
Computer Physics Communications 296 (2024) 109034

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computational Physics

Rigid clumps in the MercuryDPM particle dynamics code ✩

Igor Ostanin a,∗, Vasileios Angelidakis b,c, Timo Plath a, Sahar Pourandi a, Anthony Thornton a,
Thomas Weinhart a

a Multi-Scale Mechanics (MSM), Faculty of Engineering Technology, MESA+, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
b Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
c School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, United Kingdom

A R T I C L E I N F O A B S T R A C T

Dataset link: https://

bitbucket .org /mercurydpm /mercurydpm

Keywords:

Discrete element methods

Rigid clumps

Nonspherical particle dynamics

Discrete particle simulations have become the standard in science and industrial applications exploring the
properties of particulate systems. Most of such simulations rely on the concept of interacting spherical particles
to describe the properties of particulates, although, the correct representation of the nonspherical particle shape
is crucial for a number of applications. In this work we describe the implementation of clumps, i.e. assemblies of
rigidly connected spherical particles, which can approximate given nonspherical shapes, within the MercuryDPM

particle dynamics code. MercuryDPM contact detection algorithm is particularly efficient for polydisperse particle
systems, which is essential for multilevel clumps approximating complex surfaces. We employ the existing
open-source CLUMP library to generate clump particles. We detail the pre-processing tools providing necessary
initial data, as well as the necessary adjustments of the algorithms of contact detection, collision/migration and
numerical time integration. The capabilities of our implementation are illustrated for a variety of examples.
1. Introduction

1.1. Overview and scope

Rigid assemblies of spherical particles [1,2] are an important tool
to simulate materials consisting of particles of irregular shapes with the
discrete element method (DEM). The alternative approaches, that are
often employed to model non-spherical particles in DEM [3,4], have
certain limitations – polyhedral particle shapes [3] lead to difficulties
in generalisation of a wide set of well-established contact models for
spherical particles, while superquadrics [4] do not offer sufficiently gen-

eral particle shape representation toolkit. As a result, almost all modern
commercial DEM codes, e.g. EDEM [5] or PFC [6], include functionality
to model rigid assemblies of spherical particles.

However, as will be demonstrated below, the implementation of
rigid clumps in DEM introduces ambiguities that are hard to interpret
when the source code and exact implementation details are unavailable.
We seek to fill this gap, presenting fully functional, well-documented
and completely open source implementation of rigid particle assemblies
within the MercuryDPM [7] particle dynamics code, utilizing CLUMP li-
brary [8] for particle generation.

✩ The review of this paper was arranged by Prof. Hazel Andrew.

* Corresponding author.

Below we provide a brief overview of the MercuryDPM particle dy-

namics engine and discuss the notion of a rigid clump – a rigid assembly
of spherical particles – as it will be used in this paper. In the following
sections we will take a closer look at the necessary theoretical back-

ground, the implementation details and the examples of using rigid
clumps in numerical simulations with MercuryDPM.

1.2. MercuryDPM particle dynamics code

MercuryDPM [9] is an open-source realisation of DEM. It is mainly
used to simulate granular particles – collections of discrete particles that
can be found in many natural and artificial settings. Examples include
snow, sand, soil, coffee, rice, coal, pharmaceutical tablets, catalysts, and
animal feed. Understanding the behaviour of such materials is crucial
for industries like pharmaceuticals, mining, food processing, and man-

ufacturing.

The development of the code started in 2009 at the University of
Twente, and since then it has grown into a large framework with a wide
open-source community of academic and industrial users. The core de-

velopment team is still located at the University of Twente. MercuryDPM
Available online 30 November 2023
0010-4655/© 2023 Published by Elsevier B.V.

E-mail address: i.ostanin@utwente.nl (I. Ostanin).

https://doi.org/10.1016/j.cpc.2023.109034

Received 16 June 2023; Received in revised form 24 November 2023; Accepted 26 N
ovember 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
https://bitbucket.org/mercurydpm/mercurydpm
https://bitbucket.org/mercurydpm/mercurydpm
mailto:i.ostanin@utwente.nl
https://doi.org/10.1016/j.cpc.2023.109034
https://doi.org/10.1016/j.cpc.2023.109034
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.109034&domain=pdf

I. Ostanin, V. Angelidakis, T. Plath et al.

Fig. 1. Rigid clump and its inertial properties – conceptual illustration.

is a versatile, object-oriented C++ code that is built and tested using the
capabilities of cmake/ctest.

The code possesses three primary features enabling it to simulate
complex industrial and natural scenarios: (i) the flexible implementa-

tion allowing complex walls and boundary conditions; (ii) the analysis
toolkit, able to extract the most relevant information from the large
amount of data generated by these simulations, (iii) the advanced con-

tact detection scheme that makes MercuryDPM particularly efficient
for highly polydisperse particle systems; [10,7]. The latter feature is
particularly interesting in a context of simulating clumps, since fine
representation of shape of a non-spherical particle often requires highly
polydisperse clumps.

MercuryDPM normally operates with spherical particles (discrete el-

ements), characterized by the mass, radius, position, velocity and angu-

lar velocity. Also MercuryDPM offers support of superquadric particles
[7]. The Velocity Verlet time integration algorithm is utilised to update
the positions of each particle, while the forward Euler algorithm is em-

ployed for particle rotations. Particle interactions are governed by wide
variety of contact models which describe physical laws to compute the
normal and tangential forces resulting from particle’s contacts.

1.3. Rigid clumps

By rigid clump (or just clump) we will imply an aggregate of 𝑁 rigid
spherical particles of a given density, that are rigidly linked to each
other at a given relative translational and rotational positions (Fig. 1).
The constituent particles of a clump will be referred to as pebbles. The
clump is a rigid body possessing 6 degrees of freedom. Therefore, in
3D, the number of constraints that are implicitly introduced on relative
translational and rotational positions of particles is 6(𝑁 − 1).

The pebbles may (or may not) have overlaps, introducing volumes
within a clump that belong to more than one pebble. It is therefore im-

possible to algebraically sum up the inertia of the clump over pebbles
for a system of overlapping pebbles representing a complex-shaped par-

ticle. Our approaches to computing the inertia of clumps are discussed
below.

Our implementation builds on the multispheres featured in the ear-

lier versions of the code (see section 6.2 in [7]). However, the functional
and performance of the implementation have been significantly ex-

panded and improved via incorporation of multiple new features, archi-

tecture improvements and bugfixes. The new implementation allows to
address a wide class of problems that previously remained unavailable
- large simulation model sizes, arbitrarily complex clump geometries,
complex (e.g. moving periodic) boundary conditions etc.

2. Clump geometry generation with the CLUMP software

CLUMP software [8] has been developed recently to address the
problem of automatic generation of rigid clump particles by approxima-
2

tion of polyhedral shapes. MercuryDPM provides the necessary interface
Computer Physics Communications 296 (2024) 109034

to use CLUMP-generated particles in DEM simulations. This section of-

fers an overview of the main features of CLUMP and underlying clump
generation methodologies.

The open-source CLUMP software (Code Library to generate Univer-

sal Multi-sphere Particles) [8] is used to create clump representations of
irregular particle geometries. This software takes as input shape/imag-

ing data of various types, such as point clouds, surface meshes (e.g. in
the form of stereolithography/stl files), tetrahedral meshes and labelled
three dimensional images derived via Computed Tomography. Utilising
this input, three clump generation methods are implemented in the soft-

ware to create clump representations of them, proposed in [11], [12]

and [8].

