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Abstract

The diversity of virus populations within single infected hosts presents a major difficulty for the natural immune response as
well as for vaccine design and antiviral drug therapy. Recently developed pyrophosphate-based sequencing technologies
(pyrosequencing) can be used for quantifying this diversity by ultra-deep sequencing of virus samples. We present
computational methods for the analysis of such sequence data and apply these techniques to pyrosequencing data
obtained from HIV populations within patients harboring drug-resistant virus strains. Our main result is the estimation of the
population structure of the sample from the pyrosequencing reads. This inference is based on a statistical approach to error
correction, followed by a combinatorial algorithm for constructing a minimal set of haplotypes that explain the data. Using
this set of explaining haplotypes, we apply a statistical model to infer the frequencies of the haplotypes in the population
via an expectation–maximization (EM) algorithm. We demonstrate that pyrosequencing reads allow for effective population
reconstruction by extensive simulations and by comparison to 165 sequences obtained directly from clonal sequencing of
four independent, diverse HIV populations. Thus, pyrosequencing can be used for cost-effective estimation of the structure
of virus populations, promising new insights into viral evolutionary dynamics and disease control strategies.
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Introduction

Pyrosequencing is a novel experimental technique for deter-

mining the sequence of DNA bases in a genome [1,2]. The

method is faster, less laborious, and cheaper than existing

technologies, but pyrosequencing reads are also significantly

shorter and more error-prone (about 100–250 base pairs and 5–

10 errors/kb) than those obtained from Sanger sequencing (about

1000 base pairs and 0.01 errors/kb) [3–5].

In this paper we address computational issues that arise in

applying this technology to the sequencing of an RNA virus

sample. Within-host RNA virus populations consist of different

haplotypes (or strains) that are evolutionarily related. The

population can exhibit a high degree of genetic diversity and is

often referred to as a quasispecies, a concept that originally

described a mutation-selection balance [6,7]. Viral genetic

diversity is a key factor in disease progression [8,9], vaccine

design [10,11], and antiretroviral drug therapy [12,13]. Ultra-deep

sequencing of mixed virus samples is a promising approach to

quantifying this diversity and to resolving the viral population

structure [14–16].

Pyrosequencing of a virus population produces many reads,

each of which originates from exactly one—but unknown—

haplotype in the population. Thus, the central problem is to

reconstruct from the read data the set of possible haplotypes that is

consistent with the observed reads and to infer the structure of the

population, i.e., the relative frequency of each haplotype.

Here we present a computational four-step procedure for

making inference about the virus population based on a set of

pyrosequencing reads (Figure 1). First, the reads are aligned to a

reference genome. Second, sequencing errors are corrected locally

in windows along the multiple alignment using clustering

techniques. Next, we assemble haplotypes that are consistent with

the observed reads. We formulate this problem as a search for a set

of covering paths in a directed acyclic graph and show how the

search problem can be solved very efficiently. Finally, we

introduce a statistical model that mimics the sequencing process

and we employ the maximum likelihood (ML) principle for

estimating the frequency of each haplotype in the population.

The alignment step of the proposed procedure is straightforward

for the data analyzed here and has been discussed elsewhere [5]. Due

to the presence of a reference genome, only pair-wise alignment is

necessary between each read and the reference genome. We will

therefore focus on the core methods of error correction, haplotype

reconstruction, and haplotype frequency estimation. Two indepen-

dent approaches are pursued for validating the proposed method.

First, we present extensive simulation results of all the steps in the

method. Second, we validate the procedure by reconstructing four

independent HIV populations from pyrosequencing reads and

comparing these populations to the results of clonal Sanger

sequencing from the same samples.

These datasets consist of approximately 5000 to 8000 reads of

average length 105 bp sequenced from a 1 kb region of the pol

gene from clinical samples of HIV-1 populations. Pyrosequencing
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(with the Roche GS20 platform [17]) can produce up to 200,000

usable reads in a single run. Part of our contribution is an analysis

of the interaction between the number of reads, the sequencing

error rate and the theoretical resolution of haplotype reconstruc-

tion. The methods developed in this paper scale to these huge

datasets under reasonable assumptions. However, we concentrate

mainly on a sample size (about 10,000 reads) that produces finer

resolution than what is typically obtained using limiting dilution

clonal sequencing. Since many samples can be run simultaneously

and independently, this raises the possibility of obtaining data from

about 20 populations with one pyrosequencing run.

Estimating the viral population structure from a set of reads is,

in general, an extremely hard computational problem because of

the huge number of possible haplotypes. The decoupling of error

correction, haplotype reconstruction, and haplotype frequency

estimation breaks this problem into three smaller and more

manageable tasks, each of which is also of interest in its own right.

The presented methods are not restricted to RNA virus

populations, but apply whenever a reference genome is available

for aligning the reads, the read coverage is sufficient, and the

genetic distance between haplotypes is large enough. Clonal data

indicates that the typical variation in the HIV pol gene is about 3 to

5% in a single patient [18]. We find that as populations grow more

diverse, they become easier to reconstruct. Even at 3% diversity,

we find that much of the population can be reconstructed using

our methods.

The pol gene has been sequenced extensively and (essentially)

only one specific insertion seems to occur, namely the 69 insertion

complex, which occurs under NRTI pressure [19]. None of our

samples were treated with NRTIs, and the Sanger clones did not

display this (nor any other) indel. Therefore we assume throughout

that there are no true indels in the population. However, the

algorithms developed in this paper generalize in a straightforward

manner for the case of true indels.

The problem of estimating the population structure from

sequence reads is similar to assembly of a highly repetitive genome

[20]. However, rather than reconstructing one genome, we seek to

reconstruct a population of very similar genomes. As such, the

problem is also related to environmental sequencing projects,

which try to assess the genomes of all species in a community [21].

While the associated computational biology problems are related

to those that appear in other metagenomics projects [22], novel

approaches are required to deal with the short and error-prone

pyrosequencing reads and the complex structure of viral

populations. The problem is also similar to the haplotype

reconstruction problem [23], with the main difference being that

the number of haplotypes is unknown in advance, and to

estimating the diversity of alternative splicing [24].

More generally, the problem of estimating diversity in a

population from genome sequence samples has been studied

extensively for microbial populations. For example, the spectrum

of contig lengths has been used to estimate diversity from shotgun

sequencing data [25]. Using pyrosequencing reads, microbial

diversity has been assessed by counting BLAST hits in sequence

databases [26]. Our methods differ from previous work in that we

show how to analyze highly directed, ultra-deep sequencing data

using a rigorous mathematical and statistical framework.

Results

We have developed a computational and statistical procedure

for inferring the structure of a diverse virus population from

pyrosequencing reads. Our approach comprises four consecutive

steps (Figure 1), starting with the alignment of reads to a reference

sequence and followed by error correction, haplotype reconstruc-

tion, and haplotype frequency estimation.

