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Mitochondrial dysfunction in skeletal muscle fibres occurs with both healthy aging and a
range of neuromuscular diseases. The impact of mitochondrial dysfunction in skeletal muscle
and the way muscle fibres adapt to this dysfunction is important to understand disease
mechanisms and to develop therapeutic interventions. Furthermore, interactions between
mitochondrial dysfunction and skeletal muscle biology, in mitochondrial myopathy, likely have
important implications for normal muscle function and physiology. In this review, we will try to
give an overview of what is known to date about these interactions including metabolic remod-
elling, mitochondrial morphology, mitochondrial turnover, cellular processes and muscle cell
structure and function. Each of these topics is at a different stage of understanding, with some
being well researched and understood, and others in their infancy. Furthermore, some of what
we know comes from disease models. Whilst some findings are confirmed in humans, where
this is not yet the case, we must be cautious in interpreting findings in the context of human
muscle and disease. Here, our goal is to discuss what is known, highlight what is unknown
and give a perspective on the future direction of research in this area.

Our muscles and mitochondria
Volume wise, skeletal muscle tissue is mostly composed of long, cylindrical, multi-nucleated, and con-
tractile cells, known as muscle fibres, which are responsible for the volitional function and high
energy demands of skeletal muscles [1]. Skeletal muscle contains distinct types of muscle fibres, which
are classified based on the most abundant myosin isotype (Myh7, Myh2 or Myh1). Fibre types are
metabolically different; type I (or oxidative slow twitch) fibres express Myh7, have 2–3 fold higher
mitochondrial content and lower capacity for ATP production via non-oxidative pathways, when com-
pared with type II (or glycolytic fast twitch) fibres, which express either Myh2 or Myh1, or both [2].
However, a recent study identified ribosomal specialisation as the major driver of skeletal muscle fibre
type diversity both in healthy and diseased skeletal muscle [3]. Many other characteristics define the
type and function of muscle fibres, such as capillary density and blood flow through the tissue, effi-
ciency of oxygen extraction from blood and oxygen fixation by myoglobin, myosin ATPase capacity,
and twitch contraction time [4–7]. Healthy skeletal muscle consists of a mix of fibre types with the
varying proportions of fibre types in a muscle closely correlated to its function and capacity [7].
As with other organs and cellular processes, skeletal muscle mass and strength are typically reported

to decline as we age [8]. Remarkably, a reduction in mitochondrial mass [9] and increased mitochon-
drial dysfunction have been reported to only affect a small percentage of fibres within the aging
muscle [10]. Whilst it is at present unclear whether changes in mitochondrial biogenesis, mitophagy,
or both lead to the decline in mitochondrial mass, we know that the age-related dysfunction in mito-
chondrial oxidative phosphorylation (OxPhos) is caused by sporadic mitochondrial DNA (mtDNA)
mutations, typically mtDNA deletions, which clonally expand in individual fibres over time [10].
A similar phenomenon either plays an important role or underlies the pathophysiology of some
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muscle diseases in humans, including some types of genetically determined mtDNA maintenance disorders,
which present as mitochondrial myopathy, some neuromuscular disorders, such as inclusion body myositis
[11,12], and iatrogenic muscle diseases caused by mitotoxic therapeutics, such as antiretrovirals [13,14].
In these conditions, mitochondrial dysfunction is only observed in a proportion of fibres while sparing

others, and when examined longitudinally using histological or immunofluorescent techniques, mitochondrial
dysfunction is found to only be present in small longitudinal segments, bordered by unaffected regions
[10,15,16]. The accumulation and spread of mtDNA mutations and OxPhos dysfunction in skeletal muscle are
covered elsewhere [17]. Here, we will focus on the interactions between mitochondrial dysfunction and muscle
biology in mitochondrial myopathy (Figure 1). As our knowledge on such mechanisms in human tissue
remains limited, we often must rely on model organisms where similar processes have been better characterised
to gain insights. Whilst beneficial, we must be cautious when interpreting and translating such findings into
research on human diseases, due to clear and significant differences between species, disease models and natur-
ally occurring genotypes (Table 1).

Metabolic remodelling
It has long been known that under certain circumstances, cells can shift ATP production from mitochondrial
OxPhos to glycolysis, with lactic acid fermentation in the cytosol, and decreased oxygen consumption, even in
aerobiosis. Known as Warburg effect [18], this metabolic shift has been extensively studied in cancer cells and
is associated with increased cancer aggressiveness and markers of mitochondrial dysfunction, including
mtDNA mutations and depletion, and decreased mitochondrial mass and OxPhos capacity [19]. These changes
are proposed as critical pathomechanisms essential to the progression of the cancer. A similar metabolic switch
capable of rescuing energy production in tissues with OxPhos dysfunction is often hypothesised, but the evi-
dence for such a mechanism in skeletal muscle affected by mitochondrial dysfunction remains lacking [20,21].
Although some studies suggest a positive correlation between OxPhos dysfunction and predominance of glyco-
lytic type II fibres [22,23], other observations point towards a positive correlation with increased proportion of
oxidative type I fibres [24–27]. However, these discrepancies may be due to differences in the age of partici-
pants, the metabolic profile determined by the type of skeletal muscle sampled, and the assay and analysis used
to determine fibre type in these studies.
Aside from OxPhos, recent work suggests that other key metabolic pathways are altered in mitochondrial

myopathy. The complexity of the muscle fibre proteome has been explored between the different fibre types
using single-fibre proteomics, which revealed fibre type-specific profiles with important differences in structural
and metabolic components, but also in mitochondrial proteins and pathways involved in adaptive responses
[28,29]. A similar study compared single-fibre profiles between cytochrome c oxidase (COX)-positive and
-negative skeletal muscle fibres of patients with mitochondrial myopathy [30]. Murgia et al. [30] demonstrated

Figure 1. Schematic demonstrating the interconnected relationship of mitochondrial function with mitochondrial and muscle biology.

Arrows are colour coded to indicate whether data supporting the relationship is from humans (Orange), animal models (Blue) or both (Purple).
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Table 1 Highlight of most relevant data discussed in the review for the understanding of interactions between mitochondrial and skeletal
muscle biology in the contest of mitochondrial myopathy Part 1 of 3

Highlighted data Organism Reference

1. Metabolic remodelling

• Mitochondrial specialisation between fibre types Human [29]

• Proteomics changes between COX-negative and
-positive fibres

Human [30]

• CI subunits deficiency with m3243.A > G mutation Human [32]

• CI and CIV subunits deficiency with single, large-scale
mtDNA deletion

Human [21,33]

• CII and CV subunit increase with single, large-scale
mtDNA deletion

Human [33]

• Starvation-like response with multiple mtDNA deletions Deletor mice, human, [35,36]

• Mitochondrial integrated stress response with multiple
mtDNA deletions

Deletor mice [39]

• Remodelling of one-carbon pathways with multiple
mtDNA deletions

Deletor mice, human [40]

• Starvation-like response with m.8344A >G mutation and
in COX10 deficiency

COX10 KO mice, human [48,49]

• Metabolic remodelling in reversible infantile respiratory
chain deficiency

Human [53,54]

• Compensatory metabolism of lactate with severe
mitochondrial myopathy phenotye

Ndufs4 KO mice, muscle specific
type II fibres Mfn1/Mfn2 KO,
human

[63,64,66,67]

• Succinate as a skeletal muscle remodelling modifier Wild-type mice [71,72]

• Rapamacin as an effective treatment Muscle specifc Cox15 KO mice,
Deletor mice, human

[39,135,141]

• Nicotinamide riboside and niacin as an effective
treatment

Deletor mice, human [41,47]

