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Abstract

Quality control (QC) is a critical step in large-scale studies of genetic variation. While, on average, high-throughput single
nucleotide polymorphism (SNP) genotyping assays are now very accurate, the errors that remain tend to cluster into a small
percentage of ‘‘problem’’ SNPs, which exhibit unusually high error rates. Because most large-scale studies of genetic
variation are searching for phenomena that are rare (e.g., SNPs associated with a phenotype), even this small percentage of
problem SNPs can cause important practical problems. Here we describe and illustrate how patterns of linkage
disequilibrium (LD) can be used to improve QC in large-scale, population-based studies. This approach has the advantage
over existing filters (e.g., HWE or call rate) that it can actually reduce genotyping error rates by automatically correcting
some genotyping errors. Applying this LD-based QC procedure to data from The International HapMap Project, we identify
over 1,500 SNPs that likely have high error rates in the CHB and JPT samples and estimate corrected genotypes. Our method
is implemented in the software package fastPHASE, available from the Stephens Lab website (http://stephenslab.uchicago.
edu/software.html).
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Introduction

Data quality has been implicated as a source of bias and loss of

power in both linkage analyses and population-based association

studies [1,2,3,4]. Quality control (QC) is thus a critical step in

large-scale studies of genetic variation. While, on average, high-

throughput single nucleotide polymorphism (SNP) genotyping

assays are now very accurate, the errors that remain tend to cluster

into a small percentage of ‘‘problem’’ SNPs that exhibit unusually

high error rates. Because most large-scale studies of genetic

variation are searching for phenomena that are rare (e.g. SNPs

associated with a phenotype), even this small percentage of

problem SNPs can cause important practical problems. To

alleviate these problems attempts are made to identify, and

usually remove, problem SNPs before proceeding to a full analysis.

However, while for pedigree studies considerable attention has

been given to development of methods for detecting genotyping

errors [5,6,1,7], in population genetic studies rather simple QC

filters are typically employed (e.g. removing SNPs with a high

proportion of missing data, or showing very extreme deviations

from Hardy–Weinberg equilibrium [8]; HWE).

Here we describe and illustrate how patterns of linkage

disequilibrium (LD) can be used to improve QC in large-scale

population-based studies. Intuitively, the method exploits the fact

that LD among nearby markers provides built-in redundancy,

allowing genotypes at a SNP to be called not only from the

experimental data at that SNP, but also using data at nearby,

correlated, SNPs. The result is a QC procedure that can not only

identify individual SNPs that potentially have high genotyping error

rates, but also automatically correct some incorrect genotypes.

Results

We developed an LD-based QC procedure by modifying an

existing statistical model for LD among multiple tightly-linked

SNP markers [9] to allow for genotyping error. In brief, this

existing statistical model captures patterns of LD in a population

by assuming that each sampled haplotype resembles a mosaic of a

(typically small) number of ‘‘base’’ haplotypes. The use of a

relatively small number of base haplotypes allows the model to

capture the limited haplotype diversity over small regions that is

typical of many natural populations, while the mosaic assumption

allows the model to capture breakdown in LD with genetic

distance. The original version of this model assumed observed

genotypes to be error-free. Here, to allow for, detect, and correct

genotyping errors we modify this model by introducing a

‘‘genotyping error rate’’ parameter at each SNP, and develop

statistical methods to estimate these SNP-specific error rates from

unphased genotype data (see Methods). In addition to providing

an estimated error rate for each SNP, the approach provides for

each genotype a probability that it is incorrect, and a probability

distribution for the actual correct genotype.

We assessed the utility of LD-based estimates of genotyping

error in two ways. First, we applied the method to (unfiltered)

genotype data on parent-offspring trios from the International

HapMap Project [10] (see Methods), and compared the LD-based
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error rate estimates with the number of Mendelian Inconsistencies

(MIs) at each SNP. Second, we applied the method to genotypes

obtained by using the Affymetrix Mapping 500K chip to genotype

the HapMap samples, and compared the LD-based error rates

with the number of discrepancies between the Affymetrix genotype

calls and the calls in the non-redundant filtered HapMap database

(see Methods). In these two comparisons, the number of MIs, and

the number of discrepancies, provide some independent indication

of the genotyping error rate at each SNP, against which our LD-

based error rate estimates can be compared.

