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Protein kinases play vital roles in controlling cell behavior, and an array of kinase
inhibitors are used successfully for treatment of disease. Typical drug
development pipelines involve biological studies to validate a protein kinase
target, followed by the identification of small molecules that effectively inhibit
this target in cells, animal models, and patients. However, it is clear that protein
kinases operate within complex signaling networks. These networks increase the
resilience of signaling pathways, which can render cells relatively insensitive to
inhibition of a single kinase, and provide the potential for pathway rewiring, which
can result in resistance to therapy. It is therefore vital to understand the properties
of kinase signaling networks in health and disease so that we can design effective
multi-targeted drugs or combinations of drugs. Here, we outline how
pharmacological and chemo-genetic approaches can contribute to such
knowledge, despite the known low selectivity of many kinase inhibitors. We
discuss how detailed profiling of target engagement by kinase inhibitors can
underpin these studies; how chemical probes can be used to uncover kinase-
substrate relationships, and how these tools can be used to gain insight into the
configuration and function of kinase signaling networks.
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1 Introduction

The clinical success of numerous protein kinase inhibitors has highlighted the
importance of kinase signaling in disease (Cohen et al., 2021). It is clear that kinases
function within complex signaling networks (Hopkins, 2008; Knight et al., 2010), and a
better understanding of these networks will enable disease research and drug development.
Pharmaceutical companies remain focused on well understood targets, and comprehensive
characterization of kinase action within their networks in cells is needed to allow drug
development to be pursued with a lower risk of failure (Oprea et al., 2018).

To fully understand kinase signaling in disease we must learn about the properties of the
wider network in affected cells. For example, mutations or changes in expression level of one

OPEN ACCESS

EDITED BY

Raghuveera Kumar Goel,
Boston University, United States

REVIEWED BY

Naga Praneeth Raja,
Oregon Health and Science University,
United States
Pedro Rodriguez Cutillas,
Queen Mary University of London,
United Kingdom

*CORRESPONDENCE

Jonathan M. G. Higgins,
jonathan.higgins@ncl.ac.uk

RECEIVED 09 October 2023
ACCEPTED 27 November 2023
PUBLISHED 14 December 2023

CITATION

Stephenson EH and Higgins JMG (2023),
Pharmacological approaches to
understanding protein kinase
signaling networks.
Front. Pharmacol. 14:1310135.
doi: 10.3389/fphar.2023.1310135

COPYRIGHT

© 2023 Stephenson and Higgins. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Abbreviations: AML, Acute Myeloid Leukemia; BRET, Bioluminescence Resonance Energy Transfer;
CETSA, Cellular Thermal Stability Assay; DSF, Differential Scanning Fluorimetry; EBDT, Expectancy of
Being Downstream Target; KCGS, Kinase Chemogenomic Set; kiCCA, Kinobead Competition and
Correlation Analysis; KiPIK, Kinase inhibitor Profiling to Identify Kinases; KiR, Kinome Regularization;
KSEA, Kinase-Substrate Enrichment Analysis; KSR, Kinase-Substrate Relationship; MIBs, Multiplexed
Immobilized Beads; PPI, Protein-Protein Interaction.

Frontiers in Pharmacology frontiersin.org01

TYPE Review
PUBLISHED 14 December 2023
DOI 10.3389/fphar.2023.1310135

https://www.frontiersin.org/articles/10.3389/fphar.2023.1310135/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1310135/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1310135/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1310135&domain=pdf&date_stamp=2023-12-14
mailto:jonathan.higgins@ncl.ac.uk
mailto:jonathan.higgins@ncl.ac.uk
https://doi.org/10.3389/fphar.2023.1310135
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1310135


kinase are likely to invoke changes in the nature of other signaling
pathways within the network that may contribute to the disease
phenotype (Creixell et al., 2012). Indeed, it has been argued that
increasing knowledge of signaling networks represents the most
efficient approach to the development of new treatment options in
cancer (Yaffe, 2013). Of course, an appreciation of how kinase
signaling networks operate in normal cells will also be necessary
to understand what changes in disease.

Importantly, drug efficacy is crucially dependent on the status of
the pre-existing kinase networks in target cells. For instance, the
growth of different tumors may be dependent on different
components of signaling pathways, even in patients with
apparently similar cancers (Mellinghoff et al., 2005). If the full
potential of personalized medicine is to be fulfilled, we will need
to characterize the status of signaling networks in individual patients
and identify suitable diagnostic and prognostic disease biomarkers,
as well as effective treatments (Knight et al., 2010; Graves et al., 2013;
Cohen et al., 2021; Rocca and Kholodenko, 2021).

Many kinase inhibitors have been designed largely with a “one
target—one drug” approach. However, signaling networks tend to be
resilient and are often relatively unaffected by the inhibition of only
one element (Hopkins, 2008; Knight et al., 2010). Indeed, the
effectiveness of some drugs (e.g., sorafenib, cabozantinib) appears
to rely on “off-target” activity of the agent in addition to the designed
“on-target” activity (Wilhelm et al., 2006; 2004; Markowitz and
Fancher, 2018). This reinforces the view that, in many cases, we may
need to inhibit the activity of more than one type of kinase to obtain
desired therapeutic effects. Therefore, another aim of systemic
studies is to aid the identification of multiple sites for
intervention in kinase networks to produce meaningful clinical
responses.

Network pharmacology also aims to understand how cells
respond to drug treatment. For example, during drug
development, it is important to determine the on and off-target
activity of kinase inhibitors in cells, and to understand the network-
wide effects of drug action so that efficacy and potential side effects
can be assessed. In some notable cases (e.g., imatinib), the
identification of “off-target” activity of kinase inhibitors has led
to drug repurposing and approval for use in additional conditions
(Demetri et al., 2002).

Studies of networks should also help us understand how,
particularly during cancer therapy, cells become resistant to
kinase inhibitor drugs. Kinase mutations can directly prevent
drug binding to the intended target but, more relevant here,
signaling networks can also be rewired to evade drug action. For
example, the activity of alternative kinases such as MET can
circumvent the inhibition of EGFR by gefitinib (Engelman et al.,
2007), and bypass pathways also occur upon inhibition of BRAF or
CDK4/6 (Johannessen et al., 2010; Nazarian et al., 2010; Marusiak
et al., 2014; Goel et al., 2022). We therefore need to be able to unravel
the cellular signaling pathways that underlie drug resistance so that
alternative therapies can be developed andmade available to patients
(Knight et al., 2010; Cohen et al., 2021; Rocca and Kholodenko,
2021). This highlights again an important wider point: kinase
networks are plastic and context-dependent. The kinases that
phosphorylate particular substrates may vary from cell type to
cell type, or even in response to different stimuli. For example,
either PKA or RSK1 can phosphorylate LKB1 Ser-431 depending on

the stimulus (Sapkota et al., 2001). This must be considered in the
development of methods to map kinase networks.

A wide array of technologies has been employed with the aim of
answering these questions. There are many examples of non-
pharmacological approaches to understand kinase-substrate
relationships (KSRs) and kinase network topologies, such as
genetic manipulation of cells and in silico predictions.
Nevertheless, as pharmaceuticals remain the primary means of
intervention in disease, it makes sense to embed pharmacological
methods in early stage discovery efforts (Moellering and Cravatt,
2012), and these methods also have some significant benefits. Here,
we will focus on the major pharmacological technologies that have
been employed to elucidate kinase signaling networks in health and
disease, and their advantages and disadvantages compared to other
approaches.

2 Selectivity versus efficacy: chemical
probes versus kinase inhibitor drugs

Cell-permeable small molecule kinase inhibitors are key
pharmacological tools for laboratory studies of cellular kinase
networks, and for therapeutic intervention in kinase signaling
pathways in patients. In other words, small molecule inhibitors
can be used as chemical probes or as kinase inhibitor drugs (or both).
It is important not to lose sight of the differences between these two
types of application. A chemical probe is “a selective small-molecule
modulator of a protein’s function that allows the user to ask
mechanistic and phenotypic questions about its molecular target
in biochemical, cell-based or animal studies” (Arrowsmith et al.,
2015). Knowing the pattern of target engagement and specificity of
action is vitally important for a chemical probe, since the underlying
assumption is often that the function of only a single target protein is
altered. Unknown off-target activity of chemical probes severely
limits the quality of the biological interpretations that can be drawn
from experimental results. In contrast, small molecule drugs may
have undefined or incompletely defined modes of action. However,
these may be tolerable as long as the agents have appropriate
pharmaceutical properties that allow their safe and effective use
in humans.

