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Conserved noncoding elements (CNCs) are an abundant feature of vertebrate genomes. Some CNCs have been shown
to act as cis-regulatory modules, but the function of most CNCs remains unclear. To study the evolution of CNCs, we
have developed a statistical method called the ‘‘shared rates test’’ to identify CNCs that show significant variation in
substitution rates across branches of a phylogenetic tree. We report an application of this method to alignments of
98,910 CNCs from the human, chimpanzee, dog, mouse, and rat genomes. We find that ;68% of CNCs evolve
according to a null model where, for each CNC, a single parameter models the level of constraint acting throughout the
phylogeny linking these five species. The remaining ;32% of CNCs show departures from the basic model including
speed-ups and slow-downs on particular branches and occasionally multiple rate changes on different branches. We
find that a subset of the significant CNCs have evolved significantly faster than the local neutral rate on a particular
branch, providing strong evidence for adaptive evolution in these CNCs. The distribution of these signals on the
phylogeny suggests that adaptive evolution of CNCs occurs in occasional short bursts of evolution. Our analyses
suggest a large set of promising targets for future functional studies of adaptation.
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Introduction

Phenotypic evolution proceeds both by changes in protein
coding sequences and by changes in gene expression that
determine when, where, and how much genes are expressed
[1–3]. Although recent genome-wide studies have begun the
process of identifying genes that show signals of adaptive
evolution in coding sequences [4], much less is known about
the adaptation of regulatory sequences. One avenue to
studying adaptation of gene regulation is to identify
regulatory elements that show rapid evolution at the DNA
sequence level [2]. However, a challenge for this approach is
that at present we have only limited knowledge of the DNA
sequence elements that drive gene expression and regulation.

One possible way forward is to study the evolution of
conserved noncoding elements (CNCs) [5–7]. In recent years
it has been shown that ;3.5% of noncoding DNA sequence is
substantially conserved across diverse mammals [8–10], and
that a smaller amount of noncoding sequence is also shared
with more distant vertebrates, including chicken and even
fish [9,11–13]. Some CNCs show extremely high levels of
conservation; for example, Bejerano et al. [9] identified 481
segments longer than 200 bp that are absolutely conserved
among the human, rat, and mouse genomes. Recent studies of
CNCs, using varied definitions, have reported that most CNCs
are segments of around 100–300 bp, and that they are widely
distributed across the human genome [9,10,14–18]. CNCs are
not preferentially located near genes [18]. In some cases,
clusters of CNCs are found in gene deserts and a subset of
these CNCs have been shown to play functional roles as
enhancers [19–21].

It has been shown repeatedly that screening for CNCs is an
effective method for identifying cis-regulatory modules of
gene expression [18–25]. CNCs that are shared among
humans and distant outgroups such as Fugu are heavily
overrepresented near developmental regulator genes, and

many serve as highly conserved regulators of these function-
ally conserved genes [13].
That said, there is still considerable uncertainty about the

function of most CNCs, and it has been suggested that some
CNCs may serve other kinds of functions, perhaps including
roles in chromatin structure or structural connections
between chromosomes [26]. In principle, another possibility
might be that many CNCs could simply be regions of the
genome with low mutation rates. However, two kinds of
evidence argue convincingly that the low evolutionary rates
of CNCs are indeed due to selective constraint. First, the
allele frequency spectrum of human SNPs that lie within
CNCs is skewed towards rare variants, consistent with the
action of weak purifying selection [27,28]. Second, the rate of
evolutionary change of CNCs is closer to the neutral rate in
primates than in rodents [28,29]. The latter observation is
probably due to reduced efficiency of weak purifying
selection in primates, which have smaller effective population
sizes.
Hence, in this study, in view of the likely functional
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importance of CNCs, we set out to describe the patterns of
evolutionary sequence change in these elements. We start
with a simple null model in which the evolution of each CNC
is characterized by a single substitution rate parameter r that
accounts for varying levels of constraint and local mutation
rate across CNCs. For each CNC we compare the null model
to a hierarchy of alternative models that allow the CNC to
have different evolutionary rates in different parts of the
phylogeny. In the simplest alternative model, the CNC evolves
at a single rate across the phylogeny except for one branch,
which shows a change in rate (Figure 1). More complex
alternative models allow multiple changes in rate. Increases in
rate can be interpreted as evidence for positive adaptation or
relaxation of functional constraint for the element in
question. Decreases in rate are consistent with a tightening
of selective constraint.

Two recently published papers [5,7] have taken similar
approaches to identify nongenic regions that show acceler-
ated evolution specifically in the human lineage. Both studies
concluded that human lineage-selection signals are enriched
near neurological genes. In the study of Pollard et al. [5], the
most dramatically accelerated region was found to be part of
a novel RNA gene that is expressed during cortical develop-
ment. Here, we expand this kind of approach to look more
broadly at evolutionary patterns of CNCs across the
mammals.

Results

To scan for functionally interesting CNCs that are shaped
by changing selection pressures, we examined regions that are
conserved in up to eight vertebrates (human, chimpanzee,
dog, mouse, rat, chicken, zebrafish, and fugu; see Methods).
We started from a publicly available set of aligned regions
that were characterized as ‘‘most conserved’’ by the group
that maintains the University of California Santa Cruz
(UCSC) genome browser [10,30]. In short, the ‘‘most
conserved’’ regions represent 4.3% of the human genome
that were identified as conserved by a phylogenetic Hidden
Markov Model (HMM) [10] (Methods). The model used for
identifying ‘‘most conserved’’ regions assumes that such

regions are conserved across all the species with aligned
sequence for the region. However, as we show below, the
method was flexible enough to include many regions that
show fairly dramatic variation in rates across the vertebrate
phylogeny.
We performed extensive filtering of the ‘‘most conserved’’

regions. First, we excluded both translated and untranslated
exons, repetitive sequences, and sites that are gaps or missing
data in any of the five mammalian genome sequences (human,
chimpanzee, mouse, rat, and dog). We then discarded regions
with less than 100 bp of ungapped sequence. The remaining
data consisted of 231,285 CNCs spanning ;48Mb. The
alignments from UCSC make use of global alignment
information across species, thus lowering the risk of in-
correctly aligning paralogous CNCs as apparent orthologs.
However, in order to further reduce the risk of this type of
error, we filtered out 98,593 CNCs with human paralogs (see
Methods). Since CNCs with different levels of conservation
might show differences in their evolutionary patterns, we then
subdivided the remaining CNCs into more homogeneous
subsets according to conservation levels in chicken and fish
(see Methods). Our study examines the properties of the two
largest of these subsets, to be denoted as ‘‘mammalian’’ CNCs
(conserved within mammals but not found in chicken or fish)
and ‘‘amniotic’’ CNCs (conserved in mammals and chicken
but not found in fish). For both the mammalian and amniotic
CNCs, our analysis studied evolutionary patterns across the
history of the five mammalian species only.
Our final dataset consists of 82,335 mammalian CNCs (for a

total of 18.5 Mb) and 16,575 amniotic CNCs (4.6 Mb). The
median sizes of CNCs in the two groups are 201 and 240 bp,
respectively. We find that overall, the amniotic CNCs have a
longer length distribution than the mammalian CNCs,
consistent with previous results [17]. Further details on the
size distribution are in Table S1.
Assuming the Felsenstein 84 substitution model [31], we

obtained maximum likelihood estimates of the average
numbers of substitutions on each branch of the mammalian
tree for each of our CNCs (see Methods; Table S3). All of our
analyses assume the phylogenetic tree indicated in Figure 1
[11]. Summing across all branches on the tree, the average
number of substitutions per site is 0.16 for amniotic CNCs
and 0.24 for mammalian CNCs. Notice that, as might be
expected, amniotic CNCs show lower overall substitution
rates than mammalian CNCs. We estimate that the average
substitution rates of our amniotic CNCs and mammalian
CNCs are ;20% and ;29% of the neutral rate (based on
comparison to local unconserved sequences), respectively.
Overall, our CNCs are more conserved on average than the
original set of ‘‘most conserved’’ regions identified by Siepel
et al. [10], which averaged ;33% of the unconserved rate.
This difference indicates that our filtering process preferen-
tially retains more highly conserved elements.
We also examined the location of CNCs with respect to

nearby genes. For each CNC, we computed the distance to the
nearest gene without considering gene orientation. Thirty-
seven percent of the mammalian CNCs are in introns, and the
remainder are intergenic. Among intergenic CNCs, 10% are
within 10 kb of a gene, 27% are between 10 kb and 100 kb,
and 26% are greater than 100 kb from any gene. The
amniotic CNCs have a similar overall distribution in the
genome, although they are significantly more clustered (Table
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Author Summary

Conservation of DNA sequences across evolutionary history is a
highly informative signal for identifying regions with important
biological functions. In particular, conserved noncoding regions
have been shown to be good candidates for containing regulatory
elements that have roles in gene regulation. Recent studies have
found that there are many thousands of conserved noncoding
elements (CNCs) in vertebrate genomes and have suggested
possible functions for some of these elements, but the function of
most CNCs remains unknown. To study the evolution of CNCs, we
developed a statistical method to identify CNCs that show changes
in evolutionary rates on particular branches of the mammalian
phylogenetic tree. Those rate changes may indicate changes in the
function of a CNC. We applied our method to CNCs of five
mammalian genomes, and found that, indeed, many CNCs have
experienced rate changes during their evolution. We also found a
subset of CNCs showing accelerations in evolutionary rate that
actually exceed the neutral rates, suggesting that adaptive evolution
has shaped the evolution of those elements.



