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A Novel Phase Unwrapping Method for Low
Coherence Interferograms in Coal Mining Areas
Based on a Fully Convolutional Neural Network
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and Fengcheng Guo

Abstract—Subsidence caused by underground coal mining activ-
ities seriously threatens the safety of surface buildings, and interfer-
ometric synthetic aperture radar has proven to be one effective tool
for subsidence monitoring in mining areas. However, the environ-
mental characteristics of mining areas and the deformation behav-
ior of mining subsidence lead to low coherence of interferogram. In
this case, traditional phase unwrapping methods have problems,
such as low accuracy, and often fail to obtain correct deforma-
tion information. Therefore, a novel phase unwrapping method
is proposed using a channel-attention-based fully convolutional
neural network (FCNet-CA) for low coherence mining areas, which
integrates multiscale feature extraction block, bottleneck block,
and can better extract interferometric phase features from the
noise. In addition, based on the mining subsidence prediction model
and transfer learning method, a new sample generation strategy is
proposed, making the training dataset feature information more di-
verse and closer to the actual scene. Simulation experiment results
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demonstrate that FCNet-CA can restore the deformation pattern
and magnitude in scenarios with high noise and fringe density (even
if the phase gradient exceeds π). FCNet-CA was also applied to
the Shilawusu coal mining area in Inner Mongolia Autonomous
Region, China. The experimental results show that, compared with
the root mean square error (RMSE) of phase unwrapping network
and minimum cost flow, the RMSE of FCNet-CA in the strike
direction is reduced by 67.9% and 29.5%, respectively, and by
72.4% and 50.9% in the dip direction, respectively. The actual
experimental results further verify the feasibility and effectiveness
of FCNet-CA.

Index Terms—Decorrelation, deep learning, interferometric
synthetic aperture radar (InSAR), mining subsidence, phase
unwrapping.

I. INTRODUCTION

COAL, as the primary energy source worldwide, holds
immense strategic value for the growth of the global

economy. Still, extensive underground coal mining can lead to
severe land subsidence and potential environmental disasters
[1]. For example, between 1949 and 2002, coal mining in China
resulted in land subsidence exceeding 700 000 ha in total area,
and the resulting economic loss exceeded 7 billion USD [2].
Monitoring surface subsidence regularly in mining regions en-
ables an understanding of surface deformation patterns and pro-
vides a basis for decision-making in preventing and controlling
surface subsidence disasters. Traditional monitoring techniques
include leveling, global positioning system monitoring, and
other methods. Although their monitoring accuracy is high, these
methods have limitations, such as high cost, substantial labor
requirements, and point measurements only.

The emergence of interferometric synthetic aperture radar
(InSAR) provides one novel tool to monitor surface subsidence
in mining areas. This technology has outstanding advantages,
such as rapid speed and high precision, and it has achieved many
successful cases in monitoring of mining subsidence [3], [4],
[5]. Phase unwrapping is one crucial procedure in InSAR pro-
cessing, and its results determine the reliability and accuracy of
subsequent deformation. Traditional phase unwrapping methods
[6], [7], [8] assume that the absolute phase difference (phase
gradient) value between two adjacent points to be unwrapped
should be less than π [9]. However, the surface of the mining
area is mainly covered by sparse vegetation and bare soil, the
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coherence is low, and the interferometric phase is often discon-
tinuous. At the same time, in the coal mining process, there
is large surface displacement in a very small range, resulting
in dense interferometric fringes, and the deformation gradient
often exceedsπ. The above reasons make it difficult for the phase
continuity assumption to be satisfied in mining areas.

Deep learning is a hot research topic in machine learning,
which can analyze and predict by learning the inherent laws
of sample data [10]. It has been successfully applied in the
field of InSAR, such as phase denoising [11], [12], [13], target
detection [14], [15], [16], and other applications [17], [18],
[19]. Concomitantly, deep-learning methods have also achieved
mass applications in InSAR single-baseline phase unwrapping
(SBPU) [20], [21] and multibaseline phase unwrapping [22],
[23], [24]. According to the number of unwrapping steps, the
deep-learning-based SBPU can be classified as either one-step
or two-step [25]. The one-step phase unwrapping method uses
the deep-learning network to restore the wrapped phase to the
absolute phase directly; that is, the input is the wrapped phase
and the output is the absolute phase, and no other processing
steps are required. A one-step deep-learning phase unwrapping
(DLPU) method was proposed by Wang et al. [26]. However, the
presence of noise in the SAR interferogram may seriously affect
the performance of DLPU. Inspired by the classical denoising
convolutional neural network, Wu et al. [27] proposed the phase
unwrapping network (PUNet). However, this method can lead to
large phase unwrapping errors if interferograms are affected by
severe temporal decorrelation. Based on the conditional genera-
tive adversarial network, Zhou et al. [28] proposed a novel phase
unwrapping method (referred to as PU-GAN). It can guarantee
the congruency between the rewrapped interferometric fringes
of the unwrapped phase and the original interferogram, which
is the apparent advantage of PU-GAN. However, the training
dataset of the PU-GAN network mainly covers the terrain phase
in the interferogram, which leads to its relatively weak general-
ization ability and may not be able to unwrap the interferogram
of the mining area. The two-step phase unwrapping method
usually calculates integer ambiguity of the interferogram phase
at any pixel or absolute phase gradient between adjacent pixels
and then retrieves the absolute phase through mathematical
operations, e.g., least squares (LS). The PhaseNet [29], [30]
is representative of two-step phase unwrapping. This method
regards phase unwrapping as a semantic segmentation problem;
that is, it first predicts the phase ambiguity number of each
pixel and then adds it to each pixel to obtain the absolute phase.
However, PhaseNet is mainly suitable for clean and noise-free
interferograms and does not work well for SAR interferograms
with long temporal baselines and low coherence. Zhou et al.
[31] proposed the phase gradient net phase unwrapping method
to accurately estimate the interferometric phase gradient and
employ the LS algorithm to retrieve the absolute phase. This
method can accurately obtain the phase gradient under different
noise levels and terrain features. Still, for the interferogram of the
subsidence area of the mining area, this method cannot predict
the phase gradient well, which leads to further propagation of
errors in the subsequent phase integration process.

