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Abstract

Recent studies of the HapMap lymphoblastoid cell lines have identified large numbers of quantitative trait loci for gene
expression (eQTLs). Reanalyzing these data using a novel Bayesian hierarchical model, we were able to create a surprisingly
high-resolution map of the typical locations of sites that affect mRNA levels in cis. Strikingly, we found a strong enrichment of
eQTLs in the 250 bp just upstream of the transcription end site (TES), in addition to an enrichment around the transcription start
site (TSS). Most eQTLs lie either within genes or close to genes; for example, we estimate that only 5% of eQTLs lie more than
20 kb upstream of the TSS. After controlling for position effects, SNPs in exons are ,2-fold more likely than SNPs in introns to be
eQTLs. Our results suggest an important role for mRNA stability in determining steady-state mRNA levels, and highlight the
potential of eQTL mapping as a high-resolution tool for studying the determinants of gene regulation.
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Introduction

Genetic variation that affects gene regulation plays an important

role in the genetics of disease and adaptive evolution [1,2,3].

However, unlike protein-coding sequences, we still know little

about how to identify the DNA sequence elements that control

gene expression. It is still difficult to predict with any confidence

which SNPs are likely to affect gene expression, without

performing targeted experimental assays.

To address this gap, recent experimental and computational

approaches have made progress on identifying elements that may be

functional, for example through experimental methods that identify

transcription factor binding sites [4,5], by in vivo testing of possible

enhancers [6] and by computational analysis of sequence data

[7,8,9]. However, our understanding of the importance of different

types of functional elements in gene regulation remains rudimentary.

As a complementary approach, genome-wide studies of gene

expression are now starting to provide information on genetic

variation that impacts gene expression levels [10]. Recent studies in a

variety of organisms have shown that levels of gene expression are

often highly heritable [11,12,13,14], and that for many genes it is

possible to map cis- and trans-acting factors using linkage

[13,15,16,17,14] or association mapping [12,18,19,20,21]. Recent

studies of experimental crosses in yeast and mice have used the

locations of SNPs within eQTL genes to provide further information

about the identity of functional elements [22,23]. In studies of

human lymphoblastoid cells, it has been reported that most strong

signals of association lie within 100 kb of the transcribed region [12],

and that eQTLs cluster roughly symmetrically around the TSS [20].

In this study, we applied a new Bayesian framework to identify

and fine map human lymphoblast eQTLs on a genome-wide scale.

In effect, we treat the SNP data as a tool for assaying the

functional impact of individual nucleotide changes on gene

regulation. Our analysis focuses on the impact of common SNPs

on gene expression levels. By using naturally occurring variation,

we test the effects of several million variable sites in a single data

set. Our results provide a detailed characterization of the types of

SNPs that affect gene expression in lymphoblast cell lines.

Results

We analyzed gene expression measurements from lymphoblas-

toid cell lines representing 210 unrelated individuals studied by the

International HapMap Project [24,25]. These expression data,

first reported by [19], were generated using the Illumina Sentrix

Human-6 Expression BeadChip. For each sample we also used

SNP genotype data from the Phase II HapMap Project, consisting

of 3.3 million genotypes per individual [25].

After remapping the Illumina probes onto human mRNA

sequences from RefSeq, we created a cleaned set of expression

data for 12,227 distinct autosomal genes that had a unique RNA

sequence in RefSeq (see Methods). For most analyses we removed

634 genes that had one or more HapMap SNPs within the

expression probe and 147 very large genes (.500 kb), leaving us

with a core data set of 11,446 genes.

We then set out to identify SNPs that affect measured mRNA

levels in cis. As an operational definition, we considered the ‘‘cis-

candidate region’’ to start 500 kb upstream of the transcription
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start site (TSS) and to end 500 kb downstream of the transcription

end site (TES). Consistent with previous work [20,12], our

preliminary analysis found that most detectable eQTLs lie within

this region.

Although the HapMap samples represent four different

populations, originating from Africa, Europe and east Asia, our

main analyses pooled the data into a single sample. To avoid false

positives due to population-level expression differences [26,20,27],

for each gene we transformed the African, European and east

Asian expression data separately to standard normal distributions

prior to combining the samples (Methods). Our rationale for

combining samples was that we should achieve better power and

better localization of signals than if we analyzed the populations

separately. In doing so, we assume that functional variants usually

have similar effects in different populations, an assumption that is

parsimonious, and has empirical support [20], Figure S1. The

overall results for analyses of individual populations are very

similar (see Figures S2, S3, and S4).

The Distribution of cis-Acting eQTLs
For each of the 11,446 genes, we tested for putative cis-acting

eQTLs by regressing measured mRNA levels against SNP

genotypes, independently for each SNP in the cis-candidate

region, using a standard linear regression model. Consistent with

previous reports [20], we found a substantial number of genes with

strong evidence for containing at least one eQTL. A total of 744

genes (6.5%) had at least one SNP with a p-value ,761026. If the

smallest p-value in each gene is treated as a summary statistic, this

threshold yields a gene-level false discovery rate of 5% [28].

We also observed that, in many cases, the SNPs most strongly

associated with mRNA levels for a particular gene lie in a

restricted region, allowing relatively precise localisation of eQTLs.

Figure 1 plots examples of p-values in three genes, illustrating both

the strong association signal that is often achieved, and the

relatively localised nature of many of the signals (Figure S5).

Encouraged by the potential for these data to localise eQTLs,

we next examined the distribution of the physical location of

putative eQTLs within the cis-candidate region. For each gene

with an eQTL (defined as having at least one p-value ,761026)

we took the position of the most significant SNP as an estimate of

the location of the functional site. In practice, we expect that the

most significant SNP will sometimes be the actual functional site,

but usually it will not since (1) HapMap contains only <1/3 of

common SNPs [25]; (2) some eQTLs may be due to SNPs in LD

with nearby copy number variants, though in practice few of the

copy number variants known to be associated with expression are

well-tagged by SNPs in these data (data not shown; [19]); (3) a

non-functional SNP in strong LD with the functional site may

have a smaller p-value by chance. Using simulations we estimate

that the median distance between the functional SNP and the most

significant SNP in our data is 7.5 kb (Figures S6 and S7). As

expected, local recombination rates are strongly inversely

correlated with the distance between the functional SNP and the

most significant SNP (Figure S8).

Figure 2 shows histograms of the locations of the most

significant eQTL SNPs, as a function of gene size. (The plots

incorporate a correction factor for the possibility of spurious

signals due to undetected SNPs in the expression probes; see

Methods.) Several interesting features emerge. First, the distribu-

tion of the most significant eQTL SNPs is roughly centered on the

transcribed region. Second, nearly all such eQTL SNPs lie close to

genes: we find relatively few that are .50 kb from the

corresponding gene. Third, as shown in Figure S9, there is a

significant enrichment of eQTL SNPs in exons compared to

introns. We will return to this observation later in the paper.

Finally, for all three gene sizes, the highest density of eQTLs is

around the TSS and immediately upstream of the TES, as

reported previously in yeast [22]. The TSS peak was reported in a

previous plot of these data [20], but in that previous analysis the

TES signal peak was concealed due to the variability of gene

lengths (see Figure S10). The TES signal is quite asymmetric:

among genes with an eQTL, 10% (75) have the most significant

eQTL in the 4 kb upstream of the TES, compared with just 4%

(29) in the 4 kb immediately downstream.

