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S U M M A R Y
Operational earthquake forecasting for risk management and communication during seismic
sequences depends on our ability to select an optimal forecasting model. To do this, we need to
compare the performance of competing models in prospective experiments, and to rank their
performance according to the outcome using a fair, reproducible and reliable method, usually
in a low-probability environment. The Collaboratory for the Study of Earthquake Predictability
conducts prospective earthquake forecasting experiments around the globe. In this framework,
it is crucial that the metrics used to rank the competing forecasts are ‘proper’, meaning that,
on average, they prefer the data generating model. We prove that the Parimutuel Gambling
score, proposed, and in some cases applied, as a metric for comparing probabilistic seismicity
forecasts, is in general ‘improper’. In the special case where it is proper, we show it can still be
used improperly. We demonstrate the conclusions both analytically and graphically providing
a set of simulation based techniques that can be used to assess if a score is proper or not. They
only require a data generating model and, at least two forecasts to be compared. We compare
the Parimutuel Gambling score’s performance with two commonly used proper scores (the
Brier and logarithmic scores) using confidence intervals to account for the uncertainty around
the observed score difference. We suggest that using confidence intervals enables a rigorous
approach to distinguish between the predictive skills of candidate forecasts, in addition to their
rankings. Our analysis shows that the Parimutuel Gambling score is biased, and the direction
of the bias depends on the forecasts taking part in the experiment. Our findings suggest the
Parimutuel Gambling score should not be used to distinguishing between multiple competing
forecasts, and for care to be taken in the case where only two are being compared.

Key words: Probabilistic forecasting; Statistical methods; Earthquake interaction, forecast-
ing, and prediction; Statistical seismology.

1 I N T RO D U C T I O N

Probabilistic earthquake forecasts are used to estimate the spatial and/or temporal evolution of seismicity and have potential utility during
earthquake sequences, including those following notable earthquakes. For example, they have been applied to forecast (pseudoprospectively)
the seismicity that followed the Darfield earthquake and in turn led to the 2011 Christchurch earthquake (Rhoades et al. 2016), and to monitor
induced seismicity at Groningen (Bourne et al. 2018). In Italy, earthquake probabilistic forecasts and ground-motion hazard forecasts are
produced on a regular basis by the Instituto Nazionale di Geofisica e Vulcanologia (INGV) to inform the Italian government on the risk
associated with natural hazard (Marzocchi et al. 2014). INGV is working to use probabilistic forecasts as a basis for modelling important
quantities for operational loss forecasting such as the number of evacuated residents, the number of damaged infrastructure, the number of
fatalities (Iervolino et al. 2015). A wider uptake requires further demonstrations of the operational utility of the forecasts, and in presence
of multiple alternative models, a fair and rigorous method to express a preference for a specific approach is needed. The Collaboratory
for the Study of Earthquake Predictability (CSEP, see Jordan 2006; Zechar et al. 2010b; Schorlemmer et al. 2018) is a global community
initiative that seeks to make earthquake research more rigorous and open-science. This is done by comparing forecasts against future data in
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competition with those from other models through prospective testing in pre-defined testing regions. In this paper, we focus on comparing
different forecasts that can be made from such competing models in the light of observed data.

In statistics, a common approach to compare probabilistic forecasts is the use of scoring rules (Gneiting & Raftery 2007). Scoring rules
have been widely applied in many fields of science to measure the quality of a forecasting model and to rank competing models based on
their consistency with the observed data and the degree of uncertainty around the forecast itself. Much of the underlying methodology and
concepts (such as what it means to be a ‘good’ forecast) have been developed for weather forecasts (Murphy 1993; Jolliffe & Stephenson
2003). A positively oriented scoring rule, to be effective, has to be proper, which simply means that the highest score is achieved, on average,
by the forecasting model ‘closer’ to the distribution that has generated the observations. Various meaning of ‘closer’ can be used depending
on the context and the use that will be made of the forecasting model under evaluation, thus, a variety of proper scoring rules exists. Proper
scoring rules are mathematically appealing for a range of different tasks: they can be used as utility function tailored to the problem at hand,
they can be used as loss functions in parametric estimation problems and they can be used to rank competing models based on different
aspects of the phenomenon under analysis (Rosen 1996; Hyvärinen & Dayan 2005; Hernández-Orallo et al. 2012).

CSEP aims to compare the predictive performance of diverse earthquake forecasts in a rigorous and reproducible fashion. The forecasts
themselves are generated by underlying physical, stochastic or hybrid models using a variety of input data such as past seismicity, deformation
rates, fault maps, etc. (Field et al. 2014; Steacy et al. 2014; Bayliss et al. 2020). The two most widely used types are alarm-based forecasts
and probabilistic forecasts. The first class of forecasts is usually expressed as a binary statement (‘alarm’ or ‘not alarm’) based on the value
of a precursory alarm function. In contrast, probabilistic forecasts, as intended in past CSEP experiments (Schorlemmer & Gerstenberger
2007), provide a distribution for the number of earthquakes. They can be expressed as grid-based forecasts (providing the expected number
of events in each space–time–magnitude bin) or as catalogue-based (providing a number of simulated catalogues, Savran et al. 2020). The
forecasts are variously compared using a suite of community-endorsed tests. Depending upon the forecasts at hand, three common challenges
are the need for a reference model, how to handle bins (or regions) for which the forecaster did not provide a forecast and, the need to specify
a likelihood. The latter has been partially solved by the possibility of considering a pseudo-likelihood (Savran et al. 2020).

Molchan diagrams (Zechar & Jordan 2008) and the area-skill score (Zechar & Jordan 2010) do not need a likelihood and can be used
to compare both alarm-based and probabilistic forecasts together. However, they need a reference model for assessing the significance of the
results. This can be problematic because specifying a credible reference model is a difficult task (Stark 1997; Luen et al. 2008; Marzocchi
& Zechar 2011). Likelihood-based tests (Schorlemmer et al. 2007; Zechar et al. 2010a; Rhoades et al. 2011; Schneider et al. 2014) allow
for pairwise comparison without the need of a reference model, but can only be applied to probabilistic forecasts. Further, methods for
grid-based forecasts rely on the Poisson assumption, which has been observed to be not realistic (Werner & Sornette 2008). Moreover,
pairwise comparison may lead to paradoxical results like model A is preferred to model B which is preferred to model C which is preferred
to model A (Zechar et al. 2013). Bayesian methods have been proposed (Marzocchi et al. 2012) but they also rely on the Poisson assumption.
Catalogue-based forecasts, can be evaluated using a pseudo-likelihood approach (Savran et al. 2020) which does not rely on the Poisson
assumption and enable information gains and likelihood ratios to be used. However, the latter are unbounded and sensitive to low-probability
events, meaning that they can be unduly influenced by a few observations (Holliday et al. 2005; Zechar & Zhuang 2014). Lastly, in past
experiments such as the Regional Earthquake Likelihood Models (RELM, Field 2007), forecasters did not provide a forecast for all bins,
some of them were left as missing value; for the methods outlined above, making a comparison is complex, given that considering only the
overlapping space–time–magnitude volume may be too restrictive and introduce unfairness in the evaluation.

Zhuang (2010) and Zechar & Zhuang (2014) tried to overcome the difficulties outlined above by introducing the parimutuel gambling
score, which provides a framework to evaluate different types of forecasts, with no need to explicitly specify a reference model or a likelihood,
and with the ability to handle missing values in an intuitive way. This approach is based on the idea that alarm-based forecasts could be
imagined as gamblers engaged in a game called the seismic roulette, where Nature controls the wheel (Main 1997; Kossobokov 2004, 2006).
In this framework, the forecasters are the gamblers, a forecast consists of a collection of probabilities for observable events (bets) like
observing at least one earthquake in a specified space-time-magnitude bin. Each bin represents a bet and the probability assigned by the
forecaster represents the amount of money wagered. The observations consist of binary variables taking value 1 if the event occurs and zero
otherwise. The forecaster gets a reward depending on the forecasted probability and the actual observation of an event or not. The forecasts
are ranked based on their rewards. In this sense, the parimutuel gambling score is a positively oriented score (the higher, the better) for binary
probabilistic forecasts. In this paper, we prove analytically and graphically that the parimutuel gambling score is not proper in general but
only in a specific situation and we compare its performance with two proper alternatives: the Brier (Brier 1950) and the logarithmic (Good
1952) score.

