

Web-Based Employee Performance Assessment Application with SMART method: An Agile Approach in the Context of the Smartphone Market

Theodore Frederick¹, Jansen Wiratama², Fransiscus Ati Halim³

^{1, 2, 3} Department of Information Systems Study Program, Faculty of Engineering and Informatics, Universitas Multimedia Nusantara, Indonesia

Article Information	ABSTRACT		
Article History	Employee performance is essential in determining the company's sustainability, so company leaders must pay attention to employee performance. Many subjective		
Received : December 14, 2023	factors determine employee performance, so performance evaluations are sometimes unfair. One of the companies developing in Indonesia is a smartphone sales company, CV Jala Kencana. As the company develops and the number of		

Revised : December 14, 2023 Revised : December 27, 2023 Accepted : January 03, 2024

Keywords:

Agile, Decision Support System, Employee Performance Assessment, SMART, Web-based

Kata Kunci:

Agile, Decision Support System, Employee Performance Assessment, SMART, Web-based

ABSTRAK

Kinerja karyawan berperan penting dalam menentukan keberlangsungan perusahaan, sehingga pimpinan perusahaan harus memperhatikan kinerja karyawan. Banyak faktor subjektif untuk mengetahui kinerja karyawan, sehingga penilaian kinerja terkadang tidak adil. Salah satu perusahaan yang berkembang di Indonesia adalah perusahaan penjualan smartphone yaitu CV Jala Kencana. Seiring dengan perkembangan perusahaan dan jumlah karyawan yang semakin bertambah, timbul permasalahan dalam penilaian kinerja karyawan yang belum terukur. Agar penilaian kinerja karyawan dapat lebih objektif maka diperlukan suatu aplikasi sistem pendukung keputusan yang dapat membantu menilai kinerja karyawan. Metode Agile SDLC digunakan dalam perancangan aplikasi penilaian kinerja karyawan berbasis website. Kemudian, untuk fitur penilaian kinerja karyawan digunakan metode Simple Multi-Attribute Rating Technique (SMART), dan penerapan enkripsi SHA512 pada database penilaian kinerja karyawan yang tidak dapat dimanipulasi. Penelitian ini menghasilkan aplikasi penilaian kinerja karyawan berbasis web dengan fitur untuk menilai kinerja karyawan secara objektif berdasarkan kriteria yang telah ditentukan.

employees increases, problems arise in assessing employee performance that have

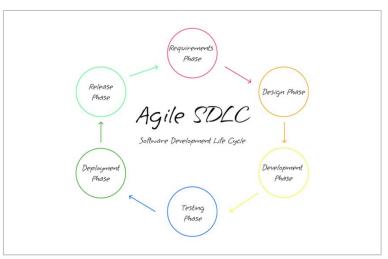
yet to be measurable. So that employee performance assessments can be more

objective, a decision support system application is needed that can help assess

employee performance. The Agile SDLC method is used in designing website-based employee performance assessment applications. Then, for the employee performance assessment feature, the Simple Multi-Attribute Rating Technique (SMART) method is used, and SHA512 encryption is applied to the employee performance assessment database, which cannot be manipulated. This research produces a web-based employee performance assessment application with features to assess employee performance objectively based on predetermined criteria.

Corresponding Author:

Jansen Wiratama Information Systems, Faculty of Engineering and Informatics, Universitas Multimedia Nusantara. Scientia Garden Jl. Boulevard Gading Serpong, Kab. Tangerang-Banten, 15810. Email: jansen.wiratama@umn.ac.id



INTRODUCTION

Employee performance is essential in determining the success of a company or agency (Helal, 2022). For this reason, companies need to strive to improve employee performance by using a reward system for employees with good performance, such as salary increases, promotions and so on (Asriani et al., 2020). Even so, problems often occur in the performance appraisal process, especially when the appraisal does not occur correctly due to significant quantity problems or favouritism from higher-ups (subjective). This can cause a risk of decreasing morale for other employees and can be dangerous for the company (Wilson, 2019). Performance appraisals must be accompanied by appropriate methods to avoid making inappropriate decisions with more human factors or subjectivity than objectivity (Baidawi, 2018). In overcoming this, it is necessary to have a decision support system in assessing employee performance (Sadewa, 2017; Suryasari et al, 2022).

