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Abstract 

The double exponentially weighted moving average (DEWMA) chart is a control chart that is a vital 
analytical tool for keeping track of the quality of a process, and the sensitivity of the control chart 

to the process is evaluated using the average run length (ARL). Herein, the aim of this study is to 

derive the explicit formula of the ARL on the DEWMA chart with the autoregressive with trend 
model and its residual, which is exponential white noise. This study shows that this proposed method 

was compared to the ARL derived using the numerical integral equation (NIE) approach, and the 

explicit ARL formula decreased the computing time. By changing exponential parameters that were 
relevant to evaluating in various circumstances, the sensitivity of AR(p) with the trend model with 

the DEWMA chart was investigated. These were compared with the EWMA and CUSUM charts in 

terms of the ARL, standard deviation run length (SDRL), and median run length (MRL). The results 
indicate that the DEWMA chart has the highest performance, and when it was small, the DEWMA 

chart had high sensitivity for detecting processes. Digital currencies are utilized to demonstrate the 

efficacy of the proposed method; the results are consistent with the simulated data. 
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1- Introduction 

Control charts are a type of statistical method that is useful for identifying process changes and monitoring the quality 

of industrial processes. They are used in a variety of industries, including finance, medicine, the environment, and others. 

The most basic type of memory chart is the Shewhart control chart [1], which only has sensitivity for large shifts in the 

process that occur. On the other hand, it is not suitable for detecting small and medium-sized changes. The memory-type 

charts, like the cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) charts, are susceptible 

to spotting small and moderate changes in the process. The CUSUM chart was proposed on page [2], while Roberts 

introduced the traditional EWMA chart [3] for monitoring the process. Many researchers have taken these control charts 

and applied them in various fields. For example, Astill et al. [4] utilized the CUSUM chart to monitor financial data in 

the presence of time-varying volatility, such as Bitcoin.  

Perry [5] used the EWMA chart for monitoring social networks and used the data to open-source Enron's email corpus. 

Abdallah et al. [6] utilized the EWMA chart to monitor packaging defects in the food industry. In addition, many 

researchers developed control charts based on the EWMA-type chart that had more sensitivity than the traditional 

EWMA chart for monitoring small shifts in the process. For instance, Alpaben & Jyoti [7] proposed the modified 

exponentially weighted moving average (MEWMA) chart, which is particularly useful for detecting small, persistent 
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shifts in the process mean or covariance matrix. In 2017, it was revised by Khan et al. [8]. Naveed et al. (2018) [9] 

suggested a new modified EWMA-type chart, which refers to the extended exponentially weighted moving average 

(EEWMA) chart and has sensitivity for monitoring small changes. Moreover, there is a control chart that outperforms 

in monitoring small changes rapidly. It is a double exponentially weighted moving average (DEWMA) control chart, 

which Shamma & Shamma first showed in 2010 [10], with modifications made by Mahmoud and Woodall [11]. 

Typically, a control chart must make the assumption that the data produced by the primary procedure will be 

independent and have a normal distribution. Nevertheless, in reality, this assumption is frequently violated because the 

observations or real-world data may show various patterns, and the data is mostly related to time series characteristics 

and forecasting. Time series and forecasting data display seasonal, trend, and autocorrelation traits. Autoregressive (AR) 

and moving average (MA) time series components are frequently observed when analyzing real-world data. How to 

assess the errors is a crucial factor to think about when creating a model. A majority of the data is normally distributed 

with white noise, which indicates errors in the time series model when using autocorrelated data. However, in certain 

situations, white noise may follow an exponential distribution [12, 13]. 

The ARL, which consists of two characteristics, can be used to evaluate control chart effectiveness. The in-control 

ARL, also known as ARL0, represents the average amount of observations taken by a process under control before it 

signals an indication of being out-of-control. Out-of-control ARL, also known as ARL1, is the average number of 

observations needed to identify an alteration in a process variable that is out of control. The ARL0 values should ideally 

be high. ARL1 values, on the other hand, should ideally be as low as possible to demonstrate that the procedure is 

sensitive enough to rapidly identify any out-of-control situations. Calculating the ARL as a starting point is the goal 

when developing a control chart. In many literary works, different approaches to calculating the ARL have been 

proposed. For example, Champ & Rigdon [14] studied and compared the Markov Chain and the NIE method for 

calculating the ARL of quality control charts. Brook & Evans [15] presented the Markov Chain method for computing 

ARL. Karoon et al. [16] proposed the NIE method for evaluating ARL. The method cited above can be applied to a 

variety of data characteristics, especially real-world data, which contains many forms of autocorrelation and whose 

distribution does not meet the assumptions. 

In addition to the methods mentioned above, there is one method of evaluating ARL, namely explicit formulas, and 

many researchers have studied them for various control charts. In their article, Petcharat et al. [17] explicitly established 

the ARL of random observations from an MA process with exponential white noise acting on the CUSUM chart. With 

a long-memory ARFIMA process, Sunthornwat et al. [18] assigned explicit formulations for the analytical ARL on the 

EWMA chart and compared them to the NIE method. An exact formula for the ARL using data from the MA(p) model 

was put forth by Supharakonsakun [19]. When the data are the AR(1) and AR(p) models, Karoon et al.'s explicit formula 

for ARL on the EEWMA chart was suggested in 2022 [20, 21]. Moreover, in the same year, they proposed exact formulas 

of the ARL based on the data that are autoregressive with seasonality for the EEWMA chart [22]. Areepong & Peerajit 

[23] used the ARL that they obtained from explicit formulas of the CUSUM chart to detect changes in the long-memory 

SARFIMAX model.  

Phanthuna & Areepong [24] presented the explicit formula of ARL running on the MEWMA chart that shows the 

detection sensitivity of a modified EWMA chart under a time series model with fractionality and integration. The 

MEWMA chart had high performance when compared to the EWMA chart in all situations. Next, the explicit formula 

of the ARL underlying the data, which is seasonal autoregressive with explanatory variables on the CUSUM chart, was 

presented and expressed the performance of it by Phanyaem (2022) [25]. Peerajit & Areepong [26] presented the ARL 

of an autoregressive fractionally integrated process with exponential white noise running on the modified EWMA control 

chart. And also, Silpakob et al. [27] presented the explicit ARL formulas on the new MEWMA chart running on the 

AR(p) process. In the same year, Silpakob et al. [28] presented the explicit formula of the ARL under the ARMA with 

explanatory variables that is running on the MEWMA chart, and the results show that it outperformed the EWMA and 

CUSUM charts. Peerajit [29] said that while the process is operating on long memory under SFIMAX for the CUSUM 

chart, the explicit formula of ARL outperforms the ARL that is obtained using the NIE approaches. Of special interest, 

several researchers have also adapted analytical integral equations based on explicit formulas and the NIE technique on 

a control chart for models with trend variables, which are basic characteristics of the presently available data. For 

instance, Phanthuna et al. [30] proposed explicit formulas for the ARL that can be used to detect shifts in the MEWMA 

chart. These formulas are based on the trend-stationary AR(1) process. 

 Petcharat [31] presented the exact formulas of the ARL on the CUSUM chart running on trend with a stationary SAR 

process. Supharakonsakun and Areepong [32] improved the performance of the MEWMA chart by using the explicit 

formula of the ARL, which is processed based on the observations and is a trend autoregressive with an explanatory 

model. And recently, Karoon et al. [33, 34] presented the exact ARL formulas on the EEWMA chart based on the data: 

trend AR and quadratic trend AR models, and compared the efficiency with the EWMA chart, finding that it had more 

sensitivity than the EWMA chart.  
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All of the above-mentioned literature makes me realize that the exact formula deriving the ARL of the DEWMA chart 

based on the data requires an autoregressive with trend model, or trend AR(p), which has not been done before. Hence, 

the main objective of this paper is to use the DEWMA chart to generate specific ARL formulas for the data and compare 

them with the NIE method, which utilizes autoregressive with trend models. The DEWMA chart is then created using 

the precise ARL formula, which is enlarged to allow for a comparison of the control chart's sensitivity to the EWMA 

and CUSUM charts that underlie both simulated and real-world data. Then, the sensitivity of the DEWMA chart was 

calculated using the SDRL and MRL values, and control chart performance measures, namely the extra-square loss mean 

(AEQL) and comparative efficiency index (PCI), were used to confirm the results of the proposed ARL of the DEWMA 

chart. Moreover, the applications that were used to illustrate this research are related to digital currency, specifically 

referring to cryptocurrencies, namely Bitcoin and Ethereum, which are well-known among investors and are popular 

investments in the present. Finally, the significance of this proposed ARL is to improve the sensitivity of detecting 

changes in DEWMA charts using an exact ARL solution, which can be useful for the actual data generated in the 

autocorrelation with the trend autoregressive model to increase the efficiency of the control chart while the process 

changes are slight. 