A Hierarchical Model of eQTLs in the cis-Candidate
Region

While Figure 2 reveals the broad distribution of eQTLs and

makes few modeling assumptions, it does not easily enable formal

model testing about which aspects of gene structure (or other

sequence features) are most important for generating eQTLs.

Moreover, since the most significant SNP is not always close to the

functional site, this approach can be expected to flatten out the

true peaks of eQTLs and to increase the numbers of eQTLs that

appear to lie far from the target genes.

Consequently, we next developed a Bayesian hierarchical

modeling approach that solves many of these problems (see the

Methods for further details). We considered a collection of models

in which the parameters predict the prior probability that any

given SNP in the cis-candidate region will be an ‘‘eQTN’’ (i.e., the

functional nucleotide that creates an eQTL). Each model incorpo-

rates information about the physical locations of SNPs and, in

some of our models, additional functional annotation of the SNPs.

(Our calculations assume that the actual functional site is included

in the HapMap genotype data; see below for further discussion.)

The model parameters are estimated by maximizing the overall

likelihood of the expression data, across all genes.

To implement our hierarchical approach, we switched to using

Bayesian regression to test for association between SNPs and gene

expression [29] (Methods). For each SNP in the cis-candidate

region around a gene, we computed a Bayes factor that measures

the relative support for the alternative hypothesis (the SNP is an

eQTN) compared against the null (the SNP is independent of gene

Author Summary

Individual phenotypes within natural populations gener-
ally exhibit a large diversity resulting from a complex
interplay of genes and environmental factors. Since the
advent of molecular markers in the 1980s, quantitative
genetics has made a significant step toward unraveling the
genetic bases of such complex traits, in particular by
developing sophisticated tools to map the genomic
locations of genes that affect complex traits. These regions
are known as quantitative trait loci (QTLs). More recently,
these tools have been extended to the study of gene
expression phenotypes on a massive scale. In this paper,
we used a previously published dataset consisting of
expression measurements of 11,446 genes in human cell
lines derived from 210 unrelated human individuals that
have been genetically characterized by the International
HapMap Project. Our article develops and applies a
framework for determining the genetic factors that impact
gene regulation. We show that these factors cluster
strongly near to the gene start and gene end and are
enriched within the transcribed region. Our approach
suggests a general framework for studying the genetic
factors that affect variation in gene expression.

High-Resolution Mapping of eQTLs
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Figure 1. SNP association data often allow relatively precise localization of cis-eQTL signals. The plots show examples of eQTLs for three
genes: MOSC1, ACOX3 and GLT1D1. The x-axis on each plot indicates distance from the transcription start site. The transcribed regions are indicated
by the green boxes and in all three plots the direction of transcription is left-to-right. For each SNP we plot the 2log10(p-value) for association
between genotype at that SNP and expression level of the gene. We use green to indicate SNPs that lie within the transcript of interest, and black for
SNPs outside the transcript (this coloring is used for all the figures). The dotted line indicates the threshold for a gene-level FDR of 5% (p = 761026).
doi:10.1371/journal.pgen.1000214.g001

High-Resolution Mapping of eQTLs
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Figure 2. Locations of the most significant eQTL SNPs for small, medium, and large genes. Each plot shows, for genes with an eQTL, the
distribution of locations of the most significant SNP. The x-axis of each plot divides a typical cis-candidate region into a series of bins as described.
The y-axis plots the number of SNPs in each bin that are the most significant SNP for the corresponding gene and that have a p-value ,761026

divided by the total number of SNPs in that bin. The plotted data include an adjustment for the effect of unknown SNPs inside probes (Methods).
SNPs outside genes are assigned to bins based on their physical distance from the TSS (for upstream SNPs), or TES (downstream SNPs). SNPs inside
genes are assigned to bins based on their fractional location within the gene. There are 5372 ‘‘small’’ genes, of which 300 have an eQTL, 4489
medium genes (347 eQTLs), and 1585 large genes (94 eQTLs). The size of the schematic gene at the bottom of each plot indicates the average
transcript length for that set of genes.
doi:10.1371/journal.pgen.1000214.g002

High-Resolution Mapping of eQTLs
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expression). For these data, the Bayes factors are highly correlated

with p-values from standard linear regression. However, a key

advantage of Bayes factors is that, combined with the prior

probabilities specified by the model, they allow us to compute the

posterior probability that each SNP is the actual eQTN.

The hierarchical model shares information across all genes

about the distribution of signals and this in turn allows better

weighting of which SNPs in individual genes are most likely to be

eQTNs. For example, consider a hypothetical gene in which two

SNPs that are associated with expression are in perfect LD (r2 = 1).

Suppose that one SNP is very close to the TSS, and the other is

30 kb upstream. In the p-value analysis, we would assign each of

these SNPs 50% weight. In contrast, the hierarchical model

downweights the upstream SNP because it is apparent from the

overall data that eQTNs are much more abundant near the TSS,

suggesting that the SNP near the TSS is much more likely to be

responsible for the signal. Simulations show that the hierarchical

model provides a more accurate profile of the distribution of

eQTNs (see Figures S5 and S11).

Of course, some degree of complication is added by the fact that

current HapMap data do not yet contain all SNPs. Therefore, the

sites that we infer to be ‘‘eQTNs’’ in this study surely include many

SNPs that are tags of nearby functional SNPs that are not in

HapMap. This effect will systematically reduce our estimates of

the importance of any particular factor in predicting eQTNs. In

the case of factors relating to physical location (such as distance

from the TSS) simulations show that this has a modest impact on

spreading out the signal peaks that we observe, and that the overall

distribution of signals is still estimated very well (see Figure S5,

S11, and S12). In contrast, in the case of factors relating to

functional categories (e.g., whether a SNP lies in a conserved

element) we would expect the impact to be much more serious

since functional elements are usually small and tag SNPs are

unlikely to fall within the same element as a functional site. A

second complication is caused by the possibility that undetected

SNPs in the expression array probes might create spurious signals

[30]. Our hierarchical model includes an explicit correction for

this, using the 634 genes with a known SNP in the probe as

training data.

Distribution of eQTNs with Respect to the Transcribed
Region

We first set out to get a more refined view of the distribution of

eQTNs across the cis-candidate region. The basic versions of our

hierarchical model described the positions of SNPs relative to a

single ‘‘anchor’’ point such as the TSS. SNPs were grouped into

discrete bins based on their distance upstream of the anchor, or

downstream (treated separately). The bins nearest the anchor

point were just 1 kb wide, to accommodate rapid changes in the

rate of eQTNs, while more distant bins were wider (this improves

the parameter estimates since the distant bins generally contain

few eQTNs). Each bin was associated with a single parameter that

relates to the proportion of SNPs in that bin that are eQTNs. The

rationale for this model was that it would provide a good

description of the data if, for example, the abundance of regulatory

elements could be well predicted by distance from the TSS alone.

We also considered models with pairs of anchor points (e.g., the

TSS and the TES). In those models, each SNP belonged to two

bins, each corresponding to the distance from one anchor point.

This model treats the probability that a SNP is an eQTN as the

sum of an effect due to the first anchor plus an effect due to the

second anchor. Recall that our gene set includes only genes with a

single annotated transcript, so that this analysis does not

incorporate alternative transcription start or end sites.

Table 1 compares eight different models using either a single

anchor point (e.g., TSS or TES), or pairs of anchors (TSS and one

other anchor). We used AIC (Akaike Information Criterion) to

penalize the two-anchor models for the extra parameters that they

use.

In summary, the results provide compelling support for a model

including both the TSS and TES over all other models (Table 1).

