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Abstract

Objectives. To identify the principles of creating digital twins of an operating technological  
unit along the example of the process of liquid-phase alkylation of benzene with propylene,  
and to establish the sequence of stages of formation of a digital twin, which can be applied  
to optimize oil and gas chemical production.
Methods. The chemical and technological system consisting of reactor, mixer, heat exchangers, 
separator, rectification columns, and pump is considered as a complex high-level system.  
Data was acquired in order to describe the functioning of the isopropylbenzene production  
unit. The main parameters of the process were calculated by simulation modeling using UniSim® 
Design software. A neural network model was developed and trained. The influence of various 
factors of the reaction process of alkylation, separation of reaction products, and evaluation  
of economic factors providing market interest of the industrial process was also considered.  
The adequacy of calculations was determined by statistics methods. A microcontroller prototype 
of the process was created.
Results. A predictive neural network model and its creation algorithm for the process of  
benzene alkylation was developed. This model can be loaded into a microcontroller to allow  
for real-time determination of the economic efficiency of plant operation and automated  
optimization depending on the following factors: composition of incoming raw materials;  
the technological mode of the plant; the temperature mode of the process; and the pressure  
in the reactor.
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НАУЧНАЯ СТАТЬЯ

Conclusions. The model of a complex chemicotechnological system of cumene production, 
created and calibrated on the basis of long-term industrial data and the results of calculations 
of the output parameters, enables the parameters of the technological process of alkylation to be 
calculated (yield of reaction products, energy costs, conditional profit at the output of finished 
products). During the development of a hardware-software prototype, adapted to the operation 
of the real plant, the principles and stages of creating a digital twin of the operating systems of 
chemical technology industries were identified and formulated.
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Аннотация

Цели. Выявление принципов создания цифровых двойников реально действующей  
технологической установки на примере процесса жидкофазного алкилирования бензола  
пропиленом и установление последовательности этапов формирования цифрового  
двойника, которая может быть применима для оптимизации работы нефтегазохими- 
ческого производства.
Методы. Рассмотрена в целом химико-технологическая система, состоящая из реак-
тора, смесителя, теплообменников, сепаратора, ректификационных колонн и насоса, 
как система высокого уровня. Выполнен сбор данных, описывающих функционирование 
установки получения изопропилбензола алкилированием бензола пропиленом путем  
расчета основных параметров процесса с помощью имитационного моделирования  
с применением специализированного программного обеспечения UniSim® Design. Разра- 
ботана и обучена нейросетевая модель, учитывающая влияние различных факторов 
реакционного процесса алкилирования, разделения продуктов реакции и оценки эконо-
мических факторов, обеспечивающих рыночную привлекательность рассматривае- 
мого промышленного процесса. Определена адекватность результатов расчетов  
оптимальных параметров процесса методами математической статистики.  
Создан прототип цифрового двойника процесса, реализованной на микроконтроллере.
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Результаты. Создана прогностическая нейросетевая модель и алгоритм ее постро-
ения для процесса алкилирования бензола пропиленом, позволяющая при загрузке  
ее в микроконтроллер обеспечить в режиме реального времени определение экономи-
ческой эффективности работы установки и автоматическую оптимизацию работы 
установки в зависимости от состава поступающего сырья технологического режима  
системы, температурного режима проведения процесса и давления в реакторе.
Выводы. Созданная модель сложной химико-технологической системы производства  
кумола, откалиброванная на основании промышленных данных длительного пробега 
технологической установки и результатов расчетов выходных параметров процесса  
при помощи нейронной сети, реализованной на микроконтроллере, позволяет рас- 
считать параметры технологического процесса алкилирования (выход продуктов  
реакции, энергетические затраты, условную прибыль при выпуске готовой продукции).  
В процессе разработки прототипа программно-аппаратного комплекса управления 
установкой алкилирования бензола пропиленом на основе данных, адаптированных  
к работе реальной установки, были выявлены и сформулированы принципы и этапы  
создания цифрового двойника производственных систем отраслей химической технологии.

Ключевые слова: цифровой двойник, кумол, промышленная установка, нейронные сети, 
машинное обучение, ESP8266
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INTRODUCTION

The petrochemical industry is one of the  
largest sectors of the world economy. The main trends  
in the development of modern petrochemistry are  
aimed at increasing the capacity of petrochemical  
plants and the selectivity of chemical reactions, 
reducing the energy intensity of chemical technological 
processes, processing of new types of raw materials, 
and environmental safety of production. The key  
results of these processes will be to increase the  
efficiency of petrochemical productions.

The modernization and technical re-equipping 
of operating plants are carried out, as a rule, on the 
basis of experimental data without the appropriate 
scientific study. The methods of chemical technological 
processes optimization applied do not allow us  
to cover comprehensively the whole range of 
characteristics and factors affecting the production 

process. Existing approaches to the selection of  
the current operating parameters are based primarily 
on the experience of operators and process 
engineers, thus limiting the possibility of eliminating  
shortcomings associated with the human factor [1].

Currently, digital processes using artificial 
intelligence technologies are being increasingly 
introduced, in order to resolve urgent production 
problems and improve the efficiency of industrial 
enterprises. One of the most effective ways of  
solving this problem today is mathematical modeling 
using neural network technologies using modern 
hardware and software systems.

The use of neural networks based on Big Data 
provides a unique opportunity to establish the  
hidden relationships of the qualitative and  
quantitative characteristics of feed streams, fuel, 
cooling water, and electricity consumed by cumene 
with production efficiency indicators. In the  
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conditions of existing production, this enables the 
potential for increasing energy saving in a short  
time to be identified and the number of measures  
needed to optimize industrial technological  
processes to be significantly reduced: redistribution  
of feed streams, fuel, water, and electricity [2].