In principle, using kinase inhibitors as chemical probes has a
number of advantages over non-pharmacological approaches. For
example, methods like gene deletion, RNA interference (RNAi), or
expression of mutated proteins require that cells can be efficiently
transfected, and also involve long periods of days of weeks. This can
allow time for compensatory changes in signaling networks to occur
(Shogren-Knaak et al., 2001; Bodenmiller et al., 2010), and can
preclude analysis of the distinct functions of a kinase at different
stages within a biological process (e.g., the cell cycle) (Moffat et al.,
2006). For example, a complete gene knockout prohibits simple
analysis of a protein’s role at a late stage of a process if the deletion
causes a defect in an earlier step. These methods also do not allow
inhibition to be rapidly reversed, so it is hard to study the effect of
kinase reactivation after an experimental manipulation. In addition,
kinase proteins may have functions unrelated to their enzymatic
activity, such as the formation of protein-protein interactions (PPIs).
Methods such as RNAi, genetic knockout, or induced protein
degradation, therefore may cause alterations in signaling
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pathways that are not due to altered kinase activity (Weiss et al.,
2007; Knight et al., 2010). In contrast, small molecule inhibitors
typically act within minutes, they can be added to cells at different
times during a cellular assay to test their effect on a particular stage
without affecting a preceding one, and they can selectively target the
enzymatic activity of the kinase. Inhibitors also can be applied to
almost any cell type or cell extract, may allow essentially complete
yet reversible inhibition, and can often be used in whole organism
studies.

As with any experimental approach, chemical inhibitors also
have potential disadvantages. There are over 500 kinases encoded by
the human genome (Manning et al., 2002; Wilson et al., 2018), and
one issue is the lack of effective inhibitors for many kinases,
particularly the understudied proteins of the so-called “dark
kinome.” Efforts such as the “Illuminating the Druggable
Genome (IDG)” program and the Structural Genomics
Consortium are working to fill these gaps and to identify useful
inhibitors for all human kinases (Oprea et al., 2018; Wells et al.,
2021).

The major pitfall of inhibitor approaches, however, can be
summarized very simply: lack of selectivity. This is a huge concern
for kinase inhibitors, most of which target theATP binding site, a region
that has some level of structural similarity in all members of the
eukaryotic protein kinase family (Cohen, 2002). Seminal studies of a
number of well-known “selective” inhibitors on a panel of kinases
revealed an alarming degree of promiscuity (Davies et al., 2000; Bain
et al., 2007; 2003). Unfortunately, there are numerous examples of
publications reporting the application of chemical probes as “selective”
inhibitors of target kinases, when there is strong evidence of off-target
activity (Arrowsmith et al., 2015).While reasonable specificity of several
kinase inhibitors (e.g., Lapatinib) has been confirmed, the ease with
which the effects of inhibitors on large panels of kinases can now be
tested has revealed that essentially no kinase inhibitor can be considered
truly selective for a single kinase (Fedorov et al., 2007; Bamborough
et al., 2008; Karaman et al., 2008; Anastassiadis et al., 2011; Davis et al.,
2011; Metz et al., 2011; Gao et al., 2013; Elkins et al., 2016).

Does this non-selectivity mean that kinase inhibitors are not
useful as tools to understand signaling networks? We believe there is
still plenty of opportunity to effectively apply chemical probes in
such studies, but that the design of these experiments must
acknowledge the inherent limitations of kinase inhibitors. For
example, the effects of an inhibitor of a particular kinase can be
compared with the effects of additional “orthogonal” inhibitors with
different off-target profiles (Davies et al., 2000; Bamborough et al.,
2008). Alternatively, as discussed below, datasets can be analyzed in
a way that explicitly accounts for the known off-target effects of the
probes, or pharmacological methods can be combined with genetic
manipulation in chemo-genetic approaches that aim for the “best of
both worlds,” for example, where inhibitor selectivity is ensured by
making specific mutations in the target kinase (Davies et al., 2000;
Shogren-Knaak et al., 2001).

Regardless of these factors, a number of kinase inhibitors have
been successful in the clinic for both cancer and non-malignant
diseases (e.g., imatinib, gefitinib, tofacitinib and others), and there is
an undeniable need to develop additional therapeutic agents that
target kinase activity (Cohen et al., 2021). Consequently, it is vital
that we develop methods to characterize the effects of such agents on
cellular signaling networks. Indeed, the complexity, redundancy,

and flexibility of kinase signaling networks within cells are becoming
increasingly obvious, and with this comes the realization that we
may need to block multiple elements within a signaling network to
develop effective treatment options. Polypharmacology refers to the
idea that a single agent may be efficacious as a drug because it
engages more than one target to cause the desired changes in cell
function (Hopkins, 2008; Knight et al., 2010). In this case, the ability
of a chemical entity to inhibit more than one kinase can be a benefit
rather than a flaw. Clearly, we need “target deconvolution”
approaches that can be used to understand how kinase inhibitor
drugs are altering kinase signaling networks. In addition, to
rationally design poly-pharmacological drugs or combinations of
drugs, we must understand the larger signaling network so that we
can identify potential combinations of kinases that can be
simultaneously targeted for the treatment of specific diseases.

Here, we divide the process of understanding kinase networks
using pharmacological approaches into three elements. First,
detailed selectivity information on chemical probes must be
obtained. Second, individual KSRs within the network must be
identified and, third, these KSRs must be integrated (together
with additional information) to understand network structure
and behavior. We will discuss these three elements in turn.

3 Methods for profiling target
engagement by kinase inhibitors

For pharmacological approaches to be useful to elucidate kinase
networks, the direct targets of chemical probes need to be well-
characterized. That is, the molecular entities in cells whose biological
function is altered by direct binding to kinase inhibitors must be
defined. Acknowledgement of the kinase inhibitor selectivity
problem has led to the widespread commercial availability of
kinase inhibitor profiling platforms and services. Using these,
kinase inhibitors can be rapidly tested for selectivity. In some
notable cases, knowledge of “off-target” activity of clinical agents
has broadened their clinical utility. This is seen, for example, in the
use of imatinib, first developed as an ABL inhibitor for chronic
myelogenous leukemia, to target KIT and PDGFR in gastrointestinal
stromal tumors (Demetri et al., 2002). The great majority of profiling
methodologies test the activity of inhibitors on recombinant kinases
in vitro. However, native kinases in their cellular environments have
different properties that are likely to change their sensitivity to
inhibitor action. Because of this, there have been increasing efforts to
develop ways to assay inhibitor activity in cell extracts and living
cells.

3.1 In vitro kinase inhibitor profiling to
determine target engagement

There are many approaches to measure the activity of
recombinant kinases that can be used for characterizing the
effects of inhibitor compounds in vitro. Broadly speaking, such
assays can be divided into those that measure the influence of
inhibitor compounds on enzymatic activity, and those that
measure the binding of small molecules to kinase proteins (either
directly or in competition assays).
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3.1.1 Kinase activity assays
Kinase activity assays are beneficial for characterization of chemical

probes because they directly measure the property of the enzyme that is
the target of inhibitors and ofmost kinase-directed drugs (i.e., the ability
to catalyze a substrate phosphorylation event). In addition, they can
provide enzymological information that is valuable for compound
optimization and utilization.

Perhaps the “gold standard” format remains the radioactive
incorporation assay, typically using [γ-32P]ATP or [γ-33P]ATP.
These assays are robust and sensitive, but do require the handling
and disposal of radioactive material (Hastie et al., 2006). A number of
providers offer inhibitor profiling assays covering hundreds of human
protein kinases in this format, including MRC PPU Reagents and
Services, Reaction Biology, and Eurofins. Studies that have profiled
large panels of kinase inhibitors by radioactive ATP incorporation
assays provide indispensable information for the selection of chemical
probes and interpreting their cellular activities (Davies et al., 2000;
Bain et al., 2007; 2003; Anastassiadis et al., 2011; Metz et al., 2011; Gao
et al., 2013).

Alternative assay formats are available that measure
phosphorylation using phospho-specific substrate antibodies, or
by changes in substrate peptide charge and/or mass (e.g.,
mobility shift or IMAP assays from Nanosyn and Carna) or
cleavability (e.g., Z-Lyte assays from ThermoFisher), or the
generation of ADP (e.g., Adapta assays from ThermoFisher).
Such assays are amenable to high throughput profiling, although
the use of indirect detection in many of these technologies
introduces additional potential for compound interference (e.g.,
fluorescent inhibitors may interfere with assays that use
fluorescent substrates). Again, however, large inhibitor profiling
efforts using these methods provide excellent sources of
information about the selectivity of numerous inhibitors (Metz
et al., 2011; Elkins et al., 2016).

It is worth remembering that essentially all of these profiling
approaches use a single peptide substrate for each kinase. In reality,
many kinases have multiple substrates and, because the kinetic
properties of kinases may be affected by these substrates, it is
possible that inhibitor profiles will be different for different
kinase substrates (Sommese and Sivaramakrishnan, 2016).
Perhaps more importantly, different kinase assay formats use
different concentrations of ATP (typically either a fixed
concentration such as 1 mM, or a concentration near the Km of
each kinase), which influences the inhibition observed for ATP-
competitive inhibitors and therefore comparisons between kinases
(Knight and Shokat, 2005).

