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Discrete particle simulations have become the standard in science and industrial applications exploring the 
properties of particulate systems. Most of such simulations rely on the concept of interacting spherical particles 
to describe the properties of particulates, although, the correct representation of the nonspherical particle shape 
is crucial for a number of applications. In this work we describe the implementation of clumps, i.e. assemblies of 
rigidly connected spherical particles, which can approximate given nonspherical shapes, within the MercuryDPM

particle dynamics code. MercuryDPM contact detection algorithm is particularly efficient for polydisperse particle 
systems, which is essential for multilevel clumps approximating complex surfaces. We employ the existing 
open-source CLUMP library to generate clump particles. We detail the pre-processing tools providing necessary 
initial data, as well as the necessary adjustments of the algorithms of contact detection, collision/migration and 
numerical time integration. The capabilities of our implementation are illustrated for a variety of examples.
1. Introduction

1.1. Overview and scope

Rigid assemblies of spherical particles [1,2] are an important tool 
to simulate materials consisting of particles of irregular shapes with the 
discrete element method (DEM). The alternative approaches, that are 
often employed to model non-spherical particles in DEM [3,4], have 
certain limitations – polyhedral particle shapes [3] lead to difficulties 
in generalisation of a wide set of well-established contact models for 
spherical particles, while superquadrics [4] do not offer sufficiently gen-

eral particle shape representation toolkit. As a result, almost all modern 
commercial DEM codes, e.g. EDEM [5] or PFC [6], include functionality 
to model rigid assemblies of spherical particles.

However, as will be demonstrated below, the implementation of 
rigid clumps in DEM introduces ambiguities that are hard to interpret 
when the source code and exact implementation details are unavailable. 
We seek to fill this gap, presenting fully functional, well-documented 
and completely open source implementation of rigid particle assemblies 
within the MercuryDPM [7] particle dynamics code, utilizing CLUMP li-
brary [8] for particle generation.

✩ The review of this paper was arranged by Prof. Hazel Andrew.

* Corresponding author.

Below we provide a brief overview of the MercuryDPM particle dy-

namics engine and discuss the notion of a rigid clump – a rigid assembly 
of spherical particles – as it will be used in this paper. In the following 
sections we will take a closer look at the necessary theoretical back-

ground, the implementation details and the examples of using rigid 
clumps in numerical simulations with MercuryDPM.

1.2. MercuryDPM particle dynamics code

MercuryDPM [9] is an open-source realisation of DEM. It is mainly 
used to simulate granular particles – collections of discrete particles that 
can be found in many natural and artificial settings. Examples include 
snow, sand, soil, coffee, rice, coal, pharmaceutical tablets, catalysts, and 
animal feed. Understanding the behaviour of such materials is crucial 
for industries like pharmaceuticals, mining, food processing, and man-

ufacturing.

The development of the code started in 2009 at the University of 
Twente, and since then it has grown into a large framework with a wide 
open-source community of academic and industrial users. The core de-

velopment team is still located at the University of Twente. MercuryDPM
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Fig. 1. Rigid clump and its inertial properties – conceptual illustration.

is a versatile, object-oriented C++ code that is built and tested using the 
capabilities of cmake/ctest.

The code possesses three primary features enabling it to simulate 
complex industrial and natural scenarios: (i) the flexible implementa-

tion allowing complex walls and boundary conditions; (ii) the analysis 
toolkit, able to extract the most relevant information from the large 
amount of data generated by these simulations, (iii) the advanced con-

tact detection scheme that makes MercuryDPM particularly efficient 
for highly polydisperse particle systems; [10,7]. The latter feature is 
particularly interesting in a context of simulating clumps, since fine 
representation of shape of a non-spherical particle often requires highly 
polydisperse clumps.

MercuryDPM normally operates with spherical particles (discrete el-

ements), characterized by the mass, radius, position, velocity and angu-

lar velocity. Also MercuryDPM offers support of superquadric particles 
[7]. The Velocity Verlet time integration algorithm is utilised to update 
the positions of each particle, while the forward Euler algorithm is em-

ployed for particle rotations. Particle interactions are governed by wide 
variety of contact models which describe physical laws to compute the 
normal and tangential forces resulting from particle’s contacts.

1.3. Rigid clumps

By rigid clump (or just clump) we will imply an aggregate of 𝑁 rigid 
spherical particles of a given density, that are rigidly linked to each 
other at a given relative translational and rotational positions (Fig. 1). 
The constituent particles of a clump will be referred to as pebbles. The 
clump is a rigid body possessing 6 degrees of freedom. Therefore, in 
3D, the number of constraints that are implicitly introduced on relative 
translational and rotational positions of particles is 6(𝑁 − 1).

The pebbles may (or may not) have overlaps, introducing volumes 
within a clump that belong to more than one pebble. It is therefore im-

possible to algebraically sum up the inertia of the clump over pebbles 
for a system of overlapping pebbles representing a complex-shaped par-

ticle. Our approaches to computing the inertia of clumps are discussed 
below.

Our implementation builds on the multispheres featured in the ear-

lier versions of the code (see section 6.2 in [7]). However, the functional 
and performance of the implementation have been significantly ex-

panded and improved via incorporation of multiple new features, archi-

tecture improvements and bugfixes. The new implementation allows to 
address a wide class of problems that previously remained unavailable 
- large simulation model sizes, arbitrarily complex clump geometries, 
complex (e.g. moving periodic) boundary conditions etc.

2. Clump geometry generation with the CLUMP software

CLUMP software [8] has been developed recently to address the 
problem of automatic generation of rigid clump particles by approxima-
2

tion of polyhedral shapes. MercuryDPM provides the necessary interface 
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to use CLUMP-generated particles in DEM simulations. This section of-

fers an overview of the main features of CLUMP and underlying clump 
generation methodologies.