S2; Figure S2). Overall, we find that CNCs are distributed
across the genome approximately at random with respect to
the locations of nearby genes (Table S2), as noted previously
[18].

Analysis of the relationship of CNCs with PANTHER gene
ontology (GO) categories [32] shows that genes related to
developmental processes are significantly enriched near
CNCs (1.5-fold enrichment, p , 10�21), as seen previously
[9,10,13] (see Methods; Tables S4 and S5). The genes in the
‘‘signal transduction’’ and ‘‘nucleoside, nucleotide and
nucleic acid metabolism’’ categories are enriched near
mammalian CNCs and amniotic CNCs, respectively (1.2-fold
enrichment, p , 10�11; and 1.3-fold enrichment, p , 10�7).
Olfaction genes are ;15-fold underrepresented in our
dataset, presumably because olfactory genes tend to be highly
duplicated and our filtering process removes duplicated
CNCs.

The Shared Rates Test
To identify CNCs that have been targets of selection, we

introduce a likelihood ratio test that we call the ‘‘Shared
Rates Test’’ (SRT). Under the null model, the divergence
times of lineages are shared across CNCs, but each CNC may
evolve faster or slower according to its local mutation rate
and level of evolutionary constraint. For each CNC, we test
whether any branches are surprisingly long or short
compared to the others, indicating speed-ups or slow-downs
of the substitution rate. For example, in Figure 1, the first two
trees evolve at different rates, but with the same tree ‘‘shape’’
(i.e., the ratios of branch lengths are the same). In contrast,
the third tree has a longer-than-expected branch on the
human lineage, suggesting the action of natural selection.

In our model, each branch of the mammalian tree has a
branch-length parameter vb, defined as the average number of
substitutions per site on branch b for CNCs evolving under a
constant level of constraint. (Here, vb is defined as the average
number of substitutions per site on branch b across all CNCs.)
In addition, under the null hypothesis, each CNC is associated
with a single rate parameter r0

(h) (where h indicates a

particular CNC). Then the number of substitutions that
occur in CNC h, on branch b has an expectation at each site of
Nb,h, where

Nb;h ¼ vbr
ðhÞ
0 : ð1Þ

Under the null model, there are seven branch length
parameters for the tree that we consider, and one additional
rate parameter for each CNC. As described in the Methods
and Text S1, we obtain a joint maximum likelihood estimate
for all the parameters, assuming the Felsenstein 84 model of
sequence evolution [31].
Our model is designed so that all CNCs have the same

expected tree shape (i.e., the ratios of expected branch
lengths are the same). However the total size of the tree is
allowed to vary according to r0

(h), in order to reflect variation
in mutation rates and the level of selective constraint across
CNCs. In addition, we place no constraints on the relative
values of the vb, so that lineage-specific variation in mutation
rates (such as the higher substitution rate in rodents) is
reflected in longer estimates for those branch lengths (Figures
1 and S1). In summary, the null model allows mutation rates
and levels of constraint to vary across CNCs, and it allows for
the property that broad-scale mutation rates may vary across
lineages.
In addition to the basic null model, we consider a family of

alternative models that allow additional rate parameters for
particular CNCs. In the simplest alternative, a single branch
on the tree evolves at a rate that is different from the
background rate shared by the remaining lineages (as for the
third tree in Figure 1). In the extreme alternative, each of the
seven branches evolves with its own rate ri

(h), giving a total of
seven rate parameters for the CNC in question. (For
simplicity of notation, we will henceforth drop the notation
h on the rate parameters.) In the extreme case, to test the
hypotheses H0: r1¼ r2¼� � �¼ r7(¼ r0 ) versus HA: r1 6¼ r2 6¼ � � � 6¼
r7 at a particular CNC, we compute the SRT as

SRT ¼ �2log Lðr̂0Þ
Lðr̂1; :::; r̂7Þ

; ð2Þ

where L is the likelihood of the sequence data for the five
mammalian species, maximized with respect to the rate
parameters, and with the fixed estimate of branch lengths
parameters (v̂1; . . . ; v̂7) and the sequence evolution model.
Large values of the SRT indicate a substantially better fit of
the alternative than the null model. Another example of
alternative model is the case in which branches 2 and 3 have
distinct rates r2 and r3, while the other branches have a single
‘‘background’’ rate r0, �2, �3. In this case, to test the hypotheses
H0: r1¼ r2¼� � �¼ r7(¼ r0 ) versus HA: r2 6¼ r3 6¼ r1¼ r4¼� � �¼ r7(¼
r0, �2, �3), we can compute the likelihood ratio statistic as

SRT ¼ �2log Lðr̂0Þ
Lðr̂2; r̂3; r̂0;�2;�3Þ

: ð3Þ

In this paper, we perform two kinds of analyses. One
analysis performs model selection using the SRT, while the
other tests for individual branches with rate changes. When
testing for a rate change on the ith branch only, it is
convenient to transform the likelihood ratio statistic as
follows. In this case, we will use special notation, denoted by
SRTi:

Figure 1. Schematic Illustration of Our Method Applied to Three CNCs

The tree beneath each CNC shows hypothetical branch lengths for the
phylogeny connecting human, chimpanzee, mouse, rat, and dog (H, C,
M, R, and D, respectively). Each CNC is associated with a single rate
parameter r that accounts for variation in the local mutation rate and
level of conservation; however, under the null model, the relative branch
lengths are all the same. CNC 3 has an unusually long human branch
suggesting positive adaptation on the human lineage.
doi:10.1371/journal.pgen.0030147.g001
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SRTi ¼ signðri � r0;�iÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2log Lðr̂0Þ

Lðr̂i; r̂0;�iÞ

s
; ð4Þ

where sign(x)¼ 1 if x . 0 and otherwise sign(x)¼�1. Rewriting
the SRT in this way provides the convenient property that
SRTi . 0 implies that ri is larger than the background rate r0,�i,
and hence branch i shows a rate speed-up relative to the rest
of the tree; conversely, SRTi , 0 implies a slow-down on
branch i. As a convention, when we subscript SRT by a
character or number, it will represent the signed likelihood
ratio statistic testing for rate changes on the indicated
branch. Otherwise, the notation SRT without subscripts will
be used to indicate use of an unsigned test statistic, in the
form of Equations 2 and 3.

Our SRT is a likelihood ratio test and, as such, standard
theory suggests that under the null hypothesis the test
statistic should asymptotically follow a chi-square distribu-
tion with degrees of freedom equal to the difference in the
number of estimated parameters between the constrained
(null) and less-constrained (alternative) models. Similarly, the
signed root of this statistic for a one-dimensional parameter
of interest is asymptotically standard normal. Therefore,
when the null hypothesis is true and the number of sites in a
CNC is large enough, the unsigned SRT might be expected to
follow the chi-square distribution with the degrees of free-
dom equal to the difference in the number of rate parameters
between the two models. For example there are six degrees of
freedom in the global test (Equation 2) and two degrees of
freedom in the example in Equation 3. Similarly, under the
null, the signed test SRTi is constructed to have a standard
normal distribution as the CNC size goes to infinity. Our
simulation studies show that the asymptotic theory is
reasonably accurate for both versions of the test statistic,
except in the cases in which the lineages tested for selection
are relatively short and are expected to accumulate few
substitutions (namely, the human and chimpanzee lineages;
Figure S3). Hence, to reduce computational burden, we
calculate p-values using the asymptotic chi-square or normal
approximations, except for tests on the human and chim-
panzee branches for which, except where stated, we compute
p-values based on the empirical null distribution in simulated
data (see Methods).

An additional consideration is that we do not want the
estimated null branch lengths (vb) to be heavily influenced by
outlier CNCs with evidence for selection. To mitigate the
impact of such CNCs, we first identify CNCs with clear
overall departures from the null model (SRT . 25 in the
global six degrees of freedom test, corresponding to p ,

0.00034), and then reestimate the branch lengths after
dropping those nonneutral CNCs, which represent 2.8%
and 3.8% of the total mammalian and amniotic CNCs,
respectively.

In summary, then, our analysis performs the following
steps: (1) Estimate maximum likelihood branch lengths and
rates under the null; (2) identify outlier CNCs that have SRT
. 25 comparing the seven- and one-parameter models; (3)
drop outlier CNCs and recalculate the null branch lengths
and rates; and (4) compute the shared rates test statistics for
each CNC according to a range of alternative models.

