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 Penyakit pernapasan membutuhkan diagnosis dini dan pemantauan 

secara terus-menerus, dimana metode yang ada melibatkan kontak 

fisik yang berisiko. Studi ini mengusulkan sistem baru yang 

menggunakan radar FMCW dan pembelajaran mesin untuk 

memantau pernapasan tanpa kontak dengan pasien. Radar FMCW 

dapat mendeteksi gerakan pernapasan secara real-time, sementara 

pembelajaran mesin dapat mengklasifikasikan gelombang pernapasan. 

Studi ini mengevaluasi sistem dengan validasi silang Shuffle Split, K-

fold, dan Stratified K-fold. Hasilnya menunjukkan bahwa Random 

Forest memiliki akurasi tertinggi 94,6% dan Naïve Bayes memiliki 

waktu terpendek 0,055 detik. Shuffle Split berkinerja terbaik secara 

keseluruhan. Studi ini menunjukkan bahwa sistem memiliki 

kelayakan dan potensi untuk deteksi, dan pelacakan penyakit 

pernapasan dalam kegawatdaruratan. 
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 Respiratory diseases require early diagnosis and continuous monitoring, but 

existing methods involve risky physical contact. This study proposes a new 

system that uses FMCW radar and machine learning to monitor breathing 

without contact. FMCW radar can detect respiratory movements in real-time, 

while machine learning can classify respiratory waveforms. This study 

evaluates the system with cross-validation Shuffle Split, K-fold, and Stratified 

K-fold. The results show that Random Forest has the highest accuracy of 94.6% 

and Naïve Bayes has the shortest time of 0.055 seconds. Shuffle Split performs 

best overall. This study shows the feasibility and potential of the system for the 

detection, response, and tracking of respiratory diseases in emergencies. 
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INTRODUCTION 

Respiratory diseases pose a substantial global health burden, demanding innovative 
solutions for early detection and monitoring (Halpin et al., 2021). These diseases encompass a 
range of conditions, including acute respiratory infection, chronic obstructive pulmonary disease 
(COPD), asthma, and pulmonary fibrosis, which collectively affect millions worldwide. As 
technology advances, the urgent need for real-time respiratory signal monitoring becomes 
increasingly evident, enabling the swift detection of symptoms and enhancing the management of 
patients with these debilitating diseases. 

Infectious diseases have heightened the demand for non-contact medical devices that 
enable healthcare practitioners to monitor patients remotely (Lee et al., 2021). This shift towards 
non-invasive and contactless solutions has proven crucial for patients infected with the virus and 
healthcare workers at an increased risk of exposure of up to 67% (Romero Starke et al., 2021). In 
this context, radar-based systems, with their capability to monitor vital signs such as respiratory 

signals, have emerged as a promising technology for remote patient assessment  (Wang et al., 
2021). 

   Radar systems, notably FMCW radar, have exhibited remarkable potential in detecting 
human respiratory signals. These systems are adept at capturing and isolating the subtle 
movements associated with breathing and heart rate, making them an ideal tool for non-contact 
vital sign monitoring (Ahmad et al., 2018). The utilization of these technologies can reduce the 
impracticality of using contact-based monitoring devices that need large capacity batteries, are 
impractical to use with burn victims or infants, may detach, and are possibly invasive (Khan et al., 
2020; Turppa et al., 2020). 

Beyond merely detecting the presence of a respiratory signal, the ability to analyze different 
breathing patterns is paramount for early diagnosis of dysfunctional breathing (Baker et al., 2020). 
Variations in breathing types have served as valuable indicators for the presence of respiratory 
diseases such as asthma, tracheoesophageal and esophageal diseases, and chronic pain syndromes 

(Newson & Elias, 2020). In addition to its application in disease analysis, this classification system 
can also identify subcategories within asthma related to distinctive breathing patterns, including 
hyperventilation, rapid and shallow breaths, deep sighing, and various irregular respiratory 
behaviors (Connett & Thomas, 2018).Hence, a comprehensive analysis of these patterns can aid 
in early detection of symptoms and monitoring of disease progression. 

Machine learning techniques have been leveraged to classify these signals accurately to 
harness the full potential of radar-based respiratory signal monitoring (Purnomo et al., 2021), 
(Purnomo et al., 2022). Machine learning algorithms, including Decision Trees, Random Forest, 
Naïve Bayes, Gradient Boosting, and Support Vector Machine (SVM), have demonstrated their 

prowess in differentiating vital signals (Kavsaoğlu & Sehirli, 2023). These algorithms are 
instrumental in turning raw radar data into actionable insights for healthcare professionals. 