Overall the LD-based genotyping error rate estimates were

similar in magnitude to estimates based on MIs and discrepancies.

For the unfiltered HapMap data, the LD-based error rate estimate

was 0.28% for CEU and 0.36% for YRI, slightly higher than the

total rate of MI-causing genotyping errors (0.17% for CEU and

0.23% for YRI, assuming each trio containing an MI contains a

single genotyping error), possibly reflecting the fact that not all

genotyping errors will cause an MI [11]. For the Affymetrix data,

the LD-based error rate estimates were 0.24% for CEU, 0.22% for

JPT+CHB, and 0.44% for YRI, similar to the average discrepancy

rates (0.29% in CEU and JPT+CHB; 0.38% in YRI). (Note that,

since up to half of the discrepancies are likely to be due to errors in

the HapMap, rather than Affymetrix, data, the LD-based error

rate estimates suggest slightly higher error rates than do the

discrepancy data.)

More importantly, SNP-specific LD-based error rate estimates

were positively correlated with number of MIs or discrepancies

(Figure 1). In particular, SNPs with a large number of MIs/

discrepancies also tended to have high LD-based error rate

estimates. For example, in the Affymetrix data, among SNPs with

at least a 10% discrepancy rate, 60% had an elevated LD-based

error rate (.1%), whereas among SNPs with 0 discrepancies, only

5.7% had a similarly elevated LD-based error rate. Similarly, in

the HapMap data, among SNPs with at least 9 MIs, 91% had an

LD error rate .1%, whereas among SNPs with 0 MIs only 2%

had LD error rate estimates exceeding this level.

These results demonstrate the potential for patterns of LD to

help identify ‘‘problem’’ SNPs with very high error rates. We

attempted to more fully quantify this potential, but these attempts

were hindered by the fact that neither MIs nor discrepancies

provide a completely satisfactory ‘‘gold standard’’ against which to

compare. For example, MIs are not effective at identifying all

genotyping errors, since many errors (e.g. miscalling homozygous

parents as heterozygotes) do not lead to MIs. And while a

discrepancy between two genotype calls implies an error in at least

one of the calls, it does not indicate which of the calls is incorrect.

We therefore undertook a more qualitative assessment, by visually

examining higher-level data from the Affymetrix genotyping

assay–specifically, plots of normalized intensities for each allele–

for SNPs where our LD-based estimates disagreed most strongly

with the numbers of discrepancies. (These intensity data are not

generally available for the HapMap data.)

Among SNPs with large numbers of discrepancies, but low LD

error rates, many of the Affymetrix intensity plots show three well-

separated clusters with genotypes apparently correctly-called

(Figure 2a). For example, for 50 JPT+CHB SNPs with 9

discrepancies but with LD error rates ,1%, we judged,

subjectively, that at least 23 showed relatively clean intensity

plots, with little or no evidence of typing error. A natural

explanation for this is that the discrepancies are due to errors in

the HapMap database, rather than in the Affymetrix calls from

which the LD-based error rates are computed. In contrast, among

SNPs with 0 discrepancies but high LD-based error rates, many of

the intensity plots failed to show well-separated clusters in the

usual places, and several were suggestive of copy number variation

(Figure 2b). Thus, our LD-based method appears, in some of these

cases, to be picking up on meaningful problems with the genotype

calls, despite the concordance between the Affymetrix calls and

those from HapMap, obtained independently from different

genotyping centers. For other SNPs, whose plots did exhibit three

well-separated clusters in the expected places, it may be that the

high LD-based error rate estimates are simply inaccurate.

However, it is also possible that some of these SNPs are mis-

mapped, since this could produce a high estimated LD-error rate.

During PHASE II of the HapMap, 21,177 SNPs from PHASE I

were identified as having an ambiguous position, or other

signatures that suggest unreliability [12], and although these SNPs

were not included in our comparison it is possible that some

similar inaccuracies remain. We list approximately 600 SNPs with

high LD error rate estimates but 0 discrepancies in Text S1.