Two other two-anchor models (namely TSS+probe location, and

TSS+coding sequence end) also performed well, presumably

because the Illumina probes and the coding sequence end

positions are usually near to the TES. However, given that the

TSS+TES model had by far the strongest support, we use this

model in our subsequent analyses.

We next replotted the locations of eQTNs, using the posterior

probabilities estimated by the hierarchical model (Figure 3).

Compared to the p-value-based analysis, the two strong peaks of

signal near the TSS and TES are considerably strengthened. Also, in

the hierarchical model, the level of background signal upstream and

downstream of the gene is greatly reduced, presumably because most

of the background signal in the p-value analysis can be explained as

resulting from LD with SNPs near the TSS and TES. The

hierarchical model estimates that the total number of eQTLs is

considerably larger than the number that we detected by linear

regression at the rather stringent false discovery rate of 5% (1586 vs.

744). This difference is partly because the hierarchical model adds

fractional probabilities for eQTLs that have only partial support for

being true eQTLs, and partly because the hierarchical model is more

sensitive to signals in locations that are likely a priori.

Another view of the hierarchical model results is shown in the

cumulative plots in Figure 3, which plot the cumulative

distribution of eQTNs across the gene region. Most eQTNs lie

close to the gene, with less than 7% of the detected cis-eQTNs

located more than 20 kb outside the gene. Overall, there are about

3-fold more eQTNs in the upstream region of the gene (59 of the

TSS) than downstream (39 of the TES) (30% vs. 9%).

We next investigated the peaks of signal near the TSS and TES

in more detail, using a finer bin partition close to the TSS and

TES (see Figure 4A and Methods). At this finer scale, the TES

Table 1. Candidate models of eQTN locations, ranked by AIC.

Model Log Likelihood Diff. AIC Difference

TSS+TES 0.0 0.0

TSS+CDSE 211.9 211.9

TSS+Probe 214.8 214.8

TSS+TXMID 258.5 258.5

TSS+CDSMID 263.5 263.5

TSS 2117.8 266.8

TSS+CDSS 294.9 294.9

TES 2330.7 2229.7

The table compares the performance of seven different hierarchical models of
eQTN locations. In each model we used either a single ‘‘anchor’’ point to predict
the locations of eQTNs (e.g., the location of the TSS) or two anchor points (e.g.,
the TSS and TES locations). The ‘‘TSS+CDSE’’ model uses the TSS and the coding
sequence end locations as anchors; similarly ‘‘probe’’ refers to the location of
the probe and ‘‘TXMID’’ is the midpoint of the transcript. The second and third
columns compare the model listed on that line against the best model
(TSS+TES), in terms of the difference in log likelihood (column 2) and the
difference in Akaike Information Criterion (AIC, column 3). AIC penalizes the
two-anchor models for 51 additional parameters compared to the one-anchor
models.
doi:10.1371/journal.pgen.1000214.t001

High-Resolution Mapping of eQTLs
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signal is extremely sharply peaked over a region of just ,100 bp

immediately upstream of the TES. The data strongly reject a

model in which the signal is symmetric around the TES

(p = 361027). In contrast, the TSS signal is more spread out,

and spans both sides of the TSS. There is no evidence of

asymmetry in the TSS signal (p = 0.34).

We also observed that the TSS and TES peaks both correspond

with two parts of the typical gene structure that, averaging across

all 11,446 genes, tend to be highly conserved across the

mammalian phylogeny (Figure 4B). The correspondence of the

two eQTN peaks with the peaks of conservation suggests that there

may be a causal link between these two types of signals. We

propose that the sequence conservation reflects, at least in part, the

roles of these two locations in regulating mRNA levels, though

further work will be needed to verify the connection.

Similarly, the TSS peak also matches up closely with the peak

binding densities of a collection of transcription factors that are

involved in transcription initiation (reported previously by the

ENCODE group, based on ChIP-chip data collected for a set of

regions spanning ,1% of the genome [4]). As might be expected,

the ENCODE data identified almost no transcription factor

binding near the TES. We return to these latter observations in the

Discussion.

Distribution of eQTNs with Respect to Functional
Annotation

We next used our hierarchical model to examine the impact of

various types of functional annotation on the probability that a

SNP is an eQTN. We first classified SNPs that lie inside genes into

categories based on the exon/intron structure (e.g, first, coding

and last exons; first, internal, and last introns; Figure S13). In

order to make the model fully identifiable, we estimate the effect of

each annotation relative to the abundance of eQTNs in internal

introns (as this category has the greatest number of SNPs). Since

gene position is highly predictive of eQTN abundance, we

controlled for SNP position using the TSS+TES model. In effect,

Figure 3. Locations of eQTNs, as estimated by the hierarchical model. The three left-hand panels plot the estimated fractions of SNPs in
each bin that are eQTNs, using the posterior expected numbers of eQTNs in each bin from the hierarchical model. The right-hand panels plot the
corresponding cumulative distributions of detected eQTNs, as a function of position across the cis-candidate region. The horizontal green lines
indicate the gene boundaries; the vertical red lines indicate the 1% and 99% tails of the cumulative distributions. The numbers of eQTNs in each bin
were calculated as the posterior expected numbers based on the SNP posterior probabilities from the hierarchical model.
doi:10.1371/journal.pgen.1000214.g003

High-Resolution Mapping of eQTLs
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Figure 4. Fine-scale structure of eQTN peaks near the TSS and TES, and comparison to average sequence conservation and
transcription factor binding density. The left- and right-hand columns show data for 5 kb on either side of the TSS and TES, respectively
(averaging across all gene sizes). Locations inside genes are colored green and outside genes are black. A. Posterior expected fractions of SNPs in
each bin that are eQTNs, as estimated by the hierarchical model (see Methods). Each bin is 50 bp wide. B. The average number of substitutions per
base pair across the phylogeny of seven mammalian species for all 11,446 genes analyzed in this study (see Methods). Coding sequences were
excluded. Each data point is the average across a 50 bp bin. C. The average density of factor binding fragments for seven factors related to
transcription initiation and studied by ENCODE using ChIP-chip in 1% of the genome [4]. The TSS part of panel C replots data (H3K4me1, H3K4me3,
H3ac, MYC and Pol II) from Figure 5 of [4].
doi:10.1371/journal.pgen.1000214.g004

High-Resolution Mapping of eQTLs
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the hierarchical model now tests whether the annotation adds any

predictive value beyond the basic position information. As noted

above, incomplete SNP ascertainment in HapMap means that we

will generally underestimate–perhaps substantially–the impact of

relevant annotations.

The main result of this first analysis is that internal introns have a

deficit of eQTNs, compared to coding exons, as well as first and last

exons and introns (Figure 5, Table S1). For example, SNPs in coding

exons are ,2-fold more likely than SNPs in internal introns to be

eQTNs. First introns are also relatively enriched for eQTNs

compared to internal introns (controlling for position). However,

since the total amount of sequence contained in introns vastly exceeds

that in exons, 53% of genic eQTNs lie in internal introns compared

to 10% in coding exons (see Table S1). SNP density differs slightly

between exons and introns, but not nearly enough to generate a 2-

fold difference in eQTN abundance (Table S2). Overall, the

hierarchical model that includes the gene structure annotation as

well as position effects relative to the TSS and TES is substantially

better than the TSS+TES-only model (by 7 units of AIC).

We then considered the impact of a variety of other types of

SNP annotation (see Methods and Figure S14). None of these

annotations shows convincing signals of enrichment (Table S3).

