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A B S T R A C T

A large part of the earth’s surface is covered by seasonally or permanently frozen soils. Considering the
negative impact of climate change, future development of such regions can be underpinned by mathematical
methods for accurate analysis of heat and moisture transport in freezing and thawing soils. Reported in this
paper is a novel non-local formulation of water and heat transport in unsaturated soils. The formulation uses
bond-based peridynamics (PD) and consists of a set of integral–difference formulations of energy and mass
conservation. Specific features of freezing/thawing soils are incorporated by a combination of van Genuthcen
and Clausius–Clapeyron relations. Computational results are compared with four sets of laboratory experiments
to demonstrate the efficiency of the developed approach. The model can be used to analyse the effect of water
flow on heat transfer in soils during thawing of permafrost soils. Further, it can be applied in modelling climate
change effects, and can be used for construction of coupled physically justified models of frost heave.
1. Introduction

Freezing and thawing of soils are multi-coupled phenomena involv-
ing heat transfer, moisture flow in partially saturated porous media
with phase change, and mechanical effects (deformation, cracking). The
description of these phenomena involves strong physical and geomet-
rical non-linearities. Decreasing the soil temperature below the water
freezing point results in solidification and subsequent volume change.
Temperature and pressure gradients drive water migration toward the
freezing front, leading to its accumulation in large volumes. Subse-
quently, the water within the soil pores undergoes freezing, expanding
in volume. This expansion exerts pressure on neighbouring soil grains,
resulting in their displacement with associated soil volume expansion,
i.e. frost heave. If the soil’s expansion is constrained, it can induce
high pressures, posing risk of damage to buildings, infrastructure, and
alterations to the soil’s internal structure. The ice crystals formed
during freezing merge, creating ice lenses oriented parallel to the
freezing front (Kurylyk et al., 2016; Bai et al., 2020). Soil freezing and
thawing is characterized by abrupt changes of the physical and mechan-
ical properties between the water phases and the soil with different
water phases, by geometric discontinuities, such as inter-phase state
boundaries and cracks, and by large non-uniform deformations. These
make the mathematical description of the phenomena a challenging
task (Amiri et al., 2018).

Existing models for coupled thermal–hydraulic or thermo-hydro-
mechanical freezing and thawing are based on the local mathematical
formulation of the conservation laws of mass, energy and momenta.

∗ Corresponding author.
E-mail address: majid.sedighi@manchester.ac.uk (M. Sedighi).

For example, freezing and thawing of saturated soils were modelled
in Michalowski (1993), Zhang et al. (2018), Tounsi et al. (2020) and
Zheng et al. (2022) and of unsaturated soils in Jame and Norum (1980),
He et al. (2020b), Chen et al. (2022) and Liu et al. (2023b). These mod-
els are phenomenological, i.e., the energy and water mass conservation
laws are supplemented with a set of constitutive relationships. For
example, the model for freezing and thawing of unsaturated soils (Hans-
son et al., 2004) supplements the energy and water mass conservation
equations with the van Genuchten relationship (van Genuchten, 1980)
to define water retention and with the Clausius–Clapeyron equation to
define cryo-suction in the frozen region. These constitutive relations
were reconsidered in Dall’Amico et al. (2011) and an effective nu-
merical scheme for the model solution was proposed. It was further
suggested in Painter (2011) and Painter and Karra (2014) to consider
the liquid water content in the frozen zone as governed by the modified
form of the soil freezing characteristic curve (SFC). Aspects of vapour
redistribution during freezing of relatively dry soils were introduced
in Zhang et al. (2016b,a), see also Zhang et al. (2016c). An analysis
of the existing mathematical descriptions of freezing soil behaviour
was performed in Stuurop et al. (2021), showing that calculations with
these models are in general agreement with experiments.

The rapid changes of material properties at the phase change region
during soil freezing and thawing as well as the potential growth of
cracks pose challenges for numerical schemes based on local formu-
lations of the conservation laws (Hansson et al., 2004; Dall’Amico
et al., 2011). The growth of computational power gives the opportunity
vailable online 5 January 2024
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to address these challenges by methods based on non-local formu-
lations, which are typically more computationally demanding. One
non-local approach with increasing popularity is Peridynamics (PD).
In PD, the partial differential equations of any classical local theory
are replaced by a set of integral–differential equations (Madenci and
Oterkus, 2014), resulting in a mathematically consistent formulation,
even in the presence of strong nonlinearities and discontinuities.

The theory of Peridynamics was originally proposed in Silling
(2000) and Silling et al. (2007) to describe the mechanical deforma-
tions of solids, offering a natural and effective representation of crack
development within solid bodies. Subsequently, studies (Bobaru and
Duangpanya, 2010, 2012) demonstrated how diffusion problems can
be described under the framework of this non-local theory, which later
was generalized for the domains with axial and spherical symmetries
in Nikolaev et al. (2023). Since then, extensive development of the
method has made it possible to propose solutions for various coupled
applied problems involving transient heat and/or mass transfer in
deformable media. For instance, thermomechanical models of different
solids have been considered in Wang et al. (2018, 2019), Chen et al.
(2021) and Wang et al. (2022). The interaction between ice and con-
crete structures that includes freeze-thaw damage was studied in Song
et al. (2020, 2021) and Wu et al. (2022). Peridynamics has been applied
to geotechnical problems, such as the description of clay erosion by
groundwater flow with the appearance of desiccation cracks (Sedighi
et al., 2020; Yan et al., 2020, 2021b,a; Liu et al., 2023a), for more
details, see the review (Zhou and Wang, 2021). Peridynamics was used
to model the corrosion of metals and concrete (Jafarzadeh et al., 2019;
Li and Guo, 2021; Jafarzadeh et al., 2022). Models for advection–
diffusion and advection–reaction–diffusion problems were proposed
in Zhao et al. (2018) and Tian et al. (2023).

The PD description of freezing and thawing was first introduced for
analysis of saturated soils (Nikolaev et al., 2022). A model for analysis
of frost heave in saturated soils was also proposed (Zhou et al., 2022).
These models are not appropriate for analysis of unsaturated soils as
they do not consider the water retention characteristics. In addition,
the model for frost heave (Zhou et al., 2022) did not consider the
effects of heat convection on the energy transfer and did not distinguish
isothermal and thermal mass liquid diffusivity in water mass transfer.

In this paper, a peridynamic formulation of heat and water transfer
in partially saturated porous media is presented. It uses a modified form
of the combined water retention model which includes van Genuchten
and Clausius–Clapeyron relationships. A numerical implementation of
the new formulation is used to analyse models representing four sets
of laboratory experiments. The comparison between calculated and
experimental results demonstrates the accuracy of the model. The
proposed formulation can be used to describe soil behaviour in the
presence of evolving nonlinearities and discontinuities and forms a
basis for developing fully coupled thermo-hydro-mechanical models of
frost heave.

The paper is structured as follows. In Section 2, the integral formu-
lation of the conservation laws of energy and water mass, supplemented
with physically-based constitutive relations, are discussed in detail.
These are used in Section 3 to derive the corresponding non-local
peridynamic formulations. The peridynamic approach is first verified
in Section 4 using two examples solved analytically and by the finite
element method. It is then validated in Section 5 using four sets
of experiments from published works. Section 6 presents the main
conclusions of the paper. Appendix A presents mathematical descrip-
tion of frozen soils’ hydraulic and thermal properties that is used in
the model. The supplementary equations for the model’s numerical
implementation are presented in Appendix B.

2. Conservation laws governing the thermo-hydraulic behaviour

A three phase soil system consisting of water, air and solid particles
is considered. The water can be in three states: solid (ice), liquid, and
2

gaseous (vapour) as shown in Fig. 1. Generally, water in liquid and
gaseous states can be transported.

The impact of vapour transfer can vary significantly depending on
the soil type, water content, and temperature regime. According to a
parametric study (Zhang et al., 2016c), in certain soils, up to about
90% of water transfer can occur due to vapour flow. However, in such
conditions, the total water flux is generally very low. Due to that,
even during extended freezing period, the vapour flow is responsible
for less than 10%–15% of ice accumulation. Similar findings were
provided by multiple papers (He et al., 2018; Zheng et al., 2023).
Some numerical studies discovered that, for specific soils, vapour flow
has minimal impact on the change in total water content, and it can
be fully neglected. For instance, the authors of He et al. (2020b)
reached this conclusion for sand and clay, and the authors of Huang
and Rudolph (2023) for silt and clay. At the same time, according
to Zhang et al. (2016a) and Hou et al. (2023), vapour transfer cannot
be ignored if soils are covered by an impermeable layer, leading to the
potential developing of the ‘canopy’ effect. As this study does not aim
to describe this particular phenomenon, we will neglect the presence
of vapour flow and derive our model following (Hansson et al., 2004;
Dall’Amico et al., 2011; Stuurop et al., 2021) by considering that only
the movement of liquid water flow contributes to redistribution of
moisture in soils and convective heat transfer.

Let  denote a region of a soil system (solid particles, water and air),
and let 𝜕 denote its boundary. Both  and 𝜕 can be evolving with
time, e.g., due to deformation and/or emergence of cracks. A reference
orthogonal coordinate system with axes x, y and z is used to label the
points of , to represent vector quantities, and to orient 𝜕 by the outer
normal 𝐧 to .

The conservation of a scalar physical property (mass or energy) in
the region  is the equality between the rate of accumulation of the
property in  and the rate of generation of the property in . The rate
of accumulation is given by the Reynolds transport theorem

𝑑
𝑑𝑡 ∫(𝑡)

𝑝 𝑑𝑉 = ∫

(

𝜕𝑝
𝜕𝑡

+ ∇ ⋅ (𝐯𝑝)
)

𝑑𝑉 , (1)

here 𝑝 is the property density, and 𝑣 is the velocity of a point in .
The rate of generation is given by

∫
𝑟 𝑑𝑉 + ∫𝜕

(𝐧 ⋅ 𝐟 ) 𝑑𝐴 = ∫
𝑟 𝑑𝑉 + ∫

(∇ ⋅ 𝐟 ) 𝑑𝑉 (2)

here 𝑟 is the rate of production of the property at a point in , and 𝐟
s the flux of the property across 𝜕.

The equality of Eqs. (1) and (2) expresses the conservation of the
roperty 𝑝, which can be either mass or energy density. If 𝑝 is mass
ensity (concentration) of a substance, then the term (∇⋅(𝐯𝑝)) in Eq. (1)
ives the mass density flux of the substance across the boundary by
dvection due to matter carrying the substance entering the domain
ith velocity 𝐯, while the term (∇ ⋅ 𝐟 ) in Eq. (2) gives the mass
ensity flux of the substance by diffusion across the boundary due to
oncentration difference. If 𝑝 is heat energy density, then the term
∇ ⋅ (𝐯𝑝)) in Eq. (1) gives the flux of heat energy density across the
oundary by advection due to substance carrying heat energy density
ntering the domain with velocity 𝐯, while the term (∇ ⋅ 𝐟 ) in Eq. (2)
ives the heat energy density flux by diffusion across the boundary due
o temperature difference.

The assumptions made for the derivation of the model are:

• the flow of liquid water is defined by Darcy’s law and is in-
dependently driven by pore water potential and cryosuction,
temperature and gravity;

• the influence of vapour flow on the moisture flow in soil is
neglected;

• the physical properties of soil components (liquid water, ice, soil
grains, and air) are assumed to be homogeneous and isotropic and
do not vary with time;
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Fig. 1. The structure of freezing soils.
• Porosity is assumed to be constant (i.e., no deformation). As
a result, the total water content, which changes due to wa-
ter migration and phase change, always remains smaller than
porosity;

• solidification of water is considered under thermodynamic equi-
librium and is defined by a soil freezing characteristic curve that
is independent of time and the phase change direction (freezing
or thawing);

• the air in pores is considered to be immobile (no contribution to
the convective heat transfer).

