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Macroeconomic forecasting has recently started embracing techniques that can deal with
large-scale datasets and series with unequal release periods. Mixed-data sampling (MI-
DAS) and dynamic factor models (DFMs) are the two main state-of-the-art approaches
to modeling series with non-homogeneous frequencies. We introduce a new framework,
called the multi-frequency echo state network (MFESN), based on a relatively novel
machine learning paradigm called reservoir computing. Echo state networks (ESNs) are
recurrent neural networks formulated as nonlinear state-space systems with random
state coefficients where only the observation map is subject to estimation. MFESNs are
considerably more efficient than DFMs and can incorporate many series, as opposed
to MIDAS models, which are prone to the curse of dimensionality. All methods are
compared in extensive multistep forecasting exercises targeting U.S. GDP growth. We
find that our MFESN models achieve superior or comparable performance over MIDAS
and DFMs at a much lower computational cost.
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1. Introduction

The availability of timely and accurate forecasts of
ey macroeconomic variables is of crucial importance to
conomic policymakers, businesses, and the banking sec-
or alike. Fundamental macroeconomic figures, such as
DP growth, become available at low frequency with a
onsiderable time lag and are subject to various rounds
f revisions after their release. This is particularly prob-
ematic in a fast-changing and uncertain economic envi-
onment, as experienced during the Great Recession of
007–2008 (Hindrayanto, Koopman, & de Winter, 2016)
nd the recent pandemic (Buell et al., 2021; Huber, Koop,
norante, Pfarrhofer, & Schreiner, 2021). However, a large
umber of the potentially predictive financial market (and
ther macroeconomic) indicators are available at a daily
r even higher frequency (Andreou, Ghysels, & Kourtellos,
013). The desire to utilize such high-frequency data for
acroeconomic forecasting has led to the exploration of

echniques that can deal with large-scale datasets and se-
ies with unequal release periods (see Borio (2011, 2013),
orley (2015); we also refer the reader to Fuleky (2020)

or more details regarding high-dimensional data, and
o Armesto, Engemann, and Owyang (2010) and Bańbura,
iannone, Modugno, and Reichlin (2013) for a review on
ixed-frequency data).
We contribute to the existing literature by proposing a

ew macroeconomic forecasting framework that utilizes
igh-dimensional and mixed-frequency input data: the
ulti-frequency echo state network (MFESN). The MFESN
riginates from a machine learning paradigm called reser-
oir computing (RC). RC is a family of learning models
hat take advantage of the information processing capabil-
ties of complex dynamical systems (see Crutchfield, Ditto,
nd Sinha (2010), Legenstein and Maass (2007), Maass,
atschläger, and Markram (2002), and Lukoševičius and
aeger (2009), Tanaka et al. (2019) for reviews). Gener-
lly speaking, RC is a versatile class of recurrent neural
etwork (RNN) models (see Salehinejad et al. (2017) for
detailed survey). Although conventional RNNs are well
uited for handling sequence data and dynamic prob-
ems, estimating their weights during the training phase
s inherently difficult (Doya, 1992; Pascanu, Mikolov, &
engio, 2013). Reservoir networks stand out due to the
act that their inner weights can be randomly generated
nd fixed, and only the output (readout) layer weights are
ubject to estimation (supervised training). An echo state
etwork (ESN) is one of the most popular instances of RC
odels, with provable universality, generalization prop-
rties (see Gonon, Grigoryeva, and Ortega (2020b, 2023a),
onon and Ortega (2021), Grigoryeva and Ortega (2018a,
018b, 2019), and the references therein for more details),
nd excellent performance at forecasting, classifying, and
earning dynamical systems (see Grigoryeva, Hart, and
rtega (2021), Hart, Hook, and Dawes (2021)). While con-
entional RNNs have been adopted for macroeconomic
orecasting in a few instances (see, for example, Paranhos
2021)), to the best of our knowledge, we are the first to
xplore easily trainable reservoir models in this context.
Our main contribution is three-fold. First, inspired by
he remarkable empirical success of ESNs in prediction
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tasks, we propose the multi-frequency echo state network
(MFESN) framework, which allows multistep forecasting
of the target variable at frequencies that are lower or
the same as those of the input series. Second, we intro-
duce two different approaches to predicting within the
MFESN framework: single-reservoir MFESN (S-MFESN),
and multi-reservoir MFESN (M-MFESN). S-MFESN is de-
termined by modifying the ESN architecture to accom-
modate input and target variables of mixed frequencies.
In M-MFESN, several ESNs are adopted to handle in-
put time series, each ESN corresponding to a group of
input variables quoted at one given frequency. Finally,
we provide an extensive empirical comparative analysis
of the forecasting capability of the proposed approaches
in a concrete task of predicting the quarterly U.S. out-
put growth. We inspect the forecasting capabilities of
the MFESN framework compared to two well-established
benchmarks widely used in the macroeconomic litera-
ture and among practitioners, and show its empirical
superiority in several thoroughly conducted forecasting
exercises. Moreover, as a byproduct, we propose a new
data aggregation scheme that can bridge these two stan-
dard forecasting approaches, which is not available in the
literature.

In our empirical study, we evaluate the multistep fore-
casting performance of the MFESN framework, targeting
quarterly U.S. output growth (GDP growth) and utilizing
a small set and a medium-sized set of monthly and
daily financial and macroeconomic variables. We com-
pare the MFESN approach against two state-of-the-art
methods, mixed-data sampling (MIDAS) and the dynamic
factor model (DFM), known for their ability to incorpo-
rate data of heterogeneous frequencies and utilize high-
dimensional data inputs. The MIDAS model, developed
in Ghysels, Santa-Clara, and Valkanov (2004), Ghysels,
Sinko, and Valkanov (2007), has been widely adopted for
macroeconomic forecasting with mixed-frequency data
(see for instance Andreou et al. (2013), Clements and
Galvão (2008, 2009), Francis, Ghysels, and Owyang (2011),
Galvão (2013), Galvão and Marcellino (2010), Ghysels
(2016), Ghysels and Wright (2009), Jardet and Meunier
(2022), Monteforte and Moretti (2012)). However, MIDAS
is prone to curse-of-dimensionality problems and per-
forms poorly when the set of predictors is of even mod-
erate size (Clements & Galvão, 2009; Kostrov, 2021), due
to optimization-related issues. Recently, some attempts
have been made in the literature to overcome these is-
sues by employing variable selection techniques under
some additional assumptions. For instance, Babii, Ghy-
sels, and Striaukas (2022) proposes the MIDAS projection
approach, which is more amenable to high-dimensional
data environments under the assumption of sparsity. Even
with these improvements, practical high-dimensional im-
plementations of MIDAS remain challenging. This is in
part caused by the ragged edges of the raw macroeco-
nomic data, incomplete observations, and uneven sam-
pling frequencies. The relative inflexibility of MIDAS
regression lag specifications makes integrating daily and
weekly data at true calendar frequencies (that is, without
interpolation or aggregation) very complex. State-space

models effectively mitigate these issues.
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A strong state-of-the-art state-space competitor for
ur MFESN framework is the DFM, first introduced by
eweke (1977) and Sargent, Sims, et al. (1977). DFMs
ave become the standard workhorse for macroeconomic
owcasting and prediction (for more details, we refer the
eader to Bańbura and Rünstler (2011), Chauvet, Senyuz,
nd Yoldas (2015), Giannone, Reichlin, and Small (2008),
indrayanto et al. (2016), Stock and Watson (1996, 2002,
016)). Conventional DFMs for data of multiple sampling
requencies are linear state-space models with a latent
ow-frequency process of interest and high-dimensional
nput time series. Although their linear structure lends
tself to inference with likelihood-based methods and
alman filtering, using DFMs in a high-dimensional set-
ing is limited by the associated computational effort.
or Gaussian state-space models, some of these issues
an be handled with a more compact matrix represen-
ation, as in Delle Monache and Petrella (2019). Still,
n the particular settings of nowcasting and forecast-
ng GDP growth, the computational complexity is one
f the main reasons why DFMs are rarely used with
aily input series (see Bańbura et al. (2013)) for a de-
ailed review and Aruoba, Diebold, and Scotti (2009) for
mixed-frequency DFM wherein the latent factor pro-

ess is updated daily, with the highest input frequency
eing weekly. We address these numerical difficulties
sing novel Python libraries for auto-differentiation and
sing GPUs for parallel computing, such that DFMs can be
stimated even in instances of high-frequency input ob-
ervations. Further, to adapt the DFM to mixed-frequency
asks, we propose a new DFM aggregation scheme with an
lmon polynomial structure that bridges MIDAS and the
FM for our forecasting comparison. To our knowledge,
e are the first to present this aggregation scheme, which
educes the number of parameters subject to estimation.
n contrast, previous DFMs, as in Bańbura and Rünstler
2011), Camacho and Pérez-Quirós (2010), Frale, Mar-
ellino, Mazzi, and Proietti (2011), Mariano and Murasawa
2003), commonly assume a fixed aggregation scheme a
riori, depending on whether the macroeconomic variable
s a flow or stock variable.

To carry out a fair comparison of our MFESN frame-
ork with the state-of-the-art MIDAS and DFM models,
e designed two model evaluation settings that differ
egarding whether or not the financial crisis of 2007–2008
s included in the estimation period. In the first fore-
asting setting, all the competing models are estimated
sing data from January 1st, 1990, until December 31st,
007. Their performance at forecasting into and after the
inancial crisis period is assessed. In the second evalu-
tion setting, fitting is done with data largely encom-
assing the crisis period, again from January 1st, 1990,
ut now up to December 31st, 2011. In both cases, the
orecasting (testing) period spans time up to the Covid-
9 pandemic events, namely the fourth quarter of 2019.
long with the two state-of-the-art DFM and MIDAS mod-
ls, we use the unconditional mean of the sample as
baseline benchmark against the reservoir models. We

ind that our ESN-inspired models attain comparable or
uch better performance than DFMs at a much lower
omputational cost, even for a relatively long forecasting
 w
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horizon of four quarters. Additionally, ESNs do not suffer
from curse-of-dimensionality problems, which are known
to be pervasive for MIDAS models, and hence consistently
outperform them in a number of forecasting exercises.

The remainder of the paper is structured as follows.
Section 2 presents reservoir models and discusses their
advantages, as well as estimation, hyperparameter tun-
ing, penalization, and nonlinear multistep forecasting. In
Section 3, we introduce our MFESN framework, propose
the single-reservoir and multi-reservoir MFESN models,
and spell out their defining features. Section 4 contains
the empirical study of the comparative GDP forecast-
ing performance of MFESNs with respect to the set of
benchmark models. We assess one-step and multistep
forecasting results in several setups, with a small set and
a medium-sized set of regressors. We fit models with
data before and after the 2007–2008 financial crisis, and
with different estimation windows. Section 5 concludes
and discusses future research avenues and applications.
Finally, the Appendix contains information regarding data
sources, forecasting figures, and formal details regard-
ing our forecasting setups. The Supplementary Appendix,
available online, provides additional figures and gives de-
tailed information on the implementation of all models
and robustness checks.

Code. Our code, the data, and all results presented in
the paper are made available in the GitHub repository
at github.com/RCEconModelling/Reservoir-Computing-for
-Macroeconomic-Modelling.

1.1. Notation

We use the symbol N (respectively, N+) to denote the
set of natural numbers with the zero element included
(respectively, excluded). Z denotes the set of all integers.

e use R (respectively, R+) to denote the set of all
(respectively, positive excluding zero element) reals. We
abbreviate the set [n] = {1, . . . , n}, with n ∈ N+.

Vector notation. A column vector is denoted by a bold
lowercase symbol like r , and r⊤ indicates its transpose.
Given a vector v ∈ Rn, we denote its entries by vi, with
i ∈ {1, . . . , n}; we also write v = (vi)i∈{1,...,n}. The symbols
in, 0n ∈ Rn stand for vectors of length n consisting of ones
and of zeros, respectively. Additionally, given n ∈ N+,
e(i)n ∈ Rn, i ∈ {1, . . . , n} denotes the canonical unit vector
of length n determined by e(i)n = (δij)j∈{1,...,n}. For any

∈ Rn, ∥v∥ denotes its Euclidean norm.

atrix notation. We denote by Mn,m the space of real
n × m matrices with m, n ∈ N+. When n = m, we use
he symbols Mn and Dn to refer to the space of square
nd diagonal matrices of order n, respectively. Given a
atrix A ∈ Mn,m, we denote its components by Aij and
e write A = (Aij), with i ∈ {1, . . . , n}, j ∈ {1, . . .m}.
he symbol In ∈ Dn denotes the identity matrix, and the
ymbol On stands for the zero matrix of dimension n. For
ny A ∈ Mn,m, ∥A∥2 denotes its matrix norm induced by
he Euclidean norms in Rm and Rn, and ∥A∥2 = σmax(A),

ith σmax(A) the largest singular value of A.
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Input and target stochastic processes. We fix a probabil-
ity space (Ω,A,P) on which all random variables are
defined. The input and target signals are modeled by
discrete-time stochastic processes z = (z t )t∈Z and y =

(yt )t∈Z, taking values in RK and RJ , respectively. More-
over, we write z(ω) = (z t (ω))t∈Z and y(ω) = (yt (ω))t∈Z
for each outcome ω ∈ Ω to denote the realizations or
sample paths of z and y, respectively. Since z can be seen
as a random sequence in RK , we write z : Z ×Ω −→ RK

and z : Ω −→ (RK )Z interchangeably. The same applies
to the analogous assignments involving y.

