 2018, doi:

10.1080/21670811.2017.1360143.

38. J. Weedon, W. Nuland, and A. Stamos, “Information Operations and Facebook,”

2017. doi: 10.1016/B978-1-4377-2003-7.00058-3.

39. K. Shu, A. Sliva, S. Wang, J. Tang, and H. Liu, “Fake News Detection on Social

Media: A Data Mining Perspective,” ACM SIGKDD Explorations Newsletter,

2017, doi: 10.1145/3137597.3137600.

40. P. J. Shoemaker, M. Eichholz, E. Kim, and B. Wrigley, “Individual and routine

forces in gatekeeping,” Journalism and Mass Communication Quaterly, 2001,

doi: 10.1177/107769900107800202.

41. D. M. White, “The ‘Gate Keeper’: A Case Study in the Selection of News,”

Journalism Bulletin, 1950, doi: 10.1177/107769905002700403.

42. A. Calcutt and P. Hammond, Journalism studies: A critical introduction.

Routledge, 2011.

43. P. M. Taylor, British propaganda in the 20th century: Selling democracy.

Edinburgh: Edinburgh University Press, 1999.

44. C. Timberg and T. Romm, “Facebook CEO Mark Zuckerberg to Capitol Hill: ‘It

was my mistake, and I’m sorry.,’” The Washngton Post. [Online]. Available:

https://www.washingtonpost.com/news/the-switch/wp/2018/04/09/facebook-

144

chief-executive-mark-zuckerberg-to-captiol-hill-it-was-my-mistake-and-im-

sorry/?utm_term=.3c7bade6b6be

45. L. Carvalho, “The Case Against Fake News Gatekeeping by Social Networks,”

2017.

46. M. Broersma, “A refractured paradigm: Journalism, hoaxes and the challenge of

trust,” in Rethinking Journalism: Trust and Participation in a Transformed News

Landscape, 2013. doi: 10.4324/9780203102688.

47. G. Muhlmann, Political history of journalism. Polity, 2008.

48. I. Gaber, “Three cheers for subjectivity: Or the crumbling of the seven pillars of

traditional journalistic wisdom,” Communications Law, 2009, doi:

10.1039/c2sm26575c.

49. K. Bunton, “Just the Facts: How Objectivity Came to Define American

Journalism,” American Journalism, 2001, doi:

10.1080/08821127.2001.10739300.

50. E. Tacchini, G. Ballarin, M. L. Della Vedova, S. Moret, and L. de Alfaro, “Some

like it hoax: Automated fake news detection in social networks,” arXiv preprint

arXiv:1704.07506, 2017.

51. BBC News Staff and R. Cellan-Jones, “California fire conspiracies a hit on

YouTube,” BBC News. [Online]. Available:

https://www.bbc.com/news/technology-46304972

52. H. Berghel, “Lies, Damn lies, and fake news,” Computer (Long Beach Calif),

2017, doi: 10.1109/MC.2017.56.

53. C. Silverman, “This analysis shows how fake election news stories outperformed

real news on Facebook. BuzzFeed, Nov. 16,” BuzzFeed News. Accessed: Dec.

03, 2018. [Online]. Available:

https://www.buzzfeednews.com/article/craigsilverman/viral-fake-election-news-

outperformed-real-news-on-facebook

54. S. Wineburg, S. McGrew, J. Breakstone, and T. Ortega, “Evaluating information:

The cornerstone of civic online reasoning,” Stanford Digital Repository.

Retrieved January, vol. 8, p. 2018, 2016.

55. Y. Chen, N. J. Conroy, and V. L. Rubin, “Misleading Online Content:

Recognizing Clickbait as ``False News’’,” in Proceedings of the 2015 ACM on

Workshop on Multimodal Deception Detection, 2015. doi:

10.1145/2823465.2823467.

145

56. B. D. Horne and S. Adali, “This just in: fake news packs a lot in title, uses

simpler, repetitive content in text body, more similar to satire than real news,”

arXiv preprint arXiv:1703.09398, 2017.

57. N. J. Conroy, V. L. Rubin, and Y. Chen, “Automatic deception detection:

Methods for finding fake news,” Proceedings of the Association for Information

Science and Technology, 2015, doi: 10.1002/pra2.2015.145052010082.

58. X. L. Dong et al., “Knowledge-based trust: Estimating the trustworthiness of web

sources,” Proceedings of the VLDB Endowment, vol. 8, no. 9, pp. 938–949, 2016.