3.1.2 Direct and indirect inhibitor binding assays
An alternative approach to characterizing inhibitor activity is to

measure inhibitor binding to target kinases. In general, binding
affinity of compounds that are known to be kinase inhibitors has
been found to correlate well with ability to inhibit kinase activity
(Sutherland et al., 2013; Elkins et al., 2016) but, of course, a small
molecule may bind to a kinase without influencing its enzymatic
activity. On the other hand, such assays can have the advantage of
being able to determine substrate specificities of inhibitors for
partially purified kinases as well as inactive kinases, which
provides useful insights into kinase kinetics relevant to
characterizing inhibitors (Wang and Ma, 2015).

Thermal stability shift assays provide one method to measure
inhibitor binding with the advantage that no additional kinase or
inhibitor-specific probes are required. In this approach, the change
in stability of a kinase caused by inhibitor binding is measured as the
kinase is denatured by heating. There are a number of ways to
measure such protein unfolding, but differential scanning
fluorimetry (DSF) has been used successfully for kinase inhibitor
profiling in vitro, in which the increased binding of a hydrophobic
dye to denaturing protein is measured (Figure 1A) (Fedorov et al.,
2007; Echalier et al., 2014; Elkins et al., 2016). Notably, the method
does not distinguish between compounds that bind to the active site
versus other regions of the kinase.

Other approaches use competition assays to focus attention on
the ATP binding sites of kinases. For example, KINOMEscan assays
(from Eurofins/DiscoverX) monitor the capture of tagged
recombinant kinases by beads carrying a suite of broad-spectrum
kinase ATP-competitive inhibitors (Fabian et al., 2005). The binding
affinities of added soluble kinase inhibitors that prevent the
interaction of kinases with the immobilized ligands can then be
inferred from the reduction in kinase capture by the beads
(Figure 1B). KINOMEscan assays have been used to profile the
activities of large panels of ATP competitive inhibitors on hundreds
of kinases (Bamborough et al., 2008; Karaman et al., 2008; Davis
et al., 2011; Jacoby et al., 2015). LanthaScreen Eu kinase binding
assays (ThermoFisher) work on a similar principle, in which the
displacement of fluorescent ATP-competitive inhibitors from tagged
recombinant kinases is measured by time-resolved FRET
(Figure 1C). Inhibitor competition can also be measured in
complementation assays including split luciferase experiments
(Jester et al., 2012). Such assays can provide information on both
ATP-competitive and allosteric inhibitors that reduce binding at the
ATP site. Notably, however, these competition binding assays
cannot be used to profile inhibitors whose activity is driven by
alternative mechanisms such as blocking protein substrate binding.

In summary, a number of well-validated profiling assay formats
are available that allow the characterization of kinase inhibitors
in vitro. These unambiguously provide information about the
inhibition or binding of inhibitors to purified kinases. However,
even the largest kinase panels currently include only about 400 of the
approximately 530 wild type human protein kinases. Because the
targets of inhibitors are difficult to predict based on the sequence-
similarity of kinases (Bamborough et al., 2008; Anastassiadis et al.,
2011), this leaves significant gaps in current in vitro profiling data.
Furthermore, these assays typically use purified recombinant kinases
that will not always replicate the properties of native kinases in cells,
which may also be different in different cell types. Finally, these
techniques tend to be largely “blind” to the possible effects of small
molecules on non-kinase targets. Usually, what researchers really
want to know is which targets are engaged and functionally altered
in vivo.

3.2 Kinase inhibitor profiling to determine
target engagement in cells and cell extracts

The need to understand target engagement in vivo has driven the
development of methods to profile inhibitor activity in cell lysates
and in living cells. A key problem for these approaches is how to
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unequivocally identify specific kinases within a complex
environment. This challenge has often been met by employing
mass spectrometry to characterize kinase targets. Such “chemo-
proteomic” approaches bring along their own possible
disadvantages, such as a reduction in standardization and
throughput compared to in vitro profiling, but their potential
value cannot be questioned.

3.2.1 Affinity-based profiling
In principle, one way to identify the cellular targets of a chemical

probe is to use the compound as an immobilized bait to fish for
cellular proteins, and then to identify the captured proteins using
mass spectrometry (Daub, 2005). This has the advantage that few
assumptions are made about the nature of the proteins bound by the
probe, and unexpected non-kinase targets of kinase inhibitors may
be found. However, the compound must be derivatized to enable it
to be immobilized, and this is likely to hinder binding to some
cellular targets. In addition, the method is biased towards more
abundant proteins in cells, and it is hard to quantify the affinity of
binding interactions (Bantscheff et al., 2007). An adaptation of the
method to allow quantification is to measure the ability of “free”
(non-immobilized) compounds to compete for binding to the
immobilized compound (Sharma et al., 2009). This approach,

however, still requires the bespoke synthesis of an immobilized
probe for each new inhibitor.

A major step forward in this area was the realization that
immobilized broad-spectrum kinase inhibitors could be used to
simultaneously capture multiple kinases from cell lysates, as utilized
in the in vitro KINOMEscan approach described above (Fabian
et al., 2005; Bantscheff et al., 2007; Daub et al., 2008; Sharma et al.,
2009). The ability of a free kinase inhibitor to compete for binding to
the matrix can be measured by quantitative mass spectrometry,
providing a reasonably standardized chemo-proteomic approach for
profiling multiple unmodified inhibitors (Bantscheff et al., 2007;
Sharma et al., 2009). A good example is known as the Kinobeads
approach, in which a selection of broad-spectrum kinase ATP-
competitive inhibitors are immobilized on beads (also known as
multiplexed inhibitor beads, MIBs, see Figure 1B) (Bantscheff et al.,
2007; Reinecke et al., 2019). Optimized Kinobead protocols can
profile up to 350 kinases (Reinecke et al., 2019). This approach has
several advantages: it does not require labeling of inhibitors or
kinases, it can identify a subset of possible non-kinase targets of
kinase inhibitors, and it can be applied to a wide variety of cell and
tissue lysates from various species. For example, Klaeger et al.
applied Kinobeads to evaluate the target spectrum of
243 clinically relevant kinase-targeted drugs in human cancer

FIGURE 1
Binding assays to profile target engagement by kinase inhibitors in vitro. (A). DSF and CETSA assays infer inhibitor binding by detecting changes in the
thermal stability of a kinase upon inhibitor binding. (B). Multiplex inhibitor beads (MIBs) such as Kinobeads display a suite of broad-spectrum kinase
inhibitors that can bind recombinant kinases (KINOMEscan assays) or kinases in cell lysates. Addition of a soluble selective kinase inhibitor displaces only
specific kinases from the beads, allowing these kinases to be identified as targets of the added inhibitor. A variant of the assay, kiCCA, measures the
displacement of kinase-associated proteins to characterize protein complexes. (C). LanthaScreen binding assays measure target engagement by
inhibitors from the reduction of FRET signal when a fluorescent ATP-competitive tracer is displaced from a tagged kinase bound to a fluorophore-
labelled antibody.
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cells (Klaeger et al., 2017), and to identify ferrochelatase as an off-
target of a number of clinically relevant kinase inhibitors (Klaeger
et al., 2016). Because proteins identified by this chemo-proteomic
approach may bind directly or indirectly to Kinobeads (for example,
as protein complexes), follow-up work is needed to distinguish
direct from indirect drug targets.

Because ligands are immobilized on beads, Kinobead methods
can only be used to capture kinases from cell lysates, and not from
intact cells. In an alternative format of such assays, living cells are
treated with inhibitors, followed by cell lysis and chemo-proteomic
profiling. Assuming many kinase inhibitors have slow off-rates, this
might allow the binding of inhibitors to kinases in their truly native
state to be assessed. Indeed, differences between pre-lysis and post-
lysis inhibition profiles have been observed, for example, for
imatinib binding to KIT (Bantscheff et al., 2007). Nevertheless,
the potential for confounding pre-lysis effects such as changes in
kinase abundance, or post-lysis changes such as loss of cell
compartmentalization, mean that these affinity-based approaches
do not provide true intracellular profiling.

3.2.2 Activity-based profiling
An alternative approach for inhibitor profiling in cell lysates is

KiNativ. Overall, the method has similarities to Kinobeads, but it
uses crosslinking to capture kinases rather than non-covalent
affinity interactions. Specifically, when a biotinylated acyl-
phosphate derivative of ADP or ATP binds to a kinase (or other
ATP phosphohydrolase), the terminal acyl-phosphate is transferred
covalently to one of the conserved lysine residues in the active site
and the enzyme is thereby tagged with biotin (Figure 2). After
limited proteolysis, biotin-containing peptides can be analyzed by
targeted mass spectrometry to identify approximately 200 kinases
from a single experiment (Patricelli et al., 2011; Patricelli et al.,
2007). If capture is carried out in the presence of kinase inhibitors
that reduce ATP binding, then KiNativ can be used to characterize
inhibitor properties. The technique can thus be considered an
activity-based profiling approach that probes the properties of

endogenous kinases, and it has been used successfully to profile a
number of kinase inhibitors (Patricelli et al., 2011). Despite its name,
however, KiNativ remains a cell lysate-based approach and so,
arguably, kinases are not in their truly native cellular
environment when analyzed.