The method of [11], one of the historically first clump generation
methods, is implemented in the software to generate clumps of axisym-

metric bodies. Although the original paper introducing the method [11]

does not delineate a way of generating clumps of real particles, the im-

plementation in CLUMP offers the capability of achieving this via the
following steps: a particle geometry is loaded from imaging data and
its inertia tensor is calculated; the principal inertia values and princi-

pal directions (PDs) are determined and the particle is oriented to its
PDs; then a user-defined number of spheres are generated along the
longest particle dimension, the size of which is decided so as to approx-

imate the shape of the input particle; last, the clump is oriented back
to the original orientation of the input particle. This method can gener-

ate elongated and compact particles of limited elongation, but cannot
generate particles with pronounced flat features.

For irregular particles that do not display axisymmetric features, the
method described in [12] is an efficient method to generate clumps
based on a triangulated mesh representation of the particle surface (i.e.
made of vertices and triangular faces). The method first calculates the
normal vectors of each vertex as the average of the adjacent face nor-

mal vectors; then, a random vertex is selected and a tangent sphere
is grown internally within the particle, until it intersects one of the
other particle vertices; the process is repeated until a sought number
of spheres is generated. If imaging data are given in a different for-

mat, e.g. via Computed Tomography, this is handled internally within

CLUMP, via transformation of the data to a surface mesh. The simplic-

ity of the method makes it appealing and computationally efficient, but
the random selection of vertices can lead to inadequate clumps for small
numbers of spheres per particle. In such cases, for the same number of
spheres the algorithm generates clumps of vastly different characteris-

tics, as there is no rationale behind the random selection of vertices.
As a result, for these cases there is no correlation between employed
number of spheres and achieved morphological fidelity. However, if a
large amount of spheres is considered computationally affordable by the
modeller (e.g. in [12] up to 5500 spheres were considered), this method
generates clumps with reduced artificial surface roughness, as reported
in [12].

A new clump generation technique was recently proposed as part
of CLUMP [8], which relies on the Euclidean transform of three-

dimensional images. A particle shape is either imported directly from
binarized (or labelled) images, or transformed into a three-dimensional
image from other data types (e.g. from surface mesh data); the Eu-

clidean transform of the image is calculated, and the maximum value of
the transform determines the location and radius of the largest possible
inscribed sphere that fits in the particle. This sphere is considered as the
first sphere, the voxels corresponding to a percentage of this sphere are
deactivated from the original image, leading to a residual image (origi-

nal minus a percentage of the sphere voxels); then, the Euclidean trans-

form of this new residual image is used to calculate the next sphere; the
process is repeated until a user-defined required number of spheres is
generated or if a user-defined minimum radius is achieved. This tech-

nique has the clear advantage that each new sphere is generated at
the position where the mass of the particle is least represented, thus
creating a clear correlation between the number of spheres (a descrip-
tor associated to computational cost) and the achieved morphological

Computer Physics Communications 296 (2024) 109034I. Ostanin, V. Angelidakis, T. Plath et al.

Fig. 2. Modes of operation of MClump tool.
similarity (a descriptor of simulation fidelity). With this method, each
sphere is of equal or smaller size to its previous one, and so particle
generation is performed in a systematic and predictable way. If all the
voxels of a sphere are deactivated after each iteration of the method, the
method results in clusters of non-overlapping spheres, while if only a
percentage of each sphere is deactivated, clumps of overlapping spheres
are generated, as delineated in [8]. The drawback of the method is its
high cost in terms of memory consumption (though still manageable
even for a regular desktop computer).

Choosing the optimal or preferred particle generation technique lies
with the user, as different applications and different particle types pose
different requirements in terms of the employed particle characteristics.
In terms of efficiency, all of the aforementioned techniques perform
well, mainly due to their algorithmic simplicity, allowing for the gener-

ation of several hundred particles within few minutes, for input imaging
data of reasonable resolution and size.

3. Rigid clumps in MercuryDPM

3.1. General organisation

The rigid clump functional in MercuryDPM is currently imple-

mented as a multilevel structure. The logic of unification of pebbles
in the clump, as well as the algorithms of time integration are imple-

mented in the class ./Kernel/particles/ClumpParticle.h/cc
inherited from an abstract nonspherical particle class ./Kernel/par-
ticles/NonSphericalParticle.h/cc, that, in turn is inherited
from the base particle class ./Kernel/particles/BaseParti-
cle.h/cc. It is expected that the functions inherent to all types of
nonspherical particles (e.g. rigid dynamics time integration) in the
future will be located in the class ./Kernel/particles/NonSpher-
icalParticle.h/cc.

The CLUMP software, described above, is used to generate positions
and radii of pebbles that describe the given nonspherical shape. The

CLUMP tool provides pebble data, which, along with the optionally pro-

vided initial stl format shape of the clump, constitute an input of

MClump pre-processing tool (part of MercuryDPM, cite [13]). Alterna-

tively, the pebble data for MClump can be generated manually.

MClump centres and rotates the clump, aligning its principal axes
with the global Cartesian axes, and computes clump’s inertia using the
prescribed algorithm (summation over pebbles, summation over vox-

els, summation over tetrahedrons using stl representation) - see the
description below. Fig. 2 details modes of work of MClump. In the first
mode, MClump imports list of pebbles and then does all the necessary
computations (centre of mass (COM), volume, tensor of inertia (TOI),
3

principal directions) based on summation over pebbles, as discussed
in Subsection 3.3.1. In the second mode, MClump imports list of peb-

bles, but performs inertia computations on the voxel grid, excluding
extra contributions of pebble’s overlaps (Subsection 3.3.2). In the third
mode, MClump receives the triangulated surface of a nonspherical par-

ticle, as well as its clumped sphere approximation generated by the
external tool (CLUMP library), and computes the necessary properties
(Subsection 3.3.3).

Headers for the driver files

./Drivers/Clump/ClumpHeaders/ClumpIO.h,

./Drivers/Clump/ClumpHeaders/Mercury3DClump.h,

introduce necessary features and modifications of the MercuryDPM

virtual members, enabling clump dynamics, namely:

• The modifications of the MercuryDPM engine, changing the logic of
application of contact forces and moments, as well as the external
forces (e.g. gravity).

• The adjustment of the logic of interaction of the clump and its peb-

bles with the periodic boundary.

• The import tool, that loads the all data of available clump instances,
including clump volume, TOI and the list of pebbles.

• Clump distribution generation functions, that create distributions
of non-overlapping rotated clumps in a given spatial domain.

Driver files (compiled simulation descriptions, see [7] for details)
utilise these tools to load the list of clump instances generated by

MClump, and, using them, generate necessary distributions of clumps
and compute their dynamics.

3.2. Clump creation logic

The unification of particles into rigid clumps occurs by assign-

ing to every particle instance the role of either a “clump” particle or
a “pebble” particle. Specifically, every instance of BaseParticle class
has Boolean attributes (flags) isClump and isPebble. The “peb-

ble” instances have isClump = False, isPebble = True. All the
“clump” (container) instances have isClump = True, isPebble =
False. Regular spherical particles have isClump = False, isPeb-
ble = False. Depending on the flags, these three1 types of particles
have different behaviour in contact detection, migration over bound-

aries etc. Namely, for the clump particle the interactions are treated at
the pebble level, while time integration of motion occurs at the clump
level. As has been discussed in [14], in case of (non-physical) multiple
contacts between the close pebbles of interacting clumps, the corre-

1 The 4−𝑡ℎ combination (isClump = True, isPebble = True) is explic-
itly excluded in the relevant particle class methods.

