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Abstract: The use of a filter bank of IIR filters for the spectral decomposition and analysis of signals
has been popular for many years. As such, a new filter-bank resonator-based structure, representing
an extremely hardware-efficient structure, has received a good deal of attention. Recently, multiple-
resonator (MR)-based and general cascaded-resonator (CR)-based filters have been proposed. In
comparison to single-resonator-based analyzers, analyzers with a higher multiplicity of resonators in
the cascade provide lower side lobes and a higher attenuation in stopbands. In previous works, it was
shown that the CR-based filter bank with infinite impulse response (IIR) filters, which is numerically
more efficient than one with finite impulse response (FIR) filters, is suitable for dynamic harmonic
analysis. This paper uses the same approach to design complex digital filter banks. In the previous
case, the optimization task referred to the frequency responses of harmonic filters. In this work, the
harmonic filters of the mother filter bank are reshaped so that the frequency response of the sum
(or difference, depending on the parity of the number of resonators in the cascade) of two adjacent
harmonic filters is optimized. This way, an online adaptive filter base can be obtained. The bandwidth
of the filters in the designed filter bank can be simply changed online by adding or omitting the
output signals of the corresponding harmonics of the mother filter.

Keywords: cascaded-resonator (CR)-based filter; complex filter bank; constrained linear least-squares
(CLLS); IIR filter; linear programming (LP); multiple-resonator (MR)-based filter

1. Introduction

A huge variety of engineering applications, such as speech analysis, bandwidth
compression, radar and sonar processing, spectral parameterization of signals, adaptive
line enhancement, tracking of periodic signals, sub-band coding, and frequency-domain
adaptive noise-cancellation, have caused much attention to be paid to the study of filter
banks and corresponding analysis/synthesis system designs. In signal processing, a
digital filter bank is an array of digital bandpass filters with either a common input or a
common output. This means that a filter bank can be an analysis filter bank or a synthesis
filter bank [1].

The understanding of the systems is often simplified, and performances in signal
processing are improved by considering the signals and/or system transfer functions as
complex types. For example, a new concept of digital equalizers is based on the processing
of so-called analytic signals, i.e., signals consisting only of positive frequencies, with digital
filters with complex coefficients as the main building blocks of the equalizer. The transfer
functions of these filters are complex functions, and the input signals are separated into
real and imaginary parts, even in the case of a real input signal. It is true that this approach
requires more arithmetical operations than a classical real approach. However, it has been
shown that the proposed equalizer offers some new features, which make it very attractive
for various applications [2]. Although digital filters with complex coefficients have been
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known for a long time and have many advantages, in the last few decades, work on the
realization of these filters has become much more current [3–8]. Complex filtering is very
popular in telecommunications, where the complex representation of signals allows the
simple realization and interpretation of complex tasks such as sampling, quantization, or
modulation. Additionally, speech processing and adaptive filtering cannot be imagined
without the use of digital filters with complex coefficients. For example, complex digital
signal processing can increase speech understanding of users of bone-anchored hearing
aids when the benefit is most significant for speech understanding in noise [6].

Resonator-based filter banks, based on the structure of parallel resonators with com-
mon feedback, are an example of complex filter banks [9–11]. Multiple-resonator (MR)-
based filters [12,13] and their more general version, cascaded-resonator (CR)-based fil-
ters [14–16], have been proposed for usage in the spectrum analysis of dynamic signals.
In comparison to single-resonator-based analyzers, analyzers with a higher multiplicity
of resonators provide lower side lobes. In [16], infinite-impulse-response (IIR)-type CR-
based filter banks were used as a computationally more efficient solution, rather than
the finite-impulse-response (FIR)-type. Even more, through simultaneous optimization
of the frequency responses of the whole harmonic bank, the same shapes of all harmonic
frequency responses were assured, thanks to symmetrical pole placement.