For reasons discussed below, in practice these analyses were
performed in a sliding window of 50 consecutive CNCs, as

defined by position in the human physical map. All analyses
considered the mammalian and amniotic CNCs separately.

Accounting for Local Variation in Tree Shape
It is well established that the extent of divergence among

mammalian species varies substantially across large genomic
regions [33–38]. For example, Gaffney and Keightley [38]
showed that divergence between the mouse and rat genomes
varied between and within chromosomes. While the causes and
the scales of this type of variation are not completely under-
stood, it has been shown that divergence correlates with various
genomic features, including GC and CpG content, simple-
repeat structures, and recombination rate, suggesting that these
genomic features drive variation in mutation rates [35,37].
Variation in mutation rates or levels of CNC conservation

across genomic regions should not be problematic for our
method, provided that the substitution rate in any given
region maintains a constant ratio to the average across the
mammalian phylogeny. If a CNC is in a region with a higher,
or lower, mutation rate than average, this effect should
simply be absorbed into the rate parameter that we estimate
for each CNC as part of our null model. However, if mutation
rate variation is not stable across the phylogeny, this might
produce false signals for our method.
Therefore, we looked at whether the average tree shapes

are significantly variable across chromosomes (according to
the human physical map) as well as within chromosomes. We
found that in fact there is nontrivial variation in tree shape,
both at the chromosome level, and across genomic regions
within chromosomes. For example, within Chromosome 2
there is a highly significant autocorrelation in the fraction of
the tree occupied by the mouse lineage (Figure 2). This result
implies that local variation in large-scale mutation rates is not
conserved across evolutionary time; for example, genomic
regions that evolve faster than average on some lineages may
evolve slower than average elsewhere on the tree.
If average tree shapes were constant across the genome, we

could use CNCs from across the genome to estimate the tree
shape for our null model. However, the observation that tree
shape is not constant suggests that instead our model should
allow for variation in tree shape across the genome. After
some experimentation, we settled on using a sliding window
of 50 consecutive CNCs to estimate the tree shape. That is, we
test each CNC for significant departures from the tree shape
in a 50-CNC window that, in the human physical map, is
centered near the CNC in question (see Methods). On average,
this window size corresponds to 525 kb and 1.3 Mb (median)
for mammalian CNCs and amniotic CNCs, respectively.
Overall, we find that using the sliding window method

produces only a modest impact on the rate of significant
CNCs, but it should improve our inferences by taking into
account the local variation in tree shapes (Figures 2 and S4).
An obvious concern about using a sliding window based on
the locations of CNCs in humans is that due to chromosomal
rearrangements, CNCs that are close together in humans may
not be close together in other mammals. Consequently, a
sliding window based on the human map might not provide a
suitable correction. Fortunately, our window size is relatively
small compared to the typical size of syntenic blocks [8,39]
and in Figure 3, we show that the results of tests on the
human lineage are highly concordant whether we use
windows based on the human or mouse physical maps and,
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indeed, are only modestly different from the results using all
CNCs together. Consequently, all subsequent results use 50-
CNC windows based on the human map.

Variation in Tree Shape Due to Varying Constraint
Another plausible concern about our model stems from the

prediction that selection against weakly deleterious muta-

tions is more efficient in species with large populations than
in small populations. This means that weakly constrained sites
in CNCs are likely to evolve more quickly in primates than in
rodents (which have larger effective population sizes). This
effect has been observed in a comparison between the
evolutionary rates of CNCs and putatively neutral flanking

Figure 2. Local Variation in the Tree Shape in Mammalian CNCs Located on Human Chromosome 2

Values for the upper two plots are calculated in nonoverlapping windows of 50 consecutive CNCs.
(A) Local variation in total tree lengths (average number of substitutions per site). Both the raw data (gray) and the smoothed data (red) are shown. The
dashed blue horizontal lines indicate the 2.5% and 97.5% quantiles of the (unsmoothed) distribution expected if there were no spatial heterogeneity
(estimated by randomly shuffling the location of Chromosome 2 CNCs).
(B) Fraction of the tree occupied by the mouse lineage.
(C) Long range dependence in the fraction of the tree occupied by the mouse lineage. The plot shows the correlation between windows separated by a
gap of i other windows; values outside the dotted lines are significant at the 5% level. The Durbin-Watson test for autocorrelation is significant at p ,
10�15 [54,55].
doi:10.1371/journal.pgen.0030147.g002
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sequences [29]. Hence—in contrast to our null model—one
might expect the overall tree shape for a CNC to depend on
its level of selective constraint.

To investigate this issue, we classified CNCs into four
different levels of conservation, according to their substitu-
tion rates on the dog lineage. We then separately compared
the average human-to-chimpanzee divergence against the
average mouse-to-rat divergence, within each of the four
conservation levels (Table S15). We find that that as the level
of constraint increases, the divergence in rodents indeed
decreases faster than divergence in hominids, consistent with
the results of Keightley et al. [29]. However, we find that the
variation across CNCs is relatively small (less than 11%
change across different classes of CNCs) and much less than
when CNCs are compared to neutral sequences (Table S3). As
shown below, we do not have the power to detect such small
variations in tree shape at individual CNCs, so we conclude
that it is not necessary to control for overall conservation
level more carefully for the current study.

Analysis of Branch-Specific Rate Changes
For each CNC, we calculated SRTi for each of the seven

branches of the mammalian tree to identify CNCs that have
experienced a speed-up or slow-down on a particular branch.
Figure 4A shows the histogram of p-values on the mouse
lineage (SRTm) for the mammalian CNCs. The p-values are
defined as P( SRTi . srti ) where srti is the observed value.
Hence, p-values near 0 indicate increased rates, and near 1
indicate decreased rates. The histogram is flat for intermedi-
ate p-values with peaks at both ends, suggesting that most
CNCs fit the null distribution of SRTm, but with a substantial

number of outliers. At the significance level of 0.001, 1027
(1.2%) and 503 (0.6%) mammalian CNCs show speed-ups and
slow-downs, respectively. Among amniotic CNCs, 228 (1.4%)
and 106 (0.6%) show speed-ups and slow-downs, respectively
on the mouse lineage.
Figure 4B plots the expected and observed branch lengths

on the mouse lineage for the CNCs that are significant at p ,

0.001 in each tail. (Similar plots for other lineages are shown
in Figure S5.) The red points above the diagonal indicate
CNCs with rate speed-ups. For the central 95% of the
significantly fast-evolving CNCs, the observed branch lengths
are between 0.04 to 0.13 substitutions per site, and are 2–4-
fold higher than the expected branch lengths. The blue points
below the diagonal are CNCs with reduced branch lengths.
Nearly half of these CNCs accumulated no substitutions on
the mouse lineage.
The other long lineages show similar p-value histograms

though with some variability in the proportion of significant
CNCs. The dog lineage is the most enriched for signals, with
2.3% and 1.9% of mammalian CNCs showing speed-ups and
slow-downs, respectively, at p , 0.001 (in each tail). Even after
a stringent Bonferroni correction, 186 and 46 CNCs,
respectively, are still significant at p ¼ 0.001 in the dog
lineage. The overall results for amniotic CNCs are similar, but
the fraction of significant results is slightly higher on each
branch (Table S8). For most lineages, our significance
threshold (one-sided p-value , 0.001 on each end) corre-
sponds to a genome-wide false discovery rate (FDR) between
0.05 and 0.1 (Table S9).
Since the distribution of SRTi on the human and

chimpanzee lineages does not follow the standard asymptotic
distribution, we simulated data under the null over a range of
substitution rates that cover the observed range over all 50-
CNC windows (see Methods). We account for heterogeneity in
the distribution of SRTi across bins of CNCs with different
numbers of expected substitutions on the tested lineage by
computing p-values based on the empirical null distribution
of SRTi constructed in each bin (unpublished data). At a
significance level of 0.001, 256 mammalian CNCs and 59
amniotic CNCs, respectively, show rate speed-ups on the
human lineage (Table S8). Note that there is little power to
detect rate reductions on these very short lineages.
To better understand these SRTi results, we performed

power simulations under a range of models. The simulation
results, summarized in Figure S6, show considerably greater
power to detect speed-ups than slow-downs on all lineages,
consistent with the results of Siepel et al. [40]. Thus, the fact
that we detect more speed-ups than slow-downs does not
necessarily imply that speed-ups are actually more common,
and it is likely that many slow-down events are simply not
detected by our analysis.

