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Abstract

Vertebrate body designs rely on hydroxyapatite as the principal mineral component of relatively light-weight, articulated
endoskeletons and sophisticated tooth-bearing jaws, facilitating rapid movement and efficient predation. Biological
mineralization and skeletal growth are frequently accomplished through proteins containing polyproline repeat elements.
Through their well-defined yet mobile and flexible structure polyproline-rich proteins control mineral shape and contribute
many other biological functions including Alzheimer’s amyloid aggregation and prolamine plant storage. In the present study
we have hypothesized that polyproline repeat proteins exert their control over biological events such as mineral growth,
plaque aggregation, or viscous adhesion by altering the length of their central repeat domain, resulting in dramatic changes in
supramolecular assembly dimensions. In order to test our hypothesis, we have used the vertebrate mineralization protein
amelogenin as an exemplar and determined the biological effect of the four-fold increased polyproline tandem repeat length
in the amphibian/mammalian transition. To study the effect of polyproline repeat length on matrix assembly, protein
structure, and apatite crystal growth, we have measured supramolecular assembly dimensions in various vertebrates using
atomic force microscopy, tested the effect of protein assemblies on crystal growth by electron microscopy, generated a
transgenic mouse model to examine the effect of an abbreviated polyproline sequence on crystal growth, and determined the
structure of polyproline repeat elements using 3D NMR. Our study shows that an increase in PXX/PXQ tandem repeat motif
length results (i) in a compaction of protein matrix subunit dimensions, (ii) reduced conformational variability, (iii) an increase
in polyproline II helices, and (iv) promotion of apatite crystal length. Together, these findings establish a direct relationship
between polyproline tandem repeat fragment assemblies and the evolution and the design of vertebrate mineralized tissue
microstructures. Our findings reveal that in the greater context of chordate evolution, the biological control of apatite growth
by polyproline-based matrix assemblies provides a molecular basis for the evolution of the vertebrate body plan.
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Introduction

Proline-rich regions occur in a wide variety of functionally

significant proteins, including mucins, snow flea antifreeze proteins,

prolamine storage proteins, pancreatic polypeptide hormones,

neuropeptides, Alzheimer amyloid, prion proteins, and tooth

enamel proteins [1,2]. Many proline-rich proteins contain repetitive

motifs and adopt left-handed polyproline II helical conformations

(PPII) [3,4]. These PPII helices are more mobile than other periodic

structures, e.g. a-helices or b-sheets [5], but nevertheless exhibit

well-defined molecular backbone conformation due to the rigidity of

the proline ring. The well-defined yet mobile and flexible structure

of polyprolines has led to the hypothesis that such proteins may

function as mineral-binding domains, protein-protein docking

domains, or internal molecular spacers during the formation of

biological minerals and other biocomposites [6]. Remarkably,

proline-rich, tripeptide tandem repeat proteins participate on all

levels of biological mineralization and include members as diverse as

the Haliotis rufescens protein Lustrin A involved in the extracellular

deposition of shell and pearl, the Strongylocentrotus purpuratus protein

SM50 contributing to the mineralization of sea urchin teeth and

spicules from magnesium calcite and protodolomite, as well as

vertebrate collagen I and the tetrapod tooth enamel protein

amelogenin [6,7].
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The rise of vertebrates coincides with the emergence of

revolutionary body designs that rely on hydroxyapatite as the

principal mineral component of bones and teeth [8]. Vertebrates

use apatites to form relatively light-weight, articulated endoskel-

etons and sophisticated tooth-bearing jaws, facilitating rapid

movement and efficient predation. A large degree of flexibility

(Greek: apatite = deceit) allows apatites to be readily shaped by

proline-rich proteins such as collagen I and the tooth enamel

protein amelogenin.

Apatite mineral growth and habit in vertebrate enamel are

controlled by a unique proline-rich protein, amelogenin, which

forms the majority of the developing enamel matrix (about 95%)

[9]. A recent study has shed new light on the organization of this

relatively unstructured protein [10]. Other studies have indicated

that amelogenin self-assembly might be mediated by a comple-

mentary relationship between the hydrophobic and PPII helical

regions [11,12]. Difficulties in obtaining protein crystals suitable

for X-ray crystallography have prompted a series of studies using

circular dichroism (CD), NMR, Raman spectroscopy, and

molecular modeling studies [13]. Earlier CD, FTIR, and Raman

spectroscopy experiments suggested mixed b-sheet/b-turn/helix

and random coil structures [7,14,15] with extended b-spiral/poly-

L-proline type II (PPII) helical structures in the midsection of

amelogenin [13]. The importance of the amelogenin N-terminus

for amelogenin self-assembly has been confirmed by yeast-two-

hybrid studies and biochemical analysis of the two serine residues

in positions 16 and 25 [16,17]. Based on solid state NMR data, the

amelogenin carboxy-terminal domain appears to be oriented next

to the hydroxyapatite crystal surface [18]. Loss of the carboxy-

terminus as it occurs during amelogenin proteolytic processing has

been associated with a reduced affinity to hydroxyapatite and a

reduction in the ability to inhibit crystal growth [19,20]. Recent

crystal growth studies suggest that the carboxy-terminus is

important for the alignment of crystals into parallel arrays while

the remainder of the molecule plays a role in the inhibition of

crystals growth [21].

