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Abstract

The amount of grey literature and ‘softer’ intelligence from social media

or websites is vast. Given the long lead-times of producing high-quality

peer-reviewed health information, this is causing a demand for new

ways to provide prompt input for secondary research. To our knowl-

edge, this is the first review of automated data extraction methods or

tools for health-related grey literature and soft data, with a focus on

(semi)automating horizon scans, health technology assessments (HTA),

evidence maps, or other literature reviews. We searched six databases to

cover both health- and computer-science literature. After deduplication,

10% of the search results were screened by two reviewers, the remain-

der was single-screened up to an estimated 95% sensitivity; screening

was stopped early after screening an additional 1000 results with no

new includes. All full texts were retrieved, screened, and extracted by a

single reviewer and 10% were checked in duplicate. We included

84 papers covering automation for health-related social media, internet

fora, news, patents, government agencies and charities, or trial registers.

From each paper, we extracted data about important functionalities for

users of the tool or method; information about the level of support and

reliability; and about practical challenges and research gaps. Poor avail-

ability of code, data, and usable tools leads to low transparency regard-

ing performance and duplication of work. Financial implications,

scalability, integration into downstream workflows, and meaningful eval-

uations should be carefully planned before starting to develop a tool,

given the vast amounts of data and opportunities those tools offer to

expedite research.
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Highlights

What is already known
• There is a time lag between novel developments of technologies, versus their

publication in peer-reviewed literature and finally their appearance in sys-
tematic reviews.

• The inclusion of grey literature can help to overcome this time lag, but the
amount of data can be overwhelming or not straightforward to access.

What is new
• Automation through Natural Language Processing (NLP) can enable the

analysis of grey literature at scale.
• A total of 84 papers for 7 tools and 76 methods were included in this review,

covering different sources of grey literature and the most common data
points for extraction or analysis.

Potential impact for Research Synthesis Methods readers
• Readers with an interest in developing automation methods will gain an

overview of the state of NLP research and datasets.
• Readers with an interest in using automation methods will gain an overview

of tools, their features and performance evaluations.

1 | INTRODUCTION

1.1 | Background

The literature landscape in health and social care is
evolving rapidly. Research outputs are being published at
an unprecedented rate, which in turn has increased the
rate and scale of secondary research projects, such as sys-
tematic reviews, rapid reviews, evidence gap maps, and
horizon/future pipeline scans. Published and peer-
reviewed literature, among other types of data, can pro-
vide important evidence used to inform choice and
implementation of medicines or medical devices within a
healthcare system.

However, there is a time lag between novel
developments of technologies and associated
research, versus their publication in peer-reviewed
literature. Published research often become available
years after the development of a medicine or tech-
nology. Analyses estimate the peer-review to publica-
tion time-lag for medicine and medical device trials
alone as up to 4–7 years1–3; and fully relying on sys-
tematic review processes to support decision making
would lead to further delays. In a recent analysis of
20,000 systematic reviews, DeYoung et al.4 found
that the median delay between study and review
publication was another additional 8 years,4 which
explains why other types of secondary literature
review, such as HTA or horizon scans also use non-
peer-reviewed information, to create better

representations of current developments and their
early evidence base.5,6

To enable a comprehensive analysis of current and
ongoing developments, there is a growing need to explore
and consider these ‘softer’ sources of intelligence, often
using a combination of grey literature and other health-
related information in the public domain. Grey literature
itself can be defined as ‘that which is produced on all
levels of government, academics, business and industry
in print and electronic formats, but which is not
controlled by commercial publishers’.7,8 It includes infor-
mation from sources such as clinical trial registries, pre-
print servers, or academic outputs such as conference
proceedings, dissertations, and theses. These types of grey
literature can be very valuable to health-related second-
ary research by uncovering first traces of new or ongoing
research or collecting additional information about stud-
ies already found in peer-reviewed literature.8,9

However, this can also include industry-focused or
legal texts such as patents or websites, or reports from
governments and charities. News articles and press-
releases are yet another example for public-domain and
non-peer-reviewed sources of health-related information
that can be considered as softer grey literature7; alongside
social media sites, which have the potential to provide
intelligence closest to real-time development of innova-
tions in healthcare. These latter soft data sources have
not been traditionally counted as grey literature.

Figure 1 seeks to illustrate the process between very
early-stage research and adoption into practice on a
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very high level. It shows where, in theory, the scope of
secondary research could be extended to include novel
sources of information for an earlier detection of poten-
tially relevant research trends. It also shows areas where
automation in earlier retrieval of evidence could poten-
tially help to accelerate discovery of information, and
where automated data extraction could help to make the
process of uncovering intelligence from soft data more
efficient.

Research areas beyond the scope of classic system-
atic reviews, for example horizon scanning activities
or HTA, utilise traditional sources of evidence
(i.e., clinical trials or diagnostic accuracy studies), but
also benefit from including novel sources of informa-
tion from the public domain to detect signals of
future trends and maturing technologies in a timely
manner.5,6 In the scope of a systematic review, Hines
et al6 mapped data sources used in horizon scanning
and found that softer sources of intelligence used in
published projects included for example patents, sur-
veys, or media content to detect likely technological
trends in the near future.

However, there exist challenges in using such data.
Those challenges go back to fundamental differences
between traditional, peer-reviewed evidence-based
information and softer information about early
research developments. The differences can be nega-
tive, in terms of lower quality of the information

content.10 But they can also be positive, in terms of
rapid dissemination and availability of data that would
usually be held-up in lengthy clinical trials or peer-
review processes.

It is critical that methods of information retrieval and
data extraction advance to keep pace with this infodemic.
This is especially true when expanding the scope of data
sources that are used for secondary literature analysis
into the domain of grey literature and soft data. These
information retrieval methods underpin the screening
process for relevant literature and data extraction in
research. Automation has a key role to play in providing
faster and more resource-efficient evidence synthesis
whenever the impact on general health or the implication
of a medicine, therapy, or technology within a healthcare
system overall is unclear.