CV Jala Kencana is a company that runs a sales business in the field of cellphone sales with hundreds of employees spread across several stores with five divisions, one of which is the sales division, which will be the focus of this research. Until now, CV Jala Kencana itself has used assessments based on presence and other subjective factors. This subjectivity in employee assessments can lead to risks on the performance appraisal side, especially as the company continues to grow and may increase the number of employees (da Silva et al., 2021; Lillis et al., 2021). Subjective employee assessments have the potential to be a problem for company development, especially in the field of Human Resources. Therefore, this research will focus on the scope of employee assessment to make it more objective through an employment assessment application.

Previous studies have produced computer-based decision support systems for employee performance assessment (Ramadhan et al., 2023). In this research, the Simple Multi-Attribute Rating Technique (SMART) method is used for assessment based on predetermined criteria and weights. Then, SHA512 encryption increases security in Database Management Systems (DBMS). In the final stage of this research, testing was carried out on the web-based application using the User Acceptance Test (UAT) method to test the application's functionality (Afrianto et al., 2021).

RESEARCH METHODS

Figure 1. Agile SDLC phase

This research uses the Agile method as a System Development Life Cycle (SDLC). Agile methodology can carry out short-term system development by requiring rapid adaptation from developers to changes in any form (Dennis et al., 2020). Apart from that, this Agile method also provides more involvement to users by asking for feedback from application users, which is in line with the use of decision support systems where the creation of decision support systems depends on the users' needs. The agile method is also continuous, where applications with functionality can be developed over time, with new versions released per iteration according to the needs of

decision support system users (Al-Saqqa et al., 2020). Even so, the Agile method as an SDLC does not have a testing or application testing section, so to test the application, Black Box Testing will be used as a testing method after the application is finished being built (Lestari, 2019). Application users, namely Supervisors, will use Black Box Testing to see whether the application is running according to the company's needs without knowing the inside of the application (T. & Hidayat, 2018).

For the employee performance assessment process, the Simple Multi-Attribute Rating Technique (SMART) method will be used using five main assessment criteria: understanding of the material, sales, presence, work discipline and teamwork. The SMART method was chosen as the assessment method because of its simplicity, whereas SMART for the calculation and implementation process is much faster than other methods because it is simpler (Supratman, 2021). Besides, SMART is more suitable for qualitative than quantitative assessments, following research on employee performance assessment, where the criteria are primarily included in qualitative assessments. The calculation model used by the SMART method is as follows (Asegaff et al., 2022):

 $U(ai) = \sum_{j=1}^{w} WjUi(ai)$

(1)

The following is a description of each attribute in the calculation model: W_j = Weighting value of the j-th criterion and K- Criteria U(ai) = Utility value of the 1st criterion for the ith criterion i = 1,2,n

From a security perspective, SHA512 will be used to replace the default encryption on the MySQL database used in the research, namely SHA1, where SHA512 can produce a hash value that is longer than SHA1 with a hash length of 512 bits and apart from that, SHA512 is also resistant to collision attacks (Santoso et al., 2019).

RESULTS AND DISCUSSION

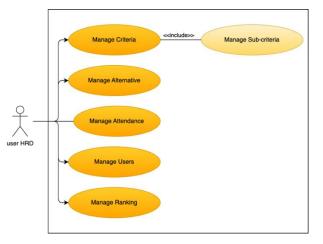


Figure 2. Use case diagram of Web-based Employee Assessment application.

In the first stage (requirements phase) of designing a website-based employee assessment application, an interview was conducted with the Human Resource Development Manager of CV, Jala Kencana, as a resource person to obtain information regarding the obstacles faced in the employee performance assessment process. Next, from the results of processing the constraint information, proceed to the second stage, namely the design phase using UML to produce a use case diagram, which helps know the primary function of the application to be created.