Error correction
Given the high error rate of pyrosequencing, error correction is

a necessary starting point for inferring the virus population. The

errors in pyrosequencing reads typically take the form of one-base

indels along with substitutions and ambiguous bases and occur

most often in homopolymeric regions. The reads come with

quality scores for each base quantifying the probability that the

base is correct.

Error rates with the Roche GS20 system have been estimated as

approximately 5 to 10 errors per kb [4,5]. However, a small

number of reads accounts for most of the errors. Thus after

discarding approximately 10% of the reads (those with ambiguous

bases or atypical length), the error can be reduced to 1 to 3 errors

per kb [4]. These remaining errors are about half insertions and a

quarter each deletions and substitutions.

SEQUENCE READS

alignment

error correction

haplotype reconstruction

haplotype frequency estimation

VIRUS POPULATION

Figure 1. Overview of viral population estimation using
pyrosequencing. Sequence reads are first aligned to a reference
strain, then corrected for errors, and assembled into haplotype
candidates. Finally, the relative frequencies of the reconstructed
haplotypes are estimated in a ML fashion. These estimates constitute
the inferred virus population.
doi:10.1371/journal.pcbi.1000074.g001

Author Summary

The genetic diversity of viral populations is important for
biomedical problems such as disease progression, vaccine
design, and drug resistance, yet it is not generally well
understood. In this paper, we use pyrosequencing, a novel
DNA sequencing technique, to reconstruct viral popula-
tions. Pyrosequencing produces DNA sequences, called
reads, in numbers much greater than standard DNA
sequencing techniques. However, these reads are sub-
stantially shorter and more error-prone than those
obtained from standard sequencing techniques. Therefore,
pyrosequencing data requires new methods of analysis.
Here, we develop mathematical and statistical tools for
reconstructing viral populations using pyrosequencing. To
this end, we show how to correct errors in the reads and
assemble them into the different viral strains present in the
population. We apply these methods to HIV-1 populations
from drug-resistant patients and show that our techniques
produce results quite close to accepted techniques at a
lower cost and potentially higher resolution.

Viral Population Estimation Using Pyrosequencing
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Due to our assumption that there are no haplotypes with

insertions in the population, the insertions in the reads can all be

simply corrected through alignment with the reference genome. We

do not deal with the problem of alignment here; it is straightforward

because our assumption of the existence of a reference genome

implies that only pair-wise alignment is necessary. In the remainder

of the paper, we assume that a correct alignment is given, leaving

about 1 error per kb to correct (or 3 errors per kb if the low-quality

reads are not aggressively pruned).

Our approach for error correction resembles the method of [27]

for distinguishing repeats in whole genome shotgun assemblies

combined with [28]. We consider all the reads in a window over

the multiple alignment and cluster these reads using a statistical

testing procedure to detect if a group of reads should be further

split (Figure 2). The reads in each cluster are then corrected to the

consensus sequence of the cluster.

The statistical testing procedure consists of two steps. First,

every column in the window is tested for over-representation of a

mutation using a binomial test. Second, every pair of columns is

tested to see if a pair of mutations happens together more often

than would be expected by chance. See Methods for details on the

tests.

Any significant over-representation of a mutation or a pair in a

window is regarded as evidence for the reads originating from

more than one haplotype. The testing procedure produces an

estimate for the number of haplotypes in the window as follows.

First, all single mutations are tested for significance; each

significant mutation gives evidence for another haplotype in the

window. Next, all pairs of mutations are tested; any significant

pairs is evidence for another haplotype. However, this process can

over-count the number of haplotypes in the window in certain

cases if two mutations are significant both by themselves and as a

pair. In this case, we correct for the over-count (see Methods).

We then separate the reads into k groups using k-means

clustering. The algorithm is initialized with both random clusters

and clusters found by a divisive clustering method based on the

statistical tests. We use the Hamming distance between sequences

to calculate cluster membership; the consensus sequences define

the cluster centers. The consensus sequence is computed from

weighted counts based on the quality scores. Thus, the inferred

cluster centers are the reconstructed haplotypes. Combining

testing and clustering we proceed as follows:

Algorithm 1. (Local error correction)
Input: A window of aligned reads

Output: The k haplotypes in the window and the error

corrected reads

Procedure:

1. Find all candidate mutations and pairs of mutations and test for

overrepresentation.

2. Count the number of non-redundant mutations and pairs that

are significant. This is the number k of haplotypes in the

window.

3. Cluster the reads in the window into k clusters and correct each

read to its cluster center.

4. Output corrected reads.

Applying a parsimony principle the algorithm finds the smallest

number k of haplotypes that explain the observed reads in each

window. The genomic region to be analyzed is divided into

consecutive windows and Algorithm 1 is run in each of them. We

use three collections of successive windows that are shifted relative

to each other such that each base in the region is covered exactly

three times. The final correction of each base is the consensus of

the three runs.

The error correction procedure can lead to uncorrected errors or

miscorrections via false positives and negatives (leading to over/

underestimation of the number of haplotypes in a window) or

misclustering. See Methods for implementation details and a

discussion of setting the parameters so as to minimize these mistakes.

False positives arise when an error is seen as a significant

variant; they will be consequences of setting the error rate too low

or the significance level too high, or if errors are highly correlated.

Misclustering can happen if errors occur frequently enough on a

single read to make that read appear closer to an incorrect

haplotype. This likelihood is increased as the window size grows

and more reads overlap the window only partially.

An analysis of the false negative rate gives an idea of the

theoretical resolution of pyrosequencing. False negatives arise

when a true variant tests as non-significant and thus is erased. If

the input data were error-free, this would be the only source of

mistaken corrections and would happen by eliminating rare

variants. Given an error rate of 2.5 errors per kb, the calculation in

the Methods Section shows that variants present in under 1% of

the population would be erased on a dataset of 10,000 reads.

Below we will show that this number of reads is about enough to

expect to resolve haplotypes present in 1% of the population.

Haplotype reconstruction
Our approach to haplotype reconstruction rests on two basic

beliefs. First, the haplotypes in the populations should not exhibit

characteristics that are not present in the set of reads. This means

that every haplotype in the population should be realizable as an

overlapping series of reads. Second, the population should explain

as many reads as possible with as few haplotypes as possible.

We assume a set R of aligned and error-corrected reads obtained

from sequencing a population. If all haplotypes have the same length

n, then each aligned read consists of a start position in the genome

and a string representing the genomic sequence. We say that two

reads overlap if there are positions in the genome to which they are

X

X

Figure 2. Error correction. Fixed-width windows (shown as the
dashed box) over the aligned reads are considered. Two different types
of reads are depicted (light versus dark lines), indicating their origin
from two different haplotypes. Genetic differences (indicated by circles
and squares) provide the basis for clustering reads into groups
representing the respective haplotypes. After clustering, errors (marked
as crosses) can be corrected.
doi:10.1371/journal.pcbi.1000074.g002

Viral Population Estimation Using Pyrosequencing
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both aligned. They agree on their overlap if they agree at all of these

positions. We call a haplotype completely consistent with the set of reads

R if the haplotype can be constructed from a subset of overlapping

reads of R that agree on their overlaps. Let CR be the set of all

haplotypes that are completely consistent with R. In the following,

we provide methods for constructing and sampling from CR and we

present an efficient algorithm for computing a lower bound on the

number of haplotypes necessary to explain the reads. Both

techniques rely on the concept of a read graph.