2- Structures of the Control Charts with Trend AR Model 

This part includes the DEWMA statistical structure, data from the autoregressive with trend model (trend AR(p)), 

followed by the obtained explicit formula, and the NIE method of the ARL. 

2-1- The EWMA Chart 

First, Robert [3] initially suggested the original idea for the EWMA chart. It is frequently used to monitor the process 

and identify slight deviations from the mean. The statistics of the EWMA chart can be described using the expression in 

Equation 1 below: 

𝑍𝑡 = 𝜆𝑌𝑡 + (1 − 𝜆)𝑍𝑡−1,   𝑡 = 1, 2, 3, . ..  (1) 

where the EWMA chart parameter 𝑌𝑡 is a sequence of autoregressive with trend or (trend AR(p)) model and a sequence 

data at 𝑡 = 1,2,3, . .. with exponential white noise, 𝜆 is an exponential smoothing parameter (0,1], 𝑌𝑡 at 𝑡 = 0 is the initial 

value of the EWMA statistics. Its mean equals 𝜇and variance of 𝑌𝑡equals
𝜆𝜎2

(2−𝜆)
. The mean (𝜇) and standard deviation (𝜎) 

can be used to characterize both the upper and lower control limits (UCL and LCL) and had a control width limit with 

𝑍 in Equation 2 as follows: 

𝑈𝐶𝐿 = 𝜇 + 𝑍𝜎√
𝜆

2−𝜆
, and 𝐿𝐶𝐿 = 𝜇 − 𝑍𝜎√

𝜆

2−𝜆
 (2) 

The stopping time of the EWMA chart can be specified as 𝜏𝑏∗ = 𝑖𝑛𝑓{𝑡 ≥ 0: 𝑍𝑡 > 𝑈𝐶𝐿}. 

2-2- The DEWMA Chart 

Second, after Shamma & Shamma first suggested the DEWMA control chart in 1992 [10], Mahmoud & Woodall 

[11] developed it in 2010. It was explained from the EWMA control chart after being smoothed twice exponentially. 

The expression in Equation 3 below can be used to explain the statistics of the DEWMA control chart. 

𝐷𝑡 = 𝜆2𝑍𝑡 + (1 − 𝜆2)𝐷𝑡−1and𝑍𝑡 = 𝜆1𝑌𝑡 + (1 − 𝜆1) 𝑍𝑡−1, 𝑡 = 1,2,3, . .. (3) 

where the DEWMA chart parameter 𝑌𝑡 is a sequence of autoregressive with trend (trend AR(p)) model and sequence 

data at 𝑡 = 1,2,3, . .. with exponential white noise, 𝜆1 and 𝜆2 are exponential smoothing parameters equals(0,1], 𝑌𝑡 at 

𝑡 = 0 is the initial value of the DEWMA statistics. Its mean equals 𝜇and variance of 𝑌𝑡equals𝑌𝑡 =
𝜆1

2𝜆2
2

(𝜆1−𝜆2)2 𝜎2 [
(1−𝜆2)2

1−(1−𝜆2)2 +
(1−𝜆1)2

1−(1−𝜆1)2 − 2
(1−𝜆1)(1−𝜆2)

1−(1−𝜆1)(1−𝜆2)
]. The mean (𝜇) and standard deviation (𝜎) can be used to 

characterize both the upper and lower control limits (UCL and LCL), and had a control width limit with D  in Equation 

4 as follows: 

𝑈𝐶𝐿 = 𝜇 + 𝐷̃𝜎√
𝜆1

2𝜆2
2

(𝜆1−𝜆2)2 [
(1−𝜆2)2

1−(1−𝜆2)2 +
(1−𝜆1)2

1−(1−𝜆1)2 − 2
(1−𝜆1)(1−𝜆2)

1−(1−𝜆1)(1−𝜆2)
],  

𝐿𝐶𝐿 = 𝜇 − 𝐷̃𝜎√
𝜆1

2𝜆2
2

(𝜆1−𝜆2)2 [
(1−𝜆2)2

1−(1−𝜆2)2 +
(1−𝜆1)2

1−(1−𝜆1)2 − 2
(1−𝜆1)(1−𝜆2)

1−(1−𝜆1)(1−𝜆2)
].  

(4) 
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The stopping time of the EWMA chart can be specified as: 𝜏𝑏 = 𝑖𝑛𝑓{𝑡 ≥ 0: 𝐷𝑡 > 𝑈𝐶𝐿}. Additionally, the DEWMA 

statistic becomes the EWMA statistic if 𝜆1= 1. 

2-3- The CUSUM Chart 

Third, Page (1959) designed the CUSUM chart for quality control, which can be used to spot small differences in 

process mean. The statistics of the CUSUM chart can be expressed using the algorithm in Equation 5 as follows: 

𝐶𝑡 = 𝑚𝑎𝑥( 0, 𝐶𝑡−1 + 𝑌𝑡 − 𝜗), 𝑡 = 1,2,3, . ..  (5) 

where 𝜗is non-zero constant, 𝐶0 = 𝛩 is the initial value of CUSUM; 𝛩 ∈ [0, 𝑏′] and the CUSUM chart's stopping time 

is described as 𝜏𝑏′ = 𝑖𝑛𝑓{ 𝑡 > 0; 𝐶𝑡 > 𝑈𝐶𝐿}. 

2-4- The Trend AR(p) Model of DEWMA Chart 

The two types of time-series data are steady data and non-stationary data. Gathering time-series data using stationary 

data does not reveal any trends or periodic effects. Non-stationary time-series data refers to time-series datasets that 

exhibit patterns or periodic impacts, unlike stationary time-series data that only contain random errors as a source of 

variance. Data points collected over time may contain internal structures (such as autocorrelation, trend, or seasonal 

fluctuation). Other measures, such as the moving average (MA(q)), the autoregressive moving average (ARMA(p,q)), 

and others, can also be used to describe a trend model. The trend AR(p) model, also known as the autoregressive with 

trend model, was examined in this paper. The trend autoregressive model for lag p, called trend AR (p), is written in 

Equation 6 as: 

𝑌𝑡 = 𝜛 + 𝛾𝑡 + 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2+. . . +𝜙𝑝𝑌𝑡−𝑝 + 𝜉𝑡  (6) 

where 𝜛 is the constant of the model, 


is a slop,𝜙𝑖,𝑖 = 1,2, . . . , 𝑝 is coefficients of autoregressive 𝜙𝑖 ∈ [0,1]. It is 

assumed that the error term (𝜉𝑡) is an exponential white noise(𝜉𝑡 ∼ 𝐸𝑥𝑝(𝛬)). The probability density function of 𝜉𝑡 is 

defined as𝑓(𝑦, 𝛬) =
1

𝛬
𝑒−

𝑦

𝛬; 𝛬 > 0, and then initial values of the trend AR(p) model are 𝑌𝑡−1, 𝑌𝑡−2, . . . , 𝑌𝑡−𝑝. 

