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Abstract
Denoising diffusion models have found applications in image segmentation by generating
segmented masks conditioned on images. Existing studies predominantly focus on adjusting
model architecture or improving inference, such as test-time sampling strategies. In this
work, we focus on improving the training strategy and propose a novel recycling method.
During each training step, a segmentation mask is first predicted given an image and
a random noise. This predicted mask, which replaces the conventional ground truth
mask, is used for the denoising task during training. This approach can be interpreted
as aligning the training strategy with inference by eliminating the dependence on ground
truth masks for generating noisy samples. Our proposed method significantly outperforms
standard diffusion training, self-conditioning, and existing recycling strategies across multiple
medical imaging data sets: muscle ultrasound, abdominal CT, prostate MR, and brain MR.
This holds for two widely adopted sampling strategies: denoising diffusion probabilistic
model and denoising diffusion implicit model. Importantly, existing diffusion models often
display a declining or unstable performance during inference, whereas our novel recycling
consistently enhances or maintains performance. We show for the first time that, under a
fair comparison with the same network architectures and computing budget, the proposed
recycling-based diffusion models achieved on-par performance with non-diffusion-based
supervised training. Furthermore, by ensembling the proposed diffusion model and the
non-diffusion counterpart, significant improvements to the non-diffusion models have been
observed across all applications, demonstrating the value of this novel training method.
This paper summarizes these quantitative results and discusses their values, with a fully
reproducible JAX-based implementation, released at https://github.com/mathpluscode/
ImgX-DiffSeg.
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1. Introduction

Diffusion denoising models, first proposed by Sohl-Dickstein et al. (2015); Ho et al. (2020);
Ho and Salimans (2022), are generative models that produce data samples through iterative
denoising processes. These models achieved superior performance compared to generative
adversarial networks (Goodfellow et al., 2020) and became the foundation for many image
generation applications such as DALL·E 2 (Ramesh et al., 2022), stable diffusion, and
Midjourney (Rombach et al., 2022), etc. Given the success in computer vision, diffusion models
have been adapted in medical imaging in various fields, including image synthesis (Dorjsembe
et al., 2022; Khader et al., 2022), image denoising (Hu et al., 2022), anomaly detection (Wolleb
et al., 2022a), classification (Yang et al., 2023), segmentation (Wu et al., 2022; Rahman
et al., 2023), and registration (Kim et al., 2022). Among these, segmentation is one of the
most foundational tasks in medical imaging and a variety of applications have been explored,
including liver CT (Xing et al., 2023), lung CT (Zbinden et al., 2023; Rahman et al., 2023),
abdominal CT (Wu et al., 2023; Fu et al., 2023), brain MR (Pinaya et al., 2022a; Wolleb
et al., 2022b; Wu et al., 2023; Xing et al., 2023; Bieder et al., 2023), and prostate MR (Fu
et al., 2023).

For segmentation tasks, although various model architectures and training strategies
(Wang et al., 2022) have been proposed, U-net equipped with attention mechanisms and
trained by supervised learning consistently remains the state-of-the-art model and an impor-
tant baseline. In comparison, divergent observations have emerged: some studies reported
superior performance of diffusion-based segmentation models (Amit et al., 2021; Wu et al.,
2022, 2023; Xing et al., 2023), while others observed the opposite trend (Pinaya et al., 2022a;
Wolleb et al., 2022b; Kolbeinsson and Mikolajczyk, 2022; Fu et al., 2023). This inconsistency
may result from different training schemes, network architectures, and application-specific
modifications in comparisons, suggesting that challenges persist in applying diffusion models
for image segmentation.