The parimutuel gambling score has not been used systematically in CSEP, but it has been used to evaluate global forecasts (Taroni et al.
2016) and forecasts for Italy (Taroni et al. 2014, 2018) in situations where the score is improper. In the context of Italy, it has also been used
in combination with two other scores to weight different source and ground motion models in the new Italian seismic hazard ensemble model
(MPS19, Meletti et al. 2021). Furthermore, the parimutuel gambling score was mentioned by Schorlemmer et al. (2018) as a new method
for evaluating earthquake forecasts without any warning about possible biases. We use the parimutuel gambling score to illustrate different
techniques to assess if a score is proper, both analytically and graphically. We find that the parimutuel gambling score is proper only in a
specific situation, and event then, it can be used improperly. This finding is emblematic of how much care should be taken in checking if (and
when) a metric is proper.
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To fairly compare the performance of the scores in a realistic framework, we use simulated data from a known model and we compare it
with alternative models. In doing that, it is crucial to account for the uncertainty in the observed score difference. In fact, properness ensures
that, at least on average, the scoring rule provides the correct ranking. However, the score calculated from any finite set of observations could
be far from its average and, therefore, we need to account for uncertainty. In this paper, we show how to express a preference towards a
model using confidence intervals for the expected score difference. This method introduces the possibility of not expressing a preference.
Considering this outcome is potentially useful because it indicates that, for a scoring rule, the forecasts have similar performances, or the data
are not enough to distinguish between models, or the bins’ dimension is offset (too large or too small).

In summary, the main goal of this article is to present the notion of proper scoring rules for probabilistic forecasts of binary events: why
is it crucial for a scoring rule to be proper? How can we verify if a score is proper or not? And, how do different scores penalize the same
forecast differently? In Section 2, we define a proper and a strictly proper scoring rule, introduce the Brier and log scores as examples, and
give a brief proof of their propriety. We also show how differently forecasts close to zero are penalized by the two scores. In Section 3, we
introduce the parimutuel gambling score and analytically explore its improperness in the context of a forecast for a single bin. If a score is
proper for single bins, then, the average score of different bins is also a proper score (Gneiting & Raftery 2007). In Section 4, we generalize
to the case where we have multiple bins but with the same probability, Multiple Bins Single Probability. This case is equivalent to considering
the activity rate in each bin as independent and identically distributed. This is a significant assumption but allows us to calculate analytically
the confidence intervals and the probability of expressing a preference for a given model. We generalize further to the case in which we have
multiple bins but with a different probability for each bin, Multiple Bins Multiple Probabilities. In this case, we do not have analytical results
and we are required to use approximate confidence intervals and simulations to calculate the probability of expressing a preference. These
simulations are now close to a real forecast scenario. We illustrate this case using simulations from the time-independent 5 yr adaptively
smoothed forecast for Italy (Werner et al. 2010). We choose this model because the adaptively smoothed approach performed well across
multiple metrics in the RELM experiment (Zechar et al. 2013) and, as a result, was incorporated into the California seismic hazard map
produced by the third Uniform California Earthquake Rupture Forecast model (UCERF3, Field et al. 2014).

2 P RO P E R S C O R E S

Scoring rules quantify the quality of probabilistic forecasts, allowing them to be ranked. The quality depends on both the predictive distribution,
produced by the model in true prospective mode, and on the subsequent observations. A scoring rule is a function of the forecast and the
data measuring two factors: the consistency between predictions and observations and the sharpness of the prediction. Consistency assesses
the calibration of the model, how well the forecast and the data agree, and is a joint property of the forecast and the data. Sharpness is a
measure of the forecast uncertainty and is a property of the forecast only. Different scoring rules measure the consistency and the sharpness
of a forecast differently. As in (Gneiting & Raftery 2007), we call S(P|x) the score for forecast P given the observation x. In general, we use
capital letters for random variables, lowercase letters for scalar quantities such as realizations of a random variable (everything that is not
random) and bold letters represents vectors. The only exception is N which represents the number of bins.

Thus, a scoring rule, given a forecast P, is a function of the observation only S(P|·) : X → [−∞, ∞] where X is the set of all possible
values of x. For consistency, we will use a positively orientated convention, where a larger score indicates a better forecast. Assuming that
the observations are samples from a random variable X ∈ X with true distribution Q, the score S(P|X) is a random variable itself, since it is
a function of the random variable X. We define SE(P|Q) as the expected value of the scoring rule under the true distribution Q:

SE (P|Q) = EQ[S(P|X )]. (1)

A positively oriented scoring rule S is said to be proper if, for any forecast P and any true distribution Q, SE(Q|Q) ≥ SE(P|Q) holds. It
is said to be strictly proper if SE(Q|Q) = SE(P|Q) if and only if P = Q. Propriety is essential, as it incentivises the assessor to be objective
and to use the forecast P ‘closer’ to the true distribution Q. Different scoring rules rely on different meanings of closer. Also, proper scores
can be used as loss functions in parameter estimation; in fact, since the likelihood assigned by a model to the observations can be seen as a
proper scoring rule, the maximum likelihood estimator can be viewed as optimizing a score function (Huber 1992). Investigating the ability
of a score of distinguishing between different instances of the same model (with different parameters values) may bring insight regarding
parameters identifiability.

Here, we are interested in scoring rules for binary variables, in which the variable X can be only 0 or 1, namely X ∈ {0, 1}. Grid-based
earthquake forecasts divide the region of interest into regular space-time-magnitude bins (e.g. the spatial region is divided in bins of 0.1◦ ×
0.1◦, the magnitude by 0.1 magnitude units, and the time is one 5-yr bin), and the forecasters estimate the expected number of earthquakes
per bin. In this case, for example, the binary variable might be 0 for empty bins and 1 if at least one event occurs. The forecasts may be ranked
based on the average score across different bins (Zechar et al. 2013).

Considering a single bin, for grid-based binary forecasts, where both the forecast P and the true distribution Q are specified by just
one number: the probability of X being 1. We call p the probability assigned to the event X = 1 by the forecaster, and p∗ denotes the true
probability. Thus, the expectation is given by

SE (P|Q) = SE (p|p∗) = p∗S(p|1) + (1 − p∗)S(p|0). (2)
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A scoring rule of this type is proper if, for any p ∈ [0, 1] and any p ∈ [0, 1], we have

SE (Q|Q) ≥ SE (P|Q).

The properness of a score ensures that given two models p1, p2, the model with the greatest expected score SE(pi|Q) is the closest to the
true p∗. This notion can be generalized to rank a set of k forecasts p1,..., pk according to their expected scores.

Two of the most widely used strictly proper scoring rules, for binary data, are the Brier (or quadratic) score (Brier 1950) and the
logarithmic score (Good 1952). These are good candidates for evaluating this class of earthquake forecasts. Here we give the definitions of
these two scores, including brief proofs of their propriety.

2.1 Brier score

The positively oriented Brier score (Brier 1950) for a categorical variable X (the binary case is obtained considering only two possible
outcomes) can be defined by:

SB(P|x) = −
∑
z∈X

[p(z) − I(z = x)]2, (3)

where X is the set of possible outcomes, p(z) is the forecasted probability of the event X = z, and I(z = x) is an indicator function assuming
value 1 if z = x and 0 otherwise. This definition differs from the original only in the sign, since the original Brier score is negatively oriented.

The ordinary Brier score for binary events is the special case X = {0, 1}, with p = p(1) and 1 − p = p(0):

SB(p|x) = −[(1 − p) − (1 − x)]2 − (p − x)2 = −2(p − x)2 =
{

−2(p − 1)2, x = 1,

−2p2, x = 0,

which has expectation

SE
B (p|p∗) = −2p∗(p − 1)2 − 2(1 − p∗)p2 (4)

under the true event probability p∗. Taking the derivative with respect to p and imposing it equal zero, we find that the value p = p∗ uniquely
maximizes the function SE

B (p|p∗) which proves that the Brier score is strictly proper.

2.2 Logarithmic score

The logarithmic (log) score for binary event forecasts is defined as

SL (P|x) = ln pP (x). (5)

For X = {0, 1}, the expectation is

SE
L (p|p∗) = p∗ ln(p) + (1 − p∗) ln(1 − p), (6)

which, once differentiated with respect to p and set equal zero to identify the maximum, proves that also the log score is strictly proper.

2.3 Score comparison

Given an observation x, to express a preference between two forecasts p1 and p2, an important quantity is the score difference �.

�(p1, p2, x) = S(p1|x) − S(p2|x) =
{

S(p1|0) − S(p2|0) with prob 1 − p∗,
S(p1|1) − S(p2|1) with prob p∗.

For example, in the case of the Brier score we have

�B(p1, p2, x)

{
−2(p2

1 − p2
2) when x = 0,

−2[(1 − p1)2 − (1 − p2)2] when x = 1,
(7)

while in the case of the log score

�L (p1, p2, x)

{
log( 1−p1

1−p2
) when x = 0,

log( p1
p2

) when x = 1.
(8)

In principle, if the expected value of � is positive we tend to prefer the first forecast, vice versa if it is negative. Considering the observation
as a Bernoulli random variable X ∼ Ber(p∗), the difference �(p1, p2, X) is also a binary random variable, assuming the values �0 = �(p1, p2,
0), �1 = �(p1, p2, 1) with probabilities 1 − p∗ and p∗. The distribution of �(p1, p2, X) is therefore completely determined by the distribution
of X:

�(p1, p2, X ) = X�1 + (1 − X )�0 = �0 + X (�1 − �0). (9)
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Figure 1. Differences in the scores expected value for a generic value of the forecast p and the optimal forecast p = p∗, namely E[�] = SE (p|p∗) − SE (p∗|p∗),
in the case p∗ = 0.001. Panel (a) p ∈ (0, 0.006], panel (b) p ∈ (0, 1). The expected Brier score have been normalized to match the curvature of the log score
when p = p∗.