In this paper, the approach used in [16], with certain modifications, is used to de-
sign online adaptive filter banks. Bandpass filters of arbitrary width can be obtained by
connecting filters of the appropriate number of adjacent harmonics of the primary filter
bank. Considering the high attenuation in the stopbands of the filter of the primary filter
bank, especially in the case of resonator structures with a larger number of resonators in
the cascade, it is sufficient to reshape the frequency responses of the harmonic filters in
the primary bank so as to optimize the frequency characteristic of the sum (or difference,
depending on the parity of the number of resonators in the cascade) of only two adjacent
harmonics, in the range between their central frequencies, since the influence of the others
can be neglected. The sidelobes of this group of two harmonics can also be limited or
optimized during optimization.

An important advantage of this approach is that the different bandwidths of the
output filters can be simply adjusted online by adding the required number of the adjacent
channels to the basic filter bank, and can be easily performed by adding and/or omitting
certain output signals from the primary filter bank. In addition, transition bands of the
frequency responses can be decreased by increasing the number of resonator cascades. The
drawback of this approach is the considerable computational complexity which could be a
possible problem in low-price and low-power applications.

2. Design Method

The block diagram of the K-type CR-based harmonic analyzer is shown in
Figure 1. The structure includes (K + 1)(2M + 2) resonators with poles{

zm,k, m = −M, . . . , 0, . . . , M + 1, k = 0, 1, . . . , K
}

placed in the 2M + 2 cascades, each with
K + 1 cascaded complex poles on the unit circle located around the related harmonic fre-
quency. Each resonator has complex gains gm,k. The following closed-loop transfer function
corresponds to the harmonic m [16]:

HAB
m (z) =

Vm(z)
V(z)

= g′m,0
z−1Pm(z)B(z)

A(z)
= Hm(z)

B(z)
A(z)

, (1)

where z = ejω , ω = 2π f / fS, fS is the sampling rate, and f1 is the fundamental frequency.

Pm(z) =
M+1

∏
n=−M

n 6=m

K

∏
i=0

(
1− zn,iz−1

)
, g′m,k =

K

∏
i=k

gm,i, (2)

Hm(z) = g′m,0z−1Pm(z),
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B(z) = b0 + b1z−1 + · · ·+ bNB−1z−(NB−1) + bNB z−NB ,

A(z) = 1 + a1z−1 + · · ·+ aNA−1z−(NA−1) + aNA z−NA .
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was used to estimate the fundamental frequency, on the basis of which the adaptation of 
the resonator poles and gain coefficients was carried out. 

Figure 1. Block diagram of the K-type CR-based harmonic analyzer.

It should be noted that all poles of the resonators are transformed into zeros of the
transfer functions Hm(z) by the common feedback loop, except the poles originating from
channel m, which are automatically cancelled by their poles–generators.

Figure 2 shows the frequency responses of H1(z) = g′1,0z−1P1(z) belonging to the
fundamental component of the resonator multiplicity order from one to six (K = 0, 1, . . . , 5 )
with the ordinate scale in decibels. It should be noted that case K = 0 corresponds to
the classic DFT estimator, while case K > 0 corresponds to the discrete Taylor–Fourier
transform (DTFT), which was recently proposed as a DFT extension [17]. It is obvious
that with an increase in the number of resonators in the cascade, the suppression in the
stopband increases and the side lobes decrease. However, with an increase in K, the filter
order and the response time, as well as the numerical complexity, increase.

The problem of frequency deviation can be solved in two ways. The first way is an
adaptive estimator based on actual frequency feedback. This approach is sensitive to the
system stability issue due to internal delays. Instead of that, in [18], an external module
was used to estimate the fundamental frequency, on the basis of which the adaptation of
the resonator poles and gain coefficients was carried out.

The compensation polynomial B(z) is the only real extension to the basic CR structure
that increases the computational burden, while the characteristic polynomial A(z) does
not increase numerical operation and only influences the gains’ calculation. A(z) is of the
order NA = (K + 1)(2M + 2). It should be mentioned that because of symmetry, order
NB of the polynomial B(z) must be a product of the number of harmonic cascades 2M + 2.
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Figure 2. Frequency responses for the first up to the sixth order of resonator multiplicity
(K = 0, 1, . . . , 5), with the ordinate scale in decibels for fS = 4 kHz and f1 = 125 Hz.