In their 2021 survey of HTAs, which include grey
literature,5 the WHO noted that >70% of the 127 included
countries used HTAs to plan, budget, and to inform clini-
cal practice guidelines.11 Stakeholders involved in the
process of prioritising and creating these HTAs are gov-
ernment entities and national health services, as well as
patient organisations or industry. However, two of the
main barriers to the production of assessments such as
HTAs are budget and data availability,11 representing
bottlenecks that can be addressed via the usage of natural
language processing (NLP) and automated information
retrieval and extraction.6,12

FIGURE 1 Exemplary timeline of the development and adoption of research into practice. [Colour figure can be viewed at

wileyonlinelibrary.com]
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1.2 | Aims

This paper provides an overview of automated data
extraction methods and tools for health-related research
questions that can be answered using grey and soft data.
We discuss the sources from which data are automati-
cally extracted (e.g., social media, patents, news) and the
type of data that are extracted (e.g., diseases, drugs, tech-
nologies). Among other items we cover performance,
practical value, as well as challenges and barriers to the
implementation of automated data extraction methods.

1.3 | Related research

With advances in NLP and developments in deep- and
machine-learning, it is becoming feasible to process vast
amounts of unstructured digitalized texts. This is giving
rise to the emerging field of NLP-based health data sci-
ence, where novel research in data mining and data
extraction is specifically applied to automate work in evi-
dence synthesis. A living systematic review of automated
data extraction from the highly related field of peer-
reviewed health literature currently includes 76 papers,
indicating fast-paced advancements in the areas of auto-
matic extraction, normalisation, relation extraction, and
text summarisation.13 Within these advancements, there
remains a need to explore methods of automatically pro-
cessing unstructured text data in the non-peer-reviewed
space, and to assess which tools and methods will facili-
tate this process for end-users. NLP and text mining is
frequently used to analyse or extract data from social
media platforms such as Twitter.14 Applications range
from vehicle traffic analysis14 to medical and health
data.15 Correia et al16 published a narrative review of

recent work on data mining in social media content anal-
ysis. They discuss papers on automation in the domains
of pharmacovigilance and sentiment analysis, most com-
monly targeting specific drugs and their adverse events,
or mental health research questions. A large amount of
related research has been conducted on information
extraction from electronic health records, for example
extracting diagnoses, treatments,17 or genomic data.18

Other grey literature data sources such as pre-prints19

and clinical trial registrations are targets for data mining
and extraction to connect them with their published
counterparts.20,21

2 | METHODOLOGY

2.1 | Research objective

This review maps published tools and methods for litera-
ture mining and data extraction. A ‘tool’, in this context
is defined as an end-user application with a user-
interface, available for example as web or desktop appli-
cation. A ‘method’ is defined as a set of scripts or a
description of an algorithm that requires users to be
familiar with data science or programming. Results of
this literature review were summarised in the form of an
evidence map, visualising the extracted data, current
knowledge, and research gaps. The review includes any
publications that describe approaches to expedite data
extraction from grey literature and soft data. In this
review, grey literature and soft data includes any health-
related data that has not passed peer-review; with exam-
ples given in Table 1.

Considering open questions around usefulness, feasi-
bility, and practical integration of grey literature and soft
data, the motivation for this literature review is to iden-
tify and examine tools and methods that currently exist
and have been used to automate data extraction activities
from these publicly available data sources.

TABLE 1 Examples for types of grey literature information and

exemplary data sources.

Information type Examples for data sources

Social media Twitter, Reddit, YouTube

Internet fora Mumsnet, SANE

News Google News, Med-Tech News,
PharmaTimes

Government Agencies or
charities

Websites, eg UNICEF, world bank

Patents Databases and indexes, such as
USP

Clinical trial registries ClinicalTrials.gov and other
registries

Pre-prints MedRxiv, ArXiv

TABLE 2 Overview of databases.

Database Interface or URL

MEDLINE via PubMed https://pubmed.ncbi.nlm.
nih.gov

Scopus https://www.scopus.com

ACL Anthology https://aclanthology.org/

dblp: computer science
bibliography

https://dblp.org/

MedRxiv https://www.medrxiv.org/

ArXiv (computer science) https://arxiv.org/archive/cs
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2.2 | Literature searches

A robust search strategy was developed to identify rele-
vant articles from a variety of electronic databases, cover-
ing health, informatics, and pre-prints in both health
research and informatics. The initial search strategy was
developed using the PubMed ‘Advanced Search’ func-
tion. Six databases were searched (2005–2022), each using
a database-specific adaptation of the PubMed search:
MEDLINE (searched via PubMed); Scopus; ACL; dblp
computer science bibliography; MedRxiv; and ArXiv (see
Table 2).

The start date of 2005 was selected, since this is the
year after which publications relevant to text-mining in
general systematic review automation first started to
appear. Three published systematic reviews of data
extraction methods from the related field of peer-
reviewed literature did not find any published text-
mining or data extraction approaches prior to 2005.13,22,23

We furthermore decided to keep this 2005 date filter
because the availability of data sources changes over the
years, and methods published prior to this date are not
representative anymore or are becoming unlikely to be
usable in practice due to changes and updates in pro-
gramming languages (i.e., new Python1 or Java2

versions).
The PubMed search strategy was developed, and

refined further based on feedback from an independent
information specialist. The strategy was then adapted for
usage in Scopus. Searches on the ACL, dblp, MedRxiv,
and ArXiv were adapted and carried out as described by
McGuinness and Schmidt.24 In short, we utilised full
database exports of all papers indexed by these databases,
and then used methods from the medrxivr R package3 to
retrieve relevant records. Search strategies, including the
regular-expression-based search for the ACL and pre-
print servers, are included as Appendix D in Data S1 (see
online supporting information).

2.3 | Eligibility criteria

In addition, to these inclusion criteria described in
Table 3, during title and abstract screening we separately
tagged papers that describe the usage or evaluation of a
tool or method with respect to a specific health research
question. For this, we tagged two items:

1. The topic of research: We created a vocabulary to cate-
gorise and bin the specific health topic studied in the
reference, based on information available in the title
and abstract. The tags included, for example, mental
health or Covid-19.

2. The data sources: We created a vocabulary to catego-
rise and bin the sources of mined data. The tags
included, for example, Twitter or health-related fora.

The decision to tag, but then exclude topic-specific
research papers at the title/abstract level was made after
a pilot-study showed that full inclusion of every such
paper would lead to an unfeasibly large amount of
included papers. We imported all tags into the SWIFT-
Review software,25 to create visualisations in the form of
heatmaps, bar- and pie-charts and to make the whole
dataset publicly sharable. A description of these results is
given in Appendix C in Data S1.

2.4 | Screening and workflow
management

All papers were deduplicated, screened, and data-
extracted in SWIFT-ActiveScreener.26 Screening at title/
abstract level was conducted up to an estimated sensi-
tivity of 95% by one reviewer, and a second reviewer
independently checked random samples of in- and
excluded records. Howard et al26 describe this in more
detail, and additionally we added an in-depth explana-
tion of this process in the Supporting Information.
Conflicts were discussed and resolved until the

TABLE 4 Search results.