It follows that the expected value and variance of �(p1, p2, X) are determined by the properties of X:

E[�(p1, p2, X )] = �0 + E[X ](�1 − �0) = �0 + p∗(�1 − �0) (10)

V[�(p1, p2, X )] = V[X ](�1 − �0)2 = p∗(1 − p∗)(�1 − �0)2. (11)

We can give an alternative definition of the properness based on the random variable �(p1, p2, X). In fact, a scoring rule S is said to be
proper if EX [�(p, p∗, X )] ≤ 0 when p �= p∗, no forecast have an expected score higher than the data generating model p∗. However, they
can achieve the same score. S is strictly proper if EX [�] = 0 if and only if p = p∗, the highest score, on average, is achieved only by the data
generating model. The definition implies, also, that proper scoring rules are invariant under linear transformations, in the sense that, a linear
transformation of a proper score yields another proper score and the operation does not change the ranking.

Fig. 1 reports the expected score difference between a candidate forecast p and the true value p∗ = 0.001 using the Brier and the log
score. The value p∗ = 0.001 was chosen to be comparable to the estimated probability of having an event with magnitude greater than 5.5
calculated the days before the L’Aquila earthquake in the neighbourhood of where it struck (Fig. 4 in Marzocchi & Lombardi 2009). To
enable a visual comparison, the expected Brier score values have been normalized to match the curvature of the log score when p = p∗. This
is done by multiplying the expected Brier score values by the ratio of the second derivatives of the two expected scores calculated at p = p∗.
The proper score scale invariance ensures that the ranking obtained using the original and normalized version of the Brier score is unchanged.

Both expected score differences are uniquely maximized at p = p∗ which means that the forecast matching the true probability has
the highest expected score. This is an easy way to assess if a scoring rule for binary outcomes is proper or not. Furthermore, Fig. 1 offers
an example of how different scores penalize differently the same forecasts. The log score is asymmetric and takes into account the relative
differences between the forecasts (eq. 8), and if p∗ �= 0 the expected score for p = {0, 1} is −∞. The log score is analogous to a likelihood
score, and brings the same properties: a model which is correct in all the bins but one for which it provides zero probability will have the
worst possible score. The Brier score, instead, considers the absolute difference between forecasts (eq. 7) resulting in a symmetric distribution
For example, using the Brier score, a forecast p = 0 will be preferred to any forecast in (2p∗, 1), for any p∗ < 1/2.

The choice of score, and consequently the style of penalty, should reflect the task at hand. Predicting p = 0, 1 means that we are
absolutely certain about the outcome of X. If the forecasts under evaluation are planned to be used in an alarm based system, for which an
alarm is broadcasted if the probability is above or below a certain threshold, being overconfident may put lives at risk and perhaps the log
score would be the right choice in this situation. On the other hand, the Brier score may be suitable when such a strict penalty is not desirable
[e.g. to calculate the weights of an ensemble model as done by Taroni et al. (2018) and Meletti et al. (2021)]. This example illustrates the
flexibility of proper scores and how important it is to choose the right one depending on the purposes of the forecast under evaluation.

3 I M P RO P E R S C O R E S

Scores which are not proper are called improper. Being improper means that a model may exist with expected score greater than the data
generating model. In the specific case of probabilistic forecasts for binary events, a score is improper if it is biased towards models which
systematically under/overestimate the true probability p∗. In the context of earthquake forecasting experiments we do not know the true value

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/230/2/1419/6555032 by U

niversity of N
ew

castle user on 12 D
ecem

ber 2023



1424 F. Serafini et al.

of p∗. Therefore, it is crucial to use proper scoring rules for which we are sure that, at least on average, they will prefer the closest model to the
data generating one. Improper scoring rules do not have this property, which implies that the smallest or the largest (or any other) forecast, on
average, could achieve the highest score. This is in clear contrast with the aim of any forecasting experiment. Below, we demonstrate that the
parimutuel gambling score (Zhuang 2010; Zechar & Zhuang 2014) is an example of a scoring rule which is proper only in a specific situation
and not in general.

3.1 Definition of the parimutuel gambling score

The parimutuel gambling score was designed to rank forecasting models for binary events and was applied to rank earthquake forecasting
models in CSEP experiments (Zechar & Zhuang 2010; Taroni et al. 2018). Initially, it was used to compare models against a reference model
(Zhuang 2010), which is improper. Later, it was generalized to compare models against each other simultaneously (Zechar & Zhuang 2014),
the case with only two players is the special case for which the score is proper, all the others are not. The score is based on a gambling scheme
in which the forecasting models play the role of the gamblers and, for each observation, they obtain a reward proportional to the probability
assigned by the gambler to the event occurring. In particular, it is a zero-sum game, in the sense that bids and rewards in each bin sum to zero,
which makes the parimutuel gambling score relative to one forecast dependent on the other forecasts.

In contract to the Brier and log scores, it is not possible to define the parimutuel gambling score using the form S(p|x) because it needs
at least two forecasts to be evaluated and is a function of them all. Given a set of k forecasts p = (p1, ..., pk), we define SG(p|x) as the vector
such that the ith component, SG,i (p|x), is given by the parimutuel gambling score of the ith forecast, given x has been observed. In the case of
the Brier and log score the components of the vector S(p|x) are defined independently, in the case of the parimutuel gambling score they have
to be defined jointly. Let p̄ be the average probability involved in the gambling scheme, namely p̄ = ∑k

i=1 pi/k. The parimutuel gambling
score relative to the ith forecast is defined as

SG,i (p|x) =
{

pi
p − 1, x = 1,

1−pi
1−p − 1, x = 0.

The above expression is a zero-sum game, meaning that
∑

i SG,i (p|x) = 0, therefore the rewards may be positive or negative. Each gambler
obtains a positive reward if and only if they assign a greater probability to the observed event than the average gambler involved in the game.
Vice versa, the reward is negative if the probability is smaller.

The expected value with respect the true probability p∗ is given by

SE
G,i (p|p∗) = p∗

(
pi

p̄
− 1

)
+ (1 − p∗)

(
1 − pi

1 − p̄
− 1

)
,

= p∗ pi

p̄
+ (1 − p∗)(1 − pi )

1 − p̄
− 1,

= (pi − p̄) (p∗ − p̄)

p̄(1 − p̄)
. (12)

Eq. (12) is the same as eq. (5) in Zechar & Zhuang (2014). The denominator involves all the probabilities in the game which demonstrates
the interdependence with all other forecasts and complicates the study of the derivatives. However, it is still possible to prove that the gambling
score is strictly proper when k = 2. In this case, p = (p1, p2), and

4 p̄(1 − p̄)SE
G,1(p|p∗) = 4

(
p1 − p1 + p2

2

)(
p∗ − p1 + p2

2

)
,

= (p1 − p2) (2p∗ − p1 − p2) ,

= − [(p1 − p∗) − (p2 − p∗)] [(p1 − p∗) + (p2 − p∗)] ,

= (p2 − p∗)2 − (p1 − p∗)2.

The expected reward of the first modeller is non-negative when |p1 − p∗| ≤ |p2 − p∗|, implying that p1 is favoured over p2 if it is closer to the
true probability p∗. In fact, if p2 = p∗ then, SE

G,1(p|p∗) ≤ 0, with the equality verified only for p1 = p∗. Furthermore, the expected gambling
score in this case is proportional to the expectation of the corresponding Brier score differences �B = SE

B (p1|p∗) − SE
B (p2|p∗), thus, they

produce, on average, the same rankings.

3.2 Improper use of proper score

When comparing forecasting models, ensuring that the score is proper may not be sufficient. It also has to be used properly. The gambling
score with k = 2 offers a nice example of this situation. We have demonstrated that the parimutuel gambling score is proper when k = 2,
however, the dependence of the score value on all the forecasts involved in the comparison is a source of bias. In fact, SE

G,1(p|p∗) ≥ SE
G,2(p|p∗)

when p1 is closer to p∗ than p2, however, p1 = p∗ does not maximize SE
G,i (p|p∗) as shown in Fig. 2. This means that the score becomes biased

when we rank forecasts based on the score difference against a reference model.
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Figure 2. Expected value of the parimutuel gambling score (k = 2), SE
G,1(p|p∗), varying p1 ∈ (0, 0.004), p2 = {p∗, 2p∗, 4p∗} (a) and p2 = {p∗, p∗/2, p∗/4}(b).

The solid vertical line represents the true probability p∗ = 0.001. The expected scores have been normalized so that their minimum is equal to –1.

