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Abstract

Despite explosive growth in genomic datasets, the methods for studying epigenomic mechanisms of gene regulation
remain primitive. Here we present a model-based approach to systematically analyze the epigenomic functions in
modulating transcription factor-DNA binding. Based on the first principles of statistical mechanics, this model considers the
interactions between epigenomic modifications and a cis-regulatory module, which contains multiple binding sites
arranged in any configurations. We compiled a comprehensive epigenomic dataset in mouse embryonic stem (mES) cells,
including DNA methylation (MeDIP-seq and MRE-seq), DNA hydroxymethylation (5-hmC-seq), and histone modifications
(ChIP-seq). We discovered correlations of transcription factors (TFs) for specific combinations of epigenomic modifications,
which we term epigenomic motifs. Epigenomic motifs explained why some TFs appeared to have different DNA binding
motifs derived from in vivo (ChIP-seq) and in vitro experiments. Theoretical analyses suggested that the epigenome can
modulate transcriptional noise and boost the cooperativity of weak TF binding sites. ChIP-seq data suggested that
epigenomic boost of binding affinities in weak TF binding sites can function in mES cells. We showed in theory that the
epigenome should suppress the TF binding differences on SNP-containing binding sites in two people. Using personal data,
we identified strong associations between H3K4me2/H3K9ac and the degree of personal differences in NFkB binding in
SNP-containing binding sites, which may explain why some SNPs introduce much smaller personal variations on TF binding
than other SNPs. In summary, this model presents a powerful approach to analyze the functions of epigenomic
modifications. This model was implemented into an open source program APEG (Affinity Prediction by Epigenome and
Genome, http://systemsbio.ucsd.edu/apeg).
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Introduction

Central to transcriptional regulation of gene expression is the

regulation of the quantities of transcription factors (TF) bound to

genomic regulatory sequences. The information used to quanti-

tatively control TF-DNA binding is not only encoded in the

genomic sequences, but likely is also embedded in the chemical

modifications to the genomic sequences and the nearby histones

[1]. The chemical modifications (called epigenomic modifications)

include the addition of a methyl group or a hydroxymethyl group

to the 5th carbon of cytosine (5-mC and 5-hmC) and a number of

posttranslational modifications to the histone proteins [2]. These

modifications can alter the chromatin structure and function by

changing the charge of the nucleosome or directly interacting with

TFs [3]. In turn, TFs can tether DNA modification enzymes and

histone modification enzymes to change the epigenomic modifi-

cations around the TF binding region. Hence, both the genomic

sequences and the epigenetic modifications contribute to define

the regional diversity of the regulatory genome. Less clear is how

the genome and the epigenome jointly encode regulatory

information, and how TFs interact with such regulatory informa-

tion. The goal of this work is to model the three-way interactions

among the TFs, the genomic sequence, and the epigenome, and

thus allowing for predicting TF binding affinities in equilibrium

states.

Genome-wide distributions of TF-binding and epigenomic

modifications can now be obtained by high-throughput sequenc-

ing methods [4]. The explosive growth of data urges the

methodological developments that can achieve mechanistic

understanding of gene regulation. In particular, quantitative

models are needed to learn the regulatory rules implemented by

epigenomic modifications. Two classes of methods were developed

to study transcriptional regulation with different goals and

mathematical foundations. The first class of methods aims at

deriving regulator-target relationships or finding regulatory

sequences and motifs. These methods were built upon statistical
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associations among sequence patterns, TF binding, and gene

expression [5–11]. An advantage of this class of methods is that it

is easy to incorporate new data types including epigenomic

modifications. Indeed, using statistical enrichment and machine

learning ideas, recent efforts have incorporated nucleosome

positions [12] and epigenomic modifications to identify TFBSs

[13] and regulatory genomic sequences [12,14–18] (Table S1B).

However, machine learning methods do not allow direct

biophysical interpretation for their parameters, and therefore they

do not make biological inferences as directly as the thermody-

namic models (see below).

The second class of methods aims at deriving molecular

mechanisms of TF-DNA interactions, using a thermodynamic

framework (reviewed in [19]). The intensity of TF-DNA binding

was modeled as the equilibrium output of input sequences and TFs

[20,21]. Partially due to a huge computational burden, this class of

methods was originally restricted to analyze a few selected

regulatory sequences in single-cell organisms, where a few simplified

assumptions can be made [20–22] (Model assumptions, Table S1A).

These models were extended to analyze nucleosome positions

[23,24], gene expression in drosophila embryonic development [25–

27], and genome-wide TF binding data [28]. The latter develop-

ment offered a unique advantage, which is the capability of gaining

mechanistic understanding of TF-TF interaction and TF-DNA

binding from genome-wide binding data. However, this class of

models cannot easily take into account epigenomic modifications,

which are argued to be more influential to TF-DNA binding than

cooperative interactions between TFs [29,30]. Here we present a

thermodynamic model that incorporates epigenomic modifications.

This model can learn synergistic and antagonistic interactions

between specific TFs and epigenomic modifications from genome-

wide TF binding and epigenomic data.

We were interested in a few open questions on the mechanisms

of TF-DNA binding. First, to what extent does an epigenetic

modification change the binding strength between a TF and a

genomic sequence, which is composed of multiple strong and weak

binding sites? Second, is the epigenomic influence to TF-DNA

binding invariant to the nucleotide composition of the genomic

sequence? Third, many TFs have preferred DNA recognition

codes (a.k.a. motifs); are there TF-specific epigenomic recognition

codes? Fourth, does the epigenome modulate the variability (noise)

of gene expression in an isogenic cell population? Finally, what is

the role of the epigenome in modulating individual variation of

TF-binding among humans?

We used two complementary experimental systems to study the

above questions. The first system is mouse embryonic stem (mES)

cells. We recently assayed genome-wide distributions of 5-

methylcytosine (5-mC), 5-hydroxymethylcytosine (5-hmC), histone

variant H2A.Z, and acetylation of histone 3 lysine 27 (H3K27ac)

[31]. We combined these data with published chromatin

immunoprecipitation followed by sequencing (ChIP-seq) datasets

of 5 other epigenomic modifications [2,32,33] and 9 TFs [34] from

mES cells. This combined dataset allowed us to study TF-

epigenome-DNA interactions relatively comprehensively. The

second system is the white blood cells of seven people, which

allowed us to explore individual differences in humans.

Results

An epigenome-sensitive TF-DNA binding model
We developed a quantitative model for TF-DNA binding in a

given epigenomic context. The goal of this model is to predict the

binding intensity of a TF in any genomic region in any cell type,

using the genomic sequence and the epigenomic modifications

(cell-type-specific data). This model incorporates four types of

biophysical information: the active concentrations of the TFs

(learned from ChIP-seq data), the binding preferences of these TFs

to DNA (motif), the nucleotide composition of the genomic

sequence, and the epigenomic modifications (see Methods). Given

input data including position-specific weight matrices (PSWM),

ChIP-seq derived TF binding sequences and binding intensities,

and genome-wide distribution of epigenomic modifications, this

model can learn cooperativity among TFBSs (any number of

strong and weak, homotypic and heterotypic TFBSs). More

importantly, it can learn synergistic and antagonistic interactions

between a specific TF and every assayed epigenomic modification.

The learning process involves two steps (Figure 1B). First, the

model scans each epigenomic mark independently to identify those

that interact with the transcription factor of the interest and

modulate its binding affinities to genomic sequences. Second, these

identified epigenomic marks are combined into one unified model

to predict the binding affinity of any genomic regions. The model

quantifies the improvements of predicted binding affinities by

using the identified epigenomic marks (Table S2). Because this

model operates at thermodynamic equilibrium, it does not make

causal inferences about epigenetic and TF binding changes. We

implemented this model into an open source program APEG

(Affinity Prediction by Epigenome and Genome, http://

systemsbio.ucsd.edu/apeg).