With the emergence of prismatic enamel in mammals, the

length of amelogenin polyproline tri-peptide repeats increases

significantly, suggesting that the augmentation of amelogenin

proline-rich regions is governed by evolutionary trends. The

augmentation in polyproline repeat length occurs within the

proline-rich amelogenin peptide (PRAP, i.e. the region from

AA46–AA166), which is comprised of an evolutionary ‘‘hotspot’’

containing a series of PXX tandem repeats [22,23]. The rapid

evolution of the PRAP from amphibian to mammals was primarily

accomplished by insertions of PXX tripeptide motifs [24], with

PXQ as the most frequent tripeptide sequence element. In these

extended polyproline repeat structures, both proline and gluta-

mine cause structural rigidity of the newly added tripeptide

complexes [25].

The unique occurrence of elongated polyproline stretches and

amelogenin protein assembly in the evolution of the vertebrate

dentition prompted us to ask the question of whether repeat length

and self-assembly dimensions were related and whether there was

any association between polyproline repeat motif length and

structural changes in mineral shape and matrix organization. In

order to ask this question, we compared polyproline repeat length

and amelogenin nanosphere dimensions between vertebrates and

generated a number of biomimetic peptides. We then tested the

relationship between mammalian and amphibian polyproline

repeat length, nanosphere assembly, and crystal growth in a frog

amelogenin overexpressing mouse model. Finally, we determined

the 3D NMR structure of the amelogenin repeat region to identify

unique structural motifs explaining the correlation between

amelogenin self-assembly and polyproline repeat length. In the

present study we are demonstrating that the unique ability of

polyproline motifs to shape biological minerals lies in their ability

to alter protein matrix self-assembly. We are arguing that in the

greater context of chordate evolution, the biological control of

apatite growth by polyproline-based matrix assemblies provides a

molecular basis for the evolution of the vertebrate body plan.

Results/Discussion

Non-Mammalian Amelogenins Contain Fewer Proline
Tripeptide Repeat Sequences Than Mammals

PXX repeat element organization is highly conserved between

mammals (e.g., Homo, Mus), reptiles (e.g., Elaphe, Paleosuchus),

and amphibians (e.g., Xenopus, Rana) (Figure 1A). There were

fewer PXX repeat elements in amphibians, while several

mammalian species (e.g., ruminants and marsupials) featured

PXX repeat numbers exceeding those found in humans or mice

(Figure 1A, 1B). A comparison with known amelogenin sequences

indicated that the number of PXX repeats in the frog Rana pipiens

was significantly shorter than the PXX repeat number in mice,

goats, or steers (Figure 1B). This comparison indicates a potential

trend toward increased polyproline repeat length with increasingly

sophisticated enamel structures in vertebrates.

Species with Long Amelogenin PXX Repeat Stretches
Have Smaller Nanospheres Than Those with Short
Polyproline Repeat Regions

In order to determine whether changes in PXX repeat length

were associated with changes in supramolecular enamel protein

assembly dimensions in nature, we compared repeat length and

supramolecular assembly dimensions from four selected vertebrate

species using atomic force microscopy (AFM) and dynamic light

scattering (DLS; Figure 1B–D). Native enamel matrix proteins

from frog (Rana pipiens), mouse (Mus musculus), goat (Capra hircus),

and bovine (Bos taurus) were chosen to represent increasing PXX

Author Summary

The microstructure of vertebrate bones and teeth is
controlled by polyproline-rich protein matrices (such as
amelogenin) that serve as a scaffold to control the
assembly of biological apatites. In tooth enamel, amphib-
ians have large amelogenin subunits and thin enamel
while mammals have smaller amelogenin subunits in
tandem with elongated crystals and complex prismatic
organization. Using specific peptides and frog amelogenin
overexpressed in mice, we confirmed the effect of the
length of the elongated polyproline repeat on reduced
matrix subunit dimensions and enhanced apatite crystal
length. Three-dimensional structures solved by NMR
(nuclear magnetic resonance) and surface modeling
algorithms indicate that elongated polyproline repeat
stretches in amelogenins affect the dimensions of the
supramolecular matrix through an increase in polyproline
II helices, resulting in a compaction of supramolecular
subunit dimensions. We propose that the availability of
readily shaped apatites and innovative mechanisms based
on amelogenin-repeat motifsthat compartmentalize and
shape biological minerals was essential for the rise of early
vertebrates, enabling the manufacture of strong teeth and
backbones that might have given vertebrates a decisive
survival advantage in the competition for food and in the
sophistication of locomotion.