I. Ostanin, V. Angelidakis, T. Plath et al.

Fig. 3. Representation of a non-spherical shape as (A) triangulated surface, (B)
rigid clump of spherical particles, (C) 3D array of voxels.

sponding effective increase in stiffness should be taken into account.
Our implementation allows multiple contacts between the clumps, and
does not provide routines excluding non-physical contacts; the corre-

sponding routines should be implemented if necessary. The motion of
pebbles is prescribed according to translation and rotation of the cor-

responding clump. Clumps and pebbles have some other differences in
behaviour, e.g. in a context of interaction with periodic boundaries –
see the discussion below.

3.3. Computing inertial properties of a clump

Defining inertial properties of a clump is a non-trivial problem. The
analytical treatment is possible in case of absent overlaps (direct sum-

mation over pebbles, as implemented earlier [7]), and overlaps between
no more than two spherical pebbles (summation over pebbles and sub-

traction of “cap” segments, [15]). In our implementation, we use three
different approaches to compute mass and TOI of complex shape par-

ticles: summation over the pebbles, summation over the voxels and
summation over the tetrahedrons. Fig. 3 gives the qualitative idea about
these representations of the volume of a non-spherical particle. Let us
take a closer look at each of these approaches.

3.3.1. Summation over pebbles

This method of computation works if the pebbles do not overlap
or we presume that the inertial properties of a clump are defined by
the total mass of the pebbles. In this case the total mass and TOI can
be directly summed over the spherical pebbles using mass conservation
and Steiner’s theorem. Given the density of pebbles 𝜌, their radii 𝑟𝑗 and
positions in Cartesian system 𝐱𝑗 = (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗), we first find the mass of
the clump and the position of the centre of mass:

𝑀 =
∑

𝑚𝑗 =
∑ 4

3
𝜋𝑟3

𝑗
𝜌 (1)

𝐱𝑐 =
1
𝑀

∑
𝑚𝑗𝐱𝑗 (2)

At the next step, we shift the centre of the coordinate system to the
centre of mass:

𝐱𝑗 ∶= 𝐱𝑗 − 𝐱𝑐 (3)

then we compute the TOI by summing over pebbles:

𝐈 =
∑

𝐈𝑗 (4)

𝐈𝑗 =𝑚𝑗

⎛⎜⎜⎜⎝

2
5 𝑟

2
𝑗
+ 𝑦2

𝑗
+ 𝑧2

𝑗
−𝑥𝑗𝑦𝑗 −𝑥𝑗𝑧𝑗

−𝑥𝑗𝑦𝑗
2
5 𝑟

2
𝑗
+ 𝑥2

𝑗
+ 𝑧2

𝑗
−𝑦𝑗𝑧𝑗

−𝑥𝑗𝑧𝑗 −𝑦𝑗𝑧𝑗
2
5 𝑟

2
𝑗
+ 𝑥2

𝑗
+ 𝑦2

𝑗

⎞⎟⎟⎟⎠
(5)

Given the above-mentioned assumptions, this method is precise.

3.3.2. Summation over voxels

In case if pebbles overlap and clump was not generated from a tri-
4

angulated surface, we use voxel discretisation to compute mass and TOI
Computer Physics Communications 296 (2024) 109034

of a clump. The bounding box encapsulating every point of the clump
is expanded to the cubic box (𝑥𝑏, 𝑥𝑏 +𝑁𝑑, 𝑦𝑏, 𝑦𝑏 +𝑁𝑑, 𝑧𝑏, 𝑧𝑏 +𝑁𝑑) of
a minimal size, which is split into cubic voxels of side 𝑑, defined by
the specified number of voxels 𝑁 along the side of a bounding box.
Then the mask (𝑚, 𝑛, 𝑘) is introduced: (𝑚, 𝑛, 𝑘) = 1 if the centre of
the voxel 𝑚, 𝑛, 𝑘 is inside of at least one pebble, and (𝑚, 𝑛, 𝑘) = 0
otherwise. The coordinates of the centre of the voxel are found as
𝐱(𝑚, 𝑛, 𝑘) = (𝑥𝑏 + 𝑑(𝑚 + 0.5), 𝑦𝑏 + 𝑑(𝑛 + 0.5), 𝑧𝑏 + 𝑑(𝑘 + 0.5)). Then the
mass and the COM is computed as

𝑀 =
∑
𝑚

∑
𝑛

∑
𝑘

(𝑚,𝑛, 𝑘)𝜌𝑑3 (6)

𝐱𝑐 =
1
𝑀

∑
𝑚

∑
𝑛

∑
𝑘

(𝑚,𝑛, 𝑘)𝐱(𝑚,𝑛, 𝑘)𝜌𝑑3 (7)

Next, we shift the centre of the coordinate system to the centre of
mass:

𝐱𝑗 ∶= 𝐱𝑗 − 𝐱𝑐 (8)

then we compute the TOI by summing over voxels:

𝐈 =
∑
𝑚

∑
𝑛

∑
𝑘

𝐈𝑚𝑛𝑘 (9)

𝐈𝑚𝑛𝑘 = 𝜌𝑑3
⎛⎜⎜⎝
𝑦2
𝑚𝑛𝑘

+ 𝑧2
𝑚𝑛𝑘

−𝑥𝑚𝑛𝑘𝑦𝑚𝑛𝑘 −𝑥𝑚𝑛𝑘𝑧𝑚𝑛𝑘

−𝑥𝑚𝑛𝑘𝑦𝑚𝑛𝑘 𝑥2
𝑚𝑛𝑘

+ 𝑧2
𝑚𝑛𝑘

−𝑦𝑚𝑛𝑘𝑧𝑚𝑛𝑘

−𝑥𝑚𝑛𝑘𝑧𝑚𝑛𝑘 −𝑦𝑚𝑛𝑘𝑧𝑚𝑛𝑘 𝑥2
𝑚𝑛𝑘

+ 𝑦2
𝑚𝑛𝑘

⎞⎟⎟⎠
(10)

The precision of such estimate depends on the chosen resolution and
the complexity of the shape. The method requires brute-force summa-

tion over 106 − 109 voxels, therefore, pre-computation might take some
time.

3.3.3. Summation over tetrahedrons

If the clump is generated by approximation of known triangulated
surface, one can use the latter for an explicit calculation of the TOI
[16]. In this case the TOI is computed by the analytical summation
over tetrahedrons.

The COM of a tetrahedron 𝑗 with the vertices [𝐚1
𝑗
, 𝐚2

𝑗
, 𝐚3

𝑗
, 𝐚4

𝑗
] is given

by:

𝐜𝑗 =
𝐚1
𝑗
+ 𝐚2

𝑗
+ 𝐚3

𝑗
+ 𝐚4

𝑗

4
(11)

Volume of a tetrahedron 𝑗 is given by

𝑉𝑗 =
1
6

||||||||||

(𝑎1
𝑗
)𝑥 (𝑎1

𝑗
)𝑦 (𝑎1

𝑗
)𝑧 1

(𝑎2
𝑗
)𝑥 (𝑎2

𝑗
)𝑦 (𝑎2

𝑗
)𝑧 1

(𝑎3
𝑗
)𝑥 (𝑎3

𝑗
)𝑦 (𝑎3

𝑗
)𝑧 1

(𝑎4
𝑗
)𝑥 (𝑎4

𝑗
)𝑦 (𝑎4

𝑗
)𝑧 1

||||||||||
. (12)

Here the volume 𝑉𝑗 comes with the sign that depends on whether
the normal (𝐚3 −𝐚2) ×(𝐚4 −𝐚2) is directed into the half-space containing
the vertex 𝐚1 (negative sign) or vice versa.