Database
Number
of results

PubMed 2108

MedRxiv 89

dblp 81

ArXiv 1332

ACL 387

Scopus 5704

TABLE 3 Screening criteria.

Inclusion criteria: title
and abstracts

General exclusion criteria:
publications with datasets
focussing on

Describes original data
extraction tool or method

Patient level data such as
electronic health records

Uses at least one dataset
with non-peer-reviewed
data related to healthcare

Genomic or biological data
extraction such as gene
expressions or proteins

Inclusion criteria: full texts

Published full texts, such as journal, conference, or pre-
print papers

Publication available in English

SCHMIDT ET AL. 5
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screeners were confident that the in- and exclusion cri-
teria were applied correctly.

Similar to the initial screening process, full-text
screening and data extraction decisions were reviewed by
an independent reviewer. Conflicts were discussed and
resolved in the same fashion.

Where there were multiple publications describing
the development or evaluation of the same tool, we
grouped those papers and jointly extracted data once for
each tool, focusing on the most recent version of each
feature or function.

2.5 | Data extraction

Data were extracted within SWIFT-ActiveScreener. The
data extraction questionnaire was set up in the form of

text fields and checkboxes, as applicable. In the following
we provide an overview of the extracted data, the full
questions are shown in Appendix A in Data S1.

• We extracted relevant tool features and functionalities
from each paper, a list of data sources from which
information was obtained (e.g., GoogleNews or Twit-
ter), and the type of data (e.g., patents or online fora).

• We extracted whether the paper refers to a tool or
method, the extent of automation of the analysis
(e.g., recognition of entities or full normalisation to
standardised vocabularies), metrics and methods used
for validation within the paper (e.g., F1, precision),
and description of the tool's integration into real
research projects, where applicable.

• Finally, we extracted any challenges or barriers related
to the development or deployment of tools and

FIGURE 2 PRISMA2020

flow diagram.27,28 [Colour figure

can be viewed at

wileyonlinelibrary.com]
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methods, caveats when using these in real-world
research projects, and research gaps described in the
papers.

3 | RESULTS

3.1 | Screening

In total, the searches retrieved 9701 references (databases
searched up to 03/2022, see Table 4). After deduplication,
8927 references were imported into SWIFT-ActiveScreener
for screening.

As described within the method section of this paper,
screening was conducted using early stopping at a target
estimated sensitivity of 95%.26 After reaching the
target sensitivity a further 1000 references were screened,
but screening was then stopped because no further rele-
vant records were identified.

In total, 3646 titles and abstracts were screened. Of
those, 318 titles and abstracts were excluded at title and
abstract level, but still tagged by research topic and data
source because they described topic-specific analyses con-
ducted based on non-peer-reviewed data. These tags were
only applied during the abstract screening process, and
the 318 references did not proceed to full text screening.

On full text we included 83 tools and methods.
Eighty-four papers were included, but two were grouped
together because they described the same tool (see
Figure 2).

3.2 | Summary of the full-text literature

We imported all data into the SWIFT-Review4 software,25

to create visualisations in the form of heatmaps, bar- and
pie-charts. The project file (.stp format) is shared in the
Supporting Information, to make the whole dataset pub-
licly accessible for free.

A total of 84 papers for 7 tools and 76 methods were
included at the full-text level. One tool was described by
two papers. Data were extracted into extraction forms
created within the screening tool.

In the following section, we firstly focus on results
from tool papers or method papers describing tool
design and deployment. In the section, thereafter, we
focus on methods papers, evaluation of methods and
more technical details of algorithms doing automated
data summarisation, analysis, or normalisation. The
final results section focuses on practical challenges
and research gaps in deploying and using automation
tools.

TABLE 5 End-user tools for automated data analysis.

Title Tool name Data Deployment References Source Link to tool

A user-friendly tool for medical-
related patent retrieval

TWINC Patents Unclear 31 PubMed

PADI-web 3.0: A new framework
for extracting and disseminating
fine-grained information from
the news for animal disease
surveillance

PADI-web News Web 30 PubMed https://padi-web.
cirad.fr/en/

A new visual navigation system for
exploring biomedical Open
Educational Resource (OER)
videos

- Video Unclear 32 PubMed

Mining Adverse Drug Reactions
from Unstructured Mediums at
Scale

- Social
Media,
EHR

Unclear, some
code given

33 ArXiv

Development and evaluation of a
prototype search engine to meet
public health information needs

PHIS Websites Unclear 34 PubMed

iPresage: An innovative patent
landscaping tool

iPresage Patents Web 35 Scopus

E-patent examiner: Two-steps
approach for patents prior-art
retrieval

E-patent
examiner

Patents Web 36 Scopus

SCHMIDT ET AL. 7
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3.2.1 | Tool descriptions, features, and
integration into review workflows

Tool descriptions
We found 7 end-user tools and 76 published methods
papers. For one tool (PADI-web), we aggregated two
full texts into one tool description.29,30 Those tools
automate data extraction across different types of text
(i.e., patents, news, trial registrations) and across dif-
ferent media (i.e., digitalised text and videos). For
PADI-web, we found accessible web-deployments, giv-
ing users the opportunity to test and use the tool. Code
has been published for one further tool's NLP models.
The remaining tools were not accessible online and we
were unable to find publicly accessible deployments or
executable desktop applications.

Table 5 below shows an overview of the tools, key
information about them and a short description.

Tool features
A total of 16 papers described features and functionalities
implemented in tools, or features that could be of use in
practice when processing the data via a method. Pasche
et al31 noted the ability to bulk-process data and the
utility of automatic query expansion, for example to auto-
matically increase the amount of chemical terms by add-
ing synonyms found within MeSH or Pubchem
terminologies within their tool called ‘TWINC’. As part
of the papers for the PADI-web tool, Valentin et al30

described the feature of automatic daily evidence updates
to the data, via RSS feeds, crawling of related websites,
and usage of the Google News API. The tool can retrieve
new data and therefore prioritise, mine, and
normalise new information as it is published; ensuring
that research-projects are up-to-date. They support data
annotation via an integration of the BRAT tool37 and
make the tool publicly available as web-application, thus
facilitating collaboration and re-use of manually
extracted data. They furthermore describe features such
as email-notifications and summaries sent to the user,
which helps with transparently communicating changes
in the evidence and providing fast and easy-to-digest
updates without accessing the tool itself every day. Hari-
prasad et al38 discuss added value of a user-interface to
visualise automatically mined or extracted data, in the
form of histograms, pie charts or other types of plots.