3- Methods and Measurement of Efficiency for Control Chart 

For the DEWMA chart on underlying autoregressive with trend model, the initial value of ARL denoted 𝐷(𝜓), and 

the initial value of the monitoring DEWMA statistic 𝐷0 = 𝜓 represented at 𝜓 ∈ [𝑎, 𝑏]. As the result, the function 𝐷(𝜓) 

is given as𝐴𝑅𝐿 = 𝐷(𝜓) = 𝛦∞(𝜏𝑏). Thus, 

𝐴𝑅𝐿 = 𝐷(𝜓) = {
𝐴𝑅𝐿0 = 𝐸∞( 𝜏𝑏), (𝑛𝑜 𝑐h𝑎𝑛𝑔𝑒 ) , 𝑖𝑛 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝐴𝑅𝐿1 = 𝐸1( 𝜏𝑏), (𝑐h𝑎𝑛𝑔𝑒 ) , 𝑜𝑢𝑡 − 𝑜𝑓 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠
  

where 𝛦∞(⋅)represents the expectation with the density function as 𝑓(𝑦, 𝛬). Next, it can be used in the following section 

about process detecting. The change-point in model is considered as follows: 

𝜉𝑡 ∼ {
𝐸𝑥𝑝(𝛬0), 𝑡 = 1,2,3, . . . , 𝜃 − 1    
𝐸𝑥𝑝(𝛬1), 𝑡 = 𝜃, 𝜃 + 1, 𝜃 + 2, . . .

  

Herein, 𝜃 = ∞ is the in-control ARL (ARL0) and there has been no change in the statistical control process. In 

contrast, 𝜃 = 1 denotes the first time point in the statistical control process when a change occurs from 𝛬0 to𝛬, which is 

referred to the out-of-control ARL (ARL1). 

3-1- Analytical Explicit Formulas of the ARL for Trend AR(p) Model 

This section solves the mathematically explicit formula for the ARL on the DEWMA chart using a trend 

autoregressive model with an exponential noise distribution. The LCL and UCL are both assumed to be equivalent to 

𝑎and 𝑏, respectively. The explicit formula of the ARL is derived on the DEWMA chart with the trend AR(p) model. 

Let’s start by substituting Equation 6 into Equation 3 as follows: 

𝐷𝑡 = 𝜆1𝜆2(𝜛 + 𝛾𝑡 + 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2+. . . +𝜙𝑝𝑌𝑡−𝑝 + 𝜉𝑡) + 𝜆2(1 − 𝜆1)𝑍𝑡−1 + (1 − 𝜆2)𝐷𝑡−1  

where the first time 𝑡 = 1 such that 𝐷0 = 𝜓 is determined, then the initial values 𝑍0 = 𝜂 and 𝑌𝑡−1, 𝑌𝑡−2, . . . , 𝑌𝑡−𝑝 equals 

1. The following is a description of the DEWMA data with trend AR(p): 

𝐷1 = 𝜆1𝜆2(𝜛 + 𝛾𝑡 + 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2+. . . +𝜙𝑝𝑌𝑡−𝑝 + 𝜉1) + 𝜆2(1 − 𝜆1)𝜂 + (1 − 𝜆2)𝜓. 
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In control process, the interval of 𝐷1 between the lower and upper bound control limits are expressed to be 𝑎and 𝑏can 

be written as follows below. The interval 𝐷1 between the lower and upper bound control limits, can be represented as 

follows: 

𝑎 < 𝜆1𝜆2(𝜛 + 𝛾𝑡 + 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2+. . . +𝜙𝑝𝑌𝑡−𝑝) + 𝜆2(1 − 𝜆1)𝜂 + (1 − 𝜆2)𝜓 + 𝜆1𝜆2𝜉1 < 𝑏. 

On the variable 𝜉1, it is possible to rewrite this interval as: 

[

𝑎−(1−𝜆2)𝜓

𝜆1𝜆2
−

𝜆2(1−𝜆1)𝜂

𝜆1𝜆2

−
𝜆1𝜆2(𝜛+𝛾𝑡+𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+...+𝜙𝑝𝑌𝑡−𝑝)

𝜆1𝜆2

] < 𝜉1 < [

𝑏−(1−𝜆2)𝜓

𝜆1𝜆2
−

𝜆2(1−𝜆1)𝜂

𝜆1𝜆2

−
𝜆1𝜆2(𝜛+𝛾𝑡+𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+...+𝜙𝑝𝑌𝑡−𝑝)

𝜆1𝜆2

]. 

Next, the Fredholm integral equation is used to describe the integral equation of the ARL on the DEWMA chart for 

the trend AR(p) model with an initial value 𝐷0 = 𝜓. The equation rearranged is  

𝐷(𝜓) = ∫ 𝐷(𝜐)
[

𝑏−(1−𝜆2)𝜓

𝜆1𝜆2
−

𝜆2(1−𝜆1)𝜂

𝜆1𝜆2
−

𝜆1𝜆2(𝜛+𝛾+𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+...+𝜙𝑝𝑌𝑡−𝑝)

𝜆1𝜆2
]

[
𝑎−(1−𝜆2)𝜓

𝜆1𝜆2
−

𝜆2(1−𝜆1)𝜂

𝜆1𝜆2
−

𝜆1𝜆2(𝜔+𝛾+𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+...+𝜙𝑝𝑌𝑡−𝑝)

𝜆1𝜆2
]

⋅ 𝑓(𝜐)𝑑𝜐,  

 𝜐 = 𝜆1𝜆2(𝜛 + 𝛾 + 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2+. . . +𝜙𝑝𝑌𝑡−𝑝) + (1 − 𝜆2)𝜓 + 𝜆2(1 − 𝜆1)𝜂 + 𝜆1𝜆2𝜉1 . 

Let 𝐷(𝜓) denote the ARL on the DEWMA chart for the trend AR(p) model. We use the second kind of Fredholm 

integral equation to solve the ARL [35]. The formula is displayed in Equation 7 as follows: 

𝐷(𝜓) = 1 +
1

𝜆1𝜆2
∫ 𝐷(𝜐)𝑓 (

𝜐−(1−𝜆2)𝜓−𝜆2(1−𝜆1)𝜂−𝜆1𝜆2(𝜛+𝛾+𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+...+𝜙𝑝𝑌𝑡−𝑝)

𝜆1𝜆2
)

𝑏

𝑎
𝑑𝜐  (7) 

Eventually, the function 𝐷(𝜓) expresses the error terms, or the function 𝜉1, as an exponential distribution function. 

Hence, the following is a description of the function 𝐷(𝜓) in Equation 8: 

𝐷(𝜓) = 1 +
1

𝛬𝜆1𝜆2
⋅ 𝑒

(1−𝜆2)𝜓

𝛬𝜆1𝜆2 ⋅ 𝑒
𝜆2(1−𝜆1)𝜂

𝛬𝜆1𝜆2 ⋅ 𝑒
𝜆1𝜆2(𝜛+𝛾+𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+...+𝜙𝑝𝑌𝑡−𝑝)

𝛬 ∫ 𝐷(𝜐) ⋅ 𝑒
−𝜐

𝛬𝜆1𝜆2
𝑏

𝑎
𝑑𝜐. (8) 

The fixed-point theorem of Banach is used to confirm the ARL solution. In terms of its existence and uniqueness, this 

is characterized as an ARL solution [36]. From Equation 8, suppose that 

𝐺(𝜓) =
1

𝛬𝜆1𝜆2
⋅ 𝑒

(1−𝜆2)𝜓

𝛬𝜆1𝜆2 ⋅ 𝑒
𝜆2(1−𝜆1)𝜂

𝛬𝜆1𝜆2 ⋅ 𝑒
𝜆1𝜆2(𝜛+𝛾+𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+...+𝜙𝑝𝑌𝑡−𝑝)

𝛬  and 𝛷 = ∫ 𝐿(𝜐) ⋅ 𝑒
−𝜐

𝛽𝜆1𝜆2
𝑏

𝑎
𝑑𝜐. 