Formally, conditioning on an image, diffusion-based segmentation models operate by
progressive denoising, starting with random noise and ultimately yielding the corresponding
segmentation masks. In comparison to their non-diffusion counterparts, the necessity of
supplementary noisy masks as input leads to increased memory demands that can pose
challenges, particularly for processing 3D volumetric medical images. To address this, volume
slicing (Wu et al., 2023) or patching (Xing et al., 2023; Bieder et al., 2023) has been used to
manage memory limitations. However, diffusion model training still requires considerable
computation due to its inherent iterative nature, since the same model needs to learn to denoise
masks with varying levels of noise. Consequently, enhancing the diffusion model performance
while adhering to a fixed compute budget is of significant importance. Empirically, using the
reparametrisation (Kingma et al., 2021), the denoising training task has shifted from noise
prediction (Wolleb et al., 2022b; Wu et al., 2022) to mask prediction (Fu et al., 2023; Zbinden
et al., 2023) due to the superior performance and faster learning. Furthermore, Fu et al.
(2023) highlighted a limitation of diffusion models, noting the misalignment between training
and inference procedures, since training samples were generated from ground truth masks.
This raises concerns of data leakage as discussed in Chen et al. (2022a). However, there have
been limited studies in medical image segmentation that rigorously compare diffusion models
with their non-diffusion counterparts and examine diffusion training efficiency.
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In this work, we present a substantial extension to the preliminary work (Fu et al.,
2023) and focus on an improvement in the diffusion denoising model training strategy that
applies to 2D and 3D medical image segmentation in different modalities. First, a novel
recycling approach has been introduced. Different from Fu et al. (2023), in the first step
during training, the input is completely corrupted by noise instead of a partially corrupted
ground truth. This seemingly minor adjustment effectively eliminates the ground truth
information from model inputs, which further aligns the training strategy toward inference.
The proposed diffusion models can refine or maintain segmentation accuracy throughout
the inference process. On the contrary, all other diffusion models demonstrate declining
or unstable performance trends. Our research showcases the superior performance of our
method compared to established diffusion training strategies (Ho et al., 2020; Chen et al.,
2022b; Watson et al., 2023; Fu et al., 2023) for both denoising diffusion probabilistic model-
based (Ho et al., 2020) and denoising diffusion implicit model-based (Song et al., 2020a)
sampling procedures. We also achieved on-par performance with non-diffusion baselines that
had not been observed in the previous study (Fu et al., 2023). Second, we introduce an
ensemble model that averages the predicted probabilities from the proposed diffusion-based
model and non-diffusion counterpart, resulting in significant improvement to the non-diffusion
baseline. Third, we extended the experiments to four large data sets – 2D muscle ultrasound
with 3910 images, 3D abdominal CT with 300 images, 3D prostate MR with 589 images,
and 3D brain MR with 1251 images, further demonstrating the robustness of the proposed
method against different applications and data types. Lastly, we integrated a Transformer
block into our network architecture. This brings our models in line with contemporary
state-of-the-art approaches, rendering our findings more pertinent to real-world applications.
To mitigate the increased memory consumption resulting from this addition, we employed
patch-based training and inference strategies. The JAX-based framework has been released
on https://github.com/mathpluscode/ImgX-DiffSeg.

2. Related Works

The diffusion process is a Markov process where data structures are gradually noise-corrupted
and eventually destroyed (noising process). A reverse diffusion process (denoising process)
can then be learned, where the objective is to gradually recover the data structure. Sohl-
Dickstein et al. (2015) first proposed diffusion models which map the disrupted data to a noise
distribution. Ho et al. (2020) have shown that such modeling is equivalent to score-matching
models, a class of models that estimates the gradient of the log-density (Hyvärinen and Dayan,
2005; Vincent, 2011; Song and Ermon, 2019, 2020). This led to a simplified variational lower
bound training objective and a denoising diffusion probabilistic model (DDPM) (Ho et al.,
2020). DDPM achieved state-of-the-art performance for unconditional image generation
on CIFAR10 at the time. In practice, DDPMs were found suboptimal on log-likelihood
estimation and Nichol and Dhariwal (2021) addressed this with a learnable variance schedule,
sinusoidal noise schedule, and an importance sampling for time steps. Furthermore, diffusion
models were trained with hundreds or thousands of steps, inference with the same number
of steps is time-consuming. Therefore, different strategies have been proposed to enable
faster sampling. While Nichol and Dhariwal (2021) suggested variance resampling without
modifying the probabilistic distribution, Song et al. (2020a) derived a deterministic model,

509

https://github.com/mathpluscode/ImgX-DiffSeg


Fu et al.

denoising diffusion implicit model (DDIM), which shares the same marginal distribution
as DDPM. Liu et al. (2022) further generalized the reverse step of DDIM into an ordinary
differential equation and used high-order numerical methods (e.g., Runge-Kutta method)
with predicted noise to perform sampling with second-order convergence. Besides, Zheng
et al. (2022); Lyu et al. (2022); Guo et al. (2022) accelerated diffusion model training by
shortening the noising schedule and only considering a truncated diffusion chain with less
noise. These unconditioned denoising diffusion models have been successfully applied in
multiple medical imaging applications (Kazerouni et al., 2023), including brain MR image
generation (Dorjsembe et al., 2022; Khader et al., 2022), optical coherence tomography
denoising (Hu et al., 2022), and chest X-ray pleural effusion detection (Wolleb et al., 2022a).