Polyproline Motif Elongation in Skeletal Evolution
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Figure 1. Polyproline repeats in the evolution of bilaterian mineralization systems. (A) Conservation and evolution of the tooth enamel
protein amelogenin. Note the high conservation of PXX repeat elements among mammals (e.g., Homo, Mus), reptiles (e.g., Elaphe, Paleosuchus), and
amphibians (e.g., Xenopus, Rana) (light and dark grey shaded areas). The conserved PXX majority repeat region served as a blueprint for our designer

Polyproline Motif Elongation in Skeletal Evolution

PLoS Biology | www.plosbiology.org 3 December 2009 | Volume 7 | Issue 12 | e1000262



repeat length in vertebrates (Figure 1B). Both the AFM and the

DLS analysis demonstrated that enamel protein supramolecular

assembly dimensions gradually decreased by 60% from frog to

bovine, while PXX length gradually increased by 250%

(Figure 1B–D), suggesting an inverse correlation between polypro-

line repeat length and enamel protein 3D-assembly dimensions in

the evolution of vertebrate enamel proteins.

PXX Designer Peptide Length Determines Apatite Crystal
Growth

In order to determine the effect of polyproline designer peptides

of increasing length (Figure 1A) on apatite crystal growth, crystals

were grown in the presence of PXX polyproline designer peptides

or amelogenins. Addition of PXX designer peptides to the

crystallization solution resulted in the formation of needle-shaped

crystallites, and longer PXX repeat motifs corresponded with

increased crystal length (PXX12: 21.666.5 nm, PXX24:

42.968.5 nm, PXX33: 102.1636.3 nm). Addition of recombi-

nant full-length amelogenin (rM180) resulted in the formation of

elongated crystals of 106.2619.3 nm length. Hydroxyapatite

crystals grown without any addition of protein measured

8.263.9 nm in length while the 33 mer glutamine/alanine

replacement polypeptide PQA yielded flake-like particles with

broad diffraction rings (Figure 2A, 2D). There were distinct

differences in diffraction patterns between crystals grown under

the control of various additives (Figure 2A). The control only

showed diffuse diffraction patterns indicative of amorphous

calcium phosphate. Both the PXX12 and the PQA sample also

revealed only diffuse diffraction rings. The PXX24 treated sample

featured a preferred orientation in the 002 plane and a diffuse

reflection ring in the 210 plane. Both the PXX33 and the

amelogenin treated samples displayed sharp rings in both the 002

and the 210 plane. There was also a very faint reflection ring in the

104 plane of the PXX24, the PXX33, and the amelogenin

samples. These findings demonstrate that PXX designer peptides

with increased length yield significantly longer apatite crystals with

diffraction patterns similar to those of developing enamel apatite

crystals [29]. Specifically, 12 mer polyproline repeat stretches were

associated with amorphous apatite while stretches of 24 mer and

above featured a crystalline mineral phase. They also document

that PXX polyproline peptides alone exert a profound control on

apatite crystal growth. We interpret these results to indicate that

the polyproline backbone of elongated PXX repeat peptides

enhances protein matrix structural rigidity, resulting in an

inhibition of epitaxial apatite crystal growth on a- and b-axis

surfaces while promoting apatite crystal growth in c-axis direction.

PXX Designer Peptide Length Determines
Supramolecular Matrix Assembly

In order to further understand the mechanisms by which

polyproline repeat peptides affect crystal growth, we decided to test

the effect of polypeptide length on protein matrix organization. In

previous studies we demonstrated that the extracellular protein

matrix of developing tooth enamel provides a complex supramolec-

ular biomineralization template that directly controls enamel crystal

formation [9,26]. Here we once more used our PXX12, PXX24,

and PXX33 peptides to ask the question whether the length of

these polypeptides affects organic matrix organization. In order to

address this question, protein assemblies on coated carbon grids

were studied using transmission electron micrographs (TEM)

(Figure 2B). In addition, AFMs of proteins in solution were

generated (Figure 2C). Our results demonstrated that protein matrix

nanosphere diameters were 17.962.7 nmAFM (10.161.2 nmTEM)

for PXX12, 13.962.6 nmAFM (6.160.8 nmTEM) for PXX24, and

9.261.9 nmAFM (4.060.5 nmTEM) for PXX33. Nanosphere diam-

eters of the two controls were 27.364.6 nmAFM (13.361.5 nmTEM)

for the recombinant full-length mouse amelogenin control (rM180)

and 15.162.8 nmAFM (8.861.9 nmTEM) for the 33 mer glutamine/

alanine replacement polypeptide PQA (Figure 2E). In average, TEM

nanosphere dimensions were about 50% of their AFM counterparts,

a difference that might be explained by the differences in sample

preparation between the dissolved protein used for AFM and the

dried TEM sample. Sample buffers did not yield any significant

substructures. Both AFM and TEM data demonstrated that

nanosphere diameters decreased with increasing peptide length,

i.e. PXX33 nanospheres measured about half the size of PXX12

nanospheres and were double as densely packed. This apparent

readiness of extended PPII helices to assume a high level of

compaction might be explained by a dramatic reduction in

conformational entropy in such an assembly [27].