The surface of the mining area is often covered by sparse
vegetation, resulting in temporal decorrelation and severe noise.

In addition, one typical characteristic of mining activity is that
a large ground surface displacement in a small range results
in a large deformation gradient that tends to exceed π. Severe
noise and large deformation gradient lead to low coherence of
interferogram in the mining area, which often fails the traditional
phase unwrapping method. Therefore, a fully convolutional
neural network with channel attention (FCNet-CA) is proposed
in this article to unwrap interferograms with low coherence
in mining areas. This method combines channel attention and
multiscale feature extraction modules to extract interferometric
phase features better. Residual connections and bottlenecks are
added inside the module to train a deeper network while saving
training time. In addition, based on the mining subsidence
prediction model and transfer learning method, a new sample
generation strategy in the mining subsidence scene is proposed,
making the training dataset feature information more diverse
and closer to the actual scene. Datasets with different noise
and deformation gradients are simulated to test the feasibility of
FCNet-CA. FCNet-CA is then applied to the Shilawusu mining
area in Inner Mongolia Autonomous Region, China, and the
results further verify the precision and reliability of the proposed
method.

II. METHODOLOGY

A. Generation of the Training Datasets

The quality of training samples largely determines the relia-
bility of network predictions. Therefore, generating simulated
training samples close to the actual scene significantly improves
the network performance. Existing methods often only use a spe-
cific function to simulate the surface subsidence of mining areas,
such as the two-dimensional (2-D) Gaussian surface method
proposed by Wu et al. [27]. However, this function model is
only an approximate expression of the surface subsidence in
the mining area without considering the influence of the mining
area’s geological and mining conditions, resulting in a weak gen-
eralization ability of the model. Therefore, this article proposes
a new sample generation method for mining subsidence. Two
datasets were generated in the experiment, on the one hand, a
specific function (i.e., a 2-D Gaussian surface function) is used
to simulate deformation, which is called dataset G. It combines
complex Gaussian noise, Perlin noise, and water decorrelation
noise to generate samples. In addition, combined with the mine
geology and mining conditions, the mining subsidence predic-
tion model is used to simulate deformation and integrate the
same noise to create supplementary samples called dataset M.
2-D Gaussian surface function is expressed as

p (X|u,Σ) = 1

2π|Σ| 12
exp

(
− (X − u)TΣ−1 (X − u)

2

)
(1)

where X = [x1, x2]T represents 2-D grid and u = [u1, u2]T repre-
sents the location of the deformation area. Σ is a 2-D covariance
matrix that controls the size and shape of the deformation area.

However, in the actual mining scene, the deformation of
the mining area is not a standard oval shape. Therefore, it
is necessary to randomly distort the 2-D Gaussian surface to
better simulate the interferometric phase of the mining area
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Fig. 1. (a) Local coordinate systems for coal mining, modified from [2],
(b) example of surface deformation generated by the two-dimensional Gaussian
surface method, (c) wrapped phase of (b), (c) example of surface deformation
generated by the mining subsidence prediction model, and (d) wrapped phase
of (c).

in the sample simulation process. Assume that on the N × N
interferogram, there are n × n random control points, which
control the direction and magnitude of surface distortion through
a random matrix. The distortion formula is expressed as

φx = λ ·
∑(

V n×n
x ∗ I) (2)

φy = λ ·
∑(

V n×n
y

∗ I
)

(3)

where λ is the degree of distortion; (V n×n
x

, V n×n
y

) is a random
matrix; and I represents the magnitude of every control point.

Fig. 1(a) shows the principle of training samples generated
with the mining subsidence prediction model. According to
mining subsidence theory [32], the total subsidence Wa(x, y)
of point A(x, y) caused by exploiting the whole working panel
is expressed as

Wa(x, y) = W0

∫ l

s3

∫ L

s1 cosα

1

r2
e−π

(x−s)2+(y−d)2

r2 dvdu (4)

where W0 = mqcosα, m is the thickness of the coal seam, q
represents the subsidence factor, and α is the inclination of
the coal seam. l = D2−s4 and L = (D1−s2)cosα. D1 and D2

represent the length and width of the working panel, respectively.
For a specific mining area, the above parameters are all fixed
values. r, s1, s2, s3, and s4 are the known parameters of the
subsidence model in the simulation process. s and d are the
corresponding coordinates of mining unit element B. Fig. 1(c)
and (e) shows the examples of two different deformation samples
generated by the 2-D Gaussian surface and mining subsidence
prediction model, and Fig. 1(b) and (d) is the wrapped phase of
Fig. 1(c) and (e).