Natsiavas et al39 describe the user-requirements and
design-process of a future tool, citing the full pipeline of
prioritisation/mining/normalisation as a feature. They
discuss the problem of heterogeneity between data
sources and suggest a division to explore data from differ-
ent sources separately, as well as separate data mining
and normalisation for each data source. As final, separate

feature, they describe a data consolidation process that
includes automated reports and visualisations to follow-
up on new data. In the PHIS tool, which stands for Public
Health Information Search,34 public-health websites are
crawled and there can be a focus on more than one class
of entities. Documents summaries are provided with
respect to extracted data. Tafti et al40 describe a data min-
ing architecture for mining social media data, and note
that usage of their database-infrastructure as a feature to
increase scalability and future access via a tool.

Lee and Uzuner41 processed patent data and
described benefits of a feature to divide patents between
already-commercialised products and between technolo-
gies in development. Also in the patent-space, Avasarala
and Bonissone35 (iPresage tool) describe colour-coding
patent-assignees for better identification and visualising
temporal trends via stacked histograms. The E-patent
examiner tool by Kravets et al36 is also a patent-focused
web-application, citing being web-based as a positive fea-
ture, as well as allowing expert-input on top of the auto-
mated process.

For video-data, Zhao et al32 (unnamed tool) describe
implementing features that help users gain a streamlined
overview of the data. This includes automatically index-
ing and updating their dataset with new health-related
videos, similar to the updates within PADI-web. They
also mention benefits of making the tool available as
web-application. The video-specific features include
visualising mined content as part of the video timeline
and making it easy to skip between highly relevant sec-
tions, using hover text and visual cues such as word-
clouds that represent key moments. Multiple videos can
be visualised on the same grid for comparison. In terms
of user-management, they discuss features to add com-
ments to a video and user-account management.

Tool usage within review workflows
Four included papers described practical settings. Tasks
in which a tool or method was used included information
gathering and scoping before starting a review project,
usage during the data extraction phase, or in the scope of
clinical practice.

The PADI-web 3.0 tool30 describes integration into
practice both in terms of scoping and in terms of keeping
researchers up-to-date automatically, on a daily basis.
When describing the scoping process, they note that one
way to integrate automation of grey literature data
extraction is by using it to ‘triage’ information before fur-
ther review. Triage itself is a term describing prioritisa-
tion of patients in emergency situations, to administer
treatment first to anyone who might benefit from it most.
Similarly, researchers in health-related topics focus on
the best available, peer-reviewed evidence first and then

8 SCHMIDT ET AL.
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a system of triage for less strong sources of evidence, such
as news and social media, may be applied. With a focus
on the field of disease surveillance, Valentin30 note that
classifying and removing likely irrelevant data from addi-
tional sources of information via machine-learning is a
step that brings value to a research project because it
leads to a prioritised and therefore earlier detection of
information. The practical integration into review work-
flows happens via automated dissemination of content to
the reviewers. Specifically, automated email-updates,
summarisation of newly classified relevant information,
and usage of RSS-feeds is described.30

Similar to PADI-web 3.0, Zhao et al32 describe a tool
for information scoping that is not directly connected to
feed information into review tools. Using biomedical edu-
cational videos, they support the process of scoping by
helping to apply information-specialist curated keyword
searches and skimming video content. In practice, this
aims to prioritise the display of likely relevant content
and thus reducing time needed to watch the full content.
However, similar to PADI-web, no export of the classified
or extracted information into downstream evidence-
synthesis tools is described.

Turner et al42 developed a data model describing key
pieces of evidence extracted from grey public-health data,
for downstream usage in automation tools. They charac-
terised information needed in practice and discuss using
a rule-based approach for automatic information extrac-
tion that firs their data model.

In contrast to the common focus on literature
reviews, Natsiavas et al39 discuss requirements for the
integration of new information into a clinician's work-
flow. They do not describe integrating with downstream
tools, but describe value added for clinicians by providing
automated summaries and analyses of texts describing
adverse events. They mine data, normalise and consoli-
date, provide structured reports and follow up on new
data extracted from social media, government websites
such as FDA, and patient health records.

3.2.2 | Analysis of automation methods:
Data sources, types of data, extend of
automation, and evaluation

Data sources
We tagged the source of data used within the included
full-texts and show the results in Figure 3, using the same
set of tagging categories that was also applied to the
topic-specific datasets analysed on title and abstract-level
in Appendix C in Data S1. The results within Figures A1
and A2 (topic-specific abstracts, see Appendix C in
Data S1) and Figure 3 (included full-texts) are very simi-
lar, both indicating that Twitter, health-related fora, web-
sites and news are the most common sources of data used
for automation.

For the purpose of training and evaluating an algo-
rithm, researchers often use publicly available

FIGURE 3 Sources of data

used in the included papers. We

only included full-texts if they

reported usage of such data

within their dataset. PubMed

was tagged as data source

whenever an included reference

mentioned using a mixed corpus

such as TwiMED, including a

mix of PubMed and Twitter data.

One paper might include more

than one source of data. [Colour

figure can be viewed at

wileyonlinelibrary.com]
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benchmarking corpora or they create custom labelled
datasets for this purpose.

We found 25 different benchmark corpora used
as data sources for training and/or evaluation in
the included papers. The most commonly used cor-
pora were SMM4H5 used by 8 papers, and CADEC43

and TwiMED,44 used by 5 papers each. One corpus
was used by two papers, and the remaining 21 cor-
pora were used by only one reference each (see
SWIFT-Review project file for references to each
corpus).

From the 84 papers, at least 65 reported creating their
own datasets. This included either curating a full dataset
from scratch or labelling and using a smaller dataset in
addition to a previously published benchmarking dataset.
The high usage of own and custom datasets can in part

be explained by the heterogeneous characteristics of non-
peer-revied data.

Peer-reviewed literature itself is commonly published
in English. In contrast to that, information extracted
from publicly available and grey literature sources is
much more diverse. Social media posts, forum discus-
sions or data from government agencies are often avail-
able in native languages of the authors who conduct the
NLP research. We found examples for Indonesian,45

Chinese,46,47 Croatian,48 and other multilingual datasets
including French or Latin.49 This diversity in both data
sources and in languages leads to a greater need to curate
datasets on a project-by-project basis.