A comparison of mouse and frog amelogenin sequences

indicated that the number of prolines was 34 and 27 in mouse

and Rana pipiens PRAPs, respectively, and that the major difference

between mouse and frog amelogenins was a 33% higher number

of PXX repeat motifs in mice versus frogs (Figure 1A, 1B).

Glutamine is the second most likely residue to appear in a PPII

helix segment (second to proline) [4] and thus a likely partner to

interact with prolines in the function of PPII helices. We were thus

interested in testing the effect of glutamines on the macromolec-

ular assembly of polyprolines. Remarkably, when the 5 glutamines

in PXX33 were exchanged with alanine substitutes (PQA peptide),

nanosphere diameters about doubled and electron density

distribution on micrographs was drastically altered. The 33 mer

glutamine/alanine replacement polypeptide PQA did not yield

any HAP crystals of measurable length (Figure 2A). The loss of

HAP crystal extensions underscores the importance of glutamine

insertions in the overlying polyproline repeat sequence for crystal

growth. The glutamine substitutions with alanine, effectively

reversing the effect of extended polyproline macromolecular

compaction found in PXX stretches, also indicate that glutamines

play a pivotal role in the compaction of PPII helices as they occur

in many biological systems, including biominerals.

Disturbed Enamel Formation and Greater
Supramolecular Enamel Matrix Dimensions in Frog
Amelogenin Expressing Mice

While hydroxyapatite crystals of mammalian enamel are

organized into tightly packed rods (prisms) [26,28,29], this regular

organization in enamel prisms is largely absent in amphibians and

reptilians [30]. On a molecular level, the emergence of prismatic

enamel organization during the amphibian/reptile to mammal

transition has been paralleled by a significant increase in

amelogenin PXX repeat length (Figure 1A) [31–36]. We have

thus hypothesized that the unique arrangement of elongated

peptides PXX12, PXX24, and PXX33. In addition, a fourth designer peptide (PQA) was synthesized in which glutamine was replaced by alanine. (B)
Increase in PXQ PXX repeat region length from amphibians to rodents and then once more to ruminants. (C) Atomic force microscopy (AFM) images
of extracted enamel proteins from diverse vertebrate species. Note the increase in aggregate (nanosphere) dimensions from bovine to goat to mouse
and to frog. (D) Highly significant differences between average species-specific enamel protein nanosphere diameters based on statistical evaluation
of AFM images and dynamic light scattering (DLS). Bovine nanospheres were less than half the size of frog counterparts.
doi:10.1371/journal.pbio.1000262.g001
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Figure 2. Hydroxyapatite crystal growth control and self-assembly of polyproline designer peptides. (A and D) Effect of polyproline
designer peptides on hydroxyapatite (HAP) crystal growth. Increasing length of designer peptides from PXX12 to PXX33 resulted in elongated HAP
crystal (A). HAP crystals grown with PXX33 were similar in length to those grown with full-length amelogenin. The PQA glutamine/alanine replacement
peptide resulted in thin plates unlike the needles grown with PXX repeat peptides. HAP control solutions incubated without protein formed spherical
deposits. Crystal dimensions are documented in (D). Bar = 200 nm. Electron diffraction analysis of PXX24, PXX33, and amelogenin treated samples
resulted in sharp and distinct reflection rings in the 002 and 210 planes and an additional faint ring in the 104 plane, similar to those found in developing
enamel crystals. Control crystals and those grown in the presence of PXX12 and PQA only showed faint diffraction patterns. (B, C, and E) Effect of
polyproline designer peptide length on supramolecular matrix assemblies. Both TEM and AFM analyses indicated that matrix subunit dimensions were
significantly reduced with increasing designer peptide length (from PXX12 to PXX33). Full-length amelogenins formed sizable nanospheres measuring
27 nm by AFM and 13 nm by TEM in diameter. Matrix dimensions and assembly patterns of the PQA glutamine/alanine replacement peptide were
significantly different from their PXX33 counterparts. Buffer control solutions did not assemble into nanosphere-like structures. All measurements in this
study were statistically evaluated and displayed using standard deviation (s.d.). Bar (TEM) = 25 nm, (AFM) = 50 nm.
doi:10.1371/journal.pbio.1000262.g002
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mammalian apatite crystals into prisms is a result of PXX repeat

length in the PRAP. In order to examine the effect of a shortened

polyproline repeat amelogenin on mouse enamel formation, Rana

pipiens amelogenin expressing mice (fAmel-x-null mice) were

generated by cross-breeding amelogenin null mice with Rana

pipiens amelogenin transgenic overexpressors to prevent the normal

mouse amelogenin background from interfering with the trans-

genic phenotype. In this model, frog amelogenins were cleaved in

a very similar fashion to their murine counterparts (Figure 3J).

Enamel of first mandibular molar from five amelogenin null,

fAmel-x-null, and wild-type mice each was analyzed and

compared between groups. The phenotype in frog amelogenin

overexpressors that were not crossed with null mice (fAmel) was

less severe and thus not used for further analysis. Amelogenin null

mice, which were used as a control, only featured a rudimentary

mineral deposit on the surface of the underlying dentin (Figure 3B).