 

Figure 1. Main modules of the proposed system. 

This article presents a system that integrates FMCW radar technology with machine 
learning algorithms, illustrated in Figure 1. The radar detects breathing waves from the patient 
through its transmitter Tx and receiver Rx. Then, the signal from the antennas is processed to 
extract breathing waveforms, which are processed by the selected machine-learning model. The 
system aims to classify breathing waveforms accurately from a list of common breathing classes, 
thereby providing valuable information for assessing an individual's health status. This will enable 
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hospitals to continuously monitor the respiratory signs of a patient unsupervised by healthcare 
workers, improving the typical approach of manual data collection and assistance (Da Costa et al., 
2018). 

This article is structured as follows: the introduction overviews the importance of non-
contact medical devices and radar-based respiratory analysis. The subsequent sections will delve 
into the method for breathing waveform extraction, dataset description, breathing waveform 
classification by machine learning algorithms, results, and discussion, and conclude by 
highlighting the potential impact of this integrated system on the healthcare landscape. 

RESEARCH METHOD 

Breathing Waveform Extraction 

Frequency-Modulated Continuous Wave (FMCW) radar processes the received FMCW 
signal through a number of phases in order to extract a respiratory signal. This section explains the 

basic ideas of FMCW radar and how it records and processes signals for obtaining breathing 
waveforms. 

The basis for FMCW radar's operation is a frequency change that occurs linearly over time. 
The received signal reveals details about the object's movement, including its breathing patterns, 
while the frequency of the FMCW radar signal being transmitted at time index 't' changes over 
time. 

Research has verified that radar systems are phase-sensitive and can pick up on even the 
smallest motions, such as breathing signals. Due to its phase sensitivity, FMCW radar is a useful 
tool for non-contact respiratory monitoring since it can identify minute vibrations caused by lung 
activity. As an FMCW radar device, this study utilizes the Texas Instrument IWR1443 board 
operating in the 77-88 GHz range. 

 

Figure 2. Signal processing steps for breathing waveform extraction 

The signal-processing steps for breathing waveform extraction involve a sequence of 
crucial procedures as shown in Figure 2. First, Range FFT (Fast Fourier Transform) analysis is 
conducted to identify peaks in the frequency domain corresponding to subtle movements caused 
by lung activity. Next, Phase Extraction captures the phase information of the received radar 

signal. Phase Unwrapping rectifies phase values to maintain their continuity across 2π intervals, 

facilitating accurate analysis. Subsequently, Phase Difference is calculated to quantify variations 
in phase values, providing insights into respiratory patterns. Noise Removal helps eliminate 
unwanted interference or artifacts. Lastly, the signal passes through a Band Pass Filter (BPF) to 
isolate the desired frequency range (0.1 to 0.5 Hz), ultimately yielding the breathing waveform for 
further analysis. These steps collectively enable extracting crucial respiratory signals from FMCW 

radar data. 

Dataset Description and Format 

To measure the breathing waveform, the person must sit still while breathing face-forward 
to the radar. Figure 3 shows the setup used for collecting the breathing signal dataset. 

 

Figure 3. Illustration of the setting when measuring a person’s breathing waveform 
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To create a large dataset, each subject was instructed to breathe according to five different 
breathing patterns: normal, deep, deep-quick, quick, and hold, each for roughly 5 seconds. One 
sample dataset contains 85 measurement points throughout the 5 seconds. There are 26,400 
records of these different breathing signal data, labeled by either “quick” (2667 data), “normal” 
(19734 data), “deep” (1066 data), “deep-quick” (800 data), or “hold” (2133 data). 

 

Figure 4. Plots of a sample from each type of breathing waveform data. 

A row of data, with 85 data points, is a real number representing the level of breathing 
signal extracted. Figure 4 illustrates these data if they were to be plotted in an x-y plane of time 
versus signal. Each type of breathing plot is presented in different colors on the same graph. 

Breathing Waveform Classification 

The breathing waveform data is classified in three steps: reading and cleaning data, 
processing by machine learning models, and cross-validation. Figure 5 contains the visualization 
of these steps. 

 

Figure 5. Block diagram of the breathing waveform classification steps. 