2.1. Conservation of water mass

The mass of the 𝑛th soil system component in a unit volume of 
is denoted by 𝑀𝑛, [kg∕m3]. The mass density of the 𝑛th component at
a given point of  is denoted by 𝜌𝑛, [kg∕m3]. Assuming that the mass
densities of the soil components 𝜌𝑛 are constant in the unit volume, the
volumetric content of the 𝑛th component is 𝜃𝑛 = 𝑀𝑛∕𝜌𝑛, [m3∕m3]. To
make the description clearer, the subscript 𝑛 is substituted by the letters
𝑖, 𝑙, 𝑎 and 𝑠 for ice, liquid water, air and soil particles, respectively. With
this convention, the porosity of the soil is:

𝜖 = 𝜃𝑖 + 𝜃𝑙 + 𝜃𝑎 [m3∕m3], (3)

the total mass (gravimetric) water content in unit volume of the region
 is

𝑀𝑤 = 𝑀𝑖 +𝑀𝑙 [kg∕m3], (4)

and the total volumetric water content is 𝛩𝑤 = 𝜃𝑖 + 𝜃𝑙, [m3∕m3].
The conservation of water mass in the region  is found from

Eqs. (1) and (2) by substituting 𝑀𝑤 for 𝑝, considering that the possible
evolution of  makes a negligible contribution to the accumulation of
water, i.e., 𝐯𝑀𝑤 ≈ 0, that there is no internal production of water,
i.e., 𝑟 = 0, and that flux density is the water flux density 𝐪𝑙, [kg∕(m2s)],
across 𝜕, i.e., 𝐟 = 𝐪𝑙. The water conservation is then

∫
𝜕𝑀𝑤
𝜕𝑡

𝑑𝑉 = ∫
(∇ ⋅ 𝐪𝑙) 𝑑𝑉 (5)

This conservation law can be formulated in terms of the ice and liquid
volumetric contents by dividing both sides by 𝜌𝑙:

∫

(

𝜕𝜃𝑙
𝜕𝑡

+
𝜌𝑖
𝜌𝑙

𝜕𝜃𝑖
𝜕𝑡

)

𝑑𝑉 = ∫
1
𝜌𝑙

(

∇ ⋅ 𝐪𝑙
)

𝑑𝑉 . (6)

For the case of vertical one-dimensional water transfer in soils, which
will be used later in the work, Eq. (6) is simplified:

(

𝜕𝜃𝑙 +
𝜌𝑖 𝜕𝜃𝑖

)

𝑑𝑉 =
(

𝜕 𝑞𝑙
)

𝑑𝑉 . (7)
3

∫ 𝜕𝑡 𝜌𝑙 𝜕𝑡 ∫ 𝜕𝑧 𝜌𝑙
Following the approach developed for unfrozen soils (Philip and De
Vries, 1957), the 1D water flux density is given by Darcy’s law:
𝑞𝑙
𝜌𝑙

= 𝐾𝑙
d𝛷
d𝑧

(8)

where 𝐾𝑙 is the unsaturated hydraulic conductivity, [m∕s], and 𝛷 is the
total soil water potential, [m], which can be represented as 𝛷 = 𝛹 + 𝑧,
where 𝛹 , [m], is the soil matrix water potential.

Based on laboratory studies of the behaviour of unfrozen unsatu-
rated soils, it has been proposed that 𝛹 = 𝑓 (𝑇 , 𝜃𝑙) (Philip and De Vries,
1957; Nassar and Horton, 1989). Due to the presence of solid ice in
frozen soils, this function should be modified to 𝛹 = 𝑓 (𝑇 ,𝛩𝑤) and
should take into account the complex physics of pore water retention
and the appearance of cryosuction that is associated with coexistence of
liquid and solid water at a negative temperature. Mathematical forms of
𝑓 (𝑇 ,𝛩𝑤) have been proposed, e.g. Taylor and Luthin (1978), Hansson
et al. (2004) and Li et al. (2010). This study uses a modified form that
corresponds to the semi-empirical approach discussed in Stuurop et al.
(2021), see also Dall’Amico et al. (2011), Painter and Karra (2014) and
Chen et al. (2022). In this case, 𝛹 can be assumed to be the sum of two
independent functions:

𝛹 = 𝛹𝛩 + 𝛹𝑇 , (9)

where, 𝛹𝛩 = 𝑓 (𝛩𝑤(𝑧), 𝑇 (𝑧)) is the soil pore water potential due to
the water retention forces, and 𝛹𝑇 = 𝑓 (𝑇 (𝑧)), is associated with the
appearance of cryosuction. 𝛹𝛩 is defined by considering capillarity
forces as a function of surface tension of pore water, 𝜎, [kg∕s2] (Philip
and De Vries, 1957). Alternatively other empirical, semi-empirical or
analytical theories, e.g. Kurylyk and Watanabe (2013), Vereecken et al.
(2016) and Santoyo and Baser (2022), can be adopted in the model.
The value of 𝜎 can be defined by Eq. (A.4). In the present study, 𝛹𝛩 is
described by the van Genuchten semi-empirical model (van Genuchten,
1980), and has the form of Eq. (A.1). It allows us to compare the
modelling results with a broad range of available experimental data sets
that include required empirical model parameters. At thermodynamic
equilibrium, 𝛹𝑇 is defined by the Clausius–Clapeyron Eq. (A.2).

In such case, the total space derivative of Eq. (9) can be represented
in a form:
d𝛹
d𝑧

=
𝜕𝛹𝛩
𝜕𝑧

+
(

𝜕𝛹𝛩
𝜕𝑇

+
𝜕𝛹𝑇
𝜕𝑇

)

𝜕𝑇
𝜕𝑧

(10)

In the developed model, the form of 𝛹𝛩 in the term 𝜕𝛹𝛩∕𝜕𝑧 is de-
fined according to the van Genuchten semi-empirical theory, Eq. (A.1).
However, this equation neglects the influence of the temperature on
the change of soil water potential, as it does not include 𝑇 as an
equation parameter. Due to that, the value of 𝛹𝛩 for the term 𝜕𝛹𝛩∕𝜕𝑇
can be defined following the classical models (Philip and De Vries,
1957; Hansson et al., 2004) based on the change of capillarity forces.
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The relation for 𝛹𝑇 of the term 𝜕𝛹𝑇 ∕𝜕𝑇 is chosen in a form of the
Clausius–Clapeyron Eq. (A.2). The derivative with temperature is:

𝜕𝛹𝛩
𝜕𝑇

+
𝜕𝛹𝑇
𝜕𝑇

=

⎧

⎪

⎨

⎪

⎩

𝛹
𝜎

d𝜎
d𝑇 + 𝐿𝑖

𝑔𝑇𝑓
, if 𝑇 < 𝑇𝑓

𝛹𝛩
𝜎

d𝜎
d𝑇 , if 𝑇 ≥ 𝑇𝑓

(11)

here 𝐿𝑖 is the latent heat of water solidification, [J∕kg]; 𝑇𝑓 is the
reezing temperature of pore water, [K]; 𝑔 is the gravity acceleration,
m∕s2].

Substitution of Eqs. (10) and (11) into Eq. (8) gives:

𝑙 = 𝐾𝑙𝜌𝑙

(

𝜕𝛹𝛩
𝜕𝑧

+ 1
)

+𝐾𝑙𝜌𝑙
𝜕𝛹𝑇
𝜕𝑇

𝜕𝑇
𝜕𝑧

= 𝐷𝑙,𝛹

(

𝜕𝛹𝛩
𝜕𝑧

+ 1
)

+𝐷𝑙,𝑇
𝜕𝑇
𝜕𝑧

(12)

where 𝐷𝑙,𝑇 is the modified thermal mass liquid diffusivity for frozen
and unfrozen conditions, [kg∕(m s K)], and 𝐷𝑙,𝛹 = 𝐾𝑙𝜌𝑙 is the isothermal
mass liquid diffusivity (conductivity), [kg∕(m2s)].

In the experimental study (Nimmo and Miller, 1986), it has been
originally observed that the second term in Eq. (12) cannot accu-
rately predict the water flux caused by the presence of temperature
gradient and underestimates the experimental data. In addition to
the temperature-induced change in surface tension, there are other
temperature-related factors associated with the type of soil, water
content, and flow regime that affect the water flux. A special empirical
gain factor 𝐺𝛹𝑇 was proposed to be introduced into the model that
accounts for all effects cumulatively. In this case, the thermal liquid
diffusivity can be defined as:

𝐷𝑙,𝑇 =

⎧

⎪

⎨

⎪

⎩

𝐾𝑙𝜌𝑙

(

𝐺𝛹𝑇
𝛹
𝜎

d𝜎
d𝑇 + 𝐿𝑖

𝑔𝑇𝑓

)

, if 𝑇 < 𝑇𝑓

𝐾𝑙𝜌𝑙𝐺𝛹𝑇
𝛹𝛩
𝜎

d𝜎
d𝑇 , if 𝑇 ≥ 𝑇𝑓 .

(13)

ased on the analysis of laboratory experiments it has been proposed
hat the gain factor is constant and equals 7 for sandy soils (Noborio
t al., 1996). In many later studies, e.g. Zhang et al. (2016c) and Zheng
t al. (2021), this value has been used also for other types of soils.

The water conservation equation in 1D water transfer becomes:

∫

(

𝜕𝜃𝑙
𝜕𝑡

+
𝜌𝑖
𝜌𝑙

𝜕𝜃𝑖
𝜕𝑡

)

𝑑𝑉 = ∫
1
𝜌𝑙

𝜕
𝜕𝑧

[

𝐷𝑙,𝛹

(

𝜕𝛹𝛩
𝜕𝑧

+ 1
)

+𝐷𝑙,𝑇
𝜕𝑇
𝜕𝑧

]

𝑑𝑉

(14)

If the terms under the integrals are locally continuous, the conservation
law can be written in a differential form:
𝜕𝜃𝑙
𝜕𝑡

+
𝜌𝑖
𝜌𝑙

𝜕𝜃𝑖
𝜕𝑡

= 1
𝜌𝑙

𝜕
𝜕𝑧

[

𝐷𝑙,𝛹

(

𝜕𝛹𝛩
𝜕𝑧

+ 1
)

+𝐷𝑙,𝑇
𝜕𝑇
𝜕𝑧

]

, (15)

which is the local (strong) formulation of water mass transfer. A similar
formulation was derived for the case of a two-phase system (liquid
water and vapour) in Nassar and Horton (1989) and Nassar and Horton
(1992), with the difference that 𝜕𝜃𝑙∕𝜕𝑧 was used instead of 𝜕𝛹∕𝜕𝑧. The
present formulation is in accord with more recent studies that consider
soil freezing (Hansson et al., 2004; Zhang et al., 2016b; Zheng et al.,
2021) following Noborio et al. (1996).