Therefore, the ARL solution that is obtained by Equation 8 can be rewritten that showed in Equation 9 as follows: 

𝐷(𝜓) = 1 + 𝐺(𝜓) ⋅ 𝛷  (9) 

Later, the integral equation 𝛷, which can be expressed as:  

𝛷 = ∫ 𝑒
−𝜐

𝛬𝜆1𝜆2 ⋅ (1 +
1

𝛬𝜆1𝜆2
⋅ 𝑒

(1−𝜆2)𝜓

𝛬𝜆1𝜆2 ⋅ 𝑒
𝜆2(1−𝜆1)𝜂

𝛬𝜆1𝜆2 ⋅ 𝑒
𝜆1𝜆2(𝜛+𝛾+𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+...+𝜙𝑝𝑌𝑡−𝑝)

𝛬 ⋅ 𝛷)
𝑏

𝑎
𝑑𝜐  

𝛷 =
−𝛬𝜆1𝜆2[𝑒

−𝑏
𝛬𝜆1𝜆2−𝑒

−𝑎
𝛬𝜆1𝜆2]

1+
1

𝜆2
⋅𝑒

1
𝛬⋅(𝜛+𝛾+𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+...+𝜙𝑝𝑌𝑡−𝑝)+

1
𝛬𝜆1

⋅(1−𝜆1)𝜂
⋅[𝑒

−𝑏
𝛬𝜆1−𝑒

−𝑎
𝛬𝜆1]

  

(10) 

Finally, Equation 10, which is replaced in Equation 9, is substituted into the solution of 𝛷, and the following result 

is obtained in Equation 11 as:  

𝐷(𝜓) = 1 −
𝜆2𝑒

(1−𝜆2)𝜓
𝛬𝜆1𝜆2 ⋅[𝑒

−𝑏
𝛬𝜆1𝜆2−𝑒

−𝑎
𝛬𝜆1𝜆2]

𝜆2𝑒

1
𝛬⋅(𝜛+𝛾+𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+...+𝜙𝑝𝑌𝑡−𝑝)+

1
𝛬𝜆1

⋅(1−𝜆1)𝜂
+[𝑒

−𝑏
𝛬𝜆1−𝑒

−𝑎
𝛬𝜆1]

. (11) 

As the trend AR(p) model is applied to the DEWMA chart, Equation 11 provides the explicit ARL formula. Moreover, 

𝛬0 is used to replace the in-control process, while𝛬1; 𝛬1 = (1 + 𝛿)𝛬0 is used to replace the out-of-control process. And 

also, 𝛿 stands for the shift size in the monitoring process. 
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3-2- Analytical NIE of the ARL for Trend AR(p) Model 

This section solves the analytical NIE approach for the ARL on the DEWMA chart using a trend autoregressive model 

with an exponential noise distribution. Let 𝐷̂(𝜓) represent the midpoint quadrature rule-computed ARL of the DEWMA 

chart for the trend AR(p) model with an exponential white noise. In particular, we computed in terms of the m linear 

equation systems with the midpoint rule on the interval [𝑎, 𝑏], and this method was split into 𝑎 ≤ 𝑠1 ≤ 𝑠2 ≤. . . ≤ 𝑠𝑚 ≤
𝑏 using a set of constant weights 𝑤𝑗 = (𝑏 − 𝑎)/𝑚 after using a quadrature rule. The approximation for an integral can 

be determined by applying the quadrature rule, which is represented in Equation 12 below 

∫ 𝐷(𝜐)𝑓(𝜐)𝑑𝜐 ≈ ∑ 𝑤𝑗𝑓(𝑠𝑗)𝑚
𝑗=1

𝑏

𝑎
  (12) 

The NIE approach; 𝐷̂(𝑠𝑖), which is evaluated by a linear equation, had shown in Eq. (13), as follows 

𝐷̂(𝑠𝑖) = 1 +
1

𝜆1𝜆2
∑ 𝐷̂(𝑠𝑗)𝑚

𝑗=1 ⋅ 𝑓 (
𝑠𝑗−(1−𝜆2)𝑠𝑖−𝜆1𝜆2(𝜛+𝛾+𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+...+𝜙𝑝𝑌𝑡−𝑝)−𝜆2(1−𝜆1)𝜂

𝜆1𝜆2
)  (13) 

Finally, 𝑠𝑖is instead of 𝜓 into 𝐷̂(𝑠𝑖), the NIE approximating of the ARL is rewritten in Equation 14 as follows 

𝐷̂(𝜓) ≈ 1 +
1

𝜆1𝜆2
∑ 𝐷̂(𝜓𝑗)𝑚

𝑗=1 ⋅ 𝑓 (
𝑠𝑗−(1−𝜆2)𝜓−𝜆1𝜆2(𝜛+𝛾+𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+...+𝜙𝑝𝑌𝑡−𝑝)−𝜆2(1−𝜆1)𝜂

𝜆1𝜆2
)  (14) 

where 𝑠𝑗is the division point within the interval 𝑎 ≤ 𝑠1 ≤ 𝑠2 ≤. . . ≤ 𝑠𝑚 ≤ 𝑏 as well as𝑠𝑗 = (𝑗 − 0.5)𝑤𝑗 + 𝑎 for 𝑗 =
1,2, . . . , 𝑚. And then, a weight of the composite midpoint formula is given as 𝑤𝑗 = (𝑏 − 𝑎)/𝑚 

3-3- The Existence and Uniqueness of Exact ARL Solution 

In this part, this study also uses Banach's fixed-point theorem to prove the ARL solution's existence and uniqueness 

because the explicit ARL formula must prove its existence and uniqueness. Let 𝑇represent the operation in the class of 

all continuous functions, which is expressed as: 

𝑇(𝐷(𝜓)) = 1 +
1

𝜆1𝜆2
∫ 𝐷(𝜐)𝑓 (

𝜐−(1−𝜆2)𝜓−𝜆2(1−𝜆1)𝜂−𝜆1𝜆2(𝜛+𝛾+𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+...+𝜙𝑝𝑌𝑡−𝑝)

𝜆1𝜆2
)

𝑏

𝑎
𝑑𝜐  

Theorem 1 Banach’s Fixed-point Theorem: Let (𝑌, 𝐷) and 𝑇: 𝑌 → 𝑌represent a complete metric space and the 

contraction mapping, respectively. And then, T is referred to unique on fixed point. There exists a unique solution to the 

fixed point when 𝑇(𝐷(𝜓)) = 𝐷(𝜓) ∈ 𝑌. 

To proof that, let T determined in Eq. (7) represent the contraction mapping for 𝐷(𝜓)1, 𝐷( 𝜓)2 ∈ 𝜓[𝑎, 𝑏]. Such that, 

‖𝑇(𝐷( 𝜓)1) − 𝑇(𝐷(𝜓)2)‖ ≤ 𝛺‖𝐷(𝜓)1 − (𝐷( 𝜓)2‖, 𝐷(𝜓)1, 𝐷(𝜓)2 ∈ 𝑌, where 𝛺 is a positive constant. 

By considering: ‖𝑇(𝐷(𝜓)1) − 𝑇(𝐷(𝜓)2)‖∞ = 𝑠𝑢𝑝
𝜓∈[𝑎,𝑏]

|(𝐷(𝜓)1 − (𝐷(𝜓)2| 

= 𝑠𝑢𝑝
𝜓∈[𝑎,𝑏]

|
1

𝛬𝜆1𝜆2
⋅ 𝑒

(1−𝜆2)𝜓

𝛬𝜆1𝜆2 ⋅ 𝑒
𝜆2(1−𝜆1)𝜂

𝛬𝜆1𝜆2 ⋅ 𝑒
𝜆1𝜆2(𝜛+𝛾+𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+...+𝜙𝑝𝑌𝑡−𝑝)

𝛬 ∫ (𝐷1(𝜐) − 𝐷2(𝜐)) ⋅ 𝑒
−𝜐

𝛬𝜆1𝜆2𝑑𝜐
𝑏

𝑎
|  

≤ 𝑠𝑢𝑝
𝜓∈[𝑎,𝑏]

|‖𝐷(𝜓)1 − 𝐷(𝜓)2‖∞ ⋅ 𝑒
(1−𝜆2)𝜓

𝛬𝜆1𝜆2 ⋅ 𝑒
𝜆2(1−𝜆1)𝜂

𝛬𝜆1𝜆2 ⋅ 𝑒
𝜆1𝜆2(𝜛+𝛾+𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+...+𝜙𝑝𝑌𝑡−𝑝)

𝛬 ⋅ (−𝛬𝜆1𝜆2) (𝑒
−𝑏

𝛬𝜆1𝜆2 − 𝑒
−𝑎

𝛬𝜆1𝜆2)|  

= ‖𝐷(𝜓)1 − 𝐷(𝜓)2‖∞ 𝑠𝑢𝑝
𝜓∈[𝑎,𝑏]

|𝑒
(1−𝜆2)𝜓

𝛬𝜆1𝜆2 ⋅ 𝑒
𝜆2(1−𝜆1)𝜂

𝛬𝜆1𝜆2 ⋅ 𝑒
𝜆1𝜆2(𝜛+𝛾+𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+...+𝜙𝑝𝑌𝑡−𝑝)