Reading Data and Cleaning 

The data are about breathing waveforms obtained from different people from various 
backgrounds, as discussed in Section 3. They are obtained using IWR1443BOOST by Texas 
Instruments, using software. The feature consists of 85 data points. 

Table 1. Samples of the Breathing Waveform Dataset. 

0 1 … 83 84 label 

1.137026 1.309561 … 0.402893 1.050250 normal 

-0.489525 -0.336083 … 0.163767 0.022457 deep_ quick 

-1.293316 -1.228519 … -0.484406 -1.460045 quick 

-0.271695 0.130003 … 0.226376 -0.049865 hold 

-0.090600 -0.493776 … 0.601362 0.367818 deep 
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Table 1 shows the sample of results from the data cleaning and merging. Columns 0 
through 84 contain the data points of the breath signal, while the last column contains the labels 
of the breathing waveform type. 

Machine learning classification model 

We employ well-established machine learning techniques. These algorithms, integrated 
with the preprocessed data, serve as the engine for the classification task. Here, we compare five 
different models for classification to see their performance in predicting breathing waveforms. The 

models are Decision Tree, Random Forest, Naïve Bayes, Gradient Boosting, and Support Vector 
Machine (SVM). 

Decision Tree 

Decision trees are supervised machine learning models that hierarchically structure 
decisions based on input features. In the specific application of breathing waveform classification, 
decision trees parse through the extracted features of the respiratory signals, making decisions at 
each node to iteratively narrow down the possibilities. The decision-making process involves 
assessing the importance of different features, such as signal frequency and amplitude variations, 
to differentiate between various breathing patterns. This hierarchical approach makes decision 
trees particularly adept at capturing complex relationships within the data, enabling them to 
discern distinctive characteristics associated with different respiratory behaviors. The transparency 
of decision trees also facilitates interpretability, as the branching structure allows for a clear 
understanding of the criteria influencing each classification decision. Despite their effectiveness, 
it's essential to note that decision trees may be susceptible to overfitting, emphasizing the 
importance of proper tuning and validation to ensure robust performance across various datasets 
and scenarios. 

Random Forest 

Random Forest is a popular machine learning algorithm for classification and regression 
tasks. In the domain of respiratory signal classification, the application of random forest algorithms 
presents a powerful and effective approach. A random forest is an ensemble learning method that 
constructs multiple decision trees during the training phase and combines their outputs to enhance 
overall performance. In the specific context of breathing waveform signals, a random forest 
analyzes the diverse features extracted from respiratory data, collectively leveraging the insights 
gleaned from numerous decision trees. This ensemble approach is particularly advantageous for 
capturing intricate patterns and subtle variations within breathing waveforms, contributing to a 
robust and accurate classification system. Random forests inherently address the risk of overfitting 
associated with individual decision trees, providing a more generalized model. Each decision tree 
within the random forest is trained on a different subset of the data, and the final classification is 
determined by a majority vote across the ensemble. The versatility of random forests makes them 
well-suited for discerning complex relationships within respiratory data, ultimately enhancing the 
precision of classifying distinct breathing patterns.  

Naïve Bayes 

When it comes to figuring out different ways people breathe, the Naïve Bayes algorithm 
takes a unique approach. It is like a smart method that uses probabilities to understand breathing 
patterns, assuming that the features it looks at are independent, even if they might be connected. 
For example, when we want to tell apart patterns like deep, quick, normal, and hold breathing, 
Naïve Bayes calculates the chance of each pattern based on what it sees in the breathing signal. 
Even though it simplifies things by assuming features are unrelated, Naïve Bayes is great for 
quickly figuring out breathing patterns because it is straightforward and fast in training and making 
predictions. In the world of breathing signals, Naïve Bayes looks at how likely certain 
characteristics are for each breathing style, helping in making decisions based on probabilities. 
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Gradient Boosting 

Gradient Boosting is a smart way of teaching a computer to recognize different breathing 
patterns, like deep, quick, normal, and hold breathing. It does this by creating a series of learning 
steps, often using decision trees, where each step corrects the mistakes of the previous one. This 
method is great for picking up on the details and nuances in the data about how people breathe. It 
pays extra attention to places where it made mistakes before, getting better each time. In the world 
of classifying breathing patterns, Gradient Boosting is like a detective, considering all the little 
details to tell the patterns apart. The best part is that it's good at learning without getting too fixated 
on specific details, making it a reliable and adaptable tool 

Support Vector Machine 

Support Vector Machines (SVM) provide a robust and effective method, particularly in 
discerning patterns associated with deep, quick, deep and quick, normal, and hold breathing. SVM 
is a powerful machine learning algorithm that strives to find an optimal hyperplane to separate 

different classes within the input data. When applied to respiratory signal classification, SVM 
evaluates the intricate features and variations inherent in breathing waveforms. SVM aims to 
identify a hyperplane that maximizes the margin between different breathing classes, enabling 
precise discrimination. The algorithm's ability to handle complex datasets with high-dimensional 
feature spaces aligns well with the multifaceted nature of respiratory signals. SVM's versatility 
allows it to effectively capture the distinctions in breathing patterns, contributing to accurate 
classification. 