We estimate a 1.9-fold enrichment of eQTNs inside conserved

noncoding elements, as might be expected if these identify

functional elements, however the 95% confidence interval

narrowly overlaps 1. We also tested for an enrichment of eQTNs

at computationally predicted microRNA binding sites, reasoning

that SNPs in these binding sites might affect mRNA degradation.

We found a suggestive, but non-significant, enrichment of eQTNs

in these sites (1.4-fold). It is unclear whether the absence of

significant effects in these analyses indicates that these types of

annotation are not strongly associated with eQTNs or instead

reflects the incompleteness of HapMap and the limitations of

current functional annotations.

Finally, based on ENCODE results showing that the promoter

regions of genes with CpG islands tend to have more accessible

chromatin and greater occupancy by transcription factors [4], we

predicted that CpG status might also provide relevant annotation.

Indeed, we find that genes with a CpG island spanning the TSS are

expressed at higher average levels, and are ,50% more likely than

genes without a CpG island on the TSS to have a cis-eQTN (15% vs

11%). This effect is consistent with the observation that genes with

CpG islands are more likely to be expressed in a wide range of tissues

than are genes without CpG islands [31]. After adjusting for the

different overall rates of eQTNs, the distribution of signal locations

in the two classes of genes is very similar (Figure S15).

Discussion

Cells use a variety of mechanisms at the transcriptional and

translational levels to regulate gene expression. Transcription

initiation is controlled by the interaction between transcription

factors and cofactors with a set of cis-acting regulatory elements

including core and proximal promoters that lie close to the TSS, as

well as enhancers, silencers and boundary elements that may act at

a distance [32,33,34,35]. Initiation is also affected by epigenetic

properties of the DNA such as chromatin condensation and DNA

methylation. After transcription initiation, mRNA levels can also

be regulated during mRNA elongation or splicing and by mRNA

stability and degradation. However, for most genes, transcription

initiation is usually thought to be the principal determinant of the

overall mRNA gene expression profile [34,35].

Consistent with the importance of transcription initiation, we

found a strong peak of eQTNs near the TSS, with 33% of eQTNs

lying within 10 kb of the TSS. Many of these eQTNs are likely to

be polymorphisms that change the binding strength of transcrip-

tion factor binding sites, thereby affecting the rate of transcription

[22]. We also found that eQTNs are distributed roughly

Figure 5. Expression-QTNs are under-represented in coding sequence introns, even after controlling for position effects. The plot
shows the odds ratios for the probability that a SNP in a particular part of the gene (e.g., coding exon) is inferred to be an eQTN, relative to that
probability for a SNP in an ‘‘internal’’ intron (i.e., an intron within the coding sequence). The odds ratios are estimated using the hierarchical model
with internal introns fixed at a value of 1, and control for SNP position using the TSS+TES model. The vertical bars show 95% confidence intervals.
doi:10.1371/journal.pgen.1000214.g005

High-Resolution Mapping of eQTLs
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symmetrically around the TSS, with the peak density in ,1 kb on

either side (c.f. [20]). Our results at the TSS are consistent with

recent observations by the ENCODE team that the peak density

of transcription factor binding is centered on the TSS (Figure 4C).

These observations indicate that empirical scans for regulatory

variants that only look upstream of the core promoter [e.g.,13,36]

may often miss important sites of regulation.

In addition to the peak of eQTN signals near the TSS, we were

intrigued to find a second, similarly strong peak near the TES, as

seen previously in yeast [22]. This peak is more concentrated than

the TSS peak, localizing immediately before the TES, and

dropping extremely rapidly after the TES. We also found that,

after controlling for position effects, SNPs in exons are consistently

more likely than SNPs in internal introns to be eQTNs. These

observations suggest that an important fraction of eQTNs may

affect properties of the transcript, rather than of the DNA

sequence. We hypothesize that these eQTNs are typically

polymorphisms that affect transcript stability or the rate of

transcript degradation [37,38,39,40,41]. In contrast to transcrip-

tion initiation, mRNA stability has been less widely studied and we

still have an incomplete picture of the mechanisms that determine

transcript persistence. One such mechanism is the hybridization of

microRNAs to single strand transcripts, thereby exposing them as

targets for degradation. Hence a SNP that creates or disrupts a

match between a microRNA and the transcript might affect the

rate of degradation [40]; however we did not find a significant

enrichment of eQTNs in predicted microRNA binding sites.

An alternative explanation for the overrepresentation of eQTNs

in exons is that in some cases these may cause alternative splicing

of the exon containing the expression probe, thereby changing

measured expression levels. In particular, SNPs in the last exon

might sometimes affect the location of the TES [21], perhaps even

deleting the expression probe from the transcript. While this

mechanism probably accounts for some of the data, we do not

believe it is the main explanation for several reasons. First, we

found that the TSS+TES model was significantly better than the

TSS+probe model. If the effect was mainly due to SNPs that affect

alternative splicing of the exon containing the probe, we anticipate

that those SNPs would usually lie nearer to the probe than to the

TES. In that case the TSS+probe model should have performed

best. Second, in a separate analysis, we observed an enrichment of

signals near the TES in Affymetrix exon array data when we

combined data across probes from multiple exons (results not

shown, data from [21]). Third, the striking peak of sequence

conservation near the TES (Figure 4B) indicates that this is a

region with strong functional significance, presumably due to an

important role in gene regulation.

Our results also imply that surprisingly few eQTNs with large

effects lie far upstream of the TSS (or downstream of the TES): for

example, just 5% of the eQTNs that we detected were more than

20 kb upstream of the TSS. These results are consistent with data

showing that most transcription factor binding sites are near the

TSS [4]. However, since our method focuses on the major eQTN

in each gene, we may under-estimate the abundance of distant

eQTNs if these typically have smaller effect sizes ([12]). By

focusing on SNPs, our analysis may miss the impact of other types

of variation–such as copy number variation–that might plausibly

exert effects over different physical scales. It is also possible that

more distant elements are less likely to be disrupted by single

nucleotide changes. Finally, it will be important to revisit the

questions that we considered here in a range of other tissues. By

studying cell lines, we may underestimate the importance of long-

range enhancers that turn genes on or off depending on conditions

outside the cell (e.g., during development).

In summary, our results show that eQTL studies provide a

remarkably high-resolution tool for identifying variants that affect

gene expression. A major strength of the eQTL approach is that,

unlike other experimental techniques that are more targeted, the

eQTL approach is agnostic about the mechanism of action of the

functional variants, provided only that they are encoded in the DNA

sequence (as opposed to epigenetic factors, for example). Hence,

eQTL studies can provide a relatively unbiased view of the

importance of different types of regulatory mechanisms. Moreover,

as the cost of genome sequencing drops, it will soon be possible to

conduct these analyses with nearly complete ascertainment of

variation, potentially providing this approach with the resolution to

study the sequence level determinants of gene expression. We

anticipate that eQTL mapping will make an essential contribution to

our understanding of human gene regulation.

Methods

Genotype Data
We analyzed genotype and expression data from 210 unrelated

individuals studied by the International HapMap project [24,25].

These include 60 Yoruba (YRI) and 60 CEPH (CEU) parents, and

45 unrelated Chinese (CHB) and 45 unrelated Japanese (JPT)

individuals. We used the HapMap Phase II genotype data, release

#21 (phased and with missing data imputed). We used data from

the 22 autosomal chromosomes only, giving a total of 3,304,587

SNPs. Since allele frequencies in CHB and JPT are extremely

similar [24], these two samples were treated as a single analysis

panel of 90 Asians (‘‘ASN’’).