At the same time, the application of intelligent 
systems in the industrial sector is often implemented 
with the use of cloud data storage and distributed 
computing. The use of external cloud systems poses 
certain difficulties and risks:

– high cost of ownership of cloud services 
infrastructure;

– the possibility of unauthorized access by the 
provider’s personnel due to insufficient data protection;

– temporary loss of access to information may  
occur as a result of network equipment failures1.

Industrial companies are concerned about the 
uninterrupted operation of all plant facilities and 
services. The risks associated with the transfer  
of data and calculations for the management of  
existing production to external cloud resources are  
a potential threat to the safety of operation of  
existing fire and explosion hazardous facilities. In 
this regard, embedded solutions based on industrial 
controllers and supervisory control and data  
acquisition (SCADA) systems are currently a fault-
tolerant alternative to external cloud services.

The basic unit of a digital intelligent system  
at an industrial petrochemical enterprise is a digital 
twin (DT). This is a digital (virtual) model of  
industrial facilities, systems and processes of an  
enterprise which accurately reproduces the  
characteristics and actions of the original and is 
synchronized with it. The DT is used to simulate  
events which occur with the original under certain 
conditions, significantly reducing the time and  
material costs for testing complex and expensive  
equipment, thus preventing possible emergencies  
and ensuring the safety of existing production2.

Classification of DTs by levels of integration  
with a real production facility3,4:

1 “We risk losing data and breaking the law” – why  
companies are afraid of the clouds. VC.ru. 2021. Available 
from URL: https://vc.ru/promo/246963-riskuem-poteryat- 
dannye-i-narushit-zakon-pochemu-kompanii-opasayutsya-
oblakov. Accessed January 5, 2022. 

2 Zuykova A. What are digital twins and where are they used. 
RBC. 2021. Available from URL: https://trends.rbc.ru/trends/ 
industry/6107e5339a79478125166eeb. Accessed January 5, 2022. 

3 Prokhorov A. Digital twins. The concept is evolving. 
C-News. 2018. Available from URL: https://data.cnews.ru/
articles/2018-04-18_tsifrovye_dvojniki_kontseptsiya_razvi-
vaetsya. Accessed January 5, 2022.

4 Digital twin technology. Future2Day. 2019. Available 
from URL: https://future2day.ru/texnologiya-cifrovyx- 
dvojnikov/. Accessed January 5, 2022.

– DT prototype is a virtual analogue of the  
facility, including all the data for reproducing the  
original object;

– DT instance is a database of all characteristics, 
operational properties, and information about the 
operation of a physical facility, including its three-
dimensional model and functioning in parallel  
with the original;

– DT aggregate is a collected intelligent cyber 
physical system including DTs and real facilities, 
controlled from a single center and exchange data  
with each other online.

The development of new digital technologies  
has marked the arrival of the fourth industrial  
revolution (Industry 4.0) [3] and the trend towards 
the re-profiling of all sectors of industrial production. 
Using supply chain management-marketing systems 
as an example, [4] enabling technologies that  
enable the transition to Industry 4.0 were identified: 
advanced manufacturing, additive manufacturing, 
augmented reality, simulation, cloud computing, 
industrial Internet of Things (IoT), cyber security,  
and Big Data analytics and customer profiling.  
Among these, the most used digital technologies  
are mobile and cloud computing, IoT, big data  
analytics, and blockchain [5].

Digital transformation is profoundly changing  
our way of living, rendering obsolete not only  
products or services, but also the way in which  
firms organize their business processes along with  
how they create and capture value. Thereby, reinventing 
a business model is mandatory for incumbents  
in their attempt to survive in the changing digital  
world [6].

At the same time, [7] notes that information  
on available assistive technologies and trends  
is scarce and limits the ability to make appropriate 
decisions.

The concept of Digital Transformation itself  
is multifaceted [8]. In [9], the different types  
of digital transformation impacts on innovation 
processes are classified, and barriers to integrating  
digital competencies into traditional companies are 
described. It should be noted that research on the 
relationship of digital transformation to innovation 
processes and innovation management is at an  
embryonic stage. The concept of DT is analyzed  
in [10]. It was shown that DTs of technological  
processes may be used for monitoring.

The effectiveness of digitalization is clear: it 
enables industry processes to be automated, a variety  
of information to be stored and data analyzed. It can 
also predict future incidents and system states [11].  
2021 has been a year of growth in the active 
involvement of global oil and gas companies in 
business transformation from upstream to downstream, 

