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Cooperative Active Learning based Dual Control
for Exploration and Exploitation in Autonomous

Search
Zhongguo Li, Member, IEEE, Wen-Hua Chen, Fellow, IEEE

Jun Yang, Fellow, IEEE, and Cunjia Liu, Member, IEEE

Abstract—In this paper, a multi-estimator based computation-
ally efficient algorithm is developed for autonomous search in
an unknown environment with an unknown source. Different
from the existing approaches that require massive computational
power to support nonlinear Bayesian estimation and complex
decision-making process, an efficient cooperative active learning
based dual control for exploration and exploitation (COAL-
DCEE) is developed for source estimation and path planning.
Multiple cooperative estimators are deployed for environment
learning process, which is helpful to improving the search
performance and robustness against noisy measurements. The
number of estimators used in COAL-DCEE is much smaller than
that of particles required for Bayesian estimation in information-
theoretic approaches. Consequently, the computational load is
significantly reduced. As an important feature of this study, the
convergence and performance of COAL-DCEE are established
in relation to the characteristics of sensor noises and turbulence
disturbances. Numerical and experimental studies have been
carried out to verify the effectiveness of the proposed framework.
Compared with existing approaches, COAL-DCEE not only
provides convergence guarantee, but also yields comparable
search performance using much less computational power.

Index Terms—Autonomous search, active learning, dual con-
trol, exploration and exploitation, goal-oriented control systems.

I. INTRODUCTION

SEEKING a release of hazardous materials (including
chemical, biological, radiological and nuclear materials)

is of great importance in many applications such as disaster
management and environment protection [1]. It is undeniably
true that information plays a central role in source term
estimation and tracking. Roughly speaking, information col-
lection is mainly achieved by two type of approaches: static
sensors pre-deployed onsite and dynamic sensors equipped
on mobile platforms [1–3]. The former approach is costly
and only practicable for some industries of potential risks,
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e.g., nuclear power plant. Owing to the rapid development
of control and automation technologies, autonomous search
using unmanned vehicles has attracted considerable research
interest, and great successes have been demonstrated through
experimental studies, e.g. [4–7].

Most of autonomous search algorithms can be classified
into two categorises: control-driven and information-driven
approaches. The former aims to reduce the distance between
estimated source position and search agent, which corresponds
to classic control problems, while the latter intends to explore
the environment to acquire better source estimation by optimis-
ing some information gains, such as entropy, Kullback-Leibler
divergence and variance [5, 7, 8]. Typical control approaches
include extremum seeking [9] and model predictive control
(MPC) [7]. Information-driven approaches have been exten-
sively studied in recent years owing to their strong robustness
against measurement noise and sparsity, such as Entrotaxis
[10] and Infotaxis [3, 11].

More recently, a control-theoretic approach has been for-
mulated in [7] to balance two the existing approaches, named
as dual control for exploration and exploitation (DCEE). In
that framework, the objective is two-fold: reconstructing more
accurate knowledge of the operational environment (informa-
tion objective) and navigating the search agent towards the
source (control objective). However, similar to all existing
information-theoretic approaches, the proposed DCEE frame-
work still requires intensive computational resources and lacks
stability and convergence analysis. The computational load
is mainly caused by the optimisation loop and its entan-
gled relationship with nonlinear particle filters, since at each
iteration the optimisation-based path planner is required to
interact with the inference engine in order to calculate the
predicted posterior of the source and environment parameters
for all possible actions. Currently, a limited set of moving
directions and fixed length of step sizes are utilised to en-
sure the computational feasibility of those algorithms [4–7].
Nonetheless, the implementation is still carried out by remote
computation centres rather than onboard processors [4–7]. In
[12], a sampled-based path generation method using RRT*
path planner has been integrated with dual control, which can
effectively expand the action set but still suffers from intensive
computational load.

Although extensive experimental results have manifested
the effectiveness of those algorithms (see [7, 12]), theoretical
properties such as convergence and performance have not
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yet been systematically investigated. Actually, it has been
a common issue along with IPP and DCEE. The coupling
between path planning and environment learning, together
with noisy measurements, turbulence disturbances and their
inherent stochastic nature, significantly compounds the the-
oretical analysis. The reformulation in DCEE establishes a
useful link between learning and control, which provides an
access to extensive analytical tools in control and learning
theory.

In fact, there is a significant difference between DCEE and
traditional control. Conventionally, a control strategy requires
a predefined trajectory or setpoint, for example, output reg-
ulation [13], path following [14, 15] and model predictive
control [14, 16]. In autonomous search, the source position is
unknown and consequently there is no direct path that can lead
the agent to the unknown source. To solve such a problem, it
involves dual objectives: one is to learn the source parameters
by actively probing the operational environment (exploration),
and another is to plan the search path leading the agent to the
believed source location (exploitation). From this perspective,
IPP can be viewed as a pure exploration strategy aiming at
learning more accurate source position, while control-driven
approaches use a pure exploitation strategy targeting at moving
close to current estimation of the source [17, 18]. Passive
learning methods, that is, estimating the source properties by
accidentally collected data points without intention to improve
the the estimation performance, are very unreliable and inef-
ficient due to the presence of disturbances and uncertainties
in autonomous search of airborne hazardous materials (e.g.,
intermittent sensor measurements caused by local turbulence
and sensory noises). On the other hand, the active learning
mechanism intentionally collects those data that are mostly
conducive to improving the estimation performance, and thus
it can potentially enhance learning outcomes in uncertain en-
vironments. DCEE achieves a natural balance between active
exploration and efficient exploitation, as it is derived from
a physically meaningful objective. Noticeable performance
improvement has been demonstrated by extensive simulations
and experimental results compared with the other approaches
like IPP and MPC [7].

Introducing active learning requires an information measure
for uncertainty quantification. In general, the performance of
single estimator (such as observer and learning machine) is
often severely influenced by the initialisation and setting of
the individual estimator, for example, state estimation [19],
disturbance observer [20] and parameter adaptation [21].
Population-based methods are often employed in large-scale
optimisation and learning problems such as particle swarm
optimisation [22], evolutionary algorithm [23] and multi-
agent based learning [24]. Surprisingly, very few studies have
attempted to use multiple estimators/observers for control
problems. In autonomous search, deploying multiple parallel
estimators can eliminate undesirable behaviours caused by
improper random initialisation of an individual, and also it
allows us to make full use of prior probability density function
(PDF) of source parameters, e.g. the range of wind speed and
direction from local weather forecast. More importantly, it
provides a means for quantifying uncertainty associated with

source estimators, which is of great importance to empower
the search agent with dual capability of exploration and ex-
ploitation. In the machine learning community, methods such
as hyperspherical energy minimisation [25] and distribution-
shattering strategy [26] have been designed for active learning.
Those dual effects become increasingly important as modern
control systems are required to accomplish high-level goals
subject to environmental uncertainties [27]. We name this type
of intelligent system as goal-oriented control system (GOCS),
and regard it as the key for improving the level of autonomy.
Recent success of active learning in robotics and control
applications has been reported in many related works [28–30].