Given arbitrary volume bounded by a triangulated surface Γ consist-

ing of a set of triangles 𝐬𝑗 , and an arbitrary point 𝐎, one can compute
the COM of the volume as:

𝐱𝑐 =
∑

𝐜𝑗𝑉𝑗 (13)

where 𝑉𝑗 and 𝐜𝑗 are the volume and COM of the tetrahedron
[𝐚1, 𝐚2, 𝐚3, 𝐚4] = [𝐎, 𝐬1

𝑗
, 𝐬2

𝑗
, 𝐬3

𝑗
]

Similarly to alternative approaches, we shift the coordinate system
to match its origin with the computed clump’s COM:

𝐱𝑗 ∶= 𝐱𝑗 − 𝐱𝑐 (14)

One can further compute mass and TOI of the body with respect to
its COM as the sum of masses and moments of inertia of constituent

tetrahedrons:

I. Ostanin, V. Angelidakis, T. Plath et al.

𝑀 = 𝜌
∑

𝑉𝑗

𝐈 =
∑

𝐈𝑗
(15)

Here the TOI of a tetrahedron with respect to its first vertex 𝐚1,
corresponding to the origin of the coordinate system and clump’s COM,
is computed according to [16]:

𝐈𝑗 = 𝜌

⎛⎜⎜⎝
𝑎 −𝑐′ −𝑏′

−𝑐′ 𝑏 −𝑎′

−𝑏′ −𝑎′ 𝑐

⎞⎟⎟⎠
(16)

where

𝑎 = ∫
𝐷

(𝑦2 + 𝑧2)𝑑𝐷, 𝑏 = ∫
𝐷

(𝑥2 + 𝑧2)𝑑𝐷, 𝑐 = ∫
𝐷

(𝑥2 + 𝑦2)𝑑𝐷,

𝑎′ = ∫
𝐷

𝑦𝑧𝑑𝐷, 𝑏′ = ∫
𝐷

𝑥𝑧𝑑𝐷, 𝑐′ = ∫
𝐷

𝑥𝑦𝑑𝐷,

(17)

where 𝐷 is the tetrahedral domain.

It worth noting that the paper [16] has a known [17] error, that is
fixed in (16): components 𝑏′ and 𝑐′ are erroneously swapped there.

Denoting [𝐚1, 𝐚2, 𝐚3, 𝐚4] = [(𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2), (𝑥3, 𝑦3, 𝑧3), (𝑥4, 𝑦4,
𝑧4)], the integrals (8) are solved explicitly as:

𝑎 = 𝑉𝑗 (𝑦21 + 𝑦1𝑦2 + 𝑦22 + 𝑦1𝑦3 + 𝑦2𝑦3 + 𝑦23 + 𝑦1𝑦4 + 𝑦2𝑦4 + 𝑦3𝑦4 + 𝑦24

+ 𝑧21 + 𝑧1𝑧2 + 𝑧22 + 𝑧1𝑧3 + 𝑧2𝑧3 + 𝑧23 + 𝑧1𝑧4 + 𝑧2𝑧4 + 𝑧3𝑧4 + 𝑧24)∕10
(18)

𝑏 = 𝑉𝑗 (𝑥21 + 𝑥1𝑥2 + 𝑥22 + 𝑥1𝑥3 + 𝑥2𝑥3 + 𝑥23 + 𝑥1𝑥4 + 𝑥2𝑥4 + 𝑥3𝑥4 + 𝑥24

+ 𝑧21 + 𝑧1𝑧2 + 𝑧22 + 𝑧1𝑧3 + 𝑧2𝑧3 + 𝑧23 + 𝑧1𝑧4 + 𝑧2𝑧4 + 𝑧3𝑧4 + 𝑧24)∕10
(19)

𝑐 = 𝑉𝑗 (𝑥21 + 𝑥1𝑥2 + 𝑥22 + 𝑥1𝑥3 + 𝑥2𝑥3 + 𝑥23 + 𝑥1𝑥4 + 𝑥2𝑥4 + 𝑥3𝑥4 + 𝑥24

+ 𝑦21 + 𝑦1𝑦2 + 𝑦22 + 𝑦1𝑦3 + 𝑦2𝑦3 + 𝑦23 + 𝑦1𝑦4 + 𝑦2𝑦4 + 𝑦3𝑦4 + 𝑦24)∕10
(20)

𝑎′ = 𝑉𝑗 (2𝑦1𝑧1 + 𝑦2𝑧1 + 𝑦3𝑧1 + 𝑦4𝑧1 + 𝑦1𝑧2 + 2𝑦2𝑧2 + 𝑦3𝑧2 + 𝑦4𝑧2 + 𝑦1𝑧3

+ 𝑦2𝑧3 + 2𝑦3𝑧3 + 𝑦4𝑧3 + 𝑦1𝑧4 + 𝑦2𝑧4 + 𝑦3𝑧4 + 2𝑦4𝑧4)∕20
(21)

𝑏′=𝑉𝑗 (2𝑥1𝑧1 + 𝑥2𝑧1 + 𝑥3𝑧1 + 𝑥4𝑧1 + 𝑥1𝑧2 + 2𝑥2𝑧2 + 𝑥3𝑧2 + 𝑥4𝑧2 + 𝑥1𝑧3

+ 𝑥2𝑧3 + 2𝑥3𝑧3 + 𝑥4𝑧3 + 𝑥1𝑧4 + 𝑥2𝑧4 + 𝑥3𝑧4 + 2𝑥4𝑧4)∕20
(22)

𝑐′=𝑉𝑗 (2𝑥1𝑦1 + 𝑥2𝑦1 + 𝑥3𝑦1 + 𝑥4𝑦1 + 𝑥1𝑦2 + 2𝑥2𝑦2 + 𝑥3𝑦2 + 𝑥4𝑦2 + 𝑥1𝑦3

+ 𝑥2𝑦3 + 2𝑥3𝑦3 + 𝑥4𝑦3 + 𝑥1𝑦4 + 𝑥2𝑦4 + 𝑥3𝑦4 + 2𝑥4𝑦4)∕20
(23)

This method gives precise TOI of the initial triangulated surface.
It worth noting that the formulae (13), (15) work for rather complex
(non-convex, multiply connected) domains: if the absolute volume of
tetrahedrons is higher than the volume of a body, the extra volume is
swept twice with tetrahedrons of positive and negative volume com-

puted according to (12), which results in correct values for body’s total
volume, mass, COM and TOI. The examples section gives the compar-

ison of the methods to compute inertial properties of a clump used in
our work.

3.4. Computing the clump’s PDs

Principal axes of inertia 𝐞1, 𝐞2, 𝐞3 are found as eigenvectors of 𝐈:

𝐈𝐞𝐢 = 𝜆𝑖𝐞𝐢 (24)

is r

𝐱 ∶

𝐈 ∶

wh

𝐐 =

wh

ort

3.5

𝐌
of
clu

the

is t
rot

of
equ

𝐼𝑖𝑖𝜔

rith

3.6

gor

sim

sha

ent

equ

ord

all
be

𝐌

�̇�𝑖(
alg
5

PDs are assured to form the right-handed Cartesian basis.
Computer Physics Communications 296 (2024) 109034

Once the PDs of the clump’s TOI are computed, the clump instance
otated to align its PDs with the Cartesian axes:

=𝐐𝐱 (25)

=𝐐𝑇 𝐈𝐐 (26)

ere 𝐐 is the rotation matrix defined as

⎛⎜⎜⎝
𝐧1𝐞1 𝐧2𝐞1 𝐧3𝐞1
𝐧1𝐞2 𝐧2𝐞2 𝐧3𝐞2
𝐧1𝐞3 𝐧2𝐞3 𝐧3𝐞3

⎞⎟⎟⎠
(27)

ere 𝐧𝑖 are the orths of global Cartesian coordinate system, and 𝐞𝑖 are
hs of clump’s eigendirections.