Temporal notation. Let (ut )t∈I , ut ∈ R be a (scalar) time
series with I some index set (in this paper, it will always
be discrete). Time series (ut )t∈I will be denoted just as (ut )
when the index set I is specified by the context. We write
us1:s2 = (ut )t∈{s1,...,s2} for integers s1 < s2 and time series
(ut ). To define the concept of the sampling frequency,
we must introduce an additional series, call it (vs)s∈J . The
time index J is not the same as I . We assume that ut
is sampled at the coarsest rate; equivalently, it has the
lowest sampling frequency, which we call the ‘reference
frequency’ in what follows. In practice, this means that in
the same window of time, ut will be observed at most as
frequently as vs. The case when the sampling frequency of
vs is strictly higher than that of ut is of primary interest.

We assume that all sampling happens in instants that
are evenly spaced in time. Series other than the reference
one and with higher sampling frequencies are given an
additional time index, the tempo index, written t, ∗|κ ,
where κ is the frequency multiplier. Our tempo notation
assumes that low- and high-frequency series are sampled
with temporal alignment: this means that the reference
time index t and the tempo index ∗|κ have the following
properties.

Definition 1.1. A reference time index t ∈ N and a tempo
index ∗|κ for a given high-frequency κ ∈ N+ are such that
the following relations hold:

(i) t, 0|κ ≡ t

(ii) t, κ|κ ≡ t + 1

(iii) t, s|κ ≡ t + ⌊s/κ⌋, (smod κ)|κ for ∀s ∈ N

(iv) t,−s|κ ≡ (t−1)−⌊s/κ⌋, κ − (smod κ)|κ for ∀s ∈ N,

where mod is the modulo operation, and for any x ∈ R,
the floor operator ⌊x⌋ outputs the greatest z ∈ N such that
z ≤ x.

Since we can exchange ‘frequency’ and ‘frequency mul-
tiplier’ in the tempo notation, we make no distinction
between the two terms in what follows.

Forecasting schemes. The theoretical setup and design
of the forecasting exercises conducted in this paper are
carefully discussed in Appendix C. There, we formally
distinguish between so-called high-frequency and low-
frequency forecasting in the presence of mixed-frequency
data. For more details regarding time series forecasting
with economic data, we refer the reader to Chen and
Ghysels (2010), Clements and Galvão (2008, 2009), Jardet
and Meunier (2022), and the references therein.
4

2. Reservoir models

In this section, we introduce reservoir computing mod-
els (Jaeger & Haas, 2004) for forecasting stochastic time
series of a single frequency. We focus on a family of
reservoir computing systems called echo state networks
(ESNs), which have been successfully applied to forecast-
ing deterministic dynamical systems (Arcomano et al.,
2022; Pathak, Hunt, Girvan, Lu, & Ott, 2018; Pathak, Lu,
Hunt, Girvan, & Ott, 2017; Wikner et al., 2021). In the
following, we discuss the linear estimation of ESN model
parameters, the hyperparameters tuning, the loss penalty
selection, and how to carry out nonlinear forecasting.

2.1. Reservoir models

Reservoir computing (RC) models are nonlinear state-
space systems that, in the forecasting setting, are defined
by the following equations:

xt = F (xt−1, z t ), (2.1)

yt+1 = hθ(xt ) + ϵt , (2.2)

for all t ∈ Z, where the state map F : RN
× RK

→ RN ,
N, K ∈ N+ is called also the reservoir map, and the
observation map hθ : RN

→ RJ , J ∈ N+ is referred to
as the readout layer, parameterized by θ ∈ Θ . Sequences
(z t )t∈Z, z t ∈ RK , and (yt )t∈Z, yt ∈ RJ stand for the input
and the output (target) of the system, respectively, and
(xt )t∈Z, xt ∈ RN are the associated reservoir states. In (2.2),
(ϵt )t∈Z denotes J-dimensional independent zero-mean in-
novations with variance σ 2

ϵ IJ that are also independent
of xt across all t . Importantly, many families of RC sys-
tems have been proven to have universal approximation
properties for Lp-integrable stochastic processes (Gonon
& Ortega, 2020), and estimation and generalization error
bounds have been established in Gonon et al. (2020b,
2023a).

In the case of an ESN model, the state and observation
equations (2.1)–(2.2) are given by

xt = αxt−1 + (1 − α) σ (Axt−1 + Cz t + ζ), (2.3)

t+1 = a + W⊤xt + ϵt , (2.4)

here A ∈ MN is the reservoir matrix, C ∈ MN,K is the
nput matrix, ζ ∈ RN is the input shift, α ∈ [0, 1) is the
leak rate, and W ∈ MN,J denotes the readout coefficients.
The map σ : R → R is an activation function applied
elementwise, which in what follows we take to be the
hyperbolic tangent. We refer to A, C , ζ as state parameters
that are randomly generated. Notice that if A = 0 and α =

0, the state equation reduces to a nonlinear regression
model with random coefficients (or a feedforward neural
network with random weights), which is usually referred
to as an extreme learning machine (Cao, Wang, Ming, &
Gao, 2018; Gonon et al., 2023a).

Properties of ESN models. We focus on ESNs with the so-
called echo state property (ESP), that is, when for any
z ∈ (RK )Z there exists a unique y ∈ (RJ )Z such that (2.3)–
(2.4) hold (see Grigoryeva and Ortega (2018a, 2018b,

2019), and the references therein). One can require that
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the ESP holds only on the level of the state equation.
That is, for any input sequence z ∈ (RK )Z, there ex-
ists a unique state sequence x ∈ (RN )Z such that (2.3)
olds. The result in Corollary 3.2 in Grigoryeva and Ortega
2018a), which is also valid for the case of ESNs with
he leak rate, shows that the sufficient condition of the
SP associated with (2.3) to hold is ∥A∥2 Lσ < 1, where
σ is the Lipschitz constant of the activation function σ
in our setting, Ltanh = 1). This sufficient ESP condi-
ion has been extensively studied in the ESN literature
see Buehner and Young (2006), Jaeger (2010), Jaeger and
aas (2004), Manjunath and Jaeger (2013), Wainrib and
altier (2016), Yildiz, Jaeger, and Kiebel (2012), Zhang,
iller, and Wang (2012)) for more details. The result in
orollary 3.2 in Grigoryeva and Ortega (2018a) also shows
hat this condition implies the so-called fading memory
roperty (Boyd & Chua, 1985), which from a practical
oint of view means that the impact of the initial x0 is
egligible for sufficiently long samples.
In the stochastic setting, part (i) of Proposition 4.2

n Grigoryeva and Ortega (2021) proves that the condi-
ion ∥A∥2 < 1 guarantees variance stationarity of the
tates associated with variance stationary inputs. More-
ver, Manjunath and Ortega (2023) show that this con-
ition implies the so-called stochastic state contractivity,
nsuring a stochastic analog of the ESP. Notably, violations
f ∥A∥2 < 1 do not have detrimental implications for the
erformance of ESNs in various learning tasks, as reported
n multiple empirical studies.

omputational advantages of ESNs. We emphasize that
the core computational advantage of ESNs is that state
parameters A, C , and ζ are randomly sampled and do
not need to be estimated. Additionally, since the obser-
vation equation (2.4) is linear in xt , coefficients W can
be estimated via (penalized) least squares regression, as
we explain in the following subsection. The choice of the
properties of state parameters determines the memory
properties and forecasting performance of linear (Ballarin,
Grigoryeva, & Ortega, 2023) and nonlinear ESNs (Gonon,
Grigoryeva, & Ortega, 2020a), as we discuss in Section 2.2.1

2.2. Estimation

We now discuss in detail the estimation of coefficients
W in (2.4). Let a sample (z t , yt )Tt=1 of input and target
pairs be available. Given an initial state x0, the reser-
voir states can be computed iteratively according to state
equation (2.3) as follows:

x1 = αx0 + (1 − α) σ (Ax0 + Cz1 + ζ), . . . ,

xT = αxT−1 + (1 − α) σ (AxT−1 + CzT + ζ).

We collect the states and the targets into the state and
the observation matrices, respectively, as follows:

X = (x1, x2, . . . , xT−1)⊤ ∈ MT−1,N ,

Y = (y2, y3, . . . , yT )
⊤

∈ MT−1,J .

Consider the ridge regression estimator for W given by

Ŵλ := argmin
N

T−1∑yt+1 − W⊤xt
2
2 + λ∥W∥

2
2

W∈R t=1

5

=
(
X⊤X + λ((T − 1) IN )

)−1
X⊤Y , (2.5)

where λ ∈ R+ is the ridge penalty strength. When λ → 0,
the estimator Ŵλ converges to the minimum-norm least
squares solution (Ishwaran & Rao, 2014). In applications,
ridge regression is the most commonly used estimation
method applied to ESNs, as it provides a straightforward
regularization scheme when both N < T and N ≥ T .
This is especially important, since in practice the ESN
state dimension is often chosen to be 103–104 (see for
example Pathak et al., 2017). Additionally, a virtue of
the ridge regression problem is the fact that the associ-
ated objective function is convex and, hence, it can be
efficiently solved using stochastic gradient descent even
when min{N, T } is large and one decides against the
closed-form solution (2.5). Finally, as mentioned in the
properties of reservoir systems in Section 2.1, we notice
that in the presence of the fading memory property, the
estimation does not depend significantly on the choice of
x0 as sample size T increases.

We refer to (2.5) as the fixed-parameter estimator. In
our empirical analyses, we also implement expanding and
rolling window estimation strategies which update Ŵλ as
ew observations become available; we refer the reader
o online Supplementary Appendix D.1 for details. In the
est of the paper, for brevity, we use Ŵ to denote the ridge
stimator of coefficients W assuming that the appropriate

choice of the penalty strength λ is made for each concrete
situation.

2.2.1. Hyperparameter tuning
As discussed in Section 2.1, the performance of ESNs

depends on the choice of randomly drawn state parame-
ters A, C , and ζ. Much work has been put into determining
optimal specifications (see for example Farkas, Bosak, &
Gergel, 2016; Gonon et al., 2020a; Goudarzi et al., 2016;
Grigoryeva, Henriques, Larger, & Ortega, 2015, 2016; Ro-
dan & Tino, 2011). We construct these parameters by
first sampling Ã, C̃ , and ζ̃ from appropriately chosen laws.
Then, we normalize each element of the tuple, such that

A = Ã/ρ (̃A), C = C̃/∥̃C∥, ζ = ζ̃/∥̃ζ∥, (2.6)

where ρ (̃A) denotes the spectral radius of Ã. As discussed
in the properties of reservoir systems in Section 2.1, the
sufficient condition of the ESP is ∥A∥2 < 1. By this normal-
izing choice, we allow for some more flexibility in terms
of marginal violations of the non-sharp ESP constraint.
Finally, defining A = ρA, C = γ C and ζ = ωζ, we can
rewrite state equation (2.3) as

xt = αxt−1 + (1 − α) σ (ρAxt−1 + γ Cz t + ωζ). (2.7)

We refer to tuple ϕ := (α, ρ, γ , ω) as the hyperparam-
eters of the ESN. Specifically, α ∈ [0, 1) is the leak rate
and ρ ∈ R+ is called spectral radius of the reservoir
matrix. Futher, γ ∈ R+ is the input scaling, and ω ∈

R+ is the shift scaling. The choice of the hyperparam-
eters determines the properties of the state map. For
simplicity, in Section 4, we choose the hyperparameters
based on the empirical ESN literature. In Supplementary
Appendix D.2, we also propose a general though more
computationally intensive procedure to select hyperpa-
rameters in a data-driven way that could be interesting
to practitioners.
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ŷ

w
H
i
i

ν

S
a
p
u

n
a
i
d
s

2.2.2. Penalty selection
To apply ridge estimator (2.5), it is necessary to first

elect a penalty λ. Cross-validation (CV) is a common
election procedure for regularization strength in penal-
zed methods such as ridge, LASSO, and elastic net. CV
echniques have also been applied in the time series con-
ext (Ballarin, 2023; Kock, Medeiros, & Vasconcelos, 2020),
ith their validity established in Bergmeir, Hyndman, and
oo (2018).
In our empirical study, to account for temporal depen-

ence, we use a sequential CV strategy with ten validation
olds. More precisely, we reserve the last 50 observations
or validation and all other previous data points for train-
ng. The first fold consists of the first five observations
ut of the validation set, and the model is fitted using
ll training data. The following validation fold comprises
he next five subsequent validation observations, while
he training set is expanded by five data points (from
he previous fold). This procedure is repeated ten times
nd the CV loss is the average of the one-step-ahead
orecast MSE on each fold. In expanding or rolling window
etups, we rerun the CV penalty selection to ensure that
stimated ESN coefficients do not induce oversmoothing.
e refer the reader to Supplementary Appendix D.3 for

dditional details.