The above results illustrate the difficulty of assessing the

accuracy of our LD-based error rate estimates. Even though the

LD-based estimates sometimes disagree greatly with the duplicate

genotyping results, it is unclear in what proportion of cases the

LD-based estimates are inaccurate. The results also highlight the

fact that the LD-based estimates can complement, rather than

duplicate, other approaches to QC such as multiple rounds of

genotyping. To further examine the extent to which the LD-based

approach complements existing QC procedures, we compared

LD-based error rate estimates with the results of testing SNPs for

deviations from HWE, which is probably the most common

current approach to QC in population studies. We found LD-

based error rates and HWE test statistics to be relatively

uncorrelated (Figure 3), although the subset of SNPs with the

highest LD-based error rates overlaps moderately with the subset

showing the most significant deviations from HWE: among the top

1% of SNPs in each category in the filtered (respectively unfiltered)

data, 19% (respectively 42%) were shared.

The LD-based method has several advantages over HWE for

performing QC: in addition to providing quantitative estimates of

Author Summary

In large-scale studies of population genetic data, particu-
larly genome-wide association studies, considerable effort
may be spent on quality control (QC) to ensure genotype
data are accurate. Typically, QC steps are applied
independently to individual marker loci, with data from
suspicious loci being excluded from subsequent analyses.
Here we present a new QC tool, which exploits the fact
that correlation of alleles among nearby genetic loci
(linkage disequilibrium; LD) provides a certain amount of
redundancy in genotype information, and that high rates
of genotyping error at a marker may leave their trace in
unusual patterns of LD. The method (a) aids in the
detection of SNP loci with possibly elevated levels of
genotyping error, and (b) in some cases allows for the
correction of erroneous genotype calls, thereby salvaging
some of the genotype data from the QC filtering process.
We confirm on data from real populations that SNPs
identified by this approach do show evidence for
containing actual genotyping errors, and we also examine
genotype intensity plots to confirm that many individual
genotypes corrected by the method do appear to be
called in error. More generally, these results demonstrate
the potential utility of incorporating LD information into
algorithms for processing and analyzing population
genotype data.

LD-Based Quality Control
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the error rate at each SNP, the LD-based method also estimates an

error probability for each individual genotype, and can attempt to

correct genotypes that it deems likely to be incorrect. To quantify

its success at this we examined whether using our method to

correct genotypes reduced the number of MIs/discrepancies, and

indeed it did. Correcting HapMap CEU genotype calls reduced

the number of MIs by 33% when parents and children were

analysed together, ignoring the known relationships, and by 21%

when parents and children were analysed separately. Correcting

the Affymetrix 500K calls reduced discrepancies with HapMap by

13% for CEU samples, 8% for YRI and 11% for JPT+CHB.

Furthermore, although the probabilities assigned to corrected

genotypes were not completely well-calibrated, the reduction of

discrepancies was appreciably greater for those corrections in

which our method was most confident (Figure 4). One conse-

quence of this is that one could further improve genotyping

accuracy, at the expense of a slightly lower call rate, by treating

genotype calls for which the assigned probability of error exceeds

some threshold as ‘‘missing’’. Alternatively, and perhaps prefer-

ably, one could take account of these probabilities in downstream

analyses, using Bayesian statistical methods [14] to downweight

the influence of genotypes in which one was less confident.