There are five use cases in the use case diagram shown in Figure 2, namely managing criteria, managing alternatives, managing attendance, managing users, and managing ranking. The employee assessment application users are the HRD Manager of CV Jala Kencana. To

determine the criteria, users can set them through the "manage sub-criteria" feature, which is included in the "manage criteria" use case. Next, in the development phase, the third stage in the Agile SDLC method, the SMART method, is implemented, which functions to produce employee assessment calculations using the criteria to be determined. The following is Table 1, which displays the data used in the research in tabular form for calculations using the SMART method to determine the best alternative:

Table 1. Weight and criteria on SMART implementation

No	Criteria	Weight score	Weight normalization
1	Product knowledge (C1)	15%	0.15
2	Sales achievement (C2)	25%	0.25
3	Attendance (C3)	25%	0.25
4	Work discipline (C4)	20%	0.20
5	Teamwork (C5)	15%	0.15

No	Sub-criteria	Score
1	5 (Very good)	100
2	4 (Good)	80
3	3 (Enough)	60
4	2 (Poor)	40
5	1 (Very poor)	20

Table 2. Table Sub-criteria score

Table 3. Sub-criteria definition

Criteria	Sub-criteria	Score
Product knowledge	Do not understand at all	1
(C1)	Difficulty in explaining	2
	Understand the basics	3
	Understands well and can answer questions	4
	Understand the whole and explain the advantages of the product	5
Sales achievement	<=10 per month	1
(C2)	20-30 per month	2
	40-50 per month	3
	60-70 per month	4
	>100 per month	5
Attendance (C3)	<17 days	1
	17-19 days	2
	20	3
	21-23	4
	24	5
Work discipline	Never on time	1
(C4)	Rarely on time	2
	Arrive on time	3
	Arrive on time and leave on time	4
	Arrive on time, rest on time, and leave on time	5
Teamwork (C5)	Does not coordinate with other employees	1
	Lack of coordination with other employees	2
	Just coordinate with other employees	3
	Coordinate well	4
	Coordinated very well without any problems	5

	Table 4. Properness score					
No	Grade	Total Score				
1	Very worthy	>= 80				
2	Worthy	>= 55				
3	In Consideration	>= 35				
4	Not worthy	< 35				

Table 1 shows the weights and criteria applied using the SMART method. There are five criteria, namely: Product knowledge (C1), Sales achievement (C2), Attendance (C3), Work discipline (C4), and Teamwork (C5), with weights that have been determined according to their portions in Table 1. Next, Table 2 and Table 3 explained the sub-criteria score and definition to clarify the score for each existing sub-criteria. Then, in Table 4, the appropriateness score for employee assessment is described. In the development phase, apart from implementing the Simple Multi-Attribute Rating Technique (SMART) method in a website-based application, a website user interface was also designed, which can be used to input employee assessment results. The following are several views of the website-based application user interface that has been created:

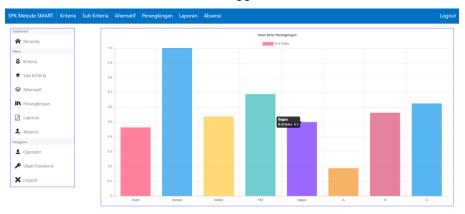


Figure 3. User interface dashboard

Krit	eria		Tambah
Total Kuran Show	1.000 g::0.000 10 entries	Se	arch:
ID	Kriteria	Bobot	Aksi
1	Penampilan	0,150	🖋 Edit 🛛 🛞 Hapus
2	Penjualan	0,250	🖋 Edit 🛞 Hapus
3	Presensi	0,250	🖋 Edit 🛞 Hapus
4	Materi	0,200	✓ Edit
5	Teamwork	0,150	🖋 Edit 🛞 Hapus
Prev	ious 1 Next		Showing 1 to 5 of 5 entries

Figure 4. Manage criteria user interface.