The open-source CLUMP software (Code Library to generate Univer-

sal Multi-sphere Particles) [8] is used to create clump representations of 
irregular particle geometries. This software takes as input shape/imag-

ing data of various types, such as point clouds, surface meshes (e.g. in 
the form of stereolithography/stl files), tetrahedral meshes and labelled 
three dimensional images derived via Computed Tomography. Utilising 
this input, three clump generation methods are implemented in the soft-

ware to create clump representations of them, proposed in [11], [12]

and [8].

The method of [11], one of the historically first clump generation 
methods, is implemented in the software to generate clumps of axisym-

metric bodies. Although the original paper introducing the method [11]

does not delineate a way of generating clumps of real particles, the im-

plementation in CLUMP offers the capability of achieving this via the 
following steps: a particle geometry is loaded from imaging data and 
its inertia tensor is calculated; the principal inertia values and princi-

pal directions (PDs) are determined and the particle is oriented to its 
PDs; then a user-defined number of spheres are generated along the 
longest particle dimension, the size of which is decided so as to approx-

imate the shape of the input particle; last, the clump is oriented back 
to the original orientation of the input particle. This method can gener-

ate elongated and compact particles of limited elongation, but cannot 
generate particles with pronounced flat features.

For irregular particles that do not display axisymmetric features, the 
method described in [12] is an efficient method to generate clumps 
based on a triangulated mesh representation of the particle surface (i.e. 
made of vertices and triangular faces). The method first calculates the 
normal vectors of each vertex as the average of the adjacent face nor-

mal vectors; then, a random vertex is selected and a tangent sphere 
is grown internally within the particle, until it intersects one of the 
other particle vertices; the process is repeated until a sought number 
of spheres is generated. If imaging data are given in a different for-

mat, e.g. via Computed Tomography, this is handled internally within

CLUMP, via transformation of the data to a surface mesh. The simplic-

ity of the method makes it appealing and computationally efficient, but 
the random selection of vertices can lead to inadequate clumps for small 
numbers of spheres per particle. In such cases, for the same number of 
spheres the algorithm generates clumps of vastly different characteris-

tics, as there is no rationale behind the random selection of vertices. 
As a result, for these cases there is no correlation between employed 
number of spheres and achieved morphological fidelity. However, if a 
large amount of spheres is considered computationally affordable by the 
modeller (e.g. in [12] up to 5500 spheres were considered), this method 
generates clumps with reduced artificial surface roughness, as reported 
in [12].

A new clump generation technique was recently proposed as part 
of CLUMP [8], which relies on the Euclidean transform of three-

dimensional images. A particle shape is either imported directly from 
binarized (or labelled) images, or transformed into a three-dimensional 
image from other data types (e.g. from surface mesh data); the Eu-

clidean transform of the image is calculated, and the maximum value of 
the transform determines the location and radius of the largest possible 
inscribed sphere that fits in the particle. This sphere is considered as the 
first sphere, the voxels corresponding to a percentage of this sphere are 
deactivated from the original image, leading to a residual image (origi-

nal minus a percentage of the sphere voxels); then, the Euclidean trans-

form of this new residual image is used to calculate the next sphere; the 
process is repeated until a user-defined required number of spheres is 
generated or if a user-defined minimum radius is achieved. This tech-

nique has the clear advantage that each new sphere is generated at 
the position where the mass of the particle is least represented, thus 
creating a clear correlation between the number of spheres (a descrip-
tor associated to computational cost) and the achieved morphological 
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Fig. 2. Modes of operation of MClump tool.
similarity (a descriptor of simulation fidelity). With this method, each 
sphere is of equal or smaller size to its previous one, and so particle 
generation is performed in a systematic and predictable way. If all the 
voxels of a sphere are deactivated after each iteration of the method, the 
method results in clusters of non-overlapping spheres, while if only a 
percentage of each sphere is deactivated, clumps of overlapping spheres 
are generated, as delineated in [8]. The drawback of the method is its 
high cost in terms of memory consumption (though still manageable 
even for a regular desktop computer).

Choosing the optimal or preferred particle generation technique lies 
with the user, as different applications and different particle types pose 
different requirements in terms of the employed particle characteristics. 
In terms of efficiency, all of the aforementioned techniques perform 
well, mainly due to their algorithmic simplicity, allowing for the gener-

ation of several hundred particles within few minutes, for input imaging 
data of reasonable resolution and size.

3. Rigid clumps in MercuryDPM

3.1. General organisation

The rigid clump functional in MercuryDPM is currently imple-

mented as a multilevel structure. The logic of unification of pebbles 
in the clump, as well as the algorithms of time integration are imple-

mented in the class ./Kernel/particles/ClumpParticle.h/cc
inherited from an abstract nonspherical particle class ./Kernel/par-
ticles/NonSphericalParticle.h/cc, that, in turn is inherited 
from the base particle class ./Kernel/particles/BaseParti-
cle.h/cc. It is expected that the functions inherent to all types of 
nonspherical particles (e.g. rigid dynamics time integration) in the 
future will be located in the class ./Kernel/particles/NonSpher-
icalParticle.h/cc.

The CLUMP software, described above, is used to generate positions 
and radii of pebbles that describe the given nonspherical shape. The

CLUMP tool provides pebble data, which, along with the optionally pro-

vided initial stl format shape of the clump, constitute an input of

MClump pre-processing tool (part of MercuryDPM, cite [13]). Alterna-

tively, the pebble data for MClump can be generated manually.