.3. Relation to nonparametric regression

Together with hyperparameters and penalty strength
election, the choice of the state dimension N is a key
ngredient of an ESN model. A large state space gener-
lly implies better approximation bounds (Gonon et al.,
023a; Gonon, Grigoryeva, & Ortega, 2023b). Although
t is customary in the empirical literature to take N as
arge as possible (Lukoševičius, 2012), some recent liter-
ture discusses both the statistical risk bounds and the
pproximation-risk tradeoff bounds for various RC fam-
lies (see Gonon et al. (2020b) and Gonon et al. (2023b)
or details). Under simplified assumptions that α = 0
nd ρ = 0 in (2.7), ESNs have a natural connection
o random-weights neural networks (Cao et al., 2018)
nd random projection regression (Maillard & Munos,
012), and are thus comparable to nonparametric sieve
ethods. If the data were independently sampled, known

esults on sieve estimation would require that at most
/T = o(1) up to logarithmic factors for consistency (Bel-
oni, Chernozhukov, Chetverikov, & Kato, 2015). Chen and
hristensen (2015) extended this result to β-mixing data
ith B-spline and wavelet sieves. Sieve rates appear to
uggest that choosing N = O(T ) in ESNs could lead to
ontrivial forecasting bias owing to poor approximation
roperties. Unfortunately, this comparison relies on ne-
lecting the dynamic component of the ESN model, and
s such it is only qualitative. It is, therefore, an important
opic for future research.

A different but related problem is the potential degra-
ation of forecasting performance when a model is at the
nterpolation threshold in the overparameterized regime,

≥ T . Ridge regression is also commonly applied to
ddress generalization concerns in statistical learning (see
 o

6

Hastie, Tibshirani, Friedman, and Friedman (2009)). Re-
cent work has extensively studied the link between reg-
ularization and generalization: Hastie, Montanari, Rosset,
and Tibshirani (2022) show that ridgeless (that is, in-
terpolation) solutions can be optimal in some scenarios.
However, in our empirical evaluations in Section 4, cross-
validation consistently selects non-zero ridge penalties,
confirming that ridge penalization plays an important role
in ESN forecasting performance.

2.4. ESN forecasting

We are primarily interested in using ESN models to
construct conditional forecasts of target variables. Given
that the conditional mean is the best mean square error
estimator for the h-step-ahead target yt+h, h ≥ 1, our
ain focus is approximating

t+h|t := E
[
yt+h|x0:t , z0:t

]
.

he case h = 1 is trivial, since the ESN model is esti-
ated by regressing yt+1 on state xt , and thus we can
et ỹt+1|t = Ŵ⊤xt . However, when h > 1, the non-
inear state dynamics preclude a direct computation of
he conditional mean. This is in contrast to linear models
ike VARMAs or DFMs, where the assumption of linearity
mplies that conditional expectations reduce to simple
atrix–vector operations. In particular, linear models are
uch that the variance (and any other higher-order mo-
ents) of the noise term does not impact the conditional
ean forecast.
Let pθ (xt |xt−1, z t ) and gθ (yt+1|xt ) be the state tran-

ition and observation densities, respectively. Then, for
> 1,

t+h|t =

∫
yt+h gθ (yt+h|xt+h−1)

×

h−1∏
j=1

pθ (xt+j|xt+j−1, z t+j)ν(z t+j|xt+j−1)dz t+jdxt+jdyt+h,

(2.8)

here ν(z t+j|xt+j−1) is the conditional density of inputs.
ere, we introduce the additional assumption that xt+j−1
s sufficient to condition on past states and inputs. That
s,

(z t+j|xt+j−1) ≡ ν(z t+j|x0:t+j−1, z0:t+j−1). (2.9)

ome elements in the expectation integral are not directly
vailable. Specifically, while an ESN explicitly models both
θ (xt |xt−1, z t ) and gθ (yt+1|xt ), the density ν(z t+j|xt+j−1) is
navailable.
In the remaining part of this subsection, we present a

ovel ESN-based approach to forecasting the target vari-
ble. Our idea is to enrich the ESN model with an auxil-
ary observation equation for the input covariates. As we
emonstrate in Section 4, our proposed method shows
uperior performance with respect to the standard state-

f-the-art benchmarks.
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2.4.1. Multi-step forecasting of targets via iterative forecast-
ing of inputs

In general, we are interested in constructing forecasts
f target variables that are not the same as the model
nputs. To do so, we resolve the issue of the intractability
f (2.8) while simultaneously capitalizing on the available
esults using ESNs to forecast dynamical systems. More
xplicitly, we add to the ESN specification (2.3)–(2.4) an
quation that allows sidestepping modeling of the density
directly, thus making the computation of ŷt+h|t feasible
ven when h > 1.
Consider the ESN where the reservoir states (xt )t∈Z

ollow (2.3), while the target sequence is the same as the
nput sequence (z t )t∈Z:

xt = αxt−1 + (1 − α) σ (Axt−1 + Cz t + ζ) (2.10)

t+1 = W⊤xt + ut+1. (2.11)

ere, we use symbol W for the output coefficients to
eparate this case from the general ESN equations (2.3)–
2.4). In (2.11), (ut )t∈Z denotes K -dimensional indepen-
ent zero-mean innovations with variance σ 2

u IK that are
lso independent of xt across all t .
In this case, the reservoir map F (xt−1, z t ) in (2.1) is

determined by (2.10), and it is possible to re-feed the
forecasted variables back into the state equation as inputs.
This yields the following state recursion:

xt = F (xt−1,W⊤xt−1 + ut ) =: Gθ (xt−1, ut ),

where the subscript θ denotes the dependence on the
model coefficients. In the reservoir computing literature,
regimes where the ESN state equation is iteratively fed
with the model outputs are called autonomous (Gonon
et al., 2020a). They are widely and successfully utilized
to predict deterministic dynamical systems. Indeed, in
those instances, provided that the ridge estimate Ŵ is
available from data according to Section 2.2, the h >

1-step autonomous state iteration is given by

F∗

θ (xt ) := αxt + (1 − α) σ ((A + CŴ⊤)xt + ζ)

and

xt+h = F∗

θ ◦ F∗

θ ◦ · · · ◦ F∗

θ  
h times

(xt ).

Hence one can directly obtain the h-step-ahead predic-
tions of the input time series as z t+h = Ŵ⊤xt+h−1.

In the case of stochastic target variables, assuming
(2.9), we notice that for the conditional forecast of the
states, it holds that

xt+1|t = E [xt+1|x0:t , z0:t ]

=

∫
xt pθ (xt |xt−1, z t )ν(z t |xt−1)dz t

=

∫
Gθ (xt−1, ut )φ(ut )dut , (2.12)

where the density φ of ut is, again, unavailable. Note
that even under the assumption ut ∼ N (0,Σu), which
is standard in the filtering literature, the presence of a
nonlinear map Gθ makes the computation of the forecasts
of z a non-straightforward exercise. Nevertheless, this
t+h

7

forecast construction can be readily used when one is
interested exclusively in predicting the time series z t .

Whenever the final goal of the exercise is forecasting
h steps ahead some other explained variable yt+h, addi-
tional issues arise. In this case, one needs to compute
the conditional expectation in (2.8), which is intractable
even under Gaussian assumptions on the innovations. One
option is to apply particle filtering techniques such as
bootstrap sampling or sequential importance sampling
(SIS) to evaluate the expectation (Doucet, de Freitas, &
Gordon, 2001). We emphasize that the state dimension
is usually chosen to be large, and hence implementing
filtering techniques requires some care.

Our approach is to avoid dealing with the nonlinear
densities involved in (2.8) with the help of (2.12) and,
instead, to reduce the computation of the conditional
expectation ŷt+h|t to a composition of functions. By the
linearity of the observation equation (2.4) and the as-
sumption of independence in the zero-mean noise ϵt+h,
we write

yt+h|t = W⊤x̂t+h−1|t =

∫
W⊤xt+h−1

×

h−1∏
j=1

pθ (xt+j|xt+j−1, z t+j)ν(z t+j|xt+j−1)dxt+jdz t+j

and use the approximation

yt+h|t ≈ ỹt+h = W⊤ F∗

θ ◦ F∗

θ ◦ · · · ◦ F∗

θ  
h−1 times

(xt ), (2.13)

which originates from

xt|t−1 =

∫
Gθ (xt−1, ut )φ(ut )dut

≈ Gθ (xt−1,E[ut ]) = F (xt−1,W⊤xt−1) ≡ F∗

θ (xt−1),
(2.14)

where ut is assumed to be zero-mean. The validity of
(2.14) itself requires implicit assumptions on the nature
of the distribution of ut , but here we want to keep the
analysis of ŷt+h|t to a minimum and just use the insights
from the dynamical systems ESN literature. We are hence
not delving deeper into alternative approaches to esti-
mate forecasts or, more generally, to compute conditional
expectations of ESN models with stochastic inputs.

3. Multi-frequency echo state models

In this subsection, we construct a broad class of ESN
models that can accommodate input and target time se-
ries sampled at distinct sampling frequencies. We call
this family of reservoir models multi-frequency echo state
networks (MFESNs). The state-space structure of MFESNs
is naturally amenable to the setting of time series with
mixed frequencies. Additionally, the prediction strategy
discussed in Section 2.4 is straightforward to extend to
MFESNs.

We present two groups of MFESN architectures. The
first is based on a single echo state network architecture
and we call these models single-reservoir multi-frequency
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echo state networks (S-MFESNs). The second group, re-
ferred to as multi-reservoir multi-frequency echo state
networks (M-MFESNs), allows for as many state equations
as the number of distinct sampling frequencies present in
the input data.

3.1. Single-reservoir MFESN

Recall that in the temporal notation of Definition 1.1,
e reserve t to be the reference time index, which is also
sed for the target variable, and all other frequencies are
easured with respect to the reference frequency.
Consider L collections of different time series. We as-

ume that the lth collection, l ∈ [L], consists of nl time
series that are sampled at a common frequency κl and
contain observations (z (l)t,s|κl )t,s with z (l)t,s|κl ∈ Rnl for all
t ∈ Z and s ∈ {0, . . . , κl − 1}. Let κmax = maxl κl be
the highest sampling frequency among the L time series
groups, and let ql := κmax/κl indicate how low each κl
sampling frequency is with respect to κmax. We can now
stack together and repeat the observations in a way that
is consistent with the high-frequency index by defining

z t,s|κmax :=

(
z (1)⊤t,⌊s/q1⌋|κ1

, z (2)⊤t,⌊s/q2⌋|κ2
, . . . , z (L)⊤t,⌊s/qL⌋|κL

)⊤

∈ R
∑L

l=1 nl ,

s ∈ {0, . . . , κmax − 1},

here for all l ∈ [L], z (l)0,0|κl = 0nl . Thus, it is possible to
rite a single high-frequency ESN as

xt,s|κmax = αxt,s−1|κmax

+ (1 − α) σ (Axt,s−1|κmax + Cz t,s|κmax + ζ),
(3.1)

z t,s+1|κmax = W⊤xt,s|κmax + ut,s+1|κmax , (3.2)

where W ∈ MN,
∑L

l=1 nl
and s > 0. We term this class

of MFESN models single-reservoir multi-frequency ESNs
(S-MFESNs).

Notice that equations (3.1)–(3.2) of the S-MFESNmodel
prescribe the dynamics at the highest frequency, κmax. In
rder to forecast a lower-frequency target, we map high-
requency states xt,s|κmax to low-frequency targets yt+1 ∈

RJ by introducing a state alignment scheme. An aligned
S-MFESN uses the most recent state with respect to the
reference time index t to construct the forecast. More
precisely, the state equation of an S-MFESN is iterated
κmax times until the state xt−1,κmax|κmax = xt,0|κmax is ob-
tained, and then target yt+1 is forecast with the following
observation equation:

yt+1 = W⊤xt,0|κmax + ϵt+1, W ∈ MN,J . (3.3)

Estimation of aligned S-MFESN. Both coefficient matrices
W and W can be estimated as explained in Section 2.2 un-
der appropriate choices of corresponding penalty
strengths. In particular, in order to obtain Ŵ , the state
and the observation matrices in (2.5) are given by

Xκmax = (x1,0|κmax , . . . , x1,κmax−1|κmax , . . . , xT−1,0|κmax , . . . ,

xT−1,κmax−1|κmax )
⊤

∈ M(T−1)κmax−1,N ,

Yκmax = (z1,1|κmax , . . . , z1,κmax|κmax , . . . , zT−1,1|κmax , . . . ,

z )⊤ ∈ M ∑L ,
T−1,κmax|κmax (T−1)κmax−1, l=1 nl

8

while

X =
(
x1,0|κmax , x2,0|κmax , . . . , xT−1,0|κmax

)⊤
∈ MT−1,N ,

Y = (y2, . . . , yT )
⊤

∈ MT−1,J ,

are used for the estimation of Ŵ . We note that the state
equation (3.1) of S-MFESN can be initialized by x0,0|κmax ,
which under the fading memory property is inconsequen-
tial for sufficiently long samples (see the discussion in
Section 2).