Currently, the biggest publicly available datasets
include tweets and forum posts mostly in English, while
availability of multilingual data is more limited. Datasets

FIGURE 4 Types of data

covered by automation methods

in the included tools and papers.

[Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE 6 Level of automation in the included papers. One paper can include more than one type of automation.

2005–
2006

2007–
2008

2009–
2010

2011–
2012

2013–
2014

2015–
2016

2017–
2018

2019–
2020

2021–
2022

Priorisation and
Summarisation

1 0 2 5 3 8 15 16 8

Mining Entities and
Sentences

0 0 0 1 3 10 8 15 8

Extraction and
Normalisation

0 0 0 0 1 2 6 5 3
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are often small and include imbalances within the
labelled classes, which in turn makes it difficult to train
reliable and well-performing algorithms for automa-
tion.50 Saha et al50 also suggest that future research into
using well-trained and evaluated methods for automatic
translation into English is warranted. The performance
of machine-translation and so-called multilingual zero-
shot classification has improved greatly in recent years,
but its application to data extraction for medical contexts
has not been evaluated in great detail due to a lack of
multilingual corpora.

Types of data
Adverse events (n = 35), followed by disease (n = 29),
and drugs (n = 18) were the most common types of data
addressed by the automation models in the included
papers (see Figure 4). We tagged a total of 32 different
types of data that are commonly used within health-
related literature analyses. Some of these, such as the
14 papers categorised under ‘Technology and Trends’
can be of use to researchers implementing horizon scan-
ning automation, while others such as ‘Symptom’
(n = 16) or ‘Intervention’ (n = 14) may be useful for a
variety of literature review questions and methodologies.

Extent of automation
For each included paper, we tagged the extent of automa-
tion based on three options. These are explained in more
detail below, and key aspects are further described in the
glossary, which is given in Appendix B in Data S1.
Table 6 summarises the results.

• Prioritisation and summarisation of evidence (lowest
level of automation).

• Mining entities and sentences.
• Extraction and normalisation to standardised vocabu-

laries (highest level of automation).

Prioritisation and summarisation of evidence. In the
research context of this review, priorisation and sum-
marisation is very similar to the well-known NLP
task of document-level classification and topic model-
ling. We found 63 papers that described the function-
ality of helping researchers to summarise, re-order or
identify whole documents related to a health-related
research question or task. This can be achieved by
classifying whole tweets by content type or by identi-
fying emerging technology trends within YouTube
video captions or patents. For example, a tweet could
be classified and prioritised as containing content
about adverse events in general. This process helps
to streamline the identification of relevant content by

presenting researchers with a pre-filtered set of
likely-relevant research. Documents, as such, are not
being data-extracted but rather pre-sorted and pre-
pared for analysis. This process was included in the
scope of this review paper because it is generally
regarded as one of the most straightforward applica-
tions of AI and machine-leaning, with a chance for
high, reliable model performances. In the domain of
screening peer-reviewed papers for systematic
reviews, using AI in the prioritisation process is now
widely recognised approach to save significant
amounts of time in order to find relevant papers.23,26

Out of the 63 papers, 25 added more value by combin-
ing the prioritisation step with the more specific task of
mining entities or sentences, and 13 of those papers also
covered the whole process of creating structured data by
adding normalisation functionalities. In the following
paragraphs, we describe the tasks of mining and normali-
sation in more detail, to give an overview of those pro-
cesses and their potential added value. As part of this
evidence map, we share a SWIFT-Review project that
contains all included papers and the tags discussed in this
section, such that readers can browse the papers in each
category easily.

Mining entities and sentences. Here, we tagged papers if
they described processes that lead to the targeted iden-
tification of shorter pieces of information in text, for
example sentences, named entities, or relations
between them. An entity could be a single word or
short phrases of text belonging to a clearly defined
class of things, such as the word ‘Aspirin’ being an
entity of the class ‘Drug’.

Tasks related to data mining are harder than the
prioritisation or summarisation, because they often
require classification on a word-by-word basis and
thus introduces a higher chance of errors or partly-
correct identification of entities. The input text was
usually natural language, in full texts or segmented
into units such as sentences, abstracts, or paragraphs.
In the included papers, 46 reported some form of
mining functionalities within their text, mostly lim-
ited to named-entity recognition and not focussing
on relation extraction. In practice, this leaves the
user with selected pieces of text in a semi-structured
form, because the resulting text is shorter and has
class-assignments, such as ‘drug’ or ‘disease’.
However, the mined text itself is just a subset of the
original text, and therefore still present in the form
of natural language. This natural language can carry
variations in expressions that complicate automated
synthesis of the data, thus still requiring human
assistance and downstream manual work.

SCHMIDT ET AL. 11
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Extraction and normalisation. To create fully structured
data from unstructured text, all mined text can be nor-
malised to a structured vocabulary. For example, when
normalising to MeSH terminology, mined text pieces
such as ‘2-(Acetyloxy)benzoic Acid’, ‘Polopiryna’, or
‘acetylsalicylic acid’ would all be resolved to MeSH term
‘D001241: Aspirin’. In total, 17 papers described normali-
sation as part of their pipeline. The task of normalisation
is harder than mining entities or sentences, because the
core-classification task is not binary (i.e., not a choice
between the decision drug/not-drug for a word) but
rather a complex multi-class and sometimes multi-label
case where the potential decision-space is as large as the
vocabulary to normalise to. For example, when normalis-
ing to MeSH terms, there are more than 680,000 entry
terms that can be chosen to normalise an entity to. This
does not only create computational problems because of
the large space of potential labels, but also problems in
terms of ambiguity, non-covered vocabulary, and varia-
tions in specificity of the chosen concepts. In other
words, one mined piece of text may correctly refer to one,
more than one, or to no covered concept within a vocab-
ulary. Whenever more than one correct concept applies,
one might need to make the choice between less specific
normalisations (i.e., high-level concepts in the MeSH
tree) or more specific normalisations (i.e., the lowest-level
finer-grained concepts). This increases not only the com-
plexity of the classification task, but also makes it chal-
lenging to conduct a fair and comprehensive evaluation
that is representative of future, unseen data that will be

seen by the system when it is deployed in practice. Fur-
thermore, in practice, a correct normalisation requires
correct named-entity recognition in the first place, thus
escalating any errors made during downstream data pro-
cessing. This accumulation of error during multiple
classification-steps is a challenge that may be further
reducing the amount of correctly normalised entities
when tools and methods are used in practice.