Comparison between first mandibular molar enamel of fAmel-x-

null mice and wild-type controls demonstrated 50.3% reduced

enamel thickness and grossly altered enamel prism structure

including massive patches of fused crystallites, especially in the

coronal half of the fAmel-x-null enamel layer (Figure 3C, 3E

versus 3D, 3F). We attribute this change in enamel prism pattern

to a drastic reduction of PXX repeat stretches in the frog

amelogenin compared to its mouse counterpart, resulting in an

impairment of protein assemblies to coat and package individual

elongated crystallites. The prism-less organization of fAmel-x-null

enamel also somewhat resembled the prism-less structure of frog

enamel (Figure 3E versus Figure 3A), suggesting that amelogenins

with elongated polyproline stretches might be one requirement for

prismatic enamel. Enamel matrix nanosphere diameters were

20.962.6 nm in fAmel-x-null mice and 14.061.9 nm in their

wild-type controls (Figure 3G–3I). As a result, enamel matrix

nanosphere dimensions in fAmel-x-null mice exceeded those of

controls by 50.1%. These findings are corroborated by DLS-based

comparisons demonstrating significantly larger frog amelogenin

nanospheres compared to mouse amelogenin nanospheres

(Figure 1D). Together, these studies document that the presence

of increased length of polyproline repeat stretches in mammalian

amelogenins is associated with both reduced macromolecular

assembly dimensions and sophisticated mammalian enamel

crystal/prism structure. Alterations in prism organization as seen

as a result of elongated polyproline stretches may also entail

additional mechanisms not highlighted in the present study.

Cellular effects such as changes in cell movement pattern or in

ameloblast morphology might also contribute to the phenotype

observed and other portions of the amelogenin molecule are likely

to be involved in amelogenin nanosphere assembly as well, even

though their exact contributions remain to be established.

Elongated Amelogenin-Based PXX Repeat Peptides
Feature Left-Handed PPII Helices, Reduced Structural
Variability, and Reduced Electrostatic Potential

In order to identify unique structural features and to explore the

effect of repeat motif elongation on enamel matrix organization,

we have performed a series of structural analyses based on the

longest PRAP-derived designer peptide PXX33. In the absence of

amelogenin X-ray crystallography data, CD, FTIR, and Raman

spectroscopy studies have suggested mixed b-sheet/b-turn/helix

and random coil structures [7,37] with extended b-spiral/poly-L-

proline type II (PPII) helical structures in the PRAP [10–12]. In

order to determine structural features of the PRAP-derived

PXX33 polypeptide, NMR analysis was performed and chemical

shifts of 20 out of 33 amino acid residues of the PXX33 peptide

were completely or partially assigned (Table S1), providing a basis

for subsequent NOE (Nuclear Overhauser Effect) analysis. Using

Nuclear Overhauser Effect Spectroscopy (NOESY), a total of 151

(NOE) definitive restricts were obtained, including 20 intra-amino

acid residues and 100 neighbor amino acids [dN(i, i+1)], 24 dN(i,

i+2), 5 dN(i, i+3), and 2 dN(i, i+4) NOEs. No long distance NOEs

were detected (Table S2). Analysis of chemical shifts and NOE

patterns did not reveal any typical a-helix or b-strand secondary

structures.

In order to calculate and analyze the three-dimensional structure

of the PXX33 peptide at atomic resolution, NOE constrains were

entered into the DYANA software package to calculate a total of

200 candidate structures. There was a fairly high backbone root

mean square deviation (RMSD) of 7.5161.51 Å and a heavy atom

RMSD of 8.5661.54 Å between the 200 candidate structures

investigated. The absence of long distance NOEs suggest that

PXX33 forms extended structures in aqueous solution while the

high RMSD values imply a lack of well-defined conformations. In

order to illustrate the similarities and slight variation between

individual candidate structures, five structures representing lowest

energy conformations were plotted together and superimposed

using the MolMol software (Figure 4A). Our analysis revealed

significantly higher structural variability at the PXX33 N-terminus

representing the PXX12 polypeptide (Figure 4A). The high

structural variability between various conformations in the

PXX12 region might be one of the reasons for the larger size and

irregular boundaries of the PXX12 nanospheres compared to their

PXX24 and PXX33 counterparts. Further analysis of individual

lowest energy conformations revealed three left-handed extended

PPII helices (PPII-1, P13–P16; PPII-2, P19–P22; PPII-3, P28–P31)

(Figure 4B), which were identified using the following criteria: (i) left-

handedness, (ii) 3 amino acid residues per turn, and (iii) 3.1 Å per

residue advance (9.3 Å per turn). Individual PPII turns measured

8.8 Å (PPII-1), 9.3 Å (PPII-2), and 9.45 Å (PPII-3). These were four

residue-length PPII helices in which the proline rings at the positions

i and i+3 were oriented in the same direction [1,38]. The presence

of three PPII helices in the amino acid region 13–33 and the

absence of PPII helices in the PXX12 stretch might be another

reason for the enormous compaction observed in PXX33

supramolecular assemblies compared to PXX12 and PXX24

counterparts as PPII helices have been associated with unusual

structural compactness [38].