Forecasting with aligned S-MFESN. Let Ŵ and Ŵ be the
sample estimates of the readout matrices as explained
above. The fitted high-frequency autonomous state tran-
sition map associated with (3.1) is given by

Fκmax (xt,s−1|κmax ) := αxt,s−1|κmax

+ (1 − α) σ
(
(A + CŴ⊤)xt,s−1|κmax + ζ

)
,

(3.4)

which, composed with itself exactly κmax times, yields
the target-frequency-aligned autonomous state transition
map:

F (xt,0|κmax ) := Fκmax ◦ Fκmax ◦ · · · ◦ Fκmax  
κmax times

(xt,0|κmax ). (3.5)

Finally, from (2.13) the h-step-ahead low-frequency fore-
casts, h ∈ N, can be computed as

yT+h|T = Ŵ⊤
(
F ◦ F ◦ · · · ◦ F  

h−1 times

(xT ,0|κmax )
)
. (3.6)

Fig. 1 gives a graphical diagram of the one-step fore-
asting procedure for an S-MFESN. Additionally, Fig. 12 in
upplementary Appendix K provides a similar diagram for
he case of multistep forecasts.

The following example illustrates this proposed fore-
asting strategy for the case of quarterly GDP forecasting
sing monthly and daily series inputs.

xample 3.1. Suppose that we wish to use an aligned
-MFESN model to forecast a quarterly one-dimensional
arget (yt ) using n(m) monthly and n(d) daily series, (z (m)t,s|κ1

)
nd (z (d)t,s|κ2

), respectively. We adopt the assumption that
aily data are released 24 days over each calendar month
nd hence κ1 = 3, κ2 = 72, and κmax = 72, while q1 = 24

and q2 = 1. Let t, ∗|72 be the temporal index with a
quarterly reference frequency. The input vector for the S-
MFESN state equation consistent with the daily frequency
is given by

z (m,d)t,s|72 := (z (m)t,⌊s/24⌋|3
⊤

, z (d)t,s|72
⊤

)⊤ ∈ Rn(m)+n(d) with

z (d)0,0|3 = 0n(d) and z (m)0,0|24 = 0n(m) .

The complete S-MFESN model with the state-space di-
mension N can be written as

x(m,d)t,s|72 = αx(m,d)t,s−1|72 + (1 − α) σ (Ax(m,d)t,s−1|72 + Cz (m,d)t,s|72 + ζ),
(3.7)

z (m,d)t,s+1|72 = W⊤x(m,d)t,s|72 + ut,s+1|72, (3.8)

y = W⊤x(m,d) + ϵ , (3.9)
t+1 t,0|κmax t+1
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Fig. 1. Scheme of a single-reservoir MFESN (S-MFESN) model combining input data sampled at two frequencies with state alignment and estimation
for one-step-ahead forecasting of the target series.
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where the state equations (3.7)–(3.8) are run in their own
maximum frequency temporal index s > 0, and only the
tates xt−1,κmax|κmax = xt,0|κmax are used in the observation
quation (3.9). Provided the input-target pairs sample of
ength T , the coefficient matrices W ∈ MN,n(m)+n(d) in (3.8)
andW ∈ RN in (3.9) can be estimated via ridge regression,
as explained above.

From (3.4), the high-frequency autonomous state tran-
sition map is given by

F (m,d)
72 (x(m,d)t,s−1|72) :=

αx(m,d)t,s−1|72 + (1 − α) σ
(
(A + CŴ⊤)x(m,d)t,s−1|72 + ζ

)
,

which, composed with itself exactly 72 times, by (3.5)
yields the target-frequency-aligned autonomous state
transition map:

F (m,d)(x(m,d)t,0|72) := F (m,d)
72 ◦ F (m,d)

72 · · · ◦ F (m,d)
72  

72 times

(x(m,d)t,0|72).

y applying F (m,d) to state x(m,d)t,0|72 we iterate the S-MFESN
orward in time to provide an estimate for x(m,d)t+1,0|72, which
an then be linearly projected using Ŵ to yield a forecast
or yt+2. For the target variable, as well as forecasts, we do
ot use our temporal notation for the sake of compactness
nd clarity of exposition. Finally, the quarterly forecasts
or h ∈ N can be computed using (3.6) as follows:

T+h|T = Ŵ⊤
(
F (m,d)

◦ F (m,d)
◦ · · · ◦ F (m,d)  

h−1 times

(x(m,d)T ,0|72)
)
.

3.2. Multi-reservoir MFESN

Constructing an MFESN with a single reservoir is not
necessarily the most effective modeling strategy. Having
more than one reservoir allows for more flexible modeling
of state dynamics for different subsets of input variables
sampled at common frequencies. For example, suppose
9

quarterly and monthly data are used as regressors. Our
presentation is general enough to accommodate other
types of partitioning of series into the corresponding
reservoir models. We leave it to future research to test
other approaches based, for instance, on markets or data
types, as done by van Huellen et al. (2020).

Assume again L groups of series with input observa-
tions (z (l)t,s|κl )t,s with z (l)t,s|κl ∈ Rnl , l ∈ [L], for all t ∈ Z
and s ∈ {0, . . . , κl − 1} sampled at common frequencies
{κ1, . . . , κL}, respectively. For each of the L groups of input
series, we define the corresponding ESN model as

x(l)t,s|κl = αlx
(l)
t,s−1|κl + (1 − αl) σ (Alx

(l)
t,s−1|κl + Clz

(l)
t,s|κl + ζl),

(3.10)

z (l)t,s+1|κl = W⊤

l x(l)t,s|κl + u(l)
t,s+1|κl , l ∈ [L], (3.11)

ith s > 0, Wl ∈ MNl,nl with Nl the dimension of
he state space. Notice that the time index s is different
or each l according to our temporal notation introduced
n Definition 1.1, and each state equation runs at its
wn frequency κl. The dimensions {N1,N2, . . . ,NL} of the
tate spaces can be chosen for the L reservoir models
ndividually. Additionally, multiple reservoirs have the as-
ociated hyperparameter tuples {ϕ1, . . . ,ϕL} to be tuned.
This requires some care whenever one wants to opti-
mize all hyperparameters jointly. Since there are L reser-
voir state equations, we call this class of MFESN models
multi-reservoir multi-frequency ESNs (M-MFESNs).

Similar to the S-MFESN, all L state equations are each
terated κl times until the states x(l)t−1,κl|κl

= x(l)t,0|κl are
btained. The aligned M-MFESN observation equation is
iven by

yt+1 = W⊤xt,L + ϵt+1, with

xt,L =

⎛⎜⎜⎝
x(1)t,0|κ1
...

x(L)t,0|κL

⎞⎟⎟⎠ ∈ R
∑L

l=1 Nl , W ∈ M∑L
l=1 Nl,J

.
(3.12)
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Estimation of aligned M-MFESN. The coefficient matrices
l, l ∈ [L], and W can be estimated similarly to the

case of S-MFESN. The state and observation matrices for
the estimation of Ŵl, l ∈ [L], in (2.5) are constructed as
follows:

X (l)
= (x(l)1,0|κl , . . . , x

(l)
1,κl−1|κl , . . . , x

(l)
T−1,0|κl , . . . , x

(l)
T−1,κl−1|κl )

⊤

∈ M(T−1)κl−1,Nl ,

Y (l)
= (z (l)1,1|κl , . . . , z

(l)
1,κl|κl , . . . , z

(l)
T−1,1|κl , . . . , z

(l)
T−1,κl|κl )

⊤

∈ M(T−1)κl−1,nl ,

while, with the notation as in (3.12),

X =
(
x1,L, x2,L, . . . , xT−1,L

)⊤
∈ MT−1,

∑L
l=1 Nl

,

Y = (y2, . . . , yT )
⊤

∈ MT−1,J ,

are used for the estimation of Ŵ . Again, the state equation
(3.10) of M-MFESN can be started with x(l)0,0|κl = 0Nl ; see
Section 2 for more details.

Forecasting with aligned M-MFESN. Let Ŵ and Ŵl, l ∈ [L]
be the sample estimates of the readout matrices. For any
l ∈ [L], the κl-frequency autonomous state transition map
is given by

F (l)
κl
(x(l)t,s−1|κl

) := αlx
(l)
t,s−1|κl

+ (1 − αl) σ
(
(Al + ClŴ⊤

l ) x(l)t,s−1|κl
+ ζl

)
.

(3.13)

The target-frequency-aligned autonomous state transition
map associated with each frequency l is hence defined as

F (l)(xt,0|κl ) := F (l)
κl

◦ F (l)
κl

◦ · · · ◦ F (l)
κl  

κl times

(x(l)t,0|κl ). (3.14)

Finally, from (2.13), the h-step-ahead forecasts can be
computed as

yT+h|T = Ŵ⊤

⎛⎜⎜⎜⎜⎜⎝
F (1)

◦ F (1)
◦ · · · ◦ F (1)  

h−1 times

(x(1)T ,0|κ1
)

...

F (L)
◦ F (L)

◦ · · · ◦ F (L)  
h−1 times

(x(L)T ,0|κL
)

⎞⎟⎟⎟⎟⎟⎠ . (3.15)

In Fig. 2 we provide a diagram for the case of one-step-
head forecasting with an aligned M-MFESN involving
egressors of only two frequencies. Fig. 13 in Supplemen-
ary Appendix K provides a similar diagram for the case
f multistep forecasting.

xample 3.2. Similar to Example 3.1, we aim to forecast
quarterly target with monthly and daily series, but this
ime we use an M-MFESN model. We have to define two
ndependent state equations, one for monthly and one for
aily series; in the observation equations, two states must
e aligned temporally and stacked to form the full set of
egressors. The data again consist of quarterly (yt ), n(m)

onthly series (z (m) (d)

t,s|3), and n(d) daily series (z t,s|72).

10
The aligned M-MFESN model with two reservoirs of
dimensions N(m) and N(d) is respectively given by

x(m)t,s|3 = α1x
(m)
t,s−1|3 + (1 − α1) σ (A1x

(m)
t,s−1|3 + C1z

(m)
t,s|3 + ζ1),

(3.16)

z (m)t,s+1|3 = W⊤

(m)x
(m)
t,s|3 + u(m)

t,s+1|3, (3.17)

x(d)t,s|72 = α2x
(d)
t,s−1|72 + (1 − α2) σ (A2x

(d)
t,s−1|72 + C2z

(d)
t,s|72 + ζ2),

(3.18)

z (d)t,s+1|72 = W⊤

(d)x
(d)
t,s|72 + u(d)

t,s+1|72, (3.19)

yt+1 = W⊤

(
x(m)t,0|3

x(d)t,0|72

)
+ ϵt+1, (3.20)

where s > 0, W(m) ∈ MN(m),n(m) , W(d) ∈ MN(d),n(d) and W ∈

RN(m)+N(d) . Here, the monthly reservoir (x(m)t,s|3) has a tempo-
ral index of frequency 3, while that of the daily reservoir
(x(d)t,s|72) is 72; the high-frequency index s is different for
the two models. Notice that in an M-MFESN model it is
necessary to introduce two additional observation equa-
tions for the states, that is, (3.17) and (3.19). Notice that
the state equations are each iterated κl times to collect
the states to be aligned in the observation equation (3.20).
Again, the sample-based estimates of coefficient matrices
Ŵ(m), Ŵ(d) and Ŵ in (3.17), (3.18), and (3.20), respectively,
can be obtained via the ridge regression, as discussed
above.

Exactly as in Example 3.1, using (3.13) we can in-
troduce high-frequency autonomous state maps F (m)

3 and
F (d)
72 :

F (m)
3 (x(m)t,s−1|3) := α1x

(m)
t,s−1|3

+ (1 − α1) σ
(
(A1 + C1Ŵ

⊤

(m)) x
(m)
t,s−1|3 + ζ1

)
,

F (d)
72 (x(d)t,s−1|72) := α2x

(d)
t,s−1|72

+ (1 − α2) σ
(
(A2 + C2Ŵ

⊤

(d)) x
(d)
t,s−1|72 + ζ2

)
,

as well as their target-frequency aligned counterparts F (m)

and F (d), by (3.14):

F (m)(x(m)t,0|3) := F (m)
3 ◦ F (m)

3 ◦ F (m)
3  

3 times

(x(m)t,0|3),

F (d)(x(d)t,0|72) := F (d)
72 ◦ F (d)

72 ◦ · · · ◦ F (d)
72  

72 times

(x(d)t,0|72).

The h-step-ahead forecasts can be computed using the
approximation in (3.15):

yT+h|T = Ŵ⊤

⎛⎜⎜⎜⎝
F (m)

◦ F (m)
◦ · · · ◦ F (m)  

h−1 times

(x(m)T ,0|3)

F (d)
◦ F (d)

◦ · · · ◦ F (d)  
h−1 times

(x(d)T ,0|72)

⎞⎟⎟⎟⎠ .
n this case, it is important to note that while both F (m)

and F (d) are composed h−1 times at step h, the underlying
number of autonomous reservoir iterations is different for
the monthly and daily reservoirs, namely 3 and 72, and
depends on their own frequencies. This also suggests that
one should take into account the different time dynamics
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Fig. 2. Scheme of a multi-reservoir MFESN (M-MFESN) model combining input data sampled at two frequencies with state alignment and estimation
for one-step-ahead forecasting of the target series.
,

when, for example, tuning M-MFESN hyperparameters
ϕ(m) and ϕ(d), as proposed in Subsection D.2.