59. C. Timberg, “Russian propaganda effort helped spread ‘fake news’ during

election, experts say,” The Washington Post. Accessed: Dec. 08, 2018. [Online].

Available: https://www.washingtonpost.com/business/economy/russian-

propaganda-effort-helped-spread-fake-news-during-election-experts-

say/2016/11/24/793903b6-8a40-4ca9-b712-

716af66098fe_story.html?utm_term=.14843fd3ab0a

60. W. Y. Wang, “‘Liar, Liar Pants on Fire’: A new benchmark dataset for fake news

detection,” arXiv preprint arXiv:1705.00648, 2017.

61. B. Upadhayay and V. Behzadan, “Sentimental LIAR: Extended Corpus and Deep

Learning Models for Fake Claim Classification,” in Proceedings - 2020 IEEE

International Conference on Intelligence and Security Informatics, ISI 2020,

2020. doi: 10.1109/ISI49825.2020.9280528.

62. H. Rashkin, E. Choi, J. Y. Jang, S. Volkova, and Y. Choi, “Truth of Varying

Shades: Analyzing Language in Fake News and Political Fact-Checking,” in

Proceedings of the 2017 Conference on Empirical Methods in

Natural Language Processing, 2017. doi: 10.18653/v1/D17-1317.

63. S. Volkova, K. Shaffer, J. Y. Jang, and N. Hodas, “Separating Facts from Fiction:

Linguistic Models to Classify Suspicious and Trusted News Posts on Twitter,” in

Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Papers), 2017. doi:

10.18653/v1/P17-2102.

64. Q. Le and T. Mikolov, “Distributed representations of sentences and documents,”

in International Conference on Machine Learning, 2014, pp. 1188–1196.

65. J. H. Lau and T. Baldwin, “An empirical evaluation of doc2vec with practical

insights into document embedding generation,” arXiv preprint arXiv:1607.05368,

2016.

66. E. Gilbert, T. Bergstrom, and K. Karahalios, “Blogs are echo chambers: Blogs are

echo chambers,” in Proceedings of the 42nd Annual Hawaii International

Conference on System Sciences, HICSS, 2009. doi: 10.1109/HICSS.2009.91.

146

67. A. Ross Arguedas, C. Robertson, R. Fletcher, and R. Nielsen, “Echo chambers,

filter bubbles, and polarisation: a literature review,” 2022.

68. S. Du and S. Gregory, “The echo chamber effect in twitter: Does community

polarization increase?,” Studies in Computational Intelligence, vol. 693, 2017,

doi: 10.1007/978-3-319-50901-3_30.

69. M. Aida and A. Hashizume, “Modeling of Online Echo-Chamber Effect Based on

the Concept of Spontaneous Symmetry Breaking,” in IEICE Proceeding Series,

63, 2020. [Online]. Available: https://arxiv.org/abs/2011.13372

70. N. Yusuf, N. Al-Banawi, and H. A. R. Al-Imam, “The Social Media As Echo

Chamber: The Digital Impact,” Journal of Business & Economics Research

(JBER), vol. 12, no. 1, 2013, doi: 10.19030/jber.v12i1.8369.

71. N. Gillani, A. Yuan, M. Saveski, S. Vosoughi, and D. Roy, “Me, my echo

chamber, and i: Introspection on social media polarization,” in The Web

Conference 2018 - Proceedings of the World Wide Web Conference, WWW 2018,

2018. doi: 10.1145/3178876.3186130.

72. L. Harris and P. Harrigan, “Social Media in Politics: The Ultimate Voter

Engagement Tool or Simply an Echo Chamber?,” Journal of Political Marketing,

vol. 14, no. 3, 2015, doi: 10.1080/15377857.2012.693059.

73. G. De Francisci Morales, C. Monti, and M. Starnini, “No echo in the chambers of

political interactions on Reddit,” Sci Rep, vol. 11, no. 1, pp. 1–12, 2021.

74. L. Terren and R. Borge, “Echo Chambers on Social Media: A Systematic Review

of the Literature,” Review of Communication Research, vol. 9, 2021, doi:

10.12840/ISSN.2255-4165.028.

75. F. H. Calderón, L.-K. Cheng, M.-J. Lin, Y.-H. Huang, and Y.-S. Chen, “Content-

based echo chamber detection on social media platforms,” in Proceedings of the

2019 IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining, 2019, pp. 597–600.

76. P. Törnberg, “Echo chambers and viral misinformation: Modeling fake news as

complex contagion,” PLoS One, vol. 13, no. 9, 2018, doi:

10.1371/journal.pone.0203958.