Inspired by the DCEE framework [7], our previous
study [31] has formulated the autonomous search as a learn-
ing based control problem, namely concurrent learning for
exploration and exploitation (CLEE). The learning process,
supported by multiple estimators, is intended to establish the
source and environment knowledge based on all available
measurements and prior information. The control action is
empowered with dual capability that exploits the acquired
knowledge from the estimators and in the meanwhile explores
the environment to reduce predicted future uncertainty. Our
main motivation of devising multiple learners in CLEE [31]
was to provide a means to quantify the estimation uncertainty
without using computationally intensive particle filters in IPP
and DCEE. From the simulation results, we noticed that
CLEE can provide satisfactory performance under good sensor
conditions, while its resilience to intermittent sensor dropouts
and unknown environment parameters is quite limited. In
the concurrent learning approach, some estimators may be
occasionally confined to local optimum, leading to degraded
estimation/search performance and even failed search.

Motivated by the above observations, this paper further
develops a cooperative active learning based dual control,
named as COAL-DCEE for short, which not only holds
considerable computational efficiency as the CLEE approach,
but also shares strong robustness against measurement noises
as IPP and DCEE methods. More importantly, rigorous conver-
gence and performance analysis of the proposed COAL-DCEE
will be analysed under mild assumptions. To our knowledge,
there is no existing study that has endeavoured to examine
convergence properties for dual control or IPP, except for
our previous attempt in [31]. The introduction of multiple
cooperative estimators enables us to make use of the wide
analytical tools in learning and control for establishing the
convergence of COAL-DCEE. The ensemble based estima-
tion method advocated in this paper is distinct from those
probabilistic or dynamic ensemble estimation approaches ded-
icated for machine learning problems [32, 33]. Existing active
learning based algorithms (e.g., [32, 33]) utilise neural net-
works or ensembles of randomly generated dynamic models
to acquire information about the environment, which makes
it challenging to extract physically meaningful parameters for
the autonomous search problem. The proposed multi-estimator
based ensemble approach makes use of the environment model
and the learned parameters are physically meaningful. In addi-
tion, COAL-DCEE demonstrates its robustness particularly in
incorporating with intermittent and noisy sensor measurements
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arising during airborne source search. We summarise the key
contributions of this paper as follows.

1) COAL-DCEE provides a computationally efficient al-
gorithm for autonomous search problems with dual
effects of exploration and exploitation, which renders
a unified paradigm for control-driven and information-
driven approaches. It embeds an active learning effect
allowing the system to actively explore the unknown
environment to reduce the level of uncertainty.

2) Instead of using computationally expensive particle fil-
ters as in information-driven methods, this paper de-
velops an efficient multi-estimator based ensemble ap-
proach to quantify the estimation uncertainty online
and allow the system to actively explore the unknown
environment with a much reduced computational effort.
It overcomes a major obstacle in a wide application
of the dual control concept in DCEE. It is shown that
we managed to speed up the DCEE implementation by
about 100 times.

3) The convergence guarantee of COAL-DCEE is estab-
lished using control and optimisation theories, and algo-
rithm performance is rigorously analysed under mild as-
sumptions on sensor noises and turbulence disturbances.

4) The proposed COAL-DCEE demonstrates superior
search performance with high computational efficiency.
Both simulation and experimental studies have been
provided to illustrate the advantages of the proposed
algorithm by extensive comparison with existing strate-
gies such as Entrotaxis, MPC and the original version
of DCEE.

The rest of this paper is organised as follows. In Section II,
autonomous source seeking is formulated as a goal-oriented
control problem, and a position-driven dual control framework
is developed by introducing multiple dynamic estimators.
Section III presents the learning-based control algorithm, and
establishes the convergence of COAL-DCEE. In Section IV,
the proposed algorithm is validated using both numerical and
experimental datasets with comparison to existing methods.
Conclusion is drawn in Section V.

II. MODELLING AND FORMULATION

A. Agent Modelling

The focus of this paper is on the high-level decision-
making for autonomous search. It is assumed that the search
agent, such as an unmanned ground robot or aerial vehicle, is
devised with low-level controller that can achieve movement
instructions directed by the high-level decision maker. Hence,
the agent’s dynamics can be represented by

pk+1 = pk + uk + wk (1)

where pk = [pk,x, pk,y, pk,z]
T ∈ Ω ⊆ R3 denotes the position

of the agent at step k, Ω is a compact set of searching
space, uk ∈ U ⊆ R3 is the control action with U being
the admissible set of actions, and wk is the control error.
The control error wk quantifies the position disturbances. For
example, it may be caused by mapping error in the positioning
system and/or the lower level controller mismatch caused by

local disturbance or turbulences. Different from the existing
studies for information-theoretic approaches [4, 7, 10] that
select the actions from a small set of movement directions
with fixed length, the admissible actions U in this paper can
be continuous with arbitrary direction and length.

B. Dispersion and Environment Modelling

Dispersion models are used to calculate the expected con-
centrations at different locations given a set of source and
environment parameters. There have been various dispersion
models proposed for different applications, as summarised
in [34]. In this paper, the isotropic dispersion model will be
utilised for source term estimation, which has demonstrated
great flexibility and efficiency in dynamic source tracking in
many recent studies [4–7]. Given a source Θs := [sT, q]T ∈
R4 at position s = [sx, sy, sz]

T ∈ R3 with a positive release
rate q ∈ R+, the expected concentration at agent’s position
pk ∈ R3 can be obtained by

M (pk,Θs) =
q

4πζs1||pk − s∥
exp

[
−∥pk − s∥

λ

]
× exp

[
− (pk,x − sx)us cosϕs

2ζs1

]
× exp

[
− (pk,y − sy)us sinϕs

2ζs1

] (2)

where environmental parameters are composed of the wind
speed us, wind direction ϕs, diffusivity ζs1, the particle life-
time ζs2, and a composite coefficient λ =

√
ζs1ζs2

1+(u2
sζs2)/(4ζs1)

.