Gene Expression Data
We used gene expression levels that were measured previously

in lymphoblastoid cell lines from all 210 unrelated individuals,

using Illumina’s human whole-genome expression array (WG-6

version 1) [19]. We downloaded the data that were normalized

first by quantile normalization within replicates and then median

normalized across all HapMap individuals [19] [ ftp://ftp.sanger.

ac.uk/pub/genevar/].

Since mean expression levels at many loci differ between the

HapMap populations [26,42,20,27], there is a potential for

spurious eQTLs in the combined sample due to population

structure. To control for this effect, we applied a normal quantile

transformation to the data for each gene, within each HapMap

population (ASN, CEU, YRI), prior to combining the samples.

That is, for each gene, separately in each population, we

transformed the rth largest gene expression value to the (r20.5)/

nth quantile of the standard normal distribution, where n is the

number of individuals with gene expression data from that

population [29]. By forcing each population to have the same

distribution of expression values, we avoid concerns about spurious

associations due to allele frequency differences between the

HapMap populations. (Note that the overall results within

populations are very similar; Figures S2, S3, and S4.) This

normalization also reduces the effect of outlying expression values

on the regression [29].

Selection of Genes and Probes
We used BLAT [43] to map the 47,294 Illumina array probes

onto human RNA sequences from RefSeq (hg18) [44]. The

accession numbers of the RNA sequences were mapped against

the Entrez Gene database and all probes that mapped with greater

than 90% identity to multiple genes were discarded. Of the

remaining probes we retained only those with exact matches to a

unique gene, leaving us with 19,536 valid probes. Of these, we

High-Resolution Mapping of eQTLs

PLoS Genetics | www.plosgenetics.org 9 October 2008 | Volume 4 | Issue 10 | e1000214



kept the 13,244 probes for which the gene has a single RNA

accession in the RefSeq database. This was done to simplify the

analysis by avoiding genes with multiple splice forms or multiple

annotated start sites, etc. These 13,244 probes map to 12,227

unique autosomal genes.

Of these 12,277 genes, 85% contained exactly one probe. For

the genes with multiple probes, we analyzed only a single probe,

selecting the probe nearest to the 59 end of the gene. We selected

this probe because overall the probes are strongly biased towards

the 39 end of the gene, and we wanted to reduce this bias as far as

possible. Then, we removed 634 genes for which there was at least

one HapMap SNP inside the probe since it is known that such

SNPs can impact the measured expression level [30]. Finally, 147

very large genes (size greater than 500 kb) were discarded, leaving

our core data set of 11,446 genes.

Gene Structure and SNP Annotation
Gene structure annotation was obtained from the RefSeq gene

table [44] for human genome build 35 (hg17). For each gene the

TSS and the TES genomic locations were obtained from the fields

‘‘Transcription start position’’ and ‘‘Transcription end position’’ of

the RefSeq table, respectively. We checked the genomic positions

of the TSSs against dbTSS, a database of experimentally-

determined TSSs, [45] and found no differences among the

84% of gene transcripts in our data set that are also in dbTSS. We

defined the CDS (coding sequence) to be everything between the

translation start and stop positions defined by the fields ‘‘cdsStart’’

and ‘‘cdsEnd’’, respectively, of the RefSeq Table. We then

assigned every genic SNP to one of 8 mutually exclusive gene-

related annotations (see Figure S16):

N First (non-coding) exon. If the gene has at least 2 exons, this is the

part of the first exon that is not located inside the CDS. If the

gene has only one exon, we do not consider it to have a first exon.

N First intron. If the gene has at least 2 exons, this the intron

following the first exon, provided that it is not located inside

the CDS. Otherwise there is no first intron.

N Noncoding exon. This is any part of an exon located outside

the CDS region and excluding the first and last exons.

N External intron. This is an intron located outside the CDS

region and excluding the first and the last introns.

N Coding exon. This is any part of an exon located inside the

CDS region. Note that exons containing the translation start or

stop generally contain both coding exon and noncoding (or

first/last) exon. Coding SNPs were further subdivided into

synonymous and nonsynonymous, according to their annota-

tion in dbSNP.

N Internal intron. This is an intron located inside the CDS region.

N Last intron. If the gene has at least 2 exons, this is the intron

preceding the last exon, provided that it is not located inside

the CDS. Otherwise there is no last intron.

N Last (noncoding) exon. If the gene has at least 2 exons, this is

the part of the last exon that is not located inside the CDS.

Otherwise there is no last exon.

We also included annotations that indicate whether a SNP is in

the following special categories: SNP is in a (1) CpG island; (2)

conserved noncoding region; (3) predicted cis-regulatory module; (4)

predicted micro-RNA binding site; or that (5) a predicted binding

site of the CTCF insulator protein lies between the SNP and the

TSS. See the Supplementary Methods (Text S1) for further details.

Finally, note that in our analysis design, each SNP is tested for

association with every gene that is within 500 kb. This means that

typical SNPs contribute data to multiple genes. Our analysis treats

these multiple tests as independent, which is likely a good

approximation since we identified only five SNPs that are eQTLs

for . one gene in cis.

Statistical Analysis
Notation. The data consist of SNP genotypes and gene

expression measurements for n individuals at each of K genes. Let

yik denote the normalized gene expression data for individual i (i in

1,…, n) at gene k (k in 1,…, K). Yk will denote the vector of gene

expression values (y.k) across the n individuals at gene k.

Next, let Mk be the number of genotyped SNPs in the cis-

candidate region of gene k. We denote the entire matrix of

genotype data for these Mk SNPs with the vector Gk, and

individual genotypes as gijk for individual i at SNP j of gene k.

Genotypes are coded as having 0, 1, or 2 copies of the minor allele.

P-Value Method. In the first part of the paper we used

standard linear regression to test the gene expression data at each

gene for association with SNPs in the cis-candidate region, as

follows. The effect of individual i’s genotype at SNP j (gijk) on his/

her gene expression level (yik) is assumed to follow an additive

linear model:

yik~mzajkgijkzEijk ð1Þ

where m is the mean expression level at that gene for individuals

with g = 0, where ajk is the additive effect of the minor allele at SNP

j and Eijk is the residual. A standard p-value from a 1 df test can

then be obtained for the hypothesis that SNP j is an eQTN for

gene k (ajk ? 0).

We used the following procedure to generate the results plotted

in Figure 2. For each gene with expression data we assigned each

SNP in the cis-candidate region to a single bin (see below). Let m be

the total number of SNPs that fall into bin b, summing across all

genes. (Note that most SNPs are in the cis-candidate regions of

multiple genes and hence can contribute data to multiple bins.)

Next, for each gene, we tested every SNP for association with gene

expression. If the p-value of the most significant SNP was

,761026 then we considered this to be one ‘‘signal’’ in the bin

that this SNP lies in. (Note that the results are robust to the choice

of the p-value cutoff; Figures S17 and S18.) For genes in which the

smallest p-value was shared by n.1 SNPs, we considered that the

signal was divided equally among the n most significant SNPs (i.e.,

a fraction 1/n of the signal was assigned to each SNP). Suppose

that, by this way of counting, there are s signals in bin b.