Definition (Read graph)
The read graph GR associated with a set of reads R is the acyclic

directed graph with vertices {Rirred, s, t} consisting of a source s, a

sink t, and one vertex for every irredundant read r M R. Here, a

read is redundant if there is another read that overlaps it completely

such that the two reads agree on their overlap. The edge set of GR

is defined by including an edge from an irredundant read r1 to an

irredundant read r2, if

1. r1 starts before r2 in the genome,

2. r1 and r2 agree on their (non-empty) overlap, and

3. there would not be a path in GR from r1 to r1 without this edge.

Finally, edges are added from the source s to all reads beginning

at position 1, and from all reads ending at position n to the sink t.

A path in the read graph from the source to the sink

corresponds to a haplotype that is completely consistent with R.

Thus, finding CR, the set of completely consistent haplotypes,

amounts to efficiently enumerating paths in the read graph.

For example, in Figure 3, a simplified genome of length n = 8

over the binary alphabet {0,1} is considered, and an alignment of

20 reads, each of length 3, is shown in Figure 3A. These data give

rise to the read graph depicted in Figure 3B. For instance, the

haplotype 00110000 is completely consistent with the reads and

corresponds to the top path in the graph. For more complex read

graphs, see Figure 4.

We say that a set of haplotypes H is an explaining set for R if

every read r M R can be obtained as a substring of some haplotype

in H. We seek a small set of explaining haplotypes and focus on

the set CR, which consists exactly of those haplotypes that emerge

from the data. The following proposition provides a criterion for

CR to be an explaining set in terms of the read graph.

Proposition
The set of haplotypes completely consistent with a set of reads is

an explaining set for these reads if, and only if, every vertex of the

read graph lies on a directed path from the source to the sink.

The Lander–Waterman model of sequencing is based on the

assumptions that reads are random (uniformly distributed on a

genome) and independent [29]. In this model, the probability that all

bases of a genome of length n are sequenced follows the Poisson

distribution p = (12e2c)n, where c is the coverage (the total number of

bases sequenced per position). For a sequencing experiment from a

mixed population with different abundances of haplotypes (or

subspecies), a similar approach can be applied [22]. For the

probability of complete coverage of all haplotypes occurring with a

frequency of at least r, we have p$(12e2c,r)n. Since c = NL/n, where

N is the number of reads and L is the read length, sequencing

N§{
n ln 1{p1=n

� �
r L

ð1Þ

reads will ensure that the completely consistent haplotypes assembled

from the reads are an explaining set for these haplotypes. For

Figure 3. Read graph. A simplified genome of length n = 8 over the binary alphabet {0,1} is considered. Twenty reads of length 3 each are aligned
to an assumed reference sequence (A). The induced read graph has 20+2 vertices and 28 edges (B).
doi:10.1371/journal.pcbi.1000074.g003

Viral Population Estimation Using Pyrosequencing
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example, in order to cover all haplotypes of 5% or higher frequency

of length 1000 bases with reads of length 100 with 99% probability,

at least 2302 reads need to be sequenced; to reach haplotypes at 1%

frequency with 99% probability, 11,508 reads are needed. Notice

that the number of reads needed scales linearly with the inverse of

the smallest frequency desired. We note that the actual number of

required reads can be much smaller in genomic regions of low

diversity.

If the condition of the proposition is violated, we can remove the

violating set of reads to obtain a new set satisfying the condition.

This amounts to discarding reads that either contain mistakes in

the error correction or come from haplotypes that are at a too low

frequency in the population to be fully sequenced. Thus the

resolution is inherently a function of the number of reads.

We are now left with finding a minimal explaining set of

completely consistent haplotypes. Restricting to this subset of

haplotypes reduces the computational demand of the problem

significantly. The proposition implies that an explaining set of

completely consistent haplotypes is precisely a set of paths in the

read graph from the source to the sink, such that all vertices of the

read graph are covered by at least one path. We call such a set of

paths a cover of the read graph. The following result shows that a

minimal cover can be computed efficiently (see Methods for a

proof).

Dilworth’s Theorem [30]

(i) Every minimal cover of the read graph has the same

cardinality, namely the size of the largest set Q of vertices

such that there are no paths between elements of Q.

(ii) A minimal cover of the read graph can be computed by

solving a maximum matching problem in an associated

bipartite graph. This matching problem can be solved in time

at worst cubic in the number of irredundant reads.

The minimal path cover obtained from the maximum matching

algorithm is in general not unique. First, it provides a minimal

chain decomposition of the graph. A chain in a directed acyclic

graph is a set of vertices that all lie on at least one common path

from the source to the sink. A chain can generally be extended to a

number of different paths. Second, the minimal chain decompo-

sition itself is in general not unique. However, the cardinality of

the minimal cover is well-defined. It is an important invariant of

the set of reads, indicating the smallest number of haplotypes that

can explain the data. Notice that the size of the minimal read

graph cover can be greater than the maximum number of

haplotypes in a given window of the error correction step. The

cardinality of the minimal cover is a global invariant of the set of

reads.

Figure 4. Read graphs for increasing diversity levels. Displayed are three read graphs of 1000 reads each derived from populations of 5
haplotypes at 3% (A), 5% (B), and 7% diversity (C). The bottom five lines in the graph correspond to reads which match the five haplotypes uniquely;
the top line in subfigures (A) and (B) contains reads which match several haplotypes. In each subfigure, the reads are colored according to a single
chain decomposition.
doi:10.1371/journal.pcbi.1000074.g004

Viral Population Estimation Using Pyrosequencing
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Algorithm 2. (Minimal set of explaining haplotypes)
Input: A set R of aligned, error corrected reads satisfying the

conditions of the proposition

Output: A minimal set of explaining haplotypes for R

Procedure:

1. Construct the read graph GR associated with R.

2. Compute a minimal chain decomposition of the read graph.

3. Extend the chains in the graph to paths from the source to the

sink in GR.

4. Output the set of haplotypes corresponding to the paths found

in step 3.

The algorithm can easily be modified to produce a non-minimal

set by constructing multiple chain decompositions and by choosing

multiple ways to extend a chain to a path. We note that the set of

all paths in the graph is generally much too large to be useful. For

example, the HIV datasets give rise to up to 109 paths and in

simulations we often found over 1012 different paths in the graph.

Generating paths from minimal explaining sets is a reasonable way

of sampling paths, as we will see below when discussing simulation

results (see also Figure 4 and Figure S1).

Finally, if the conditions of the proposition are not satisfied, i.e.,

if the coverage is too low and the set of completely consistent

haplotypes does not contain an explaining set, then that condition

can be relaxed. This corresponds to modifying the read graph by

adding edges between all non-overlapping reads. Algorithm 2 will

then again find a minimal set of explaining haplotypes.