Guided diffusion models have been developed to generate data in a controllable man-
ner. Song et al. (2020b); Dhariwal and Nichol (2021) used gradients of pre-trained classifiers
to bias the sampling process, without modifying the diffusion model training. Ho and Sal-
imans (2022), on the other hand, modified the models to take additional information as
input, enabling end-to-end conditional diffusion model training. For medical image syn-
thesis, conditions can be patient biometric information (Pinaya et al., 2022b), genotypes
data (Moghadam et al., 2023), or images from different modalities (Saeed et al., 2023).
Conditional diffusion models have also been explored for medical image classification (Yang
et al., 2023), segmentation (Wu et al., 2022; Rahman et al., 2023), and registration (Kim
et al., 2022). Particularly for image segmentation, the diffusion models apply the noising
and denoising on the segmentation masks, and the network takes a noisy mask and an image
to perform denoising.

In contrast to the continuous spectrum of values found in natural images, image segmen-
tation mask values are categorical and nominal. The Gaussian-based continuous diffusion
processes behind DDPM and DDIM cannot be directly applied. Chen et al. (2022b) therefore
encoded categories with binary bits and relaxed them to real values for continuous diffusion
models. Han et al. (2022); Fu et al. (2023) encoded categories with one-hot embeddings and
performed diffusion on scaled values. Li et al. (2022a); Strudel et al. (2022) encoded the
discrete data and applied diffusion processes in embedding spaces directly. Alternatively, dis-
crete diffusion models have been proposed to model the transition matrix between categories
based on discrete probability distributions, including binomial distribution (Sohl-Dickstein
et al., 2015), categorical distribution (Hoogeboom et al., 2021; Austin et al., 2021; Gu et al.,
2022), and Bernoulli distribution (Chen et al., 2023). In this work, we follow Fu et al. (2023)
to perform diffusion on scaled binary masks.

Originally, DDPM models were trained through noise prediction (Ho et al., 2020), where
the loss was calculated between the predicted and sampled noises. Many diffusion-based
segmentation models directly adopted this strategy (Wolleb et al., 2022b; Wu et al., 2022).
Alternatively, Kingma et al. (2021) derived an equivalent formulation (often known as x0

reparameterization) of the variational lower bound and simplified the loss to a norm between
predicted data and the corresponding ground truth. For segmentation, this is equivalent to
predicting the segmentation mask for each time step. Compared to noise prediction, multiple
studies found that this mask prediction strategy is more efficient (Fu et al., 2023; Wang
et al., 2023; Lai et al., 2023). Furthermore, Chen et al. (2022b) suggested self-conditioning
to use these predictions as additional input to improve diffusion models for image synthesis.
Self-conditioning contains two steps: the first step predicts a noise-free sample given a
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noise-corrupted sample only; the second step uses the same timestep and inputs the same
noise-corrupted sample, as well as the prediction from the first step. This technique was later
adopted for protein design (Watson et al., 2023) with an additional reverse step, where the
second step performs denoising in a smaller timestep where the noise level is lower. However,
in both cases, the noisy samples are directly derived from the ground truth, which is not
available during inference. This risks data leakage during training and empirically leads to
overfitting and lack of generalization as discussed in Chen et al. (2022a); Kolbeinsson and
Mikolajczyk (2022); Lai et al. (2023). Chen et al. (2022a); Young et al. (2022) addressed
this issue by controlling the signal-to-noise ratio so that less information is preserved after
noising: Chen et al. (2022a) scaled the mask value ranges to implicitly amplify the noise
level, and Young et al. (2022) explicitly varied the scale and standard deviation of the
Gaussian noise added to the masks. On the other hand, Kolbeinsson and Mikolajczyk (2022)
proposed recursive denoising that iterates through each step during training, without using
ground truth as input. However, such a strategy extends the training length by a factor
of hundreds or more, making it practically infeasible for larger 3D medical image data
sets. Following these studies, Fu et al. (2023) concluded that the lack of generalization
in diffusion-based segmentation models is due to the misalignment between training and
inference processes. Fu et al. (2023) thus presented a two-step recycling training strategy: the
first step ingests a partially noisied sample for mask prediction; the predicted mask is then
noise-corrupted again for denoising training. Compared to recursive denoising, this method
requires a limited training time increase. This method also resembles PD-DDPM (Guo
et al., 2022), where a pre-segmentation is used for noising. However, PD-DDPM requires a
separate pre-segmentation network and more device memory, thus not suitable for 3D image
segmentation applications.