Formally, we are considering pairwise vectors p1 = (p1, p0), p2 = (p2, p0), etc., where p0 is the reference model. For each of these
we can estimate pairwise comparison score vectors SG(p1|x), SG(p2|x), and so on. The first component of each vector, namely SG,1(p1|x),
SG,1(p2|x), etc., represents the score of p1 and, respectively, p2 against the reference model p0. At this point, one would be tempted to rank the
models based on SG,1(p1|x) and SG,1(p2|x), and this is the approach taken in Taroni et al. (2014) in which the official national time-independent
model (Gruppo di Lavoro 2004) is used as reference model.

If the parimutuel gambling score is used to rank forecasts based on the score difference relative to a reference model, it will not reliably
favour the model closest to the true one, and the size of the bias will depend on the choice of the reference model. For example, in Fig. 2(a),
for p2 = 0.004, the gambling score is maximized at p1 = 0. This means that if the reference model is p0 = 0.004, the overconfident forecast
p1 = 0 would be favoured by the ranking even if another forecast is perfect, for example p3 = p∗. This problem can be particularly relevant
in operational seismology where it is common for candidate forecasts to be compared against a reference model which is known to be based
on simplistic assumptions (for example a homogeneous Poisson process).

Hereon, the term pairwise gambling score refers to the comparison against a reference model as described in this section, while the term
full gambling score will refer to the case where the forecasts compete directly against each other as we describe in the next section. Using
this terminology, the full gambling score with k = 2 is the only proper score.

3.3 Improperness of the multiforecast gambling score for k ≥ 3

The generalized version of the full parimutuel gambling score, as presented in Zechar & Zhuang (2014), for k ≥ 3 is improper. For example,
when k = 3 and p2 = p∗, following eq. (12) the difference between the expected score for p1 and p2 is given by

3 p̄(1 − p̄)[SE
G,1(p1, p∗, p3|p∗) − SE

G,2(p1, p∗, p3|p∗)] = 3(p1 − p∗)(p∗ − p̄)

= (p1 − p∗)(2p∗ − p1 − p3),

with both sides scaled by the common factor 3 p̄(1 − p̄). This means that when 2p∗ − p3 ≥ p1, the forecast p1 will have a positive score for
any p1 ≥ p∗. Any value of p1 ∈ [p∗, 2p∗ − p3] will be preferred to p2 that is equal to p∗. When 2p∗ − p3 ≤ p1, with the same reasoning, p1 is
preferred over p2 = p∗ in the interval [2p∗ − p3, p∗].

In Fig. 3 we consider k = 3, p∗ = p2 = 0.001 and report the difference between the expected scores of p1 and p2, namely SE
G,1(p|p∗) −

SE
G,2(p|p∗), for different values of p3. The expected score difference is not maximize at p1 = p∗, which means that the score is biased, and the

‘direction’ of the bias depends on p3 being greater than or equal to p∗.
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Figure 3. Expected gambling score differences (k = 3) between p1 and p2, SE
G,1(p|p∗) − SE

G,2(p|p∗), as a function of p1 ∈ (0, 0.004), p2 = p∗ = 0.001 (vertical
line) and p3 ∈ {p∗, p∗/2, p∗/3} (a) and p3 ∈ {p∗, 2p∗, 3p∗} (b).

Consider k > 3 gamblers who propose probabilities p = {p1, ..., pk}. It is helpful to consider the vector of probabilities that excludes
the first component; we name this p−1 = p/{p1} and its mean p̄−1. Assuming p2 = p∗, thus p = (p1, p∗, ..., pk), we have that

k p̄(1 − p̄)[SE
G,1(p|p∗) − SE

G,2(p|p∗)] = k(p1 − p∗)(p∗ − p̄),

= (p1 − p∗)[kp∗ − p1 − (k − 1) p̄−1],

from which we conclude that the expected score difference is positive when p1 ∈ [kp∗ − (k − 1) p̄−1, p∗] or p1 ∈ [p∗, kp∗ − (k − 1) p̄−1],
depending on if p∗ ≷ p̄−1. Specifically, when p∗ > p̄−1 (Fig. 3a) the first gambler is encouraged to bet on a p1 > p∗ and vice versa when
p∗ < p̄−1 (Fig. 3b). Furthermore, p∗ is always an extreme of the interval where the expected score difference is positive. Considering p̄−1 as
fixed, the length of the interval is an increasing function of the number of gamblers k (Fig. 4) which means that the size of the set of forecasts
capable of obtaining a score value higher than the data generating model is an increasing function of the number of forecasts involved in the
comparison.It is clear that the multiforecast parimutuel gambling score favours models that are contrary to the average of the other forecasts.
This could be particularly dangerous when evaluating the performance of earthquake forecasting models. For example, the trigger for an
alarm being broadcast (or not) is often defined when the probability of having an earthquake above a certain magnitude exceeds a specified
threshold. Using a model chosen looking at the full parimutuel gambling score could therefore lead to broadcasting alarms when they are not
needed (p � p∗, ’crying wolf’, Fig. 4a) or not broadcasting an alarm when needed (p  p∗, providing ’false reassurance’, Fig. 4b).

The root of the problems with this score is that the score, relative to a candidate forecast, explicitly depends on the other forecasts. This
design brings two problems: (i) the score, even in the special case when it is proper, can be used improperly and (ii) the score is never proper
when considering more than two models. The Brier and log scores do not suffer from the same problem since the score of a forecast depends
only on the forecast and the observation. Furthermore, the improperness demonstrated here can be expressed in terms that show that the
gambling metaphor is part of the problem: If the outcome x = 0 is likely (e.g. p∗ = 0.001) and the majority of the forecasts have too large
probabilities, then the expected gain is higher for an overconfident forecast, p  p∗, since that will give the forecaster a larger share of the
total payout.

4 F O R E C A S T I N G A C RO S S M U LT I P L E B I N S

Until now, we have analysed the expected score for a single bin, here we analyse the ability to express a preference between two forecasts
using the average score across multiple bins. We assume to have access only to one observation xi ∈ {0, 1} per bin. We analyse extensively the
case in which the probability of observing xi = 1, is the same for each bin, p∗

i = p∗ for any i = 1,..., N. We refer to this as the Multiple Bins
Single Probability case; the only quantity of interest is p∗ and a forecast is represented by a single value p. Even though, the Multiple Bins
Single Probability case is clearly unrealistic in practice, it builds the basic concepts we will then use to explore the Multiple Bins Multiple
Probabilities case where the probability of observing xi = 1 is potentially different for each bin.
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Figure 4. Expected gambling score differences (k ∈ {3, 5, 10, 20}) between p1 and p2 as a function of p1 considering p2 = p∗ = 0.001 (vertical line). The
average of the forecast probabilities (excluding the first forecast) is the constant p̄−1 = p∗/2 (a) and p̄−1 = 2p∗ (b).

Considering multiple bins, we observe a realization of the random variable Xi ∼ Ber(p∗
i ) for i = 1,..., N. A forecast is given by the

vector p = (p1, ..., pN ) specifying the probability of Xi = 1 for each bin. Following the terminology in the literature regarding Bernoulli
random variables, the event Xi = 1 is referred to as a success. The quantity XS = ∑

iXi is therefore referred as the sum of the observations or
the number of successes or the number of active bins.

Given an arbitrary scoring rule S(p|X), the average score associated with the forecast p is given by:

S(p|X) = 1

N

N∑
i=1

S(pi |Xi ).

The quantity S(p|X) is a random variable itself, because it is a function of random variables X. To compare two forecasts p1 and p2, we study
their score difference:

�(p1, p2, X) = 1

N

(
N∑

i=1

S(p1i |Xi ) −
N∑

i=1

S(p2i |Xi )

)
,

= 1

N

N∑
i=1

�(p1i , p2i , Xi ).

The quantity �(p1, p2, X) is also a random variable as it too depends on the vector of random variables X. If S(p|X) is a proper scoring
rule, and if the expected value of the score difference is positive, namely E[�(p1, p2, X)] > 0, the forecast p1 is ‘closer’ to the true p∗ than
the alternative forecast p2. The expected value should be considered with respect the distribution of the observations X. However, we do not
observe the full distribution—we only observe a sample [i.e. we observe the quantity �(p1, p2, x) which is a realization of the random variable
�(p1, p2, X)]. Even if the expected score difference E[�(p1, p2, X)] is positive, which means that we should express a preference for the first
forecast, the observed score difference �(p1, p2, x) may be negative and lead to the opposite conclusion. To avoid this problem we need to
account for the uncertainty around the observed �(p1, p2, x) which is the point estimate of the expected score difference E[�(p1, p2, X)].