SPK Metode SMART Kriteria	Sub Kriteria	Alterna	itif Perangkingan	Laporan		Logout
Dashboard		Sub	Kriteria			Tambah
Menu & Kriteria		Show	10 entries			Search:
Sub Kriteria		Nof	Kriteria		Sub Kriteria	
 Alternatif Perangkingan 		1	penampilan		1 sangat kurang 🖉 🛞 2 kurang 🦵 🔞 3 cukup 🥂 🔞 4 baik 🦓 🚳 5 sangat baik 🥖 🚳	
E Laporan Pergguna Coperator		2	public speaking		1 sangat kurang 🖉 🛞 2 kurang 🎢 🚳 3 cukup 🦉 S 4 balk 🎢 S 5 sangat balk 🦉 S	
 Ubah Password Logout 		3	absensi		1 sangat kurang 🧪 🛞 2 kurang 🥕 🕲 3 cakup 🖉 🍪 4 baik 🎢 🕲 5 sangat baik 🧨 🕲	
		4	materi		1 sangat kurang 🖉 🛞 2 kurang 🦉 🕲 3 cukup 🦉 🎯 4 bak 🦉 🕲 5 sangat bak 🦿 🕲	
		5	team work		1 sangat kurang 🖉 🛞 2 kurang 🎢 🕲 3 cakup 🖉 4 bak 🖉 🛞 5 sangat bak 🦿 🛞	
		Previ	us 1 Next			Showing 1 to 5 of 5 entries

Figure 5. Manage sub-criteria user interface.

The dashboard user interface in Figure 3 shows the ranking results of employees who work at CV Jala Kencana. The ranking is displayed using a bar chart as a visualization to make it easier

to see employee performance rankings. Apart from that, Figures 4-9 also show several user interfaces that users can use to manage Criteria, Sub-criteria, Attendance, and Ranking. The user interface designed in this website-based application uses buttons with contrasting colors to make it easier for users to use. This user interface can be accessed on a limited basis via localhost.

SPK Metode SMART Kriteria S	Sub Kriteria A	lternat	if Perangkingan Laporan	Logout
Dashboard		Alte	matif	Tambah
Kriteria	:	Show	10 entries Search:	
Sub Kriteria		IDŢ	Alternatif	Aksi
AlternatifPerangkingan		1	peserta A	Edit Hapus
Laporan Pergguna Loperator		2	peserta 8	✓ Edit ⊗ Hapus
 Ubah Password Logout 		3	peserta C	Edit 🛞 Hapus
		4	peserta D	✓ Edit ⊗ Hapus
		5	peserta E	Edit Hapus
		Previo	us 1 Next	Showing 1 to 5 of 5 entries

Figure 6. Manage alternative user interface.

Ał	Absensi							
Sho	Show 10 entries Search:							
ID	D†	Absensi	Total Masuk	Total Absent	Aksi			
1		Rusli	13	10	⊥ Upload Data ☑ View Absensi			
2		Ahmad	0	0	⊥ Upload Data			
3	1	Bobby	0	0	⊥ Upload Data iiii View Absensi			
4		Fitri	0	0	⊥ Upload Data			
5		Bagus	0	0	± Upload Data			

Figure 7. Manage attendance of employee.

shboard	Dawa							Eksekusi Perangkingan
🎓 Beranda	Pera	ngkingan						CKSekusi Ferungkingun
enu 🙁 Kriteria	Show	10 entries					Search:	
Sub Kriteria	Noţ	Alternatif	penampilan	public speaking	absensi	materi	team work	Aksi
➢ Alternatif	1	peserta A	3	4	4	3	4	∕ ⊗
🖹 Perangkingan	2	peserta B	4	5	5	4	4	/ 8
ngguna Qperator	3	peserta C	5	5	5	3	3	/ 8
Ubah Password	4	peserta D	4	3	3	3	3	/ 8
K Logout	5	peserta E	3	3	3	3	3	