The main parameters used in the sample simulation process
are shown in Table I and a total of 30 000 training samples
(sample size is 128 × 128) were generated through the proposed
methods, of which 80% were generated with 2-D Gaussian
surface function [26], and the remaining 20% were generated
with the mining subsidence model.

TABLE I
MAIN PARAMETERS OF THE SIMULATED SAMPLES

B. Construction of the Neural Network

FCNet-CA is one fully convolutional neural network (as
shown in Fig. 2), and it can theoretically accept the input of
any image size [33]. FCNet-CA uses batch normalization layers
to avoid the issues of gradient vanishing and overfitting that
may arise due to excessive network depth [34]. Existing phase
unwrapping methods based on deep-learning networks often do
not fully use multilevel feature information, which affects the
accuracy of phase unwrapping results. Therefore, the multiscale
feature fusion (MFF) block is built into the network to fuse
convolutional kernels with varying dilation rates to extract in-
terferometric phase features better. In general, as the dilation
rate increases, so does the extent of the receptive field, while
the network parameters will not increase [35]. However, with an
increase in the dilation rate, the convolution kernel becomes
sparser, and the phase feature extraction ability will also be
affected. In the experiment, 1, 2, and 3 are selected as the
thresholds for the fusion of convolutional layers with different
dilation rates, respectively. Squeeze-and-excitation (SE) block
[36] is used in the network to select essential features better
and pay attention to the differences between different levels of
features. The SE block (as shown in Fig. 3) allows the network
to autonomously perform phase feature recalibration, using the
global information of the interferogram to emphasize key phase
features and suppress useless features selectively. A bottleneck
block (the black dashed box in Fig. 2) is included in the network
to decrease the network’s parameters and help to build a deeper
network [37]. In addition, by utilizing residual connection (the
blue line in Fig. 2), shallow and in-depth information is added
to avoid the loss of phase characteristics caused by the network
in the transmission process [38].

As shown in Fig. 2, the first layer of FCNet-CA extracts 64
feature maps from the input interferogram layer using a 2-D
convolution layer. Ten MFF and squeeze-and-excitation (MFSE)
blocks are used for phase feature extraction. Each MFSE block
consists of an MFF block and an SE block. Then, the absolute
phase information is reconstructed by ten bottleneck blocks,
and finally, the absolute phase is output by two convolution
layers. In convolutional neural networks, the convolutional layer
is often one of the layers with the largest amount of computa-
tion. Although a large convolution kernel will bring about an
increase in the receptive field, it is often accompanied by an
increase in the amount of computation, resulting in low training
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Fig. 2. Proposed networks’ structure. Conv represents the convolution layer, and BR is the operation of batch normalization and rectified linear unit (ReLU),
respectively. The blue line represents the operation of the residual connection.

Fig. 3. Overview of the SE block.

efficiency. The receptive field of the large convolution kernel is
equivalent to the receptive field superimposed by multiple small
convolution kernels. For example, the receptive field of a 5 × 5
convolution kernel is equal to the receptive field obtained by the
superposition of two 3 × 3 convolution kernels. In addition, the
3 × 3 convolution kernel is the smallest size that can capture
the pixel features of the surrounding eight fields and has a better
effect in capturing the local features of the input image [39].
Therefore, to improve the training efficiency and better phase
feature extraction ability, each convolution kernel in the network
is uniformly set to 3 × 3.

C. Training of the Neural Network

One of the keys to recovering absolute phases directly from
low coherence interferograms through convolutional neural net-
works is the quality of the training dataset. Considering the
absolute phase corresponding to the deformation of the mining
area cannot be directly obtained, the simulated datasets are
used to train FCNet-CA in the experiment. The training process
consists of four parts: sample set production, network training,
transfer learning, and output of prediction results. The specific
steps are described as follows.

Step 1. Production of sample datasets: As mentioned above, two
datasets were produced in the experiment. One dataset uses
a 2-D Gaussian surface function, complex Gaussian noise,
Perlin noise, and water decorrelation noise to simulate the
interferogram called dataset G. The other uses the proposed
method, that is, uses the mining subsidence model to simulate

deformation and then combines the same noise to simulate the
interferogram called dataset M.

Step 2. Network training: First, the weight of FCNet-CA is
initialized. Weight initialization can help accelerate the net-
work’s convergence and avoid the gradient’s disappearance
or explosion in the network feedforward process. The dataset
G is then segmented, 80% for training and 20% for testing.
Finally, the training dataset is iteratively trained to ensure the
convergence trend of loss value, and the network weight with
the highest evaluation accuracy on the validation dataset is
retained.

Step 3. Transfer learning: Transfer learning is a machine-
learning method in which a pretrained model is reused for
another task [40]. Through transfer learning, the learned
model parameters (knowledge learned by the model) can be
shared with the new model in some way to speed up and
optimize the learning efficiency of the model. Here, transfer
learning enables FCNet-CA to use the rules of phase feature
extraction learned on dataset G to reconstruct the absolute
phase information of dataset M. This way, FCNet-CA can
be easily applied to new phase unwrapping scenarios, saving
much retraining time. Specifically, FCNet-CA is retrained
on dataset M after loading the pretraining weight obtained
on dataset G. Freezing the parameters of the phase feature
extraction part and only updating the parameters of the phase
reconstruction part to gain the final trained network.

Step 4. Output of prediction results: Based on the final trained
network in step 3, FCNet-CA can directly predict the absolute
phase of the actual deformation in the mining area. The
flowchart of the complete training process is shown in Fig. 4.
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Fig. 4. Training process of the FCNet-CA.