Human Accelerated Regions
Our human results allow a comparison to the human

accelerated regions (HARs) identified by Pollard et al. [5]
using a similar type of approach, based on regions that were
highly conserved (at least 96% identity) across chimpanzee,
mouse, and rat. Among the top 49 HARs, which include two
coding regions, 34 overlap with CNCs in our dataset; however,
generally, the HARs are considerably shorter and more
conserved and lie within our CNCs. Perhaps not surprisingly,
since the HARs are the top genome-wide hits in their data,

Figure 3. Robustness of the SRT Test (SRTh) to the Definition of Windows

Used for Estimating the Null Tree Shape

The SRTh values for amniotic CNCs were computed separately based on
windows defined using the human genome position (x-axis) and the
mouse genome position (y-axis). Signals that are in the top 1% by both
window definitions are shown in red. Eight outliers above 20 were
removed from the plot. The overall concordance between the two
datasets implies that changes in synteny between human and mouse do
not greatly disrupt our sliding window estimation procedure.
doi:10.1371/journal.pgen.0030147.g003
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the signals in our overlapping CNCs tend to be weaker.
Among the 34 CNCs, just five CNCs are significant in our
analysis at a genome-wide FDR less than 0.05. Nonetheless,
our CNCs that overlap HARs do show a strong enrichment of
modest signals. Our human lineage p-values are ,0.01 for 26
of the 34 CNCs overlapping HARs, and are ,0.1 for 33 of the
34 (Table S10).

Within our dataset, one of the most significant CNCs on the
human lineage is a 144-bp amniotic CNC located on human
Chromosome 21 starting at 33481809 (q22.11, NCBI Build 35).
It was not detected by Pollard et al. [5] because it fails their
filtering threshold for similarity between chimpanzee, mouse,
and rat. As illustrated in Figure 5, the posterior expected
number of substitutions (see Methods for details) on the
human lineage is 5.2, which is 26-fold higher than the value of
0.2 expected under the null model. The corresponding SRTh

is 4.84. The p-value for this CNC is so small that it is difficult
to evaluate by simulation; however, the standard normal
approximation suggests that p ’ 6 3 10�7 (our simulations
indicate that this is conservative). In addition to the five
nucleotide substitutions, there is also a 2-bp insertion on the
human lineage that was not included in the statistical
inference. Since the UCSC genome browser database was
recently updated, we were able to inspect an alignment of 17
vertebrate species for this region. Manual inspection con-
firmed that all six of these substitutions occurred on the
human lineage.
The function of this CNC is unclear but the two nearest

genes are C21orf54, 17 kb upstream, and IFNAR2, 42 kb
downstream of the CNC. Not much is known about C21orf54,
but IFNAR2 codes for a type I membrane protein that forms
one of the two chains of a receptor for interferons alpha and
beta [41]. This CNC is strongly conserved among the other
mammalian species and chicken but does not appear to be
present in the fugu genome. In addition to the rapid evolution
on the human lineage, there is weak evidence for slower
evolution of this CNC on the mouse and dog lineages (one-
sided p-values ¼ 0.011 and 0.023, respectively; see Figure 5B).

Classification of CNCs According to Evolutionary Patterns
Thus far, we have focused on the simplest class of

alternative models, in which a CNC changes substitution rate
on a single branch only and has a constant background rate
elsewhere on the tree. We now extend this approach in order
to classify each CNC according to a family of more
complicated models of evolutionary patterns.
Our data are connected by a tree containing seven

branches. The simplest model (our ‘‘null’’) has a single rate
parameter, and the most complicated alternative model has
seven different rate parameters. In between, there are 876
ways of partitioning the seven branches into two or more
different substitution rate groups. However, considering all
of these partitions does not seem biologically meaningful or
necessary, and here we focus on a reduced set of 126
alternative candidate models.
The alternative models we consider can be divided into two

distinct classes of models. In one class of models, each tree is
assumed to have a ‘‘background’’ rate parameter. Then, each
CNC may have between one and six ‘‘selected’’ lineages, and
each selected lineage evolves at its own rate. In the other class
of models, each tree may be split into subtrees that share a
single rate, while the rest of the tree has a single background
rate (for full details, see Table S11).
We use a modified Akaike Information Criterion (AIC)

procedure to classify each CNC into its best model. In brief,
the method attempts to account for multiplicities of
alternative models as well as the number of estimable
parameters in each model (see Methods). We have performed
simulations to test the performance of this method, and we

Figure 4. Excess of Significant Mammalian CNCs on the Mouse Lineage

(A) Histogram of p-values of SRTm. The peaks on the left and the right
indicate an excess of CNCs that are fast and slow evolving in mice,
respectively.
(B) Observed and expected branch lengths (per site) of mammalian CNCs
that are significant on the mouse lineage at p , 0.001. Fast- and slow-
evolving CNCs are indicated in red and blue, respectively. The violet
dashed horizontal line shows the genome-wide average substitution rate
on the mouse lineage for unconstrained regions near the fast-evolving
CNCs (see text). Nine CNCs that have evolved significantly faster than
their local neutral rates on the mouse lineage (p , 0.05) are indicated by
light blue dots.
doi:10.1371/journal.pgen.0030147.g004
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find that it provides suitable control over the rate of ‘‘false
positives’’ (i.e., accepting models with more parameters than
used to simulate the data). That said, our simulations show
that it is often difficult to correctly classify complex models
with multiple rate changes (see Methods; Figure S7).

The results of our data analysis are summarized in Figure 6
and Table S12. We estimate that ;68% (54,643/81,957) of the
mammalian CNCs evolve at a single rate. The remaining
nonneutral CNCs show rate changes on at least one lineage.
The number of CNCs assigned to each model category
decreases with increasing model complexity. Among the 32%
of CNCs with more than one rate, ;75% (20,420/27,314)
exhibit rate changes on a single lineage but not on the
remaining lineages and ;9% (2,419/27,314) exhibit rate
changes on the primate or the rodent lineage that are
inherited across all branches below. For the two-parameter
models, the rate change events are easily classified as speed-
ups or slow-downs. Counts for both types of event are shown
in Figure 6B. For most lineages, there are slightly more speed-
up events than slow-downs (;55% versus ;45%). However,

there are 638 and 530 CNCs that show rate speed-ups on the
human and chimpanzee lineages, respectively, far more than
the four and eight CNCs, respectively, showing slow-downs.
Presumably, these results are due in large part to the greater
power to detect speed-ups, as well as differences in power
across lineages (Figure S6).
It is notable that the dog lineage shows a very large number

of rate changes, which may not be fully explained by the long
length of this lineage (second longest among the seven). Since
there is no strong tendency towards an excess of speed-ups
over slow-downs on this lineage, it is unlikely that this can be
explained by occasional CNCs with low-quality dog sequence.
Perhaps a hint is that we have observed greater variation in
the dog-lineage substitution rates at neutral sites than on
other lineages. Perhaps there is greater fine-scale variation on
the dog lineage that is not well captured by our 50-CNC
window method (see Methods; Figure S8).

Fast-Evolving CNCs That Exceed Neutral Rates
As discussed above, we have identified many CNCs with

significantly accelerated rates on one or more branches.

Figure 5. Example of a 144-bp CNC on Chromosome 21 (q22.11) with a Dramatic Accumulation of Changes on the Human Lineage (See Text)

(A) Data at the 20 sites that are variable among these five species, with human-specific changes in red.
(B) Estimated tree for this CNC.
(C) Estimated neutral tree based on neighboring CNCs. The scale bar indicates the expected number of substitutions per site, per unit branch length.
(D) SRTh values for amniotic CNCs located on human Chromosome 21. The red circle indicates the CNC illustrated above.
doi:10.1371/journal.pgen.0030147.g005
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However, it is unclear a priori whether these speed-ups
reflect positive adaptation or relaxation of functional
constraint. In order to address this issue, we estimated
substitution rates in unconserved sequences near each CNC
to estimate local neutral rates (see Methods). We then
determined how many of the CNCs showing rate speed-ups
have an accelerated rate that actually exceeds the corre-
sponding lineage-specific neutral rate. If the rate in a CNC
actually exceeds the local neutral rate, this is strong evidence
for adaptive evolution. However, a negative result here is
difficult to interpret, since adaptive evolution in an otherwise
slow-evolving sequence may not necessarily bring the total
rate above the neutral background rate.

Our results are summarized in Table 1. We observe that
most CNCs showing accelerations on the human and
chimpanzee branches indeed have rate estimates exceeding
the neutral rates; of these, more than half are actually
significantly faster than the neutral rate at p , 0.05.
Meanwhile, the other branches of the mammalian tree all
show smaller fractions of CNCs with rates that exceed the
neutral rate, and very few of these are significantly faster than
the neutral rate. One plausible explanation might be that if
there is sufficiently rapid evolution on a long branch, this
might cause an otherwise conserved element not to be
classified as a ‘‘most conserved’’ region by the HMM [10].
However, some simple calculations suggest that this is likely
to be a modest effect in practice. Moreover, we see the same
effect for both the mammalian and amniotic CNCs (Table 1),
even though the HMM data for the latter include the
relatively long branch to chicken, and should therefore be
much less susceptible to this effect.
Instead, to explain these observations, we hypothesize that

the rate speed-ups that we detect may often reflect rapid
bursts of adaptation in which a CNC accumulates a series of
sequence changes, thus modifying its function. A single burst
of adaptation may produce enough sequence changes to
exceed the neutral rate on a short branch, but not on a longer
branch. In this model, we would have the most power to
detect adaptive events on short branches. Our data argue
strongly against a model in which a CNC adapts continuously
over extended periods of evolutionary time, as such a model
should also produce signals on the long branches.