https://vc.ru/promo/246963-riskuem-poteryat-dannye-i-narushit-zakon-pochemu-kompanii-opasayutsya-oblakov
https://vc.ru/promo/246963-riskuem-poteryat-dannye-i-narushit-zakon-pochemu-kompanii-opasayutsya-oblakov
https://vc.ru/promo/246963-riskuem-poteryat-dannye-i-narushit-zakon-pochemu-kompanii-opasayutsya-oblakov
https://trends.rbc.ru/trends/industry/6107e5339a79478125166eeb
https://trends.rbc.ru/trends/industry/6107e5339a79478125166eeb
https://data.cnews.ru/articles/2018-04-18_tsifrovye_dvojniki_kontseptsiya_razvivaetsya
https://data.cnews.ru/articles/2018-04-18_tsifrovye_dvojniki_kontseptsiya_razvivaetsya
https://data.cnews.ru/articles/2018-04-18_tsifrovye_dvojniki_kontseptsiya_razvivaetsya
https://future2day.ru/texnologiya-cifrovyx-dvojnikov/
https://future2day.ru/texnologiya-cifrovyx-dvojnikov/
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with the re-engineering of production strategies  
and operating models taking the lead. Ceipek et al.  
[12] conducted an analysis of a 10-year US panel 
dataset showing that underperforming firms are  
more willing to engage in the emerging digital 
transformation, while a superior level of prior  
performance make firms less inclined to engage in 
such digital technologies. As a rule, the management 
of large successful companies is not willing to  
change and upgrade resources to include digital 
technologies, because they are inert and inflexible,  
and the volume of production is high. Such  
companies lack incentives to adopt advanced digital  
technologies [13]. Therefore, company boards of  
directors are often the inhibitor of digital change  
in this case. Managers also need to actively combat  
myopia, inertia, or rigidities that ensue from an  
established product and business logic to ensure 
the exploration of cutting-edge solutions for future  
product development [12]. This inertia is partly  
explained by the fact that according to estimates  
made by [14], 66% to 84% of digital transformation  
projects fail, 13% of which is a sizable share  
considering the costs, both monetary and otherwise,  
of putting these projects in place.Nevertheless,  
more and more business leaders have recently  
begun to understand the importance of using  
digital data and analytics to improve business 
performance5.

Digital transformation can lead to notable 
advantages for firms, such as helping to create  
products and services that are more efficient and 
consistent with customer needs, thus providing a  
shorter innovation process and time to market, and 
creating related digital ecosystems [15].

In 2002, Michael Greaves gave a lecture in  
which he formulated the world’s first concept  
of DTs [16].

Digital twinning in industry was first applied  
in the aerospace industry [17], but the oil industry  
has long used only traditional modeling and  
optimization techniques. Nowadays, in oil and gas 
chemistry, the use of DTs is becoming increasingly 
important [18, 19].

The classification of data from the literature  
on the use of DTs of production systems has shown  
that three options for their use are possible:

1) modeling the reliability of systems, the  
ability to plan their maintenance by monitoring  
anomalies, deformations, fatigue cracks, diagnosis  
of the state of the existing physical object;

5 Booth A., Patel N., Smith M. Digital transformation 
in energy: Achieving escape velocity. 2020. Available from 
URL: https://www.mckinsey.com/industries/oil-and-gas/ 
our-insights/digital-transformation-in-energy-achieving- 
escape-velocity#. Accessed January 5, 2022.

2) study of system behavior at each stage of  
life cycle and prediction of its characteristics by  
digital simulation of physical object and control  
of its life cycle using the IoT concept;

3) optimizing the behavior of the system at  
the design stage prior to the creation of the  
physical object, or optimizing and predicting the 
characteristics of the product life cycle based on  
its past and present states [17].

In [20], information on various factors enabling  
the application of DTs in industry and creating  
barriers to their implementation is systematized. 
Currently, there are two approaches to describing  
DTs [21]:

– a full equivalent of a cyber-physical system;
– only one, key and fundamental, component  

of a cyber-physical system out of several possible 
ones [22]. This also stresses the opinion that  
a true DT provides an automatic bidirectional 
data transfer between the digital and the physical  
counterparts [23]. This distinguishes DTs from  
digital models with manual information transfer  
and from digital shadows, in which the collection  
of information from the physical object to the  
digital analogue is automatic and the reverse data  
transfer is done manually [24].

The authors [25] provide information on existing 
methods for designing DTs, based on data from  
a real object6, or from a real physical system [26],  
or a combination of these approaches, resulting  
in the greatest added value and functionality  
of the twin.

Although Industry 4.0 proposes the use of DTs  
in industry for predictive maintenance and aftermarket 
analysis, there are few applications in this area.  
This is due to imperfect methodology for developing  
real-time DT models, limited synchronization  
capabilities between the digital and physical 
object [27], problems with Big Data collection and  
processing, a lack of highly accurate models for  
multilevel object representation, and difficulties in 
implementing them in production, including due  
to companies’ resistance to change. New generation 
information technology [28], which provides a  
continuous exchange of information between DT 
and production facilities [29], can help to resolve  
this problem.

There are successful examples of application  
of DTs for solving problems of optimization of  
industrial plants. These include the optimization of 
the reactor unit of styrene production in the Tabriz 
petrochemical complex using an artificial neural  

6 Steve Miller. Predictive Maintenance Using a  
Digital Twin. 2019. Available from URL: https://www. 
mathworks.com/company/newsletters/articles/predictive-main-
tenance-using-a-digital-twin.html. Accessed January 5, 2022.

https://www.mckinsey.com/industries/oil-and-gas/our-insights/digital-transformation-in-energy-achieving-escape-velocity
https://www.mckinsey.com/industries/oil-and-gas/our-insights/digital-transformation-in-energy-achieving-escape-velocity
https://www.mckinsey.com/industries/oil-and-gas/our-insights/digital-transformation-in-energy-achieving-escape-velocity
https://www.mathworks.com/company/newsletters/articles/predictive-maintenance-using-a-digital-twin.html
https://www.mathworks.com/company/newsletters/articles/predictive-maintenance-using-a-digital-twin.html
https://www.mathworks.com/company/newsletters/articles/predictive-maintenance-using-a-digital-twin.html
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network and an adaptive neuro-fuzzy inference  
system [30], improving the energy efficiency of  
furnace equipment using a DT integrated into the 
SCADA system [31] and coke formation prediction  
at a catalytic cracking unit [32].