2.2. Conservation of heat

The rate of heat accumulation in  is found from Eq. (1) by
substituting 𝑝 with the heat density 𝐻 , [J∕m3], considering that heat
is accumulated by advection by the flowing water, i.e., 𝐯 = 𝐪𝑙, and that
there is latent heat of solidification. The heat accumulation is given by

d
d𝑡 ∫(𝑡)

𝐻𝑑𝑉 = ∫

( 𝜕𝐻
𝜕𝑡

− ∇ ⋅ [𝐿𝑖 + 𝐶𝑙(𝑇 − 𝑇0)]𝐪𝑙
)

𝑑𝑉 (16)

where 𝑇0 is the reference temperature, [K], taken to be constant and
equal to the freezing temperature of pure water (Dall’Amico et al.,
2011); 𝐿𝑖 is the latent heat of water solidification, [J∕kg], and 𝐶𝑙 is the
specific heat capacity of liquid water, [J∕(kg K)]. In the present study, it
4

is assumed that the thermo-physical parameters of the soil components
are constant.

The rate of heat generation in  is found from Eq. (2) by substituting
𝑝 with the heat density 𝐻 , [J∕m3], assuming that the rate of internal
heat generation is zero, i.e., 𝑟 = 0, and noting that the flux density is
the (conductive) heat flux density 𝐪ℎ, [W∕m2], across 𝜕, i.e., 𝐟 = 𝐪ℎ.
The rate of heat generation is then

∫𝜕
𝐧 ⋅ 𝐪ℎ 𝑑𝐴 = ∫

(

∇ ⋅ 𝐪ℎ
)

𝑑𝑉 . (17)

where the divergence (Gauss’s) theorem has been used.
The integral form of the heat conservation equates Eqs. (16) and

(17) to give the heat transfer by conduction and advection:

∫

( 𝜕𝐻
𝜕𝑡

− ∇ ⋅ [𝐿𝑖 + 𝐶𝑙(𝑇 − 𝑇0)]𝐪𝑙
)

𝑑𝑉 = ∫

(

∇ ⋅ 𝐪ℎ
)

𝑑𝑉 (18)

For heat transfer only in vertical direction, Eq. (18) is simplified:

∫

( 𝜕𝐻
𝜕𝑡

− 𝜕
𝜕𝑧

{

[𝐿𝑖 + 𝐶𝑙(𝑇 − 𝑇0)]𝑞𝑙
}

)

𝑑𝑉 = ∫
𝜕𝑞ℎ
𝜕𝑧

𝑑𝑉 (19)

The total heat content 𝐻 in a unit volume of soil region , neglect-
ing the effect of differential heat of wetting, can be defined by Eq. (A.8).
Then, following the approach for two-phase systems (water+vapour)
presented in Nassar and Horton (1992), where the thermo-physical
properties of soil components are assumed to be constant, the rate of
heat content change is:

𝜕𝐻
𝜕𝑡

= 𝐶𝑎𝑣
𝜕𝑇
𝜕𝑡

+ 𝜌𝑖𝐶𝑖(𝑇 − 𝑇0)
𝜕𝜃𝑖
𝜕𝑡

+
[

𝐿𝑖 + 𝐶𝑙(𝑇 − 𝑇0)
]

𝜌𝑙
𝜕𝜃𝑙
𝜕𝑡

(20)

where 𝐶𝑎𝑣(𝜃𝑖, 𝜃𝑙 , 𝜃𝑎) = 𝜌𝑠𝐶𝑠(1 − 𝜖) + 𝜌𝑖𝐶𝑖𝜃𝑖 + 𝜌𝑙𝐶𝑙𝜃𝑙 + 𝜌𝑎𝜃𝑎𝐶𝑎 is the
volumetric heat capacity of unsaturated soils, [J∕(m3K)]; 𝐶𝑛 denote the
specific heat capacities of different phases, [J∕(kg K)].

The 1D conductive heat flux is described by the Fourier law:

𝑞ℎ = − 𝛬𝑎𝑣
𝜕𝑇
𝜕𝑧

(21)

where 𝛬𝑎𝑣 is the average thermal conductivity of unsaturated soil,
W∕(m K)], that can be defined, for example, by Eqs. (A.9) or (A.10).

With the assumptions used for deriving Eq. (20), the spatial deriva-
ive of the conductive heat flux density is:
𝜕𝑞ℎ
𝜕𝑧

= − 𝜕
𝜕𝑧

(

𝛬𝑎𝑣
𝜕𝑇
𝜕𝑧

,
)

(22)

and the spatial derivative of the advective heat transfer is:

𝜕
𝜕𝑧

{

[𝐿𝑖 + 𝐶𝑙(𝑇 − 𝑇0)]𝑞𝑙
}

= 𝐶𝑙𝑞𝑙
𝜕𝑇
𝜕𝑧

+
[

𝐿𝑖 + 𝐶𝑙(𝑇 − 𝑇0)
] 𝜕𝑞𝑙
𝜕𝑧

(23)

Substituting Eqs. (20), (22) and (23) into Eq. (19) and taking into
account the definition of 𝜕𝑞𝑙∕𝜕𝑧 = 𝜌𝑙𝜕𝜃𝑙∕𝜕𝑡 + 𝜌𝑖𝜕𝜃𝑖∕𝜕𝑡 gives the general
1D integral form of heat conservation:

∫

(

𝐶𝑎𝑣
𝜕𝑇
𝜕𝑡

+ 𝜌𝑖
[

(𝑇 − 𝑇0)(𝐶𝑖 − 𝐶𝑙) − 𝐿𝑖
] 𝜕𝜃𝑖
𝜕𝑡

− 𝐶𝑙𝑞𝑙
𝜕𝑇
𝜕𝑧

)

𝑑𝑉 =

−∫
𝜕
𝜕𝑧

(

𝛬𝑎𝑣
d𝑇
d𝑧

)

𝑑𝑉
(24)

If the terms under the integrals are locally continuous, the 1D heat
conservation can be written in a differential form:

𝐶𝑎𝑣
𝜕𝑇
𝜕𝑡

+ 𝜌𝑖
[

(𝑇 − 𝑇0)(𝐶𝑖 − 𝐶𝑙) − 𝐿𝑖
] 𝜕𝜃𝑖
𝜕𝑡

= − 𝜕
𝜕𝑧

(

𝛬𝑎𝑣
d𝑇
d𝑧

)

+ 𝐶𝑙𝑞𝑙
𝜕𝑇
𝜕𝑧

(25)

This form of energy conservation was used previously in Dall’Amico
et al. (2011) and Stuurop et al. (2021, 2022). Here, the term
[

𝐿𝑖 − (𝑇 − 𝑇0)(𝐶𝑖 − 𝐶𝑙)
]

represents the effective latent heat of solidifi-
ation, i.e. the reduction of the latent heat due to the depression of
he melting point of water, see e.g. Güémez et al. (2001) and Kumano
t al. (2007). In other studies, e.g. Hansson et al. (2004), Sheshukov
nd Nieber (2011) and Zhang et al. (2016c), the term (𝑇 − 𝑇0)(𝐶𝑖 −𝐶𝑙)

was not taken into account.
It should be noted that the heat and water mass conservation equa-
tions can be derived in a similar manner for systems containing all three
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Fig. 2. Illustration of phase regions, particle horizons and transport bonds (‘t-bonds’).

states of water (ice, liquid water, vapour). However, such a derivation
leads to the appearance of several additional terms both for 𝐿𝑖 and
𝐿𝑐 (the latent heat of vaporization, [J∕kg]), which are also usually
not taken into account, see e.g. Zhang et al. (2016b,c) and He et al.
(2020b). Moreover, the temperature of water condensation 𝑇𝑐 , [K],
and 𝐿𝑐 change significantly and cannot be considered constants. This
makes mathematically rigorous construction of the energy conservation
equation for such three water state systems challenging.

3. Bond-based peridynamics formulations of conservation laws

A soil body occupying a region  is considered as a collection of
horizontal layers (peridynamic particles) with associated thickness and
mass, see Fig. 2. In the bond-based peridynamics, the term ‘bond’ refers
to the interactions between two soil layers, located at depths 𝑧 and 𝑧′.
The bond between interacting soil layers will be referred to as a ‘t-
bond’ (for transport bond). The peridynamic heat and fluid flux per unit
volume along a ‘t-bond’ depends on the distance between the layers 𝑧
and 𝑧′. The soil layer 𝑧 interacts with (and is connected to) all soil layers
𝑧′ within a certain finite region 𝑧, called the horizon of soil layer 𝑧.
In the present paper, the horizon is symmetric with respect to the layer
𝑧. The thickness of the layer and the size of the horizon are denoted
by 𝛥𝑧, and 𝛿= 𝑚𝛥𝑧 , respectively, where 𝑚 is the relative size of the
horizon. Generally, the value of 𝑚 can be chosen arbitrarily, however,
in problems of diffusion, it is usually set to 3 or 4, as shown in Nikolaev
et al. (2022, 2023), Yan et al. (2020) and Tian et al. (2023). Such values
were justified by parametric studies in Chen and Bobaru (2015) and
Jabakhanji and Mohtar (2015), which indicated that smaller 𝑚 ensure
better accuracy.

3.1. PD formulation for water flow

Modifying the approach (Katiyar et al., 2014), the Peridynamics
liquid water mass flux between two interacting soil layers 𝑧 and 𝑧′ per
unit volume is given by:

𝐽𝑙
(

𝑧′, 𝑧, 𝑡
)

=𝐷𝑙,𝛹
(

𝑧′, 𝑧, 𝑡
) 𝛷𝛩

(

𝑧′, 𝑡
)

−𝛷𝛩 (𝑧, 𝑡)
‖𝑧′ − 𝑧‖

⋅
𝑧′ − 𝑧

‖𝑧′ − 𝑧‖
+

𝐷𝑙,𝑇
(

𝑧′, 𝑧, 𝑡
) 𝑇

(

𝑧′, 𝑡
)

− 𝑇 (𝑧, 𝑡)
‖𝑧′ − 𝑧‖

⋅
𝑧′ − 𝑧

‖𝑧′ − 𝑧‖

(26)

where 𝐽𝑙
(

𝑧′, 𝑧, 𝑡
)

is the volumetric mass flux of water and vapour;
𝛷𝛩 (𝑧, 𝑡) and 𝛷𝛩

(

𝑧′, 𝑡
)

are the soil water potentials at soil layers 𝑧 and
𝑧′, respectively, that depends on the total water content and defined
under the framework of the van Genuchten (1980) theory; 𝑇 (𝑧, 𝑡) and
𝑇
(

𝑧′, 𝑡
)

are the temperatures at the soil layers 𝑧 and 𝑧′, respectively;
𝐷𝑙,𝛹

(

𝑧′, 𝑧, 𝑡
)

and 𝐷𝑙,𝑇
(

𝑧′, 𝑧, 𝑡
)

are the average isothermal and thermal
diffusivity of liquid water of the ‘t-bond’ between the soil layers 𝑧 and
𝑧′, which can be defined by averaging the diffusivity values of the two
5

connected soil layers. It can be done by application of the arithmetic
mean (Bobaru and Duangpanya, 2012; Yan et al., 2021a):

𝐷𝑙,𝛹
(

𝑧′, 𝑧, 𝑡
)

=
𝐷𝑙,𝛹 (𝑧, 𝑡) +𝐷𝑙,𝛹

(

𝑧′, 𝑡
)

2

𝐷𝑙,𝑇
(

𝑧′, 𝑧, 𝑡
)

=
𝐷𝑙,𝑇 (𝑧, 𝑡) +𝐷𝑙,𝑇

(

𝑧′, 𝑡
)

2

(27)

harmonic mean (Nikolaev et al., 2022, 2023):

𝐷𝑙,𝛹
(

𝑧′, 𝑧, 𝑡
)