3. Background

3.1 Denoising Diffusion Probabilistic Model

xT GGGBFGGG · · · GGGBFGGG xt

pθ(xt−1 | xt)
GGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGG

q(xt | xt−1)
xt−1 GGGBFGGG · · · GGGBFGGG x0 (1)

Definition The denoising diffusion probabilistic models (DDPM) (Ho et al., 2020) consider
a forward process (illustrated from right to left in Equation (1)): given a sample x0 ∼
q(x0), a noise-corrupted sample xt follows a multivariate normal distribution at timestep
t ∈ {1, · · · , T}, q(xt | xt−1) = N (xt;

√
1− βtxt−1, βtI), where βt ∈ [0, 1]. As Gaussians

are closed under convolution, given x0, xt can be directly sampled from x0 as follows,
q(xt | x0) = N (xt;

√
ᾱt x0, (1 − ᾱt)I). Correspondingly, a reverse process (illustrated

from left to right in Equation (1)) denoises xt at each step, for t ∈ {T, · · · , 1}, pθ(xt−1 |
xt) = N (xt−1;µθ(xt, t), σ

2
t I), with a predicted mean µθ(xt, t) and variance σ2

t I. σt is a
pre-defined schedule dependent on timestep t. In this work, σ2

t = β̃t = 1−ᾱt−1

1−ᾱt
βt with

αt = 1− βt and ᾱt =
∏t

s=1 αs. The mean µθ(xt, t) =
√
ᾱt−1βt

1−ᾱt
x̂0 +

1−ᾱt−1

1−ᾱt

√
αtxt, also know

as x0 parameterization, where x̂0 is an estimation of x0 from a learned neural network
x̂0 = fθ(xt, t).
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Training For each step during training, a noise-corrupted sample xt is sampled and
input to the neural network fθ to predict x0. The network is then trained with loss
Ldenoising(θ) = Et,x0,xt L(x0, x̂0) with t sampled from 1 to T . L(·, ·) is a loss function in the
space of x. In this work, importance sampling (Nichol and Dhariwal, 2021) is used for time
step t, where the weight for t is proportional to Ex0,xt L(x0, x̂0).

xt ∼ N (xt;
√
ᾱtx0, (1− ᾱt)I), (Sampling) (2a)

x̂0 = fθ(t,xt), (Prediction) (2b)
Ldenoising(θ) = Et,x0,xt L(x0, x̂0), (loss calculation) (2c)

Inference At inference time, the denoising starts with a randomly sampled Gaussian noise
xT ∼ N (0, I) and the data is denoised step-by-step for t = T, · · · , 1:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t), σ
2
t I)

µθ(xt, t) =

√
ᾱt−1βt
1− ᾱt

x̂0 +
1− ᾱt−1

1− ᾱt

√
αt xt

Optionally, the variance schedule βt can be down-sampled to reduce the number of inference
steps (Nichol and Dhariwal, 2021). A detailed review of DDPM and the loss has been
summarised in Appendix A and we refer the readers to Sohl-Dickstein et al. (2015); Ho et al.
(2020); Nichol and Dhariwal (2021); Kingma et al. (2021) and other literature for in-depth
understanding and derivations.