• Hypoxia as an effective therapy Cells, zebrafish model, Leigh
syndrome mice

[66,67]

2. Mitochondrial morphology

• Link between cristae morphology and cell specific
metabolism

Worm, flies, mice, human [83,84]

• Differential morphology and metabolism between
subsarcolemmal and perinuclear mitochondria and
intermyofibrillar mitochondria

Human [86–88]

• Continuous mitochondrial network for efficient energy
distribution

Wild-type mice [91,92]

• Decreased cristae density with mitochondrial dysfunction Cells [99]

• Donut mitochondria, concentric cristae, paracrystalline
inclusions with mitochondria dysfunction

Human [97]

Continued
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Table 1 Highlight of most relevant data discussed in the review for the understanding of interactions between mitochondrial and skeletal
muscle biology in the contest of mitochondrial myopathy Part 2 of 3

Highlighted data Organism Reference

• Increased number of nanotunnels with mitochondria
dysfunction

Human [96,97]

• Mitochondrial network fragments with higher mtDNA
mutation load

Cells, human [84,93]

3. Mitochondrial turnover

• Fibre type switching and exercise intolerance PGC-1α KO mice [117]

• Decreased levels of oxidative phosphorylation and fatty
acids oxidation

Surf1 KO mice, Sco2 KO/KIN,
muscle-specific Cox15 KO,
Deletor mice

[41,118,120]

• Activation of mitochondrial biogenesis after treatment Surf1 KO mice, Sco2 KO/KIN,
muscle-specific Cox15 KO,
human

[41,47,118,122,123,124,125]

• Activation of perinuclear mitochondrial biogenesis in
mitochondrial dysfunction

Human [16]

• Activation of UPRmt within the fibre and in the perinuclear
area

Human [16,41]

• AICAR as an effective treatment KO/KI, muscle-specific Cox15 KO [118]

• Bezafibrate as a potential effective treatment Deletor mice, human [122,123,124,125]

• Mitophagy and autophagy impairment with both mtDNA
deletions and point mutations

Muscle-specific Cox15 KO,
human

[130,133,134]

• Mitophagy impairment with stage-wise dynamics Parkin KO flies, PINK1 KO flies,
Deletor mice, human

[16,135,138]

• Restore of mitophagy and autophagy by rapamycin
treatment

Muscle-specific Cox15 KO,
Deletor mice, human

[39,134,135]

• Modulation of mTORC1 and mitophagy and rapamycin
dose-dependency

Coq9R239X mice [140]

4. Cellular processes

Apoptosis • Myofibres apoptosis in atrophy or myopathy Mice models, human [148]

• Correlation of apoptosis to high mtDNA mutation load
and respiratory chain deficiency

Human [149,150]

• High rate of apoptosis in myofibres displaying
mitochondrial myopathy

Human [149,151,152,156–158]

ROS production • Associated ROS over-production to oxidative
phosphorylation defects

Ant1 KO mice, human [153,166,169]

• Increased antioxidant enzymes to ROS over-production Ant1 KO mice, human [166–168]

• ROS over-production as a disease modifier for satellite
cells, mitophagy, autophagy

Cells, mice, human [172–175]

Ca2+ signalling • Impairment of Ca2+ uptake capacity due to decrease in
porin

Human [21,31–33]

Continued
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that COX-negative fibres harboured lower levels of OxPhos subunits from complexes I–V (CI-V). Lower levels
of CI and CIV subunits have been similarly reported in single-fibre immunofluorescence and imaging mass
cytometry studies [21,31–33]; however, in skeletal muscle from patients carrying single, large-scale mtDNA
deletions, only proteins impacted by the mtDNA mutation display lower levels, whereas unaffected
mtDNA-encoded proteins are overexpressed, possibly due to a compensatory effect [33]. Remarkably, glycolytic
enzymes were only found to be higher in type II fibres, regardless of their COX status, suggesting that this is
linked to fibre type-specific structural and metabolic differences, and it unlikely represents a rescue mechanism
in energy deficient COX-negative fibres [29,30]. Nevertheless, it contrasts with observations from single-fibre
proteomic studies suggesting that, during the aging process, proteins of glycolysis and glycogen metabolism are
up-regulated in type I fibres and down-regulated type II fibres [34]. Interestingly, proteins involved in tricarb-
oxylic acid (TCA) cycle and fatty acid oxidation were up-regulated in COX-negative fibres of both types, com-
pared with COX-positive counterparts, supporting the role of these pathways in driving fibre type-independent
metabolic compensatory mechanisms in mitochondrial myopathy [29,30].

Table 1 Highlight of most relevant data discussed in the review for the understanding of interactions between mitochondrial and skeletal
muscle biology in the contest of mitochondrial myopathy Part 3 of 3

Highlighted data Organism Reference

• Modulation of TCA cycle by Ca2+ handling Cardyomyocites, human [177,178,184–187]

• CIV or CV deficiency linked to impaired mitochondria-ER
contact sites, UPRmt and UPR and different contraction
patterns

Cells, Drp1 KO mice, human [191–193,197,198]

Novel
mitochondrial
process

• Excess of mtDNA copy number to sense and modulate
mitochondrial homeostasis

Cells, Tfam+/− mice [199,200]

• mtDNA molecules extrusion under oxidative stress
conditions, apoptosis or in mitochondrial myopathy

Cells, human [97,202,203]

• mtDNA detection in a cell-free state with paracrine/
endocrine role

Human serum and plasma [208]

• Mitochondrial-derived vescicles for mitochondrial
turnover and regenerative potential in skeletal muscle

Cells, mice models, human [209–212]

5. Muscle cell morphology and function

• Impact of mitochondrial morphology onto myofibrillar
morphology and branching

Wild-type flies [214]

• Link bewteen size/position of mitochondria and the
cross-sectional area of myosin fibrilis/muscle

Wild-type flies, wild-type mice and
rats, human

[216,218]

• Sarcolemmal distension and disruption of myofibrillar
organisation in ragged-red fibres due to increased
subsarcolemmal and intermyofibrillar mitochondria

Human [97]

• Disruption of myofibrils and skeletal muscle dysfunction
in mitochondrial dysfunction

Human [217]

• Mitochondrial fusion and fission reduction with
sarcopenia

Rats, muscle-specific Opa1 KO
mice, human

[30,219,220]

• High level of mtDNA in mitochondria dysfunction only in
a small portion of muscle fibres with atrophy

Deletor mice, rats, human [222,223,224]

• Central nuclei and nucleophagy adjacent to clusters of
lysosomes, mitochondria and mitolysosomes