Prior to reporting the data, we also applied a correction for the

possibility of spurious signals due to ungenotyped SNPs in the

expression array probe. We used the 634 genes with a known

HapMap SNP inside the probe to create a profile of the

abundance of spurious signals as a function of distance from the

probe. This profile was used to adjust the observed number of

signals, s, to a corrected number s9, that removes the predicted

number of spurious signals in each bin (see Figure S19 and Text

S1 for details). In practice, we estimate that the contribution of

spurious signals does not substantially change the overall

uncorrected distribution of signals. Finally, we computed the

fraction of most significant SNPs in bin b as s9/m.
Bin Definitions. To display the distribution of signals in

Figures 2 and the left panel of Figure 3 we subdivided the cis-

candidate region into discrete bins as follows. First, since there is

dramatic variation in gene sizes, we analyzed genes in three

separate categories based on transcript length: small genes (0–

20 kb), medium genes (20–100 kb) and large genes (100–500 kb).

Then, within each gene size category we divided the entire cis-
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candidate region into a series of bins, anchored at the TSS and

TES. SNPs outside the transcript were assigned to bins based on

their distance from the TSS (for the upstream region) or TES

(downstream). Bins outside the transcript were 1 kb wide for small

and medium genes and 15 kb wide for large genes. Transcribed

regions were split into fixed numbers of bins: each small gene was

split into ten bins of equal size, medium genes into 25 bins and

large genes into 15 bins. Hence, bins inside the transcript indicate

the fractional location of SNPs relative to the TSS and TES, and

the physical sizes of the bins vary across genes. The bin sizes were

chosen so that the average physical sizes of internal and external

bins are roughly the same within each gene size category.

Hierarchical Model
We present here an overview of the hierarchical model.

Complete details on the models are provided in the Supplemen-

tary Methods section (Text S1).

Bayesian Regression Model. The hierarchical model applies

the Bayesian regression framework of Servin and Stephens [29].

The effect of individual i’s genotype at SNP j (gijk) on his/her gene

expression level (yik) is assumed to follow a linear model:

yik~mzajkgijkzdjkI gijk~1
� �

zEijk ð2Þ

where m is the mean expression level at that gene for individuals with

g = 0, and where ajk and djk are the additive and dominance effects of

the minor allele at SNP j. The residual, Eijk, is assumed to be N(0,1/t)

and independent for each yik, where 1/t is the variance of expression

levels within each genotype class. The indicator function I(gijk = 1) is

defined as 1 if the genotype is heterozygous (gijk = 1) and 0 otherwise.

Let P0
k denote the probability of the expression data Yk under

the null hypothesis that there are no cis-eQTNs in gene k (i.e.,

ajk = djk = 0 for all j). Similarly, let P1
jk denote the probability of the

expression data Yk assuming that SNP j is the eQTN. In this case,

the effect sizes ajk and djk are modeled as being drawn from

mixtures of normal distributions centered on 0 (see Text S1 for

details). The Bayes factor (BF) for SNP j in gene k is defined as

BFjk~P1
jk

.
P0

k, ð3Þ

and measures the relative support for the hypothesis that SNP j is an

eQTN for gene k, versus the null hypothesis. We use priors on effect

sizes that allow the BF to be calculated analytically (see Text S1).

The Hierarchical Model. We describe first the basic version

of our hierarchical model. All the results presented in this paper

additionally include a correction for the possibility that genes

might show signals due to undetected SNPs in the probe. We

describe that extension later in the Methods, briefly, and in detail

in the Supplementary Methods (Text S1).

Our basic model assumes that there are two mutually exclusive

categories of genes. With probability P0 there is no eQTN in the cis-

candidate region, and with probability P1 = 12P0 there is a single

eQTN. Then the likelihood of the expression data at gene k is

Pr Ykð Þ~P0P0
kzP1P1

k ð4Þ

where P0
k denotes the probability of the expression data Yk given that

there is no eQTN in gene k and P1
k denotes the probability of the

expression data given that there is exactly one eQTN. Note that our

model allows for at most one eQTN per gene. If in fact there is more

than eQTN, our model will usually assign the signal to the strongest

of these. In practice, we see little variation in average effect size as a

function of location, so this modeling simplification is unlikely to

seriously distort the results.

Given that there is a single eQTN in gene k, the probability of

the observed expression data, P1
k, can be written as

P1
k~

PMk

j~1

pjkP1
jk ð5Þ

where P1
jk is the probability of the expression data given that SNP j

is an eQTN, and pjk is the prior probability that SNP j is an

eQTN, given that exactly one SNP in gene k is an eQTN.

A key feature of the hierarchical model is that the probability that

SNP j is an eQTN, pjk, is allowed to depend on the physical location

of SNP j relative to one or more ‘‘anchor’’ points, and other relevant

annotations (see Text S1). Suppose that we consider L different kinds

of annotation, and let the indicator djkl equal 1 if SNP j at gene k has

the lth annotation, and equal 0 otherwise. Then define

xjk~
XL

l~1

lldjkl , ð6Þ

where L= (l1,…,lL) is a vector of annotation effect parameters. We

use a logistic model to relate pjk to these annotation indicators,

namely,

pjk~
exp xjk

� �
PMk

j0~1

exp xj0k

� � : ð7Þ

As detailed in the Supplementary Methods (Text S1), we

parameterized the effect of distance from the anchor locations

using a series of discrete bins that represent absolute physical

distance from the relevant anchor. The bins nearest to the anchor

are 1 kb wide, and increase in width to 10 kb and finally 100 kb

with increasing distance from the anchor. For the two-anchor

models, each SNP belongs to two position bins, each of which

indicates distance from one anchor.

Likelihood for the Hierarchical Model. Substituting the

above expressions for P1
k into (4), the likelihood for the hierarchical

model is

Pr Yk Hjð Þ~P0P0
kz 1{P0ð Þ

XMk

j~1

pjkP1
jk ð8Þ

~P0
k P0z 1{P0ð Þ

XMk

j~1

pjkBFjk

 !
, ð9Þ

where H denotes the model parameters and BFjk is the BF from the

Bayesian regression (3). To be explicit, the model parameters H
include the annotation parameters L, the proportion P0 and other

parameters related to the Bayes factor computation (see Text S1).

The likelihood of the entire data set is the product of (9) across all K

genes. We fit the hierarchical model by maximizing the log-likelihood

L Y Hjð Þ~
XK

k~1

log P0
k

� �
z

XK

k~1

log P0z 1{P0ð Þ
XMk

j~1

pjkBFjk

 ! ð10Þ
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with respect to the model parameters H. (Note that the first term,

involving P0
k does not depend on H, and so need not be evaluated.)

Accounting for the Effects of SNPs in Probes. Since

undetected SNPs in the probe sequence sometimes generate

eQTLs, the results that we report include a modification to

account for this effect. We used the 634 genes that have a known

SNP in the probe region as training data to help parameterize the

model. We assume that these represent ,1/3 of all probes with

common SNPs [25].

Suppose that with probability P
snp
k there is a gene inside the

probe sequence (this is set to 1 for the training data), and suppose

that when there is a SNP in the probe, there is a probability Ps

that this generates a spurious signal. Then let Pspur
k ~Psnp

k Ps be

the probability of a spurious signal. We consider that we are only

interested in real signals if there is no spurious signal, so we write

the probability of the data as

Pr Ykð Þ~ P0P0
kzP1P1

k

� �
1{Pspur

k

� �
zPs

kP
spur
k ð11Þ

where the first term is the likelihood when there is no spurious

signal (as in Equation 4), and where the second term gives the

likelihood (Ps
k) when there is a spurious signal.

Likelihood Maximization. To maximize [10] we used an

iterative strategy based on a point-by-point golden maximization

strategy [46]. To speed convergence of the maximization process,

we initialized the parameters using naive estimates of the ls based

on the logarithm of the odds ratio computed assuming P0 = 0.