Figure 8. Ranking of the employee

The user interface in Figures 8 and 9 displays the results of employee performance rankings using the SMART method in website-based applications. After the third phase (development phase) was successfully carried out, the application was tested using the User Acceptance Test (UAT) method in the testing phase, the fourth phase of implementing Agile SDLC. Testing is

carried out on several features (Criteria testing, alternative testing, attendance testing, and raking testing) to ensure their function runs according to the requirements that have been created. The following tables from Table 5-8 are the test results carried out by users (HRD Managers and staff) for each feature in the application.

hboard Beranda	Ekse	kusi Perangki	ngan					Kemba
🗴 Kriteria	Show	10 entries					Search:	
Sub Kriteria	Not	Alternatif	penampilan	public speaking	absensi	materi	team work	Hasil
➢ Alternatif	-	Bobot	0,190	0,214	0,190	0,214	0,190	-
N Perangkingan	1	peserta A	0,000	0,107	0,095	0,000	0,190	0,393
	2	peserta B	0,095	0,214	0,190	0,214	0,190	0,905
🖞 Laporan	3	peserta C	0,190	0,214	0,190	0,000	0,000	0,595
operator	4	peserta D	0,095	0,000	0,000	0,000	0,000	0,095
	5	peserta E	0,000	0,000	0,000	0,000	0,000	0,000
Ubah Password	Provid	ous 1 Next					s	howing 1 to 6 of 6 entr

Figure 9. Ranking results of the employee

Table 5 is a criteria test carried out by the HRD Manager to test the criteria management function in the application. It is declared accepted from the input and output results, which means it is in accordance with the HRD Manager's needs. Then, in Table 6, alternative testing is carried out to test several other processes, such as adding alternatives, editing new data, deleting data, and so on. Likewise, Table 7 and Table 8 test employees' attendance features and employees' ranking.

Table 5. Criteria testing								
Input	Expected Output	Observed	Conclusion					
Add new criteria by	The system has	The process of saving	(√) Accepted					
entering the correct name	successfully saved the	the criteria and weights	() Rejected					
and the correct number of	criteria and their new	is successful and						
weights and not	weights.	displayed on the criteria						
exceeding 100%.		page and other criteria.						
	Criteria testing on inva	alid test case						
Enter criteria with a	The system will give a	The saving process is	(√) Accepted					
weight value that makes	popup message that the	unsuccessful, and the	() Rejected					
the total weight above	maximum total weight is	system displays a popup						
100%.	100% and return to the	message regarding the						
	start page without saving	maximum weight.						
	the criteria and weight.							

Table 6. Alternative testing			
Input	Expected Output	Observed	Conclusion
Alternative testing on correct data			
Add new alternative	The system can store	The CRUD process runs	() Accepted
values, edit the new data,	alternative data, change	well until the newly	() Rejected
and delete it.	and save it, and delete it	created alternative value	
	from the database.	is deleted again.	
Alternative testing on incorrect data			
Add a new alternative	The system will reject	The saving process is	($$) Accepted
value with numbers that	saving and return to the	unsuccessful and	() Rejected
are not filled in, then	initial alternative page.	returns to the	
immediately press the	1.0	alternative page.	
submit button.			

Input	Expected Output	Observed	Conclusion	
Attendance testing on correct data				
Uploading attendance data files in the correct format.	The system calculates the number of attendance and absences based on the data in the file and displays them in green and red on the calendar.	Uploading the file is successful, and the system displays the number of attendance and absences from the alternatives for which the data is entered. The calendar also displays precise data.	(√) Accepted () Rejected	
Attendance testing on incorrect data				
Uploading a file in a different format to the example provided by the application.	The system will still accept it, but the results will not be displayed because it cannot detect the data in the file.	The upload process is successful, but the total attendance, presence columns, and calendar remain the same.	(√) Accepted () Rejected	