Human [135,225]
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Mitochondrial DNA mutations have been demonstrated to induce a starvation-like response in skeletal muscle
of the Deletor mouse model, which carries a TWNK mutation [35], by up-regulating transcription of genes
involved in amino acid (MTHFD2, SFPQ/PSF, ASNS, PSAT1) and lipid metabolism (FGF21) [36]. The Deletor
mouse model mimics the skeletal muscle pathology and clinical phenotype of mtDNA maintenance disorders in
humans, which present with slowly progressive muscle disease [37,38] with underlying transcriptional, transla-
tional and metabolic stress responses, usually referred to as integrated mitochondrial stress response (ISRmt) [39].
The mTORC1 complex is considered a central modulator of the ISRmt, as it orchestrates tissue remodelling by
activating anabolic one-carbon pathways, such as the folate cycle, de novo serine biosynthesis, amino acid trans-
sulfuration and dNTP synthesis [39,40]. Of importance, the mTORC1 signalling cascade network also modulates
the amino acid starvation response [41] and the mitochondrial unfolded proteins response (UPRmt) [42]. In
mitochondrial myopathies, these signalling pathways become chronically induced in skeletal muscle as the disease
progresses, culminating with the release of the muscle-derived hormones, or mitokines, FGF21 and GDF15
[39,40,43–45], which are now established biomarkers for muscle presenting with mitochondrial OxPhos defi-
ciency, mitochondrial translation and mtDNA maintenance disorders [45,46]. Furthermore, data from investiga-
tions on the Deletor mouse model strongly suggest that the skeletal muscle metabolome is altered compared with
control animals, but could be rescued either by rapamycin treatment, a well-established mTORC1 inhibitor [39],
or by niacin or nicotinamide riboside supplementation, which are water-soluble precursors of vitamin B3 found
to down-regulate the mTOR signalling pathway [41,47].
Metabolic remodelling mechanisms in skeletal muscle have also been described in the muscle-specific Cox10

knockout (KO) mouse model [48] and patients with mitochondrial myopathy due to the m.8344A > G mtDNA
point mutation [49]. Patients show increased amino acid catabolism with up-regulated glutamate oxidation and
alanine release into the circulation through remodelling of the TCA cycle [49]. The Cox10 KO mouse model
presents with these alterations suggesting that an increased glutamate flux through the TCA cycle follows
disease progression and is an adaptive response to mitochondrial dysfunction in the muscle [49]. These
changes are similar to the muscle physiological response to starvation under the control of mTORC1 [50,51]
and evolve with disease progression, leading to the systemic release of FGF21, as an early event of the ISRmt, to
induce systemic metabolic remodelling, including increased lipolysis in white adipose tissue, and hepatic gluco-
neogenesis, ureagenesis and ketogenesis [49]. However, some of these adaptations, such as increased lipolysis,
proteolysis and gluconeogenesis become maladaptive in the Cox10 KO mouse model and m.8344A > G patients
due to OxPhos impairment and may contribute to their toxicity [49].
An adaptive metabolic remodelling, rewiring mitochondrial dysfunction and leading to complete or partial

recovery of patients, has also been well documented to spontaneously occurs in the ultra-rare reversible infant-
ile mitochondrial diseases [52]. The reversible infantile respiratory chain deficiency (RIRCD) is the most
common and causes severe infantile metabolic myopathy, with patients requiring extensive life-sustaining mea-
sures, but often with full and spontaneous recovery, if they survive this metabolic crisis [53]. RIRCD is a
remarkable digenic condition that requires patients to carry a m.14674T > C/G mt-tRNAGlu mutation at homo-
plasmic levels, plus an additional heterozygous variant in a nuclear gene, either involved in glutamine/glutam-
ate amino acid metabolism, such as GOT2, GLS, or in mt-tRNAGlu and mt-tRNAGln metabolism, required for
mitochondrial protein translation, such as EARS2, TRMU or QRSL1 [54]. It has been shown that in RIRCD
derived-myoblasts lines with TRMU deficiency, L-cysteine supplementation can rescue the OxPhos deficiency,
highlighting a direct regulatory mechanism orchestrated by the amino acid metabolism [55]. Moreover, the
events characterising the spontaneous recovery of respiratory chain deficiency in the skeletal muscle of RIRCD
patients could be divided into three major phases over the course of the first year of the patient’s life since
birth [54]. Initially, metabolic rescue is driven by the activation of the ISRmt, which induces the secretion of
both mitokines FGF21 and GDF15, and the activity of the transcriptional factors ATF5 and ATF4, which are
responsive to the status of the amino acid metabolism in skeletal muscle [44]. Subsequently, mTOR activation,
mediated by decreased levels of DEPTOR [56], induces the activation of mitochondrial biogenesis, which is
supported by increased levels of PGC-1α and by increased protein synthesis and cell proliferation. Finally, the
recovery phase is characterised by the restoration to baseline levels of mitochondrial stress markers with the
expansion of healthy mitochondria in the skeletal muscle of RIRCD patients [54].
Mitochondrial metabolism produces metabolites, including acetyl-CoA and α-ketoglutarate, which are

involved in epigenetic changes that modulate gene expression in the nucleus [57–59]. Imbalances in mitochon-
drial metabolism can cause impairment of signalling pathways and gene expression. In diagnostics, blood
samples from patients with mitochondrial disease are routinely tested for lactate level and lactate/pyruvate
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ratio, where both metabolites are derived from glycolysis [60]. Some types of mitochondrial myopathy present
a markedly differential lactate turnover in skeletal muscle due to OxPhos deficiency caused by either mtDNA
or nuclear mutations [61,62]. In health muscle, OxPhos is the main source of ATP, but in the presence of high
mtDNA mutation loads or OxPhos dysfunction, the muscle is more reliant on glycolysis, which leads to
increased pyruvate production and reduction in NAD+ to NADH. Mitochondrial OxPhos is ultimately the
main pathway driving pyruvate and NADH oxidation in healthy muscle; thus, in OxPhos-deficient muscle,
NADH is oxidised to reduce pyruvate to lactate, which is released into the blood stream, while regenerating
cytosolic NAD+ to sustain glycolytic ATP production and by-passing mitochondrial OxPhos [63]. Surprisingly,
glycolysis was shown to be down-regulated in OxPhos-deficient muscle from myopathic patients, with either
TK2 mutations or RIRCD, as well as from mice with Mfn1 and Mfn2 conditional deletion in muscle type II
fibres, as a consequence of loss of constitutive HIF1α signalling, down-regulation of the purine nucleotide cycle
enzyme AMPD1, and activation of AMPK [64]. Remarkably, by combining in vivo isotope tracing with mito-
chondrial lactate uptake inhibition experiments, the authors demonstrated that lactate transport into mitochon-
dria was essential to keep the steady state of TCA cycle intermediates, with inhibition of lactate transport into
mitochondria compromising the lifespan of the mice [64]. However, this study focused on a very rare and
often severe form of mitochondrial myopathy, and it remains unclear if this unexpected mode of metabolic
reprogramming could play a role in mitochondrial myopathies in general.
Moreover, in patients, mitochondrial myopathy is characterised by a mismatched oxygen delivery and utilisa-

tion during exercise, which is explained by an increased capillary growth, induced by impaired muscle OxPhos,
and leads to an increased blood flow to OxPhos-deficient fibres [65]. At present, it is not clear whether mito-
chondrial myopathy metabolic remodelling is activating skeletal muscle angiogenesis in a hypoxia-independent
manner [65], or if hypoxia could induce metabolic remodelling in OxPhos deficient skeletal muscle. Recent
studies have observed that hypoxia can slow the disease progression and prevent neurodegeneration in Ndufs4
KO mice, having a direct impact on the activity of enzymes involved in the metabolism of both lactate and
pyruvate, such as PDK1, PDH and LDHA [66,67]. Therefore, the extent of systemic accumulation of lactate in
mitochondrial myopathies is driven by the proportion of OxPhos-deficient fibres and, can not only directly
determine physical performance and response to exercise [68], by fuelling the TCA cycle for energy production
[69], but also cross-talks with the epigenome via histone lactylation, a recently identified histone modification
involved in metabolic regulation of gene expression [70].
Succinate is the substrate of succinate dehydrogenase, which is both involved in the TCA cycle and in CII of