Relationship between Fast-Evolving CNCs and Nearby
Genes
We have also performed analyses of the locations of CNCs

showing branch-specific speed-ups, with respect to nearby
genes. A recent report by Drake et al. [27] found that the
frequency spectrum in CNCs is most skewed towards rare
variants (indicating weak purifying selection) in introns and
near genes, and is less skewed in CNCs that are far from
genes.
To test whether CNCs showing speed-ups on particular

branches occur at higher rates near to or far from genes, we
divided all our CNCs into four classes: intronic, within 10 kb
of a gene, between 10 kb and 100 kb, and greater than 100 kb
from any gene. We found that on the mouse and rat lineages,
CNCs showing speed-ups (p , 0.001 on the branch-specific
test SRTi) occur at higher rates in introns and within 10 kb of
genes than among CNCs further from genes. However, this
trend was not replicated on the other lineages of the tree
(Table S13).
We next looked at whether CNCs showing significant rate

speed-ups are more likely to be in the proximity of particular
kinds of genes [17], using the PANTHER GO database [32]. A
significant difficulty in this sort of analysis is that even for
those CNCs that act as cis-regulators, it is unknown which of
the nearby genes is being regulated. However, as a rather
imperfect proxy for this we simply used, for each CNC, the
nearest gene (in either orientation). For each branch of the
mammalian tree, we divided the CNCs into those with
increased rate on that branch (by AIC) and used CNCs
evolving under the null model as ‘‘neutral’’ controls. We
looked at whether particular biological process categories

Figure 6. Patterns of Evolution in Mammalian CNCs

(A) Classification of evolutionary patterns in mammalian CNCs according
to our modified AIC. The left-hand column indicates the number of model
parameters, where ‘‘1’’ indicates that there is a single substitution rate on
the entire tree, and where ‘‘7’’ indicates a separate rate on every branch.
(B) The tree shows how many of the CNCs that are best fit by the two-
parameter model have altered rates on each branch. Rate increases are
printed in red (upper text) and rate decreases in blue (lower text). The
classification of the remaining 2,419 CNCs with two rate parameters that
fall into our compound models is summarized in Table S12.
doi:10.1371/journal.pgen.0030147.g006
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were enriched among the nearest genes of the selected CNCs
compared to the neutral CNCs.

For mammalian CNCs, there is significant enrichment of
the process categories ‘‘amino acid activation’’ and ‘‘other
coenzyme and prosthetic group metabolism’’ on the dog and
the lineage leading to the common ancestor of mouse and rat
(rodent lineage), respectively, at p , 0.05 after Bonferroni
adjustment. We also tested whether any categories show
repeated evidence for enrichment on different branches of
the tree. For mammalian CNCs, the ‘‘sensory perception’’
category appears in the top ten enriched biological processes
for three out of the seven lineages. However, in summary, we
view these GO associations as rather tentative, since none of
them is highly significant or highly repeatable across
branches of the tree. Complete results from this analysis are
presented in Tables S6 and S7.

Discussion

Our paper presents a new approach to studying the
evolutionary patterns of CNCs. We find that a large fraction
of CNCs (;32%) do not fit a simple model of evolution with a
consistent substitution pattern across the mammalian tree.
Among those CNCs that do not fit our null model, ;75%
show changes in evolutionary rate on a single branch of the
mammalian tree, while the remainder have more complex
substitution patterns. In many cases—particularly on the
short branches of the phylogeny—CNCs with rate acceler-
ations on a particular branch significantly exceed the neutral
rate on that branch, suggesting that the changes are driven by
adaptive evolution. The less extreme speed-ups may be due to
either adaptation or a relaxation of selective constraint;
however, we suggest that much of our signal on the longer
branches may be due to short bursts of adaptation that do not
generate enough changes to exceed the total neutral rate on a
long branch.

A very recent paper by Galtier and Duret [42] argues that
many of the recently reported HARs [5] are likely the result of
biased gene conversion (BGC). One of the main character-
istics of BGC is an excess of AT! GC transitions. In some of
our CNCs showing accelerations on the human lineage, we
also observe this transition bias, which seems to be larger with
increased acceleration signals. However, for most fast-
evolving CNCs, the numbers of AT ! GC changes roughly
match the distribution expected based on the overall

distribution across random CNCs (Figure S9). In summary,
these data suggest that some of the fast-evolving CNCs may in
fact be due to BGC, however, that most fast-evolving CNCs do
not show the signal expected for BGC.
Overall, our results imply that either the levels of func-

tional constraint or the functional roles of CNCs are
reasonably changeable across the timespan of mammalian
evolution. Although it lies beyond the scope of this paper, it
will be of interest to use experimental approaches to probe
the functional significance of the many CNCs that we have
identified as having had bursts of rapid evolution [5,25].
Of course, in this type of study, there are inevitably features

of the real data that are not fully accounted for in the models.
We believe that our results should be reasonably robust to
these issues, however, as follows. One natural concern is that
our CNC alignments might occasionally align paralogs. This is
a serious concern in principle; however, we have aimed to
aggressively filter out CNCs with related paralogs to minimize
this effect, in addition to making use of global alignments.
Other model departures might inflate the variance of branch-
specific substitution rates. These include the possibility of
fine-scale, branch-specific changes in mutation rate, as well as
variation in the branch lengths of the human and chimpanzee
branches due to coalescent time variation [43]. On the whole
these effects are likely to be fairly modest, since the observed
rate changes are usually not significant unless they are quite
dramatic (significant rate changes are usually ;2–4-fold on
the mouse lineage, and larger on the shorter branches). For
this reason, the analysis that uses a single global tree shape
produces fairly similar overall results to the window-based
analysis, despite evidence that the window-based analysis fits
the data better (Figure S4). A related concern is that due to
variation across lineages in effective population size, the
evolutionary rates of CNCs with different levels of constraint
might not scale linearly across the trees [29]. However, our
data show that this is a modest effect relative to the size of
change needed to produce a significant rate change in a CNC
(Table S15).
In this study, we aimed to classify CNCs according to their

evolutionary patterns. To do so, we used a modified version
of the AIC to find the model that best describes the pattern
of evolution of each CNC. In order to reduce the space of
alternative models, we restrict our alternatives in two classes
of models. As we obtain genome sequences for increasingly
more species, it will be worth revisiting these models, as we

Table 1. Evidence for adaptive evolution in fast-evolving CNCs

Human Chimp Mouse Rat Primate Rodent Dog

Mammalian Total 211 181 1,027 1,271 855 723 1,903

Mammalian Exceed 207 180 339 455 137 0 13

Mammalian SigExceed 144 128 9 9 0 0 1

Amniotic Total 44 37 228 305 200 198 511

Amniotic Exceed 42 35 62 90 14 0 2

Amniotic SigExceed 18 15 6 8 1 0 0

The table shows, for mammalian and amniotic CNCs, (1) the numbers of elements that show significant accelerations on each branch (p , 0.001 by SRTi) (Total), (2) the numbers for which
the maximum likelihood rate estimate exceeds the local neutral rate for that branch (Exceed), and (3) the numbers for which the rate on that branch significantly exceeds the local neutral
rate (p , 0.05) (SigExceed). See Methods for further details. Each branch is labeled using the species that it leads to. The ‘‘primate’’ and ‘‘rodent’’ lineages indicate the lineages leading to
the common ancestors of human and chimpanzee, and mouse and rat, respectively. Note that on the long branches, even the fast-evolving CNCs are generally slower than the neutral
rate, which is why the fraction significantly faster than neutral is ,5%.
doi:10.1371/journal.pgen.0030147.t001
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will be better able to distinguish among different modes of
evolution [40]. In particular, two natural models for rate
changes in a CNC are (1) that the CNC has a one-time
change in evolutionary pattern (for example, a burst of
adaptation to acquire a new function), or (2) that the CNC
changes function or evolutionary constraint in a way that is
inherited across all branches below. With larger numbers of
taxa, it should be possible to gain better insight into the
relevance of these two possible modes of evolution. More
broadly, as we obtain increasing information about the
functions of CNCs, we will increasingly be able to interpret
the biological relevance of the patterns of rate changes
detected here.