More recently, cell permeable covalent sulfonyl fluoride ATP
binding site probes have been designed (Zhao et al., 2017), and
future development may allow broad activity-based kinase profiling
in cells. However, not all kinases may be detectable using these
methods, perhaps due to their low abundance or lack of suitably
placed lysine residues, and the use of covalent binders prevents
simple determination of true affinities.

3.2.3 Thermal shift assays in cells
In the quest to develop direct methods for monitoring the

binding of drugs to their targets within cells, Martinez Molina
et al. tested whether thermal shift assays (see Section 3.1.2;
Figure 1A) could be carried out using cells (Molina et al., 2013).
Indeed, they found that kinase inhibitors could protect target kinases
within cells from denaturation. In this case, kinase unfolding was
monitored (using antibodies) as a reduction in the amount of soluble
kinase due to heat-induced aggregation and precipitation. The
method was named the Cellular Thermal Shift Assay (CETSA).
Savitski et al. (2014) combined the approach withmass spectrometry
to detect inhibitor binding to over 7000 different proteins including
175 kinases, significantly enhancing the scope for identification of
off-target binding compared to other methods. Although it does not
yield straightforward Kd values, it is useful for comparing the
binding of related inhibitors to particular targets. Also, because it
is not a direct binding assay, the potential for indirect effects must be
noted. For example, changes in post-translational modifications of
downstream targets of inhibited kinases can influence their melting
temperatures, potentially yielding “false positives.” Indeed, such
effects appear more prominent in cellular versus lysate thermal
profiling experiments (Shi et al., 2014). False negatives have also
been reported (Savitski et al., 2014). Nevertheless, thermal proteome

FIGURE 2
The KiNativ approach to kinase inhibitor profiling. ATP-biotin can bind to kinases within cell lysates, and kinase activity then transfers biotin to a lysine
residue in the active site. Addition of a soluble inhibitor can prevent ATP-biotin binding its target kinases, allowing the selectivity profile of the inhibitor to
be determined by phosphoproteomic analysis.
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profiling (TPP) has the clear advantage that it provides information
on kinase and non-kinase target engagement within cells. In one
example, ferrochelatase was identified as an off-target of the BRAF
inhibitor vemurafenib responsible for kidney toxicity (Savitski et al.,
2014; Bai et al., 2021).

3.2.4 NanoBRET
A final method designed to determine kinase target engagement

in living cells is NanoBRET technology (Robers et al., 2015; Vasta
et al., 2018). This is a bioluminescence resonance energy transfer
(BRET) technique that measures the affinity of inhibitors for cellular
kinases by competitive displacement of a luminescent tracer from
fused NanoLuc luciferase-kinase proteins (Figure 3). Currently, the
method only assays one type of kinase per cell, and transfected cell
lines that express each NanoLuc-tagged kinase of interest must be
made. Furthermore, although NanoLuc is a relatively small protein
with a number of advantageous features (Hall et al., 2012), fusion to
NanoLuc has the potential to alter the properties of a kinase.
Nevertheless, NanoBRET allows the analysis of inhibitor binding
to kinases in genuinely living cells.

Vasta et al. (2018) showed that NanoBRET can be used to
measure inhibitor selectivity within intact cells for 178 full-length
kinases, and Wells et al. successfully profiled 46 cyclin-dependent
kinase (CDK) inhibitors on a panel of CDK kinases (Wells et al.,
2020). Comparing the results of a NanoBRET assay with other
methods revealed important differences in cellular kinase occupancy
compared to the results of in vitro assays, and suggested that
NanoBRET results are more comparable to other cellular assays
such as phospho-substrate ELISAs. Importantly for the further
development and use of this technique, the activity of the

NanoLuc enzyme itself appears to be unaffected by the great
majority of kinase inhibitors (Hall et al., 2012; Cartwright et al.,
2022). Most current cellular NanoBRET assays make use of
overexpressed kinases, but it is possible to use weak promoters
or, in future, to tag kinases at their endogenous loci (Vasta et al.,
2018; Yang et al., 2023). Efforts to rapidly expand the panel of
NanoLuc-fused kinases (Yang et al., 2023) mean that this assay
format seems likely to find increased use in the profiling of target
engagement in living cells.

In summary, a number of methods have been developed that
move researchers nearer to the ultimate goal of quantifying
inhibition of kinase function in the native cell environment. Each
of the methods has strengths and weaknesses, but NanoBRET
technology arguably comes the closest to measuring kinase
occupancy in true living cells. While many in vitro kinase activity
and binding assays have been validated by cross-comparison
between the different methods (Sutherland et al., 2013; Tang
et al., 2014), broad validation of cell-based methods will need to
wait for more widespread adoption of the approaches. It is also
worth pointing out that a number of these techniques remain
relatively poor at detecting off-target effects on non-kinase
targets. Nevertheless, methods such as NanoBRET have great
potential to increase our quantitative understanding of kinase
inhibitor action in vivo.

3.3 In silico approaches

The availability of large datasets of kinase inhibitor profiles
raises the prospect of using in silico techniques to predict the target

FIGURE 3
NanoBRET technology used to profile kinase inhibitor target engagement in cells. A bioluminescence signal is emitted when a fluorescent tracer
binds the ATP binding site of a luciferase-tagged kinase within cells. Addition of a compound that competitively inhibits the kinase displaces the tracer,
disrupting the bioluminescence signal, which can be measured in live cells.
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selectivity of kinase inhibitors (Tang, 2017). For example, machine-
learning methods have been employed to predict in vitro kinase
inhibitory activity for large compound libraries (Merget et al., 2017;
Li et al., 2019). As experimental datasets grow, machine learning
approaches improve, and these methods are extended to cellular
inhibition profiling, their utility is likely to increase. Indeed, artificial
intelligence is already a key tool in the drug discovery pipeline
(Vamathevan et al., 2019).

4 Pharmacological approaches to
define kinase-substrate relationships

A crucial part of understanding kinase networks is knowledge of
individual kinase-substrate relationships (KSRs). Indeed, accurate
definition of KSRs is crucial to correctly identify kinase pathways
from phosphoproteomic data (Hernandez-Armenta et al., 2017).
For this task, pharmacological approaches using well-characterized
chemical probes are vital components of the kinase researcher’s
toolbox. Note that here we define a KSR as the relationship between
a kinase and a downstream substrate it directly phosphorylates.
Ideally, “substrate” refers to a single phosphosite within a target
protein, but not all methods for identifying KSRs are phosphosite-
specific.

4.1 Non-pharmacological approaches

There are numerous non-pharmacological ways to characterize
KSRs (Johnson and Hunter, 2005). With a cellular assay for
phosphorylation in hand (often using a phospho-specific
antibody), approaches such as RNAi, genetic knockout and
overexpression of kinases can all be used to investigate KSRs.
These have limited off-target effects compared to small molecule
inhibitors. However, because kinases operate in networks, these
methods often identify pathways of kinases that are indirectly
responsible for phosphorylation events (Bodenmiller et al., 2010),
so other techniques are required to confirm direct phosphorylation
events. Furthermore, as mentioned in Section 2, these approaches
alter the amount of protein kinases in cells, rather than only
preventing catalytic activity, and this may cause additional
indirect effects (Weiss et al., 2007).

Biochemical methods such as in vitro kinase assays using panels
of purified kinases or potential substrates can be used to identify
possible KSRs (Ptacek et al., 2005; Newman et al., 2013), but such
libraries are usually incomplete and expensive, and are unlikely to
fully reflect the activity of kinases in their natural cellular context.
Alternatively, in KESTREL and related approaches, purified kinases
can be used to seek substrates in cell extracts that are then identified
by mass spectrometry (Knebel et al., 2001; Huang et al., 2007; Müller
et al., 2016), but these methods are biased towards identification of
abundant cellular proteins. Classical techniques in which a specific
kinase activity is tracked through biochemical enrichment steps are
also possible, but these need large quantities of cells and multiple
steps, as well as protein identification techniques to pinpoint
candidate kinases (Rubin and Rosen, 1975; Kubota et al., 2009).

For many kinases, particularly serine/threonine kinases, optimal
linear phosphorylation motifs have been determined using oriented

synthetic peptide libraries or phosphoproteomic analysis of cellular
proteins phosphorylated in vitro (Songyang et al., 1994; Yaffe et al.,
2001; Douglass et al., 2012; Kettenbach et al., 2012; Knight et al.,
2012; Xue et al., 2012; Johnson et al., 2023). Specific phosphosites
can be compared to these optimal motifs to infer KSRs in silico.
However, such motifs are not known for all human kinases and are
validated for far fewer. Also, natural kinase phosphosites diverge
from optimal motifs, because it is likely that sub-optimal regulable
phosphorylation is required in signaling networks, rather than
phosphorylation at maximal efficiency. In addition, not all
kinases may recognize linear motifs, and some kinases certainly
make use of binding sites distant from phosphorylation sites to select
their substrates (Miller and Turk, 2018). Finally, in silico approaches
typically lack contextual information such as which kinases are
expressed or activated in a specific cellular environment, or the
presence of binding partners which may regulate kinase activity.
Indeed, it is not necessarily the case that the kinase responsible for
phosphorylation of a particular site is the same in different cell types,
a point well-illustrated by the rewiring of kinase pathways that can
occur in cancer (Knight et al., 2010; Cohen et al., 2021). It is
therefore not surprising that false positives and negatives are
frequent using such prediction techniques, even when attempts
are made to combine them with contextual information such as
co-expression or PPI data (Linding et al., 2007).