Genome-wide distributions of 5-methylcytosine, 5-
hydroxymethylcytosine, H2A.Z, and H3K27ac in mES cells

We recently published two types of 5-methylcytosine (5-mC)

data in E14 mES cells, using methylated DNA immunoprecipi-

tation followed by sequencing (MeDIP-seq) and DNA digestion by

methyl-sensitive restriction enzymes followed by sequencing

(MRE-seq) [31,35]. A total of 45.2 million reads were generated

from MeDIP-seq, reflecting 1,495,114 methylated 200 bp geno-

mic segments (windows) across the genome (Text S1). A total of

2.1 million MRE-seq reads were generated from a total of three

restriction enzymes, covering 428,367 unmethylated windows. We

used a selective chemical labeling method to pull down and

sequence 5-hydroxymethylcytosine (5-hmC) regions (5-hmC-seq)

[31,36]. A total of 58 million 5-hmC-seq sequence reads were

Author Summary

We developed a model-based approach to systematically
analyze the epigenomic functions in modulating transcrip-
tion factor-DNA binding. We postulated the existence of
TF-specific epigenomic motifs, which could explain why
some TFs appeared to have different DNA binding motifs
derived from in vivo and in vitro experiments. The
theoretical results suggested that the epigenome can
modulate transcriptional noise and boost the cooperativity
of weak TF binding sites. A preliminary analysis of the
existing data suggested that epigenomic boost of binding
affinities in weak TF binding sites could be a widespread
regulatory mechanism in mES cells. Moreover, using
personal data, we identified strong associations between
H3K4me2/H3K9ac and the degree of individual differences
in NFkB binding in SNP-containing binding sites, suggest-
ing the theoretical mechanism for epigenome to attenuate
the TF binding differences on SNP-containing binding sites
in two individuals may contribute to link genomic variation
to phenotypic variation. Thus, this model presents a
powerful approach to analyze the functions of epigenomic
modifications.

Modeling TF-Epigenome-Genome Interactions
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generated, detecting 1.5 million 5-hmC marked windows in mES

cells. We assayed the genomic distribution of histone variant

H2A.Z and acetylation of Histone 3 Lysine 27 (H3K27ac) in E14

mES cells [31]. With 19.9 million ChIP-seq reads, 1.1 million

200 bp windows were found to contain H2A.Z. It has a small

overlap with promoter regions (10.45% of H2A.Z marked

windows), suggesting its substantial involvement in distal regula-

tory regions [37–39]. With a total of 19.8 million ChIP-seq reads,

around 1.0 million 200 bp windows were marked by H3K27ac. It

had a moderate overlap with promoter regions (16.66%), in line

with the thought that it is primarily an enhancer mark [40].

Interestingly, H2A.Z and H3K27ac exhibited differential overlaps

with 5-hmC marked windows (25.69% and 31.57%) and 5-mC

marked windows (17.69% and 12.98%), respectively. This suggests

both H2A.Z and H3K27ac tend to overlap with 5-hmC more than

with 5-mC (both p-values,2.2e-16, Chi-square test). Combining

these data with 6 published ChIP-seq datasets [2,32,33], we

obtained genome-wide distributions of 9 epigenetic marks and 9

transcription factors in mES cells, which served as the dataset for

our model-based analyses.

Identification of TF-specific epigenomic motifs
Even though some epigenomic modifications are assumed to

take some general roles in synergizing or antagonizing TF-DNA

binding, little is known whether such epigenomic functions are

specific to certain TFs or are general to every TF. To explore this

question, we applied our new model to genome-wide distribution

data of 9 TFs and 9 types of epigenomic modifications in mES

cells (assayed by ChIP-seq, MeDIP-seq, MRE-seq, and 5-hmC-

seq). Thirty interactions between TFs and epigenomic modifica-

tions were identified, forming an interaction network (Figure 2A,

Table S2). Here, ‘‘interaction’’ refers to the positive or negative

correlation of an epigenetic modification and the binding between

a TF and DNA. Among the 9 epigenetic modifications,

H3K4me3, H3K27ac, and 5-mC each interacts with a large

number of TFs, forming hubs in the interaction network. Among

the five epigenetic modifications that exhibited negative roles, only

5-mC represses the mES cell-specific regulators Oct4, Sox2,

Nanog, and Stat3. Compared to the hubs, H3K4me1 is more

specific. It plays a positive role to the binding of Nanog, Sox2 and

Stat3. Even more specific are H2A.Z, 5-hmC, and H3K9me3,

which may negatively correlate with the binding of cMyc and

nMyc. These data suggest that not all epigenomic modifications

‘‘uniformly’’ interact with every TF. Some epigenetic modifica-

tions may be associated with the binding of specific TFs.

Considering TFs often have recognition preferences to certain

short genomic sequences (motifs), we hypothesized that there are

TF-specific epigenomic motifs. By an epigenomic motif we refer to

Figure 1. Modeling the epigenome and the genome as a physical system. (A) The states of the system and their probabilities. As an
example, a hypothetical genomic sequence is occupied by two epigenomic modifications (orange and gray shades), which partially overlap. The
sequence contains three TFBSs for two TFs (A and B). The two TFBSs for A (red boxes) are each occupied by one epigenomic modification, and the
TFBS for B (green box) is located in the overlapping region of the two modifications. The first TFBS for A (red box on the left) and the TFBS for B are
close enough for their bound TFs to interact (arrows in States 5 and 8). Because each of the three TFBSs can reside in either the bound or the
unbound state, the whole sequence can reside in a total of 23 physical states (listed in the State column). c: a physical state; W(c): Boltzmann weight
for state c, which is proportional to the probability that the system visits this state; qepi: the binding affinity between a transcription factor and the
sequence under the epigenomic context. (B) The workflow for inferring epigenetic marks that influence the binding of a TF. Central to this workflow
is our epigenome-sensitive TF-DNA binding model (the Epigenetic biophysical model). Inputs to this model are TF binding data (ChIP-seq), PSWM of
the TF and epigenomic modification data (ChIP-seq, 5-hmC-seq, MeDIP-seq, and MRE-seq). Outputs of the model include the influences of
epigenomic marks to the binding of each transcription factor and the cooperativities between TFBSs.
doi:10.1371/journal.pcbi.1003367.g001

Modeling TF-Epigenome-Genome Interactions
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a specific combination of epigenetic modifications that is

characteristic to the in vivo binding sites of a TF. To test this

hypothesis, we estimated the association of every epigenetic

modification and the binding of each TF, i.e. vA
k in Equation

(5). For each TF, we compiled the influences of epigenetic

modifications as a column vector (Figure 2B). These influences are

not identical across TFs (columns of Figure 2B). This suggests that

analogous to DNA motifs, in vivo TF-DNA binding also have

epigenomic motifs. A PSWM is used to describe DNA motifs [41].

We propose to use the vector of model-learned influences of the K

epigenetic marks {vA
1 , …, vA

k } to describe TF-specific epigenomic

motifs, where A denotes the TF of our interest and K represents

the total number of epigenetic marks. The epigenomic motifs can

be used in combination with PSWMs to approximate the binding

preferences of transcription factors in vivo.