C. Sensor Modelling

Information collection is the key to the decision-making of
source estimation and path planning. In the field of source
seeking, chemical concentration is one of the essential mea-
surement required for most of the algorithms [4, 7, 10, 35].
In some works, the search agent is also required to measure
additional source and environmental parameters, for example,
chemical gradients [36], wind speed and direction [37]. In
this paper, we assume that the agent is equipped with onboard
chemical/biological sensors, which can measure the local con-
centration values. Due to the physical nature of these sensors,
the search agent needs to stay at the current location for a
short period to obtain reliable readings, i.e., the sampling time.
Nevertheless, as a result of sensor noises and local turbulence
disturbances, information collected is often noisy and sparse.
The sensory measurement can be modelled as

z(pk) =

{
M (pk,Θs) + vk, D = 1
v̄k, D = 0

(3)

where M is the true chemical concentration from the disper-
sion model, D represents either a detection event for D = 1 or
a non-detection event for D = 0, and vk and v̄k are additive
noises. For ease of theoretical analysis, we assume that the
sensor can always receive concentration with additive noises,
i.e., D = 1, but in the simulation and experiment studies we
will examine how the proposed algorithm will behaviour under
non-detection events.
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D. Multi-Estimator Cooperative Learning Based Dual Control
The concentration information collected up to time step k

is denoted by Zk := {z (p1) , z (p2) , . . . , z (pk)}. The pos-
terior distribution of source estimation can be represented by
ρk|k := p (Θ|Zk) at time k, where p(Θ|Zk) is a probability
density function denoting the belief of Θs conditional on
Zk. When the search agent moves to a new position directed
by the control input uk, the one-step-ahead hypothetical
posterior distribution of source estimation will be updated as
ρ̂k+1|k := p

(
Θ|Zk+1|k

)
where Zk+1|k = {Zk, ẑk+1|k} with

ẑk+1|k being the one-step-ahead possible measurement. As a
result, the control input uk will not only affect the future agent
position but also affect the future belief of source location.

Motivated by the above discussion, the control input uk

should be designed to navigate the agent move closer to the
predicted posterior estimation of source location. Therefore,
the goal of COAL-DCEE for autonomous search can be
formulated as the following optimisation problem

min
uk∈Uk

J(uk) = min
uk∈Uk

EΘ

[
Eẑk+1|k

[∥∥pk+1|k − s
∥∥2 |Zk+1|k

]]
subject to pk+1|k = pk + uk + wk.

(4)
By minimising the cost function defined in (4), the control
action uk at current step k will not only change future agent
position pk+1|k, but also result in different concentration mea-
surements ẑk+1|k(pk+1|k). Consequently, the future belief of
the source location and release rate, ρ̂k+1|k := p

(
Θ|Zk+1|k

)
,

is influenced by the available information Zk as well as
predicted future measurement ẑk+1|k(pk+1|k). We can split
the cost function (4) into two terms to reflect the exploration
and exploitation effects, which has been shown in [7].

First, we define the mean of the predicted posterior source
location conditional on Zk+1|k as

s̄k+1|k := E
[
sk+1|k

]
= E

[
s|Zk+1|k

]
(5)

based on which the estimation error with respect to the mean
can be denoted as

s̃k+1|k = s− s̄k+1|k. (6)

Lemma 1 ([7]): For the autonomous search problem with
an unknown release location, the objective function defined
in (4) implicitly contains dual effects for exploration and ex-
ploitation, as reflected by the following equivalent formulation

J(uk) =E
[
∥pk+1|k − s̄k+1|k∥2|Zk+1|k

]
+ E

[
∥s̃k+1|k∥2|Zk+1|k

]
.

(7)

In previous works [7, 12], Bayesian frameworks are used
to approximate the probability distribution of the source pa-
rameters, which are usually computationally expensive. In this
paper, we resort to an efficient ensemble based approximation
method using a group of dynamic estimators. The deployment
of ensemble approximation is motivated by its outstanding suc-
cess in machine learning, e.g., [32, 33]. More justifications on
ensemble-based approximation will be detailed in Remark 7.
When we have a set of N estimators, the dual control problem
for autonomous search can be written as

min
uk∈U

J(uk) = min
uk∈U

[
∥pk+1|k − s̄k+1|k∥2 + Pk+1|k

]
(8)

where

s̄k+1|k =
1

N

N∑
i=1

sik+1|k (9)

Pk+1|k :=
1

N

N∑
i=1

(sik+1|k − s̄k+1|k)
T(sik+1|k − s̄k+1|k)

(10)

with sik+1|k being the predicted source position of the ith
estimator at time k, for i = 1, 2, . . . , N . In this paper,
superscript i denotes the index of the estimators and subscript
k represents the number of time step.

To acquire the source parameters, we follow a similar
idea as in our previous work [31] by resorting to the least
square method. The optimal source term can be obtained by
minimising the difference between evaluated concentration
from the dispersion model and the collected concentration
from sensors, given by

f(Θi
k,pk) =

[
M(pk,Θ

i
k)− z(pk)

]2
(11)

By this formulation, existing techniques in system identifica-
tion and adaptive control can be leveraged [38]. In this paper,
we will use a memory regressor extension based adaptation
method for parameter acquisition.

Remark 1: From the above formulation, it is clear that the
control action uk obtained from the optimisation problem in
(8) has dual effects. Optimising the first term in (8) navigates
the search agent to the believed source location (the mean),
which is related to exploitation. On the other hand, minimising
the second term steers the agent to search over some positions
that can reduce the estimation uncertainty (the variance) of
the estimators since Pk+1|k is the predicted covariance of the
estimation uncertainty.

Remark 2: It should be noted that the value function
defined in (4) is different from [31]. The formulation (4) is
a position-driven optimisation problem, whereas [31] uses a
concentration-driven mechanism. It is observed from previous
studies [6, 7, 12] that the position-driven formulation is more
robust compared with [31]. In Section III, a cooperative active
learning approach will be developed to enhance algorithm
resilience against noises and disturbances. In summary, two
new features, i.e. formulation and algorithm, are introduced to
achieve stronger robustness compared with our previous study
[31], and both of them are validated through empirical results
in Section IV.

Remark 3: In a control system, the level of autonomy can
be measured in terms of the set of goals that the system
is able to accomplish subject to a set of uncertainties [27].
In order to improve system’s autonomy, it is required that
the system can exploit its available knowledge to accomplish
the goals, and at the same time it should be able to explore
the operational environment to reduce knowledge uncertainty.
In some recent works (see, e.g. [14, 39–41]), explicit trade-
off coefficients are introduced on purpose to incorporate the
exploration terms into model predictive control problems. This
inevitably incurs additional efforts in tuning the coefficients to
balance exploration and exploitation, which, as we all know,
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is never a trivial task due to deep and complex interaction
between the system and the uncertain environment. From
Lemma 1, it is clear that the dual effects in COAL-DCEE are
naturally embedded, since they are derived from a physically
meaningful value function in (4).