MClump centres and rotates the clump, aligning its principal axes 
with the global Cartesian axes, and computes clump’s inertia using the 
prescribed algorithm (summation over pebbles, summation over vox-

els, summation over tetrahedrons using stl representation) - see the 
description below. Fig. 2 details modes of work of MClump. In the first 
mode, MClump imports list of pebbles and then does all the necessary 
computations (centre of mass (COM), volume, tensor of inertia (TOI), 
3

principal directions) based on summation over pebbles, as discussed 
in Subsection 3.3.1. In the second mode, MClump imports list of peb-

bles, but performs inertia computations on the voxel grid, excluding 
extra contributions of pebble’s overlaps (Subsection 3.3.2). In the third 
mode, MClump receives the triangulated surface of a nonspherical par-

ticle, as well as its clumped sphere approximation generated by the 
external tool (CLUMP library), and computes the necessary properties 
(Subsection 3.3.3).

Headers for the driver files

./Drivers/Clump/ClumpHeaders/ClumpIO.h,

./Drivers/Clump/ClumpHeaders/Mercury3DClump.h,

introduce necessary features and modifications of the MercuryDPM

virtual members, enabling clump dynamics, namely:

• The modifications of the MercuryDPM engine, changing the logic of 
application of contact forces and moments, as well as the external 
forces (e.g. gravity).

• The adjustment of the logic of interaction of the clump and its peb-

bles with the periodic boundary.

• The import tool, that loads the all data of available clump instances, 
including clump volume, TOI and the list of pebbles.

• Clump distribution generation functions, that create distributions 
of non-overlapping rotated clumps in a given spatial domain.

Driver files (compiled simulation descriptions, see [7] for details) 
utilise these tools to load the list of clump instances generated by

MClump, and, using them, generate necessary distributions of clumps 
and compute their dynamics.

3.2. Clump creation logic

The unification of particles into rigid clumps occurs by assign-

ing to every particle instance the role of either a “clump” particle or 
a “pebble” particle. Specifically, every instance of BaseParticle class 
has Boolean attributes (flags) isClump and isPebble. The “peb-

ble” instances have isClump = False, isPebble = True. All the 
“clump” (container) instances have isClump = True, isPebble = 
False. Regular spherical particles have isClump = False, isPeb-
ble = False. Depending on the flags, these three1 types of particles 
have different behaviour in contact detection, migration over bound-

aries etc. Namely, for the clump particle the interactions are treated at 
the pebble level, while time integration of motion occurs at the clump 
level. As has been discussed in [14], in case of (non-physical) multiple 
contacts between the close pebbles of interacting clumps, the corre-

1 The 4−𝑡ℎ combination (isClump = True, isPebble = True) is explic-
itly excluded in the relevant particle class methods.
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Fig. 3. Representation of a non-spherical shape as (A) triangulated surface, (B) 
rigid clump of spherical particles, (C) 3D array of voxels.

sponding effective increase in stiffness should be taken into account. 
Our implementation allows multiple contacts between the clumps, and 
does not provide routines excluding non-physical contacts; the corre-

sponding routines should be implemented if necessary. The motion of 
pebbles is prescribed according to translation and rotation of the cor-

responding clump. Clumps and pebbles have some other differences in 
behaviour, e.g. in a context of interaction with periodic boundaries – 
see the discussion below.

3.3. Computing inertial properties of a clump

Defining inertial properties of a clump is a non-trivial problem. The 
analytical treatment is possible in case of absent overlaps (direct sum-

mation over pebbles, as implemented earlier [7]), and overlaps between 
no more than two spherical pebbles (summation over pebbles and sub-

traction of “cap” segments, [15]). In our implementation, we use three 
different approaches to compute mass and TOI of complex shape par-

ticles: summation over the pebbles, summation over the voxels and 
summation over the tetrahedrons. Fig. 3 gives the qualitative idea about 
these representations of the volume of a non-spherical particle. Let us 
take a closer look at each of these approaches.

3.3.1. Summation over pebbles

This method of computation works if the pebbles do not overlap 
or we presume that the inertial properties of a clump are defined by 
the total mass of the pebbles. In this case the total mass and TOI can 
be directly summed over the spherical pebbles using mass conservation 
and Steiner’s theorem. Given the density of pebbles 𝜌, their radii 𝑟𝑗 and 
positions in Cartesian system 𝐱𝑗 = (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 ), we first find the mass of 
the clump and the position of the centre of mass:

𝑀 =
∑

𝑚𝑗 =
∑ 4

3
𝜋𝑟3

𝑗
𝜌 (1)

𝐱𝑐 =
1
𝑀

∑
𝑚𝑗𝐱𝑗 (2)

At the next step, we shift the centre of the coordinate system to the 
centre of mass:

𝐱𝑗 ∶= 𝐱𝑗 − 𝐱𝑐 (3)

then we compute the TOI by summing over pebbles:
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⎞⎟⎟⎟⎠
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Given the above-mentioned assumptions, this method is precise.

3.3.2. Summation over voxels

In case if pebbles overlap and clump was not generated from a tri-
4

angulated surface, we use voxel discretisation to compute mass and TOI 
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of a clump. The bounding box encapsulating every point of the clump 
is expanded to the cubic box (𝑥𝑏, 𝑥𝑏 +𝑁𝑑, 𝑦𝑏, 𝑦𝑏 +𝑁𝑑, 𝑧𝑏, 𝑧𝑏 +𝑁𝑑) of 
a minimal size, which is split into cubic voxels of side 𝑑, defined by 
the specified number of voxels 𝑁 along the side of a bounding box. 
Then the mask (𝑚, 𝑛, 𝑘) is introduced: (𝑚, 𝑛, 𝑘) = 1 if the centre of 
the voxel 𝑚, 𝑛, 𝑘 is inside of at least one pebble, and (𝑚, 𝑛, 𝑘) = 0
otherwise. The coordinates of the centre of the voxel are found as 
𝐱(𝑚, 𝑛, 𝑘) = (𝑥𝑏 + 𝑑(𝑚 + 0.5), 𝑦𝑏 + 𝑑(𝑛 + 0.5), 𝑧𝑏 + 𝑑(𝑘 + 0.5)). Then the 
mass and the COM is computed as

