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Abstract

Wetlands are multifunctional systems performing as nature-
based solutions (NBS) for water management. This paper
provides an overview of natural and constructed wetlands and
their potential to support the regulation of hydrological fluxes
and water quality. Wetlands can modulate peak flows by
storing runoff and slowly releasing it over time, with positive
impacts on soil moisture. They can also change the overall
water balance by influencing evapotranspiration, infiltration,
and groundwater recharge. They can enhance resilience of a
catchment to floods and torrents, especially with relative low
return periods (<50 years), and safeguard water availability
during droughts. Wetlands may remove or reduce a number of
organic and inorganic pollutants (e.g., nutrients, heavy
metals, hydrocarbons, pesticides) by different physical,
chemical, and biological processes developed between
vegetation, microorganisms, soil/growth substrate, and water.
They have proven to be efficient and effective in improving the
quality of water from different sources, such as runoff from
agriculture and urban areas, and domestic and industrial
wastewater. The overall performance of wetlands is deter-
mined by their characteristics (e.g., size, design, type of
vegetation), within-catchment position, type and amount of
water and pollutants, and local conditions (e.g., climate). A
focus on wetlandscape, rather than individual wetlands, is
required for optimal water management and maximization of
other ecosystem services.
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Introduction

Wetlands are transition zones between terrestrial and
aquatic ecosystems [1]. Although wetlands are an
established concept, differences in size, location, dura-
tion of flooding, species hosted, and degree of manage-
ment have led to lack of agreement on a single scientific
definition [2]. Instead, commonly agreed attributes
include (i) permanent or seasonal presence of water
(surface water and/or saturated soil conditions), (ii) soil
characteristics  including slow decomposition and
organic matter accumulation, and (iii) flora (and fauna)
adapted to wet conditions [3,4]. Since water may or may
not be visible at the surface and given the broad range of
vegetation types, mapping wetlands is a challenging task
[5]. Despite extensive mapping efforts (e.g., Global
Lakes and Wetlands Database, Wetlands Map of the
World Conservation Monitoring Center, United Na-
tions’ Ramsar Wetland Inventory), there are still no
complete and uniform wetland maps providing infor-
mation on the location, distribution, size, and changing
status of wetlands in many regions worldwide [6,7].
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Wetlands provide unique and irreplaceable functions
linked to numerous ecosystem services essential for
biodiversity conservation, climate change mitigation,
and human well-being [8], and supporting important
economic activities such as tourism [9]. For example,
they provide food, water, and timber [10]; regulation of
hydrological cycles, including flood and drought control
[11,12]; maintenance of soil moisture and groundwater
generation [13]; purification of water [14]; regulation of
air quality [15]; nutrient cycling [16]; carbon seques-
tration [4]; support for biodiversity [9]; and improved
local esthetic and recreational values [17]. Ciritical
ecosystem services derive from multifunctional
wetlandscapes (multiple wetlands within a catchment)
based on aggregated effects of the individual wetlands
interacting with their surrounding landscape [9]. It is
estimated that wetland ecosystem services comprise
more than 20% of the total value of ecosystem services
globally [18].

Wetlands are one of the three major ecosystems on Earth
[15] and are found on every continent, with an esti-
mated global area of around 12.1106 km? [19]. Wetlands
worldwide are threatened by anthropogenic and natural
drivers, such as changes in land use (conversion to
agricultural land, urbanization) [20], water use and
availability [18], and climate change, including sea level
rise [17] and impacts of extreme events (i.e., floods and
droughts) [13] and warming [4]. They are also threat-
ened by a variety of degradation processes, such as
increased pollution loads [10]. Furthermore, wetlands
globally have been fragmented by human activities (e.g.,
land drainage), leading to reductions in the connectivity
needed to maintain the integrity of ecosystem func-
tioning [21]. Globally, wetland area has declined by 87%
since 1700 [19], by 64—71% since 1900 [22], and by 35%
since the 1970s [13]. Although constructed wetlands
can offset some of the damage caused by the loss of
natural wetlands, man-made systems cannot provide the
same ecosystem services as natural environments [10].