77. V. Morini, L. Pollacci, and G. Rossetti, “Toward a standard approach for echo

chamber detection: Reddit case study,” Applied Sciences (Switzerland), vol. 11,

no. 12, 2021, doi: 10.3390/app11125390.

78. W. H. Dutton, B. C. Reisdorf, E. Dubois, and G. Blank, “Social Shaping of the

Politics of Internet Search and Networking: Moving Beyond Filter Bubbles, Echo

147

Chambers, and Fake News,” SSRN Electronic Journal, 2017, doi:

10.2139/ssrn.2944191.

79. A. Efstratiou, J. Blackburn, T. Caulfield, G. Stringhini, S. Zannettou, and E. De

Cristofaro, “Non-Polar Opposites: Analyzing the Relationship Between Echo

Chambers and Hostile Intergroup Interactions on Reddit,” in ICWSM 2023, 2023.

[Online]. Available: https://arxiv.org/abs/2211.14388

80. G. Villa, G. Pasi, and M. Viviani, “Echo chamber detection and analysis: A

topology- and content-based approach in the COVID-19 scenario,” Soc Netw

Anal Min, vol. 11, no. 1, 2021, doi: 10.1007/s13278-021-00779-3.

81. F. Baumann, P. Lorenz-Spreen, I. M. Sokolov, and M. Starnini, “Modeling Echo

Chambers and Polarization Dynamics in Social Networks,” Phys Rev Lett, vol.

124, no. 4, 2020, doi: 10.1103/PhysRevLett.124.048301.

82. Ł. G. Gajewski, J. Sienkiewicz, and J. A. Hołyst, “Transitions between

polarization and radicalization in a temporal bilayer echo-chamber model,” Phys

Rev E, vol. 105, no. 2, 2022, doi: 10.1103/PhysRevE.105.024125.

83. T. D. Pilditch, “Opinion Cascades and Echo-Chambers in Online Networks: A

Proof of Concept Agent-Based Model,” in CogSci 2017 - Proceedings of the 39th

Annual Meeting of the Cognitive Science Society: Computational Foundations of

Cognition, 2017.

84. D. Geschke, J. Lorenz, and P. Holtz, “The triple-filter bubble: Using agent-based

modelling to test a meta-theoretical framework for the emergence of filter bubbles

and echo chambers,” British Journal of Social Psychology, vol. 58, no. 1, 2019,

doi: 10.1111/bjso.12286.

85. M. Al Atiqi, S. Chang, and H. Deguchi, “Agent-based approach to resolve the

conflicting observations of online echo chamber,” in 2020 Joint 11th

International Conference on Soft Computing and Intelligent Systems and 21st

International Symposium on Advanced Intelligent Systems, SCIS-ISIS 2020, 2020.

doi: 10.1109/SCISISIS50064.2020.9322696.

86. J. P. Fränken and T. D. Pilditch, “Cascades across networks are sufficient for the

formation of echo chambers: An agent-based model,” JASSS, vol. 24, no. 3, 2021,

doi: 10.18564/jasss.4566.

87. E. E. Santos et al., “Incorporating social theories in computational behavioral

models,” in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, pp.

341–349. doi: 10.1007/978-3-319-05579-4_42.

148

88. E. E. Santos et al., “Modeling Social Resilience in Communities,” IEEE Trans

Comput Soc Syst, vol. 5, no. 1, pp. 186–199, 2018, doi:

10.1109/TCSS.2017.2780125.

89. E. E. Santos et al., “Modeling insider threat types in cyber organizations,” in

2017 IEEE International Symposium on Technologies for Homeland Security,

HST 2017, 2017. doi: 10.1109/THS.2017.7943445.

90. E. E. Santos et al., “Modeling Emergent Border-Crossing Behaviors during

Pandemics,” in SPIE Defense, Security and Sensing, 2013.

91. E. E. Santos, E. Santos, Jr., L. Pan, J. T. Wilkinson, J. E. Thompson, and J.

Korah, “Infusing Social Networks with Culture,” IEEE Trans Syst Man Cybern

Syst, vol. 44, no. 1, pp. 1–17, 2014, doi: 10.1109/TSMC.2013.2238922.