. Equations of motion of a rigid clump

Once we have procedures that compute overall force 𝐅 and moment
acting on the clump, we can solve the equations of motion using one
the schemes of numerical integration. For translational motion of a
mp, we use the velocity Verlet algorithm that does not differ from
 one employed for spherical particles, given that the particle mass
he mass of a clump. Below we consider the equations of motion for
ational degrees of freedom.

In the case when the TOI is non-spherical (the principal moments
inertia are not equal) the rotational dynamics is described by Euler
ations:

̇ 𝑖 − 𝐼𝑖𝑗 �̇�𝑗 + 𝜖𝑖𝑗𝑘𝜔𝑗 (𝐼𝑘𝑘𝜔𝑘 − 𝐼𝑘𝑙𝜔𝑙)) =𝑀𝑖; (𝑖 ≠ 𝑗, 𝑙 ≠ 𝑘) (28)

The non-spherical TOI 𝐼𝑖𝑗 is computed based on one of the algo-

ms discussed above.

. Time integration of the EoM of a rigid clump

The time integration scheme used in our code utilises a leap-frog al-

ithm of the time integration of the notion of non-spherical particle,
ilar to one utilised in PFC 4.0 [18]. We track the orientation in the
pe of rotation matrix 𝑄 that is used to reconstruct the current ori-

ation of local coordinate system and the positions of pebbles. The
ation (27) is solved using finite difference procedure of the second
er, computing angular velocities 𝜔𝑗 at mid-intervals 𝑡 + Δ𝑡∕2, and
other quantities at primary intervals 𝑡 + Δ𝑡. The equation (27) can
re-written in the matrix form as

−𝐖 = 𝐈�̇�

𝑀 =
⎛⎜⎜⎝
𝑀1
𝑀2
𝑀3

⎞⎟⎟⎠
𝑊 =

⎛⎜⎜⎝
(𝐼33 − 𝐼22)𝜔2𝜔3 + 𝐼23𝜔3𝜔3 − 𝐼32𝜔2𝜔2 − 𝐼31𝜔1𝜔2 + 𝐼21𝜔1𝜔3
(𝐼11 − 𝐼33)𝜔3𝜔1 + 𝐼31𝜔1𝜔1 − 𝐼13𝜔3𝜔3 − 𝐼12𝜔2𝜔3 + 𝐼32𝜔2𝜔1
(𝐼22 − 𝐼11)𝜔1𝜔2 + 𝐼12𝜔2𝜔2 − 𝐼21𝜔1𝜔1 − 𝐼23𝜔3𝜔1 + 𝐼13𝜔3𝜔2

⎞⎟⎟⎠
𝐼 =

⎛⎜⎜⎝
𝐼11 −𝐼12 −𝐼13
−𝐼21 𝐼22 −𝐼23
−𝐼31 −𝐼32 𝐼33

⎞⎟⎟⎠
(29)

We use the equation (29) to compute the values of 𝜔𝑖(𝑡 +Δ𝑡∕2) and
𝑡 +Δ𝑡). Following the approach suggested in [18] we use the iterative
orithm to find these unknowns:

• Set 𝑛 = 0
• Set 𝜔[0]

𝑖
to the initial angular velocity.

• (*) Solve (29) for �̇�𝑖

• Determine a new (intermediate) angular velocity: 𝜔[𝑛𝑒𝑤]
𝑖

= 𝜔
[0]
𝑖

+
�̇�
[𝑛]
𝑖
Δ𝑡
• Revise the estimate of 𝜔𝑖 as: 𝜔[𝑛+1]
𝑖

= 0.5(𝜔[0]
𝑖

+𝜔
[𝑛𝑒𝑤]
𝑖

)

I. Ostanin, V. Angelidakis, T. Plath et al.

• Set 𝑛 ∶= 𝑛 + 1 and go to (*)

This algorithm gives us the value of the angular velocity that is
further used to update the position at the second step of leap-frog algo-

rithm. The number of steps necessary for the sufficient precision varies
depending on the application and is usually chosen in range of 2 − 5.

The described approach is rather general, which potentially allows
extension of the notion of clumps on quite wide set of pebble entities, in-

cluding particles that do not track their orientations [18]. However, the
algorithm is inferior in terms of precision and performance compared
to modern rigid-body integrators [19,20], because of significant over-

head related to solving the equations of motion in inertial frame – this
can be significant for clumps consisting of small numbers of pebbles,
when the duration of rigid body integration is non-negligible compared
to duration of updating positions of pebbles.

3.7. Interaction of clump particles with periodic boundaries

The complete description of the logic of interaction of spherical
particles (classes BaseParticle, SphericalParticle) and periodic
boundaries can be found in [21]. This logic had to be adjusted for rigid
clumps. Below we briefly describe the corresponding modifications.

The original scheme utilises the concept of primary particles and
“ghost” particles that are introduced to represent interactions across
periodic boundaries. “Ghost” particles are created when the primary
particle approaches closely the periodic boundary, and “switch” status
with the primary particle when the migration over the periodic bound-

ary occurs. Our implementation introduced two minor modifications to
this scheme to ensure correct treatment of rigid clumps in a periodic
box:

• “Clump” particles are never erased/created in a course of the sim-

ulation. They migrate over the periodic boundary seamlessly by
direct specification of the position property. This way the necessity
of sending the “pebble” pointers between “clumps” is avoided.

• The “ghost” particles for “clumps” do not exist, since no interaction
is treated at the level of “clump” particles.

• The procedures of adding moments to a “clump” particle from the
forces/moments acting on “pebbles”, and computation of the trans-

lational velocity/position of “pebble” particles, utilise the mini-

mum image convention to determine the length of the “lever” – the
vector connecting the centre of “clump” particle (clump’s COM),
and the centre of “pebble” particle.

These adjustments are introduced in /Drivers/Clump/Clump-

Headers/Mercury3DClump.h, provide full functionality of all types
of periodic boundaries, implemented earlier in MercuryDPM.

3.8. Random generation of non-overlapping clumps

It is often necessary to create rigid clumps with random initial ori-

entation. In order to provide equal probability of every orientation, we
use the following scheme of clump random rotation: we first rotate
the clump instance counterclockwise about 𝑛3 direction by the angle
𝛼, and then rotate the clump to match its principal direction 𝑛3 with
the random vector on a unit sphere (𝜃, 𝜙) in a spherical coordinate sys-

tem: 𝑛𝑟𝑜𝑡3 = (sin𝜃 cos𝜙, sin𝜃 sin𝜙, cos𝜃). The random values of 𝛼, 𝜙 are
chosen uniformly in the range (0, 2𝜋), while the angle 𝜃 is chosen as
arccos(𝑝), where 𝑝 is uniformly distributed in (−1, 1). Such choice of
random orientation angles ensures equal probability of every possible
clump orientation.