The potential to supply multiple ecosystem services
makes wetlands relevant as nature-based solutions
(NBS) [2,23]. The role of wetlands in water manage-
ment has received increasing attention over the past few
decades. Sustainable water management has become an
urgent challenge due to irregular water availability pat-
terns (e.g., more frequent and intense hydrometeoro-
logical extreme events) and water quality issues
(eutrophication, increasing wastewater), driven by both
anthropogenic and climate changes [24]. This paper
provides an overview of the types of wetlands that exist
and their potential as NBS for tackling global water
problems in terms of (i) water flow regulation, particu-
larly during extreme weather events (i.e., floods and
droughts), and (ii) improving water quality, focusing on
their potential for remediating different types of
contaminated waters and pollutant removal efficiency.

Types of wetlands

Owing to the current lack of consensus on the definition
of wetlands, their classification is problematic and several
different systems have been developed [25]. Of these,
the Ramsar Classification System for Wetland Type is the
most commonly used on a global scale [14]. It groups
wetlands into marine/coastal, inland, and human-made
wetlands, based on their location, vegetation format,
hydrological conditions, and natural/man-made setting.
These three main Ramsar classes are further subdivided
into 42 wetland types according to several characteristics
such as type of water and substrate (Table 1). Another
widely used classification system is that developed by
Ref. [1], which includes a hierarchical classification
based on hydrological, geomorphological, chemical, and/
or biological factors [26] (Figure 1).

In contrast to natural wetlands, which are gravity-fed
and have natural vegetation, constructed wetlands are
ecologically engineered artificial structures designed to
mimic the natural processes occurring in natural wet-
lands. They comprise assemblages of vegetation, soil
and substrates, water, and associated microbial com-
munities to remove organic and/or inorganic contami-
nants from surface waters, runoff, and/or wastewater,
improving water quality [27]. This is achieved through
physical (e.g., deposition, filtering), chemical (e.g.,
adsorption, precipitation, volatilization), and biological
(e.g., microbial removal and transformations) processes
[10]. Constructed wetlands are tailored to different
territorial conditions, involve minimal maintenance, and
are low-cost [24]. They also provide additional
ecosystem services, such as increasing local water
retention and biodiversity, and esthetic benefits [17].

As in the case of natural wetlands, there is no single
global classification for constructed wetlands, but their
categorization is more straightforward and is based on (i)
type of vegetation growth (i.e., free-floating, floating-
leaved, emergent, submergent), and (ii) water flow
regime (surface, subsurface) and flow direction (hori-
zontal, vertical) (Figure 2). Constructed wetlands are
usually characterized by a relatively simple design and
great scalability and flexibility [10]. Although the design
and construction details are individual and unique,
depending on designer preferences and local conditions,
there are some general technical general aspects, as
described in Ref. [8].

Impact of wetlands in disaster risk
reduction

Wetlands are often widely spread across the landscape
and play a critical role in water fluctuations in the
landscape [2]. They are characterized by complex pro-
cesses of fill and spill, making knowledge of their hy-
drological services fundamental when analyzing
hydrological processes in river basins [28]. Previous
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Table 1

Nature-based solutions for water management Ferreira etal. 3

Ramsar classification system for wetland type (adapted from http:/www.ramsar.org/).