III. COOPERATIVE LEARNING BASED DUAL CONTROL FOR
EXPLORATION AND EXPLOITATION

In this section, we will propose a cooperative learning based
dual control algorithm for autonomous search problems. Then,
we analyse the convergence and steady-state performance of
the cooperative source estimators where noises and distur-
bances will be taken into consideration. Those results will then
be used to establish the convergence of the overall algorithm.

A. Algorithm Development

Now, we present the gradient-based learning algorithm for
the source term estimation and path planning. Inspired by
the memory based adaptation [38, 42] and the concurrent
learning [31], we propose a cooperative ensemble estimation
method, given by

Θi
k =Θi

k−1 − ηik−1

k−1∑
t=k−q

∇̃Θf(Θi
k−1,pt)

− τ ik−1(Θ
i
k−1 − Θ̄k−1), ∀i = 1, 2, . . . , N

(12)

where ∇̃f(Θi
k−1,pt) denotes the perturbed gradients of the

least square function under sensor noises, q is the number of
past measurements used in memory extension, and Θ̄k−1 is
the nominal estimation, defined as

Θ̄k−1 =
1

N

N∑
i=1

Θi
k−1. (13)

The path planning is given by

pk+1 = pk + uk + wk

uk = −δk
[
∇pCk+1|k +∇pPk+1|k

] (14)

where Ck+1|k = ∥p− s̄k+1|k∥2 denotes the exploitation term
in the dual objective (8), and ηik−1, τ

i
k−1, δk ∈ R+ are constant

step sizes to be designed. It should be noted that ∇pCk+1|k
and ∇pPk+1|k are pure prediction based on current estimation
and model without noises. In essence, algorithms (12), (13)
and (14) use gradient descent methods by which the source
estimators converge to the true parameters that minimise the
least square function in (11) and the agent moves towards the
believed position of a release.

Remark 4: When updating the source parameters using
(12) and (13), a coupling term Θ̄k is introduced. This global
coupling between the individual estimator and the ensemble
average is conducive to improving the estimation perfor-
mance by avoiding undesirable contractions to local optimal
solutions [1]. However, the cooperation among estimators
significantly complicates the theoretical analysis on algo-
rithm convergence and performance. The cooperative learning
framework, in conjunction with the analytical tools developed
later, forms a new contribution of this study, as compared with
our previous work in [31].

The overall implementation structure of COAL-DCEE has
been summarised in Algorithm 1. It consists of an initialisation
process and an iteration loop. From step 1 to 3, the source es-
timators and search agent are initialised according to available
prior knowledge. During the iteration process, the agent will
first collect concentration measurement at the current position,
and then use new information to update N cooperative estima-
tors as in step 6. To obtain the covariance Pk+1|k, we leverage
the classical principle of predicting covariance estimation in
extended Kalman filters, which has been elaborated in [31].
Based on the predicted future covariance, the search agent
plans its next movement using gradient descent algorithm
in step 9. The search process is terminated if the source is
successfully identified or the budget is approached.

Algorithm 1 Overall structure of COAL-DCEE.
Initialisation:

1. allocate the number of estimators N
2. conduct a number of q initial samples (pi, z(pi)) in-

dexed by i = −q + 1,−q + 2, . . . , 0
3. initialise agent’s position p0 and prior knowledge of the

source parameter Θi
0 for all i = 1, 2, . . . , N

Iteration:
4. set k := k + 1
5. collect the concentration reading zk(pk) from the sensor

at position pk

6. for i = 1 : N
update the estimated source terms by

Θi
k =Θi

k−1 − ηik−1

k−1∑
t=k−q

∇̃Θf(Θi
k−1,pt)

− τ ik−1(Θ
i
k−1 − Θ̄k−1)

Θ̄k−1 = 1
N

∑N
i=1 Θ

i
k−1

end for
7. calculate current estimation covariance

Pk|k = diag
(
(sik − s̄k)(s

i
k − s̄k)

T
)

8. predict future covariance as a function of pk+1|k

Fk+1 = col

(
∂f
∂M

∂M
∂p

∣∣∣
pk+1|k,Θ

i
k

)
Pk+1|k = trace(F T

k+1Pk|kFk+1)

9. update the next movement for the agent by
uk = −δk

[
∇pCk+1|k +∇pPk+1|k

]
pk+1 = pk + uk + wk

End if termination condition is satisfied or time budget is
approached.

The system-environment interaction is depicted in Fig 1,
comprising two main components: an environment estima-
tor and a path planner. The environment estimator utilises
cooperative ensemble learning method with memory-based
adaptation. The input of the environment estimator includes
agent’s positions and sensory measurements which are subject
to noises and disturbances in an uncertain environment. The
output is an ensemble of estimated source parameters that
represent the agent’s current belief about the unknown envi-
ronment. The path planner determines the optimal action that
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Fig. 1: System-environment interaction in autonomous search using COAL-DCEE.

aligns with the dual objective function. In order to construct
the dual objective function, the planner requires the current
belief of the source parameters and calculates the predicted
source parameters by running the environment estimator with
hypothetical positions and measurements.

B. Convergence Analysis

Before analysing the overall algorithm of COAL-DCEE, we
first establish the convergence of the cooperative estimators.
The underlying principle is inspired by the observation that in-
creasing the number of samples (unbiased measurements with
bounded variance) will always contribute to the convergence
of the estimators. Before proceeding, we first introduce the
following assumption on the noises.

Assumption 1: The measurement noise of the onboard
chemical sensor vk in (3) satisfies the following properties:

E [vk] = 0 (15)

E
[
∥vk∥2

]
≤ ϱ2 (16)

where ϱ is a positive constant. The position control error has
similar properties:

E [wk] = 0 (17)

E
[
∥wk∥2

]
≤ ρ2 (18)

where ρ is a positive constant.
Remark 5: Assumption 1 indicates that the noises have

zero mean and bounded variance. Zero mean implies that the
noises are unbiased, which is usually satisfied, for example, by
means of calibration and compensation. Any physical systems
inherently suffer from noises, caused by sensors, turbulence
disturbances and control errors.

We are now in position to give the convergence of the
cooperative estimators.