Haplotype frequency estimation
A virus population is a probability distribution on a set of

haplotypes. We want to estimate this distribution from a set of

observed reads. Let H be a set of candidate haplotypes. In

principle, we would like H to be the set of all possible haplotypes,

but in practice we must restrict H to a smaller set of explaining

haplotypes as derived from Algorithm 2 in order to make the

estimation process feasible. Let R be the set of all possible reads

that are consistent with the candidate haplotypes in H. The read

data is given as a vector u M NR, where ur is the number of times

that read r has been observed.

Our inference is based on a statistical model for the generation

of sequence reads from a virus population. Similar models have

been used for haplotype frequency estimation [31–33]. We assume

that reads are sampled as follows (Figure 5). First, a haplotype h is

drawn at random from the unknown probability distribution

p = (ph)hMH. Second, a read r is drawn with uniform probability

from the set of all reads with which the haplotype is consistent.

Estimating the structure of the population is the problem of

estimating p from u under this generative model.

Let H be the hidden random variable with values in H that

describes the haplotype and R the observed random variable over

R for the read. Then the probability of observing read r under this

model is

Pr R~rð Þ~
X
h[H

ph Pr R~r H~hjð Þ,

where the conditional probability is defined as

Pr(R = rIH = h) = 1/K, if h is consistent with r, and 0 otherwise.

Here K is the number of reads r M R that h is consistent with. Since

we assume that all haplotypes have the same length, K is

independent of both r and h.

We estimate p by maximizing the log-likelihood function

‘ p1, . . . ,p Hj j
� �

~
X
r[R

ur logPr R~rð Þ:

This is achieved by employing an EM algorithm (see Methods for

details). Each iteration of the EM algorithm runs in time

O(|R||H|). For example, for 5000 reads and 200 candidate

haplotypes, the EM algorithm typically converges within minutes

on a standard PC. Software implementing the algorithms for error

correction, haplotype reconstruction, and frequency estimation is

available upon request from the authors.

Simulation results
We have simulated HIV populations of different diversities and

then generated reads from these populations by simulating the

pyrosequencing procedure with various error rates and coverage

depths. The first 1 kb of the HIV pol gene was the starting point

for all simulations. We separately analyze the performance first of

error correction, then of haplotype reconstruction, then of

haplotype frequency estimation, and finally of the combination

of these three steps.

The simulations show that Algorithm 1 reduces the error rate by

a factor of 30. This performance is largely independent of the

number of haplotypes in the population (Figure S3). The program

ReadSim [34] was used to simulate the error process of

pyrosequencing. The error rate after alignment is about 1 to 3

errors per kb, so we are left with about 0.1 errors per kb after error

correction. As the population grows and becomes more diverse,

the alignment becomes more difficult resulting in a smaller error

reduction (Figure S3).

In order to assess the ability of Algorithm 2 to reconstruct 10

haplotypes from 10,000 error-free reads (yielding about 1500

irredundant reads) we generate increasing numbers of candidate

haplotypes. This is achieved by repeatedly finding a minimal set of

explaining haplotypes until either we reach the desired number of

haplotypes or we are unable to find more haplotypes that are part

of a minimal explaining set.

Figure 6 visualizes the enrichment of recovered true haplotypes

with increasing number of candidate haplotypes for different levels

of population diversity. While in low-diversity populations exact

haplotype reconstruction can be very challenging (Figure 6A), the

algorithm will always find haplotypes that are close to the true

ones. For example, at 5% diversity 10 out of 50 candidate

haplotypes will match the original 10 haplotypes at an average

Hamming distance of just 1.6 amino acid differences (Figure 6B).

With larger populations, the performance is similar although more

candidate haplotypes need to be generated (Figure S2). Given that

the read graphs considered in this test had about 3?1010 total

ph

Figure 5. Schematic representation of the sampling process.
The virus population is represented by five genomes (top) of two
different haplotypes (light versus dark lines). The probability distribu-
tion is p = (3/5, 2/5). The generative probabilistic model assumes that
haplotypes are drawn from the population according to p and reads are
sampled uniformly from the haplotypes (bottom).
doi:10.1371/journal.pcbi.1000074.g005

Viral Population Estimation Using Pyrosequencing
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paths, the strategy of repeatedly finding minimal sets of explaining

haplotypes is very efficient for haplotype reconstruction.

Figure 4 shows how the haplotype reconstruction problem gets

harder at lower diversity. In each graph, the bottom five lines

correspond to reads matching one of the original five haplotypes

uniquely. The sixth line on top (if present) corresponds to reads

that could come from several haplotypes. At 3% diversity

(Figure 4A), only one of the haplotypes is reconstructed well. At

5% diversity (Figure 4B), the decomposition is almost correct

except for a few small ‘‘crossovers’’. At 7% diversity (Figure 4C),

the chain decomposition exactly reconstructs the five haplotypes.

By using multiple decompositions we can reconstruct many of the

haplotypes correctly (Figure S1) even in low diversities.

The performance of the EM algorithm for haplotype frequency

estimation described above is measured as the Kullback–Leibler

(KL) divergence between the original population p and its estimate

p̂. We consider populations with 10 different haplotypes, each

with frequency 0.1, at 5% diversity. Haplotype frequencies are

estimated from between 500 and 6000 error-free reads (Figure 7).

The performance of the EM algorithm is compared to that of a

simple heuristic method, which assigns frequencies to the

haplotypes in proportion to the number of reads they explain

(see Methods). For both methods, the KL divergence DKL p p̂
��� �

decreases roughly exponentially with the number of reads.

However, the EM algorithm significantly outperforms the heuristic

for all sizes of the read set and this improvement in prediction

accuracy increases with the number of reads.

In order to test the combined performance of the haplotype

reconstruction and frequency estimation, our basic measure of

performance is the proportion of the original population that is

reconstructed within 10 amino acid differences. This measure,

which we call w10, is defined as follows (see also Methods). For

each inferred haplotype, we determine the closest original

haplotype and sum up the frequencies of all inferred haplotypes

that differ from their assigned original haplotypes by at most ten

sites. This performance measure indicates how much of the

population has been reconstructed reasonably well. It is less

sensitive to how well haplotypes and haplotype distributions match

(see Figures 6 and 7 for those performance measures).