D. Selection of the Loss Function

The loss function is used to measure how far the model’s
predicted value deviates from the actual value. In the experiment,
the Huber function [41] is selected as the loss function for the
training set and validation set, and its corresponding formula is
expressed as

L (θ) =

{
1
2 (ϕ̂i − Y (ϕi; θ))

2, |ϕ̂i − Y (ϕi; θ)| < γ
γ(|ϕ̂i − Y (ϕi; θ)| − 1

2γ), otherwise
(5)

where θ is a trainable parameter in the network. Y(ϕi; θ) is the
result of each round of network prediction of the ith pixel and ϕ̂i

is the corresponding reference result.γ is a given hyperparameter
set to 1 in the experiment. It can be seen from Formula (5) that
when |ϕ̂i − Y (ϕi; θ)| < γ, Formula (5) becomes close to the
mean square error (MSE). When |ϕ̂i − Y (ϕi; θ)| > γ, Formula
(5) is similar to the mean absolute error (MAE). Therefore, the
Huber loss function combines the benefits of both MSE and
MAE while reducing sensitivity to outliers.

III. EXPERIMENTS

A. Simulation Experiment

The training equipment parameters are as follows: FCNet-
CA is developed with Python 3.9 and PyTorch 1.11.0. The
device contains an Intel(R) i7-12700F (CPU), 32 GB RAM,
and NVIDIA GeForce RTX 3090 (GPU). The adaptive moment
estimation with a weight decay optimizer is used in network
training. The learning rate is set at 0.0001, the number of training
epochs is selected at 120, the minibatch size is 16, and the
training time is approximately 60 h.

The trained FCNet-CA is applied to the independently gener-
ated simulation dataset. The test dataset contains 3000 simulated
interferograms equally distributed between the subsidence and
the 2-D Gaussian surface model’s samples. The deformation
magnitude from−15π to 15π, the complex Gaussian noise from
0 to 2π, and the water decorrelation noise from π to 3π are
randomly added to each simulated interferogram, respectively.
The standard deviation (STD) and maximum error in phase

Fig. 5. Error statistics of different unwrapping methods on 3000 simulated
interferograms. (a) STD distribution of different unwrapping methods. (b) STD
distribution statistics of different unwrapping methods. (c) Fringe number error
distribution of different unwrapping methods. (d) Fringe number error distribu-
tion statistics of different unwrapping methods. Note that for better visualization,
a mean filter of size five is applied to the results in Fig. 5(a) and (c), and the
navy blue curves represent the MCF unwrapping results.

ambiguity number ε (represents the maximum error between
the predicted phase and the reference phase divided by 2π) are
utilized as assessment indexes. To compare the performance of
the proposed method with the existing algorithms, branch cut
(BC) [6], quality-guided PU (QGPU) [7], minimum cost flow
(MCF) [8], phase unwrapping max-flow algorithm (PUMA)
[42], LS [43], DLPU [26], PUNet [27], and proposed method in
this article are used for the unwrapping experiment. To test the
antinoise performance of the different methods, every method is
used to unwrap the test dataset which contains noise. The results
obtained by other methods are sorted with the MCF results as a
reference, and Fig. 5(a) shows the results of the STD comparison
of eight methods. From Fig. 5(a), it can be seen that the STD of
FCNet-CA is significantly smaller compared to the traditional
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TABLE II
RUNTIME OF DIFFERENT ALGORITHMS

methods (BC, QGPU, MCF, PUMA, and LS). Fig. 5(b) shows
that FCNet-CA has the highest percentage of STD less than π,
with a value of 99.5%, and the average STD of FCNet-CA is 0.4
rad, which is 68.8%, 87.3%, 79.7%, 86.6%, 80.5%, 90.6%, and
93.8% lower than that of PUNet, DLPU, MCF, LS, PUMA, BC,
and QGPU, respectively.

Fig. 5(c) shows that in comparing the maximum unwrap-
ping errors (MUEs) in fringe numbers, the result obtained by
FCNet-CA is much smaller than that of the other seven methods.
The average absolute MUEs in fringe numbers is 0.44, received
by FCNet-CA, which has the best performance, followed by
PUNet with 1.79, MCF with 2.13, DLPU with 2.71, LS with
2.89, PUMA with 3.75, BC with 3.86, and QGPU with 6.25. In
addition, the percentage of samples with |ε| ≤ 1 for FCNet-CA
reaches 91.3%, which is significantly higher than the 53% of
PUNet, 28.3% of MCF, 24.3% of DLPU, 13.3% of LS, 7.8% of
PUMA, 6.3% of BC, and 1.9% of QGPU, further illustrating
the reliability of FCNet-CA. However, Fig. 5(d) shows that
each method has misestimated the absolute phase to different
degrees. If the unwrapping samples with |ε| > 2 are regarded
as the result of severe misestimation of the absolute phase,
the misestimation percentages of MCF, BC, QGPU, PUMA,
LS, DLPU, PUNet, and FCNet-CA are 37.6%, 77.8%, 93.8%,
72.9%, 59.2%, 49.6%, 33.4%, and 2.2%, which indicate the
strong robustness of FCNet-CA.