Several other factors may also explain the dramatic compaction

of PXX33 supramolecular assemblies compared to aggregates

formed by shorter polypeptides. It is widely accepted that

hydrophobic free energy is a major force driving peptide-peptide

interactions [39]. The surface of the larger PXX33 peptide

(Figure 4C) is at least as hydrophobic as the smaller PXX12

peptide (Figure 4D), and its increased surface area provides more

contacts for interaction and more van der Waals attraction. An

increased attraction between the larger peptides would be

consistent with the formation of aggregates with higher density,

which was observed experimentally. Another factor contributing

to the reduced size of PXX33 assemblies might be their reduced

mobility, especially in light of the flexibility of polyproline

structures in solution. The mean thermal velocity of a peptide

due to Brownian motion is inversely proportional to the square

root of its mass [40], resulting in smaller peptides in an aggregate

to impact each other with higher frequency, which in turn would

weaken the strength of the aggregate and reduce its density.

Perspective
Already Hellenistic culture knew of the enormous adaptability,

variability, and flexibility of apatites, using the word apatav (to

deceive) in reference to the similarities between apatites and other

Polyproline Motif Elongation in Skeletal Evolution
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Figure 3. Differences in enamel prism formation and enamel matrix structure between molars from wild-type and frog amelogenin
overexpressing mice. Note the prism-less organization of frog enamel (A) and the complete loss of structured enamel in the amelogenin null mice
(B). In these scanning electron micrographs, enamel (en) and dentin (de) were labeled for orientation purposes. Frog amelogenin overexpressing
offspring crossed with amelogenin null mice (fAmel-x-null) demonstrated reduced enamel thickness (C/E versus D/F) and grossly altered enamel
prism structure with fused individual crystallites, especially in the coronal half of the transgenic enamel layer (C/E versus D/F). Notably, fAmel-x-null
mouse enamel lacked the regularly intercrossed prism pattern found in wild-type mouse molars (C/E versus D/F). In order to compare the effect of
frog amelogenins on enamel matrix structure when compared to mouse amelogenins, enamel matrix nanosphere diameters were determined on
transmission electron micrographs from the enamel matrix of developing mouse first mandibular molars (G–I). Subunits measured 20.962.6 nm in
frog enamel chimera and 13.961.9 nm in their wild-type controls (G–I). Enamel matrix nanosphere dimensions in fAmel-x-null enamel exceeded
those of regular mouse enamel by about 50%. (G–I) Cleavage patterns of extracted mouse enamel proteins from fAmel-x-null mice (lane 1) and wild-
type mice (lane 2) were almost identical (J), while there was no amelogenin detected in amelogenin null mice (lane 3). Equal protein loads were
subjected to an antibody against recombinant amelogenin for Western blotting (J).
doi:10.1371/journal.pbio.1000262.g003
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minerals. Five hundred million years earlier, during the Ordovician,

the first vertebrates took advantage of these versatile minerals as

building blocks for newly designed endoskeletal backbones and

teeth. The incorporation of apatites into early vertebrate body

designs was likely facilitated by SPARC and SPARCL1 as ancestors

of SCPP mineralization proteins that arose at the same time by

tandem duplication [41]. These early SPARC proteins might have

served as templates for insertion-based repeat length expansion as it

is associated with the generation of intrinsically unstructured

proteins [42,43]. The significant variation in enamel structure and

polyproline repeat length among mammals (e.g. between rumi-

nants, dolphins, and rodents) indicates that polyproline length not

only increases from amphibians to mammals but also varies

significantly among mammals, perhaps in response to various

functional loads. While neither the use of apatites nor the presence

of proline-repeat polypeptides are unique for vertebrate mineralized

tissues, vertebrates were nevertheless first in using polyproline repeat

proteins to orchestrate the deposition of apatites into endoskeletal

mineralized tissues. Microstructured apatites incorporated into

innovative, highly flexible body plans not only gave these

comparatively diminutive creatures a survival advantage over

heavily armored organisms from the same period but also provided

a mineral substrate for the evolution of teeth as powerful tools

facilitating predation and food apprehension [44–46].

The ability of polyproline fragments alone to self-assemble and to

guide apatite crystal growth in C-axis dimension raises the question

about the role of the N-terminal and C-terminal amelogenin

flanking domains. Here we propose that the flexible yet rigid

structure of polyproline-rich assemblies provides a dynamic

molecular packaging material between elongating mineral crystals.

The evolution of elaborate mammalian enamel prisms as well as the

design of the first vertebrate endoskeletons might thus be a result of

sophisticated supramolecular polyproline matrices that insulate,

guide, and package individual apatite crystals. Mirroring nature, the

suitability of polyproline designer peptides to modulate apatite

crystal growth emerges as a novel design concept for biomimetic

enamel scaffolds and enamel tissue engineering.

Materials and Methods

Materials
Peptides (.99% purity) were synthesized by Genescript

(Piscataway, NJ). The carbon coated copper TEM grids were

purchased from SPI Supplies (West Chester, PA). Twelve mm

coverslips were obtained from Fisher Scientific (Pittsburgh, PA).