Epigenomic motif improves predictions of TF binding
intensities

We hypothesized that the predictive power of TF binding

intensities should be increased by incorporating the information of

epigenomic motifs. In other words, if epigenomic motifs exist, they

should help to better predict TF binding intensities than using

DNA sequences alone. Three computational experiments were

done to test this hypothesis. We chose the Nanog TF for these

experiments, mostly because Nanog is an essential TF in ES cells

and Nanog’s DNA recognition motif is not well understood. In the

first experiment, we removed the epigenomic data and fed our

model with genomic sequences only. Without epigenomic data,

our model degenerates into the STAP model [28]. STAP uses the

sequences (500 bp) and the TF-specific PSWM to predict TF

binding affinities, taking into account all possible interactions

among strong and weak TFBSs. To quantify the model’s

predictive power, we used the Pearson correlation between the

ChIP-seq signals (as observed binding intensities) and the model-

predicted binding intensities. Pearson correlations were 0.211 and

0.212 in the training and the testing datasets, respectively,

providing a baseline predictive power (Control-1 in red,

Figure 3). We then applied the model to test each epigenomic

modification. H3K4me1, H3K27ac and H3K4me3 largely

increased the model’s predictive power of Nanog binding

intensities from the baseline (red bars, Figure 3). These three

epigenomic marks were thus inferred as interacting with Nanog.

To test the robustness of model inference, we changed the metric

for quantifying prediction power into Spearman’s rank correlation

(Figure S1) and varied window sizes (Figure S2). Neither of these

changes affected the inferred interacting epigenomic marks.

In the second experiment, we randomly shuffled the genomic

positions of the observed epigenetic modification intensities,

generating 200 permutated datasets. Feeding the permutated

datasets to the model, we obtained a background distribution of

predictive power (Control-2 in red, Figure 3). Using this

background distribution, we identified three epigenetic modifica-

tions with which the model can significantly better predict TF

binding intensities (red bars with * in Figure 3, permutation p-

value = 0). These three epigenetic modifications were identified as

interacting with Nanog. This permutation experiment used the

same number of model parameters and the same amount of data

(PSWM, sequence, and epigenetic data) as the experiment using

the original data. It rules out the possibility that the increased

predictive power was due to increased model complexities.

TF-specific epigenomic motif is cell-type specific
As the 3rd control experiment, we replaced the epigenetic

modifications in mES cells with the epigenetic modifications of

mouse adipose cells [42] and kept the other data intact. None of

the four epigenetic modifications in mouse adipose cells signifi-

cantly increased the predictive power of Nanog binding in mES

cells (green bars vs. Control-1 and Control-2 in red, Figure 3),

suggesting our learned TFBS-epigenomic interactions were cell-

type specific.

Figure 2. Transcription factor-specific epigenomic codes. (A) An interaction network between TFs (orange nodes) and epigenetic
modifications (blue nodes) in mES cells (p-value cutoff = 0.05). The interactions include positive (red edges) and negative correlations (green edges) of
TF binding and epigenetic marks. This network suggests that each TF has its specific epigenetic marks for interaction. (B) TF-specific epigenomic
motifs. The influences of every epigenetic mark to the binding of a TF (vA

k in Equation (5)) are summarized as a column vector. In analogy to matrix
presentation of DNA recognition motifs, we propose to use a column vector to represent the epigenomic motif of a TF. Each column represents an

epigenomic motif {vA
1 , …, vA

k }, and the first column is {vcMyc
HeK4me1 , …, v

cMyc
5{hmc}.

doi:10.1371/journal.pcbi.1003367.g002

Modeling TF-Epigenome-Genome Interactions
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Epigenome alone is less predictive of TF binding than
epigenome and genome combined

We asked to what extent the epigenome can predict TF binding

without using the genomic sequences. Two control datasets were

generated. First, each epigenomic mark was fed to our model

without sequence data (Si becomes invariant to i in Equation (4),

solid red bars, Figure S3). The enhancer and open chromatin

marks H3K4me1 and H3K27ac were most strongly predictive of

Nanog binding, followed by the promoter mark H3K4me3. These

data are consistent with the idea that open chromatin and

hypersensitivity sites are predictive of transcription factor binding

regions [18]. Interestingly, H2A.Z is the fourth epigenomic mark

that is predictive of Nanog binding. The regulatory function of

H2A.Z in mammalian cells remains controversial. While H2A.Z is

generally thought as an active mark of transcription, it is negatively

correlated with gene expression in a mES cell differentiation

process [43]. The positive association of H2A.Z with Nanog

binding suggests that H2A.Z may facilitate Nanog binding in

undifferentiated mES cells. Second, we collected all (214) PSWMs

from the JASPAR database as background motifs [44]. These

background PSWMs were fed to the model with each epigenomic

mark. The mean and standard deviation of the model predicted

binding intensities from these background PSWMs were derived

(hollow red bars and error bars, Figure S3). The predictive powers

of these control datasets were compared to the predictive powers

using both epigenomic and PSWM information (blue bars, Figure

S3). The in vivo Nanog motif combined with epigenomic data (solid

blue bars) increased the accuracy of predicted Nanog binding

affinities than using epigenomic data alone (red bars). More than

20% increases of predictive power were observed using Nanog

motif and H3K4me1 or H3K27ac than using H3K4me1 or

H3K27ac alone. Even larger increases were found in comparing in

vivo Nanog motif (solid blue bars) with background PSWMs

(hollow red bars). The latter comparison used models with the

same number of model parameters. It rules out the possibility that

the increased predictive power was due to increased model

complexities.

In vitro derived TF-DNA binding motifs do not interact
with epigenomic motif

The TF-DNA binding motifs derived from the enriched

sequence patterns using in vitro binding assays do not always agree

with the enriched motifs from in vivo binding assays [45].

Depending on the TFs, the differences in motifs derived from in

vitro and in vivo experiments can be small [46] or large [28]. The

causes of such differences are unknown. We hypothesized that

some epigenomic modifications can synergize with DNA to

produce a somewhat different binding preference of a TF than

Figure 3. Epigenomic marks improve model predictions of Nanog binding. Model predicted binding intensities are correlated to ChIP-seq
reported binding intensities (y axis: Pearson correlation). The model predictions are based on sequence data alone (Control-1), sequence data plus
randomized epigenomic data (Control-2), or sequence data plus one epigenomic mark (other columns). Results on both training data (shaded bars)
and testing data (hollow bars) are plotted. Epigenomic marks that significantly improve the predictions of Nanog binding (marked by *) are identified
by using the standard deviations of the control experiments (error bars). Combined with the Nanog motif (PSWM) derived from in vivo experiments
(red bars), several epigenomic marks can increase the accuracy of predicted binding intensities, achieving Pearson Correlations above 0.47 (H3K4me3
and H3K27ac, red bars). However, combined with the Nanog motif derived from in vitro experiments (blue bars), no epigenetic mark except H3K27ac
can improve the predictions of ChIP-seq measurements. Even for H3K27ac, the Pearson Correlation obtained from the in vitro motif (0.29) is much
smaller than the Pearson correlation obtained from the in vivo motif (0.47). None of the four measured epigenomic marks in adipose cells help to
better predict Nanog binding in stem cells (green bars), suggesting that cell-type-specific epigenetic data are required for increasing the prediction
accuracy.
doi:10.1371/journal.pcbi.1003367.g003

Modeling TF-Epigenome-Genome Interactions
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the binding preference of this TF to naked DNA. To test this

hypothesis, we chose to further analyze the Nanog motifs derived

in vitro [47] and in vivo [28]. We used the in vitro Nanog motif

together with all epigenomic data to learn and predict in vivo

binding affinities (blue bars, Figure 3) and compared to the results

from the in vivo motif (red bars, Figure 3). Without considering

epigenomic data, the in vitro and in vivo motifs had similar

predictive powers of ChIP-seq signals (Control-1 in red vs.