In summary, the traditional methods (BC, QGPU, LS, MCF,
and PUMA) cannot perform correct unwrapping with increased
noise and will seriously misestimate the absolute phase. The
performance of MCF is marginally superior to that of the other
traditional phase unwrapping methods. Furthermore, the deep-
learning method, i.e., DLPU, cannot learn the relationship be-
tween the wrapped phase and the absolute phase well due to the
noise. Another deep-learning method, i.e., PUNet, can overcome
the shortcomings of traditional methods to a certain extent,
but the misestimation phenomenon still exists. Compared with
PUNet, the misestimation rate of FCNet-CA is further reduced,
the unwrapping accuracy is improved by 68.8%, and 91.3% of
the fringe error is limited to approximately 0. In addition, the
running time of different algorithms on all testing data shows
(Table II) that the FCNet-CA method has higher computational
efficiency and can achieve a better balance between accuracy
and efficiency.

To visually display the performance of FCNet-CA, BC,
QGPU, PUMA, LS, MCF, DLPU, PUNet, and FCNet-CA are

used to unwrap six samples with different deformation gradi-
ents and noise levels. Fig. 6(a) shows unwrapping results and
corresponding unwrapping errors obtained by eight methods
in the samples with varying noise levels. It can be seen from
Fig. 6(a) that every method can recover the deformation pattern
and deformation magnitude entirely in the case where the noise
level is relatively low [sample 1 of Fig. 6(a)]. But when the noise
level increases [sample 2 of Fig. 6(a)], BC, QGPU, and LS can
only recover the deformation value of some edge regions but
not the deformation pattern and deformation magnitude of the
deformation center. The recovery abilities of PUMA and MCF
are the best in the traditional methods, and they can recover the
deformation pattern and magnitude of the deformation center.
Compared with traditional methods, DLPU, PUNet, and FCNet-
CA also have great recovery results on the deformation center.
Still, visually it seems that the unwrapping phase of FCNet-CA
is closer to the absolute phase. The interferogram’s center fringe
is blurred when the noise level is further increased [sample 3 of
Fig. 6(a)]. In this case, all traditional unwrapping methods except
MCF cannot recover the absolute phase of the deformation
center, which implies that MCF has the best antinoise ability
in traditional methods. Estimating the deformation center by
DLPU and PUNet also shows some errors. In contrast, the
recovery results of FCNet-CA on the deformation center and
edge are still better than those of other methods, whose results
are closest to the absolute phase.

When the noise level exceeds 0.8π, the noise level in sample
2, most traditional methods fail to unwrap the simulated inter-
ferogram, suggesting that 0.8π is the maximum acceptable noise
level for most methods (BC, QGPU, LS, and PUMA). Under the
noise level of 0.8π, the robustness of different methods to the
deformation gradient is tested by increasing the maximum defor-
mation gradient, as shown in Fig. 6(b). By observing Fig. 6(b), it
can be found that the coherence in the deformation area becomes
lower as the maximum deformation gradient increases, and all
the traditional methods fail to recover the deformation pattern
and deformation magnitude of the deformation center. The noise
level and maximum deformation gradient of sample 4 are close
to sample 2, so they have similar unwrapping results. The
interferogram’s center fringe is blurred and not continuous in
sample 5 and sample 6, only the deep-learning-based method can
unwrap successfully. Compared with two other deep-learning-
based methods, the unwrapping results obtained by FCNet-CA
are most similar to the absolute phase.

The root mean square error (RMSE) values of each unwrap-
ping method are calculated to assess the performance of the eight
methods (Table III). It can be seen from Table III that even if
the noise is low and the fringes are clear (sample 1), the RMSE
of FCNet-CA is smaller than the other methods. As the noise in
sample 2 and sample 3 becomes more severe, the RMSEs of tra-
ditional methods, such as BC, QGPU, LS, and PUMA, increase
significantly. In contrast, those of MCF and the deep-learning
methods (DLPU, PUNet, and FCNet-CA) remain relatively low.
The maximum deformation gradient gradually increases in sam-
ples 4–6, where the maximum deformation gradient of sample
6 exceeds π rad/pixel. Due to the relatively large deformation
gradient, the coherence of the deformation center is low (sample
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Fig. 6. Performance of different methods with different noise levels and fringe density. (a) Maximum deformation gradient of samples 1–3 is all 1 rad/pixel, but
the noise levels are different, which are 0.3π, 0.8π, and 1.3π, respectively. (b) Noise levels of samples 4–6 are all 0.8π but the maximum deformation gradients
are different, which are 1.1, 2.1, and 3.3 rad/pixel, respectively. The upper row of each sample is the unwrapping results of each method, and the lower row is the
corresponding unwrapping errors.

4), and there are even decorrelation areas in the center (samples
5–6). All methods except for the deep-learning-based method
can no longer retrieve the unwrapped phase correctly. Compared
with other methods, FCNet-CA always shows excellent unwrap-
ping performance, and the RMSE is lower than that of DLPU and
PUNet, indicating that FCNet-CA is more effective and robust
to severe noise and large deformation gradient.

In practical scenarios of mining subsidence, the deformation
center often includes dense fringes and serious decorrelation

noise, which is the main reason for the failure of existing unwrap-
ping methods. The above analysis shows that FCNet-CA can
be applied to clean or noisy interferograms, accurately recover
the absolute phase, and ensure that unwrapping errors remain
relatively low.