Methods

Constructing the raw database of CNCs. From the UCSC genome
browser [30], we downloaded the genome-wide multiple alignment of
eight vertebrate species: human, hg17 (May 2004); chimpanzee,
panTro1 (November 2003); dog, canFam1 (July 2004); mouse, mm5
(May 2004); rat, rn3 (June 2003); chicken, galGal2 (February 2004);
fugu, fr1 (August 2002); and zebrafish, danRev1 (November 2003). We
also downloaded the annotation of ‘‘most conserved’’ regions defined
on the same multiple alignment by a phylogenetic HMM in June 2005
[10]. The most conserved regions are defined without regard to
whether the sequence is coding or noncoding, and cover around
4.3% of the human genome. To define CNCs, we first extracted those
conserved regions from the multiple alignment and then processed
them by removing coding regions (exons in the ‘‘known gene’’
annotation, UCSC genome browser), repetitive sequences (marked by
lower case letters in the alignment), and sites that are gaps or missing
data in any of the five mammalian genome sequences. Conserved
regions of less than 100 bp after the processing were discarded. The
remaining 231,285 regions out of the initial 1,451,896 most conserved
regions comprised our raw dataset of CNCs and spanned ;48 Mb.

We used BLAT [44] to exclude spuriously aligned CNCs. We
restricted our data to unique CNCs in which the human version of a
CNC does not find any similar sequence (.50% sequence identity)
elsewhere on the human genome. This resulted in discarding 24,234
CNCs (;5.4 Mb). Furthermore, we required that each nonhuman
mammalian verion of a CNC find the human version as the best
match when it is BLATed against the whole human genome. This
resulted in discarding an additional 74,359 CNCs (;10.7 Mb).

Our statistical inferences are based on alignments of the five
mammalian sequences. However, we used the aligned chicken and
fugu sequences to classify CNCs into different conservation level
groups, of which we analyzed the two largest, denoted as ‘‘mamma-
lian’’ and ‘‘amniotic’’ CNCs. Roughly speaking, a CNC was classified
into the mammalian group if it is conserved across the mammalian
genomes but not chicken or fugu, and into the amniotic group if it is
conserved among the mammals and chicken but not fugu. The
classification depended on (1) the presence or absence of aligned
chicken and fugu sequences, and (2) the mean identity between
mammals and chicken and fugu. The details are given in Text S1.

Sliding window analysis. To examine the scale of local variation in
tree shape, we estimated tree shapes over a chosen set of window sizes
of 10, 30, 50, or 100 consecutive CNCs (ordered according to the
human genome position). Since the scale of local variation seems to
vary across chromosomes, there is no clear boundary explaining the
rate of decay of autocorrelations. Nonetheless, incorporating such
variation into our model is important, since otherwise, regions that
show a general pattern of evolution that departs from the shared
pattern from all CNCs might produce clusters of spurious signals.
After several trials, we decided to estimate tree shape using a sliding
window of 50 CNCs with an overlap of 34 CNCs between successive
windows. With this window size, we obtained enough data to stably
estimate tree shapes, but were also able to capture much of the local
variation. The one third of CNCs located in the center of each
window use the estimated tree shape from that window. In order to
reduce the effect of outliers (defined as having SRT . 25 with degrees
of freedom of six), we estimate branch lengths in each window, drop
outliers, and then reestimate the divergence times after dropping
those nonneutral CNCs. Through this procedure, we expect that our
estimates are robust in the presence of outlier CNCs. However, when
rate changes are spatially clustered, our locally estimated tree shapes

may absorb some of the signal of variable rates, hence potentially
reducing power.

Chimpanzee sequence quality control. Our preliminary analysis of
classifying CNCs using the modified AIC showed that the number of
CNCs with signals on the chimpanzee lineage was 48% larger than on
the human lineage. Closer examination indicated that often CNCs
with low-quality chimpanzee sequence (PanTro1) produced a large
signal of rate changes on the chimpanzee lineage, since miscalled
bases would appear as mutations. Therefore, we dropped any CNC
that is classified by AIC into the group showing rate changes on the
chimpanzee lineage but that has low-quality chimpanzee sequence.

To identify those CNCs, the chimpanzee sequence in each CNC was
BLATed to the chimpanzee genome (PanTro1). The best match
position (according to the BLAT score) was found when it was
available. Then, in the target region, we counted the number of sites
that have low quality score (�20). If this count was larger than 15, we
considered the CNC to have low-quality chimpanzee data. A total of
378 mammalian and 89 amniotic CNCs that were significant on the
chimpanzee lineage were dropped for this reason.

The impact of occasional sequence errors is likely to be much
smaller for the other species. The human genome sequence has very
high accuracy (the estimated error rate is one site per 100 kb, much
lower than the human polymorphism rate [45]). Meanwhile, occa-
sional sequence errors in the other species should have only a small
effect due to the much longer branches leading to those taxa.

Likelihood computation and parameter estimation. We estimated
branch lengths for an alignment using the Felsenstein 84 sequence
evolution model and using the empirical base frequencies. To make
computation feasible, the ‘‘peeling’’ algorithm [46] was used with the
assumption that sites evolve independently and that given their
common ancestor, branches evolve independently. Details of the
evolution model and the ‘‘peeling’’ algorithm were described by
Felsenstein and Churchill [31]. Note that there are many more
general evolutionary models, but the Felsenstein 84 model, which is
essentially the same as the HKY85 model [47], seems to be sufficient
for the purposes of our study [48].

Under the null hypothesis, our parameters are a set of seven
branch lengths shared by all CNCs, and one additional local
substitution rate for each CNC. Under an alternative, our parameters
are a set of lineage-specific rates that explain a specific scenario for
each CNC. Rather than maximizing the likelihood directly, we
developed an expectation-maximization algorithm (EM) that effi-
ciently maximizes many parameters jointly under the null model. The
details are given in Text S1, but essentially, in our EM algorithm, each
branch length is updated sequentially by computing the posterior
number of substitutions on each branch and updating the related
parameters accordingly. We find that our EM algorithm is stable to
choices of initial starting points. The estimates that we obtain for
simple models match well with those computed by Phylip [49] and
PAML [50].

Classification of evolutionary models using a modified AIC
procedure. There are many possible models of CNC evolution,
ranging from the simplest case, where there is a single rate across the
entire tree, to the most extreme case, where each lineage evolves with
its own rate. Here, we address how to classify CNCs according to their
evolutionary patterns.

Each of the possible alternative models corresponds to a partition
of the seven lineages into two or more blocks of substitution rates.
There are 876 ways of partitioning the seven branches into two or
more different substitution rate groups. However, to reduce the
space of possible models, we restrict ourselves to a subset of 127
candidate models that seem biologically most natural. Our main class
of alternative models consists of the models where there are k
selected branches (1 � k � 6), each with its own rate parameter, while
the remaining branches share a single background rate parameter.
Such models have kþ1 parameters, and there are 7!

ðk!Þð7�kÞ! such models
for k ¼ 1,. . .,5 and one additional model for k ¼ 6. This accounts for
121 candidate models.

In addition, we also consider a further set of six models that seem
biologically natural, that split the branches on an unrooted tree into
two or three rate groups using an internal branch (connecting two
internal nodes). Thus, for example, we might hypothesize a single
rate-changing event in the ancestor of mouse and rat that leads to a
single altered rate on both the mouse and rat branches. To reduce the
model space complexity, we assume that such rate change events
occur at internal nodes on the tree. These six models are summarized
in Table S11.

Since there are many possible models, correct classification of the
CNCs is likely to be difficult. Here, we view the classification as a
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multiple testing problem rather than a model selection problem,
where our first goal is to control the rate of over-estimating the
number of model parameters. The scheme below, though ad hoc,
provides a reasonable compromise in providing fairly good model
choice while not having excessive rates of ‘‘false positives.’’

For each CNC, we select the model that, among the 127 candidate
models produces the highest value of the penalized likelihood, which
is log(L)� (kþ 1)þ logf(7� k� 1)!g for our main class of alternative
models, where L is the maximum likelihood and k is the number of
selected lineages. The first penalization term (kþ 1) penalizes for the
number of estimated parameters and is introduced for the same
reasoning as in the standard AIC. The last term (logf(7� k�1)!g) aims
to account for the multiplicity of different models within each level.
This latter term was suggested previously as a prior weight for
Bayesian classification in an analogous setting [51]. This term is
motivated by thinking of each model as corresponding to a partition
of the seven branches into one or more blocks of substitution rate
groups; as a natural choice of partition distribution we use the Ewens
sampling distribution [52] with concentration parameter k of 1 (see
Text S1).

To evaluate the performance of the classification, we simulated data
under the full range of null and alternative models. We used these
simulations to compare among three possible choices of penalty
functions: (1) using only the number of parameters (AIC), (2) using only
the Ewens prior (Ewens), and (3) using both the number of parameters
and Ewens prior (AICþEwens), as detailed above. The penalty function
computed for each model is summarized in Table S14 and the power
simulation results are shown in Figure S7. The AIC þ Ewens
penalization provides the best control against over-fitting and that is
what we use for our data analysis.