In this regard, it is thus pertinent to identify  
the principles of creating a DT of the process  
of liquid-phase alkylation of benzene with  
propylene, a prototype of an intelligent industrial  
process control system.

MATERIALS AND METHODS

Chemical process description
The method of coproduction of phenol and  

acetone by oxidation of cumene obtained by gas- 
phase alkylation of benzene with propylene over  
AlCl3 catalyst, was first developed and introduced  
into industrial production in the Soviet Union by  
a group of chemists (P.G. Sergeev, R.Yu. Udris,  
and B.D. Kruzhalov). At present in global industry,  
cumene is mainly produced on zeolite catalysts 
(licensors of the modern alkylation process are  
such companies as BADGER7, UOP8, LUMMUS9,  and 
IFP10) [33, 34]. Processes for the production of  
cumene, phenol, and acetone from cumene are  
constantly being improved. Various methods for 
intensifying the process have been proposed, for  
example by optimizing the recycle flows in the  
alkylation process or introducing ozone as an  
initiator in the cumene oxidation process [35].

Works are known in which the optimization  
of the alkylation process was carried out by means  
of traditional technological methods (carrying out  
the process using a reactive distillation column  
[36], the introduction of additional separation  
columns [37]). Other authors have proposed ways  
of intensification based on the results of  
mathematical modeling using conventional approaches. 
Thus, the authors of [38] applied a computer 
model written in Borland Delphi and defined the  
optimal parameters of the alkylation process to  
increase product yield and decrease catalyst 
consumption. In previous studies [39], we proposed  
a model of the reactor block in Aspen® HYSYS  
(Aspen Technology, Inc., USA)11, which enables the 

7 Badger Licensing LLC. 2021. Available from URL: 
https://www.badgerlicensing.com/. Accessed January 5, 2022.

8 UOP. 2022. Available from URL: https://uop.honey-
well.com/. Accessed January 5, 2022.

9 Lummus Technology. 2022. Available from URL: https://
www.lummustechnology.com/. Accessed January 5, 2022.

10 IFP Energies nouvelles (IFPEN). 2022. Available from URL: 
https://www.ifpenergiesnouvelles.com/. Accessed January 5, 2022.

11 Aspen Technology, Inc. 2022. Available from URL: 
https://www.aspentech.com/en. Accessed January 5, 2022.

cumene yield in the alkylator to be calculated with 
sufficient accuracy and optimal parameters of the 
process conditions to be selected depending on the 
required productivity. At the same time, the results of 
such modeling are “idealized”, since it is not possible  
to take into account all the factors of real  
production. Therefore, the optimal operating  
parameters calculated on the basis of such models 
cannot be directly applied in real faculties and  
require additional clarification. The regulation of 
technological mode parameters is performed by  
means of the SCADA, based on the laws of  
proportional–integral–derivative regulation. However, 
the main responsibility for making decisions on the 
choice of operating parameters lies with operators. 
This can lead to errors due to human factor,  
including suboptimal process management and loss  
of profit share.

Application of DTs based on neural network 
modeling technologies not only allows all the  
factors affecting the equipment (including hidden  
ones) to be taken into account, but also plant  
operation to be reproduced as accurately as possible  
and continuously synchronized. As a result, it is  
possible to regulate process mode parameters by  
applying a new type of controllers integrated into 
intelligent cyberphysical systems and automatically 
to optimize plant operation online without operator 
intervention. This approach is currently the first  
step towards the creation of smart manufacturing,  
or more correctly called intelligent manufacturing.

In [40], for the liquid-phase alkylation process, 
modeling was performed using two-layer neural  
networks. The optimum values were calculated 
for temperature and pressure in the reactor, as well  
as its length, allowing the maximum yield of  
cumene to be obtained. The authors [41], simulated 
the yield and selectivity of benzene alkylation  
reaction products formation with propylene using  
two-layer neural networks and compared the  
calculated data with the experimental results with  
an average relative error ranging from 3.7% to 7.7%.

However, there is no information in the  
literature regarding the creation of DTs of the  
process of liquid-phase alkylation of benzene with 
propylene based on neural networks, in which  
the output parameter is the profit of the process unit.

Creating a database of raw data
The creation of a DT of the cumene production 

process implies the development of a virtual model 
which enables not only the process conditions  
to be reliably repoduced, but also, as a result of  
continuous analysis of stream data, to regulate  
the process faster than the operator can react  
to the event.

https://www.badgerlicensing.com/
https://uop.honeywell.com/
https://uop.honeywell.com/
https://www.lummustechnology.com/
https://www.lummustechnology.com/
https://www.ifpenergiesnouvelles.com/
https://www.aspentech.com/en
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In order to develop such a virtual model of  
a chemical technological process, the operation  
of a complex multiparameter system must be  
reproduced.

The first step in creating a DT is simulation  
using data, obtained from the factory set. In order  
to show the possibility of developing a model  
of a DT of the process, despite the lack of data  
from a real process unit, we created our own  
initial database by simulating the process unit in  
the Honeywell UniSim® Design12 software .

The reactor was modeled according to the  
method described in [39]. In order to form a detailed 
model of the alkylation reactor, 13 chemical  
reactions (1 main and 12 side) were used, the  
kinetic parameters of which are given in Table 1.  
As part of the creation of a DT model, it was  
assumed that the kinetic parameters of the  
reactions were constant in the range of the selected 
values of temperature and pressure.

In a continuation of studies of the alkylation  
process, the reactor model was supplemented with  
a separation system using commercial-grade cumene 
production.