𝑀 =
∑
𝑚

∑
𝑛

∑
𝑘

(𝑚,𝑛, 𝑘)𝜌𝑑3 (6)

𝐱𝑐 =
1
𝑀

∑
𝑚

∑
𝑛

∑
𝑘

(𝑚,𝑛, 𝑘)𝐱(𝑚,𝑛, 𝑘)𝜌𝑑3 (7)

Next, we shift the centre of the coordinate system to the centre of 
mass:

𝐱𝑗 ∶= 𝐱𝑗 − 𝐱𝑐 (8)

then we compute the TOI by summing over voxels:

𝐈 =
∑
𝑚

∑
𝑛

∑
𝑘

𝐈𝑚𝑛𝑘 (9)
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⎞⎟⎟⎠
(10)

The precision of such estimate depends on the chosen resolution and 
the complexity of the shape. The method requires brute-force summa-

tion over 106 − 109 voxels, therefore, pre-computation might take some 
time.

3.3.3. Summation over tetrahedrons

If the clump is generated by approximation of known triangulated 
surface, one can use the latter for an explicit calculation of the TOI 
[16]. In this case the TOI is computed by the analytical summation 
over tetrahedrons.

The COM of a tetrahedron 𝑗 with the vertices [𝐚1
𝑗
, 𝐚2

𝑗
, 𝐚3

𝑗
, 𝐚4

𝑗
] is given 

by:

𝐜𝑗 =
𝐚1
𝑗
+ 𝐚2

𝑗
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𝑗
+ 𝐚4

𝑗

4
(11)

Volume of a tetrahedron 𝑗 is given by

𝑉𝑗 =
1
6

||||||||||
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𝑗
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𝑗
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𝑗
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𝑗
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𝑗
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𝑗
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(𝑎4
𝑗
)𝑥 (𝑎4

𝑗
)𝑦 (𝑎4

𝑗
)𝑧 1

||||||||||
. (12)

Here the volume 𝑉𝑗 comes with the sign that depends on whether 
the normal (𝐚3 −𝐚2) ×(𝐚4 −𝐚2) is directed into the half-space containing 
the vertex 𝐚1 (negative sign) or vice versa.

Given arbitrary volume bounded by a triangulated surface Γ consist-

ing of a set of triangles 𝐬𝑗 , and an arbitrary point 𝐎, one can compute 
the COM of the volume as:

𝐱𝑐 =
∑

𝐜𝑗𝑉𝑗 (13)

where 𝑉𝑗 and 𝐜𝑗 are the volume and COM of the tetrahedron 
[𝐚1, 𝐚2, 𝐚3, 𝐚4] = [𝐎, 𝐬1

𝑗
, 𝐬2

𝑗
, 𝐬3

𝑗
]

Similarly to alternative approaches, we shift the coordinate system 
to match its origin with the computed clump’s COM:

𝐱𝑗 ∶= 𝐱𝑗 − 𝐱𝑐 (14)

One can further compute mass and TOI of the body with respect to 
its COM as the sum of masses and moments of inertia of constituent 

tetrahedrons:
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𝑀 = 𝜌
∑

𝑉𝑗

𝐈 =
∑

𝐈𝑗
(15)

Here the TOI of a tetrahedron with respect to its first vertex 𝐚1, 
corresponding to the origin of the coordinate system and clump’s COM, 
is computed according to [16]:

𝐈𝑗 = 𝜌

⎛⎜⎜⎝
𝑎 −𝑐′ −𝑏′

−𝑐′ 𝑏 −𝑎′

−𝑏′ −𝑎′ 𝑐

⎞⎟⎟⎠
(16)

where

𝑎 = ∫
𝐷

(𝑦2 + 𝑧2)𝑑𝐷, 𝑏 = ∫
𝐷

(𝑥2 + 𝑧2)𝑑𝐷, 𝑐 = ∫
𝐷

(𝑥2 + 𝑦2)𝑑𝐷,

𝑎′ = ∫
𝐷

𝑦𝑧𝑑𝐷, 𝑏′ = ∫
𝐷

𝑥𝑧𝑑𝐷, 𝑐′ = ∫
𝐷

𝑥𝑦𝑑𝐷,

(17)

where 𝐷 is the tetrahedral domain.

It worth noting that the paper [16] has a known [17] error, that is 
fixed in (16): components 𝑏′ and 𝑐′ are erroneously swapped there.

Denoting [𝐚1, 𝐚2, 𝐚3, 𝐚4] = [(𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2), (𝑥3, 𝑦3, 𝑧3), (𝑥4, 𝑦4,
𝑧4)], the integrals (8) are solved explicitly as:

𝑎 = 𝑉𝑗 (𝑦21 + 𝑦1𝑦2 + 𝑦22 + 𝑦1𝑦3 + 𝑦2𝑦3 + 𝑦23 + 𝑦1𝑦4 + 𝑦2𝑦4 + 𝑦3𝑦4 + 𝑦24

+ 𝑧21 + 𝑧1𝑧2 + 𝑧22 + 𝑧1𝑧3 + 𝑧2𝑧3 + 𝑧23 + 𝑧1𝑧4 + 𝑧2𝑧4 + 𝑧3𝑧4 + 𝑧24)∕10
(18)

𝑏 = 𝑉𝑗 (𝑥21 + 𝑥1𝑥2 + 𝑥22 + 𝑥1𝑥3 + 𝑥2𝑥3 + 𝑥23 + 𝑥1𝑥4 + 𝑥2𝑥4 + 𝑥3𝑥4 + 𝑥24

+ 𝑧21 + 𝑧1𝑧2 + 𝑧22 + 𝑧1𝑧3 + 𝑧2𝑧3 + 𝑧23 + 𝑧1𝑧4 + 𝑧2𝑧4 + 𝑧3𝑧4 + 𝑧24)∕10
(19)