D2O (99.5%) was purchased from Cambridge Isotope Laborato-

ries (Andover, MA). Four hundred MHz NMR tubes were

obtained from Kontes (Vineland, NJ). Other common regents

were from Sigma Aldrich (St Louis, MO).

Cloning and Expression of Mouse Full-Length
Amelogenin

The full-length mouse amelogenin coding sequence was cloned

into pASK-43(+) with EcoR I and XhoI restriction site at 59 and 39

end, respectively. BL21-DM* was used as the host bacteria to

express the recombinant proteins. The bacteria were cultured at

37uC until the OD600 reached 0.8 and then were induced at 32uC
for 4 h. The expressed proteins were absorbed onto Ni-NTA

agarose column and washed with 10 column volumes of PBS and

3 column volumes of 40 mM imidazole in PBS. Then the proteins

were eluted with a pH 5.0 gradient (from 50 mM to 500 mM)

imidazole PBS solution. The eluted proteins were dialyzed against

H2O several times to make sure the salt and imidazole were

diluted at least 10,000 times. Subsequently, the purified proteins

were concentrated to about 10 mg/ml using a Centriprep YM-3

column. One litter bacteria culture yielded about 50 mg high

quality mouse full-length amelogenin protein.

Native Protein Extraction
Based on the high percentage of amelogenins in the enamel

matrix of developing teeth, enamel from unerupted teeth was

dissected and collected in 1 ml 6 M guanidine solution (pH 7.0)

and incubated overnight to dissociate the enamel proteins from the

enamel crystals. After centrifugation at 6,000 g for 15 min, the

supernatant containing the amelogenin protein was dialyzed

against water to remove the guanidine. Enamel proteins were

then concentrated with YM-3 centricon columns.

Scanning Electron Microscopy
Mice were sacrificed according to UIC animal care guidelines.

For scanning electron microscopy, 20 d postnatal mouse mandi-

Figure 4. PXX33 atomic structure derived from solution NMR.
(A) The five lowest energy structures selected from 200 calculated
structures represented in ribbon form. While the overall structure was
similar between all five conformations, there was a greater variability at
the N-terminal PXX12 region. (B) Backbone ribbon representation and
side chain heteroatom representation of one PXX33 lowest energy
structure. Three polyproline II helix regions—P13–P16 (PPII-1), P19–P22
(PPII-2), and P28–P31 (PPII-3) —are labeled. (C–D) Increase in surface
area in larger PXX33 polypeptides (C) versus PXX12 polypeptides (D),
resulting in increased interaction, van der Waals attraction, and denser
aggregates.
doi:10.1371/journal.pbio.1000262.g004
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bles were fixed in 4% paraformaldehyde and then saggitally

hemisected using an Exakt sawing device. Enamel surfaces were

etched in EDTA for 5 min, rinsed thoroughly, and dried

overnight. Samples were coated with gold and palladium and

then examined using a JEOL JSM-6320F scanning electron

microscope. All measurements in this study were statistically

evaluated using ANOVA and statistical dispersion was recorded

and displayed using standard deviation (s.d.).

HAP Crystal Growth
HAP crystal growth experiments were performed as previously

described [21]. Briefly, peptides and proteins were dissolved in

DDW at a concentration of 4 mg/ml and then adjusted to pH7.5–

8.0 with 20 mM NH4OH at 4uC. Carbon coated copper TEM

grids were immersed into the reaction mixture containing 1 mg/

ml peptide/protein, 2.5 mM CaCl2, and 1.5 mM (NH4)2HPO4

and incubated in a moisturized container at 37uC for 2.5 h.

Subsequently, TEM grids were quickly rinsed with DDW, blotted

against filter paper, and air dried. Transmission electron

microscopy was performed using a JEOL 1220 TEM. Electron

diffraction patterns were collected as described earlier [29].

Briefly, patterns were obtained on 20 representative samples per

group using a JEOL JEM-3010 in the diffraction mode at 300 kV

and a camera length of 50 cm. Measurements were made at 90u
incident to the sample. Patterns were measured for spot or ring

diameter directly from the digital camera image, and the d

spacings obtained were compared to those characteristic for

hydroxyapatite.

Peptide/Protein TEM Self-Assembly Experiments
Droplets containing 100 ml of diluted (1 mg/ml) pH7.5–8.0

peptide/protein solution were placed on carbon coated copper

TEM grids and incubated in a moisturized container at 37uC for

2 h. Thereafter, TEM grids were quickly rinsed with DDW,

immersed into 100 ml of freshly prepared 1% phosphotungstic acid

solution for 6 min, quickly rinsed with DDW again, air dried, and

analyzed using a Joel1220 TEM.