2.1. Problem Statement

The important feature of the mother bank {Hm(z), m = −M, . . . , 0, . . . , M + 1} is that
the phase difference of adjacent filters is (K + 1)π for the band between their center fre-
quencies (i.e., 0 for an odd K and π for an even K) and zero elsewhere. The idea is to
superpose the frequency responses of a certain number of adjacent harmonics (with a
sign “+” in the case of odd K, and an alternating “−” and “+” signs in the even K case).
Figure 3 shows the frequency responses of sums of two, three, and five adjacent harmonic
channels for K = 2, fS = 4 kHz and f1 = 125 Hz. It is notable that the level of sidelobes is
not increased, but the ripple in the passband is present. In order to reduce the ripple, it is
necessary to design the polynomials A(z) 6= 1 and/or B(z).
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The virtual unique combined transfer function H(z) is formed from segments of the
transfer functions corresponding to the frequency bands between two adjacent harmonic
frequencies. Every two adjacent filters of harmonics m and m + 1 participate together in
the band (m f1, (m + 1) f1) with their sum:

H(z) = Hm(z)∓ Hm+1(z) = z−1
[

g0
m,0Pm(z)∓ g0

m+1,0Pm+1(z)
]
, (3)

for f ∈ (m f1, (m + 1) f1), m = −M, . . . , 0, . . . , M + 1, where gain coefficients
g0

m,0 = zm/Pm(zm), m = −M, . . . , 0, . . . , M + 1, provide unity gains in the frequencies
m f1 and (m + 1) f1.

A sign “−” is used for an even K (K = 0, 2, 4, . . .), and “+” is used for an odd
K (K = 1, 3, 5, . . .). It should be noted that in cases when the width of the output fil-
ter is greater than two harmonic bands, there is the influence of harmonics of the or-
der less than m and greater than m + 1 in the band (m f1, (m + 1) f1), but it can be ne-
glected, especially for a larger K. Note that for m = M + 1, f ∈ (−(M + 1) f1,−M f1) and
H(z) = HM+1(z)∓ H−M(z).

The group delay (in samples) and phase response of H(z) are τH = (K + 1)(2M + 2)/2
and arg(H(z)) = τH(ω−mω1), respectively.

The corresponding desired linear phase transfer function is defined as follows

Hd(z) = e−j[τH(ω−mω1)+τBω], (4)

for f ∈ (m f1, (m + 1) f1), m = −M, . . . , 0, . . . , M + 1,

where a desired group delay is increased by the settled value of τB caused by the presence
of B(z)/A(z), which is in the range of (0.5÷ 1)NB.

We seek to find a causal stable rational function HAB(z) = H(z)B(z)/A(z) that
best approximates Hd(z) in the defined sense. Since H(z) is defined by poles{

zm,k, m = −M, . . . , 0, . . . , M + 1, k = 0, 1, . . . , K
}

, it is necessary to determine the coeffi-
cients of the filter B(z)/A(z) and after that, for the determined A(z), gains g′m,k, i.e., gm,k.

In [19], the following definition of the approximation error in the angular frequency
ωi, in the kth time instant, that allows an iterative scheme is used:

∣∣∣E(k)
i (x)

∣∣∣ = W(zi)
∣∣∣H(zi)B(zi)− A(k)(zi)Hd(zi)

∣∣∣∣∣A(k−1)(zi)
∣∣ , (5)

where A(k)(z) and A(k−1)(z) are the polynomial A(z) in the iterations k and k− 1, respec-
tively, and W(z) is the chosen weighing function. The above equality can be expressed as

∣∣∣E(k)
i (x)

∣∣∣ = W(zi)

∣∣∣∣[H(zi)qB|z=zi
, −Hd(zi)qA

∣∣∣
z=zi

]
x− Hd(zi)

∣∣∣∣∣∣A(k−1)(zi)
∣∣ = |hix− gi|, (6)

where
x =

[
xB

T xA
T]T ,

xB =
[
b0 b1 · · · bNB−1 bNB

]T ,

xA =
[
a1 a2 · · · aNA−1 aNA

]T ,

qB =
[
1 z−1 z−2· · · z−(NB−1) z−NB

]
,

qA =
[
z−1 z−2· · · z−(NA−1) z−NA

]
,

hi =

W(zi)

[
H(zi)qB|z=zi

, −Hd(zi)qA

∣∣∣
z=zi

]
∣∣A(k−1)(zi)

∣∣ ,
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gi =
W(zi)Hd(zi)∣∣A(k−1)(zi)

∣∣ .