4.1 The distribution of score differences—multiple bins single probability

For the Multiple Bins Single Probability case, the observation in each bin is a binary random variable Xi ∼ Ber(p∗), i = 1,..., N. Given an
arbitrary scoring rule S(p|X) and two candidate forecasts p1 and p2, the score difference for the ith bin is a discrete random variable with
distribution:

�(p1, p2, Xi ) =
{

�0 = S(p1|0) − S(p2|0) with probability 1 − p∗,
�1 = S(p1|1) − S(p2|1) with probability p∗.
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1428 F. Serafini et al.

The forecasts are ranked based on the average score difference across all bins:

�(p1, p2, X) = 1

N

N∑
i=1

�(p1, p2, Xi ),

= 1

N

N∑
i=1

(�0 + Xi (�1 − �0)) ,

= �0 + X S

N
(�1 − �0),

where, XS = ∑
iXi is the sum of all observations or, equivalently, the total number of successes. By definition, XS is the sum of N (assumed to

be) independent and identically distributed Bernoulli trials Xi. Therefore, XS has a Binomial distribution with size parameter N, the number
of bins and probability parameter p∗. When we observe a sample x1,..., xN, the observed score difference is given by:

�(p1, p2, x) = �0 + xS

N
(�1 − �0),

where xS is a realization of the random variable XS. The observed score difference depends on the observations only through the quantity xS/N.
Thus, it is enough to study the quantity xS/N to make inference about the expected value of the score difference. The quantity xS/N it is said to
be sufficient (Fisher 1922) with respect to the expected score difference because it contains all the information provided by the observations
x1,..., xN on the parameter of interest [in this case, the expected score difference E[�(p1, p2, X )]]. For an introduction to statistical inference
and the theory behind we refer to Schervish (2012) and Hastie et al. (2009).

4.2 Confidence intervals for the expected score difference

A way to account for the uncertainty around the observed score difference is to consider an interval estimate of the expected value of the
score difference. Once a sample x = x1, ..., xN has been observed and the confidence interval calculated, if the entire interval lies above zero
we express a preference towards p1, alternatively if it lies below zero we express a preference towards p2. If the interval contains the value
zero we conclude that the observed sample does not contain enough information to express a preference. It is important to consider the latter
case as a possible outcome because it is an indication that we need to collect more data or that the forecasts perform similarly (as measured
by the score) and provide an additional information than the pure rankings.

We are considering the confidence interval for the expected value of the score difference:

E[�(p1, p2, X)] = �0 + E[X S]

N
(�1 − �0),

= �0 + p∗(�1 − �0). (13)

Having an observation x = x1, ..., xN per bin, the point estimate of E[�(p1, p2, X )] is the observed score difference:

�(p1, p2, x) = �0 + p̂(�1 − �0), (14)

where p̂ = xS/N is the observed probability of success. Comparing the eqs (13) and (14), the point estimate of the score difference is retrieved
plugging in the point estimate of the probability of success p̂ in place of p∗. In the same way, to retrieve an interval estimate of the expected
score difference is sufficient to retrieve an interval estimate of the probability of success p∗.

Therefore, we need the confidence interval of level α for the true probability p∗ given observations x1,..., xN from a Ber(p∗), namely
C Ip∗ (α) = ( p̂L , p̂U ), and plug those values into expression (14) to obtain a confidence interval for E[�(p1, p2, X )], namely CI�(α) =
(�L, �U). Various methods have been found to estimate p̂L and p̂U , most of them relying on a Gaussian approximation. However, this
approximation is not reliable for small sample sizes (number of bins N) and for values of p∗ close to zero or one, as in our case (Wallis 2013).

Hereafter, we use the Clopper–Pearson confidence interval (Clopper & Pearson 1934). This method is referred to as exact because it
relies on cumulative binomial probabilities rather than an approximation and is therefore more efficient and accurate than simulation based
methods. The confidence interval with level α for p̂ is given by:

pL (α) = BetaQ(
α

2
; xS, N − xS + 1),

pU (α) = BetaQ(1 − α

2
; xS + 1, N − xS),

where the function BetaQ(q; a, b) is the qth quantile of a Beta distribution with parameters a and b. We can construct confidence intervals for
E[�(p1, p2, X)] as follows:

�L = �0 + p̂L (�1 − �0),

�U = �0 + p̂U (�1 − �0).

The obtained confidence interval for p∗ depends on the data only through the sum of the observations xS, which is a sufficient statistic for
the problem. Similarly, the confidence interval for E[�(p1, p2, X)] depends on the data through the value of the sufficient statistic, xS.XXX
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Figure 5. Confidence interval (shaded area) and point estimate (black solid line) for E[�] as a function of the number of observed successes xS considering
p1 = 0.001, p2 = p1/3, p0 = 5p1 and N = 10 000. In each plot shows a different score: (a) Brier score; (b) pairwise gambling score; (c) logarithmic score and
(d) full gambling score. Black solid line represents the observed score difference while the orange area represents the confidence interval. The black vertical
dashed lines represent the interval of values of xS for which we do not express a preference.

Fig. 5 shows the confidence interval for the score difference as a function of the sum of observations xS considering two competing
forecasts p1 = 0.001, p2 = p1/3, a reference model for the pairwise gambling score p0 = 5p1 and N = 10 000 bins. Here, we do not need to
choose a value for p∗. Indeed, the confidence interval is determined solely by the forecast and observation. The Brier, log and full gambling
score(Figs 5a, c and d) all express a preference for p1 if we observe xS > 12, while they express a preference for p2 when xS < 2. This result
is expected because p1 > p2, which means that xS > 12 is much more probable under p1 than p2. In fact, the average number of successes
using p1 is Np1 = 10 while Np2 = 3.34. The same reasoning applies when we express a preference for p2 (xS < 2).

The pairwise gambling score (Fig. 5b), instead, requires xS > 24 to express a preference for p1 and xS < 9 to express a preference for p2.
It is heavily biased toward the forecast closer to zero. In fact, when p1 is the true probability, the probability of observing xS > 24 is less than
0.0001 and the probability of observing xS < 9 is 0.33. Therefore, we are more likely to express a preference for p2 than for p1, even when p1

= p∗. This reinforces the problems with employ improper scores introduced in Section 3.

4.3 Preference probabilities

The confidence interval for the expected score difference, C I�(α), is a function of the competing forecasts, the scoring rule and depends on
the data only through the sum of the observations xS = ∑

ixi. In particular, there are a range of values (between the dashed lines in Fig. 5) of
xS for which we are not able to express a preference. We refer to this interval as (xmin, xmax). With respect to the sum of the observations xS

there are only three possible outcomes:

xS < xmin −→ preference for p2,

xmax ≤ xS ≤ xmax −→ no preference,

xS > xmax −→ preference for p1.

The values xmin and xmax are determined solely by p1, p2, the number of bins N and the scoring rule. Table 1 reports the values of xmin and
xmax for the scoring rules depicted in Fig. 5. These values can be used to compute the preference probabilities once a value for p∗ is assumed.
Indeed, in the Multiple Bins Single Probability case, the distribution of XS is a Binomial distribution, XS ∼ Bin(N, p∗). Table 2 reports the
probabilities of (i) no preference; (ii) Preference for p1 and (iii) Preference for p2. The probabilities are calculated considering alternatively
p∗ equal to p1 (first half of the table) or p2 (second half of the table).

The similarity among the values xmin and xmax for the proper scores lead to similar preference probabilities. The proper scores always
assign the greatest probability to the case in which we are not able to express a preference, however, when p∗ = p1 it is unlikely to express
a preference for p2. Vice versa when p∗ = p2. There is a slightly difference between the Brier and the log score coming from the different
penalty applied to forecasts close to zero. The log score penalizes more heavily forecasts close to zero and, in fact, when p1 = p∗ chances to
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1430 F. Serafini et al.

Table 1. Multiple Bins Single Probability case:
table reporting the values xmin and xmax for the
Brier, log, pairwise gambling (PG) and full gam-
bling (FG) score. The reported values refers to the
case where N = 10 000, p1 = 0.001, p2 = p1/3 and
do not depend on p∗.

Score xmin xmax

Brier 2 12
Log 2 11
PG 9 24
FG 2 12

Table 2. Multiple Bins Single Probability case: table reporting for
each score (row) the probabilities of expressing (or not) a prefer-
ence using either the Brier, log-, pairwise gambling (PG) or full
gambling (FG) score. The probabilities are calculated considering
N = 10 000, p1 = 0.001, p2 = p1/3 and considering two cases: p∗
= p1 and p∗ = p2.

Score No pref Pref p1 Pref p2

p∗ = p1

Brier 0.7912 0.2083 0.0005
Log 0.6963 0.3032 0.0005
PG 0.6672 0.0000 0.3327
FG 0.7912 0.2083 0.0005

p∗ = p2

Brier 0.8454 0.0000 0.1545
Log 0.8453 0.0000 0.1545
PG 0.0073 0.2083 0.9927
FG 0.8454 0.0000 0.1545

express a preference for p1 are higher than using the Brier score. The full gambling score for p1 against p2 is proportional to the Brier score
difference between p1 and p2 (see Section 3.2) and thus, their preference probabilities coincide. Considering the pairwise gambling score the
probability of expressing a preference for p1 is always very close to zero, even when p∗ = p1. This shows again that it is possible to find a
combination of p1, p2 and p0 such that the model providing the smallest forecast obtains the highest reward with probability over 0.9, even
when the other forecast is equal to the true p∗.