𝛬 | |𝑒
−𝑎

𝛬𝜆1𝜆2 − 𝑒
−𝑏

𝛬𝜆1𝜆2|  

≤ 𝛺‖𝐷(𝜓)1 − 𝐷(𝜓)2‖∞  

where 𝛺 = 𝑠𝑢𝑝
𝜓∈[𝑎,𝑏]

|𝑒
(1−𝜆2)𝜓

𝛬𝜆1𝜆2 ⋅ 𝑒
𝜆2(1−𝜆1)𝜂

𝛬𝜆1𝜆2 ⋅ 𝑒
𝜆1𝜆2(𝜛+𝛾+𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+...+𝜙𝑝𝑌𝑡−𝑝)

𝛬 | |𝑒
−𝑎

𝛬𝜆1𝜆2 − 𝑒
−𝑏

𝛬𝜆1𝜆2| [0,1)
 

3-4- The Measurement of Efficiency for the Control Chart 

The average run length (ARL) is a popular measurement used to assess the performance of control charts. The ARL, 

produced by explicit equations, and the NIE method, which uses an autoregressive with trend process, or trend AR 

process, to detect changes, were employed to compare their findings on the DEWMA chart. The percentage accuracy 

(%Acc) indicates the relative efficiency of two methods of the ARL, which is given in Equation 15 as follows: 

%𝐴𝑐𝑐 = 100 − (|
𝐷(𝜓)−𝐷̂(𝜓)

𝐷(𝜓)
| × 100%)  (15) 

Next, the efficiency of the ARL is calculated with different parameter values based on the DEWMA chart. It is then 

used for comparison with the EWMA and CUSUM charts. In addition, some other characteristics of the run length (RL) 
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exist, namely the standard deviation run length (SDRL) and the median run length (MRL). Those are additional metrics 

for the evaluation of control charts. The equations in Equation 16 are used to determine SDRL and MRL for in-control 

[26]: 

𝐴𝑅𝐿0 =
1

𝛼
, 𝑆𝐷𝑅𝐿0 = √

1−𝛼

𝛼2 , 𝑀𝑅𝐿0 =
𝑙𝑜𝑔(0.5)

𝑙𝑜𝑔(1−𝛼)
,  (16) 

where type I error represents 𝛼 = 1 − 𝑃(𝑎 < 𝑌𝑡 < 𝑏|𝛬0). In this study, ARL0 was fixed at 370. Form an ARL0 value 

that can be calculated as SDRL0 and MRL0 by Equation 16 at approximately 370 and 256, respectively. On the other 

hand, SDRL and MRL are calculated by the formulas in Equation 17 for out-of-control situations. The values obtained 

by those formulas are the lowest; the result indicates that control charts provide the best performance [26] 

𝐴𝑅𝐿1 =
1

1−𝛽
, 𝑆𝐷𝑅𝐿1 = √

𝛽

(1−𝛽)2 , 𝑀𝑅𝐿1 =
𝑙𝑜𝑔(0.5)

𝑙𝑜𝑔 𝛽
,  (17) 

where type II error represents 𝛽 = 1 − 𝑃(𝑎 < 𝑌𝑡 < 𝑏|𝛬1). Moreover, when shift sizes differ, using the ARL 

measurement to assess how well control charts affect the process is reasonable. Many studies recommend using overall 

performance metrics to evaluate a control chart's success during different changes (𝛿𝑚𝑎𝑥𝑚𝑖𝑛). Some of them feature 

performance measurements, including the average extra quadratic loss (AEQL) and the performance comparison index 

(PCI), that are used to evaluate their effectiveness [37]. 

The mathematical formula for the AEQL is: 

𝐴𝐸𝑄𝐿 =
1

𝛥
∑ (𝛿2 × 1 −

𝜆2𝑒

(1−𝜆2)𝜓
𝛬𝜆1𝜆2 ⋅[𝑒

−𝑏
𝛬𝜆1𝜆2−𝑒

−𝑎
𝛬𝜆1𝜆2]

𝜆2𝑒

1
𝛬⋅(𝜛+𝛾+𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+...+𝜙𝑝𝑌𝑡−𝑝)+

1
𝛬𝜆1

⋅(1−𝜆1)𝜂
+[𝑒

−𝑏
𝛬𝜆1−𝑒

−𝑎
𝛬𝜆1]

)
𝛿𝑚𝑎𝑥∑
𝛿=𝛿𝑚𝑖𝑛

  (18) 

where 𝛿 is the particular change in the process, and ∆ is the sum of number of divisions from 𝛿𝑚𝑖𝑛to 𝛿𝑚𝑎𝑥. In this study, 

𝛥 = 7 is determined from 𝛿𝑚𝑖𝑛 to 𝛿𝑚𝑎𝑥. The control charts with the lowest AEQL values perform the best. 

The PCI measurement is the ratio between the AEQLs of the control chart and the most efficient control chart, which 

is shown as the lowest AEQL. The mathematical formula for the PCI is 

𝑃𝐶𝐼 =
𝐴𝐸𝑄𝐿

𝐴𝐸𝑄𝐿𝑙𝑜𝑤𝑒𝑠𝑡
  (19) 

The PCI value of the most efficient control chart is 1, while the less efficient control chart will give a PCI value 

greater than 1. 

3-5- The Procedure of Analytical Results of the ARL 

he ARL for spotting changes in the process is a standard metric for evaluating a control chart's effectiveness. The 

effectiveness of the explicit formula and the NIE approach for calculating the ARL for monitoring shifts were evaluated 

in this study. The DEWMA chart running on the trend AR models, specifically the trend AR(1), trend AR(2), and trend 

AR(3), was used to evaluate the performance with exponential white noise. The residual of an exponential distribution 

with uncorrelated data is what is known as "exponential white noise," as was previously mentioned. As a consequence, 

𝛿 = 0 represents an in-control process, while 𝛿 > 0 represents an out-of-control process. The NIE approach is used to 

determine the number of division points, m = 500, using the ARL approximation. The NIE approach is used to determine 

the number of division points, m = 500, using the ARL approximation. The explicit ARL and the NIE approach to the 

ARL were computed using the Mathematica program. Through research, the Intel(R) Xeon(R) CPU X5680 @ 3.33 GHz 

(3 processors) RAM 32.0 GB specification for Mathematica was evaluated. The following is a brief description of the 

procedure: 

Step 1: Give the input parameters, such as the coefficients of autoregressive (𝜙𝑖), the initial values of the 

autoregressive; 𝑌𝑡−1, 𝑌𝑡−2, . . . , 𝑌𝑡−𝑝, and the control chart parameters set as 𝜆1 = 0.05,0.10, 𝜆2 = 0.05. 

Step 2: Determine the initial value of known parameter (𝜛), slope value of the trend AR(p) model (𝛾) and the initial 

value of the DEWMA statistic (𝑍0 = 𝜂 and𝐷0 = 𝜓). 

Step 3: Impose the parameter of exponential white noise; 𝛬 = 𝛬0 for the in-control process. 

Step 4: Specify the lower control limit;𝑎 = 0 and fixed the ARL value of in-control equals 370 to compute the upper 

control limit (𝑏). 

Step 5: Define the upper control limit (𝑏) from Step 4. Compute the ARL values of out-of-control by the explicit 

formula and the NIE method, determine parameter of exponential white noise (𝛬 = 𝛬1) where 𝛬1 = 𝛬0(1 + 𝛿), and 

change shift sizes (𝛿) equals 0.001, 0.002, 0.01, 0.02, 0.1, 0.5, and 1, respectively. 
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Also, solutions can be found using the approach depicted in Figure 1. 