To test the sensitivity of FCNet-CA to the deformation gra-
dient, the mining subsidence model is used to simulate the de-
formation sample set, and the maximum deformation gradient is
equally distributed from 0 to 4.8 rad/pixel. The model parameters
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TABLE III
RMSES OF DIFFERENT METHODS

Fig. 7. Maximum unwrapping errors and STD results of FCNet-CA and PUNet on the 3750 interferograms with different maximum deformation gradients
and noise levels. The first two columns of (a)–(f) present synthetic interferograms with a deformation gradient of 2 and 4 rad/pixel under different noise levels,
respectively. The last two columns of (a)–(f) are the distribution of maximum unwrapping errors and STD results of FCNet-CA and PUNet, respectively. NL
represents noise level and MDG represents maximum deformation gradient.

are selected as follows: sink factor q is set to 0.6, H/r is 2, the
offsets of the inflection points s1 = s2 = s3 = s4 is 16 m, and
the inclination of the coal seam is 5°, the thickness of the coal
seam is 3 m, and the length and width of the working panel are
80 and 10 m. The above parameters fix the shape and size of the
subsidence region. The complex Gaussian noise from 0 to 2π is
added to the interferograms of different deformation gradients
to explore the maximum deformation gradient that FCNet-CA
can recover under different noise levels. Finally, a total of 3750
simulated interferograms were generated.

The evaluation results with different maximum deformation
gradients and noise levels are shown in Fig. 7(a)–(f). The first
two columns are the display of simulated interferograms with
different deformation gradients under different noise levels, and
the last two columns are the MUEs and STD of FCNet-CA and
PUNet. It can be seen from Fig. 7 that as the noise level increases
(from top to bottom), MUE and STD become more divergent,
and the maximum deformation gradient that can be recovered is
smaller, which implies that the maximum deformation gradient
that the two methods can recover depends on the noise level.
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Fig. 8. Overview of the study area. (a) Is the location of the study area,
(b) is the working panel’s position, and (c) is the layout of the observation station.
Red points represent the leveling observation stations along the dip direction, and
black points represent the leveling observation stations along the strike direction.
Note that leveling data were collected using an OPTONS3 electronic level with
an accuracy of ±3 mm for every kilometer round trip.

In terms of STD tolerance of 0.25 rad, for interferograms with
the noise level equal to 0, the maximum deformation gradient
recovered by these two methods exceeds π rad/pixel and reaches
4.1 rad/pixel. Traditional methods often have poor unwrapping
results or fail to unwrap under this deformation gradient. When
the noise level comes to 0.4π, the maximum recoverable de-
formation gradient of FCNet-CA still exceeds π rad/pixel and
reaches 3.7 rad/pixel, while the maximum recoverable deforma-
tion gradient of PUNet is close to π rad/pixel. As the noise level
comes to 0.8π, as shown in Fig. 7(c1)–(c4), although the recov-
erable deformation gradient of FCNet-CA becomes smaller, i.e.,
π rad/pixel, the results are still more satisfied than PUNet and
the traditional unwrapping methods, as conventional methods
assume that the absolute phase difference (phase gradient) value
between two adjacent points to be unwrapped should be less
than π. When the noise level is 1.2π [Fig. 7(d1)], which is a few
cases in mining areas, the recoverable deformation gradient of
FCNet-CA is about 2 rad/pixel. For interferograms with noise
levels greater than 1.2π [Fig. 7(e1) and (f1)], and they are ex-
treme cases, the MUE and STD of FCNet-CA and PUNet begin
to diverge uncontrollably and cannot be maintained within a
tolerable range. From the overall trend, when the noise becomes
more serious, compared with PUNet, FCNet-CA has lower MUE
and STD in the simulated interferogram with larger deformation
gradient, which indicates that FCNet-CA has stronger antinoise
ability.

From the above analysis, it can be seen that the FCNet-CA
method has a strong antinoise ability and can break through the
theoretical assumptions of the existing unwrapping methods and
realize the recovery of surface deformation with a deformation
gradient greater than π rad/pixel.

B. Case Study

To further test the performance of the proposed algorithm,
FCNet-CA is applied in the Shilawusu coal mine, Inner Mon-
golia Autonomous Region, China [Fig. 8(a)]. The mining time
of the working panel [orange rectangle in Fig. 8(b)] is from
September 20, 2016 to May 9, 2017. The mining direction of
the working panel is from north to south, and the working panel is
340-m wide and 835-m long. The mining depth is 690 m; the coal
seam has a thickness of 5.33 m and an inclination angle of 2°.

Most of the surface of the study area is covered by aeolian sand
with sparse vegetation. To study the law of surface deformation
and ensure the safety of buildings and people on the surface,
many leveling monitoring stations are built above the surface of
the working panel, i.e., 22 observation stations from A11 to A32
in the strike direction [black points in Fig. 8(c)], with an average
distance between two points of 51 m and 22 observation stations
from B1 to B22 in the dip direction [red points in Fig. 8(c)],
with an average distance between two points of 57 m. In the
experiment, two Sentinel-1A images from December 18, 2016
and April 17, 2017, with a single polarization mode (VV), are
used. The corresponding SAR image has a resolution of 20 m
(range direction) × 5 m (azimuth direction), a temporal baseline
of 120 days, and a perpendicular baseline of approximately 73 m.

To analyze the performance of different unwrapping methods,
the unwrapping algorithms that performed well in the simula-
tion experiments are selected as a comparative analysis, i.e.,
MCF and PUNet methods. Like the simulation experiment, the
interferograms are first filtered using Goldstein filtering before
unwrapping using MCF and PUNet.