𝑐 = 𝑉𝑗 (𝑥21 + 𝑥1𝑥2 + 𝑥22 + 𝑥1𝑥3 + 𝑥2𝑥3 + 𝑥23 + 𝑥1𝑥4 + 𝑥2𝑥4 + 𝑥3𝑥4 + 𝑥24

+ 𝑦21 + 𝑦1𝑦2 + 𝑦22 + 𝑦1𝑦3 + 𝑦2𝑦3 + 𝑦23 + 𝑦1𝑦4 + 𝑦2𝑦4 + 𝑦3𝑦4 + 𝑦24)∕10
(20)

𝑎′ = 𝑉𝑗 (2𝑦1𝑧1 + 𝑦2𝑧1 + 𝑦3𝑧1 + 𝑦4𝑧1 + 𝑦1𝑧2 + 2𝑦2𝑧2 + 𝑦3𝑧2 + 𝑦4𝑧2 + 𝑦1𝑧3

+ 𝑦2𝑧3 + 2𝑦3𝑧3 + 𝑦4𝑧3 + 𝑦1𝑧4 + 𝑦2𝑧4 + 𝑦3𝑧4 + 2𝑦4𝑧4)∕20
(21)

𝑏′=𝑉𝑗 (2𝑥1𝑧1 + 𝑥2𝑧1 + 𝑥3𝑧1 + 𝑥4𝑧1 + 𝑥1𝑧2 + 2𝑥2𝑧2 + 𝑥3𝑧2 + 𝑥4𝑧2 + 𝑥1𝑧3

+ 𝑥2𝑧3 + 2𝑥3𝑧3 + 𝑥4𝑧3 + 𝑥1𝑧4 + 𝑥2𝑧4 + 𝑥3𝑧4 + 2𝑥4𝑧4)∕20
(22)

𝑐′=𝑉𝑗 (2𝑥1𝑦1 + 𝑥2𝑦1 + 𝑥3𝑦1 + 𝑥4𝑦1 + 𝑥1𝑦2 + 2𝑥2𝑦2 + 𝑥3𝑦2 + 𝑥4𝑦2 + 𝑥1𝑦3

+ 𝑥2𝑦3 + 2𝑥3𝑦3 + 𝑥4𝑦3 + 𝑥1𝑦4 + 𝑥2𝑦4 + 𝑥3𝑦4 + 2𝑥4𝑦4)∕20
(23)

This method gives precise TOI of the initial triangulated surface. 
It worth noting that the formulae (13), (15) work for rather complex 
(non-convex, multiply connected) domains: if the absolute volume of 
tetrahedrons is higher than the volume of a body, the extra volume is 
swept twice with tetrahedrons of positive and negative volume com-

puted according to (12), which results in correct values for body’s total 
volume, mass, COM and TOI. The examples section gives the compar-

ison of the methods to compute inertial properties of a clump used in 
our work.

3.4. Computing the clump’s PDs

Principal axes of inertia 𝐞1, 𝐞2, 𝐞3 are found as eigenvectors of 𝐈:

𝐈𝐞𝐢 = 𝜆𝑖𝐞𝐢 (24)
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PDs are assured to form the right-handed Cartesian basis.
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Once the PDs of the clump’s TOI are computed, the clump instance 
otated to align its PDs with the Cartesian axes:

=𝐐𝐱 (25)

=𝐐𝑇 𝐈𝐐 (26)

ere 𝐐 is the rotation matrix defined as

⎛⎜⎜⎝
𝐧1𝐞1 𝐧2𝐞1 𝐧3𝐞1
𝐧1𝐞2 𝐧2𝐞2 𝐧3𝐞2
𝐧1𝐞3 𝐧2𝐞3 𝐧3𝐞3

⎞⎟⎟⎠
(27)

ere 𝐧𝑖 are the orths of global Cartesian coordinate system, and 𝐞𝑖 are 
hs of clump’s eigendirections.

. Equations of motion of a rigid clump

Once we have procedures that compute overall force 𝐅 and moment 
acting on the clump, we can solve the equations of motion using one 
the schemes of numerical integration. For translational motion of a 
mp, we use the velocity Verlet algorithm that does not differ from 
 one employed for spherical particles, given that the particle mass 
he mass of a clump. Below we consider the equations of motion for 
ational degrees of freedom.

In the case when the TOI is non-spherical (the principal moments 
inertia are not equal) the rotational dynamics is described by Euler 
ations:

̇ 𝑖 − 𝐼𝑖𝑗 �̇�𝑗 + 𝜖𝑖𝑗𝑘𝜔𝑗 (𝐼𝑘𝑘𝜔𝑘 − 𝐼𝑘𝑙𝜔𝑙)) =𝑀𝑖; (𝑖 ≠ 𝑗, 𝑙 ≠ 𝑘) (28)

The non-spherical TOI 𝐼𝑖𝑗 is computed based on one of the algo-

ms discussed above.