92. E. E. Santos et al., “Intent-Driven Behavioral Modeling during Cross-Border

Epidemics,” Proceedings of the 2011 IEEE International Conference on Privacy,

Security, Risk and Trust and IEEE International Conference on Social

Computing, vol. 11, no. 2, pp. 748–755, 2011, doi:

10.1109/PASSAT/SocialCom.2011.187.

93. W. Goffman and V. A. Newill, “Generalization of epidemic theory: An

application to the transmission of ideas,” Nature, vol. 204, no. 4955, 1964, doi:

10.1038/204225a0.

94. P. A. Dreyer and F. S. Roberts, “Irreversible k-threshold processes: Graph-

theoretical threshold models of the spread of disease and of opinion,” Discrete

Appl Math (1979), vol. 157, no. 7, 2009, doi: 10.1016/j.dam.2008.09.012.

95. K. M. A. Kabir, K. Kuga, and J. Tanimoto, “Analysis of SIR epidemic model

with information spreading of awareness,” Chaos Solitons Fractals, vol. 119,

2019, doi: 10.1016/j.chaos.2018.12.017.

96. Y. Liu, B. Wang, B. Wu, S. Shang, Y. Zhang, and C. Shi, “Characterizing super-

spreading in microblog: An epidemic-based information propagation model,”

Physica A: Statistical Mechanics and its Applications, vol. 463, 2016, doi:

10.1016/j.physa.2016.07.022.

97. E. E. Santos et al., “Modeling Complex Social Scenarios Using Culturally

Infused Social Networks,” in Proceedings of the IEEE International Conference

on Systems, Man, and Cybernetics, Anchorage, AK, 2011, pp. 3009–3016.

98. E. Santos, Jr. and E. S. Santos, “A Framework for Building Knowledge-Bases

Under Uncertainty,” Journal of Experimental and Theoretical Artificial

Intelligence, vol. 11, no. 2, pp. 265–286, 1999.

149

99. J. Andreoni and J. Miller, “Giving according to GARP: An experimental test of

the consistency of preferences for altruism,” Econometrica, vol. 70, no. 2, pp.

737–753, 2002.

100. R. Forsythe, J. Horowitz, N. Savin, and M. Sefton, “Fairness in simple bargaining

experiments,” Games Econ Behav, vol. 6, pp. 347–369, 1994, doi:

10.1006/game.1994.1021.

101. O. Al-Ubaydli, G. Jones, and J. Weel, “Average player traits as predictors of

cooperation in a repeated prisoner’s dilemma,” Journal of Behavioral and

Experimental Economics , vol. 64, pp. 50–60, 2016, doi:

10.1016/j.socec.2015.10.005.

102. J. M. Digman, “Personality structure: emergence of the five-factor model,” Annu

Rev Psychol, vol. 41, no. 1, 1990, doi: 10.1146/annurev.ps.41.020190.002221.

103. J. C. Raven, “Mental tests used in genetic studies: The performance of related

individuals on tests mainly educative and mainly reproductive.,” MSc Thesis,

University of London, 1936.

104. A. W. Tucker, “The Mathematics of Tucker: A Sampler,” The Two-Year College

Mathematics Journal, vol. 14, no. 3, 1983, doi: 10.2307/3027092.

105. M. Akın, O. Amil, and M. Özdevecioğlu, “Is Your Manager a Psychopath? An

Evaluation of the Relationship between the Personality Types of Managers and

Workers and the Levels of Psychopathy,” Procedia Soc Behav Sci, vol. 221,

2016, doi: 10.1016/j.sbspro.2016.05.092.

106. P. Babiak, C. S. Neumann, and R. D. Hare, “Corporate psychopathy: Talking the

walk,” Behavioral Sciences and the Law, vol. 28, no. 2, 2010, doi:

10.1002/bsl.925.

107. C. R. Boddy, “Psychopathy screening for public leadership,” International

Journal of Public Leadership, vol. 12, no. 4, 2016, doi: 10.1108/ijpl-08-2015-

0023.

108. H. S. Cheang and S. H. Appelbaum, “Corporate psychopathy: Deviant workplace

behaviour and toxic leaders (part two),” Industrial and Commercial Training, vol.

47, no. 5, 2015, doi: 10.1108/ICT-12-2013-0087.

109. A. Cohen, “Are they among us? A conceptual framework of the relationship

between the dark triad personality and counterproductive work behaviors

(CWBs),” Human Resource Management Review, vol. 26, no. 1, 2016, doi:

10.1016/j.hrmr.2015.07.003.