In order to ensure a placement of a new clump into the deposition
domain without overlaps with the previous clumps, a straightforward
algorithm is used to ensure that neither pebble of newly deposited
6

clump overlaps with any pebble of the existing clump.
Computer Physics Communications 296 (2024) 109034

Fig. 4. (A) The model of a clump under test, represented with spherical peb-

bles, tetrahedrons and voxels. (B) Relative error in computation of clump’s mass
(Δ𝑀), major (Δ𝐼1) and minor (Δ𝐼3) principal components of inertia, as a func-

tion of the model refinement 𝑁 (see the definitions above), for tetrahedrons
(top) and voxels (bottom).

3.9. Modifications of energy computing routines

The routines computing rotational and translational kinetic energy
of the clump, as well as its potential gravitational energy, had to be
straightforwardly adjusted to reflect the correct inertial/gravitational
properties of a clump, computed as detailed above.

4. Examples

4.1. Computation of TOI – precision of the summation

This brief example illustrates the precision of our approaches used to
compute mass and tensor of inertia of the clumps. The test model con-

sists of two spherical pebbles of unit radius, with centres separated by
one diameter of a pebble (Fig. 4 (A) gives the model represented with
pebbles, tetrahedrons and voxels). This simple model allows immediate
exact evaluation of inertial properties of this non-spherical, non-convex
shape. The mass of the clump, as well as its major and minor moments
of inertia are then evaluated with tetrahedral and voxel discretisation.
The vertices of tetrahedrons are the origin (0, 0, 0) and the triangles
constructed by equispaced angular subdivision of each pebble sphere
on 𝑁 equal segments along latitude angle 𝜃 ∈ (0, 𝜋) and on 2𝑁 seg-

ments along azimuth angle 𝜙 ∈ (0, 2𝜋) (see Fig. 4 (A)). For the voxels,
the refinement degree 𝑁 is defined as the number of voxels along the
diameter of a pebble.

Fig. 4(B) demonstrates the convergence of relative error in computa-

tion of mass and principal moments of inertia with the degree of model
refinement 𝑁 . We can clearly see that the error is inversely propor-

tional to 𝑁 , both for tetrahedron and voxel discretisation. The latter,
however, features significant chaotic error, which suggests necessity of
further improvement of an algorithm.

4.2. Dynamics of a single particle - energy equipartition

The simple simulation depicted in Fig. 5(A) is located at Drivers/
Clump/Single/Single.cpp. An elastic, rod-like particle is placed
into a cubic box with elastic walls (no friction, no dissipation, linear
contact model is employed). At the initial moment of simulation, the

particle is assigned the initial translational velocity 𝑉 , orientation along

Computer Physics Communications 296 (2024) 109034I. Ostanin, V. Angelidakis, T. Plath et al.

Fig. 5. (A) The model of a single-atom ideal gas with one translational and one rotational degree of freedom. (B) Observed fractions of translational and rotational
kinetic energies as functions of time, for a time span comprising first 20 collisions. (C) The ratio between the rotational and translational kinetic energy, averaged
over sufficiently long simulation time (∼ 5 × 104 particle-wall collisions).

Fig. 6. (A) Evolution of the orientation of a T-bar, (B) observed relative drift of its kinetic energy.
x axis and zero initial angular velocity 𝑤. After few collisions, the align-

ment of the particle with x axis breaks, and each next collision causes
redistribution of energy between translational and rotational degrees
of freedom (Fig. 5(B)). In a long enough timeline we see the energy
equipartition between available degrees of freedom. For example, if the
particle bounces strictly along 𝑦 axis between two elastic walls, and
rotates around its principal axis co-oriented with 𝑧, it has only one
translational and one rotational degree of freedom. We can therefore
foresee that the equipartition will manifest itself with the ratio of 1
between the translational kinetic energy 𝑚𝑣2∕2 and rotational kinetic
energy 𝐼𝜔2∕2 in a sufficiently long simulation. This is precisely what
happens (Fig. 5(C)). Similarly, the different initial conditions leading
to a different system of available degrees of freedom lead to different
ratios. For example, if the initial translational velocity has two com-

ponents, leading to two translational degrees of freedom, the ratio of
rotational and translational energy converges to 0.5.

4.3. Dynamics of a single particle - Dzhanibekov effect

The example Drivers/Clump/TBar/TBar.cpp demonstrates so-

called Dzhanibekov effect - instability of rotation around the second
principal axis (see, e.g., [22]). It manifests itself in a series of flips of an
object rotating around its intermediate axis – the classical example is a
wingnut rotating around its axis in the condition of zero gravity. The
simulation in this example reproduces this effect for T-shaped clump
(Fig. 6(A)), rotating around its second principal axis (see Video 1 in the
supplementary information). It is important to note that the observed
angular momentum and rotational kinetic energy are well preserved
7

during the simulation – for example, as can be seen in Fig. 6(B), the
relative drift of the rotational energy does not exceed 10−3 for 8 flip
cycles.

4.4. Rolling of a Gömböc

Gömböc is the convex body that, being put on the flat surface,
has one point of stable and one point of unstable equilibrium [23].
Arbitrarily oriented at the initial moment, provided sufficient energy
dissipation, the gömböc finally arrives to its only stable equilibrium
position. We use the model of a gömböc depicted in Fig. 7(A) to cre-

ate a clump (Fig. 7(B)), mimicking the behaviour of a gömböc. The
clump was generated using the algorithm [12] and has 182 pebbles. We
simulated the dynamics of gömböc shape, dropped to the flat surface
(./Drivers/Clump/Gomboc/Gomboc.cpp) Our simulation (Video
2 in the supplementary information) indicates that, after a series of
metastable rotational oscillations (Fig. 7(C)), gömböc shape does in-

deed arrive to a unique stable orientation. Our experiments indicate
that if the initial energy of a gömböc is too low, it may get stuck in
one of the local energy minima that emerge due to approximation of
the original shape by a finite number of spherical particles. Besides this
effect, our simulations compare nicely with the experiments with real
Gömböc shape.

4.5. Domino effect

Domino effect is well known to be quite non-trivial benchmark
example for DEM simulation with nonspherical particles [24]. We pro-

vide a driver file designed for parametric studies of a domino effect

(see ./Drivers/Clump/Domino/Domino.cpp). Dominoes are rect-

Computer Physics Communications 296 (2024) 109034I. Ostanin, V. Angelidakis, T. Plath et al.

Fig. 7. Gömböc - (A) original stl model, (B) its rigid clump representation, computed according to [12], (C) Evolution of the translational and rotational kinetic
energy with time in the simulation. The simulation duration was chosen to feature entire motion trajectory of a gömböc with realistic damping parameters.
Fig. 8. (A) Geometry of DEM model of domino wave propagation, (B) Constant
rate of change of the potential energy with time in the steady-state domino
wave propagation (𝐸0 is the initial gravitational potential energy of the sys-

tem; the simulation duration roughly corresponds to duration of domino wave
propagation over 20 dominoes).

angular regular packings of pebbles, equispaced along the straight line
(Fig. 8(A)). At the initial moment the domino 1 is given an initial push
with the cue - a spherical particle. The initial propagation of the domino
wave is to a large extent affected by the initial velocity of the cue, how-

ever, the steady state velocity does not depend at all on this initial
velocity. This, in particular, manifests itself in a constant time deriva-

tive of the potential energy (Fig. 8(B)) that does not depend on the
initial cue velocity. This invariance of the domino wave velocity is well-

known and often attributed [25] to dissipative effects; however, there
are theoretical/numerical evidence [26,24] that it takes place even in
the case of perfectly elastic collisions between the dominoes.