Fig. 6 shows the preference probabilities as a function of p∗ ∈ (10−6, 10−2) which is the range of values of the 5-yr adaptively smoothed
forecast for Italy (aggregating over the magnitude bins) used later to illustrate the Multiple Bins Multiple Probabilities case. The Brier score
behaves as expected. The probability of expressing a preference for p2 increases as p∗ goes to zero, which is what we expect given p2 <

p1. On the other hand, the probability of preferring p1 increases when p∗ increases, because p1 > p2. Finally, the probability of not being
able to express a preference is higher when p2 < p∗ < p1 (Fig. 6a). The pairwise gambling score, instead, does not behave as expected. The
probability of preferring p1 is almost zero in the range of values of p∗ considered in the example. The two most probable outcomes are:
expressing a preference for p2 or not expressing a preference at all.

4.4 Probability of expressing a preference

It is interesting to study how the probability for each case changes as a function of p∗ for different numbers of bins N and different ratios
between p1 and p2. To do that it is useful to focus only on two possible outcomes: expressing a preference and not expressing a preference.
The probability of expressing a preference is given by the probability of observing a sample such that the sum of the observations xS is greater
than xmax or smaller than xmin. We refer to this probability as β which is given by

β = 1 − Pr[xmin ≤ X S ≤ xmax ].

This probability depends on the scoring rule, the forecasts p1 and p2, the number of bins N and the true probability p∗. We study β as
a function of p∗ for different numbers of bins. In this artificial case, to increase the number of bins we are considering additional bins with
the same probability, we are explicitly not splitting any bin; this is analogous to increase the data at hand applying the model to a larger
spatio-temporal region.

Fig. 7(a) considers only the Brier score. The region of p∗ presenting low values for β shrinks when the number of bins increase which
simply means that the more data we have, the more chances of expressing a preference. Moreover, β is at the minimum when p∗ ∈ (p2, p1),
which is reasonable because if the distances |p∗ − p1| and |p∗ − p2| are similar the probability of no preference should be high. The N =
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Figure 6. Multiple Bins Single Probability case: each plot shows the probability of each possible outcome (solid lines no preference, dotted lines preference
for p1, dashed lines preference for p2) as a function of p∗ using the Brier score (a) and the pairwise gambling score (b) considering p1 = 0.001 and p2 = p1/3
(vertical lines), p0 = 5p1 and N = 10 000. The true probability p∗ varies in (10−6, 2 × 10−2) which is a realistic range of values in Italy.
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Figure 7. Multiple Bins Single Probability case: (a) Brier score preference probability as a function of p∗ for different numbers of bins N ∈ {2000, 5000,
10 000, 20 000}. (b–c) Probability of expressing a preference as a function of p∗. Colours represent the different scores: Brier, log, pairwise gambling (PG) and
full gambling (FG) score. The Brier and FG scores coincide. The number of bins is fixed to N = 5000 (b) and N = 20 000 (c). We set p1 = 0.001, p2 = p1/3
(vertical lines), p0 = 5p1, and p∗ ∈ (10−6, 2−3) which is a realistic range of values in Italy.

2000 can be explained considering p1 = p∗. In this case, the expected sum of observations is Np1 = 2 and it is more probable to observe XS

< 2 than XS > 2. Given that Np2 < Np1, the probability of not expressing a preference is high.
Fig. 7 presents the probability β as function of p∗ for different scores with a fixed number of bins N = 5000 (b) and N = 20 000 (c). For

N = 5000, the proper scores (Brier, log and full gambling score) present the same values of β for any value of p∗. For N = 20 000, the proper
scores start to behave differently. The Brier and full gambling score still coincide, while the log score is slightly different. Specifically, the log
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Figure 8. Multiple Bins Single Probability case: (a) Probability of expressing a preference using the Brier score as a function of ω = p2/p1 ∈ (0.1, 4) for
different numbers of bins N ∈ {2000, 5000, 10 000, 20 000}. We set p1 = p∗ = 0.001, and the reference model is p0 = 5p1. Bottom panel: probability of
expressing a preference as a function of ω. Colours represent the different scores: Brier, log, pairwise gambling (PG) and full gambling (FG) score. The number
of bins is fixed to N = 5000 (b) and N = 20 000 (c).

score presents higher β values when p∗ = p1, and lower when p∗ = p2. This depends on the different penalties applied to forecasts close to
zero. The log score presents greater chances of expressing a preference for p1 when p∗ = p1 because the other forecast p2 is smaller than p1

and, therefore, penalized. On the other hand, when p∗ = p2 the log score presents smaller β values than the Brier score.
In contrast to the proper scores, the pairwise gambling score reaches its minimum β value for p∗ > p1. Here, the pairwise gambling

score tends to express a preference for the smaller forecast even when the other one is closer to p∗. This leads to higher values of β when p∗

∈ (p2, p1) because the pairwise gambling score will likely express a preference for p2. Only when p∗ > p1 the probability of no preference
grows and the value of β decreases accordingly.

Given that p1 and p2 are scalars, we can consider β as a function of the ratio between p1 and p2, ω = p2/p1, for a fixed p∗. In principle,
we expect that β is an increasing function of ω. We assume that the first forecast and the true probability are identical p1 = p∗ = 0.001. The
reference model for the pairwise gambling score is p0 = 5p1 and we consider different numbers of bins N ∈ {2000, 5000, 10 000, 20 000}. The
ratio ω = p2/p1 varies in the interval (0.1, 4). We expect low β values when ω is around one (similar forecast) and high β values otherwise.

Fig. 8(a) shows that, as expected, for N > 2000, β has its minimum when ω = 1. Considering ω as fixed, β is an increasing function of
the number of bins. Figs 8(b) and (c) compares the β values relative to different scores for a fixed number of bins, N = 5000 (b) and N =
20 000 (c). The Brier and full gambling score coincide, whilst the log score presents slightly different β values. As before, this is due to the
different penalties applied to forecasts close to zero.

The pairwise gambling score is not consistent with the trends in the proper scores. Using this score and considering N = 20 000 (Fig. 8c),
the probability β is consistently greater than 0.5 for the considered values of ω. Considering that p1 = p∗, the quantity ω is also the ratio
between p2 and p∗. This implies that regardless of ω, we will erroneously express a preference for p2 with a probability above 0.5.

Importantly, these sanity checks of a proposed scoring procedure can be done before looking at the observations. It is possible to check if
forecasts can, in principle, be distinguished in light of the amount of expected data. We recommend the use of such exploitative figures when
introducing a new scoring rule whose performance have not been tested. If the proposed scoring rule does not behave acceptably in this simple
scenario, it is unlikely that it would behave acceptably in a real application.

4.5 Score difference distribution—multiple bins multiple probabilities

The Multiple Bins Multiple Probabilities case generalizes the Multiple Bins Single Probability case, and is much more similar to a real
earthquake forecasting experiment. For example, the forecasts involved in the first CSEP experiments (Field 2007; Schorlemmer & Gersten-
berger 2007; Zechar et al. 2013; Michael & Werner 2018) were mostly grid-based forecasts providing for each space–time–magnitude bin,
the expected number of earthquakes. Then, the number of events in each bin is modelled using a Poisson distribution with intensity equal to
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Figure 9. 5-yr adaptively smoothed forecast for Italy (Werner et al. 2010). The figure shows for each spatial bin the natural logarithm of the probability of
observing at least one earthquake at or above magnitude 4.95 in the period from 1 January 2010 to 31 December 2014.

the number of events provided by the forecasts and the probability of observing at least one event is calculated accordingly. In this scenario,
we do not have analytical results for the score difference distribution and we need to recur to simulations.

We now want to specify a true model which has more realistic probabilities. Since we do not actually know these in reality, we choose to
work with one of the CSEP models that was submitted to the 2010 Italy experiment (Taroni et al. 2018). We choose to simulate synthetic data
from the 5-yr adaptively smoothed forecast for Italy (Werner et al. 2010) and explore the ability of the scoring rules to discriminate between
linearly scaled versions of this true model. This means that we are considering only one time bin of size 5 yr, while the space-magnitude
domain is divided in multiple regular bins. The spatial domain is represented by the coloured area in Fig. 9 and it is divided in 0.1 × 0.1
longitude–latitude bins. The magnitude domain ranges from 4.95 to 9.05 magnitude units and is divided in bins of length 0.1. The forecast is
relative to the period from 1 January 10 to 31 December 2014.