Wetland type Wetland subtype

Brief description

Permanent shallow marine waters
Marine sub-tidal aquatic beds
Coral reefs

Rocky marine shores

Sand, shingle, or pebble shores

Marine/Coastal
Wetlands

Estuarine waters

Intertidal mud, sand, or salt flats
Intertidal marshes

Intertidal forested wetlands

Coastal brackish/saline lagoons

Coastal freshwater lagoons

Karst and other subterranean hydrological systems

Permanent inland deltas
Permanent rivers/streams/creeks

Inland Wetlands

Seasonal/intermittent/irregular rivers/streams/creeks

Permanent freshwater lakes
Seasonal/intermittent freshwater lakes
Permanent saline/brackish/alkaline lakes

In most cases <6 m deep at low tide; includes sea bays and straits
Includes kelp beds, sea-grass beds, tropical marine meadows

Includes rocky offshore islands, sea cliffs

Includes sand bars, spits, and sandy islets; includes dune systems
and humid dune slacks

Permanent water of estuaries and estuarine systems of river deltas

Includes salt marshes, salt meadows, saltings, and raised salt
marshes; includes tidal brackish and freshwater marshes

Includes mangrove swamps, nipa swamps, and tidal freshwater
swamp forests

Brackish to saline lagoons with at least one relatively narrow
connection to the sea

Includes freshwater delta lagoons

Marine/coastal

Includes waterfalls

Over 8 ha; includes large oxbow lakes
Over 8 ha; includes floodplain lakes

Seasonal/intermittent saline/brackish/alkaline lakes and flats

Permanent saline/brackish/alkaline marshes/pools

Seasonal/intermittent saline/brackish/alkaline marshes/pools

Permanent freshwater marshes/pools
Seasonal/intermittent freshwater marshes/pools

Non-forested peatlands
Alpine wetlands

Tundra wetlands
Shrub-dominated wetlands

Freshwater, tree-dominated wetlands
Forested peatlands

Freshwater springs, oases
Geothermal wetlands

Karst and other subterranean hydrological systems

Human-made
wetlands

Aquaculture ponds

Ponds

Irrigated land

Seasonally flooded agricultural land
Salt exploitation sites

Water storage areas

Excavations

Wastewater treatment areas

Canals and drainage channels, ditches

Karst and other subterranean hydrological systems

Ponds (<8 ha), marshes, and swamps on inorganic soils; emergent
vegetation waterlogged for most of the growing season

On inorganic soils; includes sloughs, potholes, seasonally flooded
meadows, sedge marshes

Includes shrub or open bogs, swamps, fens

Includes alpine meadows, temporary waters from snowmelt

Includes tundra pools, temporary waters from snowmelt

Shrub swamps, shrub-dominated freshwater marshes, shrub carr,
and alder thicket on inorganic soils

Includes freshwater swamp forests, seasonally flooded forests,
wooded swamps on inorganic soils

Peat swamp forests

Generally, <8 ha; includes farm ponds, stock ponds, small tanks
Includes irrigation channels and rice fields

Including intensively managed or grazed wet meadow or pasture
Salt pans, salinas, etc.

Generally, >8 ha; reservoirs/barrages/dams/impoundments
Gravel/brick/clay pits; borrow pits, mining pools

Sewage farms, settling ponds, oxidation basins, etc.

studies have demonstrated an important role of wet-
lands in reducing surface runoff and streamflow, atten-
uating peak flows, and retarding flow velocity and thus
contributing to flood mitigation [29—31]. Wetlands have
been shown to perform as effective NBS in attenuating
risks from flooding with short return periods (up to 5
years), but with rather limited function in mitigating 10-
to 50-year floods and unable to mitigate extreme floods