Estimation of lineage-specific neutral rates. There are 6,037
mammalian and 1,497 amniotic CNCs that show branch-specific
accelerations on at least one lineage at significance level of 0.001
(based on the asymptotic distribution of SRTi). To see if these CNCs
actually exceed the neutral rate on a particular branch showing
speed-ups, we estimate the local ‘‘neutral’’ tree near each of those
CNCs. Specifically, we take the surrounding 10 kb with each such
CNC at the center, then exclude ‘‘most conserved’’ regions as well as
exons to construct putatively neutral local regions. The genome-wide
average of each branch length on trees estimated from those regions
(shown in Table S3) is very similar to that from CFTR nonexonic DNA
region in Cooper et al. [15]. It is notable that the variation in neutral
branch lengths of the dog lineage is considerably larger than that on
other lineages (Figure S8).

To test whether the accelerated rate exceeds the neutral rate on a
particular branch i, we compute a likelihood ratio statistic testing the
hypothesis H0: r0, �i, ri¼ ri, neutral versus HA:r0, �i, ri . ri, neutral only for
those CNCs that have a substitution rate on the tested lineage ri that
exceeds the neutral rate ri, neutral in the surrounding region. Based on
the chi-square distribution with one degree of freedom, we compute
p-values and reject the null hypothesis if p-value , 0.05. Our results
are summarized in Table 1.

Simulations. We performed simulation studies with the Felsenstein
84 sequence evolution model using evolver13, implemented in PAML
[50], to assess the distributions of the SRT and SRTi statistics under
the null model and to evaluate p-values when the distribution is not
well approximated by the asymptotic theory.

We simulated two sets of 1 million CNCs under the null, one set for
the mammalian and one for the amniotic CNCs, matching the
distribution of base frequencies, the CNC size, the variation in the
local substitution rates, and the overall tree shape. Specifically, each
of the 1 million simulated CNCs was based on the characteristics of a
randomly sampled CNC in our dataset (sampling with replacement).
We specified the branch lengths by rescaling the global tree estimated
from all CNCs by the local substitution rate of the chosen CNC, and
generated an alignment of five sequences of the corresponding size
simulated on the specified tree.

For each set of simulated CNCs, we obtained the empirical null
distributions of statistics testing for various alternative scenarios (the
simplest andmost extreme cases are shown in Figure S3). Asmentioned
earlier, the asymptotic theory works reasonably well, except when
testing for rate changes on short branches (i.e., the human and
chimpanzee lineages). We also grouped sets of CNCs into bins with
similar CNC sizes and local substitution rates and examined empirical
distributions for each bin separately (unpublished data). For each test
statistic, the empirical distributions across bins were homogeneous,
except for the cases in which the asymptotic theory does not work
because of the small number of accumulated substitutions. For these
cases, since the inhomogeneity across bins was mainly explained by
differences in the expected number of substitutions on the tested

lineage, we reconstructed bins of CNCs according to the number of
expected substitutions and evaluated p-values within each bin
separately.

We also simulated a number of CNC sets under various alternative
scenarios to examine the performance of the modified AIC method.
Specifically, for each k selected lineages (k ¼ 0,. . .,6), we simulated
100,000 CNCs in which each CNC has k branches that evolve with
their own rates. These rates were higher or lower than the
background rate with 50% probability each. To incorporate the
variation in strength of signals in real data, the rate of each selected
branch was simulated by multiplying or dividing the background rate
by a scale factor that is drawn from 1 þ C(a, b) distribution with a
scale parameter b¼ 1 and a shape parameter a¼ 1 (weak signals) or a
¼ 2 (stronger signals).

GO analysis. We downloaded a reference assembly (seq_ge-
ne.md.gz) that corresponds to the human genome build (NCBI build
35) from ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/ARCHIVE/BUILD.
35.1/mapview. We proceeded by extracting only reference genes
(release 3 [45]) in autosomes only, and obtained 25,249 genes. We
extracted the nearest gene for each CNC without considering gene
orientation. Here the distance from a CNC to a gene is the minimum
of distances from the middle of the CNC to either end of the gene.

The PANTHER GO database was downloaded from http://www.
pantherdb.org/panther/prowler.jsp in March 2006. For each conserva-
tion group, we examined what kinds of biological process categories
are enriched for being: (1) near CNCs in general and (2) near CNCs
showing lineage-specific rate increases compared to near CNCs
evolving under the null model. The nearest genes of CNCs were used
for this analysis.

For (1), we compiled the list of all genes in the reference assembly
and the list of genes near mammalian (or amniotic) CNCs. For each
biological process category, we counted the number of genes in each
list and compared them with a chi-square test. Within each list, genes
are counted only once. For (2), CNCs were first classified by the AIC
(in order to obtain disjoint categories of CNCs showing signals of
speedups on each lineage). For each category, we counted genes near
CNCs under the null and near CNCs in each of the seven selection
groups that show rate speed-ups on a single lineage. In this case,
however, individual genes were counted repeatedly each time they
were the nearest neighbor of a relevant CNC. The reason for this is
that multiple CNCs often have the same nearest neighbor. This effect
is more pronounced in the null CNC group than in the selection
groups. Consequently, if we count genes only once, then any
biological functional category that is enriched near CNCs, in general,
may be underrepresented in the null but overrepresented in each
selection group. Since the numbers of selected CNCs are small for
many gene categories, p-values were computed using Fisher’s exact
test. To account for multiple testing, the p-values were multiplied by
the number of biological processes that were jointly tested.

Data availability. We have prepared a datafile that contains the list
of all CNCs and summarizes our analysis results. It includes genomic
properties and test statistics, as well as the best evolutionary pattern
of each CNC. It will be downloadable from http://pritch.bsd.uchicago.
edu/data.html.

Supporting Information

Figure S1. Estimated Global Trees for the Mammalian (A) and
Amniotic (B) CNCs

Found at doi:10.1371/journal.pgen.0030147.sg001 (91 KB EPS).

Figure S2. The Total Tree Lengths (the Sum of the Seven Branch
Lengths) of the Mammalian (A) and Amniotic (B) CNCs on Human
Chromosome 2

The red dashed line on each plot indicates the mean of the plotted
total tree lengths. To aid visual comparison of the plots, 1,741
mammalian CNCs (equal to the number of amniotic CNCs) were
randomly selected and plotted here. Overall, amniotic CNCs are
more conserved and more clustered than mammalian CNCs.
Found at doi:10.1371/journal.pgen.0030147.sg002 (103 KB EPS).

Figure S3. The First Seven Plots Show the Empirical Null Distribu-
tions of SRTi of the Mammalian CNCs

The empirical null distributions are obtained from the simulated data
that capture the variation in size and the local substitution rates of the
mammalian CNCs. Note that the empirical null distributions of SRTh
(human) and SRTc (chimpanzee) are bimodal since when testing for a
rate changes on a short lineage, discreteness nature of the data has a
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big impact on the shape of the distribution. The histogram of SRTi for
each of the seven lineages is overlapped with the density function of
the standard normal distribution (dashed red line). The two vertical
green bars in each plot indicate the 0.1% and 99.9% sample quantiles
of SRTi. Note that the 0.1% and 99.9% quantiles of the standard
normal distribution are�3.09 and 3.09, respectively. The bottom right
plot is the histogram of SRT testing the alternative hypothesis in
which each of the seven lineages evolves with its own rate. The dashed
red line shows the density function of the chi-square distribution with
degrees of freedom of six. The vertical green bar indicates the 99.9%
sample quantile of SRT. Note that the corresponding theoretical
quantile from the chi-square distribution is 22.46.
Found at doi:10.1371/journal.pgen.0030147.sg003 (46 KB EPS).

Figure S4. Accounting for Local Variation in Tree Shape.

(A) Comparison of the SRT tests on the mouse lineage (SRTm)
between those using the branch length parameters estimated from all
amniotic CNCs (global tree) and those using estimates from nearby
50-CNCs (local trees). (B) Robustness of the SRTm to the definition of
windows. For further details of the caption, see Figure 3Found at
doi:10.1371/journal.pgen.0030147.sg004 (802 KB EPS).

Figure S5. The Observed and the Expected Branch Lengths of Each of
the Seven Lineages for Mammalian CNCs Showing Rate Changes at p-
values , 0.001 (Standard Normal Approximation)

The rate speed-ups and slow-downs are indicated in red and blue,
respectively. CNCs that are significant on the chimpanzee lineage but
have low-quality chimpanzee sequences are removed from plot.
Found at doi:10.1371/journal.pgen.0030147.sg005 (73 KB EPS).

Figure S6. Power of the SRTi Test with (A) 100-bp, (B) 200-bp, and (C)
400-bp Simulated CNCs

The tree for each CNC is simulated by taking the global tree
estimated from all mammalian CNCs and multiplying certain branch
length with rate changes (each line) by a scale factor (x-axis). The
power is estimated as the fraction of being rejected at significance
level of 0.001 among the 500 simulated CNCs. For all seven lineages,
the p-values are computed based on asymptotic approximation.
Found at doi:10.1371/journal.pgen.0030147.sg006 (44 KB EPS).