The original interferogram, filtered interferogram, and coher-
ence map of the filtered interferogram are shown in Fig. 9(a)–
(c), respectively, and the unwrapping results obtained by
MCF, PUNet, and FCNet-CA are shown in Fig. 9(d)–(f),
respectively.

It can be seen from Fig. 9 that the interferogram quality in
Fig. 9(a) is low as serious temporal decorrelation noise because
of the long temporal baseline, and the interferometric fringes
are unclear, especially for the center area. Therefore, even
the interferogram after Goldstein filtering still has poor phase
quality and coherence [Fig. 9(b) and (c)]. Fig. 9(d) shows that
the MCF method cannot effectively recover the deformation
pattern and magnitude in the center area (red box A). PUNet
can barely recover the deformation pattern and magnitude in
the center area (red box A), and there are apparent unwrapping
errors in the weak deformation region [as shown in white box B
in Fig. 9(e)]. Compared to the unwrapped results of MCF and
PUNet, the unwrapped results of FCNet-CA [Fig. 9(f)] show
that the deformation pattern and magnitude are well restored,
and there is no noticeable unwrapped error.

To further quantitatively evaluate the reliability of the un-
wrapping results, the unwrapped phase is converted into vertical
deformation (ignoring the influence of horizontal displacement)
and compared with the leveling data [Fig. 10(a) and (b)].
Fig. 10(a) shows that although the results obtained by MCF and
PUNet can reflect the deformation trend to a certain extent in
the strike direction, both are overestimated in value, especially
for PUNet, and have a more significant deviation from the
leveling data. In contrast, the results of FCNet-CA are closest to
the leveling data. The comparison results in the dip direction
are consistent with the strike direction [Fig. 10(b)], and the
corresponding RMSE of FCNet-CA is the lowest, followed by
MCF and, finally PUNet (Table IV). Compared with PUNet and
MCF, Table IV shows the RMSE of FCNet-CA in the strike
direction is reduced by 67.9% and 29.5%, respectively, and the
RMSE of FCNet-CA in the dip direction is reduced by 72.4%
and 50.9%, respectively.
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Fig. 9. Interferogram of the study area and three unwrapping algorithms’ results, including (a) original interferogram, (b) original coherence map, (c) interferogram
after Goldstein filtering [44], (d) coherence map after Goldstein filtering, (e) deformation recovered by MCF, (f) deformation recovered by PUNet, and (g) deformation
recovered by FCNet-CA.

Fig. 10. Comparison results of three algorithms. (a) Comparison results of
FCNet-CA, PUNet, MCF, and leveling data in the strike direction. (b) Compar-
ison results of FCNet-CA, PUNet, MCF, and leveling data in the dip direction.

TABLE IV
RMSES AND RUNTIME COMPARISONS OF DIFFERENT UNWRAPPING METHODS

It should be noted that the experimental results here are
not consistent with those of the simulation experiment. PUNet
performs better than MCF in the simulation experiment, but
MCF performs better than PUNet for the actual data. This
phenomenon may be explained by the fact that although the at-
mospheric disturbance, the complex Gaussian noise, and decor-
relation noise caused by water are considered in the processing
of sample generation in the simulation experiment, the temporal

decorrelation noise, which seriously affects the quality of the in-
terferogram in this case, is not fully considered. This is consistent
with the characteristics of PUNet, which lack consideration of
temporal decorrelation factors and results in poor unwrapping
performance of interferograms with long temporal baselines.

IV. DISCUSSION

The training dataset is very significant in the performance
and generalizability of DCNN. Generally, the more diverse the
samples in the training dataset, the more features the network can
learn, resulting in better generalization performance. Different
sample generation strategies are employed to investigate the
impact of various training sample sets on network performance,
i.e., 2-D Gaussian surface method, mining subsidence model,
and new strategy proposed in Section II-A to train FCNet-CA,
respectively. The setting of parameters for each method is consis-
tent with Section II-A. Every method generates training datasets
containing 30 000 simulated interferograms, and the trained
networks are applied to the interferometric phase unwrapping of
the Shilawusu coal mine. The unwrapping results under different
training samples strategies are shown in Fig. 11(a)–(d), respec-
tively. Fig. 11(a) and (b) shows that the deformation center area
recovered by different networks trained with the same training
dataset is roughly the same, but FCNet-CA [Fig. 11(b)] recovers
the deformation pattern better than PUNet [Fig. 11(a)] under
the same training strategy. There are no apparent unwrapping
errors in the weak deformation region C. Fig. 11(c) shows
that phase information recovery of the network trained with
mixed samples is more complete and smoother. In contrast, the
unwrapping results of the network obtained by only using the
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TABLE V
RESULTS OF NETWORK UNWRAPPING ERRORS TRAINED WITH DIFFERENT TRAINING SETS

Fig. 11. Unwrapping results under different training samples. (a) PUNet
unwrapping results trained with two-dimensional Gaussian surface samples.
(b) FCNet-CA unwrapping results trained with two-dimensional Gaussian sur-
face samples. (c) FCNet-CA unwrapping results trained with the proposed
method. (d) FCNet-CA unwrapping results with samples generated with mining
subsidence model.

samples generated by the mining subsidence model have some
errors in the deformation center area [white box D in Fig. 11(d)],
which indicates that the samples generated by a single mining
subsidence model cannot thoroughly learn the characteristics of
the surface subsidence basin. Comparing Fig. 11(b) with (d), it
can be found that for FCNet-CA, the main deformation centers
can be effectively recovered under different training samples,
but the deformation center’s absolute phase is somewhat over-
estimated under a single training sample. Compared with that in
Fig. 11(c) and (d), FCNet-CA with the proposed training method
[Fig. 11(c)] has a better effect on recovering the deformation
pattern and magnitude, and there is no noticeable error.