(>100-year return) [32]. However, if placed in specific
locations within catchments, wetlands may eliminate
high and very flood risk as demonstrated for detention
basins placed in critical flood zones in Portugal [33].
The actual degree to which wetlands can mitigate
flooding is debated, since their impact is determined by
e.g., wetland size and location within a catchment, and
specific topographical and soil conditions (e.g., soil
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Hierarchical classification of wetlands according to the Federal Geographic Data Committee [26], showing systems, subsystems, classes, and sub-
classes. "Rock bottom: generally permanently flooded areas with bottom substrates consisting of >75% stones and boulders and <30% vegetative cover.
2Unconsolidated bottom: generally permanently flooded areas with bottom substrates consisting of >25% particles smaller than stones and <25%
vegetative cover. *Aquatic bed: generally permanently flooded areas that are vegetated by plants growing principally on or below the water surface. “Reef:
characterized by elevations above the surrounding substrate and interference with normal wave flow. °Rocky shore: wetlands characterized by bedrock
stones or boulders with area coverage of >75% and <30% by vegetation. ®Unconsolidated shore: wetlands having unconsolidated substrates with <75%
coverage by stones, boulders, and bedrock and <30% native vegetation cover. ”Streambed (channel whose bottom is completely dewatered at low water
periods). 8Emergent wetland (wetlands dominated by erect, rooted, herbaceous hydrophytes). °Scrub-shrub wetland (wetlands dominated by woody
vegetation <6 m). '°Forested wetland: wetlands dominated by woody vegetation >6 m. ''Moss-lichen wetland: wetlands dominated by mosses or lichens

where other plants have less than 30% coverage.

porosity, water-holding capacity) which determine hy-
drological connectivity in the wetlandscape [12].
Overall, downstream wetlands have higher potential to
reduce floods than upland wetlands [34]. According to
Ref. [35], wetlands implemented at the urban or local
scale are efficient as NBS for low return period events,
while for large floods (e.g., 100-year recurrence) a
combination of different scale measures is needed.
However, the relationship between wetlands and their
hydrological functions is not simple [36]. Furthermore,

little is known about whether wetlands can effectively
mitigate flood risks under the conditions of future
climate change, which compromises the ability to
improve catchment resilience [32]. A number of recent
studies have evaluated flood risks on a regional or basin
scale by combining climate model outputs with hydro-
logical models [37—39]. Although these models advance
knowledge of flood risks in conditions of future climate
change, a clear spatiotemporal understanding of wetland
function in flood mitigation is lacking [32]. This is also

Current Opinion in Environmental Science & Health 2023, 33:100476

www.sciencedirect.com


www.sciencedirect.com/science/journal/24685844

Figure 2
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Types of constructed wetlands (adapted from Ref. [8]).

true for areas with a lower wetland distribution, where
models give large errors in the absence of a spatiotem-
poral component [40,41].

Wetlands may also contribute to alleviation of droughts
by storing water in the landscape, thus supporting
deceleration formation and acceleration recovery, and
reducing the duration and severity of drought events
[9]. However, their role in this context is not entirely
clear, since they can increase low flows during dry pe-
riods [42], but also lead to less water release and infil-
tration due to evapotranspiration losses [12].

There is an evident need to strengthen the protection
and restoration of wetlands as NBS and to improve un-
derstanding of their role in extreme weather events [13].
Taking into consideration all the knowledge and experi-
ence gained to date, it is clear that integration of wetland
water regulation services into hydroclimate disaster risk
assessment in conditions of climate change is important
for improving large-scale water management.

Impact of wetlands in improving water
quality

Wetlands perform as NBS to reduce levels of contami-
nants in surface waters by moderating the adverse water
quality impacts of soil erosion, runoff, and wastewater
contamination. Wetlands buffer the degradation of water
quality by retaining pollutants due to mechanical pro-
cesses (i.e., sedimentation, filtration), adsorption on the
substrate, biosorption and other more complex and