=
2𝐷𝑙,𝛹 (𝑧, 𝑡)𝐷𝑙,𝛹

(

𝑧′, 𝑡
)

𝐷𝑙,𝛹 (𝑧, 𝑡) +𝐷𝑙,𝛹 (𝑧′, 𝑡)

𝐷𝑙,𝑇
(

𝑧′, 𝑧, 𝑡
)

=
2𝐷𝑙,𝑇 (𝑧, 𝑡)𝐷𝑙,𝑇

(

𝑧′, 𝑡
)

𝐷𝑙,𝑇 (𝑧, 𝑡) +𝐷𝑙,𝑇 (𝑧′, 𝑡)

(28)

or geometric mean:

𝐷𝑙,𝛹
(

𝑧′, 𝑧, 𝑡
)

=
√

𝐷𝑙,𝛹 (𝑧, 𝑡)𝐷𝑙,𝛹 (𝑧′, 𝑡)

𝐷𝑙,𝑇
(

𝑧′, 𝑧, 𝑡
)

=
√

𝐷𝑙,𝑇 (𝑧, 𝑡)𝐷𝑙,𝑇 (𝑧′, 𝑡)
(29)

The harmonic and geometric means ensure that when the difference
between the diffusivities of layers 𝑧 and 𝑧′ is substantial, the average
diffusivity of the t-bond will be much closer to the lower of the two
values. Consequently, the predicted water flux between these two layers
will be much smaller than in the case of arithmetic averaging. This
property is particularly important when describing cryosuction-driven
water transfer in t-bonds crossing the moving phase change boundary,
with one side of the t-bond located in the frozen soil and having
nearly zero diffusivity. The application of arithmetic averaging for the
hydraulic properties of these interfacial t-bonds can lead to the over-
accumulation of water in the frozen area. Therefore, for such soils,
either harmonic averaging or geometric averaging should be used. It
should be noted that if the impedance factor is used to adjust the
hydraulic conductivity of the frozen soil, as is done in this paper by
Eq. (A.7), its empirical shape parameter 𝜂 can be chosen in a way that
the diffusivities of the interfacial t-bonds defined by both averaging
methods are equal, making them interchangeable in many practical
problems.

Based on Eq. (7), and following Katiyar et al. (2014) and Yan et al.
(2020), the water mass conservation within a single t-bond that connect
the soil layers 𝑧 and 𝑧′ is written as:

𝜌𝑙
𝜕
𝜕𝑡
𝜃𝑙
(

𝑧′, 𝑧, 𝑡
)

+ 𝜌𝑖
𝜕
𝜕𝑡
𝜃𝑖
(

𝑧′, 𝑧, 𝑡
)

=
𝐽𝑙

(

𝑧′, 𝑧, 𝑡
)

‖𝑧′ − 𝑧‖
(30)

Eq. (30) is integrated over the horizon of 𝑧 to obtain the mass
conservation in layer 𝑧 due to flow along all t-bonds within its horizon
𝑧:

𝜌𝑙 ∫𝑧

𝜕
𝜕𝑡
𝜃𝑙
(

𝑧′, 𝑧, 𝑡
)

d𝑉𝑧′ + 𝜌𝑖 ∫𝑧

𝜕
𝜕𝑡
𝜃𝑖
(

𝑧′, 𝑧, 𝑡
)

d𝑉𝑧′ = ∫𝑧

𝐽𝑙
(

𝑧′, 𝑧, 𝑡
)

‖𝑧′ − 𝑧‖
d𝑉𝑧′

(31)

Following Yan et al. (2020), the relationship between the volumetric
water content in the soil layer 𝑧 and time 𝑡 and the average water
content in all the t-bonds connected to 𝑧 is given by:

∫𝑧

𝜕𝜃𝑙
(

𝑧′, 𝑧, 𝑡
)

𝜕𝑡
d𝑉𝑧′ =

𝜕𝜃𝑙 (𝑧, 𝑡)
𝜕𝑡

𝑉𝑧
(32)

The same relationship holds for the ice content:

∫𝑧

𝜕𝜃𝑖
(

𝑧′, 𝑧, 𝑡
)

𝜕𝑡
d𝑉𝑧′ =

𝜕𝜃𝑖 (𝑧, 𝑡)
𝜕𝑡

𝑉𝑧
(33)

By introduction of micro-diffusivity parameters 𝑑𝑙,𝛹 = 𝐷𝑙,𝛹∕𝑉𝑧
and

𝑑 = 𝐷 ∕𝑉 , the mass conservation in soil layer 𝑧 can be rewritten
𝑙,𝑇 𝑙,𝑇 𝑧
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as:
𝜕𝜃𝑙 (𝑧, 𝑡)

𝜕𝑡
+
𝜌𝑖
𝜌𝑙

𝜕𝜃𝑖 (𝑧, 𝑡)
𝜕𝑡

=

∫𝑧

𝑑𝑙,𝛹
(

𝑧′, 𝑧, 𝑡
)𝛷𝛩

(

𝑧′, 𝑡
)

−𝛷𝛩 (𝑧, 𝑡)

‖𝑧′ − 𝑧‖2
d𝑉𝑧′+

∫𝑧

𝑑𝑙,𝑇
(

𝑧′, 𝑧, 𝑡
)𝑇

(

𝑧′, 𝑡
)

− 𝑇 (𝑧, 𝑡)

‖𝑧′ − 𝑧‖2
d𝑉𝑧′

(34)

Following Zhao et al. (2018), the micro-diffusivity parameters 𝑑𝑙,𝛹
nd 𝑑𝑙,𝑇 can be presented as:

𝑙,𝛹
(

𝑧′, 𝑧, 𝑡
)

=
𝐷𝑙,𝛹

(

𝑧′, 𝑧, 𝑡
)

𝛿

𝑑𝑙,𝑇
(

𝑧′, 𝑧, 𝑡
)

=
𝐷𝑙,𝑇

(

𝑧′, 𝑧, 𝑡
)

𝛿

(35)

The liquid velocity through porous unsaturated media is defined
using the approach proposed in Katiyar et al. (2014). The velocity
at layer 𝑧 is determined by considering the moisture flow through
all t-bonds with layers 𝑧′ that have higher soil water potential and
temperature. These are layers within a restricted horizon denoted by
+,Φ

𝐳 and +,𝐓
𝐳 respectively. Thus:

𝑈𝑙(𝑧, 𝑡) = −∫+,Φ
𝐳

𝑑𝑙,𝛹
(

𝑧′, 𝑧, 𝑡
)𝛷𝛩

(

𝑧′, 𝑡
)

−𝛷𝛩 (𝑧, 𝑡)
‖𝑧′ − 𝑧‖

⋅
𝑧′ − 𝑧

‖𝑧′ − 𝑧‖
d𝑉𝑧′−

∫+,𝐓
𝐳

𝑑𝑙,𝑇
(

𝑧′, 𝑧, 𝑡
)𝑇

(

𝑧′, 𝑡
)

− 𝑇 (𝑧, 𝑡)
‖𝑧′ − 𝑧‖

⋅
𝑧′ − 𝑧

‖𝑧′ − 𝑧‖
d𝑉𝑧′

(36)

3.2. PD formulation for heat transfer with change of water state

According to Nikolaev et al. (2023), the heat flux along the t-bond
𝐽ℎ

(

𝑧′, 𝑧, 𝑡
)

from one soil layer to another can be defined as:

𝐽ℎ
(

𝑧′, 𝑧, 𝑡
)

= −𝛬𝑠
(

𝑧′, 𝑧, 𝑡
) 𝑇

(

𝑧′, 𝑡
)

− 𝑇 (𝑧, 𝑡)
‖𝑧′ − 𝑧‖

⋅
𝑧′ − 𝑧

‖𝑧′ − 𝑧‖
+

𝐶𝑙𝜌𝑙𝑈𝑙
(

𝑧′, 𝑧, 𝑡
) [

𝑇
(

𝑧′, 𝑡
)

− 𝑇 (𝑧, 𝑡)
]

⋅
𝑧′ − 𝑧

‖𝑧′ − 𝑧‖

(37)

where 𝑇
(

𝑧′, 𝑡
)

and 𝑇 (𝑧, 𝑡) are the temperature at soil layers 𝑧 and 𝑧′

espectively; 𝑧′−𝑧
‖𝑧′−𝑧‖ is the unit vector along the ’t-bond’; 𝛬(𝑧, 𝑧′, 𝑡) is

the average thermal conductivity of the material at soil layers 𝑧 and
𝑧′ respectively; and 𝑈𝑙

(

𝑧′, 𝑧, 𝑡
)

= (𝑈𝑙
(

𝑧′, 𝑡
)

+ 𝑈𝑙 (𝑧, 𝑡))∕2 is the average
velocity along the t-bond. The average thermal conductivity can be
defined in a way similar to what was discussed regarding hydraulic
diffusivity as arithmetic, harmonic, and geometric means of the heat
conductivities of layers 𝑧 and 𝑧′:

𝛬(𝑧, 𝑧′, 𝑡) =
𝛬(𝑧, 𝑡) + 𝛬(𝑧′, 𝑡)

2
(38)

𝛬(𝑧, 𝑧′, 𝑡) =
2𝛬(𝑧, 𝑡)𝛬(𝑧′, 𝑡)
𝛬(𝑧, 𝑡) + 𝛬(𝑧′, 𝑡)

(39)

(𝑧, 𝑧′, 𝑡) =
√

𝛬(𝑧, 𝑡)𝛬(𝑧′, 𝑡) (40)

The difference between the heat conductivities of frozen and unfrozen
soils is relatively small. Because of that, the choice of the averaging
technique does not significantly impact the calculation results.

Following Bobaru and Duangpanya (2010, 2012) and extending
their approach by taking into account Eq. (24), the energy conservation
in a ‘t-bond’ between two soil layers 𝑧 and 𝑧′ can be defined by

(𝜌𝐶)𝑎𝑣(𝑧′, 𝑧, 𝑡)
𝜕
𝜕𝑡
𝑇 (𝑧′, 𝑧, 𝑡)+

𝑖

[

(𝐶𝑖 − 𝐶𝑙)(𝑇 (𝑧′, 𝑧, 𝑡) − 𝑇0) − 𝐿𝑖

] 𝜕𝜃𝑖(𝑧′, 𝑧, 𝑡)
𝜕𝑡

=
𝐽ℎ

(

𝑧′, 𝑧, 𝑡
)

‖𝑧′ − 𝑧‖

(41)

where 𝑇 (𝑧′, 𝑧, 𝑡) is the average temperature of the t-bond between
oil layers 𝑧 and 𝑧′, and 𝜌𝐶 (𝑧′, 𝑧, 𝑡) is the average equivalent heat
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( )𝑎𝑣 T
capacity of the t-bond. Combining Eqs. (37) and (41) gives the energy
conservation equation in the ‘t-bond’.