In sum, it is clear that genetic, biochemical and in silico
approaches can all be employed to identify KSRs, though they
each have limitations. In the rest of Section 4, we explore how
the use of pharmacological tools provides an attractive category of
complementary approaches.

4.2 From kinase to substrate:
pharmacological approaches

A number of pharmacological approaches have been developed
to determine the target substrates of a specific kinase, most notably
phosphoproteomic analysis following inhibitor treatment, and use
of chemo-genetic approaches involving modified kinase alleles.

4.2.1 Phosphoproteomics following inhibitor
treatment

Inhibition of a particular kinase in cells will decrease the
phosphorylation of its substrates. Therefore, kinase inhibitor
treatment followed by phosphoproteomics has been used to infer
KSRs for a number of kinases (Kettenbach et al., 2011; Knight et al.,
2012). Even though kinase inhibitors are typically fast-acting, one of
the major obstacles to the interpretation of such studies is the need
to distinguish direct from indirect substrates. This arises because
inhibition of a specific kinase may lead to a cascade of altered
phosphorylation in a signaling network, as illustrated in Figure 4A.
In many phosphoproteomics studies, identified phosphosites are
subsequently compared with optimal sequence motifs defined for
the kinase of interest to discriminate direct from indirect substrates.
This, however, means that the method suffers from some of the same
shortcomings as the in silico approaches mentioned in Section 4.1,
including that not all bona fide substrates conform closely to these
motifs. Another major concern is the underlying assumption that
only one kinase is inhibited by the probe compound, when it is clear
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that essentially all kinase inhibitors have additional targets
(Figure 4B). Use of more than one distinct kinase inhibitor can
mitigate these concerns to some extent, but caution and follow-up
experimentation are required.

4.2.2 Chemo-genetic approaches
The combination of pharmacological and genetic approaches

(“chemo-genetics”) can be used to alleviate concerns about
inhibitor specificity (Figure 5). Shokat and co-workers
developed an approach in which kinases of interest can be
genetically modified to accept bulky ATP-competitive
inhibitors that are not able to inhibit the activity of natural
protein kinases (Bishop et al., 2001; 1998). By replacing the
expression of a wild type kinase with a genetic variant
containing a mutated residue in the ATP binding pocket,
selective inhibition of only the mutant kinase in cells should
be ensured (Figure 5E). Compared with traditional genetic
knockouts, the approach still allows acute inhibition of kinase
activity using small molecules, reducing the potential for
compensatory changes in signaling pathways. These so-called
analog-sensitive kinase alleles have undoubtedly been
informative, though it remains a challenge to design and
express the necessary mutated but active kinases in cells,
making this a relatively low-throughput approach. There is
also evidence that bulky inhibitor analogs such as 1NM-PP1
have off-target activity on some endogenous kinases such as PKA
(Bain et al., 2007; Kanshin et al., 2017), though these off-targets
are likely limited and they can be controlled for by examining the
effect of the inhibitor analogs on wild type cells.

Analog-sensitive kinases have been used in combination with
phosphoproteomics and motif analysis (as described in Section
4.2.1) to identify potential substrates of, for example, Polo

kinase-1 (Oppermann et al., 2012). More recently, a
sophisticated methodology combining selective chemical
inhibition of analog-sensitive kinases, quantitative
phosphoproteomics, and machine learning has been reported
(Kanshin et al., 2017). Here, the use of bulky inhibitors and
modified kinases addressed the issue of inhibitor off-target
effects, while a learning classifier aimed to address the
common issue of incorrectly identifying phosphorylation
events as direct targets of the kinase, when they may really be
attributable to downstream effects. The authors used this strategy
to identify direct substrates of Cdc28 and Snf1 in budding yeast
(Kanshin et al., 2017).

Related chemo-genetic approaches also have potential. For
example, kinases can be genetically modified to make them
resistant to small molecule inhibition (Figure 5D). This approach
is useful to validate that a specific kinase is involved in the
phosphorylation of a substrate that is decreased by a particular
kinase inhibitor (Davies et al., 2000). Kinases also can be engineered
to accept bulky ATP analogs that cannot be utilized by wild type
kinases (Figure 5F). In this way, substrates downstream of the kinase
of interest can be specifically labeled, and this has been used to
identify Cyclin-dependent kinase substrates in cell lysates, for
example, (Shah et al., 1997; Allen et al., 2007; Blethrow et al.,
2008; Chi et al., 2008; Michowski et al., 2020). However, these
approaches require extensive validation that modified kinases are
still capable of wild type kinase activity, and not all kinases are
amenable to this form of modification. Auxin-Inducible
Degradation (AID) is another chemo-genetic approach that
might be exploited to acutely remove kinase activity from cells
(Nishimura et al., 2009). For most of these methods, distinguishing
indirect versus direct effects of inhibitors remains the major
problem. Nevertheless, pharmacogenetic approaches offer an

FIGURE 4
Direct, indirect and off-target effects of kinase inhibitors. (A). In this example, Inhibitor X directly inhibits Kinase 1, and therefore lowers
phosphorylation of Substrate 1. However, because Substrate 1 is a positive regulator of Kinase 2, this also causes indirect on-target effects on Kinase 2 and
downstream signaling. (B). In addition, if Inhibitor X has direct off-target effects on another kinase, Kinase 6, then both direct and indirect off-target effects
on an unrelated cellular signaling pathway can occur. Distinguishing these effects is amajor challenge when using inhibitor compounds to study the
cellular function of target kinases.
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enticing alternative to genetic knockouts to study a kinase’s activity
in live cells.

4.3 From substrate to kinase:
pharmacological approaches

In addition to pharmacological approaches which aim to
identify the substrate of a kinase, approaches have been
developed that achieve the reverse, that is to identify the kinase
responsible for a given phosphorylation event. These methods are
particularly important for understanding the kinases involved in
cellular phosphorylation events uncovered in large scale
phosphoproteomic studies, for example,.

4.3.1 Cross-linkable ATP analogs
In principle, kinases could be identified based on binding to their

substrates, but such interactions are often transient and hard to
capture. However, methods have been developed that use modified
substrates and/or ATP analogs to covalently cross-link specific
substrates to wild type kinases. In one approach, a modified
substrate containing a reactive cysteine in place of the
phosphorylation site is combined with a cross linkable ATP
analog to enable activity-based crosslinking to kinases (Maly
et al., 2004; Statsuk et al., 2008). In another, an ATP analog

containing a UV-activated reactive group allows crosslinking of
kinases to a specific biotinylated substrate peptide (K-CLASP) or
endogenous substrate (K-CLIP) (Dedigama-Arachchige and Pflum,
2016; Garre et al., 2018). Complexes containing crosslinked
substrate and kinase can be purified by streptavidin pulldown or
immunoprecipitation. Predicted KSRs can then be tested using
western blots or, alternatively, unknown KSRs can be identified
by proteomic analysis (Dedigama-Arachchige and Pflum, 2016;
Beltman and Pflum, 2022). Not all kinases can utilize unnatural
ATP analogs to phosphorylate substrates and another disadvantage
is that, because the ATP analogs do not cross cell membranes, these
techniques cannot be performed in cells. They can, however, be
carried out using a variety of cell and tissue homogenates. These
approaches may also not be effective at identifying kinase
interactions for low abundance substrates, and K-CLASP and
K-CLIP are prone to crosslinking interacting proteins in addition
to the relevant kinase and substrate. On one hand, this lowers the
specificity for kinase identification, but on the other hand provides
additional information about the context of phosphorylation
reactions (Dedigama-Arachchige and Pflum, 2016; Garre et al.,
2018).