interlinked processes between plants and microorgan-
isms, and disinfection due to UV radiation from sunlight
[14,43]. They have been proven to be capable of
removing a number of organic and inorganic substances
(e.g., nutrients, heavy metals, pesticides, hydrocarbons,
xenobiotics, antibiotics) from contaminated water.
These pollutants may originate from stormwater in
agricultural areas [10,44], urban surfaces (e.g., roads)
[38], municipal wastewater (especially from small urban
agglomerations without access to municipal grids) [45],
landfill leachate [46], aquaculture effluents [47], and
specific industrial wastewaters [48,49]. Natural wetlands
(Figure 3) have a limit on how much can be added before
the natural plant and chemical processes are overloaded
and broken down, and thus exhibit a relatively limited
capacity to cope with continuous pollution [8].
Constructed wetlands have been widely used as an
alternative in wastewater treatment (both as secondary
and tertiary treatment) in different climate regions
(temperate, cold, tropical) and particularly in developing
countries due to their low cost [45,50]. Nevertheless,
there is little knowledge about their contribution to the
global amount of treated wastewater [10]. Wetlands can
also be used for recycling and reuse of water and waste-
water for various purposes (e.g., irrigation), which is of
particular relevance in water-scarce regions [27]. In the
past decade, constructed wetlands have been integrated
with microbial fuel cells as a novel bioenergy-producing
wastewater treatment technology [51].

Wetlands can remove up to 90% of the sediments present
in runoff or streamflow [52]. The efficiency and
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Figure 3
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Examples of natural wetlands in Bosnia and Herzegovina treating runoff
from agricultural land at (left) Tisina and (right) Prud (courtesy of Djordjije
Milanovic).

effectiveness of wetlands in removing pollutants varies
over time, and is a function of individual wetland char-
acteristics (e.g., plant species, size), targeted contami-
nants, and the local climate (e.g., fluctuations in wet and
dry periods facilitate aecrobic and anaerobic conditions)
[9,24]. Removal efficiency is also increased if plants are
harvested, which leads to a large amount of biomass that
can be used, e.g., composting or biogas production [10].
Within catchments, the ability of wetlands to cope with
pollution depends on their location and total wetland
area, as well as pollution source type (i.e., currently active
source at the surface or long-lived legacy source from
earlier inputs) [9]. Wetlands can be a highly cost-
efficient way to improve water quality, especially
constructed wetlands if well designed and maintained
[10]. However, there is limited knowledge on the
morphological, physiological, and biochemical charac-
teristics of wetland plants that determine wetland effi-
ciency [10].

Final considerations
Wetlands have emerged as NBS in various water re-
sources management practices, including regulation of

the hydrological cycle and improvement of water quality.
However, natural wetlands worldwide continue to be
threatened by anthropogenic and climate drivers,
despite increasing conservation concerns and restoration
and rehabilitation efforts. Preventing further loss of
existing wetlands must begin with routine monitoring,
which itself requires accurate, up-to-date maps of wet-
lands that are lacking in many regions [20]. Constructed
wetlands have received increasing attention in recent
years and are becoming more widespread, since they
have low energy requirements and low operating and
maintenance costs, and provide effective solutions for
managing various aspects of water, such as stormwater
and wastewater treatment and reuse.

The effectiveness of wetlands in flow regulation during
extreme weather events (floods and droughts) and in
water purification depends on their size, placement, and
local conditions. However, a change in scale from
focusing on single wetlands to wetlandscapes is required
for optimal water management [21]. For example,
sediment capture can be maximized if small wetlands
are placed close to sediment source areas, whereas if the
aim is retention of agricultural diffuse loads within the
landscape or flood control, large wetlands should be
placed low in the catchment to retain more runoff from
upland areas [14]. The dependence of wetland func-
tions on scale and their aggregated interactions with the
landscape need to be accounted for in ecological engi-
neering approaches [6]. This requires integration of
ground-based measurements, analytical modeling, sta-
tistical approaches, and remote-sensing techniques
[18]. Development of multifunctional wetlandscapes
for water management and maximization of other
ecosystem services, such as biodiversity, also requires
collaborative governance approaches that identify ben-
efits and priorities among stakeholders, e.g., for private
landowners when new wetlands are required to optimize
multifunctionality at the wetlandscape scale [9]. Addi-
tionally, policy instruments to support financing and
implementation of wetlands and/or restoration should
be considered in order to support effective water man-
agement plans [9].
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