110. A. Gudmundsson and G. Southey, “Leadership and the rise of the corporate

psychopath: What can business schools do about the ‘snakes inside’?,” Journal of

150

Social & Behavioural Research in Business Gudmundsson & Southey –Journal of

Social & Behavioural Research in Business, vol. 22, no. 2, 2011.

111. C. Mathieu, C. S. Neumann, R. D. Hare, and P. Babiak, “A dark side of

leadership: Corporate psychopathy and its influence on employee well-being and

job satisfaction,” Pers Individ Dif, vol. 59, 2014, doi: 10.1016/j.paid.2013.11.010.

112. R. J. Pech and B. W. Slade, “Organisational sociopaths: rarely challenged, often

promoted. Why?,” Society and Business Review, vol. 2, no. 3, 2007, doi:

10.1108/17465680710825451.

113. S. F. Smith and S. O. Lilienfeld, “Psychopathy in the workplace: The knowns and

unknowns,” Aggression and Violent Behavior, vol. 18, no. 2. 2013. doi:

10.1016/j.avb.2012.11.007.

114. A. Wojtczuk-Turek and D. Turek, “Executive Psychopaths. Abusive Behaviour of

the Management,” Kwartalnik Ekonomistów i Menedżerów, vol. 22, no. 4, 2011,

doi: 10.5604/01.3001.0009.5538.

115. “Psychopath Definition & Meaning - Merriam-Webster.” Accessed: Jun. 18,

2023. [Online]. Available: https://www.merriam-

webster.com/dictionary/psychopath

116. L. Wang, S. Q. Ye, K. H. Cheong, W. Bao, and N. gang Xie, “The role of

emotions in spatial prisoner’s dilemma game with voluntary participation,”

Physica A: Statistical Mechanics and its Applications, vol. 490, 2018, doi:

10.1016/j.physa.2017.08.033.

117. M. H. Ribeiro, P. H. Calais, V. A. F. Almeida, and W. Meira Jr, “‘ Everything I

Disagree With is# FakeNews’: Correlating Political Polarization and Spread of

Misinformation,” arXiv preprint arXiv:1706.05924, 2017.

118. A. K. Cybenko and G. Cybenko, “AI and Fake News,” IEEE Intell Syst, vol. 33,

no. 5, 2018, doi: 10.1109/MIS.2018.2877280.

119. K. Shu, S. Wang, and H. Liu, “Exploiting tri-relationship for fake news

detection,” arXiv preprint arXiv:1712.07709, 2017.

120. Q. Zhao, E. Santos, H. Nguyen, and A. Mohamed, “What makes a good

summary?,” in Computational Methods for Counterterrorism, Springer, 2009, pp.

33–50.

121. E. Santos Jr. and H. Nguyen, “Modeling users for adaptive information retrieval

by capturing user intent,” in Collaborative and social information retrieval and

access: Techniques for improved user modeling, IGI Global, 2009, pp. 88–118.

151

122. R. Socher, J. Bauer, C. D. Manning, and A. Y. Ng, “Parsing with Compositional

Vector Grammars,” in Proceedings of ACL, 2013. doi:

10.1017/CBO9781139058452.

123. S. Tabachnik, “Flat Earthers descend on Denver for second annual conference,”

The Denver Post. Accessed: Nov. 25, 2018. [Online]. Available:

https://www.denverpost.com/2018/11/15/denver-flat-earth-conference/

124. D. Walton, “Argumentation theory: A very short introduction,” in Argumentation

in Artificial Intelligence, I. Rahwan and G. R. Simari, Eds., 2009, pp. 1–22. doi:

10.1007/978-0-387-98197-0_1.

125. Plato, Republic, Volume I: Books 1-5. Cambridge, MA: Loeb Classical Library

237. Cambridge, MA: Harvard University Press, 2013.

126. F. Nietzsche, “On truth and lies in a nonmoral sense,” Philosophy and Truth.

Selections from Nietzsche’s Notebooks of the Early 1870s, 1873.

127. J. K. Burgoon, J. P. Blair, T. Qin, and J. F. Nunamaker, “Detecting deception

through linguistic analysis,” in International Conference on Intelligence and

Security Informatics, Springer, 2003, pp. 91–101.