The fact that using LD to correct genotypes reduces both the

number of MIs and the number of discrepancies suggests that it

also reduces the overall genotyping error rate, and we attempted

to quantify this reduction. However, this was again complicated by

the fact that neither MIs nor discrepancies provide perfect gold

standards against which to compare. In the case of discrepancies, a

naive analysis, assuming that the error rates in the two data sets

are equal (so half the discrepancies are due to errors in the

Affymetrix data), and that each genotype error creates a

discrepancy, would suggest that our method reduced genotyping

error rates by 16-26%. However, we found several examples of

SNPs where correcting genotypes with our method increased the

Figure 1. SNP-specific estimates of number of errors based on LD correlate with number of MIs and discrepancies. Each plot contains
a box corresponding to the number of observed MIs or discrepancies (horizontal axis). The position of the bottom and top of a box relates the first
and third quartiles of the estimated number of MIs or discrepancies (vertical axis), with the median displayed as a horizontal line in the middle of each
box. The red dotted line indicates equality between the number of estimated errors and observed MIs or discrepancies. First row (A-B): The total
number of expected errors at each SNP, based on LD, was calculated for the HapMap data and plotted against the number of MIs. Second row (C-E):
The total number of expected errors at each SNP, based on LD, was calculated for the Affymetrix data, and plotted against the number of
discrepancies between the Affymetrix and HapMap genotype calls. In general, the median and the upper quartile for the number of estimated errors
increase with the number of discrepancies/MIs. The fact that the lower quartile is at 0 in (C-E), even for SNPs with many discrepancies, could partially
reflect the existence of SNPs with many discrepancies, but with few errors in the Affymetrix data (the discrepancies being due to errors in the
HapMap data).
doi:10.1371/journal.pgen.1000147.g001

LD-Based Quality Control
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Figure 2. Example genotype intensity scatter plots from Affymetrix 500K technology on unrelated HapMap samples. Original calls
from the Affymetrix data are indicated by colour and shape of the small solid points (homozygotes: blue¤, red N, heterozygotes: greenm). The larger,
open symbols with the same colour scheme (e, #, D) represent corrected genotype calls from applying our LD-based method to the Affymetrix
data. Orange symbols indicate genotypes that are discrepant between the Affymetrix and HapMap datasets, with the shape of these symbols
indicating the genotype calls in the HapMap database. LD-based error rate estimates are those obtained from applying the LD-based method to the
Affymetrix data. The first row shows plots for three SNPs with large numbers of discrepancies between HapMap and Affymetrix calls, but low LD-
based error rate estimates and clean intensity plots, with three well-separated clusters. The likely explanation for these results is that the
discrepancies are due to errors in the HapMap database, and not the Affymetrix calls on which the LD-based error rates are based. The second row
shows plots for three SNPs where the HapMap and Affymetrix calls agree (0 discrepancies) but high LD-based error rate estimates and unusual
intensity plots. The unusual intensity results, combined with the fact that genotypes identified as likely to be incorrect by the LD-based method tend
to cluster together, suggests that the high LD-based error rates reflect genuine signal at these SNPs, such as genotyping errors or other anomalies
(e.g. copy number variation). This illustrates the potential for the LD-based method to detect problems that duplicate genotyping may miss. The third

LD-Based Quality Control
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number of discrepancies, but where visual examination of intensity

plots suggested that the corrected genotype calls were likely

correct, or at least more sensible than the original genotype calls.

For example, consider the three SNPs with 0 discrepancies but

high estimated LD error rate in Figure 2b. In all three cases our

method makes many genotype corrections, and, strikingly, the

genotypes it chooses to correct tend to cluster together in the

intensity plots. Since our method does not take into account the

intensity data in selecting which genotypes to correct this strongly

suggests that the LD-based method is picking up on genuine

anomalies in the underlying genotype calls, and not simply making

mistakes in its corrections. However, despite this, in all three SNPs

every corrected genotype increases the number of discrepancies in

the data. Due to this type of effect the reduction in the number of

discrepancies achieved by our method may underestimate the

actual reduction in errors achieved, perhaps appreciably.

In the case of interpreting the reduction in MIs, there are

different problems. In particular, there are many ways of reducing

MIs that would actually increase the number of genotyping errors.