The design scheme includes three blocks:  
raw materials preparation, reaction block, and  
a separation system. The process equipment consisted 
of a reactor for alkylation and transalkylation  
reactions, two columns—atmospheric column for 
extracting benzene from the reaction mass and a 
vacuum column for separating a mixture of cumene 
and diisopropylbenzenes, a separator for separating  
off-gases, six heat exchangers, a mixer, and a pump.

Figure 1 shows a simplified scheme for the 
production of cumene.

In the feed preparation unit, the initial  
benzene and propylene are mixed with recycled 
diisopropylbenzenes (Dcumene) in the mixer M-1, 
then heated to 60 °C. This mixture is fed to the  
reaction unit, modeled on the basis of the  
equilibrium reactor R-1 and the separator SK-1. 
From here unreacted off-gases (propane, ethane) are  
released. This reactor is characterized by complete 
conversion of propylene into reaction products.  
The selectivity for cumene is about 99%.

The separation system is a system of columns 
RC-1 and RC-2. Column RC-1 is designed to extract 
benzene from the reaction mass which returns  

Table 1. Kinetic parameters of the reactions of the alkylation of benzene with propylene at a temperature of 122 °C and  
a pressure of 1.6 bar

Reaction A0, с
−1 Еа, kJ/mol k, с−1

1 2 3 4

C6H6 + C3H6 → i−C6H5CH(CH3)2 1.58·105 150.94 3.74·10−12

C6H5CH(CH3)2 + C3H6 → C6H4(CH(CH3)2)2 2.26·105 128.81 1.47·10−9

C6H4(CH(CH3)2)2 + C3H6 → C6H3(CH(CH3)2)3 1.80·104 140.64 5.81·10−12

C6H6 + C3H6 → n−C6H5C3H7 1.28·105 130.41 5.53·10−10

2C3H6 → C6H12 1.97·105 116.20 6.68·10−13

2C2H4 → CH2=CH−C2H5 1.65·106 166.98 7.64·10−10

2 C2H4 → CH3−CH=CH−CH3 2.92·106 141.47 2.00·10−9

2C2H4 → CH2=C(CH3)2 3.95·106 138.86 3.13·10−8

C6H6 + CH2=CH−C2H5 → C6H5CHCH3C2H5 5.45·106 159.90 1.33·10−11

C6H6 + CH2=C(CH3)2 → C6H5C(CH3)3 5.65·105 158.23 2.11·10−12

C6H6 + CH2=CH−C2H5 → C6H5C4H9 1.42·106 147.95 7.18·10−11

C6H6 + C2H4 → C6H5C2H5 7.16·105 37.40 5.15·10−10

C6H5C2H5 + C2H4 → C6H4(C2H5)2 2.90·104 129.58 1.55·10−10

Note: A0 is the pre-exponential factor or Arrhenius equation, Ea is the activation energy for the reaction, k is the rate constant.

  12 Honeywell International Inc. 2022. Available from URL: https://honeywell.com. Accessed January 5, 2022.

https://en.wikipedia.org/wiki/Activation_energy
https://honeywell.com
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to the feed preparation unit (not shown in the diagram). 
The column has 56 valve trays, the top and bottom 
temperatures are 108.5 and 186.0 °C, respectively.  
A mixture of cumene and Dcumene is fed into  
the RC-2 vacuum separation column, where they are 
separated at a column top pressure of 200 mm Hg.  
Column RC-2 consists of 23 valve trays, top and  
bottom temperatures are 134.0 and 189.0 °C,  
respectively. From above, commercial-grade cumene 
is obtained, and Dcumenes are removed from the  
cube, which are sent for mixing with the initial  
benzene and propylene.

The temperature (from 128 to 147 °C) and pressure 
(0.15 to 0.24 MPa) of the process in the reactor,  
the ratio of benzene to propylene (from 3:1 to 4:1),  
corresponding to the operating ranges of the  
installation under consideration were selected as 
input parameters of the neural network. The output  
parameter, in contrast to the works of other authors,  
is the principle profit from the process.

The values of the principal profit from the  
sale of cumene PP, RUR/h, were calculated  
by Eq. (1), taking into account the income from  
the sale of cumene and the cost of energy resources  
of the installation.

,                               (1)                      

where C is the cumene concentration in a commercial 
product, i is the amount of cumene produced, kg/h, 
a is the water vapor consumption, kg/h, b is the 
circulating water consumption, kg/h, c is the electricity 
consumption, kW/h, is the calculated data obtained  
from the model. Constant values: Pi is the price of 
commercial cumene, accepted at 4.7825 RUR/kg,  
Pa is the price of water vapor, accepted at 1.19 RUR/kg,  
Pb is the price of circulating water, accepted at  
7.11 RUR/kg, Pc is the price of electric power,  
accepted at 2.50 RUR/kW.

The energy requirements are determined using  
the UniSim® Design cumene production plant 
model. Steam is used as a heat carrier in reboilers of  
columns RC-1 and RC-2, heat exchangers of propylene 
fraction and benzene (HE-1, HE-2), and a feed  
preheater in front of the reactor. Recycled water is  
used in the condensers of the columns RC-1, RC-2,  
in order to reduce the temperature in the reactor  
and cool the bi-Dcumenes after the column RC-2.  
The P-1 pump consumes electric power.

Selection of the topology and learning algorithm  
for the neural network

The data obtained as a result of modeling the 
technological unit in the UniSim® Design software  
was used to create a predictive neural network model 
of the process. Based on the structural approach,  
this enables the principal profit of the unit to be 
established depending on the feedstock composition, 
the temperature of the process, and the pressure in the 
reactor.