Lemma 2: Consider an autonomous search problem with
dispersion model (2) and noises satisfying Assumption 1. De-
sign the learning rates ηik−1 and τ ik−1 such that all eigenvalues

of Ak−1 = I4N−Λk−1 diag(Gi
k−1)−Υk−1B are within a unit

circle, where

Gi
k−1 =

k−1∑
t=k−q

∫ 1

0

∇2
Θf(Θs + τΘ̃i

k−1,pt)dτ ∈ R4×4

B =
(
IN − 1

N
1N1T

N

)
⊗ I4 ∈ R4N×4N

Λk−1 = diag(η1k−1, . . . , η
N
k−1)⊗ I4 ∈ R4N×4N

Υk−1 = diag(τ1k−1, . . . , τ
N
k−1)⊗ I4 ∈ R4N×4N

(19)

with the symbol ⊗ denoting Kronecker product. Then, the
cooperative estimators converge to a neighbourhood of the true
source parameters, given by

lim
k→∞

E ∥Θk−1N⊗Θs∥2 ≤
maxj∈{1,...,k−1}

∑N
i=1(η

i
j)

2q2L2ϱ2

1−maxj∈{1,...,k−1} ρ(Aj)
(20)

where Θk = col
(
Θ1

k,Θ
2
k, . . . ,Θ

N
k

)
∈ R4N , col(·) denotes

a column vector formed by stacking the elements on top of
each other, and 0 < ρ(Aj) < 1 is the spectral radius of the
transition matrix Aj for j = 1, 2, . . . , k − 1.

Proof: Since all estimators are coupled by Θ̄k−1

in (12) and (13), in the following we will anal-
yse their joint performance by collecting the parameters
of all estimators into an augmented vector Θk−1 =
col

(
Θ1

k−1,Θ
2
k−1, . . . ,Θ

N
k−1

)
. According to Assumption 1,

the gradient term ∇̃Θf(Θi
k−1,pk−1) can be written as

∇̃Θf(Θi
k−1,pk−1) = ∇Θf(Θi

k−1,pk−1) + µk−1 (21)

where

E [µk−1] = 0 (22)

E
[
∥µk−1∥2

]
≤ L2ϱ2 (23)

with L being the Lipschitz constant of the least square function
(11). We can then rewrite (12) in a compact form as

Θk = Θk−1−Λk−1[Ψ(Θk−1)+q(1N⊗µk−1)]−Υk−1BΘk−1

(24)
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where

Ψ(Θk−1) = col

( k−1∑
t=k−q

∇Θf(Θ1
k−1,pt), . . . ,

k−1∑
t=k−q

∇Θf(ΘN
k−1,pt)

)
∈ R4N

(25)

In (24), we represent the approximated gradient as the true
gradient with additive noises, i.e. Ψ(Θk−1) and 1N ⊗ µk−1.
Define the estimation error as Θ̃k = Θk − 1N ⊗ Θs, with
Θ̃i

k := Θi
k − Θs. From (24), the estimation error recursion

can be written as

Θ̃k = Θ̃k−1−Λk−1[Ψ(Θk−1)+q(1N⊗µk−1)]−Υk−1BΘ̃k−1

(26)
where B(1N ⊗ Θs) = 0 has been used to derive the above
equation.

We apply the mean value theorem [43] to relate the gradient
term Ψ(Θk−1) with Θ̃k−1, that is, for a twice-differentiable
function h(x) : Rm → R, we have

∇h(y) =∇h(x)

+

[∫ 1

0

∇2h[x+ τ(y − x)]dτ

]
(y − x),∀x, y ∈ Rm .

(27)
Applying the above theorem leads to

∇Θf
(
Θi

k−1,pt

)
=∇Θf (Θs,pt)

+

[∫ 1

0

∇2
Θf(Θs + τΘ̃i

k−1,pt)dτ

]
Θ̃i

k−1

=

[∫ 1

0

∇2
Θf(Θs + τΘ̃i

k−1,pt)dτ

]
Θ̃i

k−1

(28)
where ∇Θf (Θs,pt) = 0 has been used.

Therefore, we have

Θ̃k = (I4N−Λk−1Gk−1−Υk−1B)Θ̃k−1−qΛk−1(1N⊗µk−1)
(29)

where Gk−1 := diag(G1
k−1,G2

k−1, . . . ,GN
k−1). Now, taking the

squared Euclidean norm of (29) leads to

∥Θ̃k∥2 =∥(I4N − Λk−1Gk−1 −Υk−1B)Θ̃k−1∥2

+ ∥qΛk−1(1N ⊗ µk−1)∥2

− 2q[(I4N − Λk−1Gk−1 −Υk−1B)Θ̃k−1]
T

× Λk−1(1N ⊗ µk−1).

(30)

Applying the expectation operator and using (22) and (23), we
have

E ∥Θ̃k∥2 =E ∥(I4N − Λk−1Gk−1 −Υk−1B)Θ̃k−1∥2

+ E ∥qΛk−1(1N ⊗ µk−1)∥2.
(31)

To obtain (31), we have used E[Λk−1(1N ⊗ µk−1)] = 0
from (22), which is independent of (I4N − Λk−1Gk−1 −
Υk−1B)Θ̃k−1. We further resort to (23) to bound the second
term in (31), which yields

E ∥qΛk−1(1N ⊗ µk−1)∥2 ≤
N∑
i=1

(ηik−1)
2q2Lϱ2. (32)

Substituting (32) into (31) results in

E ∥Θ̃k∥2 ≤ E ∥Θ̃k−1∥2Ak−1
+

N∑
i=1

(ηik−1)
2q2L2ϱ2 (33)

where Ak−1 = [I4N − Λk−1Gk−1 − Υk−1B]T [I4N −
Λk−1Gk−1 − Υk−1B]. If we select the learning rate ηik−1

such that the eigenvalues of A are within unit circle, the
convergence of (33) is guaranteed. Moreover, the estimation
mean-square-error is given by

lim
k→∞

E ∥Θ̃k∥2 ≤
maxj∈{1,...,k−1}

∑N
i=1(η

i
j)

2q2L2ϱ2

1−maxj∈{1,...,k−1} ρ(Aj)
(34)

This completes the proof. ■
Remark 6: In parameter adaptation literature, how to

guarantee persistent excitation has been a long-lasting research
issue [38, 42]. It is often assumed that the control input can
meet the excitation condition even though there is no such a
stimulating effort added [44]. In this paper, a probing effort
is inherently embraced in the dual controller, which will be
conducive to environment acquisition. Further resorting to
the memory-based regression method, it is shown that the
convergence of the cooperative estimators is guaranteed under
properly designed learning rates.