the mitochondrial respiratory chain, thus making it a key metabolic signal. Succinate has been shown to par-
ticipate in the nutritional and exercise-induced fibre type remodelling from glycolytic type II to oxidative type I
fibres through both Erk1/2 and SUCNR1 signalling pathways [71,72] with downstream modulation of calcium
(Ca2+) and AMPK signals, regulating fibre type-specific gene expression profile [73,74]. Interestingly, some
patients with mitochondrial myopathy with succinate dehydrogenase and aconitase deficiency have been
reported to express changes in the synthesis and processing of iron-sulfur clusters proteins [75]. Furthermore,
α-ketoglutarate, a TCA cycle intermediate, and S-adenosylmethionine, a product of the serine metabolism [43],
together cover a prominent epigenetic role by regulating demethylation and methylation of nuclear DNA,
respectively. Although epigenetic changes have yet to be fully characterised in patients with mitochondrial
myopathies, it is expected that future studies will identify novel epigenetic mechanisms with a central role in
the pathophysiology of these conditions, since there is strong evidence that both the TCA cycle and one-carbon
metabolism can be impaired in mitochondrial myopathy [76].
Since the discovery and characterisation of mitochondrial diseases, evidence of metabolic remodelling in skel-

etal muscle has played an important role in the diagnosis of mitochondrial myopathy patients. For example,
skeletal muscle biopsies can be obtained from patients and COX/SDH histochemistry can be used to assess
respiratory chain dysfunction, while Gömöri trichrome staining can identify the presence of ragged-red fibres, a
common pathological hallmark of mitochondrial myopathy [77,78]. Such histological markers of mitochondrial
metabolic dysfunction have been a key part of the diagnostic pipeline [79], however, more recently, a genetics-
first approach based on clinical presentation has reduced the need for such tests [80].

Mitochondrial morphology
Mitochondrial function and morphology are intricately linked, and mitochondrial response to cell stressors are
complex due to their structure and dynamics. Mitochondria have an outer mitochondrial membrane (OMM)
and inner mitochondrial membrane (IMM) with the intermembrane space between them, and the matrix
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inside the IMM [81]. The IMM is highly folded to form cristae, which protrude into the matrix increasing the
surface area of the IMM and therefore allowing for many more OxPhos complexes to be supported along the
cristae membrane [82]. Cristae morphology is different across cell types and is supposed to be linked to mito-
chondrial metabolic properties [83,84]. Furthermore, mitochondria, once thought of as bean shaped organelles,
are a dynamic network that undergoes fission and fusion that constantly change mitochondrial size and
branching.
What happens to mitochondrial morphology upon mitochondrial stress or dysfunction? Data from cell

cybrids carrying the m.3243A > G variant, show that as the mutation level increases from 50% to 90%, the
mitochondrial network becomes more connected, whereas if the mutation load continues to increase towards
100%, OxPhos dysfunction increases and the mitochondria become more fragmented [85]. However, both
structure and organisation of mitochondria are significantly different between skeletal muscle fibres and cul-
tured cells. In skeletal muscle fibres, we can define three sub-classes of mitochondria: subsarcolemmal mito-
chondria residing just below the cell membrane [86], perinuclear mitochondria surrounding the myonuclei
[87], and intermyofibrillar mitochondria sandwiched between the myofibrils [86]. The subsarcolemmal and
perinuclear mitochondria are often more spherical, whereas the intermyofibrillar mitochondria can be quite
branched [87,88]. Work in mouse skeletal muscle has shown that mitochondria are not transported as much
around the cell but have regular fission and fusion events [89,90]. Furthermore, the connectivity of the mito-
chondrial network is a property that is dependent on fibre type, with greater fusion and mitochondrial network
connectivity in more oxidative myofibres [90].
Other studies in mouse skeletal muscle using focused ion beam scanning electron microscopy have reported

that the mitochondrial network is one continuous reticulum [91] and that this allows for energy distribution
along the network [92]. It was further demonstrated that proactive and reactive network changes are designed
to limit the spread of mitochondrial dysfunction [93]. It is therefore interesting to consider the potential bene-
fits of increasing mitochondrial fusion at low levels of mitochondrial stress, both diluting the mtDNA mutation
load [94]. If this is the case for fibres with lower mutation loads, it would suggest that the mechanisms pro-
posed by Glancy et al. [93] may only become active when the burden of mitochondrial dysfunction becomes
too high, which interestingly matches with findings in cybrid cells [85].
In human skeletal muscle, we would expect the same relationship between morphology and function that we

observe in the cybrid cells. Certainly work that used 3D reconstructions to look at mitochondrial morphology
in muscle of three related patients with the m.8344A > G variants, found that the individual with 40% mutation
load had highly connected mitochondria when compared with healthy controls, whereas the individual with
60% mutation load had fragmented mitochondria as did the patient with 96% mutation load [87]. The chal-
lenge is that these mutation loads are from whole muscle homogenate containing a mix of cell types and differ-
ent levels of mutation. As such, when morphology is examined at a single cell level, it is unrealistic to dissect
what the mutation load and therefore mitochondrial function would be in this specific cell. To overcome these
limitations, techniques that can look correlatively at mitochondrial function and morphology in single cells are
needed [95].
It is further interesting to note that in muscle biopsies from patients with mitochondrial dysfunction, there is

an increase in small mitochondria and structures known as mitochondrial ‘nanotunnels’, such that these two
measures can be used to distinguish between biopsies of controls and patients [87]. Mitochondrial nanotunnels
are thin double membrane projections that connect adjacent or more distant mitochondria and are thought to
be a stress response due to the restricted mitochondrial movement in skeletal muscle [96]. The increased
number of small mitochondria in patients is likely due to increased mitochondrial fission because of mitochon-
drial dysfunction; however, mitochondria under stress conditions or dysfunctional are also known to swell and
exhibit substantial ultrastructural changes [97]. Concentric cristae, paracrystalline inclusions, and other changes
in cristae morphology and density, are all commonly associated with mitochondrial dysfunction. Furthermore,
it is known that cristae density is increased in response to higher metabolic demand in exercised skeletal
muscle [98], whereas it often becomes decreased with mitochondrial dysfunction [99]. Furthermore, cellular
stress or mitochondrial dysfunction that is severe enough to trigger apoptosis, lead to changes of cristae ultra-
structure that allow the release of cytochrome c to trigger a signalling cascade that activates apoptosis [99,100].
Donut mitochondria, which appear to have fused with themselves to form a ring, have been observed in

muscle fibres of patients with mitochondrial dysfunction as well as in models of mitochondrial dysfunction
[97]. In silico modelling has suggested that donut morphology could be a stable and easily reversible mitochon-
drial response to stress in alternative to apoptotic processes [101]. However, more recent and higher resolution
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work examining what appeared to be donut mitochondria, found that this may indeed be a sickle shape rather
than having a hole all the way through. It is unclear what the benefit of the sickle shape may be and whether
truly donut shape mitochondria exist, or if all donut mitochondria are in fact sickle-shaped mitochondria.
Finally, mitochondrial morphology itself appears linked to the metabolic and functional properties of mito-

chondria with more fused and branched mitochondria, such as those found in the intermyofibrillar having a
higher capacity for ATP production compared with smaller, spherical mitochondria found in the subsarcolem-
mal [88]. We also know that mitochondrial fission is needed for the selective removal of mitochondria via
mitophagy. As such, mitochondrial morphology contributes to the turnover and quality control of mitochon-
dria to maintain a functional pool of mitochondria within the cell. The impact of reduced fission is illustrated
by mutations in the OPA1 gene, which have been associated with accumulation of mtDNA mutations, presum-
ably due to impaired removal of mitochondria via mitophagy [102].