Cross-Validation Comparison 

A critical step in splitting the dataset into training and testing sets, cross-validation is 
essential for evaluating the effectiveness and generalizability of the machine learning model. To 
guarantee reliable model evaluation, we discussed and contrasted a number of cross-validation 
techniques in this section. 

K-Fold Cross-Validation 

In the classification of breathing waveform signals encompassing deep, quick, deep and 
quick, normal, and hold breathing patterns, K-fold cross-validation serves as a vital technique for 
assessing the robustness and generalization ability of the classification models. K-fold cross-
validation involves partitioning the dataset into K equally-sized folds and iteratively using K-1 
folds for training and the remaining fold for validation. This process is repeated K times, each time 
using a different fold as the validation set. By applying K-fold cross-validation, the classification 
model is evaluated on various subsets of the data, providing a more comprehensive understanding 
of its performance across different scenarios. In the context of breathing waveform classification, 
K-fold cross-validation ensures that the model's accuracy is not overly reliant on a specific subset 
of the data, mitigating the risk of overfitting. The averaged performance metrics across multiple 
folds provide a more reliable estimate of the model's effectiveness in distinguishing between 
different breathing patterns. This rigorous evaluation methodology enhances the credibility and 
generalization capacity of the classification system, making it well-suited for real-world 

applications in respiratory disease detection and continuous monitoring. 

Stratified K-Fold Cross-Validation 

Similar to the conventional K-Fold approach, stratified K-Fold cross-validation considers 
class balance. It guarantees that the class distribution in each fold remains consistent with that of 
the original dataset. This method is especially helpful when working with imbalanced datasets—
where some classes have much fewer samples than others. 

Shuffle Split Cross-Validation 

Train-test splitting and K-fold cross-validation features are combined in Shuffle Split Cross-
Validation. Like K-Fold cross-validation, this method divides the dataset into training and test 
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subsets at random several times. The randomization contributes to a reliable assessment of the 
model's performance by ensuring that distinct subsets are used for testing and training. 

Each one of these cross-validation techniques has benefits of its own and works well in 
different scenarios. 

RESULTS AND DISSCUSSION 

In this study, the accuracy of breathing type classification serves as a pivotal indicator of 
the machine learning models’ successes. To evaluate this metric, the accuracy formula is presented 
in Equation 1 (Grandini et al., 2020). 

𝒔𝒄𝒐𝒓𝒆 =
∑ 𝟙(𝒚𝒑𝒓𝒆𝒅𝒊 = 𝒚𝒕𝒓𝒖𝒆𝒊)
𝑵
𝒊=𝟏

𝑵
 

(1) 

In formula (1), 𝑁 is the total number of predictions, 𝟙(∙) is an indicator function that 

evaluates to 1 if the condition inside is true and 0 otherwise, 𝑦𝑝𝑟𝑒𝑑𝑖 is element i in the prediction 

set, and 𝑦𝑡𝑟𝑢𝑒𝑖  is element i in the test set. Another evaluation metric of the models is the time 

needed to execute training and testing. Their results are discussed in the following subsections, 
where we performed 80-20 train-test data split and various cross-validation methods to be 
compared. 

Model Comparison on 80-20 Train-Test Data Split 

Each model was assessed for accuracy using the train-test split methodology, with default 
parameters applied consistently across all models. All models employed a uniform split of 80% for 
training and 20% for testing data. The results presented in Table 2 below reveal that the Random 
Forest classifier achieved the highest accuracy score, attaining a remarkable 94.6%. In contrast, 
the Decision Tree, Gradient Boosting, and Support Vector Machine (SVM) models demonstrated 
comparable accuracy scores, hovering around 85%. Notably, the Naïve Bayes classifier yielded the 
lowest accuracy score at 38%. However, it is noteworthy that this particular model exhibited the 

shortest processing time, requiring 0.055 seconds. In comparison, the Decision Tree model had a 
processing time of 2.361 seconds, followed by Random Forest at 13.908 seconds, SVM at 16.565 
seconds, and Gradient Boosting, which necessitated 158.589 seconds for classification. 