Remark 7: The cooperative estimator-based ensemble ap-
proach is of great importance in realising the dual control
framework online with affordable computational costs. In fact,
it is a hybrid approach that combines both model-based and
model-free techniques in the estimation process. On the one
hand, the source parameters are from the isotropic dispersion
model, and the estimators are updated by minimising the
observed data and the model outputs. On the other hand,
a model-free ensemble is developed to evaluate the mean
and variance of the estimator distribution that are used to
formulate the exploration and exploitation terms in the dual
controller. In machine learning community, this hybrid ap-
proach has been proven to be very successful and promising,
mainly demonstrated by extensive simulation and experimental
studies [32, 33, 45]. Inspired by its great success in machine
learning, we further propose a cooperative ensemble method,
and we establish its convergence properties by leveraging
classic parameter adaptation tools in the control society. Nev-
ertheless, the ensemble based estimation method advocated in
this paper is distinct from those probabilistic or dynamic en-
semble estimation approaches dedicated for machine learning
problems [32, 33]. Existing active learning based algorithms
utilise neural networks or ensembles of randomly generated
dynamic models to acquire information about the environment,
which makes it challenging to extract physically meaningful
parameters for the autonomous search problem. The proposed
multi-estimator based ensemble approach makes use of the
environment model and the learned parameters are physically
meaningful.

In conjunction with the path update law (14), the proposed
COAL-DCEE will be able to steer the agent to the true source,
as demonstrated in the following theorem.

Theorem 1: Consider an autonomous search problem with
dispersion model (2) and noise conditions in Assumption 1.
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Let the conditions in Lemma 2 hold. Suppose the learning rate
δk is properly designed such that

0 < αk := 2∥I3 − δkLk∥2 < 1 (35)

where Lk =
∫ 1

0
∇2

pCk+1|k(s+τ p̃k)dτ . Then, the search agent
converges to a bounded neighbourhood of the true source
location using COAL-DCEE in Algorithm 1. Furthermore, the
steady-state mean-square-error between agent and true source
is given by

lim
k→∞

E ∥pk − s∥2 ≤ γ + ρ2

1− ᾱ
(36)

where γ > 0 denotes an upper bound of 2E[δ2∥∇pPk+1|k∥2],
and ᾱ := maxj∈{1,...,k} αk.

Proof: To show the convergence of agent position, we first
introduce an error variable p̃k = pk−s, which is the difference
between agent position and source position. Recalling the dual
controller in (14), we can obtain

p̃k+1 = p̃k − δk∇pCk+1|k − δk∇pPk+1|k + wk. (37)

Appealing to the mean value theorem in (27), it follows that

∇pCk+1|k(pk) =∇pCk+1|k(s)

+

[ ∫ 1

0

∇2
pCk+1|k(s+ τ p̃k)dτ

]
p̃k.

(38)

Denoting Lk =
∫ 1

0
∇2

pCk+1|k(s + τ p̃k)dτ and applying
∇pCk+1|k(s) = 0, we have

∇pCk+1|k(pk) = Lkp̃k. (39)

Substituting (39) into (37) results in

p̃k+1 = (I3 − δkLk)p̃k − δk∇pPk+1|k + wk. (40)

Then, taking the squared Euclidean norm for both sides of
the error dynamics (40) leads to

∥p̃k+1∥2 =∥(I3 − δkLk)p̃k − δk∇pPk+1|k + wk∥2

=∥(I3 − δkLk)p̃k∥2 + ∥wk∥2 + δ2k∥∇pPk+1|k∥2

+ 2[(I3 − δkLk)p̃k]
Twk − 2δk∇T

pPk+1|kwk

− 2δk[(I3 − δkLk)p̃k]
T∇pPk+1|k.

(41)
Taking the expectation of both sides of (41) yields

E ∥p̃k+1∥2 ≤∥I3 − δkLk∥2 E ∥p̃k∥2 + E ∥wk∥2

+ δ2k E ∥∇pPk+1|k∥2

+ 2E[[(I3 − δkLk)p̃k]
Twk]

− 2δk E[∇T
pPk+1|kwk]

− 2δk E[[(I3 − δkLk)p̃k]
T∇pPk+1|k].

(42)

It follows from Assumption 1 that

E[[(I3 − δLk)p̃k]
Twk] = 0

E[∇T
pPk+1|kwk] = 0.

(43)

Moreover, for the last term in (42), we have

E[−2δk[(I3 − δkLk)p̃k]
T∇pPk+1|k]

≤ E ∥δk∇pPk+1|k∥2 + E ∥(I3 − δkLk)p̃k∥2

= E[δ2k∥∇pPk+1|k∥2] + ∥I3 − δkLk∥2 E ∥p̃k∥2.
(44)

For notational convenience, we denote Xk := E ∥Θ̃k∥2 and
Yk := E ∥p̃k∥2. Therefore, combining (42), (43) and (44)
gives

Yk+1 ≤2∥I3 − δkLk∥2Yk + 2E[δ2∥∇pPk+1|k∥2] + ρ2

(45)
According to the definition of Pk+1|k, the term
2E[δ2k∥∇pPk+1|k∥2] is determined by the error variance of
estimators, which is upper bounded by

E ∥Θ̃k∥2 ≤ max

{
∥Θ̃0∥2,

maxj∈{1,...,k}
∑N

i=1(η
i
j)

2q2L2ϱ2

1−maxj∈{1,...,k} ρ(Aj)

}
(46)

where ∥Θ̃0∥2 is the initial estimation error of the estimators,
under the conditions specified in Lemma 2. Consequently,
there always exists a bounded function 0 ≤ U(Xk) ≤ γ such
that U(Xk) = 2E[δ2∥∇pPk+1|k∥2] . Then, (45) becomes

Yk+1 ≤2∥I3 − δkLk∥2Yk + U(Xk) + ρ2. (47)

As having been proved in Lemma 2, the convergence of the
estimators can be decoupled from the path planning, while it
can be observed from (47) that the agent movement is related
to the estimators via the term U(Xk). When 2∥I3−δkLk∥2 and
ρ(A) are within [0, 1), the convergence of (47) is guaranteed.
By recursively iterating (47), we obtain

Yk ≤ ᾱkY0 +

k−1∑
j=0

ᾱj(γ + ρ2). (48)

where ᾱ := maxj∈{1,...,k} αj with αk := 2∥I3 − δjLj∥2.
Therefore, recalling Yk = E ∥p̃k∥2 and p̃k = pk − s, the
steady-state search performance is can be obtained by

lim
k→∞

E ∥pk − s∥2 ≤ γ + ρ2

1− ᾱ
. (49)