Mitochondrial turnover
Mitochondrial turnover is dictated by the fine balance between biogenesis and degradation of mitochondria
[103] and, because it is independent from the cell cycle, it takes place even in post-mitotic cells, including skel-
etal muscle fibres, with tissue-specific turnover rates [104]. Mitochondrial biogenesis is regulated by a group of
transcriptional factors (e.g. PGC-1α, TFAM and NRF1), which control the expression of genes essential for
mtDNA replication and transcription, import of nuclear encoded proteins, protein quality control, and aug-
mentation of OxPhos function [105–107]. Indeed, healthy skeletal muscle fibres containing damaged mitochon-
dria alongside other damaged organelles can be degraded by autophagy, while individual mitochondria can be
selectively removed via mitophagy through different pathways [108]. We have known for decades that mtDNA
mutations clonally expand in tissues, with random genetic drift being the accepted mechanism for the clonal
expansion of mtDNA point mutations in mitotic cells [109,110]. However, many theories have also hypothe-
sised that different selective mechanisms and pressures may be activated [16,111–114]. One such pressure is
mito-nuclear signalling, which has been suggested to increase mitochondrial biogenesis [16]. Understanding
mitochondrial turnover and the way it relates to mitochondrial function is crucial, since turnover rates may
either facilitate the spread of mutated mtDNA molecules through biogenesis, or spare them from degradation,
either way leading mutations to clonally expand over time within the tissue.
PGC-1α is usually described as the mitochondrial biogenesis master regulator and its activation can be

achieved in different ways depending on the cellular energetic status [106,115,116]. When the AMP/ATP ratio
increases, AMPK is activated and triggers a phosphorylation cascade that induces the activation of PGC-1α.
Similarly, when the NAD+/NADH ratio increases, AMPK activates Sirt1, which deacytelases PGC-1α increasing
its active forms. In both situations, the activated PGC-1α directs a boost of catabolic pathways, in particular
inducing increased fatty acid oxidation and mitochondrial respiratory chain function. Moreover, a muscle-
specific PGC-1α KO mouse model has been shown to express changes both in skeletal muscle pathology,
including switching from oxidative to more glycolytic fibre type, and in skeletal muscle function, such as
decreased exercise tolerance, which altogether are major features underlying metabolic adaptations in patients
with inflammatory myopathies [117].
For these reasons, the hypothesis that targeting PGC-1α and/or activating mitochondrial biogenesis could

overcome the effect of mtDNA or nuclear mutations by rescuing the phenotype of mitochondrial myopathy
has been explored for decades but mainly in mice models. To test this, Viscomi and colleagues performed an
elegant study where three different recombinant mouse models (Surf1 KO, Sco2 KO/Knock-in (IN), muscle-
specific Cox15 KO) with COX deficiency in skeletal muscle, therefore presenting mitochondrial myopathy
[118] were tested with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), which is an AMPK agonist
[119]. After 1 month of treatment, all three mice models presented with normal mtDNA content, normal creat-
ine kinase activity in skeletal muscle, increased level of both CIV subunits (COX1 and COX5a) and fatty acids
oxidation related genes (CD36/FAT) [118]. Similar observations were gathered when treating the Deletor
mouse model with the pan-PPAR agonist, bezafibrate, which has long been thought to activate PGC1-α [120].
Indeed, treated mice showed a decreased accumulation of both multiple mtDNA deletions and COX-deficient
fibres in skeletal muscle, and a decrease in FGF21 expression [120]. Surprisingly, mitochondrial biogenesis was
not activated in the Deletor mouse after bezafibrate treatment, although initial observations in patients with
mitochondrial myopathy reported amelioration in fatty acid oxidation [121,122] and respiratory chain function
[123]. In a recent open-label observational experimental study of six patients with the m.3243A > G mutation,
mitochondrial biogenesis was minimally induced by bezafibrate treatment even at doses higher that those used
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to treat dyslipidaemia; rather an increase in serum mitochondrial mitokines FGF21 and GDF15 was observed
together with dysregulation of both fatty acid and amino acid metabolisms [124].
Indeed, the activation of mitochondrial biogenesis and the rescue of mitochondrial myopathy was achieved

in a more robust way in the study from Khan and colleagues. Deletor mouse model was treated with a precur-
sor of vitamin B3 called nicotinamide riboside, which induced increase in creatine kinase, decreased accumula-
tion of mtDNA deletions and increased OxPhos enzymes activities in skeletal muscle [41]. The suggested
mechanisms of boosted mitochondrial biogenesis link to the activation of Sirt1 via stimulation of fatty acid oxi-
dation (CD36, ACOX1 and MCAD) and increased UPRmt [41]. Following these findings, in a more recent
study niacin, another vitamin B3 precursor, has been tested on patients with mitochondrial myopathy and
mitochondrial biogenesis was observed together with boosted OxPhos function, and improved muscle strength
and exercise performance [47]. This strongly supports the potential use of vitamin B3 precursors as exercise
mimetics to facilitate the increase in muscle mitochondrial mass of patients with mitochondrial myopathy,
since exercise interventions remain the most compelling method to activate PGC-1α signalling and mitochon-
drial biogenesis [125–127], but may be out of reach for patients with severe exercise intolerance and other
complications.
Nevertheless, the risk to facilitate the clonal expansion of mutated mtDNA molecules by pharmacologically

activating mitochondrial biogenesis in skeletal muscle remains. In patients with mitochondrial myopathy
caused by mtDNA maintenance disorders or single, large-scale mtDNA deletion, it was observed that
COX-deficient foci are characterised by locally increased TFAM level based on immunofluorescent labelling
[16]. Moreover, Hsp60 and GPS2, which are proteins involved in the UPRmt signalling and known to promote
both mitochondrial turnover and dynamics, were found at elevated level within COX-deficient foci, potentially
driving the accumulation of multiple mtDNA deletion [128]. These findings strongly suggest that in the case of
mitochondrial myopathy due to mtDNA mutations or deletions, the activation of mitochondrial biogenesis
could be considered ‘safe’ only if normal mtDNA molecules are replicated.
Alongside genesis of new mitochondria, old mitochondria are constantly being removed as a process that can

happen as part of larger cellular degradation by autophagy or selectively by mitophagy. Autophagy has been
documented in the skeletal muscle of patients carrying different types of mtDNA mutations [129–131] and
nuclear variants [132], and has been linked to the myopathic features of these conditions. The presence of
mtDNA deletions, more than point-mutation, seems to induce massive remodelling of the skeletal muscle tissue
characterised by increased protein damage and ubiquitin-mediated proteasome activity, decreased amino acid
salvage pathways and activation of autophagy [130]. Interestingly, there is evidence that autophagy is impaired in
skeletal muscle from patients carrying the m.3243A >G variant, with down-regulation of pro-autophagy proteins
(Beclin-1 and LC3-II) and up-regulation of autophagy inhibitor P-S6 [133]. The muscle-specific Cox15 KO
mouse model has been shown to present defective autophagic flux in association to myopathic features in skeletal
muscle [134]. Moreover, Mito and colleagues recently reported that in the Deletor mouse model, mitophagy
actively contributes to the progression of mitochondrial myopathy following stage-wise dynamics. Normal fibres
in Deletor mice are characterised by mitophagy that tends to localise around central nuclei and to a slightly lesser
extent around peripheraly located nuclei. However, as the disease progresses, mitophagy begins to stall, with mito-
chondria accumulating in the subsarcolemmal region and ragged-ref fibres. When this happens, it can be noted
that, whereas lysosomes had originally been preferentially located in the periphery of the muscle fibre, they later
accumulate across its cytoplasm without a spatial pattern [135]. Similar findings were reported in tissues of
patients with mitochondrial diseases [16,135]. Whether OxPhos-deficient fibres that have not yet accumulated
abnormal mitochondria to become ragged-red fibres could have altered mitophagy, requires future studies.
Our knowledge on mitophagy’s role on the onset and progression of mitochondrial myopathy is limited in