It can be noticed that the
∣∣∣E(k)

i (x)
∣∣∣ and the constraint (8) are nonlinear. They can be

linearized using convenient approximation [20–22]. This means the optimization problem
can be solved using the constrained linear least-squares (CLLS) optimization technique, as
in [20,21], or linear programming (LP) in the case of minimax optimization, as in [16,19,22].

2.2. Design (Optimization) Approach 1—Linear Least-Squares Minimization

An objective is to find a minimum of the sum of squares of absolute values of hx− g
in the assembly of the NF selected frequencies subject to the vector x

min
x

NF

∑
i=1
|hix− gi|2. (7)

If we apply the equality

|hix− gi|2 = Re2{hix− gi}+ Im2{hix− gi} = ‖Cix− di‖2
2, (8)

where Ci =

[
Re{hi}
Im{hi}

]
, di =

[
Re{gi}
Im{gi}

]
, the expression (7) can be written in a matrix form:

min
x
‖Cx− d‖2

2, (9)

where

C =


C1
C2
...

CNF

, d =


d1
d2
...

dNF

.

2.3. Design (Optimization) Approach 2—Minimax Optimization

It is well known that to find x to minimize the maximum error max
i

∣∣∣E(k)
i (x)

∣∣∣ is equiva-

lent to the following optimization problem:

minimize δ (10)

subject to
∣∣∣E(k)

i (x)
∣∣∣ ≤ δ, i = 1, 2, · · · , NF,

where NF is the total number of sampling points in the design bands (0 ≤ ω ≤ π).
The vector of compensator coefficient x is extended with δ so that a vector of

unknowns is:

xδ =

[
x
δ

]
. (11)

It can be noticed that the constraints in (10) are nonlinear. They can be linearized using
convenient approximation [16,20,21]. This allows the problem to be solved using linear
programming (LP).

It is valid that

|E(zi)| = |E(zi)|
(

cos2αi + sin2αi

)
= Re{E(zi)}cosαi + Im{E(zi)}sinαi, (12)

where αi = arg{E(zi)}.
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Since αi is not known a priori, the nonlinear constraints in (10) can be approximated
by the system of linear constraints:

Re{E(zi)}cosαi,j + Im{E(zi)}sinαi,j ≤ δ, (13)

where i = 1, 2, · · · , NF and j = 1, 2, · · · , L. The number of constraints L is chosen depending
on the requested tolerance. An equidistant placement of the angles is the most convenient,
i.e., αi,j = αi,0 + (j− 1)2π/L, where j = 1, 2, · · · , L. Generalizing any order polygon allows
for fewer approximation errors with the desired accuracy. Figure 4 shows square (L = 4)
and octagon (L = 8) approximations. In this paper, we use the value L = 16, for which an
approximation error in the worst case is 0.5% of the true value [22].
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As a result, the inequality (10) can be linearized and written in a matrix form

A1
i xδ ≤ b1

i , i = 1, 2, · · · , NF, (14)

where matrix A1
i and vector b1

i are provided by

A1
i =


Re{hi}cos αi1 + Im{hi}sin αi1 −1
Re{hi}cos αi2 + Im{hi}sin αi2 −1

...
...

Re{hi}cos αiL + Im{hi}sin αiL −1

,b1
i =


Re{gi}cos αi1 + Im{gi}sin αi1
Re{gi}cos αi2 + Im{gi}sin αi2

...
Re{gi}cos αiL + Im{gi}sin αiL

.

Using matrix notation and collecting inequality linearization systems in all settled
frequency points, Equation (14) can be written in the linear form:

A1xδ ≤ b1, (15)

where matrix A1 and vector b1 are provided by

A1 =


A1

1
A1

2
...