We used a two-layer direct communication  
network with sigmoidal transfer functions (2) of  
neurons in the hidden layer:

                                                              (2)                         

and linear transfer functions in the output layer  
of neurons (Fig. 3). The choice was due to the fact 
that such a neural network configuration takes 
into account the non-linear effects of the original  
process model. However, at the same time, the 
computational complexity of the sigmoid function 
allows it to be used in devices with limited  
performance (embedded solutions, microcontrollers, 
etc.). The two-layer network was chosen because  
in the paper [41], when solving a similar problem, 
reliable results were obtained.

Fig. 1. Simplified scheme for the production of cumene: 
M-1 – mixer; HE-1, HE-2 – heat exchangers; R-1 – reactor; SK-1 – separator; RC-1, RC-2 – distillation columns.
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All data was divided into 3 groups: learning  
curve (70%), training sample (15%), and data for  
testing the network (15%).

The learning curve is used to train the neural 
network, after which the neural network is trained  
in one iteration. Then the learning curves and training 
samples are mixed and the process is repeated  
until the minimum value of the standard deviation  
of the training sample is found. Subsequently the  
neural network is tested with the calculated values  
of weights and biases on the data for validation.

We used the Levenberg–Marquardt algorithm 
(backpropagation algorhythm), Bayesian regularization 
algorhythm and scaled conjugate gradient algorhythm in 
the MATLAB® software package13 (MathWorks, USA). 
The choice of the neural network training algorithm  
was made by comparing the regression coefficient R.

CALCULATION OF TRANSFER FUNCTIONS 
COEFFICIENTS

When creating a DT based on a neural network 
model, the process of continuous receipt at the  
input of the neural network model of the initial 
process parameters needs to be organized (in this  
case, temperature, pressure, reagent ratio) along with 
their transformation into the output data of the model  
(in this case, principal profit). In order to produce 
the model in the form of a computational module  
of the DT of the process, calculation of transfer  

functions coefficients is required. This was performed 
using a program written in Python programming 
language using the NumPy14 and Pandas15 libraries.

When calculating the coefficients, the network 
topology and the learning algorithm selected  
in the previous stage in MATLAB® software were used.

RESULTS AND DISCUSSION

After modeling, we obtained a database for  
creating a DT. Database includes 2100 values by  
varying the input parameters (temperature, pressure 
in the reactor and the benzene/propylene ratio)  
in the operating ranges of the plant under  
consideration. At each step, UniSim® Design 
performed calculation of the entire model, the costs of  
commercial-grade cumene and energy resources  
were determined, and then the principal profit was 
calculated.

The model created in UniSim® Design is three-
parameter. The assessment of the reliability of the  
data obtained was carried out by comparing one- 
factor calculations and known theoretical laws.

With a benzene/propylene ratio equal to 3:1  
(Fig. 2a), an increase in the principal profit is 
observed with an increase in pressure from 0.15 to  
0.24 MPa and an increase in temperature from  
128 to 140 °C. Fluctuations of the principal profit  
values are explained by the multifactorial influence  
of energy consumption in the columns of the separation 
system. Increasing the temperature in the reactor 
increases the process rate, but is thermodynamically 
disadvantageous due to the exothermicity of the  
process. Despite the increase of energy consumption  
in the reactor and a decrease in the selectivity of  
the target reaction, with an increase in the process 
temperature, costs are compensated by reducing the 
consumption of steam in the separation columns and 
growth of the principal profit.

An increase in pressure leads to an increase  
in the principle profit by increasing the product yield 
from the reactor, reducing steam and cooling water 
consumption, even though the circulating pump’s  
power consumption increases.

Carrying out the process with a benzene ratio 
of 4:1 (Fig. 2b) is economically unprofitable for any 
combinations of temperature and pressure (negative 
principal profit), since, although feeding more  
benzene into the reactor leads to greater process 
selectivity, the cost of benzene separation in the  
K-1 column exceeds the effect of higher cumene yield.

Fig. 3. Model of the used neural network.
b1…bN are bias terms of each perceptron, w1…wN  

are weight vectors of each perceptron, n is the index,  
N is the number of perceptions in model.

13 MATLAB. 2022. Available from URL: https://www.
mathworks.com/products/matlab.html Accessed January 5, 
2022.

 14 NumPy. 2022. Available from URL: https://numpy.
org/. Accessed January 5, 2022.

 15 Pandas. 2022. Available from URL: https://pandas.
pydata.org/. Accessed January 5, 2022.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://numpy.org/
https://numpy.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
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At a fixed temperature of 128 and 140 °C (Figs. 2c  
and 2d), the pressure increase does not lead to a 
significant increase in the principal profit. At the  
same time, increasing the amount of fed benzene 
in relation to propylene significantly reduces the  
principle profit due to the growth of costs of  
benzene separation in the column RC-1.

At a minimum fixed pressure of 0.15 MPa (Figs. 2e  
and 2f), the increase in temperature does not 
significantly affect the principal profit, while at 
a pressure of 0.24 MPa, a slight increase in the  
principal profit is observed.

Thus, the maximum principal profit is achieved  
with a minimum benzene/propylene ratio of 3:1 
and temperatures and pressures of 140 °C and 0.25 MPa, 
respectively. This corresponds to the known  
theoretical laws.

Nevertheless, in a real process unit, the process  
is not carried out at the maximum parameter limit  
(due to triggering of interlocks, the need to ensure  
the safety of the technological process). Within the 
ranges, the influence of process parameters on the 
principal profit is non-linear, therefore, the selection  
of regression equations describing the process  
accurately enough is extremely difficult in this case, 
Optimization requires methods to be used which  
describe non-periodic series with a trend other than 
linear, such as neural networks.