For the first simulation of combined performance, we consider

error-free reads from populations consisting of between 5 and 100

haplotypes, each with equal frequency, at diversities between 3

and 8%. We simulated 10,000 error-free reads of average length

100 from these populations and ran haplotype reconstruction and

frequency estimation. Figure 8 shows that performance increases

as diversity increases and drops slightly as the number of

haplotypes increases. As we saw above, we would expect to be

Figure 6. Haplotype reconstruction. Up to 300 candidate haplotypes were generated using Algorithm 1 from 10,000 error free reads drawn from
populations of size 10 at varying diversity levels. Displayed are two measures of the efficiency of haplotype reconstruction: the percent of the original
haplotypes with exact matches among the reconstructed haplotypes (A), and the average Hamming distance (in amino acids) between an original
haplotype and its closest match among the reconstructed haplotypes (B).
doi:10.1371/journal.pcbi.1000074.g006
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Figure 7. Haplotype frequency estimation. Haplotype frequencies
were inferred using both the EM algorithm (circles) and a simple
heuristic algorithm (triangles); the resulting distance from the correct
frequencies is measured using KL divergence. Error bars give the
interquartile range over 50 trials. The populations consisted of 10
haplotypes at equal frequency and 5% diversity. The input to the
algorithms was a set of reads simulated from the population and the
original 10 haplotypes.
doi:10.1371/journal.pcbi.1000074.g007
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able to reconstruct populations with size approximately 100 using

10,000 reads under the Lander–Waterman model.

For the second combined test, we tested all three steps: error

correction, haplotype reconstruction, and frequency estimation. In

order to model the miscorrection of errors, we ran ReadSim [34]

to simulate the actual error process of pyrosequencing and then

ran error correction. New, error-free reads were simulated and

errors were added through sampling from the distribution of the

uncorrected errors in order to reach error rates of exactly 0.1 and

0.2 errors per kb. Figure 9 summarizes the results of this analysis

for 10 haplotypes at varying diversities. The combined procedure

performs very well on error-free reads that are diverse enough. As

errors are introduced, performance decreases; however the

method still recovers much of the original population. For

example, at 0.1 errors per kb, which is the error rate expected

with current pyrosequencing technology and our error correction

method (see above), as few as 3500 reads are required for

approximately recovering 55% of a population of 5% diversity.

Figure 9 also indicates, for the datasets with error rate 0.2, a

small performance loss as the number of reads increases. This

phenomenon appears to be related to the fact that more reads give

rise to more paths in the graph, thereby increasing the chances

that completely consistent haplotypes that contain errors are

assigned positive probabilities. In fact, the size of a minimal path

cover increases approximately linearly with the number of reads

and this increase does not appear to depend much on population

diversity (Figure S4).

Analysis of HIV samples
Our second evaluation of population reconstruction is based on

ultra-deep sequencing of drug-resistant HIV populations from four

infected patients [5]. The four virus populations were analyzed

independently using pyrosequencing and clonal Sanger sequenc-

ing. Table 1 shows the resulting statistics on the datasets. The

pyrosequencing based approach mirrors very closely the clonal

sequencing. To compare the populations inferred from pyrose-

quencing to the clonal sequences, we use the measure w1, which

indicates the percent of the inferred population that matches a

clonal sequence within one amino acid difference. This is used

instead of w10 used before in order to provide a more sensitive

performance measure. In all samples, at least 51.8% of the inferred

populations were within one amino acid difference of a clonal

haplotype. Based on the present data, we cannot decide whether

the additional inferred haplotypes went undetected by the Sanger

sequencing, or if they are false positives of the reconstruction

method.

We found many additional haplotypes in our analysis of the

most complex sample, V11909. Table 2 shows a comparison

between the inferred population for V11909 and the clonal

haplotypes. The populations were analyzed at 15 positions in the

protease associated with drug resistance, taken from the HIV Drug

Resistance Database [35]. All but four of the 65 clonal haplotypes

(6.1%) are matched in the inferred population, and the frequencies

Figure 8. Combined population reconstruction procedure. The
proportion of the population reconstructed within 10 amino acid
differences (Q10, ‘‘proportion close’’) is shown. Here 10,000 error-free
reads were sampled from populations with diversity between 3 and 8%
and with between 5 and 100 haplotypes of equal frequency.
Haplotypes were reconstructed and then frequencies were estimated.
doi:10.1371/journal.pcbi.1000074.g008

Figure 9. Population reconstruction with errors. Proportion of population reconstructed within 10 amino acid differences (Q10, ‘‘Proportion
close’’) using haplotype reconstruction and frequency estimation. The original populations had 10 haplotypes of equal frequency at varying levels of
diversity. Error was randomly introduced in the simulated reads to mimic various levels of error correction.
doi:10.1371/journal.pcbi.1000074.g009
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in the inferred population are a reasonable match to the

frequencies of the mutation patterns in the clonal haplotypes.

Using the Lander–Waterman model, we find that the pyrosequen-

cing reads obtained from the HIV samples are enough to

reconstruct with 99% probability all haplotypes that occur at a

frequency of at least 2.2% (Tab. 1). By comparison, the Sanger

sequencing approach yielded 65 clonal sequences, 37 of which

were mixtures of two or more clones.

Discussion

Pyrosequencing constitutes a promising approach to estimating

the genetic diversity of a community. However, sequencing errors

and short read lengths impose considerable challenges on inferring

the population structure from a set of pyrosequencing reads. We

have approached this task by identifying and solving consecutively

three computational problems: error correction, assembly of

candidate haplotypes, and estimation of haplotype frequencies.

Our methods focus on the situation where a reference genome is

available for the alignment of reads. This is the case, for example, for

many important pathogens, such as bacterial and viral populations.

The procedure consists of three steps. First, error correction is

performed locally. We take windows of fixed width over the

aligned reads and cluster reads within the windows in order to

resolve the local haplotype structure. This approach is based on

previous methods [27,28] that are specifically tailored to

pyrosequencing reads. Next, haplotypes are reconstructed using

a new application of a classic combinatorial algorithm. This step is

the main theoretical advance in this paper. Finally, haplotype

frequencies are inferred as the ML estimates of a statistical model

that mimics the pyrosequencing process. We have developed an

EM algorithm for solving this ML problem.

Haplotype reconstruction is based on two assumptions:

consistency and parsimony. We require that each haplotype be

constructible from a sequence of overlapping reads and that the set

of explaining haplotypes be as small as possible. The Lander–

Waterman model of sequencing implies lower bounds on the

number of reads necessary to meet the first requirement. The

fundamental object for haplotype reconstruction is the read graph.

A minimal set of explaining haplotypes corresponds to a minimal

path cover in the read graph, and this path cover can be found

efficiently using combinatorial optimization. Moreover, the

cardinality of the minimal path cover is an important invariant

of the haplotype reconstruction problem related to the genetic

diversity of the population.

We believe that these methods are also applicable to many

metagenomic projects. In such projects, estimation of the diversity

of a population is a fundamental question. The size of a minimal

cover of a fragment assembly graph provides an intuitive and

computable measure of this diversity.

We have validated our methods by extensive simulations of the

pyrosequencing process, as well as by comparing haplotypes inferred

from pyrosequencing data to sequences obtained from direct clonal

sequencing of the same samples. Our results show that pyrosequen-

cing is an effective technology for quantitatively assessing the

diversity of a population of RNA viruses, such as HIV.

Resistance to most antiretroviral drugs is caused by specific

mutational patterns comprising several mutations, rather than one

single mutation. Thus, an important question that can be

addressed efficiently by pyrosequencing is which of the resistance

mutations actually occur on the same haplotype in the population.