 

Figure 1. The process of methodology diagram 

4- Results and Discussions 

4-1- The Simulated Results 

For the in-control scenario, the simulated data is frequently given with ARL0 = 370, allowing the beginning 

parameters to be explored at 𝛬0 = 1. On the other hand, 𝛬1 = 𝛬0(1 + 𝛿) is researched in the out-of-control scenario and 

computed to determine shift sizes. At the interval [0, b], the lower and higher control limits are investigated. First, the 

ARL was evaluated using the explicit formula and the NIE method, and the capability of the methods was compared 

with the %Acc. The results were computed based on specified known parameters, such as 𝜙1 = 0.1, 𝜙2 = 0.2, 𝜙3 =
0.3, 𝜛 = 0, and 𝛾 = 0.5 . There are three models, namely the trend AR(1), trend AR(2), and trend AR(3) models, that 

were determined with exponentially smoothing parameters as follows in Table 1. The explicit formula technique's ARL 

values, represented as 𝐷(𝜓), are calculated using Equation 11. The 𝐷̂(𝜓) is then indicated using the NIE approach and 

is computed using Equation 14. All circumstances have a very high percentage of acceptance, about 100. However, the 

explicit formula appears very instantly in all circumstances, but the ARL values obtained using the NIE approach take 

roughly 3–4 seconds to compute. As a result, it makes sense to proceed with these precise formulations. The comparative 

results of accuracy and computational speed on the DEWMA chart are consistent with the research of Areepong & 

Peerajit (2022) [23], which obtained an explicit formula for ARL in the CUSUM chart. Then it's consistent with the 

research of Karoon et al. [33], which offers an explicit ARL solution for detecting changes on EEWMA with Trend's 

AR(p) process and validating the proposal with ARL's NIE method. Obviously, it takes almost no computation time 

compared to the NIE method. 
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Table 1. The ARL values of the explicit formula against the NIE method for trend AR(p) models on the DEWMA chart with 

known parameters, 𝝀𝟐 = 𝟎. 𝟎𝟓, 𝝓𝟏 = 𝟎. 𝟏, 𝝓𝟐 = 𝟎. 𝟐, 𝝓𝟑 = 𝟎. 𝟑, 𝝕 = 𝟎, and 𝜸 = 𝟎. 𝟓 under different conditions 

 

𝜹 

Model Trend AR(1) Trend AR(2) Trend AR(3) 

𝝀𝟏 0.05 0.10 0.05 0.10 0.05 0.10 

b 0.0000306203 0.000453442 0.0000250683 0.000371087 0.0000185698 0.000274769 

0.000 

𝐷(𝜓) 370.232 (<0.01) 370.158 (<0.01) 370.130 (<0.01) 370.257 (<0.01) 370.240 (<0.01) 370.151 (<0.01) 

𝐷̂(𝜓) 370.232 (3.858) 370.158 (3.875) 370.130 (4.079) 370.257 (4.157) 370.240 (4.031) 370.151 (4.14) 

%Acc 100.00 100.00 100.00 100.00 100.00 100.00 

0.001 

𝐷(𝜓) 123.491 (<0.01) 160.569 (<0.01) 120.598 (<0.01) 156.097 (<0.01) 116.514 (<0.01) 149.702 (<0.01) 

𝐷̂(𝜓) 123.491 (3.859) 160.569 (3.937) 120.598 (4.093) 156.097 (4.078) 116.514 (4.157) 149.702 (4.078) 

%Acc 100.00 100.00 100.00 100.00 100.00 100.00 

0.002 

𝐷(𝜓) 74.320 (<0.01) 102.723 (<0.01) 72.251 (<0.01) 99.100 (<0.01) 69.354 (<0.01) 94.030 (<0.01) 

𝐷̂(𝜓) 74.320 (3.781) 102.723 (3.875) 72.251 (4.077) 99.100 (3.984) 69.354 (4.297) 94.030 (4.297) 

%Acc 100.00 100.00 100.00 100.00 100.00 100.00 

0.01 

𝐷(𝜓) 18.199 (<0.01) 26.943 (<0.01) 17.613 (<0.01) 25.749 (<0.01) 16.801 (<0.01) 24.123 (<0.01) 

𝐷̂(𝜓) 18.199 (3.813) 26.943 (3.844) 17.613 (4.031) 25.749 (4.110) 16.801 (4.094) 24.123 (4.219) 

%Acc 100.00 100.00 100.00 100.00 100.00 100.00 

0.02 

𝐷(𝜓) 9.654 (<0.01) 14.342 (<0.01) 9.345 (<0.01) 13.694 (<0.01) 8.916 (<0.01) 12.816 (<0.01) 

𝐷̂(𝜓) 9.654 (3.953) 14.342 (3.983) 9.345 (4.141) 13.694 (4.062) 8.916 (4.281) 12.816 (4.172) 

%Acc 100.00 100.00 100.00 100.00 100.00 100.00 

0.1 

𝐷(𝜓) 2.541 (<0.01) 3.589 (<0.01) 2.474 (<0.01) 3.442 (<0.01) 2.381 (<0.01) 3.243 (<0.01) 

𝐷̂(𝜓) 2.541 (4.047) 3.589 (3.859) 2.474 (4.063) 3.442 (4.000) 2.381 (4.171) 3.243 (4.188) 

%Acc 100.00 100.00 100.00 100.00 100.00 100.00 

0.5 

𝐷(𝜓) 1.180 (<0.01) 1.415 (<0.01) 1.167 (<0.01) 1.379 (<0.01) 1.149 (<0.01) 1.333 (<0.01) 

𝐷̂(𝜓) 1.180 (3.937) 1.415 (3.890) 1.167 (4.094) 1.379 (4.031) 1.149 (4.156) 1.333 (4.203) 

%Acc 100.00 100.00 100.00 100.00 100.00 100.00 

1 

𝐷(𝜓) 1.058 (<0.01) 1.173 (<0.01) 1.053 (<0.01) 1.155 (<0.01) 1.045 (<0.01) 1.131 (<0.01) 

𝐷̂(𝜓) 1.058 (3.937) 1.173 (3.860) 1.053 (4.062) 1.155 (4.109) 1.045 (4.219) 1.131 (4.110) 

%Acc 100.00 100.00 100.00 100.00 100.00 100.00 

Next, the capability of the explicit ARL based on the DEWMA chart running on the trend AR(p) model is compared 

with the EWMA and CUSUM charts and then investigated using different . For out-of-control, the results for 

contrasting capability between the DEWMA, EWMA, and CUSUM charts based on different situations are shown in 

Tables 2 and 3. The results showed that the DEWMA chart obtained lower ARL1, SDRL1, and MRL1 values than the 

EWMA and CUSUM charts in all situations for both the trend AR(1) and trend AR(2) models, whereas the RL results 

based on shift sizes that are defined as 𝛿 ≥ 0.1show that the results of the EWMA chart are very close to the results of 

the DEWMA chart. In addition, the AEQL and PCI values are also utilized to validate their efficacy. The ARL1 values 

of all charts were used for calculating the AEQL and PCI values, which were computed from Equations 18 and 19, 

respectively. The results show that the AEQL values of the DEWMA chart are lower than the AEQL values of the 

EWMA and CUSUM charts, and the PCI values of the DEWMA chart with = 0 . 05  are equal to 1, just as they are 

for the trend AR(1) and trend AR(2) models. From the research results mentioned above, the performance of DEWMA 

shows superior performance in detecting transition changes compared to EWMA and CUSUM charts, and the smaller 

the exponential smoothing parameter, the greater the capabilities of the DEWMA chart. The findings are consistent with 

previously presented studies showing that the explicit formula of the ARL generalized modified EWMA-type was more 

effective than the original EWMA; see [21, 24]. 