This completes the proof. ■
Remark 8: The main stream of adaptive control methods

can be regarded as passive learning. For example, MPC in
autonomous search is targeted at navigating the agent to the
source position, whereas during this pure exploitation process
the estimators are updated passively by accidentally collected
information from the environment. Recently, there are a wide
range of engineering problems involved in balancing between
exploration and exploitation, e.g. machine learning, control
and decision-making with uncertain information [46–50]. In
control society, related works are usually focused on stochastic
model predictive control with active learning [40]. A similar
concept is referred to as active reinforcement learning in
artificial intelligence [50, 51]. Nevertheless, there is a critical
distinction between previous works and the proposed COAL-
DCEE framework. In existing dual control formulation, the
probing effect is introduced to learn the system states or param-
eters (see, e.g. MPC with active learning [14, 52] and active
adaptive control [53, 54]), while in our formulation the probing
effect is used to actively explore the operational environment.
We believe that future autonomous control should be able to
deal with not only system uncertainty but also environment
uncertainty.
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TABLE I: Operational parameters and environmental knowl-
edge.

Search agent Source Prior

Measurement budget 250 - -
Flight budget 3, 000s - -
Sampling time 10s - -
Velocity 2m/s - -
Maximum step size 4m - -
Start position [2, 2] - -
x position - 80m U(xmin, xmax)
y position - 80m U(ymin, ymax)
Release rate - 10g/s N(11, 2)

IV. EMPIRICAL RESULTS AND DISCUSSIONS

In this section, we will first implement the proposed COAL-
DCEE algorithm using simulated data to validate the effec-
tiveness of estimation and path planning. In particular, the
existing methods, including CLEE [31], Entrotaxis [10], MPC
[17] and DCEE [7], will be employed to demonstrate the
advantages of COAL-DCEE. Then, an experimental dataset
will be utilised to test the algorithm feasibility in real search
problems. The dataset was collected by COANDA Research
and Development Corporation, and supplied by the DST
group [55].

A. Numerical Study

1) Simulation setup: To achieve fair comparisons using
different algorithms, we keep agent parameters and source
settings the same, which are summarised in Table I. The search
area is confined in 100m × 100m. The rest of the parameters
in the isotropic model (2) are set as follows: the wind speed
us = 4m/s, wind direction ϕs = 1.5π rad, diffusivity ζs1 = 1,
the particle lifetime ζs2 = 20. The number of measurement
budget is set as 250 times, and the sampling time for taking
one measurement is 10s to ensure stable sensor readings. The
search agent is initialised at position [2, 2]m while the source
is located at [80, 80]m, which is unknown to the search agent.
The memory integer in parameter adaptation (12) is set as
q = 1 to reduce computational cost. We also assume that
there is no prior information regarding the source position,
i.e. uniformly distributed in the area of interest.

2) Comparison on estimation and tracking performance:
We have implemented six different algorithms: concentration-
driven and position-driven CLEE [31], Entrotaxis [10], MPC
[17], DCEE [7] and COAL-DCEE proposed in this paper.
For clarity, key features of those algorithms are summarised
in Table II. Entrotaxis and DCEE utilise Bayesian inference
engine for source term estimation, which is computationally
expensive due to the interaction between high-level path
planner and large-scale particle filters. Currently, a fixed length
of movement with a limited set of directions is deployed
to maintain computational tractability. Our previous work on
CLEE introduces multiple estimators for source acquisition,
where each of them is independent. We observed that some of
the estimators may be trapped into local optimal estimation,
which consequently deteriorates the estimation performance.
Note that initially CLEE was proposed using a concentration-
driven formulation, which is quite sensitive to sensor noises,

Fig. 2: Estimation performance using different algorithms.

and thereby we further introduce a position-driven CLEE
for fair comparison with our new algorithm in this paper
(recalling discussions in Remark 2). The proposed framework
COAL-DCEE not only holds high computational efficiency as
CLEE, but also shares superior resilience to sensor noises as
Entrotaxis and DCEE.

In practical situation, the sensor readings are often in-
termittent due to turbulence disturbance and sensor charac-
teristics. We assume that there is a 40% chance that the
sensor encounters a non-detection event, i.e. fails to return
any meaningful measurement. To achieve reliable comparison,
each algorithm has been repeated for 200 times with the
same settings. Source estimation performance and tracking
performance are respectively shown in Figs. 2 and 3 using
different algorithms. In general, all algorithms can gradually
acquire the source terms and approach the source location.
Due to high rate of sensor dropouts, the performance of
CLEE has been significantly deteriorated. This observation
coincides with our previous findings in [31]. While Entrotaxis
demonstrates decent estimation performance, it falls short in
terms of tracking performance. Conversely, the exploitative
MPC method, which relies on passive learning, produces
inadequate estimation results. Notably, COAL-DCEE exhibits
superior steady-state tracking performance compared to CLEE,
MPC, and Entrotaxis, as shown in Fig. 3.

3) Comparison on computational efficiency: It is worth
highlighting that COAL-DCEE is significantly more effi-
cient than DCEE and Entrotaxis, as reflected by the number
of estimators/particles needed in Table II. To quantitatively
demonstrate this important aspect, the total computational
time for conducting 200 trials is plotted in Fig. 4. In this
simulation study, COAL-DCEE only requires 29.15s, which is
considerably less than the time 2697.66s and 2827.96s taken
by Entrotaxis and DCEE, respectively. Computational time
should be distinguished from the time consumed in a search
mission: the former one is a reflection of the computational
burden of a search algorithm, while the latter is determined
by the travel distance/speed of the search agent and sampling
time of the sensors.
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TABLE II: Features of different algorithms.

Algorithm Estimators/Particles Movement size Movement direction Exploitation/Exploration Learning mechanism

1 CLEE (concentration-driven) 100 arbitrary arbitrary dual independent estimators
2 CLEE (position-driven) 100 arbitrary arbitrary dual independent estimators
3 Entrotaxis 10, 000 2m [0◦, 45◦, . . . , 315◦] exploration Bayesian filters
4 MPC 10, 000 2m [0◦, 45◦, . . . , 315◦] exploitation Bayesian filters
5 DCEE 10, 000 2m [0◦, 45◦, . . . , 315◦] dual Bayesian filters
6 COAL-DCEE 100 arbitrary arbitrary dual cooperative estimators

Fig. 3: Tracking performance using different algorithms.

Fig. 4: Comparison of steady-state tracking performance and
computational time over 200 trials.