The adaptively smoothed forecast provides the expected number of earthquakes in each space–magnitude bin. For each bin, to calculate
the probability of observing at least one earthquake, in accordance with the methodology in the 2010 Italy CSEP forecast experiment, we
consider a Poisson distribution for the number of events with intensity given by the predicted number of events. Assuming independence in
the magnitude bins, we can aggregate the probabilities over magnitude bins and, for each space bin, obtain the probability of observing at
least an earthquake in the period of interest with magnitude greater, or equal, to 4.95. Fig. 9 shows the forecasted log-probability for each
spatial bin used as data generating model.

The Italian adaptively smoothed forecast reported in Fig. 9 is the vector of true probabilities p∗ = p∗
1 , ..., p∗

N , where N = 8993. As in
the previous sections, we compare two forecasts p1 = p∗ and p2 = ωp∗. We will be ignoring the spatial configuration. The average bin score
difference is given by

�(p1, p2, X) = 1

N

N∑
i=1

(�0,i + Xi (�1,i − �0,i )),

= �̄0 + 1

N

N∑
i=1

Xi (�1,i − �0,i ),

where, �0, i = �(p1i, p2i, 0) and �1, i = �(p1i, p2i, 1) are, respectively, the score difference in the ith bin in case we observe Xi = 0 (no
earthquake at or above magnitude 4.95 during the 5 yr) or Xi = 1 (at least one earthquake above magnitude 4.95 during the 5 yr). The quantity
�̄0 is the average �0, i. The observations Xi ∼ Ber(p∗

i ) follow a Bernoulli distribution, each bin has a potentially different parameter p∗
i �= p∗

j

for any i �= j. The expected value of the score difference is given by

E[�(p1, p2, X)] = �̄0 + 1

N

N∑
i=1

p∗
i (�1,i − �0,i ).

Given that we are considering p1 = p∗ and p2 = ωp∗, the expected score difference is non-negative if a proper scoring rule is used while
it could be negative if the scoring rule is improper. Specifically, we show that it is possible to find a reference model p0 such that, if used in
combination with the parimutuel gambling score to rank the forecasts, the expected score difference is negative. As before, the Brier, log and
full gambling score are used for comparison. In Table 3, we report the expected score differences considering different scores. As expected,
they are all positive except for the pairwise gambling score.
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Table 3. Expected score differ-
ence considering p∗ equal to the 5
yr Italy adaptively smoothed fore-
cast, p1 = p∗, p2 = ωp∗ and refer-
ence model for the pairwise gam-
bling score p0 = 5p∗. The scores
considered are: the Brier score, the
log score, the pairwise gambling
(PG) score and the full gambling
(FG) score.

Score E[�]

Brier 0.0000026
Log 0.0003137
PG –0.0000900
FG 0.0002422
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Figure 10. Expected score difference between p1 and p2 as a function of ω = p1/p2 for ω ∈ (10−3, 4). We set p∗ equal to the 5-yr adaptively smoothed Italy
forecast, p1 = p∗, p2 = ωp∗, and reference model for the pairwise gambling score p0 = 5p∗.

In Fig. 10 is showed the expected score difference as a function of the forecasts ratio ω ∈ [10−3, 4]. The results are similar to the ones
reported in Figs 1 and 2. The Brier, log and full gambling scores behave suitably, while the pairwise gambling score does not. The Brier and
full gambling score are bounded and they prefer a forecast p = 10−3p∗ to p′ = 4p∗. Indeed, in Fig. 10 the left-hand side is greater than the
right-hand side. That is because the penalty is based on the absolute difference between a forecast and the data generating model, therefore,
a forecast p = 10−3p∗ is preferred to p′ = 4p∗, because ‖10−3p∗ − p∗‖ ≤ ‖4p∗ − p∗‖. On the other hand, the log score is unbounded and is
based on the relative difference. With the log score, a forecast p′ = 4p∗ is preferred to p = 10−3p∗ because ‖p∗/10−3p∗‖ > ‖p∗/4p∗‖. The
pairwise gambling score, instead, is heavily biased towards zero.

We can extend the comparison by considering k = 3 forecasts. In this case, we consider the reference model p0 = 5p∗ as third competitor.
Fig. 11, for each scoring rule, shows the expected score differences E[�(p2, p1, X)] (dashed blue) and E[�(p2, p0, X)] (solid red), representing
the expected score difference between p2 and p1, and the expected score difference between p2 and p0. Given that p1 is equal to the true
probabilities, the score differences have to be negative for any value of ω �= 1 in order for the scoring rule to be effective. Indeed, this is the
case for the Brier and log score (Figs 11a and c). On the other hand, both the pairwise and full gambling score (Figs 11b and d) are improper
and prefer p2 over p1 when ω ∈ (0, 1). Moreover, all the scores prefer p0 to p2 when ω > 5. However, the log score prefers p0 to p2 also when
ω approaches zero. This shows, again, how different scoring rules apply different penalties to the forecasts.

We note that the pairwise and full gambling score present almost the same expected score difference between p2 and p1. This is because
both scoring procedures implicitly assume a reference model given by the average forecast. If the average forecast in a bin is greater than p∗

i ,
a forecaster will obtain a positive reward each time they submit a value smaller than p∗

i and Xi = 0 occurs. Therefore, given that we are in a
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Figure 11. Expected score difference between p2 and p1 (blue dashed) and p2 and p0 (red solid) as a function of ω = p1/p2 for ω ∈ (10−3, 7). We set p∗ equal
to 5-yr adaptively smoothed Italy forecast, p1 = p∗, p2 = ωp∗ and p0 = 5p∗. Vertical lines represent ω = 1 and ω = 5. We consider the Brier (a), pairwise
gambling (b), log (c) and full gambling (d) scores.

low probability environment for which Pr[Xi = 0] > 0.99, the smallest forecast is likely to be preferred. The bias depends on the relationship
between the reference model and the true probabilities. In the gambling metaphore, the reference model plays the role of the house (or banker)
which determines the returns, and against which all forecasts are competing. Considering eq. (12), if p∗ < p0, the player has a positive reward
forecasting p < p0. If the number of forecasts is large enough that changing a forecast does not affect significantly the average, then, the
smaller the forecast the higher the reward, and the forecaster is encouraged by the score to provide p = 0. The same reasoning applies if p∗ >

p0.

4.6 Confidence Interval and preference probabilities—multiple bins multiple probabilities

Also in the Multiple Bins Multiple Probabilities case it is crucial to account for the uncertainty around the observed score difference. The
binomial formulation used before to retrieve confidence intervals no longer holds, and we need an alternative methodology. One approach
to calculate confidence intervals for the expected score difference relies on a Gaussian approximation of the score difference distribution
(Rhoades et al. 2011). The score difference in each bin, �(p1i, p2i, Xi) for i = 1,..., N, are assumed to be independent draws from a Gaussian
distribution with expected value E[�(p1, p2, X )] and variance σ 2. When we observe a sample x = x1, ..., xN , the point estimate of the
expected score difference is the observed score difference �(p1, p2, x) and the (1 − α) per cent confidence interval is given by:

�(p1, p2, x) ± t1−α/2,N−1
s√
N

,

where s2 is an estimate of the variance σ 2 and t1 − α/2, N − 1 is the 1 − α/2 percentile of a t-student distribution with N − 1 degrees of freedom.
The reliability of such interval estimates is determined by the accuracy of the Gaussian approximation, which, in turns, depends on the amount
of data (the more the better) and on the correlation between the score difference in each bin (the more the worst). We analyse the reliability
of this approximation in Appendix A: Reliability of the Gaussian confidence intervals and conclude that it can be used with the log, pairwise
gambling and full gambling score but not with the Brier score.

Fig. 12 shows the evolution of the preference probabilities varying the forecasts ratio, ω = p2/p1. It is quite similar to Fig. 6 and the
same problems with the pairwise gambling score are evident; that is it favours forecast smaller than the true probability when the average
forecast is greater than the latter. On the other hand, the log score probability of preferring p1 increases rapidly when ω → 0, while the full
gambling score is not able to distinguish between p1 and p2 for ω < 2.5. The latter remark suggests a potential problem with the use of the
full gambling score given that, in real forecasting experiments, the competing forecasts tends to be quite similar, in which case there is an
high probability of no preference.

This concludes our analysis on the use of proper scoring rules to rank earthquake forecasting models.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/230/2/1419/6555032 by U

niversity of N
ew

castle user on 12 D
ecem

ber 2023



1436 F. Serafini et al.

(a)

0.00

0.25

0.50

0.75

1.00

0 2 4 6

 ω

P
r

Preferences

no pref

p1

p2

(b)

0.00

0.25

0.50

0.75

1.00

0 2 4 6

 ω

P
r

Preferences

no pref

p1

p2

(c)

0.00

0.25

0.50

0.75

1.00

0 2 4 6

 ω

P
r

Preferences

no pref

p1

p2

Figure 12. Multiple Bins Multiple Probabilities case: each plot shows the probability of each possible outcome (solid no preference, dotted preference for p1,
dashed preference for p2 ) as a function of ω = p1/p2 for ω ∈ (10−3, 7). The log (a), the pairwise gambling (b) and the full gambling (c) scores are considered.
We set p∗ equal to 5-yr adaptively smoothed Italy forecast, p1 = p∗, p2 = ωp∗, and reference model for the pairwise gambling score p0 = 5p∗.