The conservation of energy at the soil layer 𝑧 involves the fluxes in
all the t-bonds adjacent to 𝑧 (t-bonds to particles within the horizon
𝑧) and is obtained by integrating Eq. (41) over the horizon 𝑧. If the
roperties in the horizon are assumed to be defined by the properties
f the layer 𝑧, the temperature evolution at layer 𝑧 can be calculated.
ntroducing the micro-conductivity 𝜆𝑠 = 𝛬𝑠∕𝑉𝑧

and the micro-velocity
𝑙 = 𝑈𝑙∕𝑉𝑧

(Zhao et al., 2018), Eqs. (32)–(41) can be written as:

(𝜌𝐶)𝑎𝑣(𝑧, 𝑡)
𝜕
𝜕𝑡
𝑇 (𝑧, 𝑡) + 𝜌𝑖

[

(𝐶𝑖 − 𝐶𝑙)(𝑇 (𝑧, 𝑡) − 𝑇0) − 𝐿𝑖

] 𝜕𝜃𝑖(𝑧, 𝑡)
𝜕𝑡

=

− ∫𝑧

𝜆𝑠
(

𝑧′, 𝑧, 𝑡
) 𝑇

(

𝑧′, 𝑡
)

− 𝑇 (𝑧, 𝑡)

‖𝑧′ − 𝑧‖2
d𝑉𝑧′+

∫𝑧

𝐶𝑙𝜌𝑙𝑢𝑙
(

𝑧′, 𝑧, 𝑡
)

[

𝑇
(

𝑧′, 𝑡
)

− 𝑇 (𝑧, 𝑡)
]

‖𝑧′ − 𝑧‖
d𝑉𝑧′

(42)

The micro-conductivity 𝜆𝑠 and the micro-velocity 𝑢𝑙 can be pre-
sented following Zhao et al. (2018) as:

𝜆𝑠
(

𝑧′, 𝑧, 𝑡
)

=
𝛬𝑠

(

𝑧′, 𝑧, 𝑡
)

𝛿

𝑢𝑙
(

𝑧′, 𝑧, 𝑡
)

=
𝑈𝑙

(

𝑧′, 𝑧, 𝑡
)

2𝛿

(43)

3.3. Numerical implementation

The numerical solution of the developed PD model is obtained by
discretization of the domain to a uniform grid with its step size equal
to the layer thickness.

The spatial discretization of the mass conservation Eq. (34) is:

𝜕𝜃𝑙
(

𝑧𝑖, 𝑡
)

𝜕𝑡
+

𝜌𝑖
𝜌𝑙

𝜕𝜃𝑖
(

𝑧𝑖, 𝑡
)

𝜕𝑡
=
∑

𝑝
𝑑𝑙,𝛹

(

𝑧𝑝, 𝑧𝑖, 𝑡
)
𝛷𝛩

(

𝑧𝑝, 𝑡
)

−𝛷𝛩
(

𝑧𝑖, 𝑡
)

‖

‖

‖

𝑧𝑝 − 𝑧𝑖
‖

‖

‖

2
𝑉𝑖𝑝+

∑

𝑝
𝑑𝑙,𝑇

(

𝑧𝑝, 𝑧𝑖, 𝑡
)
𝑇
(

𝑧𝑝, 𝑡
)

− 𝑇
(

𝑧𝑖, 𝑡
)

‖

‖

‖

𝑧𝑝 − 𝑧𝑖
‖

‖

‖

2
𝑉𝑖𝑝

(44)

here 𝑉𝑖𝑝 is the portion of the volume of layer 𝑧𝑝 within the horizon
f layer 𝑧𝑖.

The spatial discretization of the heat conservation Eq. (42) is:

(𝜌𝐶)𝑎𝑣(𝑧𝑖, 𝑡)
𝜕
𝜕𝑡
𝑇 (𝑧𝑖, 𝑡)+

𝑖

[

(𝐶𝑖 − 𝐶𝑙)(𝑇 (𝑧𝑖, 𝑡) − 𝑇0) − 𝐿𝑖

] 𝜕𝜃𝑖(𝑧𝑖, 𝑡)
𝜕𝑡

=

−
∑

𝑝
𝜆𝑠

(

𝑧𝑝, 𝑧𝑖, 𝑡
)
𝑇
(

𝑧𝑝, 𝑡
)

− 𝑇
(

𝑧𝑖, 𝑡
)

‖

‖

‖

𝑧𝑝 − 𝑧𝑖
‖

‖

‖

2
𝑉𝑖𝑝+

∑

𝑝
𝐶𝑙𝜌𝑙𝑢𝑙

(

𝑧𝑝, 𝑧𝑖, 𝑡
)

[

𝑇
(

𝑧𝑝, 𝑡
)

− 𝑇
(

𝑧𝑖, 𝑡
)]

‖

‖

‖

𝑧𝑝 − 𝑧𝑖
‖

‖

‖

𝑉𝑖𝑝+

(45)

The spatial discretization of the velocity Eq. (36) is:

𝑙(𝑧, 𝑡) = −
∑

𝑝′
𝑑𝑙,𝛹

(

𝑧𝑝′ , 𝑧𝑖, 𝑡
)

𝛷𝛩

(

𝑧′𝑝′ , 𝑡
)

−𝛷𝛩
(

𝑧𝑖, 𝑡
)

‖

‖

‖

𝑧𝑝′ − 𝑧𝑖
‖

‖

‖

⋅
𝑧′𝑝 − 𝑧𝑖

‖

‖

‖

𝑧′𝑝 − 𝑧𝑖
‖

‖

‖

𝑉𝑖𝑝′−

∑

𝑝′′
𝑑𝑙,𝑇

(

𝑧𝑝′′ , 𝑧𝑖, 𝑡
)
𝑇
(

𝑧𝑝′′ , 𝑡
)

− 𝑇
(

𝑧𝑖, 𝑡
)

‖

‖

‖

𝑧𝑝′′ − 𝑧𝑖
‖

‖

‖

⋅
𝑧′′𝑝 − 𝑧𝑖

‖

‖

‖

𝑧′′𝑝 − 𝑧𝑖
‖

‖

‖

𝑉𝑖𝑝′′

(46)

here 𝑝′ ∈ +,𝛷
𝑧 and 𝑝′′ ∈ +,𝑇

𝑧 .
The time integration is performed by the forward Euler finite dif-

erence scheme. The current state of all layers is used to calculate the
hange in temperature, liquid water and ice content for the next time
tep. The flow chart of the developed approach is presented in Fig. 3.
he right part of Eq. (44) is denoted by 𝛥𝛩 (𝑧 , 𝑡𝑛) and the right part of
𝑙 𝑖
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Fig. 3. The general flow-chart of the developed PD model.
Eq. (45) is denoted by 𝛥𝐻(𝑧𝑖, 𝑡𝑛). Additional equations are presented in
Appendix B. This numerical scheme ensures the conservation of energy
and water mass and requires relatively small computational time.

The boundary conditions are introduced by addition of several
layers of boundary nodes at both sides of the considered domain. The
properties of these nodes (temperature, liquid and water contents) are
defined in a way that they ensure the necessary type of boundary
conditions (Mei et al., 2021). It should be noted that Eq. (45) needs
special attention as the water flow is governed by both soil water
potential and temperature fields. However, the temperature field also
defines the energy conservation within the domain (Eq. (46)). It is
7

highly likely that the required boundary conditions for water flow
and energy need different temperatures at the additional boundary
nodes, e.g. the temperature of these particles must ensure zero water
flux, but at the same time, it must ensure a prescribed heat flux or
temperature. In these cases, the boundary particles must have two
different temperatures simultaneously.

4. Model verification

To assess the accuracy of the implementation of the developed peri-
dynamic formulations, two test problems are discussed. The calculated
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Fig. 4. Schematics of the verification problems: heat transfer in a saturated soil (a) and water transfer in an unsaturated soil (b).
results are compared with the results of analytical and finite element
method (FEM) solutions for the same problems. In the first problem,
heat transfer by conduction in saturated soil with phase change is sim-
ulated. In the second problem, the flow of water in unsaturated soil is
considered. The finite element solution is obtained using the COMSOL
Multiphysics package. The scheme of the problems are presented in
Fig. 4.

The accuracy of the proposed peridynamic approach can be char-
acterized by the global numerical error, 𝜀, which can be defined
as (Madenci et al., 2019; Nikolaev et al., 2023):

𝜀 = 1
|

|

|

𝑝𝑟𝑒𝑓max − 𝑝𝑟𝑒𝑓min
|

|

|

√

√

√

√
1
𝐾

𝐾
∑

𝑛=1

(

𝑝𝑟𝑒𝑓𝑛 − 𝑝𝑃𝐷𝑛
)2

(47)

where 𝑝𝑃𝐷𝑛 and 𝑝𝑟𝑒𝑓𝑛 are the property of the consider soil body (e.g. tem-
perature or water content) at the position of particle 𝑛, obtained by the
solution of the PD model and by a reference method respectively, 𝐾 is
the total number of PD soil layers and 𝑝𝑟𝑒𝑓max and 𝑝𝑟𝑒𝑓min are the maximum
and minimum absolute value of the property based on the reference
calculation method.

4.1. Heat transfer by conduction with phase change

The benchmark test deals with heating a frozen soil sandy loam,
which was described by Hansson et al. (2004). The thermo-physical
properties of the soil are presented in Tables 2 and 3. For this problem,
it is supposed that the soil is fully saturated and the densities of ice and
water are equal.

The considered one-dimensional problem of heat transfer with
phase change has an analytical solution (Hahn and Özisik, 2012). The
problem is formulated for a semi-infinite soil domain, 0 ≤ 𝑧 ≤ ∞, with
initial condition 𝑇 (𝑧, 0) = 𝑇∞ and boundary conditions 𝑇 (0, 𝑡) = 𝑇0
(Dirichlet boundary condition) and 𝑇 (∞, 𝑡) = 𝑇∞. This solution, for the
case of soil thawing, i.e. 𝑇0 > 𝑇𝑓 and 𝑇∞ < 𝑇𝑓 , can be presented as:

𝑇 (𝑧, 𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑇0 +
(

𝑇
(

𝑧𝑐 , 𝑡
)

− 𝑇0
)

erf
(

𝑧
(4𝛼𝑢𝑛𝑡)1∕2

)

erf
(

𝛽
(4𝛼𝑢𝑛)1∕2

) , 0 ≤ 𝑧 ≤ 𝑧𝑐 (𝑡)

𝑇∞ +
(

𝑇
(

𝑧𝑐 , 𝑡
)

− 𝑇∞
)

erfc

(

𝑧

(4𝛼𝑓 𝑡)1∕2
)

erfc

(

𝛽

(4𝛼𝑓 )1∕2
) , 𝑧𝑐 (𝑡) ≤ 𝑧 ≤ ∞

(48)

where 𝑧𝑐 (𝑡) = 𝛽
√

𝛼𝑢𝑛𝑡 is the position of the freezing front at time 𝑡;
𝛼 and 𝛼 are the thermal diffusivities of frozen and unfrozen soils,
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𝑓 𝑢𝑛
respectively; erf(𝑥) = 2
√

𝜋
∫ 𝑥
0 𝑒−𝑏2𝑑𝑏 is the error function; erfc(𝑥) =

1 − erf(𝑥) is the complementary error function; and 𝛽 is the root of the
transcendental equation:

𝑒−𝛽2

erf (𝛽)
+

𝛬𝑓

𝛬𝑢𝑛

(

𝛼𝑢𝑛
𝛼𝑓

)1∕2 𝑇
(

𝑧𝑐 , 𝑡
)

− 𝑇 (∞, 𝑡)

𝑇
(

𝑧𝑐 , 𝑡
)

− 𝑇 (0, 𝑡)
𝑒−𝛽

2(𝛼𝑢𝑛∕𝛼𝑓
)

erfc
(

𝛽
√

𝛼𝑢𝑛∕𝛼𝑓
)
=

𝛽𝐿𝑖
√

𝜋

𝐶𝑢𝑛
[

𝑇
(

𝑧𝑐 , 𝑡
)

− 𝑇 (0, 𝑡)
] (49)

where 𝛬𝑓 and 𝛬𝑢𝑛 are the heat conductivity of the frozen and unfrozen
soils; 𝐶𝑢𝑛 is the specific heat capacity of the unfrozen soil.