Since our methods avoid costly clonal sequencing of the HIV

populations for determining the co-occurrence of HIV resistance

mutations [36], pyrosequencing may become an attractive

alternative to the traditional clonal Sanger sequencing.

The sample size of approximately 10,000 reads we have

considered provides us with the opportunity of detecting variants

present in only 1% of the population. Pyrosequencing can produce

200,000 reads and thus twenty populations could be sequenced to

a good resolution using a process less labor intensive than a

limiting dilution clonal sequencing to a similar resolution of a

single population.

The simulations suggest that the method works best with

populations that are suitably diverse. Intuitively, the information

linking two reads together on the same haplotype decays rapidly in

sections of the genome where there are few identifying features of

that haplotype (as in a region of low diversity). In particular,

repeats of sufficient length in the reference genome can completely

destroy linkage information. However, at some point the benefits

of increased diversity will be partially reduced by the increased

difficulty of the alignment problem. With more diverse populations

or true indels, alignment to single reference genome will become

less accurate.

The HIV pol gene analyzed here is on the low end of the

diversity spectrum. The env gene with its higher variability may be

a better target for some applications. We expect the proposed

methods to improve early detection of emerging drug resistant

variants [37,38], and to support the genetic and epidemiological

study of acute infections, in particular the detection of dual

infections [39].

Table 1. Population reconstruction from four HIV samples.

Pyrosequencing Haplotype reconstruction Comparison to clonal seq.

Sample Reads Irred. r99 Gaps/kb Err/kb Min. cov. Diversity Clones Avg. dist. w1

V11909 5177 641 2.2 3.3 1.10 22 15.8 65 1.81 51.8

V54660 7777 228 1.5 2.3 1.67 4 1.0 32 0.34 99.6

V3852 4854 227 2.4 3.4 1.33 7 1.4 42 0.29 100.0

V2173 6304 354 1.8 2.3 1.31 4 2.3 26 0.81 86.6

The first four columns describe the pyrosequencing data: the number of reads, the number of irredundant reads, the expected frequency (in percent) of the least
frequent haplotype we can expect to cover with 99% confidence, and the number of gaps per kb in the aligned data. The next three columns describe the
reconstruction algorithm: the number of non gap characters changed in error correction, the size of a minimal explaining set of haplotypes, and the diversity, measured
as the expected number of amino acid differences among the estimated population. After error correction, reads were translated into amino acids. The last three
columns describe the validation using (translated) clonal sequences: the number of clones sequenced, the average distance between the estimated population, and the
closest Sanger haplotype, and w1, the percentage of the estimated population that was close (up to 1 amino acid difference) to a clone.
doi:10.1371/journal.pcbi.1000074.t001
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Since our computational procedure produces an estimate of the

entire virus population, it allows the study of fundamental

questions about the evolution of viral populations in general

[40]. For example, mathematical models of virus evolution can be

tested directly within the accuracy of estimated viral haplotype

frequencies [41]. Predicting viral evolution is considered an

important step in HIV vaccine development [10].

In addition to the promising biological applications, there are

many interesting theoretical questions about reconstructing

populations from pyrosequencing data. The errors in pyrosequen-

cing reads tend to be highly correlated, as they occur

predominately in homopolymeric regions. While this can make

correction more difficult (a fact which can be counteracted by the

use of quality scores), we believe that it can make haplotype

reconstruction more accurate than if the errors were uniform. If

errors are isolated to a few sites in the genome, fewer additional

explaining haplotypes are needed than if the errors were

distributed throughout. The exact relationship between the error

process of pyrosequencing, error correction, and haplotype

reconstruction is worthy of further study.

As pyrosequencing datasets can contain 200,000 reads, it is

worthwhile to investigate how our methods scale to such large

datasets. Haplotype reconstruction is the only step that is not

immediately practical on such a large number of reads, since it is at

worst cubic in the number of irredundant reads. However, problems

of this size are approachable with our methods as follows.

The theoretical resolution of the algorithms depends on two

factors: first, the ability to differentiate between errors and rare

variants; and second, whether there are enough reads so that we

can assemble all haplotypes. We have seen that the number of

reads necessary for assembly scales with the inverse of the desired

resolution: if N reads cover all haplotypes of frequency at least r,

then kN reads are needed to cover all haplotypes of frequency at

least rk. However, the resolution of error correction is at most the

overall error rate as the number of reads grows; see Table 3.

The limited resolution of error correction combined with the

elimination of redundant reads makes haplotype reconstruction

feasible for large datasets. For example, error correction on

200,000 reads with e = 0.0025 and a= 0.001 will erase all variants

with frequency below 0.365 (Table 3; Methods). In order to have

enough information to reconstruct these variants under the

Lander–Waterman model, we would expect to need only about

30,000 reads. Furthermore, in regions of low diversity, many of the

reads will be redundant and are thus discarded before building the

graph. For example, with 30,000 error-free reads simulated from

275<1/0.00365 haplotypes at 5% diversity, typically about

13,000 reads are irredundant. This number of irredundant reads

is near the limits of our current implementation.

Current and future improvements to pyrosequencing technol-

ogy will lead to longer reads (250 bp), more reads, and lower

errors. However, in order for huge numbers of reads to be of great

help in the ultra-deep sequencing of a population, the error rates

must also decrease. The performance of our methods as read

length varies is an important question, given the availability of

sequencing technologies with different read lengths (e.g., Solexa

sequencing with 30 to 50 bp reads) and the desire to assemble

haplotypes of greater size (e.g., the entire 10 kb HIV genome).

Notice that haplotype reconstruction seems to be quite good

locally (Figure 4 and Figure S1) in that many reconstructed

haplotypes contain large contiguous regions where they agree with

a real haplotype. However, the measures of performance

considered in this paper all deal with the entire haplotype and

ignore partial results of this type. This would seem to imply that

longer reads will improve the reconstruction performance on a

fixed length genome; new performance measures will have to be

developed to analyze these problems.

Methods

Statistical tests for error correction
We use two statistical tests for locally detecting distinct

haplotypes. The first test analyzes each column of the multiple

alignment window. We write d for the number of reads that

overlap this window. We ask if the observed number of mutations

(deviations from the consensus base) exceeds our expectation

under the null hypothesis of one haplotype and a uniform

sequencing error e. The probability of observing x or more

mutations is given by the binomial distribution

Pr X§xð Þ~
Xd

k~x

d

k

� �
ek 1{eð Þd{k:

There are two parameters to set here: the error rate e and the p-

value a that is required for significance.

Next, we test pairs of mutations in two different alignment

columns u and v using Fisher’s exact test. The test statistic is the

number C of co-occurrences, which under the null hypothesis of

Table 2. Clonal Sanger sequencing versus pyrosequencing.