For example, changing every parent at every SNP to be a

heterozygote would completely remove all MIs, while presumably

increasing the total number of genotype errors. However, if

genotype changes of this type were being made randomly,

independent of actual errors, then we would not expect to see

an excess of genotype corrections being made in trio-SNP

combinations with MIs. In fact, 37% of corrected genotypes

occurred in a trio-SNP combination with an MI, whereas only

0.7% of trio-SNP combinations actually exhibit an MI. This

provides strong indirect evidence that these corrections are

actually correcting the genotyping error that lead to the MI,

rather than simply randomly changing parents to be heterozy-

gotes. Also, MIs in trio data can be caused by deletions, rather

than simple genotyping error [15,16]. Since our method does not

explicitly model deletions it is perhaps unsurprising that it tended

to correct genotypes less often in trios whose MIs were consistent

with a deletion than in other trios: among trios with deletion-

consistent MIs, 33% had at least one genotype corrected,

compared with 50% among trios with other MIs.

For a practical application of our method, we applied it to the

Chinese and Japanese analysis panels (CHB+JPT) in the filtered

HapMap database. Because these panels do not include data on

trios, the HapMap QC filter based on MIs could not be applied to

these individuals, and so the filtered CHB+JPT data may be

expected to contain more genotyping errors than the other panels.

Applying the LD-based QC method to all 2.4 million polymorphic

loci from the autosomal chromosomes of the 90 CHB+JPT

individuals, we estimate an LD-based error rate of 0.13% and

identify approximately 1,500 SNPs with an LD-based error rate

greater than 15% (4,300 exceed 10%). Additionally, we provide

over 200,000 individual genotypes that our method identifies as

likely to be incorrect (specifically, for which the conditional

probability of the observed genotype is less than that for a different

Figure 3. LD-based error rate vs. HWE. An LD-based error rate was estimated and a test of HWE (PEDSTATS [13]) was conducted for data from
chromosome 7 HapMap CEU unrelated samples at each of the following types of SNPs: passed all HapMap QC criteria and had zero MIs (black #);
passed QC criteria with exactly one MI (green +); and failed due to the presence of multiple MIs (red ¤). SNPs which failed QC due to extreme
deviations from HWE are excluded.
doi:10.1371/journal.pgen.1000147.g003

row shows plots for three SNPs with high LD-based error rate estimates, and large numbers of discrepancies, where the intensity plots are relatively
clean, but where the genotyping algorithm appears to have done a poor job of clustering the genotypes. In each case the LD-based method
successfully identifies and corrects most of these erroneous genotypes. Although these examples were chosen to illustrate particular points, they are
not atypical in that we saw other examples of each type of behaviour.
doi:10.1371/journal.pgen.1000147.g002

LD-Based Quality Control
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genotype). We provide a complete list of SNPs and genotypes at

lower error rates and probability thresholds in Text S1.

Discussion

We have described and illustrated a novel method for using

patterns of LD to improve QC in large-scale population studies.

The method complements existing approaches to QC, and can

find genotyping problems that other methods, including duplicate

genotyping, may miss. Performance of the method will depend on

several factors, including SNP allele frequency, and the amount of

LD in the data, which typically increases with SNP density. The

results we present here are based on relatively dense data (.500k

markers genome-wide) on (mostly) common variants. However, we

have also found the method capable of identifying SNPs with high

error rates in substantially less dense data (e.g. the Illumina

Human-1 112k bead chip). For whole-genome resequencing data

we would expect performance to be even better for the common

variants, due to the increased information, although the potential

for LD to detect genotyping errors in very rare variants seems

likely to be limited. While, inevitably, not all genotyping errors can

be detected from patterns of LD, the use of LD information is

essentially free, is practical for large data sets (in our implemen-

tation, application to 1,000 individuals typed at 500,000 SNPs

would require about 270 hours on a single 3 GHz Intel Xeon

processor), and has the advantage over tests for HWE that it is able

to detect, and in many cases correct, individual genotyping errors.

Our method has been implemented in the software package

fastPHASE.

Patterns of LD have previously been recognized as an effective

way to estimate missing genotypes [17,9,14,18], and attempting to

use LD to detect genotyping errors is, perhaps, a natural next step.