Figure 4. Epigenomic regulation of transcriptional noise. Transcriptional noise is introduced when the binding probability (y axis) between a
TF and its target TFBS falls into a particular range (horizontal yellow band). There is nearly no noise above or below this range, because almost all cells
would uniformly have this target TFBS in the bound or the unbound state, respectively. The binding probabilities are constrained by the realistic
range (vertical blue band) of TF concentrations in eukaryotic cells (x axis). (A) In the presence of a strong binding site (S), the binding probabilities are
shown as functions of the TF concentration and the presence of epigenomic marks (Red curve: activation mark, green: no epigenomic marks, blue:
repression mark). Activation marks suppress transcriptional noise by reducing the range of feasible binding probabilities, whereas repression marks
enhance transcriptional noise. (B) In the presence of a weak binding site (W), both activation (red) and repression (blue) marks tend to suppress
transcriptional noise.
doi:10.1371/journal.pcbi.1003367.g004

Modeling TF-Epigenome-Genome Interactions
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Control-1 in blue, Figure 3). However, except for H3K27ac,

adding epigenetic modifications to the in vitro motif did not

increase the predictive power of Nanog binding. Even for

H3K27ac, its contribution to predicting Nanog binding was much

larger when combined with the in vivo motif than when combined

with the in vitro motif (red and blue H3K27ac bars, Figure 3). This

means the model failed to identify clear TFBS-epigenomic

interactions with the in vitro Nanog motif, suggesting that the

epigenomic motif is specific to the in vivo Nanog DNA binding

motif. In several cases, including H3K4me3, H3K27me3,

H3K36me3, and 5-mC (both MRE and MeDIP), feeding the

model with epigenetic data together with the in vitro motif even

slightly decreased its predictive power as compared to not using

epigenetic data at all (blue bars vs. Control-1 in blue, Figure 3).

This is because the model allowing for TFBS-epigenomic

interactions is more complex than that without epigenetic data.

However, there is no extra information added due to the lack of

interaction between the in vitro motif and the epigenetic marks.

These data explain the difference between the TF-DNA binding

motifs derived in vivo and in vitro: although the Nanog sequence

motifs derived in vitro and in vivo have similar binding affinities to

the Nanog protein in vitro [28], the in vivo motif predicted Nanog

binding events with a higher sensitivity given the specificity (Figure

S4). This suggests that only the in vivo motif may interact with

epigenetic modifications. The in vivo binding intensities are

determined by TFBS-epigenomic interactions and cannot be

faithfully reproduced with the sequence motif (either in vitro or in

vivo) alone.

Epigenomic regulation of transcriptional noise
We asked how epigenomic modifications may theoretically

modulate transcriptional noise [48] and the cooperativity of

TFBSs. To address this question, we used constraint-based

simulation studies [49], with the constraints being the physical

and empirical limits of TF concentrations and epigenomic states in

eukaryotic cells (Text S1).

Transcriptional noise is the variability of gene expression among

cells in an isogenic population [48,50,51]. We asked whether the

epigenome can modulate the level of transcriptional noise. We

studied simple transcription systems with one TFBS, by examining

the change in binding probability as a function of the concentra-

tion of the TF and the presence of epigenomic marks. Following

the main assumption of thermodynamic models of gene expres-

sion, every cell in an isogenic cell population has the same

probability of producing a transcript, denoted as p (p~c|PA(O),
where PA(O) is defined in Equation (1) and c is a constant). The

expected number of transcripts is proportional to p, therefore the

variability of p reflects transcriptional noise [23].

Without any epigenomic marks, the binding probability

increased as the concentration of the TF increased, forming a

sigmoid curve (green curve, Figure 4A–B). In a transcriptional

system with one strong TFBS, the binding probability should

reach the half of the maximum binding probability when the TF

concentration passes a low threshold [52]. With a weak TFBS, the

half of maximum binding probability should be reached at a high

threshold of the TF concentration. Because the range of TF

concentrations is generally between 10,000 and 300,000 molecules

per cell in fruit fly, mouse, and human cells (reviewed by [29]), in

our simulation of a strong TFBS, the half of the maximum binding

probability was reached when the TF concentration reached

10,000 molecules per cell (green curve, Figure 4A). In the other

simulated system containing a weak TFBS, the half of the

maximum binding was reached at the TF concentration of

300,000 molecules per cell (green curve, Figure 4B).

In the presence of an activation mark, the sigmoid curve of

binding probabilities shifted to the left (red curve, Figure 4A–B)

with no overlap to the original curve. Similarly, in the presence of

a repression mark, the curve shifted to the right (blue curve,

Figure 4A–B). The dynamic range of TF binding probabilities,

constrained by the range of TF concentrations, is a major

indicator of transcriptional noise [23]. These constraint-based

simulations provided a theoretical prediction that in the presence

of a strong binding site, an activation mark decreases the dynamic

range of binding probabilities and thus suppresses transcriptional

noise, whereas a repression mark enhances transcriptional noise

(Figure 4A). However, in a transcriptional system with a single

weak binding site, both activation and repression marks tend to

suppress transcriptional noise (Figure 4B). The key assumption to

these predictions is that the half of total binding probability of a

weak (strong) TFBS is reached at about the upper (lower) bound of

the available concentrations of the TF.

The epigenome may boost the cooperativity of weak
binding sites

We asked whether the epigenome could modulate the

cooperativity of adjacent TFBSs. To obtain a baseline (no

cooperativity) for this analysis, in a simulation study, we fixed

the TF concentration ( [A] in Equation (4)) and compared the

binding affinities between a strong TFBS and a weak TFBS in

various epigenomic conditions. As expected, in the presence of an

activation mark, the binding affinity increases as the intensity of

this activation modification increases (solid curves, Figure 5A), and

the reverse is true in the presence of a repression mark (dashed

curves, Figure 5A). Moreover, an increase of epigenomic intensity

produces a smaller difference in the binding affinities of the two

TFBSs (solid and dashed curves become closer as epigenomic

intensity increases, Figure 5A). However, the binding affinity of a

weak TFBS cannot surpass the affinity of a strong TFBS in any

levels of an epigenomic modification (neither the solid curves nor

the dashed curves crossed, Figure 5A). In other words, when there

is no cooperativity between TFBSs, under the same epigenomic

condition, the order of binding strengths among different genomic

sequences is fixed. Because TF concentration ([A]) is a multipli-

cative factor that is separate from the rest in the calculation of the

binding affinity (q
epi
i in Equation (4)), changing TF concentration

would not change the contributions from other factors to the

binding affinity (q
epi
i ). Thus, the analyses above hold for any TF

concentrations.

Next, we examined the cooperativity of adjacent TFBSs with

simulations. With nearly no epigenomic modifications, a simulated

genomic sequence containing two weak TFBSs exhibited a

binding affinity larger than that of another sequence containing

one weak TFBS (dashed and solid blue curves at epigenomic

intensity = 1022, Figure 5B), but smaller than that of a medium-

strength TFBS and a strong TFBS (green and red curves at

epigenomic intensity = 1022, Figure 5B). As the intensity of an

activation mark increased, the binding affinity of the two-weak-

TFBS sequence first surpassed that of the medium-strength TFBS

and later superseded the strong TFBS to become the sequence

with the largest binding strength (Figure 5B). This suggests that in

the presence of the epigenome, the binding affinities of different

genomic sequences may not always be monotonic. Considering

that without cooperativity, the binding affinities of different

sequences are strictly monotonic (Figure 5A), these data suggest

that epigenomic modifications are not only capable of increasing

the binding affinity of each of the two weak TFBSs, but also can

increase the cooperativity between the two TFBSs.