A1
NF

, b1 =


b1

1
b1

2
...

b1
NF

.

Both considered optimization techniques, linear least-squares minimization and mini-
max optimization, provide similar results. The minimax optimization technique provides
equiripple frequency responses (or errors). However, the linear least-squares minimization
task usually allows the faster execution of the optimization algorithm since the computation
burden of the constraint linearized system (15) can be higher, especially for larger L values.



Acoustics 2023, 5 542

2.4. Sidelobe Constraints (Frequency Response Constraints in Stop Bands)

Polynomials B(z) and A(z) introduce an increase in the sidelobes of Hm(z). If we limit
the level of the sidelobes under the level of lSB

i , we can introduce constraints∣∣∣HAB
m (x, zi)

∣∣∣ ≤ lSB
i , i = 1, 2, · · · , NSB. (16)

Since Hd(zi) = 0, we obtain

gi =
W(zi)

[
H(zi)qB|z=zi

, 01×NA

]
∣∣A(k−1)(zi)

∣∣ . i = 1, 2, · · · , NSB. (17)

In this case, Equation (16) can be linearized and written in a matrix form as

A2
i x ≤ b2

i , i = 1, 2, · · · , NSB, (18)

A2
i =


[Re{gi}cos αi1 + Im{gi}sin αi1]
[Re{gi}cos αi2 + Im{gi}sin αi2]

...
[Re{gi}cos αiL + Im{gi}sin αiL]

, b2
i =


lSB
i

lSB
i
...

lSB
i

,

where lSB
i is the constraint limit of the error at point zi.

Using matrix notation and collecting inequality linearization systems in all settled
frequency points, Equation (18) can be written in the linear form:

A2x ≤ b2, (19)

where matrix A2 and vector b2 are provided by

A2 =


A2

1
A2

2
...

A2
NSB

, b2 =


b2

1
b2

2
...

b2
NSB

.

2.5. Stability Constraint

To ensure the stability of the IIR filter HAB(z), the stability constraints imposed on
the coefficient vector xA must be taken into account. In [23], a suitable iterative stability
condition based on Rouche’s theorem is proposed. This approach to stability condition
control during the optimization task is used in [16]. It can be summarized as a condition∣∣∣A(k)(z)− A(k−1)(z)

∣∣∣ ≤ α
∣∣∣A(k−1)(z)

∣∣∣, (20)

or in a matrix notation∣∣∣qA|z=zi
xA − A(k−1)(zi) + 1

∣∣∣ ≤ α
∣∣∣A(k−1)(zi)

∣∣∣, (21)

where |zi| = ρ, (0 < ρ < 1) and 0 < α < 1.
The simplest choice for the initial value of vector x, for which is the initial polynomial

of the denominator A(0)(z) has all roots inside the circle whose center in the origin of the
z-plane and has a radius ρ, is x(0) = 0. Inequalities (20) and (21) should be satisfied for a
sufficiently dense grid of points dispersed on the circle with radius ρ(|z| = ρ).
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Collecting constraints (21) for the NS point lying on the circle with a radius of ρ(|z| = ρ)
and applying linearization, it follows that

A3x ≤ b3, (22)

A3 =


A3

1
A3

2
...

A3
NS

, b3 =


b3

1
b3

2
...

b3
NS

,

where matrix A3
i and vector b3

i are provided by

A3
i =


01×(NB+1) Re

{
qA|z=zi

}
cos αi1 + Im

{
qA|z=zi

}
sin αi1

01×(NB+1) Re
{

qA|z=zi

}
cos αi2 + Im

{
qA|z=zi

}
sin αi2

...
01×(NB+1) Re

{
qA|z=zi

}
cos αiL + Im

{
qA|z=zi

}
sin αiL

,

b3
i =


Re
{

A(k−1)(zi)− 1
}

cos αi1 + Im
{

A(k−1)(zi)
}

sin αi1 + α
∣∣∣A(k−1)(zi)

∣∣∣
Re
{

A(k−1)(zi)− 1
}

cos αi2 + Im
{

A(k−1)(zi)
}

sin αi2 + α
∣∣∣A(k−1)(zi)

∣∣∣
...