Table 2. The ARL1 values of the explicit formula for trend AR(1) model on the DEWMA, EWMA, and CUSUM charts with 

known parameters, 𝝀𝟐 = 𝟎. 𝟎𝟓, 𝝕 = 𝟎, and 𝜸 = 𝟎. 𝟓 under different conditions 

𝝓𝒊 𝝓𝟏 = 𝟎. 𝟑 𝝓𝟏 = −𝟎. 𝟑 

𝜹 
Control chart 

DEWMA1 

(𝝀𝟏 = 𝟎. 𝟎𝟓) 

DEWMA2 

(𝝀𝟏 = 𝟎. 𝟏𝟎) 

EWMA 

(𝝀𝟏 = 𝟏) 

CUSUM 

(𝝑 = 𝟑) 

DEWMA1 

(𝝀𝟏 = 𝟎. 𝟎𝟓) 

DEWMA2 

(𝝀𝟏 = 𝟎. 𝟏𝟎) 

EWMA 

(𝝀𝟏 = 𝟏) 

CUSUM 

(𝝑 = 𝟑) 

UCL 0.0000250683 0.000371087 0.0226722 4.145 0.0000456873 0.000677249 0.0417181 3.265 

0.001 

ARL1 116.514 149.702 194.952 367.173 129.632 170.154 227.528 367.902 

SDRL1 116.013 149.201 194.451 366.673 129.131 169.653 227.027 367.402 

MRL1 80.414 103.419 134.784 254.158 89.507 117.595 157.364 254.664 

1𝜆

𝜆



Emerging Science Journal | Vol. 7, No. 6 

Page | 1884 

0.002 

ARL1 69.354 94.030 132.526 364.365 78.792 110.663 164.447 365.599 

SDRL1 68.852 93.528 132.025 363.865 78.290 110.162 163.946 365.099 

MRL1 47.725 64.829 91.513 252.212 54.267 76.359 113.639 253.067 

0.01 

ARL1 16.801 24.123 37.759 342.859 19.490 29.642 51.739 347.839 

SDRL1 16.293 23.617 37.256 342.359 18.984 29.138 51.236 347.339 

MRL1 11.295 16.371 25.825 237.305 13.160 20.198 35.515 240.757 

0.02 

ARL1 8.916 12.816 20.319 318.200 10.339 15.815 28.322 327.203 

SDRL1 8.401 12.306 19.812 317.700 9.826 15.307 27.818 326.703 

MRL1 5.827 8.532 13.734 220.213 6.814 10.612 19.283 226.453 

0.1 

ARL1 2.381 3.243 4.992 184.532 2.691 3.928 6.944 208.758 

SDRL1 1.813 2.697 4.465 184.031 2.134 3.392 6.424 208.257 

MRL1 1.272 1.880 3.101 127.561 1.492 2.359 4.457 144.353 

0.5 

ARL1 1.149 1.333 1.775 32.563 1.211 1.498 2.306 45.642 

SDRL1 0.414 0.666 1.173 32.059 0.506 0.863 1.736 45.139 

MRL1 0.339 0.500 0.836 22.222 0.397 0.629 1.219 31.288 

1 

ARL1 1.045 1.131 1.376 12.151 1.072 1.218 1.693 16.513 

SDRL1 0.217 0.385 0.719 11.640 0.278 0.515 1.084 16.005 

MRL1 0.220 0.321 0.534 8.071 0.257 0.403 0.776 11.096 

AEQL 0.196 0.220 0.255 4.289 0.201 0.235 0.255 4.311 

PCI 1.000 1.122 1.299 21.839 1.000 1.166 1.268 21.428 

Table 3. The ARL1 values of the explicit formula for trend AR(2) model on the DEWMA, EWMA, and CUSUM charts with 

known parameters, 𝝀𝟐 = 𝟎. 𝟎𝟓, 𝝕 = 𝟎, and 𝜸 = 𝟎. 𝟓 under different conditions. 

𝝓𝒊 𝝓𝟏 = 𝝓𝟐 = 𝟎. 𝟑 𝝓𝟏 = 𝟎. 𝟑, 𝝓𝟐 = −𝟎. 𝟑 

 

𝜹 

Control 
chart 

DEWMA1 

(𝝀𝟏 = 𝟎. 𝟎𝟓) 

DEWMA2 

(𝝀𝟏 = 𝟎. 𝟏𝟎) 

EWMA 

(𝝀𝟏 = 𝟏) 

CUSUM 

(𝝑 = 𝟑) 

DEWMA1 

(𝝀𝟏 = 𝟎. 𝟎𝟓) 

DEWMA2 

(𝝀𝟏 = 𝟎. 𝟏𝟎) 

EWMA 

(𝝀𝟏 = 𝟏) 

CUSUM 

(𝝑 = 𝟑) 

UCL 0.0000185698 0.000274769 0.01674441 4.887 0.0000338418 0.0005012559 0.03073175 3.663 

0.001 

ARL1 115.255 147.657 191.934 366.813 124.976 162.858 215.152 367.658 

SDRL1 114.754 147.156 191.433 366.313 124.475 162.357 214.651 367.158 

MRL1 79.542 102.001 132.692 253.909 86.280 112.538 148.785 254.494 

0.002 

ARL1 68.452 92.434 129.761 363.590 75.393 104.608 151.851 365.285 

SDRL1 67.951 91.933 129.260 363.090 74.891 104.107 151.350 364.785 

MRL1 47.100 63.723 89.596 251.675 51.911 72.162 104.908 252.850 

0.01 

ARL1 16.547 23.620 36.674 339.028 18.506 27.576 45.884 347.003 

SDRL1 16.039 23.115 36.170 338.528 17.999 27.072 45.382 346.503 

MRL1 11.119 16.023 25.072 234.650 12.478 18.766 31.457 240.177 

0.02 

ARL1 8.782 12.546 19.710 311.144 9.817 14.687 24.935 325.800 

SDRL1 8.267 12.036 19.203 310.644 9.303 14.178 24.429 325.300 

MRL1 5.734 8.345 13.312 215.322 6.452 9.829 16.934 225.481 

0.1 

ARL1 2.352 3.182 4.846 166.402 2.577 3.668 6.114 205.069 

SDRL1 1.783 2.635 4.318 165.901 2.016 3.129 5.592 204.568 

MRL1 1.252 1.837 2.999 114.994 1.411 2.178 3.881 141.796 

0.5 

ARL1 1.143 1.319 1.736 25.057 1.188 1.434 2.081 43.288 

SDRL1 0.405 0.649 1.130 24.552 0.472 0.788 1.500 42.785 

MRL1 0.334 0.488 0.807 17.019 0.376 0.580 1.058 29.657 

1 

ARL1 1.043 1.124 1.353 10.225 1.061 1.183 1.558 15.600 

SDRL1 0.211 0.373 0.691 9.713 0.255 0.466 0.933 15.092 

MRL1 0.217 0.314 0.516 6.735 0.243 0.372 0.675 10.463 

AEQL 0.195 0.215 0.244 3.186 0.199 0.227 0.244 4.091 

PCI 1.000 1.105 1.253 16.378 1.000 1.142 1.227 20.598 
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4-2- The Real-World Datasets 

Two applications, the prices of Bitcoin and Ethereum, are brought up for analysis in this section, utilizing daily 

datasets and the trend AR(1) and trend AR(2) models, respectively. Those were fitted as the models by SPSS. The results 

for two datasets that are suitable inputs for the trend AR(p) model and display suitable parameters are shown in Table 4. 

The significance of white noise's fit to the exponential mean was then determined using the one-sample Kolmogorov-

Smirnov test, as shown in Table 5. 

Table 4. The coefficients for the trend AR(p) models using the real-world datasets 

Application Application 1: Trend AR(1) model Application 2: Trend AR(2) model 

parameters Coefficient Std. Error t-Statistic p-value Coefficient Std. Error t-Statistic p-value 

constant 16.946 1.416 11.967 0 11.009 0.770 14.297 0.000 

trend 0.085 0.038 24.949 0 0.066 0.015 4.416 0.000 

AR(1) 0.948 0.029 2.931 0.004 0.685 0.113 6.053 0.000 

AR(2)  0.242 0.113 2.130 0.036 

Table 5. One-sample Kolmogorov test for the real-world datasets 

Residual of Application 
Residual of Application 1: 

Trend AR(1) model 

Residual of Application 2: 

Trend AR(2) model 

Exponential parameter 0.4357 0.2815 

One-sample Kolmogorov-Smirnov test 0.540 0.787 

p-value 0.932 0.566 

For application 1, daily data of the prices of Bitcoin (unit: 1,000 USD) from December 16, 2022, to March 5, 2023. 

It was fitted to the trend AR(1), which expressed itself as 𝑌𝑡 = 16.946 + 0.085𝑡 + 0.948𝑌𝑡−1 + 𝜉𝑡 , where 𝜉𝑡 ∼
𝐸𝑥𝑝(𝛬0 = 0.4357).  

For application 2, daily data of the prices of Ethereum (unit: 100 USD) from November 21, 2022 to February 8, 2023. 