Evaluation of algorithms
Evaluations were most commonly performed in a quanti-
tative manner by using manually or distantly labelled
gold-standard datasets. Most commonly, the process
included the creation of a dataset by experts, and then
splitting data randomly into training, validation, and test
sets, to ensure that none of the data seen by an algorithm
during the training-phase is used for evaluation. The pro-
cess of splitting the data was either described in the
papers, or authors described using published benchmark-
datasets with predetermined splits. In line with scores
frequently used to report automated data extraction
results on peer-reviewed literature,13 the commonly used
evaluation metrics of precision, recall, and F1 score were
the most prevalent scores, with 19 papers reporting all
three scores. F1 by itself was the most common score,
reported in 47 papers, followed by precision (n = 29) and
recall (n = 26). Accuracy was reported in n = 9 papers,
MAP in n = 4, area-under-curve n = 3, specificity n = 2,
one devised a new score and two papers used speed (see
Figure 5).

FIGURE 5 Level of

automation in the included

papers. One paper can include

more than one metric for

evaluation. [Colour figure can be

viewed at

wileyonlinelibrary.com]
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Those scores were reported across different kinds of
classification tasks, generally showing very good scores
for straightforward tasks that include only document-
level classification. For these binary classification tasks
F1, precision, and recall scores higher than 0.9 is becom-
ing more common.51–55 Scores decrease for harder classi-
fication tasks such as normalisation to controlled
vocabularies, commonly ranging between 0.2 and 0.6 in
precision, recall or F1. In part, this large variation
between reported scores, spanning 0.2–0.6, can be seen
for normalisation because the included papers used the
same evaluation metrics but applied them in different
ways. An example for this is the usage of relaxations such
as counting a predicted answer as ‘correct’ if the true
label was predicted within the top-N predictions, as
opposed to only accepting one answer. Another relaxa-
tion method was to decrease the amount of potential
labels to only include top-level categories.47,49,50,56

Even when grouping and comparing classification
scores for the three classification tasks separately, it is
not straightforward to determine the best-performing
algorithm within each category. Algorithm performance
reported on a domain-specific dataset labelled by a group
of researchers according to their own annotation guide-
lines may vary when the same algorithm is tested on
completely new and therefore independent data labelled
by different persons. A number of included papers used
more than one dataset to evaluate their classifiers in par-
allel, showing differences between the evaluations scores
of the same algorithm or architecture and therefore mak-
ing it hard to estimate how each algorithm would per-
form in real-life, with potentially new or evolving
data.57–59

In total, 15 papers described qualitative or practical
evaluations of their algorithms. In the most cases, the
qualitative evaluation completely replaced quantitative
analysis. Evaluations were conducted via case-studies
and explorative analyses of large sets of unlabelled data.
By applying the algorithm or proposed tools to a real-life
dataset, authors discussed their perceived value of the
automatically mined or extracted data. In the field of
mining emerging health technologies, for example, it was
a common approach to train Latent Dirichlet Distribu-
tion (LDA) topic model algorithms to identify dominant
themes in large corpora of data.47,54,60–62 This approach is
chosen because LDA is a generative unsupervised
machine-learning approach, assigning a pre-defined
number of topics to each document and using probability
distributions across the vocabulary to assign words to
topics.63 The output of this algorithm is a set of unla-
belled word-clouds with vocabulary that may have emer-
gent semantic similarities when examined by a human.
Those outputs are then qualitatively evaluated by picking
emerging topics and discussing or visualising data.

Drawbacks for using topic-models such as LDA are
that they require human interpretation, they are
strongly influenced by training parameters (such as the
pre-defined number of topics per document) and in the
absence of a fully labelled dataset it is not possible to
estimate sensitivity (i.e., to estimate the amount of
missed important topics). However, barriers to con-
ducting a full quantitative evaluation can include, for
example, a lack of resources to create own labelled
datasets where none are publicly available. For this
reason, researchers are opting for such unsupervised
algorithms to create value, without investing large
amounts of resources.64

Practical evaluations of tools: Evaluations done for
tools, in the absence of labelled data, include assessments
of efficiency within the workflow, by doing a direct com-
parison between time-taken by humans to complete a
task versus AI-supported humans receiving automatically
extracted or likely relevant data first. Zhao et al,32 for
example, found that using their unnamed AI tool in
explorative analysis of biomedical video content
increased the speed of finding relevant evidence by 3.7
times, and that users were able to answer content-based
questions more accurately. Keeling et al34 qualitatively
compared their search tool PHIS with Google, applying
the ‘Critical Incident Technique’ by asking users to keep
notes of situations where the tools were effective or inef-
fective, and conducting retrospective semi-structured
interviews.

3.2.3 | Practical challenges and research
gaps that constitute barriers to the development
and deployment of data extraction tools and
methods

Heterogeneity and transferability within the data
Heterogeneity within the data was discussed as a barrier
to the overall process by Sofean and Aras.61 They focused
on patent mining and noted that within patent docu-
ments there are different kinds of text such as the main
text and metadata, including information about the
inventors, institutions, and timelines. The challenge of
automating data extraction from patents exceeds the
boundaries of NLP, because they include potentially valu-
able information in forms other than text, for examples
as drawings or schemes.61 Turner et al42 described het-
erogeneity within 320 analysed grey literature docu-
ments. This included the challenges caused by different
document types such as HTML or PDF, different content
types such as text or figures or tables, and a general
broadness and inconsistency of topics and subject mat-
ters.42 Other features of unstructured data that cause
challenges are colloquialisms, abbreviations, spelling
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errors, and other variations that appear in natural
language.41,56,65,66

Chee et al65 describe heterogeneity not within a data
source, but between them. Due to different text lengths
and/or languages it becomes hard to achieve knowledge-
or domain-transfer between sources such as Twitter and
online forum entries. This creates a need for developing
separate datasets and classifiers for extracting the same
type of information, for example drugs, from these het-
erogeneous sources.64,65,67

Complexity, noise, and ambiguity within the data
Complexity is a challenge mostly described within papers
that attempted the normalisation of extracted data, due
to the large space of possible terms to map to.68 Another
factor adding on to complexity of tasks is unstructured or
irrelevant background information within datasets, or a
lack of context within short texts such as tweets.68,69

Ambiguity also increases complexity, for example when
drug name can have multiple synonyms, trade names, or
multiple correct labels.39,56 Noise is a concept that gener-
ally refers to data being unreliable due to their unstruc-
tured and naturally expressed form, thus causing errors
both while labelling gold-standard data and when proces-
sing and predicting on new data.31,52

Sparsity or imbalance within the data
ML or neural networks architectures require annotated
data during the learning process. When training classi-
fiers for forum posts to identify drugs, Chee et al65 noted
that some drugs did not have enough mentions in posts
in order to train and evaluate robust classifiers, while
Arnold et al57 also describe rare entities and unseen data
as a problem. Imbalance in the data, when there are
more positive training examples for certain types of infor-
mation, can be another issue that leads to performance
drops in under-represented classes.70,71

Scalability
Data extraction methods are trained and evaluated on
benchmark datasets. However, when deploying them for
practical use in real-world scenarios, the amount of data
that needs to be processed increases, causing processing
times of multiple hours or days and necessitating the use
of high-quality hardware and analytics platforms.34,36,40

Ul Haq et al33 discuss that this is a complex task because
classification accuracy, time, and versatility need to scale
in parallel with the real-world tasks that a system is
applied to solve.