Modeling TF-Epigenome-Genome Interactions

PLOS Computational Biology | www.ploscompbiol.org 7 December 2013 | Volume 9 | Issue 12 | e1003367



Figure 5. Epigenomic boost of cooperativity of weak binding sites. (A) The relationship between binding probability and epigenetic
intensity. Given the transcription factor concentration, the binding probability (y axis) is shown as functions of the intensities (Epigenetic intensity, x
axis) and types (solid: activation, dashed: repression) of epigenomic modifications and the strengths of the binding sites (red: strong, blue: weak). For
a single binding site, the binding probability is monotonic to the strength of the binding site for all intensities of epigenomic modifications (red
curves are always above blue curves). (B) Epigenomic boost of binding-site cooperativity. In the presence of an activation mark, the binding
probabilities are monotonic for single strong (red), medium-strength (green), and weak (blue) binding sites. A pair of two weak binding sites has a
smaller binding probability in the absence of the activation mark (dotted blue line at Epigenetic intensity = 1022). While the intensity of the activation
mark increases, the binding probability of this pair of weak sites gradually surpasses that of the medium-strength site and the strong binding site,
breaking the monotonicity of single binding sites. (C) Activation mark H3K4me3 has larger average intensities in weak-TFBS regions (blue) than in
strong-TFBS-containing regions (red). SD: standard deviation. (D) The difference of model-predicted binding probabilities with and without the
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Finally, we examined whether the binding affinity of the two

weak TFBSs could surpass that of the medium-strength TFBS

within the range of typical intensities of epigenomic modifications

measured by ChIP-seq experiments. The dashed curve and the

green curve crossed at the epigenomic intensity of 100.12 ( = 1.32),

corresponding to the enrichment ratio of e1.32 ( = 3.74) between

the number of sequence reads in the input and the control

samples. Because the enrichment ratio of these two numbers is

typically between 1 and 40 [53], the change of order of the binding

affinities of these two simulated genomic sequences can happen in

typical epigenomic conditions.

Epigenomic boost of weak TFBSs is potentially a
regulatory mechanism

With the theoretical understanding that epigenomic modifica-

tions can boost the cooperativity of weak TFBSs, we hypothesized

that this is a general mechanism of quantitative regulation of gene

expression. We explored this hypothesis with tri-methylation of

Histone 3 Lysine 4 (H3K4me3) and the transcription factor Oct4,

which is essential for maintaining undifferentiation [54,55] of mES

cells (Text S1). Using Oct4 PSWM, we scanned all Oct4 binding

regions, which were defined by the peaks in ChIP-seq data in mES

cells [33]. We categorized the Oct4 TFBSs into two sets, strong

TFBSs (2055 regions, Text S1) and weak TFBSs (1921 regions).

The average H3K4me3 intensity on weak-TFBSs was larger than

150% of that on strong-TFBSs (p-value,10220, Figure 5C). The

largest difference of H3K4me3 intensities between the two sets

appeared at the center of Oct4 binding regions (Position = 0,

Figure 5C). This suggests that on Oct4 binding regions throughout

the genome, H3K4me3 is more concentrated on those containing

only weak sequence motifs. We ruled out promoters as a

confounding factor to the association of strong H3K4me3 to

weak TFBSs, because weak TFBSs do not preferentially locate in

promoters (Chi-square test p-value = 0.907, Table S3, Text S1).

We then asked if these weak-TFBS-only sequences could obtain

a larger boost of binding affinity than the other sequences. Our

simulation analysis suggested this was the case in theory

(Figure 5B). We now test it with the measured epigenomic and

TF binding intensities in mES cells. We classified the ChIP-seq

peaks into three sets, those only containing strong TFBSs, those

containing both strong and weak TFBSs (mixed), and those only

containing weak TFBSs. We computed the change in Oct4

binding affinities on these sequence sets from not using H3K4me3

ChIP-seq data to using H3K4me3 ChIP-seq data. The weak-

TFBS-only set exhibited a larger increase in binding affinities than

the mixed set, which in turn had a larger increase than the strong-

TFBS-only set (Figures 5D, S5). These data suggest that the

endogenous levels of H3K4me3 in mES cells are sufficient to boost

the binding affinity of adjacent weak TFBSs.

Finally, had epigenomic boost of weak TFBSs happened in vivo,

the model would be able to better reproduce in vivo binding

intensities on weak TFBSs. To test this idea, we used DNA

sequence and H3K4me3 to predict Oct4 binding regions and

compared with ChIP-seq data. We quantified the improvements of

the prediction accuracy between with and without considering

H3K4me3 data. Applying the model with a stringent threshold on

the predicted binding probability, the three sequence groups that

harbor strong, mixed, and weak sites showed similar improve-

ments on prediction accuracy (strong-cutoff, Figure 5E). This

indicates H3K4me3 helps to improve prediction, but does not

specifically show it helps prediction on weak sites. Under two less

stringent thresholds of the predicted binding probabilities, the

model gained larger increases of prediction accuracy on weak sites

and on mixed sites than on strong sites (Medium-cutoff, Weak-

cutoff, Figure 5E). These results are consistent with the idea that

the model was able to predict the binding intensities more

accurately by capturing the epigenomic boost of weak TFBSs.

Besides H3K4me3 and Oct4, several other epigenomic marks

showed systematically stronger intensities near the weak TFBSs

than near the strong TFBSs of other TFs (Table S4). Thus,

epigenomic boost of the binding affinity of adjacent weak TFBSs is

not only a theoretical possibility, but also can be a wide-spread

regulatory mechanism.

H3K9ac and H3K4me2 may dampen the variation of TF
binding across human individuals

Genomic variations including single nucleotide polymorphisms

(SNPs) can result in phenotypic variation. Still unknown is how

epigenomes modulate the correlation of genotypes and phenotypes

among humans. We chose TF binding intensities as a molecular

phenotype to study this question.

To study how epigenetic variation can interact with genomic

variation, we did three between-individual comparisons across

different ethnic groups. We first compared a European (NIGMS

catalog ID: GM12878) and a Nigerian (GM18505). We catego-

rized NFkB binding regions with the TFBSs containing SNPs into

two sets (all analyses were done with homozygous SNPs, Text S1).

The first set had differences in NFkB binding intensities between

these two individuals. This set was called Different Sequence

Different Binding (DSDB) (Figure S6A). The second SNP-

containing set had similar NFkB binding levels in the two

individuals, and were termed the Different Sequence No

Difference in Binding (DSNDB) set. The first set (DSDB) was

consistent with the theory that nucleotide changes in the TFBS

should change the binding affinity of this TFBS; however, the

second set (DSNDB) appeared to be inconsistent with such a

theory. We hypothesized that the epigenetic marks on DSNDB

stabilized the binding affinities of these binding sites. In other

words, the epigenetic modifications on the TFBSs buffered

sequence changes (SNPs) from changing binding intensities.

Theoretically, the difference in binding affinities between two

TFBSs is the largest without any epigenetic marks (y-intercept,

Figure 5A). When epigenetic modification intensities increase, the

binding difference in the two TFBSs decreases (from left to right,

Figure 5A). This is true for any two TFBSs of the same TF. Thus,

we have derived a theoretical mechanism for the epigenome to

attenuate the TF binding differences on SNP-containing TFBSs in

two individuals.