However, there are many possible approaches to implementing

this idea in practice (e.g. a recent paper [19] takes an approach

rather different to the one we took here, based on applying the

four-gamete test to pairs of SNPs in the data set). Our approach,

which is based on introducing error-rate parameters into a

statistical model for multi-locus genotype data, has several

desirable features, including providing quantitative estimates of

error rates, quantitative assessments of the probability that each

individual genotype is wrong, and quantitative assessments of the

probability of alternative genotypes to those that are called. Also,

our method is ‘‘self-training’’, in that it does not require a ‘‘gold-

standard’’ set of data to establish normal patterns of LD, but rather

establishes normal patterns of LD from the (imperfect and

unphased) genotype data available. The model for LD that we

used here is particularly well-suited to this purpose, because it can

be fit efficiently to unphased genotype data, even when allowing

for genotyping error. Not all models for LD enjoy this property.

For example, the PAC model [20] provides a model for LD that is

in some ways preferable to the one we used here, but is

considerably harder to fit to unphased data (even without error),

requiring more sophisticated and computationally-intensive algo-

rithms. However, we note that in some cases it might be

acceptable to treat a particular phased data set (e.g. the HapMap

data) as an error-free gold standard, and use it to detect errors in

other data sets [18]: in this case the PAC model would provide a

viable alternative to our approach.

Since our primary motivation was to exploit LD to help detect

markers with high genotyping error rates, our model allows error

rates to vary across SNPs. In contrast, we have implicitly assumed

equal error rates across individuals. In fact, due to issues such as

DNA sample quality, some individuals may have higher error rates

than others. We already estimate a large number of parameters in

Figure 4. Calibration of conditional probabilities of corrected genotypes in the Affymetrix data. Separately in 3 HapMap populations
and for all 22 autosomes, we calculated the conditional probabilities of genotypes other than the observed genotype calls. We then binned these
probabilities and, within each bin, calculated the proportion of genotypes which, if switched to the most-probable genotype other than that
observed, resulted in a decrease in the number of discrepancies with the HapMap calls.
doi:10.1371/journal.pgen.1000147.g004

LD-Based Quality Control
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the model, and therefore have not attempted to relax this

assumption here. However, this would be an interesting, and

potentially useful, extension of this work.

In addition to detecting and correcting genotyping errors, our

approach also lends itself to several other applications. In

fastPHASE we have implemented two of these: testing for

nonrandom missing data patterns, which may be of interest in

genetic association studies where differential missingness patterns

between groups can lead to spurious associations; and detecting

‘‘strand’’ errors, where the same SNP has been typed on two

different platforms, which, perhaps unbeknownst to the investiga-

tor, are assaying different strands. This last application is

particularly important for merging results from different studies

performed on different platforms.

As described here, our approach works directly with discrete

genotype calls, rather than with underlying intensity data used to

obtain these calls. This has the advantage of making it independent

of the genotyping platform used to obtain the data, and also making

it applicable to data sets, such as the HapMap genotype database,

where the intensities are not readily available. However, our

approach could be readily modified to deal directly with the

underlying intensity data, explicitly combining LD information with

the intensity data to improve genotype calling accuracy [21]. From

a purely statistical perspective one would expect such a one-stage

procedure, when properly implemented, to outperform the two-

stage procedure we adopt here. Further, intensity plots for the

Affymetrix 500K data used in this study suggest that the benefits of

incorporating both types of information could be considerable: it

would allow patterns of LD to help identify cluster centers, and

guide genotype calls, when the intensity data at a particular SNP are

noisy, but downweight their influence at SNPs where intensity data

are clean and unambiguous. Similarly, our approach could be

combined with other types of higher-level data, such as assembled

reads from whole-genome resequencing technologies. In these

technologies, genotyping accuracy will be greatly influenced by the

fold coverage available. We anticipate that effective use of LD

information will reduce the coverage necessary to obtain a given

level of genotyping accuracy, hence reducing the cost of future

genome-wide studies of population genetic variation.

Methods

Data
The comparisons with MIs reported here were all performed by

applying our method to unfiltered data from HapMap trios.