3.2 Diffusion for Segmentation

When applying diffusion models for segmentation, noising and denoising are performed on the
segmentation masks. The ground-truth binary mask, where channels correspond to classes
that include the background, is denoted by x0. For the i-th pixel/voxel, the value for the j-th
channel is in 1 if it belongs to class j and −1 otherwise. The training process (illustrated
in Figure 1) is similar to Equation (2) except that the segmentation network fθ(I,xt, t) now
takes the image I as an additional input for prediction x̂0. L(·, ·) is a weighted sum of cross
entropy and foreground-only Dice loss.

xt ∼ N (xt;
√
ᾱtx0, (1− ᾱt)I), (Sampling) (3a)

x̂0 = fθ(I, t,xt), (Prediction) (3b)
Ldenoising(θ) = Et,x0,xt L(x0, x̂0), (loss calculation) (3c)

4. Methods

At each training step, the recycling considers a sampled time step t < T and a data sample
x0. First, a noise-corrupted sample xT at time step T is sampled, with

√
ᾱT ≈ 0. xT is

fed to the network fθ to perform a prediction x̂0 = fθ(I, T,xT ). This prediction is then
noise-corrupted to generate xt. A second prediction x̂0 = fθ(I, t,xt) (overriding the x̂0

for simplicity) is produced and used for loss calculation (see Figure 1). Formally, at each
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Figure 1: Illustration of training and inference processes. The top, middle, and
bottom rows show the training and inference steps for default diffusion (highlighted in blue),
diffusion with recycling, and diffusion with self-conditioning, respectively. For training,
different settings are presented for recycling and self-conditioning. The proposed method is
highlighted in green. Notably, recycling shares the same inference steps as default diffusion,
while self-conditioning is different as a result of the additional input. “Pred.” and “Diff.”
stands for predicted and diffusion, respectively.
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timestep t, the proposed recycling (denoted as “Diff. rec. xT ”) has the following steps.

xT ∼ N (xT ;
√
ᾱT x0, (1− ᾱT )I), (rec. xT , step 1, sampling) (4a)

x̂0 = StopGradient(fθ(I, T,xT )), (rec. xT , step 1, prediction) (4b)
xt ∼ N (xt;

√
ᾱtx̂0, (1− ᾱt)I), (rec. xT , step 2, sampling) (4c)

x̂0 = fθ(I, t,xt), (rec. xT , step 2, prediction) (4d)
Ldenoising(θ) = Et,x0,xt L(x0, x̂0), (loss calculation) (4e)

In particular, stop gradient is applied to x̂0 in the first step to prevent the gradient calculation
across two steps, to reduce training time. Optionally, a model with exponential moving
averaged weights can be used, but it requires even more memory. Compared to Equation (3),
recycling modification only affects training and does not change network architecture. It is
independent of the sampling strategy during inference. Therefore, the DDIM sampler can
also be used for inference.

The recycling strategy we propose in this work differs from the one introduced in Fu
et al. (2023) (denoted as “Diff. rec. xt+1”), illustrated in Figure 1 and the equations below,

xt+1 ∼ N (xt+1;
√
ᾱt+1 x0, (1− ᾱt)I), (rec. xt+1, step 1, sampling) (5a)

x̂0 = StopGradient(fθ(I, t+ 1,xt+1)), (rec. xt+1, step 1, prediction) (5b)
xt ∼ N (xt;

√
ᾱtx̂0, (1− ᾱt)I), (rec. xt+1, step 2, sampling) (5c)

x̂0 = fθ(I, t,xt), (rec. xt+1, step 2, prediction) (5d)
Ldenoising(θ) = Et,x0,xt L(x0, x̂0), (loss calculation) (5e)

In the new approach (“Diff. rec. xT ”), the first step is consistently executed at the time step
T instead of t+ 1 as shown in Equation (4). Compared to xt+1 in Equation (5), xT is fully
noised and contains even less ground truth information during the initial step. Specifically,
for a given time step t, xt ∼ N (xt;

√
ᾱt x0, (1− ᾱt)I), which can be reparameterized as xt =√

ᾱt x0+
√
1− ᾱt ϵt with ϵt ∼ N (0, I) and ᾱt =

∏t
s=1 αs. In this work, αt is a monotonically

decreasing noise schedule ranging from 0.999 to 0.98 for t = 1 to T . Correspondingly,√
ᾱt monotonically decreases from 0.99995 to 0.00632. xT =

√
ᾱT x0+

√
1− ᾱT ϵT with√

ᾱT = 0.00632 can be considered to contain almost no ground truth information. The
information can also be empirically measured by cross entropy and Dice score, and an
example is presented in Figure 7 in Appendix D. This seemingly minor modification removes
the ground truth information from model inputs, essentially reducing the risk of data leakage
and training overfitting. This adaptation guides the model to learn the denoising task based
on its initial prediction, rather than ground truth. Consequently, the model can effectively
denoise and refine the provided noisy mask, ultimately predicting the ground truth.