Posterior Probabilities. Once the likelihood has been

maximized, we can compute the posterior probability of a given

SNP j to be an eQTN for gene k. In the case without spurious

signals this is

Pr SNP j is an eQTN for gene k Yk,ĤH
���� �

~
1{P̂P0

� �
p̂pjkBFjk

Pr Yk Gk,ĤH
���� � ð12Þ

and the general version is given in the Supplementary Methods

(Text S1).

Sequence Conservation and Transcription Factor Binding
To compute the average sequence conservation as a function of

position for Figure 4B, we estimated the average number of

substitutions per site across the phylogeny of seven mammalian

species (human, chimpanzee, macaque, mouse, rat, dog, and cow),

using data and alignments from the UCSC browser. This was

done for the main set of 11,446 genes analyzed in this paper. For

each gene, 5 kb on each side of the TSS (and separately for the

TES) was split into non-overlapping 50-bp bins. We then

concatenated all the sites across all genes that lay in the same

bin. After excluding sites in coding exons we estimated the average

number of substitutions at each site using baseml, a program in the

PAML package [47].

We obtained results on transcription factor binding density

using ChIP-chip data collected by the ENCODE project (4). We

used data for eight transcription factors that showed large numbers

of binding fragments at a 1% false discovery rate in the ENCODE

study. The left-hand panel of Figure 4C is essentially a replotting

of data presented in Figure 5 of (4), while the right-hand panel

shows analogous data plotted with respect to the TES.

Software Availability. The methods reported here are

implemented in the package eQTNMiner, which is available from

JBV on request.

Supporting Information

Figure S1 About 60% of the eQTNs are shared between at least

two populations. Venn diagram of the set of eQTNs detected

separately in each population. To generate the diagram, we

admitted a SNP to the analysis (as an eQTL) if either the p-value

in the combined sample (pooling the 3 populations) is lower than

761026 or the p-value in a single population is lower than the p-

value cutoff corresponding to a gene FDR of 5% within each

population. We then considered two populations to share an

eQTL if any single population has a p-value ,161022. Finally,

for each gene having at least one such eQTL, we defined the

eQTN as the SNP with the largest number of shared populations

(sharing weight between multiple SNPs if there is a tie).

Found at: doi:10.1371/journal.pgen.1000214.s001 (0.12 MB PNG)

Figure S2 Expression QTNs in the combined Japanese plus

Chinese analysis panel (ASN) show similar patterns to those in the

full data. The left panel (p-value method) was prepared in the same

way as Figure 2 of the main paper and the right panel (hierarchical

model with TSS+TES) was prepared in the same way as Figure 3

(left panel) of the main paper. Both display results analyzing only

the Asian data. For the left panels we used a p-value cutoff of

1.2561025 obtained by permutations when analyzing only the

Asian data and corresponding to a gene FDR of 5%.

Found at: doi:10.1371/journal.pgen.1000214.s002 (0.43 MB PNG)

Figure S3 Expression QTNs in the European-derived sample

(CEU) show similar patterns to those in the full data. The left

panel (p-value method) was prepared in the same way as Figure 2

of the main paper and the right panel (hierarchical model with

TSS+TES) was prepared in the same way as Figure 3 (left panel) of

the main paper. Both display results analyzing only the European

data. For the left panels we used a p-value cutoff of 3.561026

obtained by permutations when analyzing only the European data

and corresponding to a gene FDR of 5%.

Found at: doi:10.1371/journal.pgen.1000214.s003 (0.46 MB PNG)

Figure S4 Expression QTNs in the Nigerian sample (YRI) show

similar patterns to those in the full data. The left panel (p-value

method) was prepared in the same way as Figure 2 of the main

paper and the right panel (hierarchical model with TSS+TES) was

prepared in the same way as Figure 3 (left panel) of the main

paper. Both display results analyzing only the Nigerian data. For

the left panels we used a p-value cutoff of 3.82561026 obtained by

permutations when analyzing only the Nigerian data and

corresponding to a gene FDR of 5%.

Found at: doi:10.1371/journal.pgen.1000214.s004 (0.43 MB PNG)

Figure S5 Illustration of the ability of the HM to accurately

estimate the distribution of eQTNs when all the actual eQTNs are

genotyped. This figure is based on a simulated dataset assuming

that for all genes the actual eQTN is genotyped (see Text S1). In

both panels the black histograms represent the number of actual

eQTNs using 1 kb bins anchored from the TSS (this is identical

for both panels). A. P-value method: the green curve displays the

number of most significant SNPs detected by the p-value method.

As expected, due to LD and the stringency of the p-value cut-off,

the profile is less peaked than the actual distribution. B.

Hierarchical model: using our hierarchical model with the TSS-

only model (see Methods) we are able to catch most of the actual

eQTNs. The red curve indicates the expected number of eQTNs

computed using the posterior probabilities from the hierarchical

model. Notice that the hierarchical model provides a better picture

of the distribution of signals.

Found at: doi:10.1371/journal.pgen.1000214.s005 (0.15 MB PNG)
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Figure S6 50% of the most significant SNPs lie within 7.5 kb of

the actual eQTNs. Both panels are based on the results from the p-

value method applied to a simulated dataset (see Text S1). The top

panel plots the histogram of the fraction of most significant SNPs

as a function of distance from the actual eQTNs. The bottom

panel plots the corresponding cumulative probability.

Found at: doi:10.1371/journal.pgen.1000214.s006 (0.05 MB PNG)

Figure S7 No obvious impact of the eQTN location on the

mapping precision. Cumulative plot of the distance between the

most significant SNPs and the actual eQTNs according to the

eQTN location (upstream of the TSS, downstream of the TSS,

within an exon, and within an intron). This plot was generated by

averaging results from the p-value method applied to 10 simulated

dataset (see Text S1). For the legend, the percentage between

brackets give the fraction of actual eQTNs in the corresponding

category.

Found at: doi:10.1371/journal.pgen.1000214.s007 (0.08 MB PNG)

Figure S8 Impact of the local recombination rate on the eQTN

mapping precision. Boxplot of the physical distance between the tag

SNP and the actual eQTN as a function of the average

recombination rate (cM/Mb) around the actual eQTN in a

simulated dataset assuming that all eQTNs are not genotyped (see

Text S1). We divided the data into four categories of equal sizes

(from low to high level of recombination rate, the range of the

recombination rate in each class is indicated along the x-axis below

each box). As expected, the higher the recombination rate, the lower

the expected distance between the tag SNP and the actual eQTN.

Found at: doi:10.1371/journal.pgen.1000214.s008 (0.05 MB PNG)

Figure S9 There is a deficit of most-significant SNPs in internal

introns, and an enrichment of such SNPs in last exons (p-value

method). This figure is based on the subset of 295 genes for which

there is a unique most significant SNP (and for which the smallest

p-value is ,761026) that fall into the gene transcript region. For

the five panels, the blue arrows represent the observed number of

most significant SNPs in the five gene functional elements for

which at least 5 most significant SNPs have been found. Here

these counts have been corrected for putative spurious signal due

to an unobserved SNP inside the probe (leading to the removal of

{similar, tilde operator } 46 genes). Under the null hypothesis that

these most significant SNPs are randomly distributed into the eight

possible gene functional elements, we carried out a simple Monte-

Carlo procedure where for each of the 295 genes we picked at

random a SNP inside the gene transcript region to be the most

significant SNP (and weight it by the probability that the gene has

genuine signal according to the location of the observed most

significant SNP with respect to the probe (see Text S1). The

histograms depict the distribution of the numbers of most

significant SNPs across 1000 simulated configurations.