4. Empirical study

In this section, we compare the forecasting perfor-
mance of our proposed MFESN to state-of-the-art bench-
marks. We use a combination of macroeconomic and fi-
nancial data sampled at low- and high-frequency inter-
vals, respectively. Our empirical exercises encompass sev-
eral setups, with a small and a medium-sized set of re-
gressors, fitting models with data before and after the
2007–2008 crisis, and with fixed, rolling, and expanding
estimation windows.

4.1. Data

Two sets of predictors of different sizes are compiled:
small-MD with nine predictors and medium-MD with 33
predictors at monthly and daily frequencies. The reference
frequency is quarterly: this is the frequency at which the
target variable, U.S. GDP growth, is available. Seasonally
adjusted quarterly and monthly data are obtained from
the Federal Reserve Bank of St. Louis Monthly (FRED-MD)
and Quarterly (FRED-QD) Databases for Macroeconomic
Research (see McCracken and Ng (2016, 2020) for de-
tails). Daily data are obtained from Refinitiv Datastream,
a subscription-based data service. All data are the last re-
vised vintage data. The macroeconomic target and predic-
tors, their transformations, and availability are provided
in full detail in Table A.9 in Appendix A.

The selection of predictors follows the seminal work
by Stock and Watson (1996, 2006), in which the FRED-

MD and FRED-QD data are proposed. Variations of their

11
dataset have been used profusely in the literature (for ex-
ample, see Boivin and Ng (2005), Hatzius, Hooper, Mishkin
Schoenholtz, and Watson (2010), Marcellino, Stock, and
Watson (2006)). Indicators from ten macroeconomic and
financial categories are considered: (1) output and in-
come, (2) labor market, (3) housing, (4) orders and in-
ventories, (5) price indices, (6) money and credit, (7)
interest rates, (8) exchange rates, (9) equity, and (10)
derivatives. The latter five categories represent financial
market conditions and are sourced at daily frequency.
The exception is interest rates, which move relatively
slowly and enter as monthly aggregates, available in the
FRED-MD data. We refer to this dataset as medium-MD. A
subset of predictors is selected for the small-MD dataset
by choosing variables that have been identified as lead-
ing indicators in the empirical literature (Andreou et al.,
2013; Carriero, Galvão, & Kapetanios, 2019; Clements &
Galvão, 2008; Ferrara, Marsilli, & Ortega, 2014; Ingenito
& Trehan, 1996; Jardet & Meunier, 2022; Marsilli, 2014).
Data availability is an additional criterion, and predictors
unavailable before 1990 are not considered. This excludes
the VIX volatility index, which has been identified as a
leading indicator in some studies, for example in Andreou
et al. (2013), Jardet and Meunier (2022).

We follow instructions by McCracken and Ng (2016,
2020) on pre-processing macroeconomic predictors be-
fore they are used as input for forecasting. These are
mainly differenced for detrending. We further transform
financial predictors to capture market disequilibrium and
volatility. Disequilibrium indicators, such as interest rate
spreads, have been found to be more relevant for macroe-
conomic prediction than routine changes captured by
differencing (see Borio and Lowe (2002), Gramlich, Miller,
Oet, and Ong (2010), Qin, van Huellen, Wang, and Moraitis
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(2022)). In addition to disequilibrium indicators, real-
ized stock market volatility has been found to improve
macroeconomic predictions (Chauvet et al., 2015). In the
absence of intraday trading data from the 1990s on-
ward, which prevents us from utilizing conventional daily
realized volatility indicators, we extract volatility indi-
cators from daily price series by fitting a GARCH(1,1)
by Bollerslev (1986).2 In addition to volatility of stock
nd commodity prices, term structure indicators are used.
he term structure is forward-looking, capturing infor-
ation about future demand and supply, and has been

ound to be a leading predictor of GDP growth (see for
xample Hong and Yogo (2012), Kang and Kwon (2020)).
The data span the period from January 1st, 1990, to

ecember 31st, 2019.3 We are interested in evaluating
odel performance under two stylized settings. First, a

esearcher fits all models up until the Great Recession,
ncluding data from 1990Q1 to 2007Q4. Second, fitting
s done with data largely encompassing the crisis period,
gain from 1990Q1 but now up to 2011Q4. In both cases,
he testing sample ranges from the next GDP growth ob-
ervation after fitting up to 2019Q4. All exercises exclude
he global Covid-19 economic depression, as we consider
t an extreme, unpredictable event that induced signifi-
ant structural changes in the underlying macroeconomic
ynamics.4
To avoid having to handle the many edge cases that

aily data in their raw calendar releases involve, we use
n interpolation approach. We set ex ante the number of
orking days in any month to be exactly 24: given that

n forecasting the most recent information sets are more
elevant, when interpolating daily data over months with
ewer than 24 calendar observations, we linearly interpo-
ate the missing data starting from a month’s beginning
using the previous month’s last observation). The choice
f 24 as a daily frequency is transparent by noting that
his is the closest number to actual commonly observed
ata releases, whilst also being a multiple of both four
the approximate number of weeks per month) and six
the upper bound on the number of working days per
eek).

2 We include a control scale = 1 to ensure convergence of the
ptimization algorithm, and we only include a constant mean term in
he return process for simplicity.
3 In the small-MD dataset experiments we make a small variation
nd instead include data starting from January 1st, 1975, but only for

the initial CV selection of ridge penalties for MFESN models. Our aim
is to make sure that at least for the fixed window estimation strategy
– where λ is cross-validated once, and only one Ŵ is estimated – the
ridge estimator is robust. In practice, when we compare to expanding
and rolling window estimators, where λ is re-selected at each window,
we find that extending the initial CV data window has little impact on
out-of-sample performance.
4 In the macroeconomic literature this falls under the category of

‘natural disaster’ events, and should not be naïvely modeled together
with previous observations. In this section, we therefore avoid dealing
with post-Covid-19 macroeconomic data altogether.
12
4.2. Models

In this section, we present the set of models that
we use throughout our empirical exercises. For a gen-
eral overview, Table 4.1 summarizes all models, including
hyperparameters. In our analysis, we compare the com-
peting models based on several performance measures,
which we introduce in Supplementary Appendix E.

4.2.1. Benchmarks
Unconditional mean. We use the unconditional mean of
the sample used for fitting as a baseline benchmark. For
GDP growth forecasting, there is evidence that the un-
conditional mean produces forecasts that are competitive
with linear models such as VARs in terms of mean square
forecasting errors (MSFEs), even at relatively short hori-
zons (Arora, Little, & McSharry, 2013). It is therefore an
important reference for the performance of all other mod-
els, and we report relative MSFEs with respect to the
unconditional mean in the tables below.

AR(1) model. A simple autoregressive process of order
one on the target variable is included as a benchmark
model.5 This is also a common benchmark in the lit-
erature, as AR(1) models are often able to capture key
dynamics and produce meaningful forecasts for macroe-
conomic variables (Bai & Ng, 2008; Stock &Watson, 2002).
We emphasize that since AR(1) model is fit to the series
of quarterly GDP targets and does not use any addi-
tional information, its forecasts are identical for both the
small-MD and medium-MD samples.

Mixed-data sampling (MIDAS). The first mixed-frequency
model benchmark is given by a MIDAS model (Ghysels
et al., 2004, 2007). Our dynamic MIDAS specification in-
cludes autoregressive lags of the target series and uses an
Almon weighting scheme. As shown in Bai, Ghysels, and
Wright (2013), exponential Almon MIDAS regressions are
related to dynamic factor models, which we also consider
as benchmarks. The MIDAS model includes three lags
of quarterly GDP target variable, and 30 daily and nine
monthly lags for all daily and monthly series, respectively.
This model prescription allows for some parsimony, as the
Almon polynomial weighing reduces the number of daily
and monthly lag coefficients.

A thorough description of our MIDAS implementation
can be found in Supplementary Appendix G. To make
optimization more efficient, we use explicit expressions
for MIDAS loss gradients, as in Kostrov (2021). The MI-
DAS estimation can be hard to perform in practice, due
to the complexity of nonlinear optimization. First, ex-
ponential weighting schemes might require computing
floating-point numbers that exceed numerical precision.
Therefore, it is a better choice to start the gradient de-
scent close to the origin of the parameter space. Second,
even with this choice of starting points, one may en-
counter issues with the optimization results, since the
Almon-scheme MIDAS loss can have a large number of
distinct local minima. In Supplementary Appendix J.1 we

5 Suggested by an anonymous referee.
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Table 4.1
Table of models used in applied forecasting exercises. MFESN hyperparameters are defined with respect to normalized
state parameters; cf. (2.6).
Model name Description Specification

Mean Unconditional mean of target series over
estimation sample.

None

AR(1) Autoregressive model of target series estimated
using OLS.

None

MIDAS Almon-weighted MIDAS regression, linear
(unconstrained) autoregressive component.

Autoregressive lags: 3
Monthly freq. lags: 9
Daily freq. lags: 30

DFM [A] Stock aggregation, VAR(1) factor process. Factors:5 for Small-MD
10 for Medium-MD

DFM [B] Almon aggregation, VAR(1) factor process Factors:5 for Small-MD
10 for Medium-MD

singleESN [A]
S-MFESN model:

Sparse-normal Ã, sparse-uniform C̃ , ζ̃ = 0.
Isotropic ridge regression fit.

Reservoir dim: 30
Sparsity: 33.3%
ρ = 0.5, γ = 1, α = 0.1

singleESN [B]
S-MFESN model:
Sparse-normal Ã, sparse-uniform C̃ , ζ̃ = 0.
Isotropic ridge regression fit.

Reservoir dim: 120
Sparsity: 8.3%
ρ = 0.5, γ = 1, α = 0.1

multiESN [A]

M-MFESN model:
Monthly and daily frequency reservoirs.
Sparse-normal Ã1 , Ã2 ,
sparse-uniform C̃1 , C̃2 , ζ̃1 = 0, ζ̃2 = 0.
Isotropic ridge regression fit

Reservoir dims: M=100, D=20
Sparsity: M=10%, D=50%
M: ρ = 0.5, γ = 1.5, α = 0
D: ρ = 0.5, γ = 0.5, α = 0.1

multiESN [B]

M-MFESN model:
Monthly and daily frequency reservoirs.
Sparse-normal Ã1 , Ã2 ,
sparse-uniform C̃1 , C̃2 , ζ̃1 = 0, ζ̃2 = 0.
Isotropic ridge regression fit.

Reservoir dims: M=100, D=20
Sparsity: M=10%, D=50%
M: ρ = 0.08, γ = 0.25, α = 0.3
D: ρ = 0.01, γ = 0.01, α = 0.99
document, using a simple replication experiment, that
even small changes in the initial conditions can result
in different local minima picked by the numerical opti-
mization algorithm.6 These important robustness issues
re present even when using closed-form gradients and
ulti-start optimization routines for the MIDAS models.
he computational issues become more pronounced as
he number of MIDAS parameters increase, unless a care-
ul model/variable selection step is performed. Therefore,
e do not include any MIDAS model specifications in the
edium-MD setup.

ynamic factor model (DFM). The DFM framework has
been extensively applied in macroeconometrics, starting
with Geweke (1977) and Sargent et al. (1977). A DFM
specification assumes that predictable dynamics of a large
set of time series can be explained by a small number
of factors with an autoregressive dependence (see for
example Doz, Giannone, and Reichlin (2011), Forni, Hallin,
Lippi, and Reichlin (2005), Stock and Watson (2016)).
We generalize the standard two-frequency DFM modeling
setup (Bańbura & Modugno, 2014; Mariano & Murasawa,

6 We set the initial coefficient values to zero in all empirical
exercises.
13
2003) to a flexible mixed-frequency DFM that encom-
passes any number of data frequencies. Moreover, we
derive a novel weighting scheme that effectively links the
MIDAS and DFM approaches. For a detailed discussion of
our factor model setup, we refer the reader to Supple-
mentary Appendix H. Two distinct DFM specifications are
used. The first one, termed DFM [A], uses the standard
linear aggregation scheme, as provided in Example H.1,
while the second is a variation that implements an Al-
mon weighting scheme, as presented in Example H.2 (we
name it DFM [B]). The latter is similar to a MIDAS-type
aggregation scheme (Marcellino & Schumacher, 2010):
the factor structure effectively mitigates the parameter
proliferation.

A key choice for a DFM model is the dimension of the
factor process. While a number of methods have been de-
veloped over the years to systematically derive the num-
ber of factors (see for example the review by Stock and
Watson (2016)), commonly used macroeconomic pan-
els feature a number of challenges, such as weak fac-
tors (Onatski, 2012). Moreover, as mentioned in Supple-
mentary Appendix H.1, factor number selection in the
mixed-frequency setting has not been sufficiently ad-
dressed in the literature. To sidestep these issues, we
construct both DFM models with five unobserved factors
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Table 4.2
Execution time in seconds for model estimation measured over a single run on a quad-core computer. MFESN model
timing includes ridge penalty cross-validation. MIDAS estimation time refers to optimization from a single initial value.
DFM models were estimated on a single-core server and times are adjusted by a factor of 1/4 for comparison.
Execution time (in seconds) for model estimation

Dataset Mean AR(1) MIDAS DFM singleESN multiESN

[A] [B] [A] [B] [A] [B]

Small-MD 0.1 0.7 1.3 40.5 85.5 2.6 4.5 15.3 14.6
Medium-MD 0.1 0.8 – 48.0 226.5 2.5 5.7 17.7 14.7
for small-MD and 10 for medium-MD, respectively, and
assume that they follow a VAR(1) process.