B. Experimental Study

1) Experimental setup: In this subsection, we test the
proposed COAL-DCEE algorithm using a real experimental
dataset from DST group [55]. This is a quite challenging
dataset for autonomous search due to rapid changes of the
dispersion filed. More detailed descriptions of the experiment
settings can be found in [10, 55]. The dataset is composed of
a total number of 340 sequential frames, where each of them
consists of 49 × 98 pixels. As shown in previous subsection,
DCEE demonstrates superior performance among the existing
solutions, and thus is deployed in this experimental study for
comparison.

2) Comparison on search behaviour and performance:
Figs. 5 and 6 show representative search paths using COAL-
DCEE and DCEE algorithms, respectively. Although their
search paths are different, both algorithms can gradually
acquire the source position and navigate the search agent move
towards the source. Apparently, COAL-DCEE adopts much
less estimators (100) to learn the source terms compared with
particles used in DCEE (10, 000), as demonstrated by the
green dots in Figs. 5 and 6 1.

During the experimental studies, we notice that both al-
gorithms might fail to complete the search task. A mission
is classified as a success search if both the estimated source
location and agent’s position are less than 10 unit length to
the true source before exhausting 340 samples; otherwise it is
categorised as a fail search. In Table III, we have listed the
success rates, where COAL-DCEE obtains 98% and DCEE
achieves 99% success rate. In Figs. 7 and 8, we provide two
failure examples using COAL-DCEE and DCEE, respectively.
Both trials are classified as search failure due to exhaustion of
measurement budget, that is, they fail to accomplish the search
task within the measurement budget (340 sequential samples).
However, their searching behaviours are quite different. In
Fig. 7, COAL-DCEE converges to a local optimal solution
(near to the true source) while DCEE exhibits a random search
path over the space until sample budget is approached as
shown in Fig. 8.

3) Comparison on search time and computational effi-
ciency: It is worth mentioning that COAL-DCEE only uses
84.80 samples (frames) in average to complete the search
task, while DCEE requires 119.26 samples (averaged over
200 trials). As can be seen from the search paths in Fig.
6, the movement of DCEE is quite random due to the use
of stochastic particle filters, which may consequently lead to
much wasted effort during the searching process. In order
to compare the search time, i.e., time required for sensor
sampling and agent movement, we set the sampling time as
10s and the agent’s speed as 2 cells/s. The average mission
times using COAL-DCEE and DCEE are 1328.7s and 1560.9s,
respectively. Therefore, in this scenario, COAL-DCEE com-
pletes the search mission faster in average. An important
feature of COAL-DCEE is its computational efficiency. We
compare the time consumed by running both algorithms in
Matlab using a processor of 2.8 GHz Quad-Core Intel Core
i7. Table III shows that COAL-DCEE only needs 15.26s to
finish 200 searches, whereas DCEE requires 1.5587 × 103s.

1Video clips of the experimental study have been included in supplementary
materials.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 11

-100 -50 0 50 100

x

0

50

100

y

0

2

4

-100 -50 0 50 100

x

0

50

100

y

0

5

10

-100 -50 0 50 100

x

0

50

100

y

0

1

2

3

-100 -50 0 50 100

x

0

50

100

y

0

5

10

Fig. 5: Representative search path of COAL-DCEE on real dataset. The sub-figures are taken at 1, 10, 60 and 86 sample
instances, respectively. The grey-scale shade depicts the instantaneous concentration field at the current time step. Red lines
are the paths of the search agent, the green dots represent the estimated source position, and the black dots represent non-zero
measurements.

Fig. 6: Representative search path of DCEE on real dataset. The sub-figures are taken at 1, 10, 60 and 115 sample instances,
respectively.
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Fig. 7: An illustrative example of search fail using COAL-
DCEE.
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Fig. 8: An illustrative example of search fail using DCEE.

COAL-DCEE consumes less than 1% of the time used for
DCEE.

C. Discussions and Reflections

Entrotaxis and other informative path planning methods
direct the agent to the most informative positions, maximising
the information gain. However, as these information-theoretic
approaches do not include any tracking index in their objective
functions, they often result in poor tracking performance,
known as the pure exploration strategy. Although the pure
exploitative MPC is generally efficient due to the use of
passive learning methods, it yields unsatisfactory results in
terms of learning and tracking performance. Passive learning
does not need to quantify the information gain for all possible
actions, which can be computationally burdensome for active
learning based approaches. Due to the high uncertainties and
disturbances in autonomous search problems, active learning

TABLE III: Performance comparison between COAL-DCEE
and DCEE over 200 trials.

COAL-DCEE DCEE

Success rate 98% 99%
Average number of samples 84.80 119.26
Average mission time 1328.7s 1560.9s
Computational time 15.26s 1.5587× 103s

has been considered an effective way to mitigate these influ-
ences [7].

DCEE balances the control efforts between active explo-
ration and exploitation, resulting in superior estimation and
tracking performance, albeit at the expense of computational
burden. In contrast, the proposed COAL-DCEE achieves bal-
anced performance in terms of source estimation and track-
ing while maintaining high computational efficiency. COAL-
DCEE only requires about 1% of the computational time
used by DCEE, which is achieved by adopting significantly
fewer estimators (100) compared to the particles used in
DCEE (10,000). This computational efficiency, coupled with
resilience to sensor noises and turbulence disturbances, makes
it an ideal solution for future development of autonomous
search using portable processors on mobile platforms, and
facilitates a wider application of this advanced learning and
control concept in challenging environments, where computa-
tional resources and sensor reliability may be limited.

V. CONCLUSION

In this paper, we have developed a computationally efficient
algorithm for unknown source seeking using autonomous
vehicles equipped with onboard sensors and processors. A
cooperative learning based dual control is proposed using
multiple dynamic estimators for source term estimation and
path planning. In our formulation, the control effort achieves
a balanced trade-off between reducing estimation uncertainty
(exploration) and making use of the current belief to navigate
the agent towards the source (exploitation). Under reasonable
assumptions on sensor noises and turbulences, the convergence
and steady-state performance of the proposed COAL-DCEE
have been rigorously analysed. Extensive simulation and ex-
perimental results have demonstrated that COAL-DCEE not
only achieves comparable performance as existing Bayesian
filtering based methods, but also holds high computational
efficiency. The computational tractability of the proposed
COAL-DCEE is crucial for developing multi-stage dual con-
trol. In our opinion, such a far-sighted control will greatly
promote the advancement of intelligent goal-oriented systems
under uncertainties and constraints, and catalyse more practical
applications in the near future.
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