human and most available animal models. However, extensive work has been performed around Pink1 and
Parkin proteins in Drosophila melanogaster, mostly using specific reporters to assess mitophagy rate and func-
tion [136,137]. Parkin and Pink1 are involved in the regulation of both mitochondrial proteostasis and turn-
over, and decreased levels of these proteins have been shown to directly impair mitophagy in an age-dependent
way [136]. Pink1 or Parkin knockdown (KD) in flies causes tissue-dependent disruption of mitochondrial pro-
teostasis, increased oxidative stress, mitophagy suppression and mitochondrial aggregation in neuronal and
muscle tissues, which can be rescued by overexpressing Nrf2 in the KD flies [138]. Moreover, mitophagy
dynamics are age-wise dependent in Pink1 or Parkin KD flies, upon which mitophagy rate and number of
mitolysososmes may change [138]. Conversely, overexpressing Parkin or Pink1 in the muscle of aged flies
induced mitophagy and maintained proteostasis, thus rescuing OxPhos and ATP production, but it was
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observed to extend the lifespan of the files in an Atg1-independent manner, a key regulator of autophagy [139].
Together, these findings suggest a relevant interaction between autophagy and mitophagy in maintaining mito-
chondrial proteostasis in Drosophila melanogaster [139]. Interestingly, it was observed that the impaired autop-
hagy and inhibited mitophagy observed in patients with mitochondrial myopathy can be ameliorated by
rapamycin treatment, which is known to be a potent inhibitor of mTORC1 [39,134,135]. An increased
mTORC1 signalling has been reported to orchestrate the metabolic remodelling seen in the skeletal muscle of
these patients, therefore suggesting that the inhibition of mitophagy itself is orchestrated by mTORC1 signalling
pathway, and that a rescue of the phenotype can be achieved by administering rapamycin [39–41,47]. However,
available evidence in animal models of mitochondrial disease suggests that the modulation of mTORC1 and
mitophagy are strongly dependent both on rapamycin dose administered and on underlying genetic cause
[140]. Ongoing clinical trials on mitochondrial myopathy patients will elucidate this matter [141].

Cellular processes
Mitochondria regulate several cellular processes by which signals are sensed and consequently processed to
adjust and modulate metabolism to cellular needs. Here, we will discuss some of the most well-characterised
processes, such as apoptosis, reactive oxygen species (ROS), Ca2+ signalling and ATP production, and will high-
light some novel processes that may become important for the understanding of mitochondrial dysfunction in
skeletal muscle.
Apoptosis is one of the first mitochondrial signalling pathway to be well-described, for which mitochondria

are the executors due to their ability to release the pro-apoptotic protein, cytochrome c, into the cytosol
through their permeability transition pore upon specific cellular conditions [142,143]. To be activated, this
phylogenetically conserved mechanism requires the convergence of different mitochondrial signals, such as
Ca2+ release and ROS production [144], and mitochondria morphology, including their network and the
cristae morphology [145,146]. Skeletal muscle fibres are multi-nucleated post-mitotic cells that are resistant to
initiate apoptosis to preserve their nuclear-to-cytoplasmic ratio [147]. However, it has been documented that
under specific circumstances, such as atrophy or myopathy, a subset of myonuclei could undergo apoptosis
[148]. In particular, a high rate of apoptosis was observed in skeletal muscle biopsies of single, large-scale
mtDNA deletions and MELAS cases, where 34 000 fibres were analysed: apoptosis was observed only in
ragged-red fibres, which were presenting with both mitochondrial proliferation and COX-deficiency [149].
Moreover, apoptosis was strongly associated with both high mtDNA mutation load and respiratory deficiency
linking apoptosis with pathological markers of mitochondrial myopathy [149]. A significant correlation
between apoptosis and high mtDNA mutation loads was reported in patients with encephalomyopathies too,
where cytochrome c release and respiratory chain dysfunction can activate pro-apoptotic pathways and exacer-
bate the pathological mechanisms by inducing the removal of dysfunctional muscle fibres [150]. Studies from
skeletal muscle pathology in patients with mitochondrial myopathy caused by other genetic aetiology found
that apoptotic markers, including cytochrome c and Bcl-x, were localised in a granular distribution within the
cytoplasm of either COX-negative fibres or ragged-red fibres, and DNA breaks, which are signs of activated
apoptosis, were observed both in the myonuclear and mtDNA genome [151,152]. However, another study
evaluating skeletal muscle biopsies of patients with mitochondrial myopathy, highlighted the extreme variability
of apoptotic markers in myopathic muscle [153]. This might be related either to the heterogeneous nature of
mitochondrial diseases [154], or to the fact that apoptosis may not always be executed due to a downstream
blockage [155]. Indeed, patients with mtDNA mutations or depletion syndromes, caused by autosomal
[156,157] or X-linked [158] mutations have been reported to have a propensity for skeletal muscle fibre apop-
tosis, suggesting that the interlink between mitochondrial dysfunction and apoptosis may also depend on
nuclear genome variants or genetic background more generally.
ROS consists of radical and non-radical oxygen species, usually formed by partial reduction in oxygen

during OxPhos [159]. Superoxide anions (O2−) are generated by electron leakage at CI, into the mitochondrial
matrix, and at CIII into both the mitochondrial matrix and intermembrane space [160,161]. Under physio-
logical conditions, mitohormesis maintains ROS production, and therefore oxidative stress, within certain levels
that induce beneficial health outcomes, such as metabolic health and longevity [162]. However, impaired
OxPhos function in skeletal muscle will increase oxidative stress and induce a cascade of downstream events,
such as modulation of transcription factors mitochondrial biogenesis, and myogenesis [163,164]. For this
reason already back in 1997, Rosenberg and colleagues proposed that reduced mitochondrial ATP production
and increased mitochondrial production of ROS were both two sides of the same phenomenon, such as
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oxidative phosphorylation defect that leads to the onset of symptoms in mitochondrial disease patients in
general [165]. To test the hypothesis, an Ant1 KO mouse model was generated, where the adenine nucleotide
transporter isoform 1 was lacking in the IMM of mitochondria in both heart and skeletal muscle; this would
induce not just the blockage of ADP/ATP exchange between mitochondria and cytosol, but also consequent
OxPhos defects [166]. In Ant1 KO mouse model, skeletal muscle indeed presents with myopathic features,
decreased OxPhos function and an associated increase in ROS production through increased expression of
MnSOD and Gpx1 proteins [166]. Similarly, skeletal muscle fibres of patients with mitochondrial encephalo-
myopathy present overproduction of ROS with a significant increase in MnSOD [167,168], which significantly
correlates with COX-deficiency [152,169]. Moreover, the mtDNA mutation rate is increased in Ant1 KO mouse
model compared with controls, probably because mutations arise earlier during the life of these mice, highlight-
ing the fact that the amplified oxidative stress is likely to contribute to the observed accumulation of mutated
mtDNA molecules [166]. So far, the study of these intertwined mechanisms has been challenging, partly
because mammals do not share the same mechanism of ROS production observed in simpler organisms such
as S. Cerevisiae [170,171]. What is known is that ROS overproduction acts as a disease modifier for the progres-
sion of mitochondrial myopathy by affecting several different pathways involved in mitochondrial turnover and
other cellular processes, such as satellite cells differentiation and tissue regeneration [172–174]. For instance, in
a model of induced pluripotent stem cells obtained from fibroblasts of patients with mitochondrial encephalo-
myopathy, ROS overproduction was demonstrated to promote both autophagy and mitophagy, inducing a
decrease in OxPhos function and cell viability [175].
Mitochondria are central for Ca2+ homeostasis. Ca2+ is a ubiquitous second messenger, usually kept as a free