4.3.2 Kinome-wide inhibitor screens
One approach to identify the kinase responsible for a specific

phosphorylation event is to genetically deplete or overexpress all

FIGURE 5
Chemo-genetic approaches for establishing kinase-substrate relationships (KSRs). (A). For the purposes of this figure, we consider a cellular “target
kinase” that forms a KSRwith a substrate that it directly phosphorylates in cells. By definition, this kinase does not phosphorylate indirect or other potential
cellular substrates. (B). In cells, analysis of substrate phosphorylation (for example, by phosphoproteomics) will reveal phosphorylation of the direct
substrate, as well as phosphorylation of many other proteins driven by other kinases. (C). Treatment of the cells with a typical incompletely selective
kinase inhibitor of the target kinase (“inhibitor X”) will decrease the phosphorylation of direct and indirect downstream substrates, as well as substrates
downstream of off-target kinases. (D). In cells expressing an inhibitor-resistant mutant of the target kinase, inhibitor X will no longer decrease
phosphorylation of direct or indirect targets of the kinase, but off-target inhibition will still be observed. (E). In cells expressing an analog-sensitive version
of the target kinase, treatment with an analog inhibitor will decrease phosphorylation of direct and indirect substrates of the kinase, but will spare the
substrates of off-target kinases. (F). In cells expressing a mutated target kinase that can carry out phosphorylation using a bulky ATP-analog, only the
direct substrates of the target kinase will be labeled with modified phosphate.
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possible kinases and determine if the expected change in
phosphorylation occurs (Friedman and Perrimon, 2006; Azorsa
et al., 2010). As described above, these are relatively long-term
experiments, and the nature of cellular signaling networks make
indirect effects common. Methods that use kinase inhibitor libraries
with the aim of mimicking one-agent-one-kinase genetic screens
allow more acute inhibition of kinases and, with appropriate
experimental design, can lower (but not eliminate) the potential
for indirect effects. For such approaches to be broadly applicable,
libraries with a high coverage of the kinome and the most selective
inhibitors possible for each kinase must be assembled, and tools to
facilitate design of such libraries have been developed (Drewry et al.,
2017; Moret et al., 2019). An example of such an open source library
is the kinase chemogenomic set (KCGS) assembled by the Structural
Genomics Consortium (Elkins et al., 2016; Wells et al., 2021).
KCGSv1.0 contains 187 potent kinase inhibitors that each have a
narrow spectrum of activity when screened on a large panel of
kinases in vitro. These inhibitors cover 215 human kinases using the
consortium’s potency and selectivity criteria. More recently this has
been superseded by KCGSv2.0 which includes 295 kinase inhibitors
with activity on 262 kinases. Nevertheless, few, if any, kinase
inhibitors can be considered truly selective for one kinase.

An alternative conceptual approach is to accept that the majority
of kinase inhibitors are not selective for a single kinase, and to
develop kinase screening methods that exploit the known off-target
effects of extensively profiled small molecule inhibitors. An example
of this type of approach is Kinase inhibitor Profiling to Identify
Kinases (KiPIK; Figure 6) (Watson et al., 2020). In this method,
whole cell extracts are used as the source of all potentially relevant
kinases to drive phosphorylation of an exogenous substrate of
interest. Multiple such cell extract kinase reactions are carried
out in parallel, each in the presence of a member of a panel of
well-characterized kinase inhibitors. This yields an inhibition
fingerprint that characterizes the cellular kinase mainly
responsible for the observed phosphorylation. Then, to identify
candidate kinases, this fingerprint is compared to the known
inhibition fingerprints of all kinases in published profiling
datasets (Fedorov et al., 2007; Anastassiadis et al., 2011; Davis
et al., 2011; Gao et al., 2013; Elkins et al., 2016), which
constitutes approximately 80% of human protein kinases. This
step relies on the finding that inhibition profiles of kinase
inhibitors in cell extracts are generally similar to those
established in vitro (Bantscheff et al., 2007; Sharma et al., 2009;
Patricelli et al., 2011). The technique has been validated using a
number of known KSRs and successfully applied to identify cellular
kinases for unassigned phosphosites such as a non-canonical
Cdk1 site in the protein INCENP (Watson et al., 2020;
Cartwright et al., 2022). KiPIK utilizes the rapid action of kinase
inhibitors in cell extracts to focus on defined biological states.
Indeed, there is evidence that the use of cell extracts can
minimize the influence of upstream kinase signaling (Wang
et al., 2011; Savitski et al., 2014; Watson et al., 2020), aiding the
identification of direct KSRs, but indirect effects cannot be fully
ruled out. KiPIK also rests on the assumption that kinase reactions
in cell extracts preserve physiological kinase-phosphosite
dependencies which may often, but not always, be true.

In summary, there are a number of pharmacological and chemo-
genetic approaches that provide potential advantages over genetic

methods for identifying direct KSRs, and advantages over predictive
methods for revealing context-specific KSRs, as long as the
limitations of kinase inhibitor selectivity are taken into account.

5 Pharmacological approaches for
analyzing kinase signaling networks

So far, we have discussed approaches to characterize small
molecule kinase inhibitors and to identify KSRs. Here, we outline
how integrating this knowledge in silico (often with additional
information) allows insight into the structure of kinase signaling
on a network scale. We also discuss how experiments with well-
characterized inhibitors can be used to probe signaling networks and
to identify kinases that are involved in specific phenotypic responses.
No matter how thoroughly a small molecule inhibitor has been
characterized against its intended target and the wider kinome, we
still need to understand the effects of inhibitors on specific cellular
kinase networks, and to be able to predict which patients will
respond to treatment. We describe ways in which these factors
can be assessed in cell line and patient-specific ways.

5.1 Constructing kinase network models

Kinase pathway diagrams (see Figure 7A), which are essentially
informal logic models, have long been a feature of cell signaling
research. Early efforts to integrate information beyond single
pathways focused on the use of KSRs to build networks of nodes
(kinases and substrates) and edges (interactions between them; see
Figure 7B). The KSRs used in these networks were determined by
in vitro kinase assay screens (Ptacek et al., 2005; Newman et al.,
2013) or predicted from optimal motif analysis, sometimes
combined with additional information such as PPI or co-
expression data (Linding et al., 2007; Song et al., 2012).
Alternative kinase network models were also built using genetic
or PPI data (Fiedler et al., 2009; Breitkreutz et al., 2010). Inevitably,
the quality of such networks is limited by the quality of the
experimentally-determined and predicted associations, and the
scope of the datasets.

The rise of quantitative phosphoproteomics has allowed the
status of kinase signaling to be monitored in unprecedented breadth
and in specific cellular contexts. For example, a now classic report
examined the spreading of phosphorylation through an EGF-
induced signaling network over time in HeLa cells (Olsen et al.,
2006). A limitation of phosphoproteomic studies is that they do not
themselves delineate connections between kinases and their
substrates, so approaches using known KSRs to predict the
upstream kinases for phosphosites and to identify up or
downregulated signaling pathways are crucial. In addition, the
peptide under sampling inherent in current whole cell
phosphoproteomic dataset acquisition influences the types of
approaches that can be used for network building (Terfve et al.,
2015). A number of algorithms have been developed, including
those akin to gene set enrichment analysis (GSEA) (Drake et al.,
2012; Weidner et al., 2014; Ochoa et al., 2016), parametric Z-tests
(KSEA) (Casado et al., 2013; Wiredja et al., 2017), or heuristic
machine learning (IKAP) (Mischnik et al., 2016). Benchmarking
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these approaches against a high-quality set of curated KSRs provides
confidence in a number of them, but confirms that the quality of the
input KSRs used is paramount (Hernandez-Armenta et al., 2017).
Alternatively, the combination of phosphoproteomic data with
KSRs allows the construction of logic models that may provide
greater mechanistic insight into network function (Vaga et al., 2014;
Terfve et al., 2015; Schäfer et al., 2019). Machine learning
approaches may also help distinguish direct and indirect
substrates (Kanshin et al., 2017). Notably, though, assuming that
KSRs are generic, and using KSRs determined in one environment in
another, decreases the confidence with which context-specific
network features can be uncovered.

As the field has developed, additional information beyond KSRs
has been integrated into kinase network models, including PPIs,
kinase interaction partners, phosphatases, co-regulation of
phosphorylation, genetic mutation, expression data, and
structural information (Breitkreutz et al., 2010; Reimand et al.,
2013; Yang et al., 2015; Domanova et al., 2016; Drake et al.,
2016; Rudolph et al., 2016; Yadav et al., 2017; Ayati et al., 2019;
Buljan et al., 2020; Invergo et al., 2020; Bello et al., 2021a; Yılmaz
et al., 2021). However, because kinase networks have a high level of
plasticity and are partly context-specific, this cannot always be fully
uncovered by combining experimental data obtained from different

cell lines or tissues. Here, pharmacological approaches to
understanding kinase networks are likely to help answer a
number of important questions.

5.2 Can we improve knowledge of networks
using pharmacological methods?

When used appropriately, chemical probes can be used to
increase our understanding of signaling network wiring. Many
phosphoproteomic studies that aim to model kinase network
changes upon kinase inhibitor treatment use KSR information to
build network graphs or logic models (Terfve et al., 2015; Wilkes
et al., 2015), or other interaction information (such as the STRING
database) to produce networks (Bose et al., 2006; Pan et al., 2009;
Stuart et al., 2015). Comparison of phosphoproteome changes in
response to multiple different perturbations can increase the power
of such analyses (Ochoa et al., 2016). Notably, these studies typically
analyze data on the assumption that the inhibitors used are selective
for particular kinases. As we have seen, this is rarely the case.
Usefully, in some cases, two distinct inhibitors were used for
each nominal target to provide additional confidence in the
results (Terfve et al., 2015; Wilkes et al., 2015).