5 D I S C U S S I O N

The parimutuel gambling score was introduced as a general scoring rule to compare, within a unified framework, earthquake forecasts of
different kinds (e.g. alarm-based forecast and probabilistic forecast). It overcomes two limitations common to other forecast comparison
techniques: (i) the need to define a reference model and (ii) to allow forecasts defined on different space-time-magnitude regions to be
compared. We showed that the parimutuel gambling score is proper only when two forecasts are compared directly against each other. In the
other cases (multiforecast comparison and comparison against a reference model), the parimutuel gambling score is improper. Consequently,
we discourage its use in multimodel comparisons such as CSEP and encourage researchers and practitioners to reconsider rankings obtained
using this score.

Specifically, the parimutuel gambling score tries to avoid the need to pre-define a reference model by using the average forecast.
Therefore, for each bin, a positive reward means that the model is better than the average forecast, vice versa if the reward is negative. This
allows to produce a map of the parimutuel gambling rewards from which to infer the bins where the forecast is better than the average forecast,
and the bins where it is not. Since the parimutuel gambling score is proper only when k = 2, any map obtained by computing the comparisons
for k > 2 may be biased. This difficulties may be circumvented by using any proper scoring rule that allows for multiforecast comparison. In
fact, maps of this kind may be produced by reporting the score difference between a forecast and the average one. Furthermore, given that
proper scores are scale invariant, we can rescale the score values to be between −1 and 1. In this way, we can visualize which bins has a
positive or negative contribution to the average score difference.

The need to compare forecasts defined on different set of bins comes from the design of the forecasting experiment. In the RELM
experiment (Zechar et al. 2013) modellers were allowed to choose a subset of bins to include in their forecast, referred to as masking.
Modellers involved in the RELM experiment provided forecasts with very different masks; some issued forecasts for the entire California
region (Bird & Liu 2007; Helmstetter et al. 2007; Holliday et al. 2007), some for only Southern California (Ward 2007; Shen et al. 2007;
Kagan et al. 2007), while others used irregular masks (Ebel et al. 2007). The parimutuel gambling score addressed these differences using the
gambling metaphor. Each forecaster is a gambler which plays a certain number of rounds (bets) corresponding to the bins. A forecaster does
not have to make a forecast for every bin—they can just sit out this round. The forecasters are ranked by their total reward (i.e. the sum of the
rewards for each bin). We argue that this solution is still problematic. First, the parimutuel gambling score needs at least two forecasts for each
bin to be computed. If only one forecaster plays in a bin we can not calculate the parimutuel gambling score for that bin. Second, consider
two bins for which different sets of forecasters provided a forecast; in this situation the models are rewarded with respect to different odds.
This becomes problematic when we attempt to interpret the observed result because in each bin the reference model is given by a potentially
different combination of models.

The Brier score can also be used to assess masked forecasts. The maximum Brier score value obtainable by a forecast is zero and it is
achieved by the perfect forecast which assumes p = 1 when x = 1 and p = 0 when x = 0. Any other forecast obtains a negative Brier score.
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Therefore, the Brier score of a forecast can be seen as the Brier score difference between the perfect forecast and the forecast under evaluation.
Given two models, the one with the highest average Brier score is the one closest (on average) to the perfect forecast. If the models provide
forecasts on two different sets of bins, B1 and B2, we can still compare the forecasts in terms of their average Brier score. Suppose the first
model achieves an higher average Brier score, we can conclude that, on average, the first model in B1 is closer to the perfect forecast than the
second model in B2. We can make the above comparison also when B1 and B2 have zero bins in common because the Brier score requires
only a forecast and the observation to be calculated.

In this paper, we have used confidence intervals to asses the statistical significance of observed score differences. Analytically determining
these confidence intervals may be too complex and a basic approximative Gaussian approach may fail, as highlighted by the Brier score
example. Problems of this type come from the fact that the score differences per bin are treated as independent and identically distributed.
This assumption is false, especially when considering space-time bins which depend on each other both in time and space due to clustering
of earthquakes. A possible solution to relax the independence assumption is to consider a Diebold–Mariano test (Diebold & Mariano 2002)
on the score differences which takes into account the correlation structure of the score differences sequence.

6 C O N C LU S I O N S

The parimutuel gambling score, commonly applied to compare earthquake forecasts, is improper when the number of forecasts being tested is
greater than two. In the special case of two competing forecasts, the score is proper, and can return results similar to alternate proper scoring
methods, but even then it can be used improperly. In the common testing scenario of multiple forecasts being compared simultaneously, or
when multiple forecasts are compared against a reference model, the parimutuel gambling score provides a biased assessment of the skill of
a forecast when it is tested against a given outcome. This is fundamentally a problem of the gambling analogy itself; the betting strategy of
maximizing the expected reward (score) does not have to be consistent with the data generating model (in the case where this is known) and,
therefore, gamblers (modellers) are not encouraged to provide forecasts resembling the data generating model. This is because the score for
a given forecast is dependent on all the forecasts taking part in the competition, not just on the observed data; one can therefore change the
ranking of two models by changing one of the other models in the pool. This introduces the undesirable property that one can potentially game
the system to prefer a specific model. Further, if we only have access to the forecasts and the data, it is impossible to know if the parimutuel
gambling score results will be biased or not. Moreover, the only case in which they are correct is when one of the competing forecasts is the
data generating model, which is highly unlikely. These findings are sufficiently clear for us to discourage the use of the parimutuel gambling
score in distinguishing between multiple competing forecasts, and for care to be taken even in the case where only two are being compared.

We recommend that alternative scores that do not suffer from these shortcomings should be used instead to assess the skill of prospective
earthquake forecasts in a formal testing environment. The Brier and log scores are both proper, and require no new information beyond what
was used to calculate the parimutuel gambling score, so switching existing analyses to a proper score should be simple to implement. We
recommend testing for properness when introducing new scoring rules, either analytically or via simulations using a known model to generate
testing data.
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A P P E N D I X : R E L I A B I L I T Y O F T H E G AU S S I A N C O N F I D E N C E I N T E RVA L S

We assess the reliability of the Gaussian approximation to calculate confidence intervals for the expected score differences using simulated
replicates from p∗ equal to the 5-yr adaptively smoothed Italy forecast. We set the first forecasts p1 = p∗, p2 = ωp∗, and the reference model
p0 = 5p∗. The method is reliable if the probability that the approximated confidence interval of level α contains the true expected value
(coverage probability) is close to 1 − α. To estimate the coverage probability, for a set of values of ω ∈ (10−3, 7), we simulated x = x1, ..., xN

10 000 times and calculated the approximate 95 per cent confidence intervals. The coverage probability is given by the fraction of times in
which the confidence intervals contains the true expected score difference.

Fig. A1 shows that the approximation is not reliable for the Brier score for which produces confidence intervals which are too small
(coverage below 0.95) or too wide (coverage above 0.95) depending on the value of ω. This is because the Brier score differences have a
asymmetrical bimodal distribution as shown in Figs A2(a) and (c) and therefore are not normally distributed. Furthermore, Fig. A1 shows
also that the coverage for the log, pairwise gambling and full gambling score is usually below 0.95 and reaches this value only for ω > 6.
This is because, taking the log score as example, the distribution of the score differences becomes smoother as ω grows (Figs A2d–f). The
distributions of the pairwise and full gambling score resemble the log score one.
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Figure A1. Coverage probability for the Gaussian approximated confidence interval for the expected score difference between p1 and p2 as a function of
ω = p2/p1 for ω ∈ (10−3, 7). We consider the Brier, log, pairwise gambling (PG) and full gambling (FG) scores. We set p∗ equal to the 5-yr adaptively
smoothed Italy forecast, p1 = p∗, p2 = ωp∗ and p0 = 5p∗. Horizontal line represents the target coverage probability (0.95).

From this analysis we conclude that it is possible to use the Gaussianly approximated confidence intervals for the log, pairwise gambling
and full gambling because the coverage probability is always between 0.88 and 0.96. In this example, the reliability of the approximation
depends on how much different the forecasts are.
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Figure A2. Average score difference distribution for the Brier score (a–c) and log score (d–f). We set p∗ equal to the 5-yr adaptively smoothed Italy forecast,
p1 = p∗, p2 = ωp∗, and reference model for the pairwise gambling score p0 = 5p∗. We consider ω = 0.001 (a, d); ω = 1.5 (b, e); ω = 4 (c, f). Black solid line
represents the empirical distribution obtained from 10 000 simulations. Red dashed line represents the corresponding Gaussian approximation. Vertical dotted
line represents the true value of the expected score difference.
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