Table V shows that under the same training strategy (2-D
Gaussian surface method), compared with those of PUNet, the
RMSEs of FCNet-CA in the strike and dip directions decreased
by 53.3% and 66.3%, respectively. The RMSEs of FCNet-CA
under different single training dataset (2-D Gaussian surface
method and mining subsidence prediction model) is similar.
Compared with the 2-D Gaussian surface method and mining
subsidence prediction model, the RMSEs of FCNet-CA under
the proposed training strategy in the strike direction are reduced
by 31.3% and 27.7%, respectively, and the RMSEs in the dip
direction are reduced by 18% and 26%, respectively.

Experimental results further prove that FCNet-CA is more
robust and has higher unwrapping accuracy under low coher-
ence conditions. Moreover, the training strategy proposed in
this article can effectively improve network performance and
generalization ability.

It is worth mentioning that the part of phase feature extraction
and phase information reconstruction in the FCNet-CA is similar
to the PUNet. However, we add the SE block to the end of phase
feature extraction to help FCNet-CA better extract the feature

Fig. 12. Comparison between the original phase and rewrapped phase.
(a) Original interferogram with noise. (b) Rewrapped result of the absolute clean
phase. (c) Rewrapped result of the unwrapped phase obtained by FCNet-CA.
(d) Difference between (a) and (c). (e) Difference between (b) and (c).

from the noise, even if the noise is severe. In the part of phase
information reconstruction, we replace the simple convolution
layer with the bottleneck, which is beneficial to train a deeper
network while reducing the parameters of the network. In addi-
tion, FCNet-CA needs more time to train due to the property of
the fully convolutional structure. Although we try to use transfer
learning to reduce the training cost, it is still difficult to train the
FCNet-CA. It is of future interest to design a lightweight network
to reduce the training cost.

The incongruent problem usually exists in the one-step
method. The incongruent problem means that the rewrapped
result of the unwrapped phase obtained by the one-step method is
different from the original interferogram. The simulated interfer-
ogram from sample 2 of Fig. 6(a) is used to show the incongruent
problem, as seen in Fig. 12.

The rewrapped phase of the FCNet-CA [Fig. 12(c)] has a
consistent number of fringes with the rewrapped result of the
absolute phase [Fig. 12(b)] and only has some error in the place
of phase jump [Fig. 12(e)]. The rewrapped errors [Fig. 12(d)]
contain random noise and errors in the place of phase jump,
which are the main drawback of the FCNet-CA. Trying to use the
two-step deep-learning-based method to avoid the incongruent
problem by changing the structure and output of the FCNet-CA
is the direction of the subsequent work.
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V. CONCLUSION

Existing unwrapping methods often fail to unwrap the inter-
ferogram of mining areas with considerable noise and dense
fringes. In comparison to the current unwrapping methods,
FCNet-CA has the following advantages: 1) phase unwrapping
can be performed without phase filtering; 2) the interferometric
phase can be recovered under different noise levels and de-
formation gradient scenarios; 3) the unwrapping accuracy is
greatly improved, and 4) based on the mining subsidence model,
a new sample generation strategy is proposed that generates
training samples that are closer to the actual geological mining
conditions, thus improving the generalizability performance of
the network.

In this article, FCNet-CA is compared with the existing
methods through simulation experiments and actual cases. The
simulation experiment results are as follows: 1) the average
STD of FCNet-CA is 0.4, which is 68.8%, 87.3%, 89.7%,
86.6%, 80.5%, and 90.6% and 93.8% lower than that of PUNet,
DLPU, MCF, LS, PUMA, BC, and QGPU, respectively; 2) the
proportion of |ε| ≤ 1 in FCNet-CA can reach 91.3%, which is
significantly higher than that of 53% in PUNet, 28.3% in MCF,
24.3% in DLPU, 13.3% in LS, 7.8% in PUMA, 6.3% in BC,
and 1.9% in QGPU; and 3) traditional unwrapping methods,
such as MCF, can work well in areas with good coherence and
gradients less than π, or fewer arcs with gradients exceeding
π. Compared with traditional methods, FCNet-CA can better
recover the deformation pattern and magnitude with higher
accuracy under high noise and high fringe density (even if the
phase gradient exceeds π). The experimental results of actual
cases show that compared with the RMSEs of PUNet and MCF,
the RMSE of FCNet-CA in the strike direction is reduced by
67.9% and 29.5%, respectively, and the RMSE of FCNet-CA in
the dip direction is reduced by 72.4% and 50.9%, respectively.

The SAR sensor type and polarization mode can have
a certain impact on the sample dataset and deep-learning
network construction, and the learning samples generated by
geological mining conditions in different mining areas are
also different. This article does not consider the influence of
different SAR image sensors and different polarization modes
on deep-learning network construction and sample training
and only generates learning samples under some geological
mining conditions. In future article, a unified framework of
deep-learning networks will be established for different types
of SAR sensors with different polarization modes. At the same
time, according to different geological mining conditions, the
training samples will be further enriched, and the network’s
generalization ability will be improved to provide a guarantee
for the better application of InSAR technology in monitoring
surface deformation in mining regions.
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