FIGURE 6
KiPIK assay to identify kinases for unassigned phosphosites. In KiPIK, extracts of cells in which the phosphosite of interest is known to be
phosphorylated are used as the source of all relevant kinases. In the presence of ATP, multiple kinase reactions are then carried out in parallel, each in the
presence of a single well-characterized kinase inhibitor. This produces an inhibition fingerprint for the unknown kinase that is driving phosphorylation of
the substrate added to the cell extract. This fingerprint is then compared (by correlation coefficients) to known inhibition fingerprints derived from
in vitro inhibitor selectivity data available for the majority of kinases in the human kinome. Kinases are then ranked based on these correlation coefficients
to identify kinases most likely to be the direct kinase responsible for the phosphorylation event being studied.
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More recently, an alternative approach was used in which broad
selectivity information from the in vitro inhibition profiles of a panel
of kinase inhibitors were used to identify kinase-phosphosite
relationships from proteomics data. In these experiments,
quantitative phosphoproteomics was utilized to monitor
phosphorylation changes in cells treated with a panel of well-
characterized kinase inhibitors. This approach is comparable to
the KiPIK method (Section 4.3.2) in that it makes use of the
incomplete specificity of kinase inhibitors rather than ignoring it.
However, it differs from KiPIK because it uses intact cells, not cell
extracts, and it does not seek to identify direct KSRs. Instead, it uses
an “expectancy of being downstream target” (EBDT) algorithm to
place phosphosites that might be directly or indirectly downstream
of a particular kinase into groups of putative downstream targets
(PDTs). This information can then be used to create context-specific
network models in a way that does not depend on prior knowledge
of KSRs or other information, and which can identify possible tumor
vulnerabilities, for example, TTK in acute myeloid leukemia (AML)
(Hijazi et al., 2020). This is a potentially powerful approach, though
it depends on the assumption that kinase inhibitor specificity in
living cells is similar to that in vitro.

The principle of using inhibitor selectivity profile information
has been further exploited in another recent study which aimed to
identify protein binding partners of specific kinases. In this work, the
ability of a panel of kinase inhibitors to displace kinase-containing
protein complexes from Kinobeads (see Figure 1B) was determined.
Similar to KiPIK, by correlating the known inhibition fingerprints
for kinases with displacement fingerprints of putative kinase-
associated proteins determined by mass spectrometry, the
“kiCCA” method was able to identify proteins associated with
238 different kinases. In this way, local context-specific kinase
PPI networks can be examined (Golkowski et al., 2023).

5.3 Which kinases are good targets to bring
about a specific change in cell phenotype?

In many cases, there may be a cellular phenotype that we wish to
modulate with drugs for therapeutic benefit. This might be as
conceptually simple as killing proliferating cancer cells, or more
complicated, such as modulating the immunoregulatory functions
of a particular cell type. In other situations, we may need to
understand how kinases contribute to phenotypes we wish to
avoid, such as drug-induced toxicity. In such systems, it is likely
that multiple kinases influence the phenotypes in question, and we
know that most drugs influence the activity of more than one kinase.
Therefore, methods for “target deconvolution” are required that can
tell us which kinases are actually involved in phenotypic changes so
that we can understand the underlying signaling pathways and
identify targets for drug development. Pharmacological
approaches to address these questions have been developed that
exploit kinase inhibitor selectivity data (see Section 3) in
combination with the effects of inhibitors in phenotypic screens.
These methods therefore have conceptual similarities to KiPIK,
EBDT, and kiCCA (see Sections 4.3.2 and Section 5.2, and Figure 6).

In 2013, Tyner et al. (2013) published a study in which the ability
of 66 kinase inhibitors to decrease leukemia cell proliferation was
tested. To determine which kinases were responsible for the effect,
they used a weighted scoring system based on the known kinome
inhibition profiles of the 66 inhibitors to identify and rank the
common kinase targets of effective inhibitors. Using this approach,
they were able to successfully identify kinases driving proliferation
in patients with oncogenic kinase mutations such as in FLT3 or
ABL1. Ryall et al. (2015) described a similar Kinase Addiction
Ranker (KAR) algorithm which appeared effective in identifying
kinases responsible for the drug sensitivity of lung cancer cell lines.

FIGURE 7
Kinase network visualization. (A) A classical kinase signaling pathway or logic model derived from KSR, PPI and other mechanistic information. (B) A
node and edge kinase signaling network derived, for example, from KSR and PPI information.
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In somewhat analogous methods, Pemovska et al. (2013) combined
drug sensitivity data with kinase selectivity profiles to provide
insight into particular kinases involved in AML, and Sundberg
et al. (2014) ranked kinases that suppressed IL-10 production by
dendritic cells. Another feature selection algorithm uses kinase
inhibition profiles and the response of cells to drugs to infer
kinase circuits involved in tumor proliferation (Berlow et al., 2013).

In an interesting variation on this theme, Lamore et al. (2017)
wished to identify kinases responsible for the wide-spread problem
of drug cardiotoxicity. First, they measured the effect of a panel of
well-profiled kinase inhibitors on cardiomyocyte beating, providing
a proxy fingerprint for cardiotoxicity. Then, they used a univariate
correlation analysis to compare this fingerprint to the inhibition
fingerprints of all kinases in the profiling dataset. This provided a
ranked list of kinases that might be involved in the cardiotoxicity. In
an alternative approach, they also narrowed down “sentinel kinases”
with the highest predictive value using a classification tree based on
recursive partitioning. Testing of drugs with known clinical cardiac
warnings showed that, indeed, the majority inhibited these sentinel
kinases (RPS6KB1, FAK, and STK35).

Other studies have used an alternative algorithm for
deconvoluting kinases involved in cellular responses to kinase
inhibitors: regression and variable selection. Kinome
Regularization (KiR), uses elastic net regularization to whittle
down the list of possible kinases to identify a minimal set with
the most power to explain the inhibition of a phenotype. This
approach was used to determine which kinases were involved in
the inhibition of cell migration by a panel of well-characterized
kinase inhibitors, and these were then validated by additional
experiments including RNAi (Gujral et al., 2014a; Gujral et al.,
2014b; Rata et al., 2020). KiR has also been used successfully to
characterize kinases involved in prostate cancer cell proliferation,
and in malaria parasite persistence in hepatocyte cultures (Arang
et al., 2017; Bello et al., 2021b). Going a step further, the KiR
algorithm can also be used successfully to predict
polypharmacological inhibitors or combinations of inhibitors that
will induce desired changes in cell behavior, even before the
inhibitors have been tested in the phenotypic assay (Gujral et al.,
2014b; Bello et al., 2021b). KiR has recently been expanded by
integrating prior knowledge of PPIs to uncover kinase-focused
cellular PPI networks (Bello et al., 2021a).

Machine learning approaches have also been applied to target
deconvolution. Following a screen for neurite outgrowth using a
kinase inhibitor library, a maximum relevance and support vector
machine algorithm (MR-SVM) was used to exploit kinome profiling
data to identify a small number of kinase groups that are most
relevant in controlling axon growth. Significant hits could be
validated by RNAi, and the results allowed the rational selection
of compounds with complementary polypharmacology for further
study (Al-Ali et al., 2015).

Notably, a major advantage of all these pharmacology-based
deconvolution methods is that they provide context-specific
information. Indeed, different kinases were identified as
important in different cell lines or patient samples in a number
of these studies (Tyner et al., 2013; Gujral et al., 2014b; Ryall et al.,
2015). Because of this, these approaches could be applied to the
study of other context-specific networks, such as cells that acquire
resistance to cancer therapeutics. Further work is needed to fully

validate these methods, and to determine which prediction
algorithms are most reliable, but the underpinning idea to make
use of in-depth inhibitor selectivity data is a powerful one.

5.4 How is a kinase network influenced by a
drug or chemical probe?

A common research question is how is the signaling network of a
particular cell type or tissue influenced by a particular small
molecule. For well-characterized chemical or chemo-genetic
probes, answering this question can provide information on the
direct and indirect targets of the kinase(s) of interest. For drugs, we
can learn broadly about their mechanisms of action, including off
target effects, similarities to the effects of other drugs, or how
inhibitor resistance develops. Clearly, genomic and
transcriptomic approaches such as monitoring gene expression
changes in response to inhibitors (Subramanian et al., 2017), and
the global phosphoproteomics methods discussed above (see Section
5.1 and Section 5.2) have a vital role to play in such studies (Bose
et al., 2006; Pan et al., 2009; Stuart et al., 2015; Terfve et al., 2015;
Wilkes et al., 2015; Zecha et al., 2023). These approaches can,
however, be augmented or complemented by additional methods
that are particularly relevant for kinase networks (Pierobon et al.,
2015).