128. X. Liu, J. Hancock, G. Zhang, R. Xu, D. Markowitz, and N. Bazarova,

“Exploring Linguistic Features for Deception Detection in Unstructured Text,” in

Proceedings of the Rapid Screening Technologies, Deception Detection and

Credibility Assessment Symposium, 2012. doi: 10.1109/ HICSS.2003.1173793.

129. S. Feng, R. Banerjee, and Y. Choi, “Syntactic Stylometry for Deception

Detection,” Proceedings of the 50th Annual Meeting of the Association for

Computational Linguistics: Short Papers-Volume 2. Association for

Computational Linguistics, 2012, doi: 10.1016/j.rser.2015.12.114.

130. J. T. Hancock, L. E. Curry, S. Goorha, and M. T. Woodworth, “Lies in

conversation: An examination of deception using automated linguistic analysis,”

in Annual Conference of the Cognitive Science Society, 2004. doi: 10.1.1.87.9371.

131. J. T. Hancock, L. E. Curry, S. Goorha, and M. Woodworth, “On lying and being

lied to: A linguistic analysis of deception in computer-mediated communication,”

Discourse Process, 2008, doi: 10.1080/01638530701739181.

132. P. S. Keila and D. B. Skillicorn, “Detecting Unusual and Deceptive

Communication in Email,” in Proceedings of the 2005 Conference of the Centre

for Advanced Studies on Collaborative Research, 2005.

133. M. L. Newman, J. W. Pennebaker, D. S. Berry, and J. M. Richards, “Lying

words: Predicting deception from linguistic styles,” Personality and Social

Psychology Bulletin. 2003. doi: 10.1177/0146167203029005010.

152

134. V. Carofiglio and F. de Rosis, “Exploiting uncertainty and incomplete knowledge

in deceptive argumentation,” in International Conference on Computational

Science, Springer, 2001, pp. 1019–1028.

135. O. Cocarascu and F. Toni, “Detecting deceptive reviews using Argumentation,”

in Proceedings of the 1st International Workshop on AI for Privacy and Security -

PrAISe ’16, 2016. doi: 10.1145/2970030.2970031.

136. D. Li and E. Santos Jr, “Argument formation in the reasoning process: toward a

generic model of deception detection,” in Proceedings of the Workshop on

Computational Approaches to Deception Detection, Association for

Computational Linguistics, 2012, pp. 63–71.

137. D. Li, Deception Detection using Human Reasoning. Dartmouth College, 2013.

138. T. Groeling, “Media Bias by the Numbers: Challenges and Opportunities in the

Empirical Study of Partisan News,” Annual Reviews of Political Science, vol. 16,

pp. 129–151, 2013, doi: 10.1146/annurev-polisci-040811-115123.

139. V. Vapnik, “The support vector method of function estimation,” in Nonlinear

Modeling, Springer Science & Business Media, 1998, pp. 55–85.

140. T. Joachims, “Text categorization with support vector machines: Learning with

many relevant features,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 1998. doi: 10.1007/s13928716.

141. S. Tong and D. Koller, “Support Vector Machine Active Learning with

Applications to Text Classification,” CrossRef Listing of Deleted DOIs, 2000,

doi: 10.1162/153244302760185243.

142. M. Ott, C. Cardie, and J. T. Hancock, “Negative Deceptive Opinion Spam,” in

Proceedings of NAACL-HLT, 2013. doi: 10.1016/j.scitotenv.2014.07.054.

143. M. Ott, Y. Choi, C. Cardie, and J. T. Hancock, “Finding deceptive opinion spam

by any stretch of the imagination,” in Proceedings of the 49th Annual Meeting of

the Association for Computational Linguistics: Human Language Technologies-

Volume 1, Association for Computational Linguistics, 2011, pp. 309–319.

144. D. Walton, “Deceptive arguments containing persuasive language and persuasive

definitions,” Argumentation, 2005, doi: 10.1007/s10503-005-2312-y.

145. T. Brader, “Striking a responsive chord: How political ads motivate and persuade

voters by appealing to emotions,” American Journal of Political Science. 2005.

doi: 10.1111/j.0092-5853.2005.00130.x.

153

146. D. Maillat and S. Oswald, “Defining Manipulative Discourse: The Pragmatics of

Cognitive Illusions,” International Review of Pragmatics, 2009, doi:

10.1163/187730909X12535267111651.

147. S. Volkova and J. Y. Jang, “Misleading or Falsification? Inferring Deceptive

Strategies and Types in Online News and Social Media,” WWW-2018, 2018, doi:

10.1145/3184558.3188728.