The choice of neural network training algorithms 
(Levenberg–Marquardt algorithm (backpropagation 
algorhythm), Bayesian regularization algorhythm  
and scaled conjugate gradient algorhythm) was  
made by comparing the regression coefficient R.  
The smallest standard deviation corresponds to the  

Fig. 2. Dependence of the principal profit on the parameters of the technological process at fixed values:
The benzene/propylene ratio = 3:1 (a), 4:1 (b), temperature in the reactor 128 °С (c), 140 °С (d),  

pressure in the reactor 0.15 MPa (e), 0.24 MPa (f).

(a)

(c)

(e)

(b)

(d)

(f)
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back-propagation algorithm with 12 neurons in the  
first hidden layer. In this case, the neural network  
is trained for 54 epochs (Table 2, Fig. 4).

The program allows for the continuous refinement 
of the transfer functions coefficients, while taking  
into account the possible arrival of new initial data  
from production plants (Table 3).

Development of the DT prototype
We chose the ESP8266 microcontroller developed 

by Espressif Systems (Chine) as a prototype of an 
industrial ACS (automatic control system) controller 
with an implemented DT: one of the leaders in the 
development of hardware solutions for the IoT.

The advantages of ESP8266 as a model tool  
in comparison with other microcontrollers are: 
prevalence, low price, standard programming  
language “C”, open-source program code, libraries, 
availability of sensor expansion boards, input- 
output devices, availability of standard input-output  
ports (with I2C, SPI, UART, GPIO interfaces), an  
analog-to-digital converter, which allows for data 
acquisition and demonstration platform processing,  

as well as easy integration with industrial  
controllers. Also, the microcontroller has sufficient 
computing and communication capabilities for it  
to be used in solutions for the IoT (single-core 32-bit  
LX6 microprocessor, up to 160 MHz, program  
memory 4 MB, ROM 2.4 MB, RAM 32 KB,  
WiFi module) [43], [44].

This device is programable using specialized 
software: compiler, linker, and programmer. We used 
the PlatformIO integrated development environment  
to create a program [45] to calculate the principal  
profit of the production unit based on technological 
parameters. The program was loaded into a 
microcontroller which will independently receive the 
initial data from the sensors and produce the result.

Thus, we were able to create a prototype of  
a DT based on a microcontroller, allowing for the  
operation of a cumene production unit to be simulated  
and the process mode optimized. When training  
a neural network based on data from a real operating  
plant, the neural network can automatically take into  
account the specific features of the technological  
process.

Table 2. Results of neural network modeling

Number  
of neurons  

in the hidden 
layer

Algorithm

Backpropagation Bayesian regularization Scalable conjugate gradients 

N
um

be
r 

 
of

 e
po

ch
s

St
an

da
rd

  
de

vi
at

io
n 

M
SE

R
eg

re
ss

io
n 

va
lu

e 
R

N
um

be
r 

 
of

 e
po

ch
s

St
an

da
rd

 
de

vi
at

io
n 

M
SE

R
eg

re
ss

io
n 

va
lu

e 
R

N
um

be
r 

 
of

 e
po

ch
s

St
an

da
rd

 
de

vi
at

io
n 

M
SE

R
eg

re
ss

io
n 

va
lu

e 
R

1 24 1.37 0.9905 48 0.92 0.9926 57 0.76 0.9934

2 94 0.18 0.9986 50 0.12 0.9991 63 0.72 0.9935

3 71 0.23 0.9982 170 0.18 0.9985 200 0.23 0.9982

4 18 0.20 0.9985 72 0.31 0.9976 112 0.55 0.9958

5 45 0.18 0.9986 240 0.11 0.9991 79 0.10 0.9991

6 22 0.36 0.9972 126 0.20 0.9985 66 0.15 0.9989

7 50 0.43 0.9969 258 0.19 0.9986 84 0.36 0.9972

8 17 0.09 0.9993 538 0.31 0.9975 140 0.38 0.9970

9 27 0.37 0.9972 684 0.29 0.9976 62 0.73 0.9940

10 20 0.07 0.9995 673 0.18 0.9985 191 0.42 0.9969

11 43 0.29 0.9977 323 0.08 0.9994 48 1.70 0.9886

12 54 0.03 0.9998 353 0.17 0.9986 235 0.17 0.9986

13 80 0.06 0.9995 1000 0.48 0.9963 211 0.21 0.9982

14 48 0.31 0.9975 1000 0.35 0.9973 222 0.76 0.9940

15 13 0.05 0.9997 803 0.17 0.9985 240 0.27 0.9980

Note: MSE is a mean squared error.
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Fig. 4. The results of the selection of the neural network configuration:
(a) on the learning curve (70% of the data), (b) on the test set (15% of the data), (c) on the control sample  
(15% of the data), (d) on all the data (100% of the data). Target is the target value of the principal profit,  

Data is the calculated points, Fit is the result of the neural network, Y = T (Output = Target) is the perfect match line.