Re
{

A(k−1)(zi)− 1
}

cos αiL + Im
{

A(k−1)(zi)
}

sin αiL + α
∣∣∣A(k−1)(zi)

∣∣∣

.

It can be seen that the set of the aforementioned constraint condition (15) is extended by
(22). The aforementioned iteration method solves the minimax optimization problem with
the modification that it is subject to constraint (22) at each iteration step. This modification
ensures that the solution update takes into account the pole radius constraint.

2.6. Constrained Linear Least-Squares (CLLS) Model

Constrained linear least-squares (CLLS) minimizes a linear function called an objective
function that is subject to linear constraints. Summarizing the LS task of optimizing the
objective function (9) and constraints (19) and (22), the following CLLS problem is obtained:

min
x

1
2‖Cx− d‖2

2,

subject to Ax ≤ b,
(23)

where

A =

[
A2

A3

]
, b =

[
b2

b3

]
.

2.7. Linear Programming (LP) Model

Linear programming (LP) minimizes a linear function called an objective function
subject to linear constraints. The following LP problem is formulized:

minimize cxδ,
subject to Axδ ≤ b,

(24)

where

A =

A1

A2δ

A3δ

, A2δ =
[
A2 0LNSB×1

]
, A3δ =

[
A3 0LNS×1

]
, b =

b1

b2

b3

,
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c =
[
01×(NA+NB+1) 1

]
.

2.8. Resonators’ Gains Calculation

For known polynomial A(z), the gain coefficients can be determined directly using
Lagrange’s interpolation formula. As a result, the closed-form formulas are obtained [16].

Filter B(z) can be implemented in different ways. One way is an FIR filter in the
serial connection with the basic CR structure. Another way, which is more convenient,
is an extension of the CR structure by the resonators with poles generated by the zeros
of the polynomial B(z) [24]. For this purpose, the polynomial B(z) can be written in the
factorized form:

B(z) = b0

2M+2

∏
n=1

KB

∏
i=0

(
1− zM+1+n,iz−1

)
, (25)

where NB = (KB + 1)(2M + 2) and {zM+1+n,i, n = 1, . . . 2M + 2, i = 0, . . . , KB} are the
roots of B(z).

A form (25) is convenient for an extension of the CR structure by 2M + 2 branches,
each of them consisting of KB + 1 resonators, especially in the case KB = K, when already-
derived formulas [16] for K-type CR structures are still valid:

g′m,k =
A(z)− z−1Pm(z)∑k−1

j=0

[
g′m,j∏

j−1
i=0

(
1− zm,iz−1)]

z−1Pm(z)
k−1
∏
i=0

(1− zm,iz−1)

|z=zm,k , (26)

gm,k = g′m,k/g′m,k+1,
(

g′m,K+1 = 1
)
, m = −M, . . . , 0, . . . , 3M + 3, k = 0, 1, . . . , K,

where resonator poles
{

zm,k, m ∈ [M + 2, 3M + 3], k = 0, 1, . . . , K
}

in the added parallel
cascades are replicas of the zeros of polynomial B(z).

The existing formula for calculating gains is only valid for KB = K and is not valid in
other cases. KB 6= K needs a completely new derivation of this formula.

It is important to note that this formula is only valid for single resonators but not for
multiple ones. Since this is about the so-called quasi-MR-based estimator, the poles of
the resonator of the same cascade and corresponding to the same harmonic frequency are
chosen very close to each other but with a minimum critical distance [14].

3. Computational Complexity

The mother filter bank consists of 2(K + 1)(M + 1) resonators. If the compensation
polynomial B(z) is implemented through the extension of the basic resonator structure,
the number of resonators is 2(K + KB + 2)(M + 1). In case KB = K, it is 4(K + 1)(M + 1).
Each resonator needs two complex multiplications in every sample time instant, which
means that the total number of complex multiplications is 8(K + 1)(M + 1). It should
be mentioned that the second part of the algorithm for forming the desired filter banks
(summation) does not involve any multiplications. The number of multiplications per one
sample time instant as a function of K and M is provided in Table 1 and Figure 5.