epigenome (y axis) is larger in weak-TFBS-only regions (right column) than in the regions containing both strong and weak sites (mixed, middle
column), which in turn is larger than in the strong-TFBS-only regions (left column). (E) H3K4me3 enables larger improvements of prediction accuracy
on regions containing weak TFBSs. The predictions of binding for these regions were determined by applying three cutoffs on the predicted binding
probability calculated from the model (Weak-cutoff (0.3), Medium-cutoff (0.35), Strong-cutoff (0.4)). The improvement of prediction accuracy was
quantified by comparing the predictions by sequence and H3K4me3 to the predictions by sequence only (Y-axis). The improvement was defined as
the difference of the proportions of correctly predicted binding regions between using and not using H3K4me3 data. Red, purple, and green bars
represent the sequences that contain strong, weak, and mixed TFBSs as determined by PSWM matching scores. Error bars: standard deviations. The
number of each type of sequences is in parenthesis.
doi:10.1371/journal.pcbi.1003367.g005
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We proceeded to examine whether the theoretical mechanism is

relevant for transcription factor binding in humans. We first used

our model to learn epigenetic marks that help to explain the

binding intensities in all SNP-containing TFBSs (Table S5). Four

epigenetic marks were identified by the model, which were

H3K4me1/2, H3K9ac, and H3K27ac (Figure S7). Among them,

H3K4me2 and H3K9ac were identified as marks that better

explain the binding intensities in DSNDB sites. If H3K4me2 and

H3K9ac were used to attenuate binding differences between two

people, there should be higher intensities of H3K4me2 and

H3K9ac in DSNDB sites than in DSDB sites. Indeed, the

intensities of H3K4me2 and H3K9ac were much higher in

DSNDB sites than in DSDB sites (p-values,10220, Figure 6). To

assess whether these results were specific to the chosen individuals

in our analysis, we did two more comparisons. The second

comparison was between a European (GM12878) and a Nigerian

(GM19099), and the third comparison was between a European

descendant (GM12878) and a Japanese (GM18951). Each

comparison identified its own DSDB and DSNDB sites. However,

all comparisons found significantly higher H3K4me2 and H3K9ac

intensities in DSNDB sites than in DSDB sites (Figure S8). The

NFkB binding intensities in DSDB and DSNDB of GM12878 had

similar distributions, and therefore are unlikely to contribute to

explain the differences of H3K4me2 and H3K9ac intensities in

GM12878 (Figure S6B–C). As a control, adding H3K36me3 data

to the model did not increase the correlation of model predicted

binding intensities to NFkB ChIP-seq data (Figure S7). Accord-

ingly, the difference in H3K36me3 levels between DSDB and

DSNDB sets was not clear and not consistent in these comparisons

(Figure S8). Finally, we assessed whether inter-individual differ-

ences of PSWM matching scores were significantly different in

DSDB and DSNDB regions. No significant differences were found

in two pairs of individuals (Figure S9, S10), ruling out the

possibility that sequence-determined differences in binding ener-

gies were more pronounced in either of the two sequence sets.

These data suggested a mechanistic explanation to the SNPs in

TFBSs that do not produce between-individual differences in TF

binding: epigenetic modifications on these TFBSs attenuated the

binding differences. We note that not all factors relevant to gene

regulation have been considered in this analysis. Other factors

including DNase sensitivity and the binding of other TFs could

play a role in buffering polymorphism in NFkB binding sites and

therefore potential provide alternative explanations.

Discussion

The overarching tenet of this work is obtaining mechanistic

insights from high-throughput genomic data. Towards this goal,

we forfeited commonly used ‘‘statistical enrichment’’ methods that

look for large overlaps of two or more genomic features. Instead,

we developed a biophysical model for the three-way interactions

among the genomic sequence, the epigenetic modifications, and

TF binding. The model is specified as a physical system, and every

model parameter has a biophysical interpretation. This allows the

analytical results obtained from this model to have mechanistic

interpretations.

Several epigenetic modifications were previously assumed to

facilitate or hinder TF binding in a ubiquitous manner. For

example, mono-, di-, and tri- methylations on histone lysine 4

(H3K4me1/2/3) were thought to facilitate the binding of any TF.

Our data suggested that some TFs tend to preferentially recognize

TF-specific epigenomic codes. This implies that rather than

ubiquitously synergize or antagonizing TF-DNA binding, some

epigenetic marks can specifically interact with some TFs. This is

conceivable because the maintenance of epigenetic marks often

require histone or DNA modification enzymes to be brought to a

genomic sequence by specific transcription factors [56,57]. In

addition, epigenetic modifications are strongly associated with the

three-dimensional (3D) architectures of the local chromatin [58]. It

is also conceivable that some TFs would have different binding

preferences to the same DNA sequence but different 3D

chromatin conformations. We showed that epigenetic modifica-

tions can boost the cooperativity of adjacent weak TFBSs. Thus,

there is a functional advantage of coding a cis-regulatory sequence

with a cluster of weak TFBSs rather than one strong binding site.

The advantage is that the binding affinity of a cluster of weak

TFBSs has a larger tunable range than a strong TFBS, in the

presence of the epigenome. Thus, clusters of weak TFBSs offer the

epigenome larger ‘controllability’. This may explain why weak

TFBSs tend to cluster in the mammalian genomes [59].

Figure 6. H3K9ac and H3K4me2 dampen personal variation of NFkB binding. The average intensities of H3K9ac and H3K4me2 are higher in
DSNDB regions (blue) than in DSDB regions (red). The centers of all NFkB ChIP-seq peaks are superimposed to ‘Position 0’ on the x axis. DSNDB:
different sequence no difference in binding. DSDB: different sequence different binding. SD: standard deviation.
doi:10.1371/journal.pcbi.1003367.g006
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Consistently, we estimated that there were 2.3–4.6 weak Oct4 sites

per ChIP-seq derived Oct4 binding region. Indeed, H3K4me3

was strongly enriched in Oct4 binding regions that only contained

weak TFBSs. Moreover, H3K4me3 generated larger enhance-

ments of binding affinities in the weak-TFBS-only binding regions

than in other Oct4 binding regions. Thus, the ‘epigenomic boost’

of TFBS cooperativity can be a functional mechanism in

mammalian cells. This provides an alternative view on the

evolutionary origin of TFBS clusters, in which the presence of

the epigenome was previously ignored [60].

A central question in personalized medicine is how genomic

variation generates phenotypic variation. This is a challenging

question because genomic variation was only partially correlated

with TF-binding variation [61]. In particular, a set of SNPs in

TFBSs does not introduce differences to TF binding as predicted

by available TF-DNA binding models. Incorporating the epigen-

ome into the TF-DNA binding model, we can now appreciate that

some epigenetic marks can buffer genomic changes from

generating changes in TF binding intensities. A case in point is

that H3K4me2 and H3K9ac attenuate the personal variation of

NFkB binding on SNP-containing binding sites in human

lymphocytes. These results highlight the importance of considering

the epigenome when analyzing the functional consequences of

genomic variations.

A limitation of the thermodynamic equilibrium model is that it

does not make causal inferences. It does not differentiate whether

an epigenomic motif promotes the binding of a TF, or the binding

of a TF causes the buildup of an epigenomic motif. It is

conceivable that TF binding and epigenomic motif can reinforce

each other, in a sequence-dependent or sequence-independent

manner. Recent cross-species comparisons reported larger evolu-

tionary changes of TF binding regions [62] than epigenetically

modified regions [43]. If we assume during evolution we should

see larger changes in the effects than in the causes, then these data

are compatible to the hypothesis that epigenetic factors could

modulate the binding of specific TFs. Moreover, the model-

identified epigenomic mark that have strong interaction with Oct4

binding is H3K4me3, whose intensity is much larger in the Oct4

binding regions that contain only weak TFBSs than in the binding

regions that contain strong TFBSs (Figure 5C). If Oct4 binding

had been the cause of H3K4 tri-methylation, we would expect

H3K4me3 to be stronger on the regions containing strong Oct4

sites. Thus, at least in the case of Oct4 and H3K4me3 interaction,

the data disfavor TF binding as the cause of this interaction.

Methods

Model assumptions
First, a DNA sequence is associated with a physical state, which

is defined by the combination of transcription factors bound to the

sequence. When we consider one piece of genomic sequence a

time, the physical state of a sequence can be regarded as the

physical state of a cell. Second, TF-DNA binding has reached

thermodynamic equilibrium, which implies the proportion of cells

at each physical state does not change over time. Third, the

binding affinity between a TF to any genomic location is a joint

effect of multiple TFBSs in the ‘‘neighborhood’’ of this genomic

location. Each TFBS has its own binding strength, and they may

cooperate. Finally, the intensity of an epigenomic modification in

this genomic neighborhood can influence TF binding.