Peptides/Proteins Self-Assembly Experiment for AFM
The AFM measurements were carried out using an extended

MultiMode AFM (MMAFM) integrated with a NanoScope IIIa

controller (Veeco Instruments, Santa Barbara, CA) and a Q-

Control Module (nanoAnalytics, Muenster, Germany). The

MMAFM was equipped with a calibrated E-type piezoelectric

scanner and a glass cell for fluid TappingMode AFM (both from

Veeco). The silicon AFM cantilever/probe used in this study was

rectangular in shape, 130 mm in length and 35 mm in width

(NSC36, MikroMasch). The advertised typical force constant and

resonant frequency of this cantilever/probe is 0.6 N/m and

75 kHz, respectively. Nominal sharpness of the probe-tip end

radius is #10 nm. The cantilever/probes were oscillated near

30 kHz at low amplitude for fluid tapping mode AFM. Fluid

damping reduces the resonant frequency of rectangular AFM

cantilevers in air by approximately 50%. The AFM substrate used

for protein adsorption was Grade V5, Pelco mica (10640 mm)

purchased from Ted Pella (Redding, CA). The mica was freshly

cleaved using adhesive tape prior to use. Stock solutions of 10–

20 mg/ml protein in 40 mM Tris (pH 8.0) were mixed and stored

at 4uC and analyzed by AFM within a few days. Stock solutions

were diluted typically at 1:100 into the blank AFM imaging buffer

(40 mM Tris, pH 8.0) during scanning and adsorption to mica was

monitored. Typical AFM scan rates were 1.0–1.25 Hz for 512

data points6256 lines. The AFM images were planefit to correct

for background sloping errors.

Transgenic Mice Overexpressing the Rana pipiens
Amelogenin Gene

The mouse amelogenin genomic fragment was obtained by

PCR amplification of the BAC clone RP23-334F21 (X-chromo-

some), containing the amelogenin promoter region. We amplified

22.3 kb of a region that included the promoter, exon 1, intron 1,

and part of exon 2. Primers 1 and 2 (Figure S1) were used to

amplify a region from the ApaI (22,345) site to the EcoRI (2262)

site and Primers 3 and 4 to amplify a region from the EcoRI

(2262) site to the ATG start codon on exon 2 including the mouse

amelogenin signal peptide region. Primers 5 and 6 amplified a

fragment that ranged from the first amino acids of the frog

amelogenin to the stop codon based on our frog amelogenin

cDNA plasmid [35]. All three fragments were cloned into the

pBSKII modified vector (Stratagene, La Jolla, CA) containing poly

A. For cross-breeding studies, we mated mouse homozygous

amelogenin knockout mice with over-expressing frog amelogenin

transgenic mice. These mouse amelogenin knockout and frog

amelogenin over-expressing compound mice were used to study

frog amelogenin function in vivo. For further analysis, enamel of

first mandibular molar from five amelogenin null, fAmel-x-null,

and wild-type mice each was analyzed and compared between

groups. The phenotype in fAmel mice alone was less severe and

thus not used for further analysis.

Nanosphere and Mineral Crystal Measurement
Following sample processing for electron microscopy, 20

electron micrographs per sample from each group were collected

and further processed for image analysis. Crystal dimensions were

converted from pixels into nanometers based on electron

micrograph reference bars. For nanosphere measurements, 5

micrographs were measured and at least 30 nanospheres in each

micrographs were selected. For the mineral crystals measurements,

5 micrographs were measured and at least 10 crystal needles in

each micrograph were selected. All the data were analyzed with

SPSS software using the ANOVA test.

Nuclear Magnetic Resonance
All NMR measurements were performed in either 10% D2O/

90% H2O or 100% D2O at 10uC on a Bruker DRX 800MHz

spectrometer. The concentration of individual peptides was 5 mg/

ml. Standard homonuclear 2D TOCSY, NOESY, and COSY

experiments were conducted in order to generate backbone, side

chain, and NOE constraint assignments. The mixing time for

TOCSY and NOESY was 80 ms and 150 ms, respectively. 13C-

HSQC was performed with the naturally abundant 13C isotope.

Spectra were processed and analyzed using the SYBYL software

package (Tripos, MO). All 1H dimensions were referenced to

internal 2,2-dimethyl-2-silapentane-5-sulfinate (DSS). NOE con-

straints were manually classified into strong (2Å), medium (4Å), and

weak (6Å) groups. The sequence-specific backbone resonance

assignment was achieved through a combination of 2D NOESY,

TOCSY, and 13C-HSQC spectra by matching chemical shifts for a

given residue or short distance NOE signals. Structure calculations

were performed with the DYANA 1.5 program [47], using a

40,000-step energy minimization procedure. All subsequent

analyses of the structure and graphic representations of the three-

dimensional structures were performed using MolMol [48].

Supporting Information

Figure S1 Rana pipiens Amelogenin expressing trans-
genic mouse construct.
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Found at: doi:10.1371/journal.pbio.1000262.s001 (0.08 MB

DOC)

Table S1 PXX33 chemical shift table.

Found at: doi:10.1371/journal.pbio.1000262.s002 (0.08 MB

DOC)

Table S2 Detected NOEs of the PXX33 peptide.

Found at: doi:10.1371/journal.pbio.1000262.s003 (0.33 MB

DOC)
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