. Time integration of the EoM of a rigid clump

The time integration scheme used in our code utilises a leap-frog al-

ithm of the time integration of the notion of non-spherical particle, 
ilar to one utilised in PFC 4.0 [18]. We track the orientation in the 
pe of rotation matrix 𝑄 that is used to reconstruct the current ori-

ation of local coordinate system and the positions of pebbles. The 
ation (27) is solved using finite difference procedure of the second 
er, computing angular velocities 𝜔𝑗 at mid-intervals 𝑡 + Δ𝑡∕2, and 
other quantities at primary intervals 𝑡 + Δ𝑡. The equation (27) can 
re-written in the matrix form as

−𝐖 = 𝐈�̇�

𝑀 =
⎛⎜⎜⎝
𝑀1
𝑀2
𝑀3

⎞⎟⎟⎠
𝑊 =

⎛⎜⎜⎝
(𝐼33 − 𝐼22)𝜔2𝜔3 + 𝐼23𝜔3𝜔3 − 𝐼32𝜔2𝜔2 − 𝐼31𝜔1𝜔2 + 𝐼21𝜔1𝜔3
(𝐼11 − 𝐼33)𝜔3𝜔1 + 𝐼31𝜔1𝜔1 − 𝐼13𝜔3𝜔3 − 𝐼12𝜔2𝜔3 + 𝐼32𝜔2𝜔1
(𝐼22 − 𝐼11)𝜔1𝜔2 + 𝐼12𝜔2𝜔2 − 𝐼21𝜔1𝜔1 − 𝐼23𝜔3𝜔1 + 𝐼13𝜔3𝜔2

⎞⎟⎟⎠
𝐼 =

⎛⎜⎜⎝
𝐼11 −𝐼12 −𝐼13
−𝐼21 𝐼22 −𝐼23
−𝐼31 −𝐼32 𝐼33

⎞⎟⎟⎠
(29)

We use the equation (29) to compute the values of 𝜔𝑖(𝑡 +Δ𝑡∕2) and 
𝑡 +Δ𝑡). Following the approach suggested in [18] we use the iterative 
orithm to find these unknowns:

• Set 𝑛 = 0
• Set 𝜔[0]

𝑖
to the initial angular velocity.

• (*) Solve (29) for �̇�𝑖

• Determine a new (intermediate) angular velocity: 𝜔[𝑛𝑒𝑤]
𝑖

= 𝜔
[0]
𝑖

+
�̇�
[𝑛]
𝑖
Δ𝑡
• Revise the estimate of 𝜔𝑖 as: 𝜔[𝑛+1]
𝑖

= 0.5(𝜔[0]
𝑖

+𝜔
[𝑛𝑒𝑤]
𝑖

)
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• Set 𝑛 ∶= 𝑛 + 1 and go to (*)

This algorithm gives us the value of the angular velocity that is 
further used to update the position at the second step of leap-frog algo-

rithm. The number of steps necessary for the sufficient precision varies 
depending on the application and is usually chosen in range of 2 − 5.

The described approach is rather general, which potentially allows 
extension of the notion of clumps on quite wide set of pebble entities, in-

cluding particles that do not track their orientations [18]. However, the 
algorithm is inferior in terms of precision and performance compared 
to modern rigid-body integrators [19,20], because of significant over-

head related to solving the equations of motion in inertial frame – this 
can be significant for clumps consisting of small numbers of pebbles, 
when the duration of rigid body integration is non-negligible compared 
to duration of updating positions of pebbles.

3.7. Interaction of clump particles with periodic boundaries

The complete description of the logic of interaction of spherical 
particles (classes BaseParticle, SphericalParticle) and periodic 
boundaries can be found in [21]. This logic had to be adjusted for rigid 
clumps. Below we briefly describe the corresponding modifications.

The original scheme utilises the concept of primary particles and 
“ghost” particles that are introduced to represent interactions across 
periodic boundaries. “Ghost” particles are created when the primary 
particle approaches closely the periodic boundary, and “switch” status 
with the primary particle when the migration over the periodic bound-

ary occurs. Our implementation introduced two minor modifications to 
this scheme to ensure correct treatment of rigid clumps in a periodic 
box:

• “Clump” particles are never erased/created in a course of the sim-

ulation. They migrate over the periodic boundary seamlessly by 
direct specification of the position property. This way the necessity 
of sending the “pebble” pointers between “clumps” is avoided.

• The “ghost” particles for “clumps” do not exist, since no interaction 
is treated at the level of “clump” particles.

• The procedures of adding moments to a “clump” particle from the 
forces/moments acting on “pebbles”, and computation of the trans-

lational velocity/position of “pebble” particles, utilise the mini-

mum image convention to determine the length of the “lever” – the 
vector connecting the centre of “clump” particle (clump’s COM), 
and the centre of “pebble” particle.

These adjustments are introduced in /Drivers/Clump/Clump-

Headers/Mercury3DClump.h, provide full functionality of all types 
of periodic boundaries, implemented earlier in MercuryDPM.

3.8. Random generation of non-overlapping clumps

It is often necessary to create rigid clumps with random initial ori-

entation. In order to provide equal probability of every orientation, we 
use the following scheme of clump random rotation: we first rotate 
the clump instance counterclockwise about 𝑛3 direction by the angle 
𝛼, and then rotate the clump to match its principal direction 𝑛3 with 
the random vector on a unit sphere (𝜃, 𝜙) in a spherical coordinate sys-

tem: 𝑛𝑟𝑜𝑡3 = (sin𝜃 cos𝜙, sin𝜃 sin𝜙, cos𝜃). The random values of 𝛼, 𝜙 are 
chosen uniformly in the range (0, 2𝜋), while the angle 𝜃 is chosen as 
arccos(𝑝), where 𝑝 is uniformly distributed in (−1, 1). Such choice of 
random orientation angles ensures equal probability of every possible 
clump orientation.

In order to ensure a placement of a new clump into the deposition 
domain without overlaps with the previous clumps, a straightforward 
algorithm is used to ensure that neither pebble of newly deposited 
6

clump overlaps with any pebble of the existing clump.
Computer Physics Communications 296 (2024) 109034

Fig. 4. (A) The model of a clump under test, represented with spherical peb-

bles, tetrahedrons and voxels. (B) Relative error in computation of clump’s mass 
(Δ𝑀), major (Δ𝐼1) and minor (Δ𝐼3) principal components of inertia, as a func-

tion of the model refinement 𝑁 (see the definitions above), for tetrahedrons 
(top) and voxels (bottom).