4.6. Dense gas of interacting T-shaped particles in a periodic box

The driver Drivers/Clump/TGas/TGas.cpp demonstrates the
evolution of six hundreds of T-shaped rigid particles of arbitrary ini-

tial velocities, angular velocities and orientations, that are deposited
8

in a triple periodic box without initial overlaps, with zero initial rota-
tional velocities and random initial translational velocities (Fig. 9(A)).
Shortly after the beginning of the simulation, we can see the complete
energy equipartition (Fig. 9(B)). The driver code can be easily adjusted
to introduce elastic walls, gravity, dissipation etc.

4.7. Multiple clumps in a rotating drum

A concluding example Drivers/Clump/RotatingDrum/
RotatingDrum.cpp features a collective motion of complex-shaped
clumps in a rotating horizontal drum in the field of gravity (Fig. 10(A)).
The gömböc shape described above was used as a clump instance, 27
clumps were deposited in a volume of a drum without initial overlaps
between themselves and the walls of the drum. The contact friction
at both wall-clump and clump-clump contacts has zero rolling friction
and high sliding friction of 0.6. At the initial moment of simulation the
drum starts to rotate with the constant angular velocity. The Video 3
in the supplementary information highlights the dynamic evolution of
the system. Fig. 10(A) shows the geometry of the system, Fig. 10(B)
gives the evolution of the gravitational potential energy of the clumps
(normalized on the lowest energy observed in the beginning of the sim-

ulation) with time. One can see discrete events of sliding/repose of the
bed (8 per 2 full revolutions of the drum). This simulation validates the
efficiency of the clump implementation in a moderate-size single-core
simulation.

4.8. Efficiency of hierarchical grid contact detection algorithm for highly
polydisperse clump systems

One of the strong features of MercuryDPM is its efficient contact de-

tection algorithm oriented on highly polydisperse particle assemblies
[10]. It is interesting to see how the single-core simulation performance
of polydisperse clump systems is affected by the maximum number
of levels of hierarchical grid employed by the contact detection algo-

rithm (see [10,7] for details). Our benchmark examples predictably
demonstrate that small models do not benefit from multiple levels of
hierarchical grid used in contact detection, while larger models per-

form much faster with hierarchical grid turned on. The rotating drum
simulation described above is used here to demonstrate the effect of
multiple levels of hierarchical grid on the performance of simulation
of the polydisperse clumps. Two (otherwise identical) simulations with
different clump resolution were studied: model 1 had clumps of 182
pebbles (4914 pebbles in total) and the size ratio of the largest to the
smallest pebble of 28.83; model 2 had the same clump surface repre-

sented by 423 pebbles (11421 pebbles in total) with the size ratio of the

largest to the smallest pebble of 53.36 (Fig. 11(A)).

Computer Physics Communications 296 (2024) 109034I. Ostanin, V. Angelidakis, T. Plath et al.

Fig. 9. Multiple T-bars in a box. (A) Initial geometry, (B) evolution of rotational and translational kinetic energy with time; the simulation duration was chosen to
resolve the energy equipartition process. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 10. Clumps in a rotating drum. (A) Problem geometry, (B) normalized potential energy of the clumps versus time, featuring sloshing motion pattern.

Fig. 11. Illustration of effect of multiple grid levels on computational performance. (A) Clumps used in model 1 and model 2, (B) Dependence of compute time and

model time for two models and contact detection approach used.

Both models were studied in simulations with contact detection
algorithm limited to one hierarchical grid level (regular linked cell
algorithm, blue plots on Fig. 11(B)) and with three hierarchical grid
levels (MercuryDPM default value, green plots on Fig. 11(B)). Accurate
comparison of performance results in 57% increase in the cycle-time
performance for the model 1 and 87% - for the model 2. For larger
models this increase in performance is expected to be even more dra-
9

matic [10]. Therefore, we can see that MercuryDPM contact detection
algorithm makes it well-suited for modelling polydisperse clumped par-

ticle systems.

5. Conclusions

This work details the implementation of rigid clumps within Mer-

curyDPM particle dynamics code. Necessary pre-processing tools, kernel

modifications and driver files illustrating the applications are described.

Computer Physics Communications 296 (2024) 109034I. Ostanin, V. Angelidakis, T. Plath et al.

Due to advanced contact detection algorithm of MercuryDPM, our im-

plementation demonstrates high single-core performance for highly
polydisperse clumps. The new features will certainly be useful to the
MercuryDPM community. The codes are currently available in the Mas-

ter branch of the MercuryDPM project [27]. The implementation is un-

der ongoing development, the changes in the existing implementation
will be highlighted in the future release notes and the corresponding
papers.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

The data and codes are freely available via public repository https://

bitbucket .org /mercurydpm.

Acknowledgements

MercuryDPM has been supported by many projects, both past and
present. The features presented here were (partially) funded by the
Dutch Research Council (NWO), in the framework of the ENW PPP
Fund for the topsectors and from the Ministry of Economic Affairs in
the framework of the “PPS-Toeslagregeling”.

Appendix A. Supplementary material

Supplementary material related to this article can be found online
at https://doi .org /10 .1016 /j .cpc .2023 .109034.

References

[1] J.A.C. Gallas, S. Sokolovski, Grain non-sphericity effects on the angle of repose of
granular material, Int. J. Mod. Phys. B 07 (09n10) (1993) 2037–2046.

[2] G.T. Nolan, P.E. Kavanagh, Random packing of nonspherical particles, Powder Tech-

nol. 84 (3) (1995) 199–205.

[3] N. Govender, D.N. Wilke, S. Kok Blaze-demgpu, Modular high performance dem
framework for the gpu architecture, SoftwareX 5 (2016) 62–66.

[4] A. Podlozhnyuk, S. Pirker, C. Kloss, Efficient implementation of superquadric par-

ticles in discrete element method within an open-source framework, Comput. Part.
Mech. 4 (1) (2017) 101–118.

[5] https://altair .com /edem, 2023.

[6] https://www .itascacg .com /software /PFC, 2023.

[7] T. Weinhart, L. Orefice, M. Post, M.P. van Schrojenstein Lantman, I.F.C. Denissen,
D.R. Tunuguntla, J.M.F. Tsang, H. Cheng, M. Yousef Shaheen, H. Shi, P. Rapino,
E. Grannonio, N. Losacco, J. Barbosa, L. Jing, J. Alvarez Naranjo, S. Roy, W.K.
den Otter, A.R. Thornton, Fast, flexible particle simulations — an introduction to
MercuryDPM, Comput. Phys. Commun. 249 (2020) 107129.

[8] V. Angelidakis, S. Nadimi, M. Otsubo, S. Utili, CLUMP: a code library to generate
universal multi-sphere particles, SoftwareX 15 (2021) 100735.

[9] A. Thornton, T. Weinhart, T. Plath, I. Ostanin, MercuryDPM version 1.0.Alpha,
https://bitbucket .org /mercurydpm /mercurydpm /src /1 .0 .Alpha/, 8 2022.

[10] V. Ogarko, S. Luding, A fast multilevel algorithm for contact detection of arbitrarily
polydisperse objects, Comput. Phys. Commun. 183 (4) (2012) 931–936.

[11] J.F. Favier, M.H. Abbaspour-Fard, M. Kremmer, A.O. Raji, Shape representation of
axi-symmetrical, non-spherical particles in discrete element simulation using multi-

element model particles, in: Engineering Computations, 1999.

[12] J.F. Ferellec, G.R. McDowell, A method to model realistic particle shape and inertia
in DEM, Granul. Matter 12 (2010) 459–467.

[13] Mclump tool, https://bitbucket .org /mercurydpm /mercurydpm /src /master /Tools /
MClump/.