For example, to reduce the complexity of phosphoproteome
analysis and increase robustness, quantitative measurement of
phosphorylation can be focused on a subset of key phosphosites,
such as those known to be involved in major cancer signaling
pathways. In AQUA, or in “kinase activity assay for kinome
profiling” (KAYAK), suites of standard peptides facilitate
quantification of phosphorylation by mass spectrometry (Gerber
et al., 2003; Kubota et al., 2009), or targeted modes of mass
spectrometry can be used (Beck et al., 2017; Payne and Huang,
2017). A number of antibody-based multiplex assays are available
that can be used to quantify phosphorylation of specific
phosphosites in cell extracts [e.g., MILLIPLEX (Merck) and
scioPhospho (Sciomics)]. Such array techniques have been used,
in combination with gene expression data, to analyze the
consequences of sequential treatment of drugs including kinase
inhibitors on the apoptosis of breast cancer cells (Lee et al.,
2012). Alternatively, phosphorylation of substrate peptide
microarrays such as PamChip can be used to profile kinase
activities in lysates of cells or tissues during a variety of
treatments (Lemeer et al., 2007; Keersmaecker et al., 2008). These
assays include only a fraction of the possible cellular
phosphorylation sites, and the particular kinases involved must
be inferred based on previously known KSRs. Nevertheless, this
system allows rapid comparison of multiple conditions, and works
with small samples such as human BRAF-V600Emelanoma biopsies
(Tahiri et al., 2013).

Because the development of resistance to targeted kinase therapy
is so common, approaches to discover the underlying causes are
vital. The first mechanisms of resistance to BCR-ABL inhibitors
were identified in imatinib-treated CML patients, revealing BCR-
ABL gene amplification, or point mutations in the ABL kinase
domain that prevented drug binding (Gorre et al., 2001).
Potential resistance mechanisms can also be identified using
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inhibitors in vitro. For example, isolation of cells that were resistant
to killing by imatinib in cell culture uncovered ABL mutation-
independent mechanisms, as well as BCR-ABL amplification
(Mahon et al., 2000). Other studies combined directed
mutagenesis of the ABL kinase domain with in vitro exposure to
imatinib to identify additional kinase domain mutations that
reduced inhibitor efficacy (Azam et al., 2003). More recent
in vitro studies of kinase inhibitor resistance have identified non-
genetic mechanisms of resistance such as epigenetic changes in gene
expression, and have suggested that there is a wide diversity of such
resistance mechanisms, even within genetically homogenous cell
including clonal BRAF-V600E melanoma cells (Sharma et al., 2010;
Goyal et al., 2023). The growing sophistication of in vitro cancer
models and the use of animal tumor models is likely to further
enhance the clinical relevance of similar studies of kinase inhibitor
resistance in future.

5.5 Can kinase network features be used as
biomarkers of drug efficacy?

Another clinically significant need is to predict patient-specific
responses to kinase inhibitors so that appropriate personalized
treatment regimens can be designed, both upon first diagnosis
and if resistance to therapy subsequently develops. Currently, this
often takes the form of specific biomarkers that indicate
susceptibility to a particular drug, such as a mutation in the gene
for a kinase. In other cases, “functional diagnostic” approaches
might be used: for example, assays that test whether patient cells
are susceptible to killing with a specific drug or combination of
drugs. These functional approaches may uncover vulnerabilities that
are not predicted by genetic analysis, and have been used to guide
patient treatment, such as in refractory AML (Pemovska et al., 2013;
Tyner et al., 2013; Crystal et al., 2014; Friedman et al., 2015; Robers
et al., 2015).

Characterization of kinase network features provides another
avenue to identify prospective biomarkers. Early studies that linked
drug sensitivity to the genetic features of the NCI-60 panel of cell
lines have matured and now include hundreds of compounds tested
on almost 1000 cancer cell lines (Weinstein et al., 1997; Barretina
et al., 2012; Garnett et al., 2012; Iorio et al., 2016). Such work has
revealed associations between drug sensitivity and gene expression
changes or mutations in kinase pathways, including during the
development of drug resistance (Garnett et al., 2012; Pemovska et al.,
2013). However, non-genetic changes are also important, and
similar association studies can also be carried out using
phosphoproteomics with the aim of identifying non-genetic
features of kinase signaling that correlate with drug sensitivity
(for example, in the EGFR signaling pathway (Guo et al., 2008)).
Notably, suitable markers for drug sensitivity may not always be
obvious components of the pathway presumed to be targeted by the
inhibitors in question (Alcolea et al., 2012; Casado et al., 2013),
illustrating the value of broad phosphoproteomic analysis.

In some cases, knowledge of multiple features of a
phosphorylation network may provide improved prediction of
patient responses compared with a single feature such as
mutation of the gene encoding the perceived target kinase. For
example, in a pre-clinical study of patient-derived AML cells,

Casado et al. (2018) found that a phosphoproteomic signature
predicted the ex vivo response to the FLT3 kinase inhibitor
midostaurin better than FLT3 mutational status. Importantly,
kinases that contribute to such newly discovered signatures, or
other regulators such as epigenetic modifiers, may also provide
new targets for drug discovery (Casado et al., 2018; Pedicona et al.,
2022). Drug sensitivity signatures may also be discovered using
more targeted approaches such as PamChip (see section 5.4) (Elst
et al., 2011) or using Kinobeads to enrich for kinases (Cooper et al.,
2013; Golkowski et al., 2023; 2020).

Because of the expected complexity of predictive signatures,
there have been numerous efforts to use machine-learning
algorithms to integrate pharmacologic and ‘omic data to predict
patient outcomes in response to kinase inhibitors and other drugs.
Many of these approaches rely on genomic and gene expression
information (Basu et al., 2013; Yang et al., 2013), but more recently
the utility of (phospho) proteomic data has been explored. For
example, drug ranking using machine learning (DRUML),
developed by the Cutillas group, learns to rank cancer drug
activity in patients based on a training dataset of drug sensitivity
data for a panel of cell lines with corresponding proteomic,
phosphoproteomic, and RNA-seq datasets (Gerdes et al., 2021).

6 Conclusion

As we have seen, chemical and chemo-genetic probes are
undoubtedly useful for the discovery of KSRs and
characterization of context-specific signaling networks. However,
the target profiles of such probes first must be comprehensively
characterized. Numerous techniques are now available to achieve
this, but they still have some disadvantages. For example, kinase
panels for in vitro profiling of inhibitors remain incomplete. So-
called “dark kinases” are often absent, and coverage of mutant
kinases that are involved in disease and drug resistance remains
rather haphazard. Broadening these profiling panels is important
both for understanding possible off-target effects, and for widening
the net of target deconvolution approaches that rely on extensive
inhibitor selectivity profiling of multiple kinases (such as KiR,
EBDT, KiPIK and kiCCA).

Despite advances in profiling kinase inhibitor target engagement
in living cells, such technologies remain relatively low throughput
and are often complicated to perform. For in vitro assays,
radiolabeled ATP assays are usually considered the “gold
standard”, but the limited data obtained so far using cell and
lysate inhibitor profiling makes it harder to define their
limitations and to validate the results of methods such as CETSA
and NanoBRET. Nonetheless, understanding target engagement in
cells is the ultimate objective of most studies, so developments in this
area are keenly anticipated.

Importantly, many profiling methods exclude possible non-
kinase targets of inhibitors, or provide incomplete coverage. Such
off-target interactions have the potential to dramatically alter the in
vivo effects of drugs and chemical probes, and more attention to this
aspect of inhibitor action would be welcome. Nevertheless, we have
never been in a better position to comprehensively determine the
target engagement profiles of kinase inhibitors, both in vitro and in
cells.
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It is clearly important to continue growing our understanding of
individual kinase-substrate interactions. However, KSRs can be
context specific; the kinase that phosphorylates a particular
phosphosite may change depending on which upstream signaling
pathway is activated, or from cell type to cell type (Sapkota et al.,
2001; Zecha et al., 2023). Network models based on generic KSRs
will not reflect these particularities. It is therefore imperative that we
understand KSRs in the context of specific signaling networks. The
ease with which chemical probes can be employed in different
situations has significant advantages for such studies.

Developments in computational approaches are also likely to be
key to unlocking the potential of pharmacological approaches to
understand protein kinase signaling networks. Efforts to rationalize
the inhibitor libraries used for phenotypic studies, either to create
libraries of high selectivity for each target kinase (Moret et al., 2019;
Wells et al., 2021) or suitable for deconvolution approaches (Gujral
et al., 2014b; Rata et al., 2020; Watson et al., 2020; Golkowski et al.,
2023), will help optimize the trade-off between library size and
experimental practicality. Further work should help to determine
which algorithms are most effective for identifying relevant kinases
and pathways from inhibitor-induced perturbations in the
phosphoproteome, for target deconvolution based on phenotypic
screens, and for rational design of polypharmacological agents and
drug combinations (Gujral et al., 2014b; Hernandez-Armenta et al.,
2017; Tang, 2017; Rocca and Kholodenko, 2021) Finally, machine
learning is poised to provide notable advances in determining
features of kinase networks that predict drug efficacy for
personalized medicine, as well as in these other areas.

In summary, in-depth knowledge of target engagement by
chemical probes in cells, coupled with increasingly sophisticated
data acquisition and analysis pipelines, suggest that pharmacological
approaches to understanding context-specific kinase networks will
continue to yield vital insights for the foreseeable future.
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