As the sampling rate in the JPEG standard is 48 kHz, the minimum processing power,
depending on K and M, in audio applications of this algorithm, is shown in FLOPS (floating
point operation per second) in Table 2 and Figure 6.
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Table 1. The number of complex multiplications per one sample time instant as a function of K and M.

K M = 7 M = 15 M = 31 M = 63 M = 127

0 64 128 256 512 1024

1 128 256 512 1024 2048

2 192 384 768 1536 3072

3 256 512 1024 2048 4096

4 320 640 1280 2560 5120

5 384 768 1536 3072 6144
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Order KA of the characteristic polynomial A(z) does not influence the numerical
complexity and does not cause additional computational costs. Order KB of the polynomial
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B(z) increases the computational burden significantly. In this sense, it is important to keep
KB as small as possible.

4. Design Examples

In this section, for demonstration purposes, some characteristic examples are shown.
In all examples, the following parameters are prescribed: W(z) = 1, α = 0.5, ρ = 0.99,
and x0 = 0. Constraints of the sidelobes in the stop bands are not used (i.e., A2 and b2

are spare).
In the first attempt, NB = 0 and NA = (K + 1)(2M + 2) are selected. The aim is to

reach an optimized solution without an extra calculation cost of B(z) and manage the
optimized frequency responses only by choosing an appropriate characteristic polynomial
A(z). Figure 7 shows that the level of ripples in the passbands is decreased compared to
the ripples shown in Figure 3 (corresponding NA = NB = 0, i.e., A(z) = 1 and B(z) = b0)
but are still high. A K = 2-type IIR CR-based filter bank with lower values of fS = 4 kHz,
f1 = 125 Hz, and M = 15 is shown.
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Figure 7. Frequency responses for different bandwidths, for K = 2, fS = 4 kHz, and f1 = 125 Hz, for
NA = (K + 1)(2M + 2), NB = 0.

The second attempt is made with NA = 0 (i.e., A(z) = 1) and NB = (K + 1)(2M + 2),
τB = NB/2. Here, the aim is to reach an optimized solution through compensation by
FIR filter B(z) only. This involves extra calculation cost but avoids the need for stability
control during the optimization task, which means a significantly simpler design algorithm.
Figure 8 shows that, again, the level of ripples in the passbands is decreased in comparison
to the ripples shown in Figure 3, but they still exist. It should be mentioned that, in this
case, the resulting filter bank is of the FIR type.
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Further improvements in the frequency responses of the FIR-type structure can be
obtained by an increase in the order NB of the compensation polynomial filter B(z).
Figure 9 shows the resulting frequency responses for NA = 0 (i.e., A(z) = 1) and
NB = 2(K + 1)(2M + 2), τB = NB/2. It is notable that the ripples in the passband are
much smaller, and their maximum equals 0.01 dB for two-harmonic-band filters and
0.1 dB for other ones. The higher ripple in the wider-bandwidth filters is due to the
influence of the sidelobes of harmonic filters in the primary filter bank, which is not con-
sidered during optimization. However, the order of B(z) is now doubled, doubling the
computational burden of the processing, which is a disadvantage compared to the IIR case
where the order of the characteristic polynomial A(z) is increased, causing no additional
computational cost.

In the next example (Figure 10), a K = 2 type IIR CR-based filter bank is shown with
NA = NB = (K + 1)(2M + 2), τB = NB. In this case, the ripples in the passbands are at
the same level as in the previous example (even a little bit smaller). However, in this case,
the order of the polynomial B(z) is two times smaller, which means significantly smaller
numerical requirements. Figure 11 shows pole-zero maps of the transfer functions H(z),
A(z) and B(z).
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Figure 11. Pole-zero map for K = 2, fS = 4 kHz, and f1 = 125 Hz, for NA = NB = (K + 1)(2M + 2)
and τB = NB.