Table 3. Coefficients of the transfer function of the neural network
First hidden layer Second hidden layer

Neuron number
Coefficients

Neuron number
Coefficients

b w1 w2 w3 b w

1 2.388 −1.982 −1.258 0.410

1 −0.381

−0.020

2 −2.198 1.085 −1.129 −2.321 0.027

3 −1.643 0.623 −0.406 0.549 −1.196

4 2.214 −2.470 0.227 −0.473 −0.027

5 0.186 −0.254 0.028 −1.003 0.223

6 0.168 0.531 0.207 −0.315 0.547

7 0.338 1.550 −1.577 −1.462 0.023

8 −1.475 −0.512 −0.040 −0.480 0.905

9 1.997 0.659 −2.912 0.074 −0.009

10 1.417 0.409 −0.742 −0.903 0.186

11 −1.433 −1.565 −2.107 1.744 −0.010

12 −2.498 −1.126 −0.720 1.040 −0.145
Note: b is the bias term of each perceptron, w1, w2, w3, w are weight vectors of each perceptron.

(a)

(c)

(b)

(d)
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Based on the prototype, it is planned to create 
simulators for training production personnel, as well 
as integrated solutions for optimizing the operation  
of process units.

The production of cumene is large-scale, so the 
implementation of the results of this work in terms  
of the use of new digital technologies may be  
associated with certain difficulties due to lack of 
motivation, inertia and lack of obvious need to  
change the technological base.

Also the promotion of DTs in industry is  
strongly influenced by the shortage of integrated  
circuits and financial crises, during which the 
management seeks to maintain production, while 
avoiding risks associated with the introduction of 
innovative technologies and approaches in production. 
An important factor when creating DTs based  
on big data from manufacturing, is that the data  
generated must be professionally and efficiently 
processed and filtered for subsequent analysis;  
otherwise the results will be unreliable. There may  
also be uncertainties associated with errors in  
the operation of instrumentation, controllers, and 
actuators of the control system. A partial solution  
of this problem may be the involvement of a group  
of qualified specialists, consisting of programmers, 
technologists, and scientists for screening,  
classifying and filtering the meaningful data from  
the database.

A DT obtained using big data, based on  
a simulation model, cannot in principle take into  
account all the factors which impact a real plant. 
Therefore, the DT obtained in this way must be  
adapted to each specific industrial plant, training it 
further on data from a real plant.

Our proposed DT prototype can be used in 
the future to create simulators, useful for training  
personnel of cumene production.

Further research will be directed towards the 
creation of an aggregated cumene production twin. 
This is a cyberphysical system and is characterized  
by a continuous two-way data exchange with real  
plants [44]. Data exchange within a cyberphysical  
system can be organized using a blockchain platform 
which can serve as a data management tool within 
the company. With the ever-increasing need for 
connectedness and security, especially in the 
petrochemical industry, blockchain may provide the 
backbone of the manufacturing future [45].

DT creation principles
Based on our research, using the example of  

the process of liquid-phase alkylation of benzene  
with propylene, we established the following stages  
in creating a DT, also applicable for any petrochemical 
process:

1. The formation of database of information  
about the functioning of a technological object,  
which can be performed in two ways:

– collection of process parameters by processing 
mode sheets of production operators, or collecting  
data directly from SCADA of a technological facility;

– calculation of the basis process parameters 
(pressure, temperature, reaction time, reflux ratio, 
energy consumption, etc.) by modeling the process  
using specialized software.

2. Defining the preferred algorithm for training 
a neural network model and calculation of its basic 
parameters (number of neurons and layers, types of 
transfer functions, etc.).

3. Assessment of the adequacy of the chosen  
neural network model using statistical methods criteria.

4. Calculation of the parameters of transfer 
functions required to predict the optimal parameters  
of technological modes of production facilities.

5. Selection of an intelligent system (IC) for 
industrial process control: a prototype of a DT,  
taking into account the scope and parameters of the 
application.

6. Programming of an intelligent industrial  
process control system, testing, pilot tests at an  
industrial plant.

7. Performing stages 1–6 for all technological 
objects and production processes.

8. Creation of an aggregated production twinon, 
including the developed DTs of related technological 
objects and their continuous data exchange with 
real installations, in order to clarify the functioning 
parameters.

CONCLUSIONS

The process of liquid-phase alkylation of 
benzene with propylene is one of the main large- 
scale petrochemical processes. At the same time,  
there is a need to create a cyber-physical system  
to control and continuously optimize production.  

Fig. 5. Cyberphysical system creation algorithm.
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In this article we demonstrated an algorithm aimed  
at developing a digital production twin as the first  
step in creating a cyber-physical system. Using the 
results of the UniSim® Design simulation of the real  
plant a set of technological data was created and  
a neural network was built. This allows the  
economically optimal technological mode of the 
plant to be defined in online mode. In the process of  
forming the neural network. the principles of creating  
a digital duplicate of the process were established,  
and a prototype of the intelligent process control  
system was developed.

Given the importance of digital transformation, 
including the application of DTs and cyber-physical 
systems in industrial enterprises, the methodology 
developed to create a DT for the production of  
cumene by alkylation of benzene with propylene  
is also significant. The paper systematizes the  
principles of creating a DT production, as a 
comprehensive expert system of predictive analysis  
of production processes.

The practical application of the results of our  
study is to create a prototype of a DT based on 
a microcontroller for cumene production unit.  
A microcontroller control program based on neural 
network technology was created to enable online 
optimization of technological mode parameters to be 
carried out under continuous conditions.

It was shown that it is possible to form a  
technological database for training of DT in two 
ways. The first way consists in the processing of  
technological parameters, acquired from production. 
In the case of a lack of technological data, they  
can be obtained simulating the plant, for example,  
using UniSim® Design.

The implementation of the digital intelligent 
system will significantly reduce the response  
time of the operator or control system to changes  
in technological parameters. It will contribute to  
reduced costs and the number of measures required  
to optimize industrial technological processes, as  
well as improved efficiency and enhanced  
environmental friendliness of oil and gas chemical 
production.
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