Model formulation
We model a genomic sequence (S) in a fixed epigenomic context

as a physical system. Every TFBS in S can exist in one of the two

physical states, occupied or not occupied by a TF. Thus, a

sequence containing n TFBSs can exist in any of the total of 2n

states (Figure 1A shows the 23 states for a sequence containing 3

TFBSs). We use c to denote a state, and let C to denote all states.

There is certain probability associated with every state of the

system, denoted as P(c). Such a probabilistic distribution is called a

Boltzmann distribution [21].

From the perspective of a particular TF (named A), the event

that A is bound to sequence S is equivalent to the union of some of

states of S. In the example in Figure 1, the event ‘A is bound’ is the

union of States 2, 4, 5, 6, 7, and 8. We call these states the occupied

states (O). Obviously, C~Oz�OO. The probability that A is bound

to S is PA(O)~

P
c[O P(c)P
c[C P(c)

. We introduce the Boltzmann weight,

W (c), for every state c. W (c) is proportional to P(c) in the way

that P(c)~W (c)=
P

c[C W (c). Thus, the probability that A is

bound to S is

PA(O)~

P
c[O W (c)P
c[C W (c)

: ð1Þ

We model the Boltzmann weight W (c) as follows. Two factors

contribute to W (c). The first factor is the binding affinity between

the TF (A) and every TFBS, which is jointly determined by the

TFBS and the epigenomic context. We denote this factor as qepi.

The second factor is the cooperativity between TFBSs, denoted as

v. We formulate these thoughts as

W (c)~qepi:v~Pn
i~1 (q

epi
i )oi :Pivj v(i,j)oioj , ð2Þ

where i and j are the indices of the TFBSs on S; and oi is the

indicator of whether the ith TFBS is occupied (oi~1, if occupied;

oi~0, otherwise). This formulation implies that the state with no

TFBSs bound (oi~0 for every i) has a Boltzmann weight of 1

(State 1 in Figure 1A). Suppose the ith and the jth TFBSs are

bound by TFs A and B, respectively; v(i,j) is modeled as

v(i,j)~vA,B

w1, cooperative binding

~1, independent binding

v1, competitive binding

8><
>: : ð3Þ

We then model the binding affinity (q
epi
i ) between TF A and the

ith TFBS (denoted by Si). Three factors can contribute: the TF

concentration ([A]), the preference of the TF to bind onto the

binding site sequence Si (denoted as K(Si)), and the epigenomic

influence (vA
epi(Si)). These are modeled as

q
epi
i ~½A�:K(Si):v

A
epi(Si)~½A�:K(Si):Pk vA

k (Si), ð4Þ

where k is an index for each type of epigenomic modification. Here

K(Si) is the association constant of the binding site Si. We note that

K(Si)~K(Scon)e{DE(Si ), where Scon is the consensus binding site

and DE(Si) is the extra energy needed to bind onto a non-

consensus sequence, which is correlated with the usual matching

score between a TFBS (Si) and the PSWM of the TF. vA
k (Si)

represents the influence of the kth epigenomic modification on the

binding intensity on Si.

We model the TFBS-specific epigenomic influence vA
k (Si) as

follows. Let vA
k be the overall effect of the kth epigenomic
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modification to transcription factor A,

vA
k

w1, epigenomic modification k promotes binding

~1, no influence

v1, epigenomic modification k suppresses binding

8><
>: ð5Þ

The TFBS-specific effect vA
k (Si) is a joint effect of the overall

effect (vA
k (S)) and the intensity of the kth epigenomic modification

on Si (denoted as Ik(Si)). Taking the ChIP-seq data for a histone

modification for example, Ik(Si) is measured by the ratio of the

number of sequencing reads between the experimental sample and

the control sample. This study used the number of extended

sequencing reads (Text S1) falling on Si. We model the joint effect as

vA
k (Si)~

(vA
k )Ik (Si ), if Ik(Si)§s

1, otherwise

(
, ð6Þ

where s is a threshold determining whether the measured intensity

is beyond noise level. We note that vA
k (Si)~1 implies either there is

no detectable kth modification or the kth modification has no

influence to the binding. Figure 1A illustrates how this model works

for a sequence with three TFBSs and two partially overlapping

epigenomic modifications. We call this model an epigenome-

sensitive TF-DNA binding model.

Making inferences with the model
This model has two major applications. One is to predict the

binding intensities of a TF throughout the genome in any cell type.

The other application is to learn genomic-location-specific

epigenomic influences on TF binding, i.e. vA
k (Si). A third and

relatively minor application is to learn the cooperativity between

TFBSs in different epigenomic contexts. The required inputs are

the genome sequence, the PSWM of the TF, and the epigenomic

data. Epigenomic data are often generated by ChIP-seq, MeDIP-

seq, and other sequencing based experiments. Standard analysis

packages, including sequence mapping [63] and mapped reads

postprocessing [42] can process each dataset into a genome-wide

distribution of the intensity of an epigenomic modification. Our

model takes such a distribution as an input through Ik(Si), the

intensity of the kth epigenomic modification on Si.

Statistical learning with the model
The model has two sets of models parameters, which are the

cooperativity between TFBSs (vA,B) and the influence of each

epigenomic modification (vA
k ). To train these model parameters,

four inputs are required. These include the genome sequence, the

PSWM of the TF, the epigenomic data (ChIP-seq and other

forms), and the ChIP-seq data of the TF of interest. Let I(A) be the

genome-wide distribution of binding intensities of transcription

factor A. For example, if we segregate the human genome into 6

million 500 bp long windows, then I(A) is a vector of 6 million

elements. Each element represents the ChIP-seq measured binding

intensity in the corresponding window. Following previous

notations, we use PA(O) in equation (1) to denote the model

predicted binding probability of A in every window. We propose

to learn the model parameters by maximizing the following target

function

f (vA
k ,vA,B)~corr(PA(O),I(A)), ð7Þ

where corr(.) is the Pearson Correlation, and PA(O) is a function of

vA
k and vA,B.

Computational strategy
We implemented a maximization strategy to maximize f(vA

k ,

vA,B). The analytical form of P(A) can be explicitly expressed with

a dynamic programming algorithm [28]. We maximize it by the

Quasi-Newton Method (a.k.a. BFGS algorithm) provided in the

GNU Scientific Library [25,64]. We start with random initial

parameters and repeat it 500 times to avoid local minima. In

applications where the cooperativity among TFBSs is not of

interest, we propose to ignore the cooperativity term (set vA,B = 1)

and only maximize with respect to vA
k .

Identification of TF-specific epigenomic interactions
We identify an epigenomic modification k as associated with the

binding of TF A when vA
k &1 (positive) or vA

k %1 (negative). To

test for the null hypothesis that vA
k = 1, we shuffle the intensities of

epigenomic modification k on the genome to obtain 200 random

epigenomic profiles. We subsequently compute 200 vA
k values

from the shuffled data and use them as the empirical null

distribution. For each epigenomic modification k, we test vA
k = 1

using the empirical null distribution and reject the null hypothesis

using a multiple-hypothesis-adjusted p-value [65] (Figure 1B).

Supporting Information

Figure S1 Comparison of different metrics of predic-
tion power. Model predicted binding intensities are correlated to

ChIP-seq reported binding intensities (y axis). The model

predictions were based on sequence data alone (Control-1),

sequence data plus randomized epigenomic data (Control-2), or

sequence data plus one epigenomic mark (other columns). Results

on training data (shaded bars) and testing data (hollow bars) using

Spearman correlation (red bars) and Pearson correlation (blue

bars) are plotted. The model inferred influence of each epigenomic

mark to Nanog binding (vA~Nanog
k in Equation (5)) is given in the

brackets following each mark.