Corpus availability and cost to generate annotated data
Multiple publications described a lack of publicly corpora
and benchmark datasets. This is a commonly described
issue for different types of data, including patents72 or

social media.73 It is also mentioned specifically in relation
to text extraction and normalisation to standardised
vocabularies such as the UMLS.68

In the absence of publicly available corpora,
researchers are forced to spend money and resources to
create their own customised datasets,65 which can lead
to small datasets with limited usefulness, thus creating
the need to adapt models to maximise gain in situations
where better performances could be achieved.74

When using labelled gold-standard social-media
corpora from sources such as Twitter, copyright, and
data-availability were described as a challenge.75 Twitter
datasets can shrink as tweets become unavailable over
time, thus reducing reproducibility and comparability of
results obtained at different points in time when using
the same corpus.56,75,76

However, there exists a vast amount of secondary
research that has utilised automated data extraction in
practice. These tend to be AI project-specific tools
extracting data to create very targeted and topic-specific
intelligence using bespoke methods that are generally not
re-usable beyond the original research project. Due to the
vast amount of topic-specific automation we did not
include these papers in the full-text analysis, but rather
tagged them by topic (e.g., mental health, COVID-19)
and data source (Twitter, news). This supplementary evi-
dence map includes 318 papers. A description of our find-
ings, along with figures and a heat-map is provided in
Appendix C in Data S1, and an interactive version
giving access to the papers and their data tags is provided
within the SWIFT-Review project in the Supporting
Information.6

4 | DISCUSSION

The surge in published literature and the dearth of
intelligence available is driving the need for more
innovative methods to deliver timely secondary
research. Fully or semi-automated data extraction may
offer a means to make both unstructured and struc-
tured data more accessible to those undertaking this
type of research. However, conducting any secondary
research projects is time-intensive, and often projects
themselves are time-sensitive. Therefore, it might not
always be feasible to include evidence from lower-
quality, grey literature or soft data sources. Fully or
semi-automated data extraction can be a way forward,
to make unstructured data accessible and facilitate
integration into review workflows. However, this
works only if data can be automatically identified and
extracted using a targeted, well evaluated and
evidence-based approach. Further, it remains impor-
tant that the data being used, whether it is from
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RCTs or Twitter, are pertinent to the question being
asked and the decision being made.

We included 7 end-user tools and 76 published
methods papers for data extraction of grey literature and
non-peer-reviewed data in this mapping review. There is
a broad range of secondary health-related research that
could benefit from using grey literature and softer data.
Horizon scanning is one use-case, because it utilises
timely, soft sources of information to detect signals of
future trends in research and technology.6 Similar use-
cases for softer and automatically extracted data include
the identification of future research topics and protocol
formulation. Another potential use-case is the inclusion
of rapid analysis of these non-peer-reviewed data sources
in the discussion section of systematic reviews, where
impact on patients and practitioners, impact on health-
care systems, research gaps in clinical trials or recom-
mendations for the future are discussed.

4.1 | Discussion in the context of related
literature reviews

Correia et al16 published a narrative review of recent
work on data mining in social media content analysis.
They discuss papers on automation in the domains of
pharmacovigilance and sentiment analysis, most com-
monly targeting specific drugs and their adverse
events, or mental health research questions. These
findings correspond to our mapping of the topic-
specific literature (see Appendix C in Data S1), we
mapped mental health and sentiment analysis within
the top-3 applications. We picked up COVID-19
within the top-3; this is not represented within Cor-
reia et al16 due to their publication date in May 2020.
They discuss limitations specific to social-media data,
such as limitations of reliability of the data when
users build online-personas, limitations related to bot-
content, limitations when sampling data for analysis,
and caveats that people posting online are a small
selection from a wider publication and thus samples
may not be representative.16 A living systematic
review of automated data extraction from the highly
related field of peer-reviewed health literature cur-
rently includes 76 papers, indicating fast-paced
advancements in the areas of automatic extraction,
normalisation, relation extraction and text summarisa-
tion.13 Their main conclusions are similar to the find-
ings of this review, citing low availability of end-user
tools among many published methods of data extrac-
tion leading to slow uptake of automation methods in
practice, low comparability between evaluation results,
and high duplication of research efforts.13

4.2 | Discussion of important features of
extraction tools

Most included papers described methods for extraction of
data, with potential features that might be beneficial for
future tools. The identified tools discussed accessibility
(i.e., as web-application), bulk processing of text, auto-
matically updating data from the web, automatic query
expansion, and visualisations as main features. Barriers
to integration with other downstream tools was identified
as a research gap.

4.3 | Discussion of the level of support
given by tools and methods

To encourage practical use of the included tools and
methods, their underlying NLP methods need to be accessi-
ble in the form of usable tools, connected to online data-
sources for automatic information retrieval, and well vali-
dated. In summary, three different types of evaluation were
described in the included publications to validate models,
each applied as required by the task and research context:

1. A direct model performance validation, where the pro-
posed model is compared with other published models
or algorithms that were trained using the same dataset,
ideally with the same train/validation set splits.

2. An adaptability validation, where the proposed
model's evaluation scores are compared with the same
model's scores across different independent datasets
that often, but not necessarily, fit the same domain
but have different characteristics such as data source,
annotation guidelines, or topic-distributions.

3. A practical validation, where the model is used to
make predictions on real-life, unlabelled data. This
evaluation can be qualitative, in terms of perceived
usefulness or trustworthiness of the system as part of
a case-study, or comparative in terms of time-saved
during screening and data extraction.