Frequency

Sanger Pyro Mutations

52.3 19.3 M46I, I54V, G73I, I84V, L90M

12.3 19.0 M46I, I54V, G73S, I84V, L90M

9.2 9.4 M46I

6.2 5.6

4.6 7.1 M46I, I54V, G73S, L90M

4.6 1.9 M46I, I54V, G73I, L90M

3.1 5.8 M46I, G73I, I84V, L90M

3.1 0.0 L33F, M46I, I54V, G73S, I84V, L90M

1.5 1.9 M46I, L90M

1.5 0.0 L33F, M46I, I54V, G73I, I84V, L90M

1.5 0.0 M46I, I54V, G73N, I84V, L90M

0.0 4.9 M46I, G73I

0.0 4.7 M46I, I84V

0.0 4.0 M46I, G73S, I84V, L90M

0.0 3.1 M46I, I54V, G73S, V82I, I84V, L90M

0.0 2.9 M46I, I54V, G73I, I84V

0.0 2.9 M46I, I50V, I54V, G73I, I84V, L90M

0.0 2.0 I84V

0.0 1.4 I54V, G73I, I84V, L90M

0.0 1.2 M46I, I50V, I54V, G73S, L90M

0.0 1.1 M46I, I54V

0.0 1.0 M46I, I50V, I84V, L90M

0.0 0.5 M46I, I54V, G73I

0.0 0.3 G73S, I84V, L90M

Displayed are the patterns of resistance mutation for the 65 Sanger sequences
and the estimated population for sample V11909. Mutation patterns were
restricted to 15 positions in the protease (amino acids 23, 24, 30, 32, 33, 46, 48,
50, 53, 54, 73, 82, 84, 88, and 90) associated with PI resistance.
doi:10.1371/journal.pcbi.1000074.t002
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one haplotype follows the hypergeometric distribution

Pr C~cð Þ~

nv

c

� �
d{nv

nu{c

� �
d

nu

� � ,

where nu and nv are the number of times the specific mutations have

been observed in columns u and v, respectively [28]. Considering

pairs provides more power if co-occurrences are observed on reads,

but can not detect single mutation differences. We set the p-value for

this test to be he same as for the binomial test.

The procedure tests all columns in the window using the

binomial test and then all pairs of columns using Fisher’s exact test.

This can lead to over-counting of the number of haplotypes as

follows. Suppose that in columns 1 and 2 the consensus base is A,

but that there is a mutation C in some of the reads in each column.

If both mutations are significant by themselves, this is evidence of

three haplotypes in the window. If they are also significant

together, this would be evidence of four haplotypes. However,

there could be only two true haplotypes at these two positions: AA

and CC. To correct for this, we subtract two from the count

whenever two significant mutations are significant together and

always occur on exactly the same set of reads.

We do not explicitly address the multiple comparisons problem

associated with this testing procedure here and regard the

significance levels of the tests as parameters of Algorithm 1. We

account for the quality scores associated with each base by using

(rounded) weighted counts in the test statistics. Gaps are treated as

unknown bases and represented by a special character with quality

score zero. We found that an error rate of 0.0025, a p-value of

0.001, and a window size of 24 provided the best error correction.

These parameters can be tuned as follows. First, the window size

should be chosen to best help the clustering. A large window

provides more power since there are more identifying mutations,

but also can be more difficult to cluster since many reads will only

partially overlap the window.

Next, the p-value for the tests and the error rate should be

adjusted to prevent false positives and negatives. The number of

mutations required in a column before the mutation is considered

significant can be calculated from the binomial distribution above.

For example, with 10,000 reads of length 100 in a genome of

length 1000, there will be approximately d = 1000 reads

overlapping a small window. Setting e= 0.0025 and a= 0.001, a

mutation would have to occur nine times in a column to be

significant according to the binomial distribution above. Thus,

roughly speaking, the error correction would discard any

mutations occurring in less than 9/1000<1% of the population.

Notice that this is quite similar to the estimate under the Lander–

Waterman model (Equation 1), where 11,508 reads are needed to

cover all haplotypes at 1% frequency.

Notice that the power of the error correction grows very slowly

(Table 3). On a dataset with 200,000 reads, then error correction

would eliminate any variants present in less than 0.365% of the

population. However, only 30,000 reads are needed to achieve this

resolution with haplotype reconstruction.

Proof of Dilworth’s Theorem
Suppose the read graph GR has V vertices and E edges. Since

GR is acyclic, it defines a partial order on the set of irredundant

reads, Rirred. Part (1) is then a direct application of Dilworth’s

theorem [30] to this partially ordered set. The associated bipartite

graph has vertex set {A, B}, where both A and B are equal to

Rirred. There is an edge between r M A and s M B, if there is a path

from r to s in GR. Then a maximal matching in the bipartite graph

is equivalent to a minimal chain decomposition of GR [42].

For the time complexity, notice that building the read graph GR

is of complexity O(V2). Building the associated bipartite graph is

equivalent to finding the transitive closure of the read graph and

thus is O(VE). The efficient matching algorithm for the solution of

the matching problem is due to Hopcroft and Karp [43]. For a

general bipartite graph with V9 vertices and E9 edges, the

Hopcroft-Karp algorithm is of time complexity O E0
ffiffiffiffiffiffi
V 0
p� �

. Since

in our construction, V9 = 2V and E9 = O(V2), the matching

algorithm takes time O(V5/2). Depending on the structure of the

graph, either the transitive closure or matching problems can

dominate, but both are of complexity O(V3).

EM algorithm for haplotype frequency estimation
We use an EM algorithm [44] to estimate the maximum

likelihood haplotype frequencies. We iteratively estimate the

missing data urh, i.e., the number of times read r originated from

haplotype h, and solve the easier optimization problem of

maximizing the log-likelihood of the hidden model

‘hid p1, . . . ,p Hj j
� �

~
X
r[R

X
h[H

urh log ph Pr R~r H~hjð Þð Þ:

In the E step, the expected values of the missing data are

computed as

urh~ur
ph Pr R~r H~hjð Þ

Pr R~rð Þ :

In the M step, maximization of ,hid yields

p̂ph~
X
r[R

urh

,X
r[R

ur:

Table 3. Resolution of viral haplotype estimation.

Number of reads 1,000 5,000 10,000 50,000 100,000 200,000

Error resolution (%) 3.00 1.20 0.90 0.50 0.42 0.37

Reconstruction resolution (%) 11.50 2.30 1.20 0.23 0.12 0.06

Displayed are the resolution of error correction (binomial test only) and of haplotype reconstruction as a function of the number of reads. The resolution of the error
correction is defined as the smallest frequency of a mutation that will be visible over the background error rates; it is calculated with error rate e = 0.0025 and
significance level a= 0.001. The resolution of the haplotype reconstruction (derived from the Lander–Waterman model) is the smallest haplotype frequency expected to
be entirely covered by reads. For small read sizes, haplotype reconstruction is the limiting factor (underlined in the table) but for over approximately 35,000 reads, error
correction is the limiting factor.
doi:10.1371/journal.pcbi.1000074.t003
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Simulations
Our starting point is the first 1 kb of the wild type sequence of

the HIV pol gene, encoding the 99 amino acids of the protease and

the beginning of the reverse transcriptase. Random mutations are

introduced into this strain in order to generate genetic diversity.