3.9. Modifications of energy computing routines

The routines computing rotational and translational kinetic energy 
of the clump, as well as its potential gravitational energy, had to be 
straightforwardly adjusted to reflect the correct inertial/gravitational 
properties of a clump, computed as detailed above.

4. Examples

4.1. Computation of TOI – precision of the summation

This brief example illustrates the precision of our approaches used to 
compute mass and tensor of inertia of the clumps. The test model con-

sists of two spherical pebbles of unit radius, with centres separated by 
one diameter of a pebble (Fig. 4 (A) gives the model represented with 
pebbles, tetrahedrons and voxels). This simple model allows immediate 
exact evaluation of inertial properties of this non-spherical, non-convex 
shape. The mass of the clump, as well as its major and minor moments 
of inertia are then evaluated with tetrahedral and voxel discretisation. 
The vertices of tetrahedrons are the origin (0, 0, 0) and the triangles 
constructed by equispaced angular subdivision of each pebble sphere 
on 𝑁 equal segments along latitude angle 𝜃 ∈ (0, 𝜋) and on 2𝑁 seg-

ments along azimuth angle 𝜙 ∈ (0, 2𝜋) (see Fig. 4 (A)). For the voxels, 
the refinement degree 𝑁 is defined as the number of voxels along the 
diameter of a pebble.

Fig. 4(B) demonstrates the convergence of relative error in computa-

tion of mass and principal moments of inertia with the degree of model 
refinement 𝑁 . We can clearly see that the error is inversely propor-

tional to 𝑁 , both for tetrahedron and voxel discretisation. The latter, 
however, features significant chaotic error, which suggests necessity of 
further improvement of an algorithm.

4.2. Dynamics of a single particle - energy equipartition

The simple simulation depicted in Fig. 5(A) is located at Drivers/
Clump/Single/Single.cpp. An elastic, rod-like particle is placed 
into a cubic box with elastic walls (no friction, no dissipation, linear 
contact model is employed). At the initial moment of simulation, the 

particle is assigned the initial translational velocity 𝑉 , orientation along 
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Fig. 5. (A) The model of a single-atom ideal gas with one translational and one rotational degree of freedom. (B) Observed fractions of translational and rotational 
kinetic energies as functions of time, for a time span comprising first 20 collisions. (C) The ratio between the rotational and translational kinetic energy, averaged 
over sufficiently long simulation time (∼ 5 × 104 particle-wall collisions).

Fig. 6. (A) Evolution of the orientation of a T-bar, (B) observed relative drift of its kinetic energy.
x axis and zero initial angular velocity 𝑤. After few collisions, the align-

ment of the particle with x axis breaks, and each next collision causes 
redistribution of energy between translational and rotational degrees 
of freedom (Fig. 5(B)). In a long enough timeline we see the energy 
equipartition between available degrees of freedom. For example, if the 
particle bounces strictly along 𝑦 axis between two elastic walls, and 
rotates around its principal axis co-oriented with 𝑧, it has only one 
translational and one rotational degree of freedom. We can therefore 
foresee that the equipartition will manifest itself with the ratio of 1 
between the translational kinetic energy 𝑚𝑣2∕2 and rotational kinetic 
energy 𝐼𝜔2∕2 in a sufficiently long simulation. This is precisely what 
happens (Fig. 5(C)). Similarly, the different initial conditions leading 
to a different system of available degrees of freedom lead to different 
ratios. For example, if the initial translational velocity has two com-

ponents, leading to two translational degrees of freedom, the ratio of 
rotational and translational energy converges to 0.5.

4.3. Dynamics of a single particle - Dzhanibekov effect

The example Drivers/Clump/TBar/TBar.cpp demonstrates so-

called Dzhanibekov effect - instability of rotation around the second 
principal axis (see, e.g., [22]). It manifests itself in a series of flips of an 
object rotating around its intermediate axis – the classical example is a 
wingnut rotating around its axis in the condition of zero gravity. The 
simulation in this example reproduces this effect for T-shaped clump 
(Fig. 6(A)), rotating around its second principal axis (see Video 1 in the 
supplementary information). It is important to note that the observed 
angular momentum and rotational kinetic energy are well preserved 
7

during the simulation – for example, as can be seen in Fig. 6(B), the 
relative drift of the rotational energy does not exceed 10−3 for 8 flip 
cycles.

4.4. Rolling of a Gömböc

Gömböc is the convex body that, being put on the flat surface, 
has one point of stable and one point of unstable equilibrium [23]. 
Arbitrarily oriented at the initial moment, provided sufficient energy 
dissipation, the gömböc finally arrives to its only stable equilibrium 
position. We use the model of a gömböc depicted in Fig. 7(A) to cre-

ate a clump (Fig. 7(B)), mimicking the behaviour of a gömböc. The 
clump was generated using the algorithm [12] and has 182 pebbles. We 
simulated the dynamics of gömböc shape, dropped to the flat surface 
(./Drivers/Clump/Gomboc/Gomboc.cpp) Our simulation (Video 
2 in the supplementary information) indicates that, after a series of 
metastable rotational oscillations (Fig. 7(C)), gömböc shape does in-

deed arrive to a unique stable orientation. Our experiments indicate 
that if the initial energy of a gömböc is too low, it may get stuck in 
one of the local energy minima that emerge due to approximation of 
the original shape by a finite number of spherical particles. Besides this 
effect, our simulations compare nicely with the experiments with real 
Gömböc shape.