(EPS)

Figure S2 Comparison of window sizes on model
predictions. Model predicted binding intensities are correlated

to ChIP-seq reported binding intensities (y axis). The model

predictions were based on sequence data alone (Control-1),

sequence data plus randomized epigenomic data (Control-2), or

sequence data plus one epigenomic mark (other columns). Results

on training data (shaded bars) and testing data (hollow bars) with

the window sizes of 350 bp (red bars) and 500 bp (blue bars) are

plotted. The model inferred influence of each epigenomic mark to

Nanog binding (vA~Nanog
k in Equation (5)) is given in the brackets

following each mark.

(EPS)

Figure S3 Comparing model predictions with different
sequence motifs. Using the Nanog dataset, we compared model

predictions in four scenarios. In each scenario, the model

predictions were correlated to ChIP-seq measured Nanog binding

intensities (y axis). These scenarios are: 1, simple correlation

between epigenomic data and binding data without using the

model (solid pink bars); 2, using each epigenomic mark with all the

(214) PSWMs from the JASPAR database (hollow pink bars: the

mean of the 214 correlations, error bar: standard deviation of the

mean); 3, using each epigenomic modification with the in vivo
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Nanog motif (solid blue bars); 4, using each epigenomic

modification with the in vitro Nanog motif (hollow blue bars).

(EPS)

Figure S4 Differences of the predicted TF binding
regions from the in vivo and the in vitro Nanog motifs.
The in vivo and in vitro motifs with epigenetic data (Here

H3K4me1 as an example) were used to predict TF binding regions

(BRs). The prediction based on the model returning a binding

probability score within [0, 1], and the TF BRs were called by

applying a threshold on this probability score. The numbers of TF

BRs were called with a high threshold (A, B) and a low threshold

(C, D) in both training data (A, C) and testing data (B, D). The

numbers of true positive TF BRs (verified by ChIP-seq) are given

outside of the parentheses. The total numbers of predicted TF

BRs, including both true positives and true negatives are given

inside the parentheses.

(EPS)

Figure S5 Comparison of different cutoffs on calling
strong and weak binding sites. The difference of model-

predicted binding probabilities with and without the epigenome (y

axis) is larger in weak-TFBS-only regions (right column) than in

the regions containing both strong and weak sites (mixed, middle

column), which in turn is larger than in the strong-TFBS-only

regions (left column). The thresholds for calling strong sites and

weak sites are K(Scon) – 3.5 and K(Scon) – 7.0, respectively, where

K(Scon) is the consensus score. These thresholds are different from

those used in Figure 5D.

(EPS)

Figure S6 Variations of the strengths of NFkB binding
regions. (A) The inter-individual variation of the strengths of

NFkB binding regions are quantified by Difference Ratio ( DR, y

axis), which is defined as DR = |I(Si) - I(Sj)|/min( I(Si), I(Sj)), where

I(Si) and I(Sj) are the binding strengths of sequences Si and Sj in

individuals i and j measured by ChIP-seq experiments. The mean

(each bar) and standard error (error bars) of DRs in DSDB (left)

and DSNDB sequence sets (right) are shown. The distribution of

GM12878 NFkB binding in DSDB (left) and DSNDB (right)

sequence sets, where DSDB and DSNDB were identified from the

comparison of GM12878 and GM18505 (B) and from the

comparison of GM12878 and GM12892 (C). CEU: Northern

and western Europe. YRI: Nigeria. SE: standard error.

(EPS)

Figure S7 Interactions of NFkB and epigenomic marks.
The Pearson correlation between model-predicted and ChIP-seq

measured binding intensities (x axis) is used to identify the

epigenomic marks interacting with NFkB. The genomic sequence

and ChIP-seq data of GM12878 were used to fit the model. DSDB

and DSNDB sequences were identified from comparing sequence

and epigenomic data of GM12878 and GM18505. The results

from four-fold cross validations are shown. Shaded bars: training

data. Hollow bars: testing data. Length of each bar: the average

value from four-fold cross validations. A total of 200 randomized

epi- datasets were used as controls (Control). Four-fold cross

validations were performed on each randomized dataset. The

mean correlation from these four-fold cross validations of 200

random datasets is represented by the length of each Control bar.

Error bars: standard deviations of the mean. The epigenomic

marks that significantly increase the Pearson correlation from the

control experiments are identified (*, p-value,0.01).

(EPS)

Figure S8 H3K9ac and H3K4me2 are associated with
small variation of NFkB binding. Two other comparisons

(GM12878 vs. GM19099 and GM12878 vs. GM18951) confirm

that the average intensities of H3K9ac and H3K4me2 are higher

in DSNDB regions (blue) than in DSDB regions (red). As a control,

no reproducible differences between DSNDB and DSDB regions

are found for H3K36me3. The centers of all NFkB ChIP-seq

peaks are superimposed to ‘Position 0’ on the x axis. DSNDB:

different sequence no difference in binding. DSDB: different

sequence different binding. SD: standard deviation. CEU:

Northern and western Europe. YRI: Nigeria. JPT: Japan.

(EPS)

Figure S9 Variations of binding energies of the TFBSs
with SNPs. (A)The inter-individual variation of the TFBS

binding energies was determined by PSWM scores. For individuals

i and j with a SNP in a NFkB binding region Sk, the absolute

difference of sequence-determined binding energies is defined as

|ei(Sk) – ej(Sk)|, where ei(Sk) and ej(Sk) are the PSWM scores of

TFBS sequence Sk in individuals i and j. The mean (each bar) and

standard error (error bar) in CEU (left) and CEUYRI (right) are

shown. The distribution of variations of binding energies in (B)

CEU and (C) CEUYRI comparison.

(PDF)

Figure S10 Distribution of PSWM matching scores in
DSDB and DSNDB regions. (A) CEU (B) CEUYRI compar-

ison.

(PDF)

Table S1 (A) Biophysical models of TF-DNA binding. (B)

Machine learning models to incorporate epigenomic information

on TF binding.

(DOCX)

Table S2 Comparison of model performances with and
without epigenomic data. Transcription factor binding and

epigenomic data in mES cells were used as inputs. Model-inferred

interacting epigenomic marks of each transcription factor (row) are

reported (2nd column). Model performances were evaluated with

Pearson correlation using both sequence data and epigenomic

data (3rd column) and using sequence data alone (4th column). The

improvement was quantified as the difference of the correlations

divided by the correlation without epigenomic data (5th column).

vA
k : the overall effect of the kth epigenomic modification to

transcription factor A, as defined in Equation (5).

(DOCX)

Table S3 Lack of association between weak TFBSs and
promoters. The distribution of strong and weak TFBSs in

promoters and other regions are summarized. Chi-square test p-

value = 0.907.

(DOCX)

Table S4 Epigenomic marks with greater intensities
near weak TFBS. For each TF (row) and each epigenomic mark

(column), we tested whether the ChIP-seq signals of this

epigenomic mark were significantly different near weak TFBSs

than those near strong TFBSs. Significant differences of

epigenomic intensities were marked with ‘‘v’’.

(DOCX)

Table S5 Distribution of SNP-containing NFkB binding
sites. The numbers of NFkB binding sites that contain

polymorphic nucleotides between two individuals are summarized.

Depending on whether these polymorphic nucleotides generated

differences in NFkB binding intensities, these SNP-containing

binding sites are separately counted. DSDB: Different Sequence

Different Binding. DSNDB: Different Sequence No Difference in

Modeling TF-Epigenome-Genome Interactions

PLOS Computational Biology | www.ploscompbiol.org 13 December 2013 | Volume 9 | Issue 12 | e1003367



Binding. CEU: A person from northern or western Europe. YRI:

A person from Nigeria.

(DOCX)

Text S1 Supplementary methods.
(DOCX)
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