In the last example (Figure 12), K = 4, fS = 16kHz, f1 = 125Hz, and M = 63,
NA = NB = (K + 1)(2M + 2), τB = NB are selected. The maximum ripple in the passband
equals 0.1 dB for all bandwidths. In this case, due to higher K, the influence of the sidelobes
of harmonic filters in the primary filter bank is negligible. Frequency responses of the
filters A(z) and B(z), shown in the inset figures at the bottom of the figures, have higher
amplitudes than for K = 2. In addition, it is obvious that the analyzers with a higher
multiplicity of resonators provide lower side lobes and higher sharpness.

The width of the passbands can be easily adapted online by changing the number of
adjacent output signals from the CR structure. The obtained frequency responses show that,
with the increase in K, amplitudes of the frequency responses of the compensation part are
increased, which causes the rise of the primary sidelobes in the stop bands of the filters in
the desired filter banks in comparison to basic bank filters. This level of the rise of sidelobes
is equal to the magnitude of the frequency response of the transfer function B(z)/A(z). The
sidelobes can be decreased by including constraints in the optimization task, which will,
however, reduce the flatness in the passband. It should be mentioned that the optimization
errors depend on the settled value of τB and its value is chosen heuristically. The value of
τB also influences the ratio of amplitudes of frequency responses of A(z) and B(z).
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5. Suitable Applications of Described Filter Banks

The proposed filter bank has a number of possible applications. The easy online adapt-
ability can be very convenient in applications where a large variability of communication
properties exists, such as underwater acoustic communication systems. Here, the following
two areas of the application will be discussed.

5.1. Speech Signal Analysis and Speech and Speaker Recognition

The generation of a speech signal by the human speech apparatus is a very complex
but mostly researched process. Key information is carried by the frequencies produced
by the speech apparatus. In order to recognize the information generated by the speaker,
it is necessary to objectively, precisely, and accurately determine (measure) the frequency
content of the speech in real-time. If the speech signal sequences of a specific speaker are
measured and recorded over a longer period of time, a probabilistic frequency profile of
the specific speaker can be formed. As a result, the speaker can be recognized with high
probability in real-time. The process of measuring the frequency content of the speech
signal in real-time is exactly what the procedure described in this paper enables.

5.2. Fine Audiogram Measurement and Hearing Correction

The standard medical procedure of audiogram measurement involves the generation
of a sound signal at fixed logarithmically distributed frequencies. The signal is ampli-
fied/attenuated to the threshold of audibility at those frequencies. A gain/loss chart is
an audiogram and is used for hearing correction. For objective hearing correction, the
frequency content of the current sound signal must be precisely and accurately known in
the bands whose central frequencies are those obtained by the audiogram. The proposed
procedure enables obtaining the objective content of the sound signal. For fine hearing
correction other than the standard 125 Hz, 250 Hz, . . . , 8 kHz, a much finer and wider
audiogram and a corresponding set of center frequencies must be used. Ninety-six center
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frequencies are now becoming the standard in quality hearing aids. Today, even people
with severely impaired hearing can listen to music if the damage was diagnosed before the
age of six.

6. Conclusions

In this paper, we presented an approach to the design of complex filter banks based
on a mother IIR CR-based structure. Thanks to the high attenuation of the filters of the
primary filter bank, especially in the case of resonator structures with a larger number of
resonators in the cascade, the design task was reduced to reshaping the frequency responses
of the filters in the primary bank. The algorithm simultaneously reshaped the frequency
responses of all harmonic filters in the mother filter bank by determining the characteristic
polynomial and the common additional FIR compensation part. The optimization was
based on linearized models, including stability constraints so that the obtained results
could provide the global optimum.

The advantage of this approach concerns the online adaptability of the bandwidths
of the filters in the desired bank, which can be easily performed by a simple addition
and/or omission of certain output signals of the adjacent channels from the basic filter
bank. In addition, the sharpness can be decreased as low as needed. The drawback of this
approach is the considerable computational complexity, which could be a possible problem
in low-price and low-power applications.

The algorithm can be further improved by considering the sidelobes in the wider
bandwidths during optimization, which will decrease the ripple in the passbands.
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