ion at very low cellular concentrations and mainly compartmentalised in either the endoplasmic reticulum or
mitochondria [176]. This is mainly due to the fact that Ca2+ concentration ubiquitously regulates the turnover
of metabolites involved in the TCA cycle (e.g. pyruvate and α-ketoglutarate), and modulates physiological
enzymatic activities, such as glycerophosphate dehydrogenase, malate-aspartate shuttle enzymes, aspartate-
glutamate carriers [177], and matrix dehydrogenases [178]. Importantly, the concentration of Ca2+ regulates
ATP synthesis [179,180] and can induce apoptosis [181]. Although Ca2+ stored in mitochondria can be unse-
lectively released into the cytoplasm during apoptosis and via the permeability transition pore [181], we now
know that Ca2+ uptake and concentration in the mitochondrial compartments are regulated by different chan-
nels and transporters in the outer and inner mitochondrial membranes [182]. We also need to remember that
Ca2+ is essential for excitation-contraction coupling during skeletal muscle contraction, for which mitochondria
are the major source of both ATP and Ca2+ buffering, through sustaining OxPhos function and mitochondrial
fusion, respectively [89].
Ca2+ enters the mitochondria through voltage-dependent anion channels (VDAC) are porin-like proteins of

the mitochondrial outer membrane that facilitate the entry of metabolites and ions, including Ca2+, into the
mitochondrial intermembrane space [183]. Skeletal muscle from patients with mitochondrial myopathy usually
presents with a substantial decrease in VDAC, which implies a potential impairment of their Ca2+ uptake cap-
acity[21,31–33]. However, the channelling towards the mitochondrial matrix is performed by the mitochondrial
calcium uniporter (MCU), which involves different components, such as MICU1 [184]. Although loss of func-
tion of the MCU spares mitochondrial respiration and membrane potential, it decreases the mitochondrial
Ca2+ uptake and attenuates the activation of the TCA cycle [184]. Similarly, loss of MICU1 impairs MCU func-
tion inducing decreased ATP production, increased autophagy, and elongated mitochondria within the sarco-
mere of cardyomyocites [185]. In recent years, it has been demonstrated that loss of MICU1 increases the
resting Ca2+ concentration in mitochondria with activation of the TCA cycle enzyme PDH and Drp1 protein,
resulting in increased mitochondrial fission [186]. Specifically in skeletal muscle from myopathic patients, the
role of MICU1 has been validated as the primary determining factor in maintaining Ca2+ basal concentration
and preserving both mitochondrial morphology and metabolism [187].
Beside the mechanisms described above, most of Ca2+ that enters mitochondria derives from their contact

sites with the endoplasmic reticulum, known as mitochondria-associated membranes [188,189]. In skeletal
muscle, the sarcoplasmic reticulum creates junctions with mitochondria, which bring together the sarcoplasmic
reticulum, and the mitochondrial outer and inner membranes, to provide a favourable spatial alignment
between these structures [190]. To date, it is not yet known what happens in skeletal muscle of patients with
mitochondrial myopathy. However, a link between CV deficiency and sarcoplasmic reticulum distress has been
recently described in skeletal muscle from patients with tubular aggregates myopathy, suggesting that OxPhos
defects might have an association with the impairment of mitochondria-associated membranes formation
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[191]. The associated affected Ca2+ microdomains within or in proximity of COX-deficient fibres might func-
tion differently to induce different contraction patterns compared with normal fibres, triggering downstream
dysfunctions [192]. In a muscle-specific Drp1 KO mouse model, it was reported that the deletion of Drp1
could induce changes both in mitochondrial dynamics and turnover, and in Ca2+ microdomains and homeo-
stasis, inducing aberrations in OxPhos functions, and UPR both in mitochondria and in the myofibres, with
downstream global reduction in skeletal muscle mass [193].
The sodium/lithium/calcium exchanger (NCLX) actively maintains the Ca2+ concentration of the mitochon-

drial matrix within physiological levels by pumping Ca2+ into the mitochondrial intermembrane space [194].
Indeed, the function of the NCLX goes beyond mere import/export of ions as it also interacts with other inner
membrane proteins. In cardiomyocytes it was observed that NCLX and sarcoplasmic/endoplasmic reticulum
Ca2+-ATPase (SERCA) co-localise at the contact points between mitochondria and the sarcoplasmic reticulum,
creating a spatial advantageous cross-talk for Ca2+ exchange [195]. Since all SERCA isoforms are co-localised
with NCLX, it is thought that a similar co-localisation happens in skeletal muscle too [187]. Finally, it is worth
mentioning that, although a central role for mitochondria in Ca2+ homeostasis has long been recognised in
other neuromuscular disorders [196], not much is known for mitochondrial myopathies specifically. Cells from
patients with mtDNA mutations affecting tRNALys were found to have OxPhos deficiency due to pathogenically
driven impairment in mitochondrial Ca2+ homeostasis; this phenotype could be restored by administration of
drugs targeting the mitochondrial Ca2+ signalling with subsequent increased ATP production [197]. Moreover,
mutations of CII subunits in fibroblasts from patients with Leigh syndrome have been linked to mitochondrial
dysfunction and differential metabolic arrangements depending on Ca2+ signalling downstream mechanisms
[198]. Further investigations will help to understand in detail the role of mitochondrial Ca2+ homeostasis in
mitochondrial myopathy pathogenesis.
Mitochondria are super dynamic organelles able to release their circular mtDNA molecules to transmit

signals within the cell and between different types of cells, therefore extending their functions beyond the mito-
chondrial double membrane. It has been known for decades now that the mtDNA copy number detected in a
cell is in excess compared with the amount required to sustain mtDNA transcriptions and translation of
mtDNA-encoded OxPhos proteins [199]. A novel suggestion is that the excess mtDNA copies function as
sensors for both cellular and mitochondrial homeostasis [200]. The mtDNA molecules are usually packaged
into nucleoprotein complexes where TFAM is the most abundant protein and binds mtDNA in a non-specific
way [201]. Usually, mtDNA is localised in the mitochondrial matrix; however, under certain circumstances it
can be released into the cytosol. To date, we know that the extrusion of mtDNA from the mitochondrial
matrix could be either performed by the oligomerization of VDAC, under oxidative stress conditions [202], or
through the permeability transition pore, during apoptosis [203]. However, in skeletal muscle of patients with
mitochondrial myopathy, mtDNA can be released via a non-specific mechanism due to swelling of mitochon-
dria and rupture of the double membranes [97].
One of the best-characterised processes activated by the release of mtDNA is the activation of the inflamma-

some, which is a multi-protein complex able to induce the secretion of inflammatory cytokines [204]. It is
important to highlight that the nature of mtDNA released in the cytosol might differ and involve already exist-
ing mtDNA molecules, newly synthetised [205] or consist in oxidised mtDNA released fragments [206].
Mutations of mtDNA-encoded cytochrome b in patients presenting with fibromyalgia have been associated
with patient symptoms and activation of the inflammasome [207], highlighting the possibility that this could
also be the case in skeletal muscle of patients with mitochondrial myopathies. However, mtDNA can be
detected in a circulating cell-free state in different bio-fluids of healthy individuals [208]. Several studies seem
to reveal that the biological reason behind its presence is not immunological as it is for mtDNA released into
the cytosol [208]. These findings suggest that circulating cell-free mtDNA signalling may have a paracrine and
endocrine role. An example can be given by the signalling between damaged skeletal muscle fibres and satellite
cells during the process of muscle regeneration. An emerging role in skeletal muscle maintenance has been
attributed to mitochondrial-derived vesicles (MDVs), which complement the mitochondrial quality control
processes by cooperating with mitophagy to preserve mitochondrial homeostasis [209,210]. Currently, there is
no evidence of the role of MDVs in the pathogenesis of mitochondrial myopathy in skeletal muscle. However,
MDVs establish the link between damaged skeletal muscle fibres and regenerative satellite cells by transporting
a cargo of mtDNA molecules, proteins, and metabolites [211,212]. Conversely, it has been observed that
muscle stem cells can deliver MDVs to skeletal muscle fibres affected by mitochondrial dysfunction: the cargo
proteins are specifically delivered to the damaged skeletal muscle fibres within 2 hours of mitochondrial
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dysfunction induced by hydrogen peroxide treatment. Moreover, these cargo proteins have been found to
co-localise within the dysfunctional mitochondria to eventually revert the phenotype observed [213]. Further
investigations could clarify the MDVs role in mitochondrial myopathies and their potential for novel treatment
avenue.