[14] M. Kodam, R. Bharadwaj, J. Curtis, B. Hancock, C. Wassgren, Force model consid-

erations for glued-sphere discrete element method simulations, Chem. Eng. Sci. 64
(2009) 3466.

[15] E.J.R. Parteli, Dem simulation of particles of complex shapes using the multisphere
method: application for additive manufacturing, AIP Conf. Proc. 1542 (1) (2013)
185–188.

[16] F. Tonon, Explicit exact formulas for the 3-d tetrahedron inertia tensor in terms of
its vertex coordinates, J. Math. Stat. 1 (1) (2005) 8–11.

[17] https://answers .launchpad .net /yade /+question /680409, 2019.

[18] Itasca Consulting Group Inc., PFC3D (Particle Flow Code in 3 Dimensions). Version
4.0, Itasca Consulting Group Inc., Minneapolis, 2008.

[19] S.M. Johnson, J.R. Williams, B.K. Cook, Quaternion-based rigid body rotation inte-

gration algorithms for use in particle methods, Int. J. Numer. Methods Eng. 74 (8)
(2008) 1303–1313.

[20] I.P. Omelyan, Algorithm for numerical integration of the rigid-body equations of
motion, Phys. Rev. E 58 (1) (1998) 1169.

[21] M.P. van Schrojenstein Lantman, A study on fundamental segregation mechanisms
in dense granular flows, PhD thesis, University of Twente, Netherlands, April 2019.

[22] M.S. Ashbaugh, C.C. Chicone, R.H. Cushman, The twisting tennis racket, J. Dyn.
Differ. Equ. 3 (1) (Jan 1991) 67–85.

[23] P.L. Várkonyi, G. Domokos, Mono-monostatic bodies, Math. Intell. 28 (4) (Sep 2006)
34–38.

[24] D. Ding, C. Lau, J. Westerhof, L. van der Hoeven, L. Kampstra, P. van der Beek,
I. Ostanin, How fast are elastic domino waves?, preprint, arXiv :2204 .07997 [abs],
2022.

[25] J.M.J. van Leeuwen, The domino effect, Am. J. Phys. 78 (7) (2010) 721–727.

[26] C.J. Efthimiou, M.D. Johnson, Domino waves, SIAM Rev. 49 (1) (2007) 111–120.

[27] https://bitbucket .org /mercurydpm /mercurydpm /branch /master, 2019.
10

https://bitbucket.org/mercurydpm
https://bitbucket.org/mercurydpm
https://doi.org/10.1016/j.cpc.2023.109034
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibEC7A505C77822C8D3A8B6B609D30473Fs1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibEC7A505C77822C8D3A8B6B609D30473Fs1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibA385EC1EF0B676031A84F0E758FD8777s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibA385EC1EF0B676031A84F0E758FD8777s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib616C8D95A17AB6C3D48D5B225D11B02As1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib616C8D95A17AB6C3D48D5B225D11B02As1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibF5FEDDE53D470A83DAD131537396551As1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibF5FEDDE53D470A83DAD131537396551As1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibF5FEDDE53D470A83DAD131537396551As1
https://altair.com/edem
https://www.itascacg.com/software/PFC
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib768DC2384C6BA7BAAF040AA2D59F0880s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib768DC2384C6BA7BAAF040AA2D59F0880s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib768DC2384C6BA7BAAF040AA2D59F0880s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib768DC2384C6BA7BAAF040AA2D59F0880s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib768DC2384C6BA7BAAF040AA2D59F0880s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibA9560B418330D3B39F93FB5DD4A9FF53s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibA9560B418330D3B39F93FB5DD4A9FF53s1
https://bitbucket.org/mercurydpm/mercurydpm/src/1.0.Alpha/
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib32A981F24160D6ABA3E4B9E331186972s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib32A981F24160D6ABA3E4B9E331186972s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib320F25F36854727B4B33C503BE931879s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib320F25F36854727B4B33C503BE931879s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib320F25F36854727B4B33C503BE931879s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibA54E2990D17A866825897C0D77E3242Cs1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibA54E2990D17A866825897C0D77E3242Cs1
https://bitbucket.org/mercurydpm/mercurydpm/src/master/Tools/MClump/
https://bitbucket.org/mercurydpm/mercurydpm/src/master/Tools/MClump/
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibF563F8F80D66814D7C209CE4AE0FA55Ds1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibF563F8F80D66814D7C209CE4AE0FA55Ds1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibF563F8F80D66814D7C209CE4AE0FA55Ds1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib84AAD86DA80D9E22FE14C617BF952D99s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib84AAD86DA80D9E22FE14C617BF952D99s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib84AAD86DA80D9E22FE14C617BF952D99s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib54FCECE2ED42583BDF0C261F22FAC88Cs1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib54FCECE2ED42583BDF0C261F22FAC88Cs1
https://answers.launchpad.net/yade/+question/680409
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibAB5A9652E94FDA327DF639DA7F66CBD6s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibAB5A9652E94FDA327DF639DA7F66CBD6s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib9FB68FE177ADF1EF64A726312EAF8531s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib9FB68FE177ADF1EF64A726312EAF8531s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib9FB68FE177ADF1EF64A726312EAF8531s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibC4C9E68229AE76B55EAE57512768A5F7s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibC4C9E68229AE76B55EAE57512768A5F7s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib080817E5564A912B1727DDD2F2DAAA29s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib080817E5564A912B1727DDD2F2DAAA29s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib1B94CB1EB7E64DBCACE20C78446BB209s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib1B94CB1EB7E64DBCACE20C78446BB209s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibA2E89EE27F69E45FAA13DC69A1338F20s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibA2E89EE27F69E45FAA13DC69A1338F20s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib97FAE39BFD56C35B6C860AA468C258E0s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib97FAE39BFD56C35B6C860AA468C258E0s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib97FAE39BFD56C35B6C860AA468C258E0s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bib69FD434C3A7BBD7D09B4CD0BF74954A4s1
http://refhub.elsevier.com/S0010-4655(23)00379-X/bibA7B966EC154B6656CA25529115873EEEs1
https://bitbucket.org/mercurydpm/mercurydpm/branch/master

	Rigid clumps in the MercuryDPM particle dynamics code
	1 Introduction
	1.1 Overview and scope
	1.2 MercuryDPM particle dynamics code
	1.3 Rigid clumps

	2 Clump geometry generation with the CLUMP software
	3 Rigid clumps in MercuryDPM
	3.1 General organisation
	3.2 Clump creation logic
	3.3 Computing inertial properties of a clump
	3.3.1 Summation over pebbles
	3.3.2 Summation over voxels
	3.3.3 Summation over tetrahedrons

	3.4 Computing the clump’s PDs
	3.5 Equations of motion of a rigid clump
	3.6 Time integration of the EoM of a rigid clump
	3.7 Interaction of clump particles with periodic boundaries
	3.8 Random generation of non-overlapping clumps
	3.9 Modifications of energy computing routines

	4 Examples
	4.1 Computation of TOI -- precision of the summation
	4.2 Dynamics of a single particle - energy equipartition
	4.3 Dynamics of a single particle - Dzhanibekov effect
	4.4 Rolling of a Gömböc
	4.5 Domino effect
	4.6 Dense gas of interacting T-shaped particles in a periodic box
	4.7 Multiple clumps in a rotating drum
	4.8 Efficiency of hierarchical grid contact detection algorithm for highly polydisperse clump systems

	5 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References