Table 2. Comparative Analysis of Machine Learning Algorithms Using an 80-20 Train-Test Split. 

Model 
Train-Test (80-20) 

score time (s) 

Decision Tree 0.862 2.361 

Random Forest 0.946 13.908 

Naive Bayes 0.38 0.055 

Gradient Boosting 0.85 158.589 

Support Vector Machine 0.845 16.565 

 

Cross-Validation Comparison Between the Models 

Table 3 below shows the mean accuracy scores and time elapsed for every classification 
model evaluated in three cross-validation methods. For the K-fold cross-validation method, the 
Gradient Boosting model achieves the highest accuracy score with 0.732, followed closely by the 
Random Forest model with 0.727. The next is the Support Vector Machine with 0.692, then the 

Decision Tree with 0.619. Lastly, Naïve Bayes scores the lowest, 0.294. 

In stratified K-fold cross-validation, the Random Forest model delivers the highest score 
with 0.831, while Gradient Boosting comes in second place with 0.812. Support Vector Machine 
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and Decision Tree close with 0.757 and 0.730, respectively. Naïve Bayes scored lowest with 0.363. 
The validation time, Stratified K-fold cross-validation, is just slightly slower than K-fold. 

Finally, in Shuffle Split, Random Forest achieves the highest accuracy score again with 
0.943. Decision Tree, Gradient Boosting, and Support Vector Machine achieve comparable scores 

at 0.858, 0.848, and 0.840, respectively. Naïve Bayes model has the lowest accuracy score again 
at 0.371. For the time elapsed, the Shuffle split has the quickest evaluation time compared to the 
other two methods, except for Naïve Bayes and Support Vector Machine, which require a longer 
time. 

Table 3. Cross-validation Comparison Between Machine Learning Algorithms. 

Model K-fold Stratified K-fold Shuffle Split 

score (mean) time (s) score (mean) time (s) score (mean) time (s) 

Decision Tree 0.619 25.916 0.730 26.707 0.858 23.043 

Random Forest 0.727 159.138 0.831 159.081 0.943 137.708 

Naive Bayes 0.294 0.385 0.363 0.393 0.371 0.502 

Gradient Boosting 0.732 1725.626 0.812 1795.973 0.848 1585.532 

Support Vector Machine 0.692 157.117 0.757 154.444 0.84 157.957 

CONCLUSION AND RECOMMENDATION 

Conclusion 
In conclusion, this study presents an innovative system that integrates FMCW radar 

technology with machine learning algorithms for real-time, non-contact respiratory monitoring. 

The Texas Instrument IWR1443 board effectively captures subtle respiratory movements 

Machine learning models such as Support Vector Machine, Random Forest, Naïve Bayes, 

Decision Trees, and Gradient Boosting were used for precise classification. With an accuracy of 

94.6%, the Random Forest classifier outperformed the other models. The systematic application 

of cross-validation methods, such as Shuffle Split, K-fold, and Stratified K-fold, in the study's 

breathing waveform classification significantly influenced the accuracy and validation times of 

machine learning models. In conclusion, the integrated system presented in this study has the 

potential to revolutionize the early detection, response, and monitoring of respiratory diseases. By 

combining the strengths of FMCW radar technology and machine learning algorithms, this system 

offers an efficient means of continuous respiratory monitoring without the need for physical 

contact. The study highlights how it is crucial to balance accuracy and processing times when 

picking the right machine-learning model and cross-validation method for practical use. 

Recommendation 
There is an opportunity to implement this integrated system in everyday healthcare 

settings, including hospitals and healthcare centers. Future research can focus on applying this 

integrated system in healthcare settings and exploring its broader impact on managing respiratory 

diseases. Efforts should be made to integrate this technology as a routine respiratory monitoring 

tool, enhancing overall patient monitoring. For further development, research can be conducted 

regarding the integration of FMCW radar technology and pre-trained machine learning models, 

as demonstrated in this article. In the context of advanced research, focus can be directed towards 

the application of this system in specific scenarios, such as monitoring patients with particular 

respiratory diseases or in different environmental conditions. This research can provide additional 

insights into the utility and limitations of the system. 
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