Recycling also differs from the self-conditioning methods proposed in Chen et al. (2022b)
(“Diff. sc. xt”) and Watson et al. (2023) (“Diff. sc. xt+1”). Although self-conditioning also
requests two forward loops during training, it differs from recycling in multiple aspects. First,
noisy samples in self-conditioning are always generated based on ground truth x0, while the
second forward step of recycling does not rely on ground truth for noisy sample generation.
Second, self-conditioning provides an additional input x̂0, while recycling does not. Lastly,
in self-conditioning, x̂0 is replaced by zeros with 50% probabilities, while recycling is applied
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constantly. The training strategy has been detailed in Figure 1 and Appendix C. For further
details, we refer the reader to the reference papers (Chen et al., 2022b; Watson et al., 2023).

5. Experiments

5.1 Experiment Setting

A range of experiments have been performed in four data sets (Section 5.2) to evaluate the
proposed method and the trained models from different aspects.

5.1.1 Diffusion Training Strategy Comparison

First, the proposed recycling training strategy (“Diff. rec. xT ”) was compared with standard
diffusion models (“Diff.”) and other diffusion training strategies that require two forward
steps to evaluate the training efficiency with identical network architectures and compute
budget. The compared diffusion training strategies include the previously proposed recycling
method Fu et al. (2023) (“Diff. rec. xt+1”) and two self-conditioning techniques from Chen
et al. (2022b) (“Diff. sc. xt”) and Watson et al. (2023) (“Diff. sc. xt+1”). For each
trained model using a different strategy, both DDPM and DDIM samplers were evaluated.
Importantly, the predictions at each inference step were assessed to study the variation of
performance along the inference process.

5.1.2 Comparison to Non-diffusion Models

The proposed methods were compared with non-diffusion-based models using identical
architectures and the same compute budget. An ensemble model was also evaluated, where
the predicted probabilities from the diffusion model and non-diffusion model were averaged.
Models’ segmentation accuracy was assessed with different granularities: per foreground
class or averaged across foreground classes. Balnd-altmann plots were used to analyze the
differences between models.

5.1.3 Ablation Studies for Recycling

Ablation studies were performed, including assessing the performance with different lengths of
inference and evaluating the stochasticity across different seeds during inference. Compared
to the previous work (Fu et al., 2023), the effectiveness of the Transformer architecture and
the change of training noise schedule was evaluated.

5.1.4 Evaluation Metrics

Different methods were evaluated using binary Dice score (DS) and 95% Hausdorff distance
(HD), averaging over foreground classes on the test sets. Dice score is reported in percentage,
between 0% and 100%. For Hausdorff distance, the values are in mm for 3D volumes and
pixels for 2D images. Paired Student’s t-tests with a significance level of α = 0.05 were
performed on the Dice score to test statistical significance between model performance.
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5.2 Data

5.2.1 Muscle Ultrasound

The data set1 (Marzola et al., 2021) provides 3910 labeled transverse musculoskeletal ul-
trasound images, which were split into 2531, 666, and 713 images for training, validation,
and test sets, respectively. Images had the shape 480 × 512. The predicted masks were
post-processed, following Marzola et al. (2021). After filling the holes, multiple morphological
operations were performed, including an erosion with a disk of radius 3 pixels, a dilation with
a disk of radius 5 pixels, and an opening with a disk of radius 10 pixels. Afterward, only the
largest connected component was preserved if the second largest structure was smaller than
75% of the largest one; otherwise, the most superficial (i.e., towards the top of the image)
one between the two largest components was preserved. Finally, holes were filled if there
were any.