Specifically, we used the CEU and YRI data from chromosome 7

(4 January, 2007; NCBI build 35), excluding SNPs that failed QC

based on pass-rate (proportion of genotypes not marked as

‘‘missing’’) and duplicate sample discrepancies. For the compar-

ison with HWE we excluded SNPs which failed HapMap QC due

to HWE (p-value ,1024), since, due to the popularity of HWE as

a QC measure, SNPs showing extreme deviations from HWE are

likely to be excluded from analyses. Unless otherwise stated, results

are from applying our method separately to each sample of 90

individuals, ignoring the known parent-offspring relationships.

This is because, although the method is designed for samples of

unrelated individuals, we have found that it is also effective for

data sets where individuals are related to one another, and

applying it to all 90 individuals facilitates comparisons with MIs,

since these are identified using data on all 90 individuals. In some

cases we also report results obtained from applying the method

separately to the parents and children.

The comparisons with discrepancies reported here were all

obtained by applying our method to data on the unrelated

HapMap individuals obtained using the Affymetrix 500k chip

(http://www.affymetrix.com/support/technical/sample_data/500k

_hapmap_genotype_data.affx). Specifically, we considered genotype

data on the unrelated samples on all 22 autosomes, separately for each

of the 3 HapMap analysis panels. To calculate the discrepancies, we

compared the Affymetrix calls with data from the HapMap database

(13 March, 2007; NCBI build 36). We excluded from this analysis

those SNPs where HapMap calls were obtained from the same

Affymetrix chip. To view the intensities of these SNPs, we obtained

the intensities from the HapMap project website (http://www.

hapmap.org/downloads/raw_data/affy500k/). Before plotting, we

standardized each intensity value by subtracting the mean and

dividing by the standard deviation of the intensities among all SNPs

for the individual corresponding to that value (separately for each

chip, NSP and STY). Note that although this simple standardization

strategy appeared to suffice for our purposes, more sophisticated

strategies are generally performed by the best genotype calling

algorithms.

For a practical application of our method, we applied it to data

on the combined CHB+JPT HapMap genotypes from the

HapMap database (forward strand; 13 March, 2007; NCBI build

36). We provide a complete list of SNPs with estimated LD error

rates, as well as individual genotypes where the conditional

probability of the observed genotype was less than 0.95).

Incorporating Genotyping Error into a Model for LD
We incorporated a genotyping error component into a

previously-described model for multi-locus LD [9]. To briefly

review this model, let gim[f0,1,2g denote the observed unphased

genotype for individual i (1,…, n) at marker m (1,…, M). The model

in [9] assumes that the genotypes from each individual, along each

chromosome, derive from a hidden Markov model (HMM).

Specifically, at each SNP, each observed allele is assumed to derive

from one of K haplotype clusters (states in the HMM), each of which

has its own cluster-specific allele frequencies (emission probabilities),

the set of which is denoted by h. Thus, for unphased data, each

observed genotype is assumed to derive from 2 (not necessarily

distinct) clusters. To model the LD among nearby SNPs, cluster

memberships are assumed to change gradually along each

haplotype, specifically according to a Markov process whose jump

probabilities are controlled by a parameter r; conditional on a jump

at m, cluster k (1,…, K) is chosen with probability akm.

Since the clusters (HMM states) from which each allele is

derived are unobserved, the probability of the genotypes for

individual i is obtained by summing over all possible values for

these latent variables:

p(gija,h,r)~
X

z
:

i

p(z
:

ija,r) P
M

m~1
p(gimjz

:

im,h) ð1Þ

where z
:

i denotes the vector of latent cluster memberships for

individual i. Conditional on the parameters of the model, genotypes

from different individuals are assumed to be independent, and so the

likelihood is obtained by multiplying together (1) across individuals.

See [9] for further details, including methods for computing this

likelihood efficiently, and for estimating the parameters of this model

by maximum likelihood via the EM algorithm.

Here, we modify this model by letting gim[f0,1,2g denote the

observed unphased genotype for individual i, and introducing

further latent variables xim to denote the corresponding true

genotype. We assume that genotypes g are observed, possibly with

error, according to some model p(g | x, e), given below, where e
represents an error rate (or vector of rates). The term p(gimjz

:

im,h)
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in (1) is replaced by a sum:

p(gimjz
:

im,h,e)~
X2

a~0

p(gimjxim~a,e)p(xim~ajz:im,h): ð2Þ

We apply an efficient algorithm for calculation of this likelihood

based on Baum-Welch algorithms for HMMs (Text S1).