One extant issue with integrating daily data is their
ery high release frequency compared to monthly and
specially quarterly releases: computationally, this can
e extremely taxing, which might be one of the reasons
hy to our knowledge we are the first to provide DFM

orecasts that include daily data. Our solution is to reduce
ggregate daily data every six days by averaging, thus
eaving four observations per month. This considerably
ases the computational burden of estimating coefficients
nd latent states (12 versus 72 daily observations per
uarter).

.2.2. Multi-frequency ESNs
The first set of ESNs we propose is given by two S-

FESN models, based on Example 3.1. One model uses
reservoir of 30 neurons (we call it singleESN [A]). The
ther has a larger reservoir of dimension 120 (named
ingleESN [B]). The sparsity degree of state parameters for
oth models is set to be 10/N , where N is the reservoir
ize. Both MFESNs share the same hyperparameters: ρ =

.5, γ = 1, and α = 0.1 (see (2.7)). These values have
ot been tuned but are presumed credible given other
SN implementations in the literature. To make a fair
omparison with DFMs, we fit the S-MFESN models using
ix-day-averaged daily data. Note here that for MFESN
odels the computational gains of averaging are negligi-
le, and are most apparent when tuning the ridge penalty
ia cross-validation.
Our second set of proposed models consists of two M-

FESNs according to Example 3.2. Both models have two
eservoirs, one for each data frequency – monthly and
aily – with 100 and 20 neurons, respectively. Sparsity
egrees are again adjusted to be 10/N , where N is the
eservoir state dimension. The first M-MFESN has hy-
erparameters that are hand-selected among reasonable
alues: we note that the monthly-frequency reservoir
as no state leak and a larger input scaling, while the
aily-frequency reservoir features smaller scaling than
sual (to avoid compressing high-volatility events with
he activation function) and the same leak rate as in the
-MFESN models (we call this specification multiESN [A]).
or the second M-MFESN, we change the hyperparame-
ers more radically: we aim to set up a model that has a

ery high input memory (Ballarin et al., 2023), and that
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features long-term smoothing of states. Note that here,
input scaling values are small, spectral radii are an order
of magnitude smaller than in previous models, and leak
rates are large (we term this model multiESN [B]).

4.3. Results

We start by commenting on the computational effi-
ciency of competing models and report execution times
(in seconds) in Table 4.2. Firstly, DFM models appear
to be the most computationally effortful models among
all specifications. For the small-MD dataset, the simplest
MFESN models, that is, singleESN [A] and [B], have ex-
ecution times which are at most 3.5 times higher than
the MIDAS model, while still being at least 15.6 times
computationally cheaper than any of the DFM models.
The more resource-demanding MFESN models, multiESN
[A] and [B], are nevertheless at least 2.6 times faster to
run than the best DFM model (DFM [A]). When moving
to the medium-MD dataset – where the MIDAS model
is not a feasible choice, as explained above – the most
inefficient MFESN model (singleESN [B]) still outperforms
the best DFM model, DFM [A], by 8.4 times, while the
same holds for the multiESN [A] model versus DFM [A]
model by 2.7 times. We can conclude that our proposed
MFESN architectures provide an attractive and computa-
tionally efficient framework for GDP forecasting in the
multifrequency framework, which is feasible for compu-
tations on low-cost machine configurations available to
practitioners.

Competing forecasts are compared using the model
confidence set (MCS) test derived by Hansen, Huang, and
Shek (2011). One should note that due to the intrinsic
nature of data availability of macroeconomic time series
and panels, our sample sizes are modest. This implies that
the small-sample sensitivities of the MCS test need to
be taken into account when evaluating our comparisons.
Recent analyses of the finite sample properties of the MCS
methodology have shown that it requires signal-to-noise
ratios which are unattainable in most empirical settings,
an issue that undermines its applicability (Aparicio &
de Prado, 2018). Given this fact, we also conduct pair-
wise model comparison tests with the modified Diebold–
Mariano (MDM) test for predictive accuracy (Diebold &

Mariano, 2002; Harvey, Leybourne, & Newbold, 1997).
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Table 4.3
Relative MSFEs and model confidence set (MCS) comparisons between models in one-step-ahead forecasting exercises.
The unconditional mean MSFE is used as a reference. MCS columns show inclusion among best models.

One-Step-ahead GDP forecasting – small-MD dataset
Fixed parameters Expanding window Rolling window

Model 2007 2011 2007 2011 2007 2011
MSFE MCS MSFE MCS MSFE MCS MSFE MCS MSFE MCS MSFE MCS

Mean 1.000 * 1.000 ** 1.000 ** 1.000 ** 1.000 ** 1.000 **
AR(1) 0.758 * 1.230 ** 0.789 ** 1.226 ** 0.775 ** 1.209 **
MIDAS 0.533 ** 1.300 0.596 ** 1.129 * 0.709 ** 1.170 *
DFM [A] 0.799 * 1.337 0.980 * 1.320 0.919 * 1.226
DFM [B] 0.885 1.221 ** 0.982 * 1.022 ** 0.948 1.028 **

singleESN [A] 0.721 ** 1.015 ** 0.597 ** 0.867 ** 0.529 ** 0.863 **
singleESN [B] 0.758 * 0.921 ** 0.602 ** 0.844 ** 0.561 ** 0.930 **
multiESN [A] 0.802 * 1.250 0.635 ** 0.874 ** 0.621 ** 0.859 **
multiESN [B] 0.590 ** 0.969 ** 0.552 ** 0.895 ** 0.530 ** 0.921 **

* Indicates inclusion at 90% confidence.
** Indicates inclusion at 75% confidence.
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As we also provide multiple-step-ahead forecasts, we
test for the best subset of models uniformly across all
horizons using the uniform multi-horizon MCS (uMCS)
test proposed by Quaedvlieg (2021). Since there is rel-
atively little systematic knowledge regarding the power
properties of the uMCS test in small samples, our inclu-
sion of this procedure is meant as a statistical counter-
point to simple relative forecasting error comparisons,
which provide limited information about the significance
of performance differences. We provide more details on
our implementation of the test in Supplementary Ap-
pendix F. Finally, we do not report uMCS test outcomes
for the expanding window setup, as Quaedvlieg (2021)
argues that in such contexts the test is invalid.

4.3.1. Small dataset
We begin our discussion of the small-MD forecast-

ing results by reviewing Table 4.3. For both sample se-
tups (2007 and 2011) and all three estimation strategies
(fixed, expanding, and rolling windows) we provide rel-
ative MSFE metrics, with the unconditional mean being
used as a reference. Plots of each of the model’s forecasts
are given in Figs. 3 and 4 in Appendix B; additional plots
for cumulative SFE, cumulative RMSFEs, and other metrics
can be found in Supplementary Appendix K.

The overall finding is that MFESN models perform ex-
cellent, and, when we exclude the 2007 fixed parameters
setup, they perform the best. It is easy to see from Fig. 3(a)
why the 2007 fixed window estimation case is different
from the other cases: the 2008 financial crisis induced a
deep drop in quarter-to-quarter GDP growth that was in
stark contrast with previous business-cycle fluctuations.
By keeping the model parameters fixed and using only in-
formation from 1990 to 2007 – periods where systematic
fluctuations were small – the DFM and MFESN models are
fit to produce smooth, low-volatility forecasts. MIDAS, on
the other hand, yields an exponential smoothing which

can be more responsive to changes in monthly and daily

15
series. From Figs. 3(b) and (c), it is possible to see that
expanding and rolling window estimation resolves this
weakness of state-space models. At the same time, the
AR(1) model outperforms the unconditional mean only
in the 2007 sample with fixed parameters, losing to the
MIDAS model in all but one scenario.

Table 4.3 shows that MFESN models always perform
better than the mean in terms of the MSFE, something
which no other model class achieves across all setups.
In both expanding and rolling window setups they also
always outperform the AR(1) model. Furthermore, at least
one MFESN model for each subclass (single or multi-
reservoir) is always included in the model confidence set
at the highest confidence level. Again, recall that the MCS
test of Hansen et al. (2011) might be distorted due to the
modest sample sizes considered, and even more so in the
2011 test sample. To complement the MCS, we provide
graphical tables for pairwise modified Diebold–Mariano
(MDM) tests, with 10% level rejections highlighted in Fig.
14, Supplementary Appendix K. The MDM tests broadly
agree with the results of Table 4.3, although they do
not account for multiple testing and therefore cannot
be interpreted as yielding subsets of the most accurate
forecasting models in a statistical sense.

For multiple-step-ahead forecasts, the relative RMSFE
and uMCS are reported in Tables 4.4 and 4.5: we constrain
our exercise to h ∈ {1, . . . , 8} steps, since we are inter-
sted in GDP growth forecasts within two years. Note that
or h = 1 our results are similar, but do not reduce to the
ne-step-ahead results. To make correct multistep RMSFE
valuations and execute the uMCS procedure, one must
elect h different vectors of residuals of the same length:
his implies that residuals at the end of the forecasting
ample must be trimmed off to compute short-term mul-
istep RMSFEs that are comparable to the long-term ones.
enerally, we notice that the MIDAS models, as well as
he S-MFESNs, provide the worst-performing multistep
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Table 4.4
Relative RMSFEs and uniform multi-horizon model confidence set (uMCS) comparisons between models
in multiple-step-ahead forecasting exercises. The unconditional mean RMSFE used as reference. FIX: fixed
parameters, EW: expanding window, and RW: rolling window. The uMCS columns show inclusion among
best models.

Multistep-ahead GDP forecasting – small-MD dataset – 2007 sample
Setup Model Horizon uMCS

1 2 3 4 5 6 7 8

FIX Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FIX AR(1) 0.870 0.950 0.982 0.991 0.992 0.991 0.992 0.992 **
FIX MIDAS 0.823 1.672 2.737 1.816 2.213 2.791 1.888 1.921
FIX DFM [A] 0.890 0.969 1.014 1.077 1.341 1.701 2.001 2.180 *
FIX DFM [B] 0.937 1.069 1.202 1.344 1.799 2.310 2.638 2.801
FIX singleESN [A] 0.852 0.994 0.995 0.995 0.993 0.991 0.991 0.991 *
FIX singleESN [B] 0.871 0.986 0.989 0.989 0.985 0.981 0.981 0.981 **
FIX multiESN [A] 0.898 0.980 0.990 0.991 0.988 0.985 0.985 0.985 **
FIX multiESN [B] 0.767 0.954 0.983 0.991 0.991 0.990 0.991 0.991 **

EW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 –
EW AR(1) 0.887 0.922 0.951 0.962 0.957 0.981 1.001 1.008 –
EW MIDAS 0.814 1.283 1.518 1.596 1.697 1.391 1.951 1.800 –
EW DFM [A] 0.985 1.109 1.123 1.114 1.217 1.226 1.241 1.539 –
EW DFM [B] 0.989 1.082 1.149 1.199 1.315 1.412 1.373 1.425 –
EW singleESN [A] 0.771 1.260 1.485 1.564 2.070 2.728 2.550 2.834 –
EW singleESN [B] 0.772 1.031 1.135 1.319 1.831 2.279 2.449 2.556 –
EW multiESN [A] 0.792 0.897 0.941 0.976 1.015 1.240 1.377 1.227 –
EW multiESN [B] 0.740 0.853 0.894 0.911 0.873 0.993 1.020 1.020 –

RW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 *
RW AR(1) 0.898 0.943 0.968 0.974 0.963 0.968 0.970 0.962 **
RW MIDAS 0.933 1.438 1.642 1.993 1.794 1.661 1.816 1.973 *
RW DFM [A] 0.931 1.017 1.033 1.020 1.024 1.003 0.918 1.062 *
RW DFM [B] 0.942 0.973 0.970 1.045 1.059 1.203 1.225 1.263 *
RW singleESN [A] 0.714 1.320 1.693 1.972 2.733 3.669 3.391 3.719 *
RW singleESN [B] 0.737 1.100 1.248 1.667 2.327 2.765 2.842 2.792 *
RW multiESN [A] 0.773 0.972 1.053 1.111 1.187 1.293 1.505 1.131 *
RW multiESN [B] 0.716 0.895 0.916 0.926 0.890 1.041 1.102 1.105 **

* Indicates inclusion at 90% confidence.
** Indicates inclusion at 75% confidence.
forecasts, with RMSFEs considerably exceeding the un-
conditional mean baseline after horizon 1. Figs. 5 and
6 in Appendix B reproduce the RMSFE numbers of the
aforementioned tables graphically.