Figure S7. Power of the Modified AIC Method

In each plot, each line corresponds to the true number of the selected
lineages (k) that evolve with its own rate. Each selected branch is
multiplied or divided by a scale factor that is drawn from 1þ C(a, b)
distribution with a scale parameter b¼1 and the shape parameter a¼
1(A, B, and C), a ¼ 2(D, E, and F), respectively. The number of
parameters found by the AIC method is shown in the x-axis, and the
fraction of detected CNCs among the 100,000 simulated CNCs under
each scenario is shown in the y-axis.
Found at doi:10.1371/journal.pgen.0030147.sg007 (56 KB EPS).

Figure S8. Variation in Branch Lengths in Neutral (Upper) and 50-
CNC Window (Lower) Regions

Found at doi:10.1371/journal.pgen.0030147.sg008 (65 KB EPS).

Figure S9. Comparison of the Proportion of Human-Specific A/T !
G/C Substitutions in Fast-Evolving Mammalian CNCs on the Human
Lineage with That in ‘‘Random’’ CNCs (See Below)

A random CNC of size 3 kb is created by concatenating contiguously
located CNCs to obtain a sufficiently large number of human-specific
substitutions. We parsimoniously obtain the number of human-
specific substitutions by counting those sites for which four non-
human species share the same base which is different with the human
one. Among those human-specific changes, we count A/T ! G/C
changes to compute the proportion. The plots are the histograms of
those proportions in random CNCs (A, C, and E) and fast-evolving
mammalian CNCs (B, D, and F) across sets of homogeneous numbers
of human-specific substitutions: A and B, seven or eight; C and D, five
or six; and E and F, three or four.
Found at doi:10.1371/journal.pgen.0030147.sg009 (15 KB EPS).

Table S1. Summary of CNC Size (bp)

Overall, amniotic CNCs are longer than mammalian CNCs.
Found at doi:10.1371/journal.pgen.0030147.st001 (27 KB DOC).

Table S2. Distribution of the Location of CNCs with Respect to
nearby Genes

For each CNC, the nearest gene was found without considering gene

orientation. Fractions of CNCs in intron and three intergenic regions
(within 10 kb, between 10 kb and 100 kb, and greater than 100 kb
from any gene) were computed within each group. The ‘‘Random’’
group indicates the expected distribution if CNCs were distributed
completely at random in noncoding regions (estimated by sampling 2
million noncoding positions at random in the human genome).
Found at doi:10.1371/journal.pgen.0030147.st002 (26 KB DOC).

Table S3. Estimate of Each Branch Length on the Mammalian and
Amniotic Trees (Shown in Figure S1) and the Genome-Wide Average
‘‘Neutral’’ Tree (see Methods)

The ratio of each branch length on the mammalian (or amniotic) tree
to that on the neutral tree is shown beneath the length estimate. A
branch length is the expected number of substitutions that occurs on
each branch per site. Each branch is named using the species that it
leads to. (The primate and rodent lineages are the lineages leading to
the common ancestors of human and chimpanzee, and mouse and
rat, respectively.)
Found at doi:10.1371/journal.pgen.0030147.st003 (30 KB DOC).

Table S4. The Top Ten Biological Process GO Categories That Are
Significantly Over- or Underrepresented near the Mammalian CNCs

For each CNC, the nearest gene was found without considering gene
orientation. The first column (Key) shows the nested relationship
between GO categories. For example, 22_8 has a level of 2 and is
nested in 22, which has a level of 1. The second column (Obs) is the
observed count of genes near CNCs in each category. The third
column (Exp) is the expected count of genes near CNCs that are
obtained based on the distribution of all human genes. The fourth
column indicates if each GO category is over- or underrepresented.
One-sided p-values are computed using a chi-square test and are
corrected by the Bonferroni criterion (p*-values), using the number
of the GO categories that are tested in each level.
Found at doi:10.1371/journal.pgen.0030147.st004 (38 KB DOC).

Table S5. The Top Ten Biological Process GO categories That Are
Significantly Over- or Underrepresented near the Amniotic CNCs

For further details of the caption, see Table S4.
Found at doi:10.1371/journal.pgen.0030147.st005 (33 KB DOC).

Table S6. The Top Ten Biological Process GO Categories That Are
Enriched near the Mammalian CNCs Showing a Rate Speed-Up on
Each Lineage Relative to ‘‘Neutral’’ CNCs Evolving under the Null
Model (by AIC)

The one-sided p-values are computed using the Fisher’s exact test and
are corrected by Bonferroni criterion (p*-values). Any category that
includes less than two genes near CNCs showing a rate speed-up is
removed from the list.
Found at doi:10.1371/journal.pgen.0030147.st006 (111 KB DOC).

Table S7. The Top Ten Biological Process GO Categories That Are
Enriched near the Amniotic CNCs Showing a Rate Speed-Up on Each
Lineage Relative to Neutral CNCs (by AIC)

For further details of the caption, see Table S6.
Found at doi:10.1371/journal.pgen.0030147.st007 (127 KB DOC).

Table S8. Counts of CNCs Showing Significant Rate Changes on Each
Lineage at p , 0.001 Using SRTi

Fractions of those CNCs within each group are shown underneath the
counts. The p-values are computed based on each of the asymptotic
(asym) and empirical (empi) distribution. Note that CNCs that show
rate changes on the chimpanzee lineage but have low-quality
chimpanzee sequence are not included.
Found at doi:10.1371/journal.pgen.0030147.st008 (54 KB DOC).

Table S9. The p-Value Threshold at Each Fixed FDR

The p-values are computed using the squares of SRTi statistics, and
are transformed into q-values using the R package ‘‘qvalue’’ (http://
faculty.washington.edu/jstorey/qvalue/; [53]) using default settings of
that program. At each fixed FDR, the corresponding one-sided p-
values (for both tails) are found. Note that for human and
chimpanzee, the empirical p-values are used to construct the
distribution of p-values correctly under the null hypothesis.
Found at doi:10.1371/journal.pgen.0030147.st009 (56 KB DOC).

Table S10. Comparison between the 49 HARs [5] and Our CNCs

Among the 49 HARs, 11 and 23 HARs are overlapped with our
mammalian (M) and amniotic (A) CNCs, respectively. All of the HARs
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are embedded in our CNCs. The difference in size between each HAR
and the corresponding CNC is shown in the fifth column (Diff). The
p-values correspond to our SRTh statistics, and are computed based
on the empirical null distribution obtained from the simulation
study. The SRT tests the alternative hypothesis in which each of the
seven lineages evolves with its own rate.
Found at doi:10.1371/journal.pgen.0030147.st010 (93 KB DOC).

Table S11. Six Alternative Models in Which Each Tree May Be Split
into Subtrees That Share a Single Rate, While the Rest of the Tree
Has a Single Background Rate

Found at doi:10.1371/journal.pgen.0030147.st011 (30 KB DOC).

Table S12. Counts of CNCs That Are Classified As Having Two Rate
Parameters by the Modified AIC Method

Note that CNCs that show rate changes on the chimpanzee lineage
but have low-quality chimpanzee sequence are not counted.
Found at doi:10.1371/journal.pgen.0030147.st012 (43 KB DOC).

Table S13. Locations of Neutral and Selected CNCs with Respect to
Genes

The table shows the fractions of amniotic CNCs either within introns
or at three different distances from genes, within each selected group
(neutral, rate speed-ups on a single lineage by SRTi, or by AIC). For
each CNC, the nearest gene was found without considering gene
orientation. Each intergenic CNC was divided into three groups that
are 1) within 10 kb, 2) between 10 kb and 100 kb, and 3) greater than
100 kb from any gene.
Found at doi:10.1371/journal.pgen.0030147.st013 (37 KB DOC).

Table S14. Three Choices of Penalty Functions for the Two Classes of
Models That Are Considered in the Modified AIC

Each penalty is adjusted so that the null model (the number of
parameters is one) has zero penalty.
Found at doi:10.1371/journal.pgen.0030147.st014 (36 KB DOC).

Table S15. Estimates of the Human-to-Chimpanzee Divergence (H-C),

and the Mouse-to-Rat Divergence (M-R) within Each of the Four
Conservation Levels, Defined According to the Substitution Rate on
the Dog Lineage

Class 1 has the lowest substitution rate on the dog lineage and Class 4
the highest. Within each class, the ratio of the divergence in rodents
(M-R) to the divergence in hominids (H-C) is computed. Notice that
in contrast to the comparison between CNCs and neutral regions,
shown in Table S3, there is only very slight variation in tree shape
across different classes of CNCs. To avoid being affected by outliers,
each divergence is estimated using only CNCs evolving under our null
model (by AIC).
Found at doi:10.1371/journal.pgen.0030147.st015 (32 KB DOC).

Text S1. Supplementary Methods

Found at doi:10.1371/journal.pgen.0030147.sd001 (58 KB DOC).

Accession Numbers

The National Center for Biotechnology Information (NCBI) Entrez
(http://www.ncbi.nlm.nih.gov/gquery/gquery.fcgi) gene accession num-
bers for the genes C21orf54 and IFNAR2 are GeneID:339629 and
GeneID:3455, respectively.
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