In the peridynamic model, the one-dimensional domain has a finite
length of 5 m. The initial temperature of the soil is −10 ℃. The
top boundary has a constant temperature of +10 ℃. The freezing
temperature of the water is constant and equal to 0 ℃. In the analytical
solution, it is assumed that the water becomes frozen immediately after
the phase change temperature is approached. To closely represent this
condition in the peridynamic model, we assume that the liquid water
content decreases linearly to the residual value as the temperature
approaches −0.25 ℃. The heat conductivity of the soils is defined by
Eq. (A.9).

In the PD model, the time step dynamically changed and ap-
proached values up to 5 s. In the analysis, the soil domain is divided
into 100, 250, 500, 1000, 2500, and 5000 peridynamic layers, corre-
sponding to the thickness of each layer, 𝛥𝑧, ranging from 50 ⋅ 10−3 to
1 ⋅ 10−3 m. The relative size of the horizon, 𝑚, is chosen as 2, 3, 4, 5, 6,
8, and 10. The calculation time was 10 days.

The simulation results and their comparison with the analytical
solution (48) are presented in Fig. 5 for the time instances of 1, 3 and
10 days for the layer thickness 𝛥𝑧 = 10 ⋅ 10−3 m and the horizon size
𝛿 = 30 ⋅ 10−3. . The comparison demonstrates that there is a very good
agreement between the two calculation methods.

In every calculation, the absolute numerical error is calculated
at the final time instance. The value is presented in Fig. 6 for all
considered layer and horizon sizes. As shown in panel (a), the value
of 𝜀 decreases as the peridynamic layers become thinner, reaching the
minimum value in the range of 0.05 to 0.1%. Further reduction is not
observed due to the difference in the representation of the soil freezing
characteristic curve in analytical and numerical models. The graph
also shows that certain particle sizes provide minimal errors at specific
values of 𝑚, for example, 𝛥𝑧 = 20 ⋅ 10−3 for 𝑚 = 3 and 𝛥𝑧 = 10 ⋅ 10−3

for 𝑚 = 5. This phenomenon is elucidated in panel (b), where data are
presented relative to the horizon size 2𝛿. According to this graph, across
all cases, the numerical error is minimized with a horizon size of 0.1 m.
This value is specific to the model’s parameters (temperature range and
soil freezing curve parameters) and should not be considered universal.
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Fig. 5. The change of temperature in a saturated sandy loam at 1, 2 and 10 days time instances. The lines are the results of the developed PD model, the dots are the analytical
solution, Eq. (48).
Fig. 6. Absolute numerical error 𝜀 of peridynamic solutions in the heat transfer
problem with phase change that are observed for different values of 𝑚 and 𝛥𝑧.

4.2. Moisture transfer in unsaturated soil

In this verification exercise, we consider the saturation of unsatu-
rated sandy loam, which was studied in previous exercises. The results
of the PD model were compared with the FEM simulation. The consid-
ered soil domain has a thickness of 2 m. Several values of the initial
water content 𝜃𝑖𝑛,𝑙 are tested: 0.3, 0.2, 0.1, as well as 0.09, 0.08, 0.07
and 0.06. As a boundary condition, a constant liquid water content is
defined at the upper surface of the layer 𝜃𝑙(𝑧 = 0) = 𝜃𝑠𝑎𝑡 = 0.535. The
soil has a constant temperature.

In the PD model, the time step was dynamically changed and
approach the values up to 5 s. In the analysis, the soils domain is
divided into 40, 100, 200, 400, 1000 and 2000 soil peridynamic layers,
that correspond to the thickness of each layer 𝛥𝑧 from 50⋅10−3 to 1⋅10−3

m. The relative size of the horizon, 𝑚, is chosen as 2, 3, 4, 5, 6, 8 and
10. The calculation time was 36 h.
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Fig. 7(a)–(c) presents the values of liquid water content for 𝜃𝑖𝑛,𝑙 set
to 0.3, 0.2, and 0.1 and time instances of 12, 24, and 36 h, respectively,
based on PD and FEM models. These calculations are performed for a
layer thickness of 𝛥𝑧 = 10 ⋅ 10−3 m and a horizon size of 𝛿 = 30 ⋅ 10−3.
For lower values of the initial water content, the applied FEM software
failed to provide converged solutions due to the extremely low values
of the pressure head in the unsaturated part, reaching −2982 m for
the driest case. The calculation results for these low values of 𝜃𝑖𝑛 are
presented in panel (d). It should be noted that to ensure the accuracy
of the solution in the case of dry soils, the peridynamic calculations are
performed for thinner peridynamic soil layers with 𝛥𝑧 = 2 ⋅ 10−3 m and
a horizon size of 𝛿 = 6 ⋅ 10−3.

The comparison shows that the non-local approach can achieve
the same level of accuracy as the finite element method across a
wide range of water content and the associated values of pore water
pressure. However, in instances of very dry soils exhibiting extremely
high suction values, the FEM model can struggle to converge due to
the large pressure gradient within a very narrow distance range. In
contrast, the developed non-local approach can handle such very dry
soil conditions without encountering significant difficulties.

For the case of soils with 𝜃𝑖𝑛,𝑙 = 0.3, the absolute numerical error
is calculated at the final time instance. Its value is presented for all
considered peridynamic layer and horizon sizes in Fig. 8.

The results show that the accuracy of the solution increases with
both the decrease in horizon size and the thickness of the soil layers.
The change in horizon size can be caused by the variation in 𝑚 or
𝛥𝑧. It should be noted that the difference in the error values between
the solutions with the same 𝑚 but different 𝛥𝑧, as seen in panel (a),
is caused by the ’step-wise’ shape of the resulting function of water
content, Fig. 7(a). In this case, even a small variation in the predicted
dynamics of the ‘step’ position causes the appearance of very large error
values, as some of the considered soil layers adjacent to the ‘step’ will
have a completely different water content.

The presented verification exercises prove the accuracy of the de-
veloped numerical procedure. In the next section, this model is applied
to describe the behaviour of various types of soils.

5. Validation and application

Four validation exercises are performed to demonstrate the ability
of the proposed PD formulation to reproduce experimentally observed
behaviours. The selected experiments are: Mizoguchi (1990) experi-
ment of freezing sandy loam; Watanabe et al. (2013) experiment of
freezing silty loam; Zhou et al. (2014) experiment of freezing loamy
silt; and Jame and Norum (1980) experiment of freezing silica flour.
These have been used to validate various numerical models based on
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Fig. 7. The change of liquid water content in the unsaturated sandy loam at 12, 24 and 36 h time instances (panels (a) – (c)) and at the time instance 36 h (panel (d)). The
lines are the results of the developed PD model, the dots are the results of the FEM simulation.
Fig. 8. Absolute numerical error 𝜀 of peridynamic solutions in the problem of water
transfer in unsaturated soils that are observed for different values of 𝑚 and 𝛥𝑧.

FEM and other numerical methods. General information about these
experiments, as well as a comprehensive list of numerical studies where
they have been used, is presented in Table 1. They have similar set-ups:
a vertical or a horizontal soil cylinder with known physical properties
and water content was exposed to a low temperature from one side,
whereas the boundary of the soil column froze and the freezing front
propagated along the cylinder. A conceptual diagram of the set-up is
shown in Fig. 9.

5.1. Freezing of Kanagawa sandy loam

The description and the results of the laboratory study (Mizoguchi,
1990) were presented in Hansson et al. (2004). Four vertical cylinders
of Kanagawa sandy loam with a length of 20 cm and a diameter of
8 cm were used. The initial water content in all cylinders was 𝜃 =
10

𝑖𝑛,𝑙
Fig. 9. The scheme of 1D experiments of soil freezing.

0.335. The cylinders had initial (nearly) uniform temperature of 6.7 ◦C
and were subsequently cooled from above by a flowing liquid with
unknown properties so that −6 ◦C was reached and maintained at the
top surface. The cooling of the cylinders was interrupted after 12, 24
and 50 h, and the samples were sliced to measure the water content.

The modelling of this experimental procedure requires convective
heat flux to be prescribed as a boundary condition (Hansson et al.,
2004; Liu and Yu, 2011). However, the convective heat transfer co-
efficient is unknown, and in the present study it is assumed to be 25
W∕(m2K). The thermal conductivity of soil is defined by Eq. (A.10).
Other properties of the soil are presented in Tables 2 and 3. The
impedance factor, Eq. (A.7), is assumed to be 𝜂 = 10. The time step
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Table 1
General information about considered laboratory experiments.

Experiment details Mizoguchi (1990), Hansson
et al. (2004)

Watanabe et al. (2013) Zhou et al. (2014) Jame and Norum (1980)

Type of soils Sandy loam Silty loam Loamy silt Silica flour

Soil sample 20 cm vertical cylinder
with ∅ 8 cm

35 cm vertical cylinder
with ∅ 7.8 cm

23.6 cm vertical cylinder
with ∅ 5.3 cm

30 cm horizontal cylinder
with ∅ 10 cm

Duration of experiment 50 h 50 h 72 h 72 h

Thermal BC (top / bottom,
or left / right)

convective heat flux / zero
heat flux

constant temperature /
constant temperature

convective heat flux / zero
heat flux

constant temperature /
constant temperature

Hydraulic BC (top /
bottom, or left / right)

zero water flux / zero
water flux

zero water flux / zero
water flux

zero water flux / zero
water flux

zero water flux / zero
water flux

Studies discuss the
experiment

Painter (2011), Painter and
Karra (2014), Peng et al.
(2016), Zhang et al.
(2016b), Li et al. (2021),
Stuurop et al. (2021)

Stuurop et al. (2021) Stuurop et al. (2021),
Chen et al. (2022)

Painter (2011), Painter and
Karra (2014), Peng et al.
(2016), Zhou and Zhou
(2010), Liu and Yu (2011),
Sheshukov and Nieber
(2011), Karra et al.
(2014), Chen et al. (2022),
Fu et al. (2023)
T
c

a
t

Table 2
Parameters of the model test problems.

Properties Sandy loam
(Mizoguchi,
1990)

Silt loam
(Watanabe
et al., 2013)

Silt loam
(Zhou et al.,
2014)

Silica flour
(Jame and
Norum, 1980)

𝜖 = 𝜃𝑠𝑎𝑡, [−] 0.535 0.617 0.467 0.5
𝜃𝑟𝑒𝑠, [−] 0.05 0.006 0.05 0.005
𝐾𝑠𝑎𝑡, [ms−1] 3.2 ⋅10−6 2.1 ⋅10−6 0.3 ⋅10−6 2.0 ⋅ 10−6

𝛼𝑣𝑔 , [m−1] 1.11 0.88 0.11 0.31
𝑛𝑣𝑔 , [−] 1.48 1.25 2.2 3
𝛬𝑠, [Wm−1K−1] 0.55 0.4 1 2

Table 3
Thermophysical properties of the soil components.
𝛬𝑙 , [Wm−1K−1] 0.6
𝛬𝑖, [Wm−1K−1] 2.14
𝛬𝑎, [Wm−1K−1] 0.025
𝐶𝑠, [J kg−1K−1] 840
𝐶𝑙 , [J kg−1K−1] 4182
𝐶𝑖, [J kg−1K−1] 2180
𝐶𝑎, [J kg−1K−1] 1000
𝜌𝑠, [kg m−3] 2648
𝜌𝑙 , [kg m−3] 1000
𝜌𝑖, [kg m−3] 916
𝜌𝑎, [kg m−3] 1.28
𝐿𝑓 , [kJ kg−1] 334

in the PD simulations was 0.25 s. The layer thickness was 2 ⋅ 10−3 m
and the PD horizon was 6 ⋅ 10−3m.