For MIDAS, we already discussed how the existence of
ultiple loss minima can generate numerical instabilities.
odel re-fitting at each horizon can amplify this problem,
s the loss landscape itself changes as new observations
re added to the fitting sample. We provide more dis-
ussion in Supplementary Appendix J.1. In the case of
-MFESN models, the reason is structural: we discussed
ow in our framework multistep MFESN forecasting en-
ails iterating the state map, which can have multiple
ttraction (stable) points. If the hyperparameters and es-
imated full model Ŵ s jointly do not define a contraction,
he limit of the multistep forecast does not have to be
he estimated MFSEN model intercept. However, Figs. 5
nd 6 show that our M-MFESN models, multiESN [A] and
16
multiESN [B], both perform on par or better than the
DFM models, even after horizon h = 4. For example,
in the 2007 expanding and rolling window experiments,
multiESN [B] is able to outperform both DFMs and an
unconditional mean forecast by meaningful margins for
forecasts up to a year into the future.

4.3.2. Medium dataset
We now present the results for the medium-MD

dataset, which includes more than 30 regressors and
many high-frequency daily series. The same metrics as
in the previous subsection are used for this dataset to
evaluate the relative performance of different methods.

The main difference in our empirical exercises is that
now we a priori exclude MIDAS from the set of fore-
casting methods, as explained in detail in Section 4.2.1.
Table 4.6 showcases the relative performance of the DFM

and MFESN models in the medium-MD forecast setup. We
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Table 4.5
Relative RMSFEs and uniform multi-horizon model confidence set (uMCS) comparisons between models
in multiple-step-ahead forecasting exercises. The unconditional mean RMSFE used as reference. FIX: Fixed
parameters, EW: expanding window, and RW: rolling window. The uMCS columns show inclusion among
best models.

Multistep-ahead GDP forecasting – small-MD dataset – 2011 sample
Setup Model Horizon uMCS

1 2 3 4 5 6 7 8

FIX Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 **
FIX AR(1) 1.119 1.031 1.008 1.001 1.001 0.999 0.999 0.998 *
FIX MIDAS 1.090 1.721 1.793 2.203 2.363 1.997 2.846 2.328
FIX DFM [A] 1.112 1.051 0.999 1.079 1.084 1.025 1.020 1.061 *
FIX DFM [B] 1.058 0.945 0.916 1.003 1.012 0.970 1.038 1.033 **
FIX singleESN [A] 0.978 1.705 2.561 2.704 3.314 3.151 2.999 3.316
FIX singleESN [B] 0.930 1.095 1.885 2.356 2.650 2.704 2.880 2.844 **
FIX multiESN [A] 1.059 1.148 1.262 1.312 1.339 1.409 1.424 1.162
FIX multiESN [B] 0.981 1.007 0.985 0.994 1.008 0.999 0.999 0.998 **

EW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 –
EW AR(1) 1.117 1.033 1.011 1.002 1.007 1.003 1.004 1.003 –
EW MIDAS 1.005 1.382 1.339 1.354 1.609 1.444 1.803 1.263 –
EW DFM [A] 1.144 1.132 1.057 1.093 1.076 1.067 1.038 1.016 –
EW DFM [B] 0.985 0.940 0.918 0.995 1.010 0.980 1.050 0.971 –
EW singleESN [A] 0.935 1.645 2.184 1.929 2.388 1.959 1.810 2.266 –
EW singleESN [B] 0.911 1.092 1.101 1.529 2.195 1.843 1.847 2.060 –
EW multiESN [A] 0.922 0.965 1.089 0.978 0.977 1.043 1.278 0.995 –
EW multiESN [B] 0.944 0.992 0.978 0.977 0.991 0.985 0.990 0.996 –

RW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
RW AR(1) 1.080 1.000 0.984 0.989 0.982 0.976 0.963 0.968
RW MIDAS 1.051 1.303 1.310 1.674 1.762 1.467 1.643 1.463
RW DFM [A] 1.061 1.033 1.012 1.088 1.077 1.015 1.040 1.069
RW DFM [B] 0.947 0.893 0.901 1.009 1.040 0.966 1.030 0.949 **
RW singleESN [A] 0.919 1.788 2.359 2.483 2.981 2.401 2.234 2.690
RW singleESN [B] 0.944 1.132 1.214 1.762 2.608 2.552 2.517 2.541
RW multiESN [A] 0.896 1.047 1.222 1.124 1.122 1.410 1.666 1.316
RW multiESN [B] 0.940 1.003 0.969 0.989 0.979 0.972 0.967 0.961 **

* Indicates inclusion at 90% confidence.
** Indicates inclusion at 75% confidence.
Table 4.6
Relative MSFEs and model confidence set (MCS) comparisons between models in one-step-ahead forecasting exercises.
The unconditional mean MSFE is used as a reference. The MCS columns show inclusion among best models.

One-step-ahead GDP forecasting – medium-MD dataset
Fixed parameters Expanding window Rolling window

Model 2007 2011 2007 2011 2007 2011
MSFE MCS MSFE MCS MSFE MCS MSFE MCS MSFE MCS MSFE MCS

Mean 1.000 1.000 ** 1.000 ** 1.000 ** 1.000 ** 1.000 **
AR(1) 0.758 * 1.230 ** 0.789 ** 1.226 ** 0.775 * 1.209 **

DFM [A] 0.841 * 1.325 * 0.682 ** 1.272 ** 0.747 * 1.517 **
DFM [B] 1.118 * 1.408 ** 0.821 * 1.117 ** 0.926 1.186 **

singleESN [A] 0.967 * 1.717 * 0.775 ** 1.072 ** 0.791 * 1.493 *
singleESN [B] 0.826 * 1.278 ** 0.655 ** 1.028 ** 0.561 ** 0.944 **
multiESN [A] 0.901 * 1.080 ** 0.618 ** 0.913 ** 0.556 ** 0.884 **
multiESN [B] 0.682 ** 0.748 ** 0.587 ** 0.774 ** 0.547 ** 0.728 **

* Indicates inclusion at 90% confidence.
** Indicates inclusion at 75% confidence.
17
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Table 4.7
Relative RMSFEs and uniform multi-horizon model confidence set (uMCS) comparisons between models in
multiple-steps-ahead forecasting exercises. The unconditional mean RMSFE used as reference. FIX: fixed
parameters, EW: expanding window, and RW: rolling window. The uMCS columns show inclusion among
best models.

Multistep-ahead GDP forecasting – medium-MD dataset – 2007 sample.
Setup Model Horizon uMCS

1 2 3 4 5 6 7 8

FIX Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 *
FIX AR(1) 0.870 0.950 0.982 0.991 0.992 0.991 0.992 0.992
FIX DFM [A] 0.914 0.947 0.955 0.988 1.015 1.027 1.034 0.995 **
FIX DFM [B] 1.046 1.204 1.293 1.341 1.649 1.984 2.101 2.070 *
FIX singleESN [A] 0.985 0.995 0.995 0.995 0.994 0.992 0.992 0.992 *
FIX singleESN [B] 0.912 0.985 0.985 0.985 0.980 0.976 0.976 0.976 *
FIX multiESN [A] 0.950 0.993 0.994 0.994 0.992 0.990 0.990 0.990 *
FIX multiESN [B] 0.826 0.972 0.988 0.990 0.989 0.986 0.985 0.985 *

EW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 –
EW AR(1) 0.887 0.922 0.951 0.962 0.957 0.981 1.001 1.008 –
EW DFM [A] 0.805 0.916 0.978 1.038 1.077 1.126 1.077 1.073 –
EW DFM [B] 0.893 1.134 1.418 1.567 2.238 2.964 3.375 3.629 –
EW singleESN [A] 0.879 1.125 1.305 1.442 1.860 2.166 2.361 2.443 –
EW singleESN [B] 0.802 1.174 1.439 1.744 2.305 2.869 2.935 3.167 –
EW multiESN [A] 0.780 0.935 1.012 1.005 1.093 1.337 1.328 1.313 –
EW multiESN [B] 0.760 0.874 0.911 0.891 0.863 0.971 1.030 1.051 –

RW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
RW AR(1) 0.898 0.943 0.968 0.974 0.963 0.968 0.970 0.962
RW DFM [A] 0.837 0.913 0.924 0.954 1.012 0.997 1.018 1.005
RW DFM [B] 0.932 1.116 1.232 1.414 1.952 2.704 3.183 3.294
RW singleESN [A] 0.873 1.274 1.530 1.652 2.095 2.575 2.786 3.014
RW singleESN [B] 0.732 1.190 1.490 1.712 2.218 2.861 2.967 3.094
RW multiESN [A] 0.732 0.914 0.960 1.011 1.202 1.618 1.683 1.572
RW multiESN [B] 0.731 0.871 0.875 0.844 0.771 0.971 1.014 1.014 **

* Indicates inclusion at 90% confidence.
** Indicates inclusion at 75% confidence.
find that the MFESN model multiESN [B] performs best
in all setups, particularly under fixed parameters, where
MCS testing reveals that it is the only model included at
a 75% confidence level. Of course, for the MCS results we
must again take into account the relatively small sample
size, which could distort the selection of best model sub-
sets. MDM tests of Fig. 16 in Supplementary Appendix K
largely agree with the MCS results: in the fixed-parameter
setup, any pairwise comparison of an alternative model
against MFESN multiESN [B] is rejected in favor of the
latter. A visual inspection of one-step-ahead forecasts in
Figs. 7 and 8 in Appendix B also shows that DFM models
estimated over the medium-MD datasets produce fore-
casts with larger variability than MFESN methods, which
is likely the key driver of the difference in performance.

The multistep-ahead experiments are run as for the
mall-MD dataset, with a maximum horizon of eight quar-
ers. Tables 4.7 and 4.8 present the relative RMSFE perfor-
ance of multistep forecasts for all models, and we use
igs. 9 and 10 of RMSFEs as references for our discussion,
vailable in Appendix B. What can be seen visually –
nd what is also reproduced in the tables – is that the
ulti-reservoir MFESN models and DFM model [A] have

he best performance up to four quarters ahead; overall,
aking into account also the longer term, expanding or
18
rolling window estimation of model multiESN [B] yields
the best forecasting results in the 2007 sample setup.
The post-crisis 2011 sample setup makes the comparison
harder, as the DFM and M-MFESN models largely produce
results in line with the unconditional sample mean. This
evaluation is confirmed by uMCS tests, consistently with
the multistep results obtained with the small-MD dataset.

5. Conclusions

Macroeconomic forecasting – especially long-term
forecasting of macroeconomic aggregates – is a topic of
crucial importance for institutional policymakers, private
companies, and economic researchers. Given the modern-
day availability of big-data resources, methods capable of
integrating heterogeneous data sources are increasingly
sought to provide more precise and robust forecasts.

This paper presented a new methodological frame-
work inspired by the reservoir computing literature to
deal with data sampled at multiple frequencies and with
multiple-step-ahead forecasts. We then took echo state
networks – a type of RC models – and formally extended
them to model data with multiple release frequencies.
Our discussion encompassed model fitting, hyperparam-

eter tuning, and forecast computation. As a result, we
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Table 4.8
Relative RMSFEs and uniform multi-horizon model confidence set (uMCS) comparisons between models
in multiple-step-ahead forecasting exercises. The unconditional mean RMSFE used as reference. FIX: Fixed
parameters, EW: expanding window, and RW: rolling window. The uMCS columns show inclusion among
best models.

Multistep-ahead GDP forecasting – medium-MD dataset – 2011 sample

Setup Model Horizon uMCS

1 2 3 4 5 6 7 8

FIX Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 *
FIX AR(1) 1.119 1.031 1.008 1.001 1.001 0.999 0.999 0.998 **
FIX DFM [A] 1.126 0.987 0.962 1.054 1.031 0.988 1.001 1.002 **
FIX DFM [B] 1.149 0.987 0.885 1.064 1.142 1.134 1.273 1.296
FIX singleESN [A] 1.283 1.921 2.527 3.038 3.285 3.154 3.193 3.655
FIX singleESN [B] 1.059 1.523 1.918 2.417 2.812 2.683 2.703 2.970
FIX multiESN [A] 1.011 1.061 1.434 1.477 1.748 2.030 2.023 1.994
FIX multiESN [B] 0.841 0.945 0.997 0.978 1.004 1.015 1.013 1.014 **

EW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -
EW AR(1) 1.117 1.033 1.011 1.002 1.007 1.003 1.004 1.003 -
EW DFM [A] 1.092 0.942 0.944 1.049 1.026 0.994 0.996 0.999 -
EW DFM [B] 0.971 1.046 1.031 1.114 1.238 1.116 1.223 1.310 -
EW singleESN [A] 1.039 1.451 1.980 2.385 2.699 2.353 2.506 2.608 -
EW singleESN [B] 0.992 1.828 2.465 3.072 3.547 3.357 3.368 3.610 -
EW multiESN [A] 0.934 1.014 1.391 1.252 1.371 1.369 1.228 1.279 -
EW multiESN [B] 0.857 0.931 1.003 0.973 1.002 1.009 1.025 1.029 -

RW Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 **
RW AR(1) 1.080 1.000 0.984 0.989 0.982 0.976 0.963 0.968 **
RW DFM [A] 1.113 0.982 0.927 1.038 1.030 0.997 1.016 1.028 *
RW DFM [B] 0.881 0.996 1.021 1.098 1.150 1.114 1.114 1.212 **
RW singleESN [A] 1.193 2.267 3.265 3.580 4.090 3.790 4.015 4.562
RW singleESN [B] 0.927 1.933 2.612 3.265 3.753 3.567 3.556 3.792
RW multiESN [A] 0.900 1.049 1.500 1.465 1.789 1.707 1.505 1.462
RW multiESN [B] 0.816 0.916 0.977 1.009 0.982 0.988 0.974 0.981 **

* Indicates inclusion at 90% confidence.
** Indicates inclusion at 75% confidence.
provided two classes of models, single- and multiple-
reservoir multi-frequency ESNs, that can be effectively ap-
plied to our empirical setup: forecasting U.S. GDP growth
using monthly and daily data series. Along with the un-
conditional mean and AR(1) model, we considered two
well-known methods, MIDAS and DFMs, as the current
benchmarks available in the literature. In our applications,
we found that MFESN models were computationally more
efficient and easier to implement than DFMs and MIDAS,
respectively, and performed better than or as well as the
benchmarks in terms of the MSFE. These improvements
were statistically significant in a number of setups, as
shown by our MCS and MDM tests. Thus, we argue that
our machine learning-based methodology can be a useful
addition to the toolbox of contemporary macroeconomic
forecasters.