5.2.2 Abdominal CT (AMOS)

The data set2 (Ji et al., 2022) provides 200 and 100 CT image-mask pairs for 15 abdominal
organs in training and validation sets. The validation set was randomly split into non-
overlapping validation and test sets, with 10 and 90 images, respectively. The images were
first resampled with a voxel dimension of 1.5 × 1.5 × 5.0 (mm). HU values were clipped
to [−991, 362] and images were normalized so that the intensity had zero mean and unit
variance. Lastly, images were center-cropped to shape 192× 128× 128. During training, the
patch size was 128× 128× 128. During inference, the overlap between patches is 64× 0× 0,
and the predictions on the overlap were averaged.

5.2.3 Prostate MR

The data set3 (Li et al., 2022b) contains 589 T2-weighted image-mask pairs for 8 anatomical
structures from 7 institutions. The images were randomly split into non-overlapping training,
validation, and test sets, with 411, 14, and 164 images in each split, respectively. The
validation split has two images of each institution. The images were resampled with a
voxel dimension of 0.75× 0.75× 2.5 (mm). Afterward, images were normalized so that the
intensity had zero mean and unit variance. Lastly, the images were center-cropped to shape
256× 256× 48. During training, the patch size was 256× 256× 32. During inference, the
overlap between patches was 0× 0× 16, and the predictions on the overlap were averaged.

5.2.4 Brain MR (BraTS 2021)

The data set4 (Baid et al., 2021) provides 1251MR segmented mpMRI scans for brain tumour.
The data set was randomly split into non-overlapping training, validation, and test sets,
with 938, 31, and 282 samples, respectively. The whole tumor mask was generated as
foreground class, including GD-enhancing tumor, the peritumoral edematous/invaded tissue,
and the necrotic tumor core. Therefore, the task was a binary segmentation. Four modalities

1. https://data.mendeley.com/datasets/3jykz7wz8d/1
2. https://zenodo.org/record/7155725#.ZAkbe-zP2rO
3. https://zenodo.org/record/7013610#.ZAkaXuzP2rM
4. https://www.kaggle.com/datasets/dschettler8845/brats-2021-task1
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are available, including T1-weighted (T1), post-contrast T1-weighted (T1Gd), T2-weighted
(T2), and T2 Fluid Attenuated Inversion Recovery (T2-FLAIR). The voxel dimension was
1.0× 1.0× 1.0 (mm). Images were firstly normalized so that the intensity has zero mean and
unit variance. Lastly, images were center-cropped to shape 179× 219× 155 to remove the
common background. During training, the patch size was 128× 128× 128. During inference,
the overlap between patches was 77 × 37 × 101, and the predictions on the overlap were
averaged.

5.3 Implementation Details

Figure 2: Unet architecture for diffusion and non-diffusion models. The inputs
are concatenated when a noisy mask (from diffusion models) or predicted mask (from self-
conditioning) is provided. The tensor is enriched with convolution (time-conditioned for
diffusion models) and down-sampling layers, then passed into a Transformer with positional
encoding, the output is then enriched with convolution and up-sampling layers, and finally,
prediction is performed with an additional 1 × 1 convolutional layer. “Pred.” stands for
predicted.

2D and 3D U-net variants with attention mechanisms were used for benchmarking the
reference performance from cross-data-set non-diffusion models. The architecture is illustrated
in Figure 2. U-nets have four layers with 32, 64, 128, and 256 channels, respectively. The
numbers of learnable parameters are summarized in Table 7 in Appendix E. For diffusion-
based models, the noise-corrupted masks were concatenated. Time was encoded using
sinusoidal positional embedding (Rombach et al., 2022) and used in the convolution layers.

For denoising training, a linear β schedule between 0.0001 and 0.02 was used for T = 1001
(illustrated in Figure 7 in Appendix D). The segmentation-specific loss function is a weighted
sum of cross-entropy and foreground-only Dice loss, with weight 20 and 1 respectively (Kirillov
et al., 2023). Random rotation, translation, and scaling were adopted for data augmentation
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during training. Training hyper-parameters are listed in Table 6 in Appendix E. Hyper-
parameters were configured empirically without extensive tuning.

Models were trained once and checkpoints were saved every 500 step. The checkpoint
that had the best mean binary Dice score (without background class) in the validation
set was used for the testing. For DDIM, the training was the same as DDPM while both
validation and testing were performed using DDIM. The variance schedule was down-sampled
to 5 steps (Nichol and Dhariwal, 2021). Experiments were carried out using bfloat16 mixed
precision on TPU v3-8, which has 16×8 GB device memory. However, each device has only 16
GB memory, meaning that the model and data have to fit into 16 GB memory. The JAX-based
framework has been released on https://github.com/mathpluscode/ImgX-DiffSeg.