The simulation results are presented in Fig. 10 together with the
experimental results. Close agreement between the two can be ob-
served. The position of the phase change front and the water content in
the unfrozen and frozen parts are accurately predicted by the model.
A slight disagreement between numerical and experimental results is
observed at the top boundary of the cylinders (𝑧 = 0), where the
predicted total water content is lower than the experimental one. It
can be explained by the specificity of the developed PD approach.
Here, Eq. (28) is used to define the hydraulic conductivity of t-bonds,
and therefore the hydraulic conductivity of the horizon drops when its
centre has nearly zero conductivity. When the temperature of the upper
PD layer of the model becomes negative and the conductivity becomes
nearly zero, the inflow to this layer is prevented. As a result, the total
water content of the layers adjacent to the top boundary remains nearly
equal to the initial value.

It should be noted, that results of the developed PD approach are in
better agreement with the experimental data than the models proposed
in Hansson et al. (2004) and Dall’Amico et al. (2011), and are in similar
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agreement as the models developed in Stuurop et al. (2021). (
It should be also noted that in contrast to the other experiments
considered in this study, the Mizoguchi experiment sets a constant
temperature only on one side of the cylinder. In such case, the freezing
front steadily propagates through the cylinder, and if the experiment
has not been stopped at 50 h, the entire body would have frozen after
some time. Therefore, there is no significant water accumulation at
any cross-section, which could happen if the propagation of the phase
change front stops due to reaching temperature steady-state conditions.

To assess the influence of domain discretization, calculations were
conducted for various numbers of peridynamic layers: 20, 40, 80, 100,
120, 160, and 320, corresponding to the layer thickness 𝛥𝑧 ranging
from 10−2 to 6.25 ⋅ 10−4 m. During the calculations, the total water
content 𝛩𝑤 was determined. The calculation results for horizontal cross
sections with positions 𝑧 at 0.05, 0.1, and 0.15 are presented in Fig. 11.

The results show that the solution is not discretization-independent.
With the decrease in particle size, the values of the total water content
converge to some values that can be considered as the true solution.
However, as seen, only very thick peridynamic soil layers compromise
accuracy significantly. After approaching a critical size, the influence
of this parameter on the solution becomes insignificant.

It is noted that thicker peridynamic layers are more suitable for
practical applications in which calculation domains have large sizes. It
significantly reduces the computational time because the total number
of domain division in the model becomes smaller, and, moreover,
solving the problem with larger particles can be performed with a larger
time step. Therefore, in this section, for all validation problems, we
focus on a domain discretization in which the particle size is chosen as
one of the largest possible thicknesses that ensure solution accuracy.

5.2. Freezing of silt loam from Tokachi District, Hokkaido

The soil used in the laboratory experiment by Watanabe et al.
(2013) was a silty loam. The soil samples were packed in cylinders
with a diameter of 7.8 cm and a height of 35 cm. These cylinders were
vertically placed between two temperature-controlled plates, the top
one had a temperature of −6.2 ◦C and the bottom one a temperature
of 2 ◦C. Three experiments with initial liquid water contents of 0.31,
0.38 and 0.46, were performed. Other thermo-physical properties are
presented in Tables 2 and 3. In the PD model, the time step was 0.25 s.
The layer thickness was 3.5 ⋅10−3 m and the PD horizon was 9.5 ⋅10−3m.

he impedance factor in Eq. (A.7) was assumed to be 𝜂 = 10. The heat
onductivity of the soils is defined by Eq. (A.9).

The simulation and experimental results are shown in Fig. 12, where
very good agreement can be observed. The thermal conductivity of

he solid grains and their density was not presented in Watanabe et al.

2013), and was applied according to Stuurop et al. (2021). A more
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Fig. 10. The change of total water content in a sandy loam cylinder at 12, 24 and 50 h time instances. The lines are the results of the developed PD model, the dots are the
results of the experimenter (Mizoguchi, 1990) (based on Hansson et al. (2004)).
Fig. 11. Variations of the total water content 𝛩𝑤 for three soil sample cross sections
depending on the thickness of the peridynamic layer 𝛥𝑧.

accurate assessment of these parameters can improve the agreement.
For example, it was proposed to change the parameter 𝑛𝑣𝑔 to in-
crease the agreement between calculation and laboratory data (Stuurop
et al., 2021). This can indeed improve the agreement for the case
with initial 𝜃𝑙 = 0.38, however, for the two other cases the accuracy
decreases. Therefore, this value was not modified here, but selected
based on Watanabe et al. (2013).

5.3. Freezing of silt loam from Turtmann valley, Switzerland

The behaviour of silty loam was studied by an extensive set of
laboratory experiments (Zhou et al., 2014). Four separate experiments
were conducted. Vertical soil cylinders with 0.053 m inner diameter
and 0.236 m length were frozen from their top surfaces in 72 h time in-
tervals. During the test, the liquid and ice contents, and also the change
in temperature profiles were measured. The thermophysical properties
of the soils are presented in Tables 2 and 3. The conditions of the
experiments are presented in Table 4. It should be noted that according
to the data, presented in Zhou et al. (2014), the temperature at the top
boundary was not constant. It was higher at the initial stage, and only
after certain time, it decreased to the reported values. Therefore, in
the numeric simulation, the convective boundary condition is applied
at the top boundary with a convective heat transfer coefficient of 400
W∕(m2K). In the PD model, the time step was 0.25 s. The layer thickness
was 2.35 ⋅ 10−3 m and the PD horizon was 7.05 ⋅ 10−3 m. The impedance
factor in Eq. (A.7) was assumed to be 𝜂 = 9. The heat conductivity of
the soils is defined by Eq. (A.9).

The results presented in Fig. 13, show a good agreement between
the experimental data and the calculated behaviour for the first and
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Table 4
Experimental conditions for 4 experiments (Zhou et al., 2014).

1 exp. 2 exp. 3 exp. 4 exp.

Initial water content, − 0.325 0.160 0.225 0.167
Top temperature, [℃] −4 −4.7 −4.2 −2.1
Bottom temperature, [℃] 3.6 3.5 4.1 3.8

Table 5
Experimental conditions for 3 experiments (Jame and Norum, 1980).

1 exp. 2 exp. 3 exp.

Initial water content, − 0.156 0.15 0.101
Left temperature, [℃] −10 −5.5 −5.3
Right temperature, [℃] 20 4.5 5

fourth experiments, even if the PD model predicts the narrower tran-
sition area between frozen and unfrozen zones. However, laboratory
experiments 2 and 3 cannot be reproduced by the model with the
same values of the soil properties. Even when the position of the phase
change front and its dynamics are captured well, a significant amount
of water accumulates around the steady-state position of the freezing
front, more than can be mathematically predicted. It is noted that by
the end of the experiments, the steady-state temperature fields were
almost reached. When this happens, the velocity of the phase change
front significantly decreases, which gives the pore water more time to
flow to the front and accumulate there. It is clearly observed in the
results for all cases except the one with 𝜃𝑙 = 0.325.

5.4. Freezing of silica flour

The experiments reported in Jame and Norum (1980) used hori-
zontal cylindrical soil samples with a height of 0.3 m and a diameter
of 0.1 m. The left and right boundaries of the sample had a constant
temperature. There is no information about the thermo-physical and
hydraulic properties of the soil that can be used in the simulation.
Therefore, all model parameters were defined based on information
from other papers. The parameters used are presented in Tables 2 and 3.
There were three sets of experiments with different initial water content
and boundary temperatures. The total time of all experiments was 72 h.
Information about the experimental conditions is presented in Table 5.
The thermal conductivity of the soil is defined by Eq. (A.10). In the PD
model, the time step was 0.15 s. The layer thickness was 3 ⋅10−3 m and
the PD horizon is 9 ⋅ 10−3m.

The computational results and corresponding experimental data are
presented in Fig. 14. The comparison shows that the developed model
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Fig. 12. The change of total water content in silt loam cylinders with different initial water content 𝜃𝑙,𝑖𝑛 after 50 h of freezing. The lines are the results of the developed PD
model, and the dots are the results of the experimenter (Watanabe et al., 2013).
Fig. 13. The change of total water content in a silt loam cylinder with different initial water content 𝜃𝑙,𝑖𝑛. The lines are the results of the developed PD model, and the dots are
the results of the experimenter (Zhou et al., 2014).
can describe well heat and water transfer in freezing soils. There is a
very good agreement for the first test between the experimental data
and the simulations for the frozen part of the sample during the entire
experiment time. However, the predicted total water content in the
unfrozen part is higher. Such behaviour cannot be reasonably explained
in the framework of the existing theories. It should be noted, that in the
study (Peng et al., 2016), only the second and third tests were consid-
ered, possibly because of the above observation. A better agreement for
the unfrozen zone in the first test was demonstrated in Painter (2011),
Painter and Karra (2014) and Karra et al. (2014). However, in all their
attempts, the authors overpredicted the water content in the frozen
zone, especially in the region close to the cold end of the sample. It
is, therefore, possible that for the first test, conservation of water mass
was not maintained in the laboratory experiment, possibly due to a high
evaporation rate during the long 72 h experiment in the presence of a
source of relatively high temperature (+ 20 ℃).

It should be noted that even if the temperature at the left (cold)
boundary was nearly constant during the experiment, during the first
4 h, it was sufficiently higher. Because of this, a slight disagreement
between experimental and simulation results is observed in the initial
times.
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6. Conclusions

The paper presents a rigorous mathematical derivation of the gen-
eral forms of heat and mass conservation equations that describe the
behaviour of frozen unsaturated soils. The heat conservation equation
considers the effective latent heat of solidification. The mass conserva-
tion equation takes into account the moisture transfer due to isothermal
and thermal mass liquid diffusivity, and is derived to consider the
coexistence of liquid and solid water in pores at negative temperatures.
These general forms of conservation equations can become a foundation
for developing local and non-local analytical and numerical models.

A new non-local coupled model for calculating the temperature
change and liquid transfer in unsaturated frozen soils was developed
and presented within the framework of bond-based Peridynamic the-
ory. The model was shown to reproduce the results of several laboratory
experiments with good agreement, except in some rather anomalous
cases discussed in the paper.

The proposed model is the first Peridynamic formulation of diffusion
equations that combines the water mass transfer defined by isothermal
and non-isothermal liquid conductivity with heat transfer and change
of water state. It was demonstrated that for the soils with relatively
high initial water content, the developed approach effectively captured
the change of liquid water content.
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Fig. 14. The change of total water content in a silica flour 𝛩𝑤. The lines are the results
of the developed PD model, the dots are the results of the experimenter (Jame and
Norum, 1980).