Lastly, we wish to highlight the many potential areas
f research that we believe would be interesting to ex-
lore in the future. We did not discuss the role of the
istribution from which we sample the entries of the
eservoir matrices. While it is known that these can have
ignificant effects on the forecasting capacity of an ESN
odel, the literature lacks definitive theoretical results

even for dynamical systems applications) or systematic
19
studies with stochastic inputs and targets. The hyper-
parameter tuning routine we developed cannot separate
individual hyperparameters or tackle the identification
problem. Moreover, we assumed that the ridge regression
penalty strength, λ, is tuned ex ante: it would be interest-
ing and desirable to understand if it is possible to jointly
tune λ and ϕ, or rather if one can fully separate their
selection. In our preliminary experiments, we noticed that
the roles of the ridge penalty and the input scaling, for
example, cannot be trivially disentangled, thus prompting
the ψ-form normalization. Model selection for the dimen-
sion of MFESN models is another question that would be
key to exploring and designing more efficient and effec-
tive ESN models, especially when dealing with multiple
frequencies and reservoirs. Finally, practitioners may be
interested in identifying the combination of frequencies in
the regressor series that would lead to the most accurate
GDP forecasts produced by MFESN models.
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Appendix A. Data table

See Table A.9.

Table A.9
Variables, frequencies, and transformations for small and medium-sized datasets.
SM Start Date T Code Name Description

Quarterly

XX 31/03/1959 5 GDPC1 Y Real Gross Domestic Product

Monthly

XX 30/01/1959 5 INDPRO XM1 Industrial Production Index
XX 30/01/1959 5 PAYEMS XM4 Payroll All Employees: Total nonfarm
XX 30/01/1959 4 HOUST XM5 Housing Starts: Total New Privately Owned
XX 30/01/1959 5 RETAILx XM7 Retail and Food Services Sales
XX 31/01/1973 5 TWEXMMTH XM11 Nominal effective exchange rate US
XX 30/01/1959 2 FEDFUNDS XM12 Effective Federal Funds Rate
XX 30/01/1959 1 BAAFFM XM14 Moody’s Baa Corporate Bond Minus FEDFUNDS
XX 30/01/1959 1 COMPAPFFx XM15 3-Month Commercial Paper Minus FEDFUNDS
X 30/01/1959 2 CUMFNS XM2 Capacity Utilization: Manufacturing
X 30/01/1959 2 UNRATE XM3 Civilian Unemployment Rate
X 30/01/1959 5 DPCERA3M086SBEA XM6 Real personal consumption expenditures
X 30/01/1959 5 AMDMNOx XM8 New Orders for Durable Goods
X 31/01/1978 2 UMCSENTx XM9 Consumer Sentiment Index
X 30/01/1959 6 WPSFD49207 XM10 PPI: Finished Goods
X 30/01/1959 1 AAAFFM XM13 Moody’s Aaa Corporate Bond Minus FEDFUNDS
X 30/01/1959 1 TB3SMFFM XM16 3-Month Treasury C Minus FEDFUNDS
X 30/01/1959 1 T10YFFM XM17 10-Year Treasury C Minus FEDFUNDS
X 30/01/1959 2 GS1 XM18 1-Year Treasury Rate
X 30/01/1959 2 GS10 XM19 10-Year Treasury Rate
X 30/01/1959 1 GS10-TB3MS XM20 10-Year Treasury Rate - 3-Month Treasury Bill

Daily

XX 30/01/1959 8 DJINDUS XD3 DJ Industrial price index
X 31/12/1963 8 S&PCOMP XD1 S&P500 price index
X 01/05/1982 1 ISPCS00-S&PCOMPa XD2 S&P500 basis spread
X 11/09/1989 8 SP5EIND XD4 S&P Industrial price index
X 31/12/1969 8 GSCITOT XD5 Spot commodity price index
X 10/01/1983 8 CRUDOIL XD6 Spot price oil
X 02/01/1979 8 GOLDHAR XD7 Spot price gold
X 30/03/1982 8 WHEATSF XD8 Spot price wheat
X 01/11/1983 8 COCOAIC,COCINUSb XD9 Spot price cocoa
X 30/03/1983 1 NCLC.03-NCLC.01 XD10 Futures price oil term structure
X 30/10/1978 1 NGCC.03-NGCC.01 XD11 Futures price gold term structure
X 02/01/1975 1 CWFC.03-CWFC.01 XD12 Futures price wheat term structure
X 02/01/1973 1 NCCC.03-NCCC.01 XD13 Futures price cocoa term structure

Notes: S and M stand for small and medium datasets, respectively. An ‘X’ indicates selection into the dataset. ‘Start
Date’ is the date for which the series is first available (before data transformations). Following (McCracken & Ng, 2016,
2020), the transformation codes in column ‘T’ indicate with D for difference and log for natural logarithm 1: none, 2: D,
3: DD, 4: Log, 5: Dlog, 6: DDlog, 7: percentage change, 8: GARCH volatility. ‘Codes’ are the codes in the FRED-QD and
FRED-MD datasets for quarterly and monthly data and Datastream mnemonic for the remaining frequencies. Missing
values due to public holidays are interpolated by averaging over the previous five observations.
a Available until 20/09/2021.
b Average before 29/12/2017, COCINUS mean adjusted thereafter.
20
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Appendix B. Forecasting figures

See Figs. 3–10.

Fig. 3. One-step-ahead GDP forecasting – 2007 sample – small-MD dataset.
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Fig. 4. One-step-ahead GDP forecasting – 2011 Sample – small-MD dataset.
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Fig. 5. Multistep-ahead GDP forecasting, RMSFE – 2007 sample – small-MD dataset.
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Fig. 6. Multistep-ahead GDP forecasting, RMSFE – 2011 sample – small-MD dataset.
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Fig. 7. One-step-ahead GDP forecasting – 2007 sample – medium-MD dataset.
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Fig. 8. One-step-ahead GDP forecasting – 2011 sample – medium-MD dataset.
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Fig. 9. Multistep-ahead GDP forecasting, RMSFE – 2007 sample – medium-MD dataset.
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Fig. 10. Multistep-ahead GDP forecasting, RMSFE – 2011 sample – medium-MD dataset.
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Appendix C. Forecasting schemes

To clarify the design of the forecasting experiments conducted in this paper, we present two different types of
rediction illustrated in Fig. 11.

Fig. 11. Diagram of the low-/high-frequency forecasting and nowcasting schemes in tempo notation. Arrows point to time indices of the forecast
target, and solid dots indicate the high-frequency time placeholder for the constructed high-frequency forecasts.

Let t denote time in the reference frequency of the target series (yt ), and suppose a regressor (zr ) of frequency κ is
included in the forecasting model. The notation can be readily extended to include multiple regressors. Let h ≥ 0 be
a low-frequency prediction horizon counted from the last available observation of (yt ). Let l ≥ 0 be a high-frequency
horizon with respect to frequency κ .

Low-frequency forecasting. We call an h-step-ahead forecast ‘low-frequency’ when predictions for the target variable are
constructed only at the end of the low-frequency periods. The information set which is used at the time of h-step-ahead
low-frequency forecasting at t is the σ -algebra defined as

Ft = σ
({

yt , yt−1, yt−2, . . . , zt,0|κ , zt,−1|κ , zt,−2|κ , . . .
})

(C.1)

and, when using the mean square error as a loss, the optimal forecast is given by

yt+h = E [yt+h|Ft ] . (C.2)

High-frequency forecasting. In this forecasting scheme, one may also use high-frequency regressors to produce additional
high-frequency forecasts of the low-frequency target variable. For example, in the case of a target released at the end
of each year and having monthly quoted covariates, the low-frequency forecasting scheme corresponds to constructing
forecasts always at the end of the last month of the year (December). At the same time, with all the information collected
up to the end of December, there are other possibilities to construct forecasts. In particular, the forecaster could consider
placing herself at the end of any other month of the year instead and construct predictions for the monthly proxy of the
yearly variable for the next hth year.

In this scheme, one often artificially reduces the information set. Although not all the available information is
exploited, this procedure has its benefits: first, it renders high-frequency forecast instances; second, it takes into account
misspecification due to a seasonal response of (yt ) to (zr ). This is especially important whenever multiple time series
with different sampling frequencies are combined in one model and seasonality effects are either difficult to detect or
impossible to avoid. In the context of macroeconomic forecasting, we again refer the reader to Chen and Ghysels (2010),
Clements and Galvão (2008, 2009) and Jardet and Meunier (2022), where these questions are carefully discussed.

Let the forecaster place herself at time t: she wishes to construct a high-frequency forecast for some t, l|κ with l ∈ N.
The maximal information set available at t is Ft , as in (C.1). However, if she uses Ft , then the forecast for t, l|κ coincides
with the low-frequency forecast and is given by (C.2) for any l. Notice that the forecasts can be constructed using the
reduced information sets instead. Let h = ⌈l/κ⌉, ℓ = lmod κ , and m = h − ⌊l/κ⌋, and define

Ft−m,ℓ = σ
({

yt−m, yt−1−m, . . . , zt−m,ℓ|κ , zt−m,(ℓ−1)|κ , zt−m,(ℓ−2)|κ , . . .
})

= σ
({

yt−m, yt−1−m, . . . , zt+1−m,−(κ−ℓ)|κ , zt+1−m,−(κ−ℓ)+1|κ , zt+1−m,−(κ−ℓ+2)|κ , . . .
})
.

The high-frequency forecast information sets nest the low-frequency forecasting setup, since Ft−m,ℓ ≡ Ft if l = κh for
h ∈ N, and the forecast for the high-frequency proxy constructed for the moments t, l|κ for the low-frequency variable
is provided by the conditional expectation

yH = E
[
y |F

]
.
t+h,ℓ|κ t+h t−m,ℓ
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It is easy to see that if the forecaster is interested in nowcasting, it can be readily obtained by taking m = 0 and writing
or all 0 < ℓ ≤ κ − 1:
N
t+1,ℓ|κ = E

[
yt+1|Ft,ℓ

]
.

Nowcasting. We call ‘nowcasting’ the setup in which one constructs a high-frequency proxy for a yet-unobserved target
which will be available at the end of the current low-frequency period. As such, we construct a nowcast only for horizons
0 < l ≤ κ − 1; notice that l = κ yields a contemporaneous regression at t + 1, while l = 0 falls into the category
of low-frequency forecasting, hence both these cases are excluded. The σ -algebras that are used in order to construct
nowcasts ŷt+1,ℓ|κ are given by

Ft,ℓ|κ = σ
({

yt , yt−1, . . . , zt,ℓ|κ , zt,(ℓ−1)|κ , zt,(ℓ−2)|κ , . . .
})

= σ
({

yt , yt−1, . . . , zt+1,−(κ−ℓ)|κ , zt+1,−(κ−ℓ)+1|κ , zt+1,−(κ−ℓ+2)|κ , . . .
})
.

The l-step nowcast for the high-frequency proxy constructed at moments t, ℓ|κ of the current period for the low-frequency
variable, which becomes available at t + 1, 0|κ ≡ t + 1, is provided by the conditional expectation

yNt+1,ℓ|κ = E
[
yt+1|Ft,ℓ

]
.

Multicasting. One always aims to construct one-step and multistep forecasts by using all the available information at a
given point in time. It is, therefore, natural to compare models by constructing high-frequency nowcasts for the target
variable to be released at the end of the current period and its high-frequency proxy forecasts for the next periods. To
avoid confusion, we refer to this situation as ‘multicasting’. More explicitly, provided that the forecaster finds herself
at time index t, s|κ and is interested in all the forecasts up to some maximal low-frequency horizon H ≥ 1, for each
1 ≤ l ≤ Hκ , the multicasting scheme yields the following combination:

(a) Nowcasting when 0 < l ≤ κ − 1 and ℓ = l: ŷNt+1,ℓ|κ = E
[
yt+1|Ft,ℓ

]
(b) Forecasting when l > κ − 1:

• Low-frequency forecasting if l satisfies lmod κ = 0: ŷt+h = E [yt+h|Ft ]
• High-frequency forecasting if lmod κ ̸= 0: Ft,ℓ: ŷHt+h,ℓ|κ = E

[
yt+h|Ft,ℓ

]
.

Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.ijforecast.2023.10.009.
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