Found at: doi:10.1371/journal.pgen.1000214.s009 (0.12 MB PNG)

Figure S10 When distance is measured from the TSS (or TES)

only, the TES (or TSS) peak is hidden due to the great variability in

gene lengths. The plots show the fraction of SNPs with eQTN signals

as a function of position in the cis-candidate region. The candidate

region is divided into a series of 1 kb bins across the x-axis that

indicate position relative to the TSS (or TES). For each bin we plot

the proportion of SNPs that have the smallest p-value for the

corresponding gene, and for which p,761026 (gene FDR of 5%).

Found at: doi:10.1371/journal.pgen.1000214.s010 (0.07 MB PNG)

Figure S11 Illustration of the ability of the HM to accurately

estimate the distribution of eQTNs even when only 30% of the

actual eQTNs are genotyped. These plots are based on a

simulated dataset assuming that across all genes only 30% of the

true eQTNs are genotyped (see Text S1). In both panels the black

histograms represent the number of actual eQTNs using 1 kb bins

anchored from the TSS (this is identical for both panels). A. P-

value method: the green curve displays the number of most

significant SNPs detected by the p-value method. As expected, due

to the uncomplete SNP coverage, LD and the stringency of the p-

value cut-off, the profile is less peaked than the actual distribution.

B. Hierarchical model (TSS-only version): the red curve indicates

the expected number of eQTNs computed using the posterior

probabilities from the hierarchical model. The hierarchical model

provides us with a much more accurate representation of the

actual eQTN distribution.

Found at: doi:10.1371/journal.pgen.1000214.s011 (0.20 MB PNG)

Figure S12 Simulated dataset with eQTNs symmetrically

distributed around the TSS. The three left panels plot the true

(simulated) probability to be the actual eQTN according to the

gene size category. The three right panels plot the probability to be

the most significant SNP (i.e the SNP with the smallest p-value

inside the cis-candidate region) in genes having at least one SNP

with a p-value lower than 761026 (as for Figure 2 in the main

text). Although only 30% of the actual eQTNs are observed, the

distribution of the most significant SNPs (right panels) lines up

pretty well with the distribution of the actual eQTNs (left panels).

Furthermore, the distribution of signals for this TSS-only model is

quite different than seen in the real data, consistent with our results

that the TSS-only model does not provide a good description of

the data. See Text S1 for a description of our simulation process.

Found at: doi:10.1371/journal.pgen.1000214.s012 (0.43 MB PNG)

Figure S13 Numbers of SNPs inside each of the 9 mutually

exclusive gene-related annotations as a function of position within

the gene. SNPs inside coding exon are classified into synonymous

and non-synonymous SNPs. Notice that ,84% of genic SNPs

occur inside internal introns.

Found at: doi:10.1371/journal.pgen.1000214.s013 (0.12 MB PNG)

Figure S14 Fine-scale structure of eQTN peaks near the TSS

and TES, and comparison to four types of functional annotation.

The left- and right-hand columns show data for 5 kb on either side

of the TSS and TES, respectively (averaging across all gene sizes).

Locations inside genes are colored green and outside genes are

black. A. Posterior expected fractions of SNPs in each bin that are

eQTNs, as estimated by the hierarchical model (see Methods).

Each bin is 25 bp wide. B. Probability that a SNP falls into a

(putative) functional site: CpG island (CpG), conserved non-coding

element (CNC), predicted cis-regulatory module (pCRM) and

micro RNA binding site (miRNA).

Found at: doi:10.1371/journal.pgen.1000214.s014 (0.27 MB PNG)

Figure S15 Genes with CpG islands spanning the TSS are

expressed at higher average levels and are more likely to contain

eQTLs than genes without a CpG island at the TSS. Results for

genes with a CpG island ON the TSS are displayed in red while

results for genes without a CpG island spanning the TSS (OFF) are

displayed in black. These results are based by computing

seperately for the two gene categories the posterior probabilities

from the hierarchical model. A. Estimated probability for each

gene category to have an eQTN anywhere in the cis-candidate

region. B. Box plots of the means and the standard deviations of

the log hybridization intensities for the two gene categories. Genes

ON CpG have higher mean expression and standard deviations

than Gene OFF CpG. C. After adjusting for the different overall

rates of eQTNs, the distribution of signal locations in the two

classes of genes is very similar. The plots show the fraction of SNPs

with eQTN signals as a function of position in the cis-candidate

High-Resolution Mapping of eQTLs
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region, based on the hierarchical model. In order to make the two

classes of genes more comparable, the plots are conditional on the

gene having an eQTN. Top panel shows results for the 7,069

genes with a CpG island spanning the TSS (ON CpG) and bottom

panel shows results for the 4,377 genes without a CpG island

spanning the TSS (OFF CpG).

Found at: doi:10.1371/journal.pgen.1000214.s015 (0.27 MB PNG)

Figure S16 Schematic explanations of our gene structure

annotation. The plot shows three pairs of hypothetical genes

consisting of, respectively, 1, 2 and 6 exons. In each pair, the

upper version of the gene shows the exon/intron structure (from

RefSeq) and the translation start and stop sites (vertical red lines).

The lower version of the gene shows how we annotate the gene

structure (see color code at right of figure). A verbal explanation is

also provided in the main text.

Found at: doi:10.1371/journal.pgen.1000214.s016 (0.17 MB PNG)

Figure S17 Locations of the most significant eQTL SNPs for

small, medium, and large genes using a p-value cutoff of A)

161022 and B) 161024. For A and B, the three panels was

prepared in the same way as Figure 2 of the main paper.

Found at: doi:10.1371/journal.pgen.1000214.s017 (0.44 MB PNG)

Figure S18 Locations of the most significant eQTL SNPs for

small, medium, and large genes using a p-value cutoff of A)

161026 and B) 161028. For A and B, the three panels was

prepared in the same way as Figure 2 of the main paper.

Found at: doi:10.1371/journal.pgen.1000214.s018 (0.41 MB PNG)

Figure S19 Distribution of most significant eQTL SNPs around

probes. The black bars indicate the numbers of spurious eQTL

signals as a function of distance from the probes, among the 634

genes with a known SNP in the probe. The sum of the red+green

bars gives the numbers of most significant eQTL SNPs among the

remaining 11,446 genes; the red component is our estimate of the

fraction that is spurious. (See section ‘Spurious Signal’ in Text S1

for further description.)

Found at: doi:10.1371/journal.pgen.1000214.s019 (0.18 MB PNG)

Table S1 Table of descriptive statistics for each of the 9 mutually

exclusive gene structure annotations for the 11,446 genes of our

data set. The ‘‘Exp nber’’ and ‘‘Fraction’’ columns of the table are

based on the posterior probabilities to be a genuine eQTN from

the hierarchical model: left side for TSS-only+annotation model

and right side for TSS+TES+annotation model.

Found at: doi:10.1371/journal.pgen.1000214.s020 (0.03 MB PDF)

Table S2 Table of descriptive statistics for each of the 8 mutually

exclusive gene structure annotations for the 11,446 genes of our

data set.

Found at: doi:10.1371/journal.pgen.1000214.s021 (0.03 MB PDF)

Table S3 Table of descriptive statistics for each of the 5

functional annotations for the 11,446 genes of our data set.

Found at: doi:10.1371/journal.pgen.1000214.s022 (0.04 MB PDF)

Text S1 Supplementary methods.

Found at: doi:10.1371/journal.pgen.1000214.s023 (0.15 MB PDF)
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