Table 7. Attendance testing

Table 8. Ranking testing				
Input	Expected Output	Observed	Conclusion	
Ranking testing on correct data				
Enter sub-criteria for each existing criterion for the two alternatives. The first alternative with all sub- criteria values is 1, and the second is 2.	The system can calculate employee performance scores based on the input sub-criteria, and the final score for alternative 2 is more significant than alternative 1.	The system has succeeded in calculating the final score for employee performance, and the performance score for Alternative 2 is more significant than Alternative 1.	(√) Accepted () Rejected	
Ranking testing on incorrect data				
Do not set a sub-criteria value for the newly created alternative and immediately press execution ranking.	The system will provide a default sub- criteria value of 1 for each criterion, and the ranking execution can continue.	Ranking execution continues, filling the alternative with a default value of 1 for each criterion.	(√) Accepted () Rejected	

Input	Output
9e7c97801cb4cce87b6c02f98291a6420e6400a	P@ssword
d	
	Encrypt >
	Decrypt >
	Elapsed Time
	0.413s
	Trial Count
	21K

Figure 10. Decrypt time processing using SHA-1

Apart from testing application functionality using the UAT method, comparative testing of SHA-512 and SHA1 hashing on user passwords was also carried out. SHA-512 hashing in the DBMS is done to increase user password security. Time comparisons were made for the decrypt activity of passwords using SHA512 hash encryption and the default hash encryption for MySQL, namely SHA1 hash encryption. The tool used is from the website <u>https://10015.io/tools/</u> where

the time required to decrypt the two encryptions will be compared. The following are the results obtained in the decrypt process using the decrypt tool on the website (the password value for both cases is the same) in Figure 10.

Input	Output
9b5e3900e37a1c03277f426ce76c62c7672544e	P@ssword
54a373d24c937dd10b81cec1e4554db59823f77e	
3b8bb0da5f2eb9130b75ad427fec65127143ee58	
801ef8f48	
	Encrypt >
	Decrypt >
	Elapsed Time
	0.841s
	Trial Count
	21K

Figure 11. Decrypt time processing using SHA-512

Based on the decrypt time test shown in Figures 10 and 11, it was found that the decryption process for the two SHA-1 and SHA-512 hashes had different time differences. SHA-1 takes 0.413 seconds, while SHA-512 takes longer, namely 0.841 seconds. The decrypt process on SHA-512 takes almost twice as long as SHA-1 for simple text. This comparison of decryption based on time proves that SHA-512 requires a slower time, so it is relatively better at maintaining data security in the database than SHA-1, which is faster to decrypt.

CONCLUSION

Conclusion

This research has produced a website-based application to assess employee performance using the Agile SDLC method. The user can set weights and criteria, and assessments using the SMART method are running correctly in the application to make employee performance assessment results more objective. The implementation of SHA512 in the DBMS resulted in better data encryption performance than the default encryption in the DBMS. Based on the UAT testing results, all the application features can run according to user needs.

Recommendation

Even though a website-based application for assessing employee performance has been successfully created and used, there are still several limitations in this research, which provide suggestions for future research. It is recommended that application development be hosted, and domains be accessed online anywhere and anytime. Then, develop the User Interface to make it more user-friendly and improve the User Experience.

ACKNOWLEDGEMENT

We extend our heartfelt gratitude to Universitas Multimedia Nusantara for their invaluable support, which played a pivotal role in the successful completion of this research endeavor. Their substantial contribution was instrumental in achieving our objectives, and we are deeply grateful for their unwavering assistance.