Error Model
To obtain our results, we restricted attention to a particular error

model, represented by the transition probability matrix in Table 1.

We allow e to vary by SNP marker, so that e= (e1,…, eM), where

e= (1,…, M) is itself a vector of rates. Conditional on the model

parameters, errors are assumed to occur independently across sites

and across individuals. This particular model does not allow for the

observation of a homozygote of one allelic type when the true

genotype is a homozygote of the other type, since we expect this type

of error to be relatively rare with current genotyping technologies.

However, we did briefly explore various error models, including

those which do allow this type of error (Text S1).

Parameter Estimation
For (a, h, r), we attempt to obtain maximum likelihood (ML)

estimates via an EM algorithm (Text S1). We fixed the number of

clusters (K) to be 12 for the analysis of HapMap data. This choice was

based on cross-validation results (for imputing missing genotypes)

over a range of convenient possibilities of K. We also considered

smaller values (Table 1 in Text S1). For e we found that obtaining

maximum likelihood estimates was not the best approach. Note that

genotyping assays are, for most SNPs, very accurate, and so, a priori,

values of e are expected to be near 0. Because maximum likelihood

estimation does not take this prior information into account, it tended

to produce too many non-zero estimates of e. To alleviate this

problem we took the approach of putting a prior distribution on e,
with a mode at 0, and estimating e using the maximum a posteriori

(MAP) estimates. To facilitate computation we chose priors that were

Beta (a,b) for the homozygote error rates e0 and e2, and Dirichlet

(a,b,a) for the heterozygous error rates (e0, 1, –e10, –e12, e12). With

these priors it is straightforward to obtain the MAP estimates using

the EM algorithm. We compared results across three different values

of (a,b) = (1,1), (0.9,2) and (0.9,2); the first of these corresponds to a

uniform prior, and so the MAP estimates are the maximum

likelihood estimates; the second and third produce increasingly

strong shrinkage of estimated error rates towards 0. Although these

comparisons are far from comprehensive, the results (Table 1)

suggested that (a,b) = (0.9,2) provides a useful tradeoff between

shrinking e towards 0 and still identifying SNPs with high values of e.
In contrast, (a,b) = (0.9,2)seemed to shrink error rate estimates too

much towards 0, resulting in very few genotypes being corrected; and,

as noted above, the maximum likelihood estimates ((a,b) = (1,1))

tended to produce too many non-zero estimates of e, and as a result

corrected too many genotypes (actually increasing the number of

discrepancies between HapMap and Affymetrix calls).

Error Detection and Correction
We calculate an LD-based SNP-specific expected number of

genotype errors by summing the conditional probabilities of

incorrect genotype calls across all individuals at a particular SNP m

as follows:

Xn

i~1

p(xim=gimjg,âa,ĥh,̂rr,̂ee), ð3Þ

where âa,ĥh,̂rr and êe are estimates from the EM algorithm. Reported

SNP-specific LD-based genotyping error rates are obtained by

forming the ratio of this sum (3) to the number of observed

(nonmissing) genotypes at SNP m. Reported overall LD-based

genotyping error rates are obtained by summing both the

numerator and denominator of this ratio across SNPs, and

forming the ratio of these sums.

Conditional probabilities of individual genotypes are used to

impute corrected genotype calls. Specifically, a genotype for

individual i at marker m may be corrected if

p(xim~ajg,n̂n,̂ee)wc,

for an alternate genotype a?gim and some probability threshold c.

To obtain our results we set c equal to 0.5.

Supporting Information

Text S1 Supporting information for Linkage disequilibrium-

based quality control for large-scale genetic studies. Appendix for

methods; comparisons of different priors and error models; list of

SNPs and corrected genotypes from International HapMap

Project database; large versions of figures.

Found at: doi:10.1371/journal.pgen.1000147.s001 (0.36 MB PDF)
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