4.5. Domino effect

Domino effect is well known to be quite non-trivial benchmark 
example for DEM simulation with nonspherical particles [24]. We pro-

vide a driver file designed for parametric studies of a domino effect 

(see ./Drivers/Clump/Domino/Domino.cpp). Dominoes are rect-
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Fig. 7. Gömböc - (A) original stl model, (B) its rigid clump representation, computed according to [12], (C) Evolution of the translational and rotational kinetic 
energy with time in the simulation. The simulation duration was chosen to feature entire motion trajectory of a gömböc with realistic damping parameters.
Fig. 8. (A) Geometry of DEM model of domino wave propagation, (B) Constant 
rate of change of the potential energy with time in the steady-state domino 
wave propagation (𝐸0 is the initial gravitational potential energy of the sys-

tem; the simulation duration roughly corresponds to duration of domino wave 
propagation over 20 dominoes).

angular regular packings of pebbles, equispaced along the straight line 
(Fig. 8(A)). At the initial moment the domino 1 is given an initial push 
with the cue - a spherical particle. The initial propagation of the domino 
wave is to a large extent affected by the initial velocity of the cue, how-

ever, the steady state velocity does not depend at all on this initial 
velocity. This, in particular, manifests itself in a constant time deriva-

tive of the potential energy (Fig. 8(B)) that does not depend on the 
initial cue velocity. This invariance of the domino wave velocity is well-

known and often attributed [25] to dissipative effects; however, there 
are theoretical/numerical evidence [26,24] that it takes place even in 
the case of perfectly elastic collisions between the dominoes.

4.6. Dense gas of interacting T-shaped particles in a periodic box

The driver Drivers/Clump/TGas/TGas.cpp demonstrates the 
evolution of six hundreds of T-shaped rigid particles of arbitrary ini-

tial velocities, angular velocities and orientations, that are deposited 
8

in a triple periodic box without initial overlaps, with zero initial rota-
tional velocities and random initial translational velocities (Fig. 9(A)). 
Shortly after the beginning of the simulation, we can see the complete 
energy equipartition (Fig. 9(B)). The driver code can be easily adjusted 
to introduce elastic walls, gravity, dissipation etc.

4.7. Multiple clumps in a rotating drum

A concluding example Drivers/Clump/RotatingDrum/
RotatingDrum.cpp features a collective motion of complex-shaped 
clumps in a rotating horizontal drum in the field of gravity (Fig. 10(A)). 
The gömböc shape described above was used as a clump instance, 27
clumps were deposited in a volume of a drum without initial overlaps 
between themselves and the walls of the drum. The contact friction 
at both wall-clump and clump-clump contacts has zero rolling friction 
and high sliding friction of 0.6. At the initial moment of simulation the 
drum starts to rotate with the constant angular velocity. The Video 3 
in the supplementary information highlights the dynamic evolution of 
the system. Fig. 10(A) shows the geometry of the system, Fig. 10(B) 
gives the evolution of the gravitational potential energy of the clumps 
(normalized on the lowest energy observed in the beginning of the sim-

ulation) with time. One can see discrete events of sliding/repose of the 
bed (8 per 2 full revolutions of the drum). This simulation validates the 
efficiency of the clump implementation in a moderate-size single-core 
simulation.

4.8. Efficiency of hierarchical grid contact detection algorithm for highly 
polydisperse clump systems

One of the strong features of MercuryDPM is its efficient contact de-

tection algorithm oriented on highly polydisperse particle assemblies 
[10]. It is interesting to see how the single-core simulation performance 
of polydisperse clump systems is affected by the maximum number 
of levels of hierarchical grid employed by the contact detection algo-

rithm (see [10,7] for details). Our benchmark examples predictably 
demonstrate that small models do not benefit from multiple levels of 
hierarchical grid used in contact detection, while larger models per-

form much faster with hierarchical grid turned on. The rotating drum 
simulation described above is used here to demonstrate the effect of 
multiple levels of hierarchical grid on the performance of simulation 
of the polydisperse clumps. Two (otherwise identical) simulations with 
different clump resolution were studied: model 1 had clumps of 182
pebbles (4914 pebbles in total) and the size ratio of the largest to the 
smallest pebble of 28.83; model 2 had the same clump surface repre-

sented by 423 pebbles (11421 pebbles in total) with the size ratio of the 

largest to the smallest pebble of 53.36 (Fig. 11(A)).
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Fig. 9. Multiple T-bars in a box. (A) Initial geometry, (B) evolution of rotational and translational kinetic energy with time; the simulation duration was chosen to 
resolve the energy equipartition process. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 10. Clumps in a rotating drum. (A) Problem geometry, (B) normalized potential energy of the clumps versus time, featuring sloshing motion pattern.

Fig. 11. Illustration of effect of multiple grid levels on computational performance. (A) Clumps used in model 1 and model 2, (B) Dependence of compute time and 

model time for two models and contact detection approach used.

Both models were studied in simulations with contact detection 
algorithm limited to one hierarchical grid level (regular linked cell 
algorithm, blue plots on Fig. 11(B)) and with three hierarchical grid 
levels (MercuryDPM default value, green plots on Fig. 11(B)). Accurate 
comparison of performance results in 57% increase in the cycle-time 
performance for the model 1 and 87% - for the model 2. For larger 
models this increase in performance is expected to be even more dra-
9

matic [10]. Therefore, we can see that MercuryDPM contact detection 
algorithm makes it well-suited for modelling polydisperse clumped par-

ticle systems.

5. Conclusions

This work details the implementation of rigid clumps within Mer-

curyDPM particle dynamics code. Necessary pre-processing tools, kernel 

modifications and driver files illustrating the applications are described. 
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Due to advanced contact detection algorithm of MercuryDPM, our im-

plementation demonstrates high single-core performance for highly 
polydisperse clumps. The new features will certainly be useful to the 
MercuryDPM community. The codes are currently available in the Mas-

ter branch of the MercuryDPM project [27]. The implementation is un-

der ongoing development, the changes in the existing implementation 
will be highlighted in the future release notes and the corresponding 
papers.
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