Muscle cell morphology and function
Skeletal muscle fibres are made up of myofibrils composed of repeating sarcomeres along the length of the
myofibrils. Mitochondria in turn are sandwiched between the myofibrils at the z-band of each sarcomere and
around the periphery of the cell below the sarcoplasmic membrane. In Drosophila melanogaster, mitochondrial
morphology has been demonstrated to impact on myofibrillar morphology and specifically myofibrillar branch-
ing [214]. Researchers found that the transcription factor Spalt communicates to the mitochondria in muscle
fibres that they should intercalate between the myofibrils, and that in turn, the myofibrils will provide a mech-
anical constraint on their morphology [214]. The muscle selector Spalt controls a morphological switch
between different muscle types in Drosophila melanogaster, and inducing changes to its signalling has been
shown to cause a conversion between different muscle types [215]. Work comparing the morphologies of
myosin fibrils and mitochondria in different organisms (drosophila, mice and humans) has found that the
cross-sectional area of myosin fibrils varies along their length and is smaller at the z-band where mitochondria
are positioned [216]. Furthermore, the myosin fibrils curve with their highest curvature associated with mito-
chondrial contact suggesting that myosin filaments and myofibre structure are impacted by both mitochondria
position and morphology [216]. In ragged-red fibres of patients with mitochondrial myopathy, the increased
subsarcolemmal and intermyofibrillar mitochondrial masses are clearly associated with sarcolemma distension
and disruption of myofibrillar organisation, respectively [97].
Myofibrillar branching is thought to be important for the ability of a muscle to generate force and reduced

branching is believed to reduce contractile force. This relationship has also been demonstrated in healthy
human muscle and, together with work in Drosophila melanogaster, suggests that inducing mitochondrial
fusion leads to a reduction in myofibrillar intercalation. This would suggest that low levels of mitochondrial
dysfunction are likely to disrupt myofibril branching and therefore skeletal muscle function [217]. It is also pos-
sible that increases in mitochondrial mass as we see in ragged-red fibres would have a similar impact. Work is
needed to fully characterise the relationship between mitochondrial function and myofibrillar morphology and
function.
It would remiss here not to address the long debate about the role of mitochondrial dysfunction in both

muscle atrophy and sarcopenia. Whilst mitochondrial dysfunction has been demonstrated to be intricately
linked with mitochondrial morphology, as described above, mitochondrial morphology has further been shown
to impact muscle mass [218]. In sarcopenia, dysfunction of mitochondrial fusion leads to muscle fibre atrophy
and decline in muscle mass, as it is associated with reduced mitochondrial fission and fusion machinery
[30,219,220]. Furthermore, mitochondrial fission is important for muscle development, maintenance, and func-
tion. Mitochondrial morphology has also been shown to have further knock-on effects in muscle including
impacts on muscle inflammation [221]. Therefore, the impact of mitochondrial dysfunction on mitochondrial
morphology may further trigger these downstream processes. Moreover, while data in rats suggest that high
levels of mtDNA deletions and mitochondrial dysfunction are causative of muscle fibre atrophy, only a small
proportion of fibres with mitochondrial dysfunction are atrophied [222]. Indeed, given the much higher levels
of mitochondrial dysfunction in patients with mitochondrial diseases, when compared with older healthy indi-
viduals, if mitochondrial dysfunction was driving muscle atrophy, we would expect to see much more atrophy
in patients, which is not the case [223,224].
Finally, central nuclei are a well-known early pathological hallmark in mitochondrial myopathy shared with

many other myopathic diseases. These have been suggested to be the nuclei from satellite cells that fuse with
muscle fibres, and which migrate to the centre of the fibre before being redistributed to its periphery, meaning
that increased central nuclei could simply be a marker of increased fusion of satellite cells during myopathic
muscle repair. However, Mito and colleagues found clusters containing lysosomes, mitochondria, and mitolyso-
somes adjacent to the central nuclei of skeletal muscle fibres from Deletor mice [135], which looked remarkably
similar to findings of nucleophagy in genetic nuclear encephalopathies causing myopathy [225]. Therefore,
whether centralised nuclei are linked to mitochondrial dysfunction in mitochondrial diseases with disease-
specific characteristics warrants further investigation. One possibility is that the starvation-like response trig-
gered by mitochondrial myopathy, which induces the remodelling of the one-carbon metabolism and ISRmt
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disturbing cellular dNTP pools [36,39,40], may trigger nucleophagy in an attempt to regain homeostasis.
Further to this, observations in immunofluorescent labelled skeletal muscle sections from patients with mito-
chondrial myopathy suggest a disorganisation of myonuclei, for which it is not yet clear whether the underlying
mitochondrial dysfunction has a role.

Conclusions and future perspectives
Mitochondrial and skeletal muscle biology are profoundly intertwined, and understanding their physiological
mechanisms will allow the underpinning of pathological processes underlying the onset and progression of
muscle disease throughout the lifespan of patients affected by mitochondrial disorders. Over the last decade,
giant steps have been made towards the dissection of metabolic remodelling in mitochondrial myopathies,
although highlighting the fact that the adaptations observed are inevitably restricted to the subgroup of mito-
chondrial myopathy investigated. The advent of more sophisticated technologies and methodologies of analysis
made it possible to look closer to the structure and morphology of mitochondria within skeletal muscle fibres,
showing how their localisation within cells and tissues has a powerful and bidirectional influence in the func-
tional output of the organelle, the cell and, ultimately the muscle, in both health and disease. Research into
mitochondrial myopathies is consequently challenging, not just due to their heterogeneous genetic causes and
inheritance patterns (mtDNA/nuclear variant, mtDNA point mutation/mtDNA deletion), as well as complex
dynamics (homoplasmy/heteroplasmy, mtDNA copy number); but also because mitochondrial populations
have compartmentalised biological skills based on their cellular localisation (subsarcolemmal, intermyofibrillar,
perinuclear) and in close relationship with skeletal muscle fibre-type composition, biology and function (e.g.
extra-ocular muscles, proximal limb muscles, or the diaphragm). In our perspective, filling these knowledge
gaps, which are highlighted in more detail throughout this review, requires targeted research to advance our
understanding of how pathological changes in mitochondria and muscle lead to clinical symptoms and progres-
sive disease. To date, many animal models, mostly mouse models, have been generated to mechanistically study
mitochondrial myopathy. However, and despite their unquestionable research value of these models, acknow-
ledging their limitations due to species-related biological differences will be essential to combine findings from
animal, human and cell culture models.
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