REFERENCES

- Afrianto, I., Heryandi, A., Finadhita, A., & Atin, S. (2021). User Acceptance Test For Digital Signature Application InAcademic Domain To Support The Covid-19 Work From HomeProgram. *International Journal of Information System & Technology Akreditasi*, 5(3), 270– 280. https://tt-el.my.id/.
- Al-Saqqa, S., Sawalha, S., & Abdelnabi, H. (2020). Agile software development: Methodologies and trends. *International Journal of Interactive Mobile Technologies*, 14(11), 246–270. https://doi.org/10.3991/ijim.v14i11.13269

- Asriani, A., Lorensa, D., Saputri, F., & Hidayati, T. (2020). the Effect of Compensation and Motivation To Employee Performance. *International Journal of Economics, Business and Accounting Research (IJEBAR)*, 4(01), 166–172. https://doi.org/10.29040/ijebar.v4i01.933
- Asegaff, A. R. M. H. N., Rosyadi, M. D., & Ramadhani, B. (2022). Implementation of the Smart Methods (Simple Multi-Attribute Rating Technique) for Location Selection of Industrial Work Practice and Monitoring in Vocational School Students. Jurnal Teknologi Informasi Universitas Lambung Mangkurat (JTIULM), 7(2), 141-150.
- Baidawi, P. a. T. (2018). Penerapan Metode Topsis Pada Peningkatan Kinerja Karyawan. *Journal Inform*, *5*(1), 287–294.
- da Silva, B. S., de Araujo, F. O., Abreu, C. G. S., & Faria, M. C. S. (2021). Subjectivity in megaprojects: a support strategy for social risk measurement processes. *Innovar*, *31*, 115–128. https://doi.org/10.15446/innovar.v31n81.95578
- Dennis, A., Barbara, W., & David, T. (2020). Systems Analysis and Design: An Object-Oriented Approach with UML (6th ed.) (J. Manias (ed.); Sixth). Wiley Global Education US. https://umnlibrary.vitalsource.com/books/9781119561217
- Sandewa, F. (2019). Faktor-faktor yang mempengaruhi kinerja pegawai di Kabupaten Banggai Kepulauan. *Jurnal Clean Goverment*, 1(2), 90-110.
- Helal, I. (2022). The Impact of Performance Appraisals on Employee Productivity: The Case of the Lebanese Retail Sector. *European Journal of Business and Management Research*, 7(5), 109–117. https://doi.org/10.24018/ejbmr.2022.7.5.1616
- Lestari, L. (2019). Aplikasi Pengolahan Data Posyandu Berbasis Web (Studi Kasus: Posyandu Cipagalo). 5(2), 1191–1202.
- Lillis, A. M., Malina, M., & Mundy, J. (2021). The role of subjectivity in mitigating incentive contracting risks. *The Accounting Review*. https://doi.org/10.2308/TAR-2017-0652
- Ramadhan, M. C., Wiratama, J., & Permana, A. A. (2023). A Prototype Model On Development Of Web-Based Decision Support System For Employee Performance Assessments With Simple Additive. 10(1), 25–32. https://doi.org/10.30656/jsii.v10i1.6137
- Santoso, M. H., Girsang, N. D., Siagian, H., Wahyudi, A., & Sitorus, B. A. (2019). Perbandingan Algoritma Kriptografi Hash MD5 dan SHA-1. *Seminar Nasional Teknologi Informatika*, 2(1), 54–59.
- Supratman, E. (2021). Penggunaan Metode Simple Multi Attribut Rating Technique (Smart) Pada Sistem Penunjang Keputusan Rekomendasi Jurusan Studi Kasus : Siswa Smk N 5 Palembang. *Jurnal Informanika*, 7(2), 105–112.
- T., & Hidayat, M. (2018). Pengujian Sistem Informasi Pendaftaran dan Pembayaran Wisuda Online menggunakan Black Box Testing dengan Metode Equivalence Partitioning dan Boundary Value Analysis, *Jurnal Teknik Informatika*, 6(1), 2252.
- Wilson, B. (2019). Manajemen Sumber Daya Manusia.
- Suryasari, S., Wiratama, J., & Desanti, R. I. (2022). The Development of Web-based Sales Reporting Information Systems using Rapid Application Development Method. *Ultima InfoSys: Jurnal Ilmu Sistem Informasi*, 13(2), 110-116.