4.4 | Discussion of practical challenges,
research gaps, and caveats as described
within the included papers

In the following section, we discuss the broader implica-
tions of our analysis, focussing on the limitations associ-
ated with using automated data extraction tools and
methods in real-world scenarios. These limitations
include both the point-of-view of the tool providers, in
terms of challenges related to the deployment of usable
tools, as well as general challenges caveats relating to
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user's lack of trust and further research that is needed
when integrating reliable and usable automation in data
extraction into real-world research projects.

Natsiavas et al39 described a method and tool design
to be used by clinicians at the point of care; noting that
integration into already established workflows can be
challenging, due to already established routines and
information overflow for the clinicians. They noted that
having normalised data, facilitating data-sharing, and
implementing continuous updates would be helpful, but
acknowledge that those features are hard to implement.39

In the real world, tools need to be accessible to users.
Costs need to be calculated for hardware and providing
computational resources and servers for deployment.
This is challenging because it can make it expensive for
tools to be live and accessible.67

Another important issue that prevents the usage of
automation methods is a lack of trust in the reliability
of tools and methods, concerning for example trust into
the sources of the information or a lack of high-
performing classifiers that can provide adequate perfor-
mance.30,34,71 Many of the included papers used their
own datasets for training and evaluation, or completed
their evaluation using different evaluation metrics. This
severely limits the comparability of approaches and can-
not provide us with definite answers on how trustworthy
or reliable tools are. Whenever methods were tested in
real-world scenarios, these tests were usually small and
unmeaningful as the process of using the automation
approach was not directly compared with a fully manual
analyses on the same dataset. Outcomes such as time-
saved, or number of relevant records discovered by each
method, were rarely assessed.

Non-scientific or grey literature data from social
media, patents, or similar sources are often expressed in
languages other than English. This means that problems
around sparsity, data imbalance, and lack of availability
are exacerbated, as they make it harder to obtain good
representations of the language and tasks that need to be
achieved. A potential solution to this problem is the
usage of automatic translation software. With the advent
of neural networks in NLP the performance of machine-
translation algorithms has steadily improved over the
past years,77 and a selection of free or paid-for APIs such
as DeepL7 and Google Translate89 are available to process
information in various formats.

A potential practical challenge we noted is the evalua-
tion of a tool or model on data that has previously been
seen in training. This issue should not arise when train-
ing and evaluating on one dataset that has been correctly
split into train and test data, but it may arise when multi-
ple datasets are created from the same source and then

subsequently used as additional evaluation sets. For
example, ClinicalTrials.gov is a frequent source of data
described in multiple papers and datasets21,78–81 and thus
caution needs to be exercised when using or evaluating
across datasets that are available from related research
projects.

4.5 | Recommendations for tool
development

In summary, researchers or companies looking to
develop automated data extraction tools should consider
the financial implications for tool development and
deployment, and the scalability of their automation
methods to estimate hardware needs and running costs
in the long-term. They should also carefully assess user
needs and interoperability of the proposed tool with other
down or upstream tools used in literature analysis or in
clinical practice. These considerations determine the
complexity of their proposed tool and should be key to
the planning, execution, and evaluation stages of the
final tool.

Unfortunately, this does not guarantee user-
acceptance, and significant risks remain when investing
research time and money into tool development. A lack
of trust in the tool and/or its underlying automation
methods may still lead to a lower-than-expected uptake,
at which point the effort of maintaining tools is too high
and may not be worth it.

To increase acceptance, transparent large-scale
testing and comparisons on different datasets may
be needed, in conjunction with early engagement
with the research community during the design
phase and later via publications in peer-reviewed
journals. As discussed in the previous sections, a
comprehensive evaluation includes comparing and
contrasting one automation model with other
models using the same datasets, applying the model
to multiple datasets with different characteristics to
simulate different real-world projects, and running
large-scale practical evaluations on real-world pro-
jects without any pre-defined gold-standard data, to
measure outcomes important to researchers who
conduct literature reviews. These outcomes could be
time-savings between automation-supported and
manual processes, number of records missed or
gained through automation, and usability and inte-
grability of the tool into established workflows and
methodologies. None of the included papers men-
tioned marketing, to increase awareness and public
knowledge about tools.
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4.6 | Limitations

The scope of this mapping review is intentionally broad.
A vast amount of literature exists in the inter-
section between automatic data extraction and health-
related evidence/data in the public domain. We aimed
to be systematic in capturing the relevant literature
during the search but limited the inclusion criteria to
papers that extract general-purpose text (as opposed to
including topic-specific analyses). To mitigate this limi-
tation, we have separated and tagged all topic-specific
papers as part of a separate evidence map based on
title/abstract information of 318 papers. We presented
an abbreviated version of these results within Appen-
dix C in Data S1.

We extracted evaluation scores for included papers
and discussed model performances for tasks of differing
complexity but did not directly compare the performance
of any methods discussed in this review. We avoided
drawing conclusions on the ‘best’ tools or methods avail-
able; this was not our aim. However, had we sought to do
this feasibility of such an exercise would have been hin-
dered by the usage of different datasets and different
methods of evaluations across the papers. Further in-
depth case-studies that include implementation and
direct comparisons of some of these methods are reserved
for future work.

5 | CONCLUSION

This review summarises current knowledge about func-
tionalities, data sources, and performance of published
methods and tools to automate data extraction of grey lit-
erature and soft data related to healthcare. We performed
a detailed analysis of key strengths and weaknesses of
7 end-user tools and 76 methods papers, and the level
of support they provide. We collected information about
barriers in implementing automation in practice, and a
summary of caveats and experiences from using automat-
ically mined and extracted data in real world projects.
Overall availability of code, data, and implementation of
methods into accessible end-user tools was poor, suggest-
ing that the field of automating grey-literature mining
suffers from high duplication of research efforts, and at
the same time low uptake of the few tools and methods
that are available.

5.1 | Highlights

This is the first review of automated data extraction
from health-related grey literature and soft data; to

automate horizon scans, HTAs, evidence maps or other
secondary literature reviews. It includes 84 tools and
methods papers mining information from health-
related news, patents, websites, trial registers, fora, or
social media.

We discuss relevant end-user features of tools, types
of extracted data and text such as ‘disease’ or ‘outcome’,
evaluation metrics and results, practical implications of
usage, research gaps and barriers to development and
deployment of automation methods in this field in
practice.

This review provides a detailed insight into auto-
mated classification, mining, and normalisation of data
from grey literature and soft data. We tagged, mapped,
and shared all results to enable both data scientists and
researcher with health-related research background to
easily filter and access all included papers.
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