It was fitted to the trend AR(2), which expressed itself as  

𝑌𝑡 = 11.009 + 0.066𝑡 + 0.685𝑌𝑡−1 + 0.242𝑌𝑡−2 + 𝜉𝑡 , where 𝜉𝑡 ∼ 𝐸𝑥𝑝(𝛬0 = 0.2815).  

The ARL1 values for the DEWMA (different ; 0.05, 0.10), EWMA (𝜆1= 1), and CUSUM charts are displayed in 

Table 6. According to the findings of the control chart comparison, the DEWMA chart with the lower 𝜆1 had a lower 

ARL1 and performed better than the EWMA chart in every scenario. In addition, to verify performance, the AEQL and 

PCI values were also used in the same way as the simulated results above. The results show that the AEQL value of the 

DEWMA chart is lower than the AEQL values of the EWMA and CUSUM charts, and the PCI value of the DEWMA 

chart has 𝜆1 equal to 1, as in the simulated data above. As a result, the results indicate that the outcomes of two 

applications with underlying trend AR(1) and AR(2) models are similar to simulated data, as illustrated in Figure 2. And 

then, the AEQL and PCI values supported the control chart's effectiveness by using ARL1 values in the formulas 

mentioned above. The outcomes demonstrate that, as shown in Figure 3, the DEWMA chart with  equal to 0.05 

outperformed the DEWMA chart with greater 𝜆1 , the EWMA and CUSUM charts, all of which had higher AEQL and 

PCI > 1, by having the lowest AEQL and PCI equal to 1. 

Table 6. The ARL1 values of the explicit formula on the DEWMA, EWMA, and CUSUM charts with real-world datasets in 

cases of digital currency prices with known parameters for ARL0 =370 

 Application 1 Application 2 

 

𝜹 

Control 

chart 
DEWMA1 

(𝝀𝟏 = 𝟎. 𝟎𝟓) 
DEWMA2 

(𝝀𝟏 = 𝟎. 𝟏𝟎) 
EWMA 

(𝝀𝟏 = 𝟏) 
CUSUM 

(𝝑 = 𝟑) 
DEWMA1 

(𝝀𝟏 = 𝟎. 𝟎𝟓) 
DEWMA2 

(𝝀𝟏 = 𝟎. 𝟏𝟎) 
EWMA 

(𝝀𝟏 = 𝟏) 
CUSUM 

(𝝑 = 𝟏) 

UCL 0.000000064363 0.0000126847 0.00797175 0.018 0.00000005458 0.0000225125 0.0286805 0.482 

0.001 

ARL1 80.203 120.237 205.480 368.409 72.757 122.286 296.067 367.805 

SDRL1 79.702 119.736 204.979 367.909 72.255 121.785 295.567 367.305 

MRL1 55.245 82.995 142.081 255.015 50.084 84.415 204.871 254.596 

0.002 

ARL1 40.776 65.430 132.290 365.924 40.573 73.459 246.649 365.482 

SDRL1 40.273 64.928 131.789 365.424 40.070 72.957 246.148 364.982 

MRL1 27.916 45.005 91.349 253.292 27.775 50.571 170.617 252.986 

0.01 

ARL1 9.595 16.049 38.430 349.144 9.962 19.135 111.122 349.035 

SDRL1 9.081 15.541 37.927 348.644 9.448 18.628 110.621 348.535 

MRL1 6.297 10.774 26.290 241.661 6.552 12.913 76.677 241.586 

1𝜆

1𝜆
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0.02 

ARL1 5.212 8.609 20.913 329.912 5.349 10.150 65.595 329.503 

SDRL1 4.685 8.094 20.407 329.412 4.823 9.637 65.093 329.003 

MRL1 3.254 5.614 14.146 228.331 3.349 6.683 45.120 228.047 

0.1 

ARL1 1.597 2.311 5.125 216.283 1.621 2.636 15.752 215.012 

SDRL1 0.977 1.740 4.598 215.782 1.003 2.076 15.244 214.511 

MRL1 0.705 1.222 3.194 149.569 0.722 1.453 10.568 148.688 

0.5 

ARL1 1.027 1.136 1.811 51.561 1.029 1.200 4.069 50.544 

SDRL1 0.165 0.393 1.212 51.059 0.173 0.490 3.534 50.041 

MRL1 0.190 0.326 0.863 35.392 0.195 0.387 2.458 34.687 

1 

ARL1 1.004 1.040 1.397 19.246 1.004 1.067 2.600 18.706 

SDRL1 0.062 0.203 0.745 18.739 0.067 0.268 2.040 18.199 

MRL1 0.125 0.212 0.551 12.991 0.128 0.251 1.428 12.616 

AEQL 0.183 0.193 0.273 4.924 0.183 0.200 0.545 4.809 

PCI 1.000 1.056 1.496 26.933 1.000 1.093 2.976 26.271 

 

(a)  

(b)  

Figure 2. ARL1 values on the control charts with real-world datasets for; (a) Trend AR(1) and (b) Trend AR(2) 
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(a)  

(b)  

Figure 3. AEQL and PCI values on the control charts with real-world datasets for: (a) Trend AR(1) and (b) Trend AR(2) 

After that, Figure 4 further demonstrates how well the control chart functions to identify shift changes during the 

monitoring process. And also, the performance of the CUSUM chart shown above indicates that CUSUM charts are 

significantly less effective than EWMA types such as DEWMA and EWMA charts. The CUSUM chart is therefore not 

shown in the detection diagram section of Figure 4. In this part, the DEWMA with 𝟏 and 𝟐 equals 0.10 and 0.05, that 

was compared to EWMA chart. While the DEWMA chart for Application 1 acknowledges shifts as being out of control 

at the 8th observation, the EWMA chart does so at the 14th observation. While, the DEWMA chart for Application 2 

acknowledges shifts as being out of control at the 12th observation, but the EWMA chart does so at the 27th observation. 

According to the findings, the double EWMA control chart may be able to identify shift changes more quickly than the 

EWMA control chart throughout the monitoring process. Therefore, an excellent option for spotting change is the 

DEWMA chart, which performs the best under the situations in this study. However, this finding was shown in cases 

where the data were only underlying a trend autoregressive process. If the data are from another process that is not a 

trend autoregressive model, it may not be appropriate to use this proposed ARL on the DEWMA chart for monitoring 

the process mean changes and may need to be studied further. 
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(d)  

Figure 4. The capability of detecting processes of control charts in cases of two applications with underlying trend AR(p) 

model; trend AR(1) on (a) EWMA chart, (b) DEWMA chart, and trend AR(2) on (c) EWMA chart, (d) DEWMA chart 

5- Conclusion 

The exact ARL solution, compared in performance to the NIE approach's ARL, was found to help reduce processing 

time and was used to assess the sensitivity of DEWMA charts based on the running trend AR(p) model with exponential 

white noise. After that, the explicit ARL on running the DEWMA chart was compared to the EWMA and CUSUM 

charts under the out-of-control process with different shift sizes (compared by using ARL1, SDRL1, and MRL1 values). 

Next, the sensitivity of control charts is verified by two measures, such as AEQL and PCI. According to the results, the 

DEWMA chart has the highest performance, and when 𝜆 was small, the DEWMA chart had high sensitivity for detecting 

processes. Additionally, actual data can be used to apply the exact ARL solutions, producing results that are identical to 

those of simulated data. Real-world data following the AR(p) trend model with exponential distribution white noise 

might be analyzed using these formulas, as might the prices of digital currencies such as Bitcoin and Ethereum, both of 

which were used. As a result, the explicit formula was a good method for determining the ARL for shift changes based 

on observations in the DEWMA chart to use a precise ARL solution, which improved the sensitivity of the DEWMA 

chart for parameter shift detection. In this study, the proposed explicit formula may have some limitations. It works very 

well only for data that is characterized as being autocorrelated with an autoregressive model. However, this research is 

a good starting point to further improve the sensitivity of detecting small process changes under various data formats in 

future scenarios. Last, future studies will be conducted on the explicit ARL formulas on the DEWMA chart to appropriate 

them with the other model of real data. Also, we will derive the explicit formula on modern control charts using this 

approach to improve their efficacy for detecting change in different situations. 
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