148. Y. R. Tausczik and J. W. Pennebaker, “The psychological meaning of words:

LIWC and computerized text analysis methods,” J Lang Soc Psychol, vol. 29, no.

1, pp. 24–54, 2010.

149. J. W. Pennebaker, R. L. Boyd, K. Jordan, and K. Blackburn, “The development

and psychometric properties of LIWC2015,” Austin, TX: University of Texas at

Austin, 2015.

150. A. Lauscher, H. Wachsmuth, I. Gurevych, and G. Glavaš, “Scientia Potentia

Est—On the Role of Knowledge in Computational Argumentation,” Trans Assoc

Comput Linguist, vol. 10, 2022, doi: 10.1162/tacl_a_00525.

151. G. Zhang, P. Nulty, and D. Lillis, “Enhancing Legal Argument Mining with

Domain Pre-training and Neural Networks,” Journal of Data Mining & Digital

Humanities, vol. NLP4DH, 2022, doi: 10.46298/jdmdh.9147.

152. I. Habernal et al., “Mining Legal Arguments in Court Decisions,” Aug. 2022,

Accessed: Jun. 24, 2023. [Online]. Available: https://arxiv.org/abs/2208.06178v2

153. H. Hüning, L. Mechtenberg, and S. Wang, “Detecting Arguments and Their

Positions in Experimental Communication Data,” SSRN Electronic Journal, 2022,

doi: 10.2139/ssrn.4052402.

154. D. de V. Feijo and V. P. Moreira, “Improving abstractive summarization of legal

rulings through textual entailment,” Artif Intell Law (Dordr), vol. 31, no. 1, 2023,

doi: 10.1007/s10506-021-09305-4.

155. M. Elaraby and D. Litman, “ArgLegalSumm: Improving Abstractive

Summarization of Legal Documents with Argument Mining,” Sep. 2022,

Accessed: Jun. 24, 2023. [Online]. Available: https://arxiv.org/abs/2209.01650v2

156. H. Xu and K. Ashley, “Multi-granularity Argument Mining in Legal Texts,” Oct.

2022, Accessed: Jun. 24, 2023. [Online]. Available:

https://arxiv.org/abs/2210.09472v2

157. D. A. Broniatowski, J. R. Simons, J. Gu, A. M. Jamison, and L. C. Abroms, “The

efficacy of Facebook’s vaccine misinformation policies and architecture during

the COVID-19 pandemic,” Sci Adv, vol. 9, no. 37, p. eadh2132, Oct. 2023, doi:

10.1126/sciadv.adh2132.

154

158. M. Cinelli, G. D. F. Morales, A. Galeazzi, W. Quattrociocchi, and M. Starnini,

“Echo chambers on social media: A comparative analysis,” arXiv preprint

arXiv:2004.09603, 2020.

159. G. Eady, J. Nagler, A. Guess, J. Zilinsky, and J. A. Tucker, “How many people

live in political bubbles on social media? Evidence from linked survey and

Twitter data,” Sage Open, vol. 9, no. 1, p. 2158244019832705, 2019.

160. R. S. Nickerson, “Confirmation Bias: A Ubiquitous Phenomenon in Many

Guises,” Review of General Psychology, vol. 2, no. 2, pp. 175–220, 1998, doi:

10.1037/1089-2680.2.2.175.

161. D. C. Giancoli, Physics for scientists and engineers with modern physics, vol. 2.

Pearson Education, 2008.

162. N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese

bert-networks,” arXiv preprint arXiv:1908.10084, 2019.

163. M. Workman, “An Empirical Study of Social Media Exchanges about a

Controversial Topic: Confirmation Bias and Participant Characteristics,” 2018.

164. C. R. Sunstein, “The Law of Group Polarization,” SSRN Electronic Journal, Jul.

2005, doi: 10.2139/ssrn.199668.

165. K. Strandberg, S. Himmelroos, and K. Grönlund, “Do discussions in like-minded

groups necessarily lead to more extreme opinions? Deliberative democracy and

group polarization,” International Political Science Review, vol. 40, no. 1, pp.

41–57, 2019, doi: 10.1177/0192512117692136.

166. S. Moscovici and M. Zavalloni, “The group as a polarizer of attitudes.,” J Pers

Soc Psychol, vol. 12, no. 2, p. 125, 1969.