The set of integral–differential peridynamic equations is solved by
a simple numerical scheme. The developed non-local approach can be
used as a basis for the development of a fully coupled physically based
model of frost heave.
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Appendix A. Hydraulic and thermal properties of frozen soils

According to the semi-empirical approach presented in Stuurop
et al. (2021), see also Dall’Amico et al. (2011), Painter and Karra
(2014) and Chen et al. (2022), the soil pore water potential includes the
terms that can be defined by the Clausius–Clapeyron equation and van
Genuchten model. The soil water potential, as a function of the total
water content, is described by the van Genuchten (1980) relationship:

𝛹𝛩 = − 1
𝑎𝑣𝑔

⎡

⎢

⎢

⎣

(

𝜃𝑠𝑎𝑡 − 𝜃𝑟𝑒𝑠
𝛩𝑤 − 𝜃𝑟𝑒𝑠

)

𝑛𝑣𝑔
𝑛𝑣𝑔

−1
− 1

⎤

⎥

⎥

⎦

1
𝑛𝑣𝑔

(A.1)

The soil water potential associated with the coexistence of liquid and
solid water at negative temperatures and governed by the Clausius–
Clapeyron equation is:

𝛹𝑇 =

⎧

⎪

⎨

⎪

⎩

𝐿𝑖
𝑔𝑇𝑓

(𝑇 − 𝑇𝑓 ), if 𝑇 < 𝑇𝑓

0, if 𝑇 ≥ 𝑇𝑓
(A.2)

where 𝜃𝑠𝑎𝑡 is the saturated volumetric water content [m3∕m3]; 𝜃𝑟𝑒𝑠 is
the residual total water content [m3∕m3]; 𝑎𝑣𝑔 , [1∕𝑚], and 𝑛𝑣𝑔 , [−] are
the van Genutchten parameters, that depend on the type of soils.

Following Dall’Amico et al. (2011), the initial temperature of water
solidification 𝑇𝑓 can be defined according to the Clausius–Clapeyron
equation as:

𝑇𝑓 = 𝑇0 +
𝑔𝑇0
𝐿

𝛹𝛩 (A.3)

The surface tension of water, 𝜎, which is required for calculating
the modified thermal mass liquid diffusivity for frozen and unfrozen
conditions by Eq. (13), can be described as discussed in Saito et al.
(2006).:

𝜎 =
(

75.6 − 0.1425𝑇 − 0.000238𝑇 2) 10−3 (A.4)

where 𝑇 is temperature in ℃.
As indicated in Painter and Karra (2014), the maximum temperate

at which the ice can exist (or, the freezing temperature of water) is
lower for water within soils than in its bulk state. With the increase of
gas content in soils, the freezing temperature depression also decreases,
which was indicated e.g., by Kozlowski (2004). According to the experi-
mental study (Zhou et al., 2014), when the equilibrium water content is
higher than the unfrozen water content for a given temperature 𝑇 < 𝑇𝑓 ,
its value should be described by the soil water potential. If they are
equal, 𝜃𝑙 depends only on the temperature and can be described by the
Clausius–Clapeyron equation. Following this conclusion, the physical
approach, discussed in Stuurop et al. (2021), can be modified to derive
an approximation for the soil freezing curve that defines the maximum
unfrozen water content in frozen soils 𝜃𝑙,𝑚𝑎𝑥 at a given temperature
𝑇 < 𝑇𝑓 . In this case, the modification of the relation proposed in Zheng
et al. (2021) can be used, see also (Zhang et al., 2016b), which is
derived by the introduction of Eq. (9) to the van Genuchten (1980)
model as:

𝜃𝑙,𝑚𝑎𝑥 = 𝜃𝑙,𝑟𝑒𝑠 +

(

𝜃𝑙,𝑠𝑎𝑡 − 𝜃𝑙,𝑟𝑒𝑠
)

(

|

|𝑎 𝛹 |

|

𝑛𝑣𝑔 + 1
)

𝑛𝑣𝑔−1
𝑛𝑣𝑔

(A.5)
|

𝑣𝑔
|
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It should be noted, that in Zhang et al. (2016b) and Zheng et al. (2021),
instead of the term 𝛹 , the value 𝛹𝑇 was used. Taking into account 𝛹𝛩,
s a part of 𝛹 , ensures the dependence of liquid water content on its
nitial value.

The unsaturated hydraulic conductivity of frozen and unfrozen soils
an be described by the same relation. In this case, the classical van
enuchten relation can be used:

𝑙 = 𝐾𝑙𝑠𝑎𝑡

(

𝜃𝑙 − 𝜃𝑟𝑒𝑠
𝜃𝑠𝑎𝑡 − 𝜃𝑟𝑒𝑠

)1∕2 ⎧
⎪

⎨

⎪

⎩

1 −
⎡

⎢

⎢
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1 −
(

𝜃𝑙 − 𝜃𝑟𝑒𝑠
𝜃𝑠𝑎𝑡 − 𝜃𝑟𝑒𝑠

)

𝑛𝑣𝑔
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⎤

⎥

⎥

⎦

𝑛𝑣𝑔−1
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⎬

⎪
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2

(A.6)

where 𝐾𝑙𝑠𝑎𝑡 is the saturated hydraulic conductivity, [m∕s].
When the water became frozen, the liquid water content drops,

which leads to a significant decrease in hydraulic conductivity defined
according to Eq. (A.6). However, this decrease is not high enough, as
was indicated in, e.g. Stuurop et al. (2021), therefore it is generally
suggested that the value 𝐾𝑙 should be additionally multiplied by, the
so-called, impedance factor 𝐼 , which will further decrease the hydraulic
conductivity, when the ice appears and blocks the porous flow. The
following empirical relation can be used:

𝐼 = 10−𝜂
𝜃𝑖
𝛩𝑤 (A.7)

where 𝜂 is an empirical shape parameter.
It should be noted that the introduction of impedance factor to the

numerical models is widely criticized as it can be considered as a purely
arbitrary correction function that is used to reach correspondence
between the experimental and simulation data. In Newman and Wilson
(1997) and Watanabe and Wake (2009), it was stated that the presence
of impedance factor is unnecessary if the soil water retention curve and
soil freezing characteristic curve are defined accurately. Due to that,
some modern mathematical models, see e.g. Painter (2011) and Zhang
et al. (2016c), do not take the impedance factor into account. However,
in the present study, this parameter is taken into account, as the
accurate forms of these soil characteristics are not available very often.
Moreover, even if these functions can be assessed by studying soil
samples in the laboratory, these relationships may not correspond to
the relations for the undisturbed soils in their natural state.

The total heat content 𝐻 in a unit volume of soil region , ne-
lecting the effect of differential heat of wetting, can be defined as:

=𝜌𝑖𝐶𝑖𝜃𝑖(𝑇 − 𝑇0) − 𝜌𝑙𝐶𝑙𝜃𝑙(𝑇 − 𝑇0)+

𝜌𝑠𝐶𝑠(1 − 𝜖)(𝑇 − 𝑇0) + 𝜌𝑎𝜃𝑎𝐶𝑎(𝑇 − 𝑇0) + 𝐿𝑖𝜌𝑙𝜃𝑙 ,
(A.8)

here 𝐶𝑛 denote the specific heat capacities of different phases; 𝑇0
s the reference temperature, [K], taken to be equal to the freezing
emperature of pure water.

A number of models for 𝛬𝑎𝑣 have been proposed, however, their
ccuracy is quite low (He et al., 2020a, 2021). In the present study,
he thermal conductivity of unsaturated soils is defined differently:

– as a geometric average (Zhang et al., 2016c; Zhou et al., 2022):

𝑎𝑣 = 𝛬𝜃𝑙
𝑙 𝛬

𝜃𝑖
𝑖 𝛬

(1−𝜖)
𝑠 𝛬𝜃𝑎

𝑎 (A.9)

as a simple (arithmetic) average (Amiri et al., 2018; Stuurop et al.,
021):

𝑎𝑣 = 𝛬𝑙𝜃𝑙 + 𝛬𝑖𝜃𝑖 + 𝛬𝑠(1 − 𝜖) + 𝛬𝑎𝜃𝑎 (A.10)

here 𝛬𝑙 , 𝛬𝑖, 𝛬𝑠 and 𝛬𝑎 are the thermal conductivity of liquid water,
ce, soil grains and air, [W∕(mK)], respectively. These and other forms
f the analytical determination of soil heat conductivity were discussed
n Dong et al. (2015). It was mentioned that Eq. (A.9) is more accurate
or soils with higher water content; however, as saturation approaches,
he heat conductivity is overestimated. For small water content, the
ethod could underestimate the conductivity. Eq. (A.10) generally

verestimates 𝛬𝑎𝑣 regardless of the water content. However, no reliable
ethod was proposed to choose which method is more suitable for
articular soils. Therefore, in Section 5, the calculation method is
efined empirically to ensure the best possible representation of the
ynamics of the phase front.
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Appendix B. Details of numerical implementation

In this Appendix, supplementary relationships to the numerical
representation of the model that is described by the flow chart (Fig. 3)
are presented.

𝑇
(

𝑧𝑖, 𝑡
𝑛+1) = 𝑇 (𝑧𝑖, 𝑡𝑛 ) +

𝛥𝐻(𝑧𝑖, 𝑡𝑛 )

(𝜌𝐶)𝑎𝑣(𝑧𝑖, 𝑡)
𝛥𝑡 (B.1)

𝑙
(

𝑧𝑖, 𝑡
𝑛+1) = 𝜃𝑙

(

𝑧𝑖, 𝑡
𝑛) + 𝛥𝛩𝑙

(

𝑧𝑖, 𝑡
𝑛)𝛥𝑡 (B.2)

𝜃𝑙,𝑚𝑎𝑥(𝑧𝑖, 𝑡𝑛) =
𝛥𝐻(𝑧𝑖, 𝑡𝑛)𝛥𝑡

𝜌𝑖(𝐶𝑖 − 𝐶𝑙)
[

𝑇 (𝑧𝑖, 𝑡𝑛) − 𝑇𝑓 (𝑧𝑖, 𝑡𝑛)
]

− 𝜌𝑖𝐿𝑖
(B.3)

𝑖(𝑧𝑖, 𝑡𝑛+1) = 𝜃𝑖(𝑧𝑖, 𝑡𝑛) + 𝛥𝜃𝑖,𝑚𝑎𝑥(𝑧𝑖, 𝑡𝑛) (B.4)

𝑙(𝑧𝑖, 𝑡𝑛+1) = 𝜃𝑙(𝑧𝑖, 𝑡𝑛) + 𝛥𝛩𝑙(𝑧𝑖, 𝑡𝑛)𝛥𝑡 −
𝜌𝑖
𝜌𝑙
𝛥𝜃𝑖,𝑚𝑎𝑥(𝑧𝑖, 𝑡𝑛) (B.5)

𝜃𝑖(𝑧𝑖, 𝑡𝑛+1) = 𝜃𝑖(𝑧𝑖, 𝑡𝑛) +
𝜌𝑖
𝜌𝑙

[

𝜃𝑙(𝑧𝑖, 𝑡𝑛) + 𝛥𝛩𝑙(𝑧𝑖, 𝑡𝑛)𝛥𝑡 − 𝜃𝑙,𝑚𝑎𝑥(𝑧𝑖, 𝑡𝑛)
]

(B.6)

(𝑧𝑖, 𝑡𝑛) = 𝑇 (𝑧𝑖, 𝑡𝑛) +
𝛥𝐻(𝑧𝑖, 𝑡𝑛)𝛥𝑡

(𝜌𝐶)𝑎𝑣(𝑧𝑖, 𝑡)
−
(

𝜌𝑖(𝐶𝑖 − 𝐶𝑙)
[

𝑇 (𝑧𝑖, 𝑡𝑛) − 𝑇𝑓 (𝑧𝑖, 𝑡𝑛)
]

− 𝜌𝑖𝐿𝑖
)

(𝜃𝑖(𝑧𝑖, 𝑡𝑛+1) − 𝜃𝑖(𝑧𝑖, 𝑡𝑛))
(B.7)
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