We generated various populations in this way with diversities

between 20 and 80 base pairs (2 to 8%). All haplotypes were set to

have the same frequency in the population.

We report the expected value of the Hamming distance between

two haplotypes drawn from a population as our basic measure of

the diversity of a population. This statistic, which we call simply

‘‘diversity’’ can be thought of as a version of the Simpson measure

[45] that takes into account the genetic structure.

We use ReadSim [34] (available from http://www-ab.informatik.

uni-tuebingen.de/software/readsim/) to simulate the error

process of pyrosequencing. We generate reads by running

ReadSim with the options ‘‘–meanlog 0.15 –sigmalog 0.08 –

filter’’ (aside from these options, we use the default parameters).

This process results in about 7 insertions and 3 deletions per kb.

Since pyrosequencing produces light coverage on the tails of the

input genomes, we simulate by padding the region of concern

with 100 nucleotides on each end and discard reads from the

tails. The error correction (Algorithm 1) is run with window size

of 24, p-value of 0.001, and error rate e= 0.0025. We recorded

the frequencies of errors at each position in the genome during

simulations of populations of size 10 at 5% diversity. Sampling

from these frequencies allowed us to create reads with precise

error rates for Figure 9.

For the simulations of haplotype reconstruction, we generate

pyrosequencing reads using the model described above and

illustrated in Figure 5 complemented by uniform sequencing

errors at rate 0, 0.1, and 0.2 per kb. We build the read graph and

apply Algorithm 2 repeatedly until 200 candidate haplotypes are

found. The EM algorithm was run with 10 random starting points.

To speed up the EM algorithm, we round all frequencies ph ,

1026 to zero.

We also test a simple alternative to the EM algorithm as follows.

For each haplotype h M H, let ch count how many reads haplotype h

is consistent with and set ph~ch

�P
l[H

cl . This estimatewill be

correct under the given model if each read is consistent with

exactly one haplotype. For evaluating the performance of the

various steps of our reconstruction method, we use several basic

measures of performance. To measure the distance between two

sets of haplotypes (one original and one inferred), we calculate

how many of the original haplotypes are found among the

inferred haplotypes as well as the average of the distances

between each inferred haplotype and its closest original haplotype

(Figure 6). Distance is measured as Hamming distance on the

amino acid level. To compare two populations with different

frequencies but the same haplotypes, we use the Kullback–Leibler

(KL) divergence DKL (pIq) =ShMH ph log(ph/qh), where p and q are

the two discrete (haplotype) distributions with the same support H
(Figure 7). To measure the performance of the entire process, we

measure how much of the inferred population is close to the

original population. Specifically, we calculate the percentage of

the inferred population that is within a specified distance from

one of the original haplotypes (Figure 9). We refer to this statistic

as wn, where n is the number of amino acid differences we

allow.

HIV sequence data
Virus populations derived from four treatment-experienced

patients between 2000 and 2005 were sequenced using both

pyrosequencing and limiting dilution Sanger sequencing. The

plasma HIV-1 RNA levels in the four plasma samples were each

greater than 100,000 copies/ml as determined using the

VERSANT HIV-1 RNA assay [46]. Each sequence encompassed

all 99 HIV-1 protease codons and the first 241 reverse

transcriptase codons. The same genomic region of the same four

samples was analyzed using limiting dilution and direct Sanger

sequencing of the clones. Sample preparation and pyrosequencing

and Sanger sequencing techniques are explained in detail in [5].

Briefly, ultra-deep pyrosequencing was performed on four RT-

PCR products from RNA extracted from cryopreserved plasma

samples. The median number of cDNA copies prior to sequencing

was 100 with an interquartile range of 75 to 180. The resulting

datasets consisted of between 4854 and 7777 reads of average

length 105 bp. Reads were error corrected (Algorithm 1) and

translated to amino acids. For haplotype reconstruction, Algo-

rithm 2 was run repeatedly until all or at most 10,000 candidate

haplotypes were found. The samples were translated into amino

acids after the error correction step; thus, the haplotype

reconstruction and frequency estimation algorithms are done on

the amino acid level.

For the sample with the greatest diversity (V11909), the

unamplified cDNA product was serially diluted prior to PCR

amplification. Bidirectional sequencing was performed directly on

37 amplicons derived from the 1/30 cDNA dilutions and 31

amplicons derived from the 1/100 cDNA dilutions. Three

sequences were discarded because of incomplete coverage. For

the other three samples, we used the Sanger method to sequence a

total of 32, 42, and 26 plasmid subclones per sample. Some of the

sequences obtained from limiting dilutions contained mixtures of

several clones. In this case, in order to measure the Hamming

distance between an inferred haplotype and a clonal haplotype

with ambiguous bases, we used the minimum distance over all

possible translations of the ambiguous haplotype.

Supporting Information

Figure S1. Chain decompositions. Displayed are two differ-

ent chain decompositions of the read graph for 1000 reads from a

population of 5 haplotypes at 3% diversity. The bottom five lines

correspond to reads matching a haplotype uniquely; the top to

reads matching several haplotypes. One decomposition gets one

haplotype entirely correct (top, black); the other gets two different

haplotypes essentially correct (bottom, green and yellow). In this

way, taking multiple chain decompositions allows us to reconstruct

all haplotypes.

Found at: doi:10.1371/journal.pcbi.1000074.s001 (0.84 MB EPS)

Figure S2. Haplotype reconstruction. Up to 1000 candidate

haplotypes were generated using Algorithm 2 from 10,000 error

free reads drawn from populations of size 10, 20, and 50

(subfigures (A), (B), and (C), respectively) at varying diversity levels.

Displayed is a measure of the efficiency of haplotype reconstruc-

tion: the average Hamming distance (in amino acids) between an

original haplotype and its closest match among the reconstructed

haplotypes.

Found at: doi:10.1371/journal.pcbi.1000074.s002 (0.01 MB EPS)

Figure S3. Error correction. Shown is the resulting error after

error correction on populations with 4% diversity. Populations

with up to 50 haplotypes of equal frequency were created. The

program ReadSim was used to simulate pyrosequencing with an

error rate of 3 to 6 errors per kb (after alignment). Error correction

successfully reduced the error rate by a factor of approximately 30.

Found at: doi:10.1371/journal.pcbi.1000074.s003 (0.02 MB EPS)
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Figure S4. Size of the read graph cover. Displayed is the

computed lower bound on the population size from simulations

with varying error rates and numbers of reads. Population

diversity ranged from 3 to 7%. The lower bound is computed as

the minimal size of a cover of the read graph. Error bars give

interquartile ranges over 100 trials at different diversity levels. This

estimated lower bound is quite accurate for error free reads; it

seems to increase linearly with the number of reads if errors are

introduced.

Found at: doi:10.1371/journal.pcbi.1000074.s004 (0.02 MB EPS)
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