167. L. M. van Swol, “Extreme members and group polarization,” Soc Influ, vol. 4, no.

3, pp. 185–199, 2009, doi: 10.1080/15534510802584368.

168. M. J. Blanca Mena, R. Alarcón Postigo, J. Arnau Gras, R. Bono Cabré, and R.

Bendayan, “Non-normal data: Is ANOVA still a valid option?,” Psicothema,

2017.

169. S. Weerahandi, “ANOVA under Unequal Error Variances,” Biometrics, vol. 51,

no. 2, pp. 589–599, 1995, doi: 10.2307/2532947.

170. M. Wankhade, A. C. S. Rao, and C. Kulkarni, “A survey on sentiment analysis

methods, applications, and challenges,” Artif Intell Rev, vol. 55, no. 7, 2022, doi:

10.1007/s10462-022-10144-1.

155

171. D. Spohr, “Fake news and ideological polarization: Filter bubbles and selective

exposure on social media,” Business Information Review, vol. 34, no. 3, 2017,

doi: 10.1177/0266382117722446.

172. P. Moravec, R. Minas, and A. R. Dennis, “Fake News on Social Media: People

Believe What They Want to Believe When it Makes No Sense at All,” SSRN

Electronic Journal, 2018, doi: 10.2139/ssrn.3269541.

173. B. Larsen and J. Narayan, “Generative AI – a game-changer society needs to be

ready for | World Economic Forum,” DAVOS. Accessed: Jul. 02, 2023. [Online].

Available: https://www.weforum.org/agenda/2023/01/davos23-generative-ai-a-

game-changer-industries-and-society-code-developers/

174. Y. Bang et al., “A Multitask, Multilingual, Multimodal Evaluation of ChatGPT

on Reasoning, Hallucination, and Interactivity,” Feb. 2023, Accessed: Jun. 18,

2023. [Online]. Available: https://arxiv.org/abs/2302.04023v2

175. G. E. P. Box and G. C. Tiao, Bayesian inference in statistical analysis. John

Wiley & Sons, 2011.

176. E. Santos, Jr., J. T. Wilkinson, and E. E. Santos, “Bayesian Knowledge Fusion,”

in Proceedings of the 22nd International FLAIRS Conference, Sanibel Island, FL:

AAAI Press, 2009, pp. 559–564.

	Combating Fake News: A Gravity Well Simulation to Model Echo Chamber Formation In Social Media
	Recommended Citation

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	1. Introduction
	2. Background
	2.1. Journalism
	2.1.1. Gatekeeping
	2.1.2. Objectivity

	2.2. Fake News
	2.3. Automatic Fake News Detection
	2.4. Echo Chambers
	2.4.1. Studies of interest
	2.4.2. Simulations

	3. Steps Toward Fake News and Echo Chambers
	3.1. Insights
	3.2. Explorations
	3.2.1. Behavioral Strategies
	3.2.2. Corporate Psychopathy

	4. Fake News Model Formation and Exploration
	4.1. Document Graph Analysis
	4.1.1. Betweenness Centrality (BC)
	4.1.2. Closeness Centrality (CC)

	4.2. Premise Recognition
	4.3. Evaluation of Misleading Content
	4.3.3. Misdirection
	4.3.4. Bias
	4.3.4.1. Support Vector Classification (SVC) Analysis

	4.3.5. Manipulation
	4.3.5.1. Linguistic Inquiry and Word Count (LIWC) Results

	4.4. Fake News Model Conclusions

	5. Echo Chambers and Gravity Wells
	5.1. Model Data
	5.2. Gravity Well Model
	5.3. Tuning the Model

	6. Gravity Well Simulation, Results, and Analysis
	6.1. Simulation
	6.2. Results
	6.3. Analysis
	6.3.1. Validity of Simulation
	6.3.2. Statistical Significance of TSM Values
	6.3.3. Differentiation of TSM Values

	7. Conclusions and Future
	7.1. Conclusions
	7.2. Future Work

	Appendices
	Appendix A. Bayesian Knowledge Bases
	Appendix B. Gravity Well Code
	Appendix B-1. par_process_pushshift_authors.py
	Appendix B-2. par_process_pushshift_agreement.py
	Appendix B-3. sr_sim_ec.py
	Appendix B-4. sr_tune_sim.py
	Appendix B-5. get_auths_last_posts.py
	Appendix B-6. analyze_exit_order.py
	Appendix B-7. sr_get_toxicity.py

	References