6. Results and Discussion

6.1 Diffusion Training Strategy Comparison

Our proposed recycling method (Diff. rec. xT ) achieved mean Dice scores of 88.23%, 87.45%,
85.54%, and 92.29% on muscle ultrasound, abdominal CT, prostate MR, and brain MR
data sets, respectively. These scores marked absolute improvements of 1.63%, 2.20%, 1.93%,
and 2.00% over standard diffusion models, respectively. The relative improvements are
1.88%, 2.58%, 2.31%, and 2.22% respectively. Impressively, this novel strategy consistently
outperformed the other three training approaches in terms of both Dice score and Hausdorff
distance. The observed differences were significant for all data sets in terms of Dice score
(p = 0.003 for muscle ultrasound and p < 0.001 for other data sets). These findings held
for both the DDPM and the DDIM samplers, underscoring the wide applicability of the
proposed training strategy.

As depicted in Figure 8 in Appendix F.1, standard diffusion models often produce
segmentation masks in the last step that are less accurate than the initial prediction. Similar
challenges were observed with self-conditioning strategies and previously proposed recycling
methods. The newly introduced recycling method was the only approach that improved
initial segmentation predictions for more than half of the test images. Moreover, the average
performance per step has been visualized in Figure 3, where diffusion models frequently
exhibit gradually declining or unstable performance during inference, in terms of both Dice
score and Hausdorff distance. It is interesting to observe that often the optimal prediction
emerges not at the final step but rather at an intermediate stage. This has been observed
in all diffusion models except the newly proposed diffusion model with the innovative
recycling method. In the latter case, the quality of segmentation consistently improved
or remained stable throughout the inference process, distinguishing it from the observed
trend. A qualitative comparison on an example muscle ultrasound image has been illustrated
in Figure 4, where the proposed diffusion model was able to refine the segmentation mask
progressively. Similar observations have been noted with the DDIM sampler as well, as
shown in Figure 9 and Figure 10. This finding aligns with the discussions from Kolbeinsson
and Mikolajczyk (2022); Lai et al. (2023) that the diffusion-based segmentation model
performance is strongly influenced by the prediction of the initial step. For self-conditioning
or the previously proposed recycling, the denoising training relies on the ground truth to
varying degrees therefore the diffusion models are trained with ground truth-like initial
predictions. However, no ground truth is available during inference, and the distributions of
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Table 1: Diffusion training strategies comparison. “Diff.” represents standard diffusion.
“Diff. sc. xt” and “Diff. sc. xt+1” represents self-conditioning from Chen et al. (2022b)
and Watson et al. (2023), respectively. “Diff. rec. xt+1” and “Diff. rec. xT ” represents
recycling from Fu et al. (2023) and the proposed recycling in this work, respectively. The
best results are in bold and underline indicates the difference to the second best is significant
with p-value < 0.05.

Method DDPM DDIM
DS ↑ HD ↓ DS ↑ HD ↓

Diff. 86.60 ± 12.38 41.11 ± 35.48 86.18 ± 12.41 42.31 ± 35.82
Diff. sc. xt 86.35 ± 14.14 40.42 ± 37.53 85.96 ± 13.78 42.00 ± 36.76
Diff. sc. xt+1 87.14 ± 11.48 39.24 ± 32.83 86.30 ± 11.49 41.89 ± 32.72
Diff. rec. xt+1 87.44 ± 12.39 39.68 ± 36.21 87.43 ± 12.25 39.82 ± 35.39
Diff. rec. xT 88.23 ± 11.69 35.37 ± 31.79 88.21 ± 11.70 35.52 ± 31.91

(a) Muscle Ultrasound

Method DDPM DDIM
DS ↑ HD ↓ DS ↑ HD ↓

Diff. 85.25 ± 5.36 7.12 ± 3.83 85.59 ± 5.24 7.13 ± 3.98
Diff. sc. xt 86.04 ± 5.12 7.06 ± 4.20 85.50 ± 5.14 7.21 ± 4.16
Diff. sc. xt+1 85.86 ± 5.27 6.98 ± 3.54 85.25 ± 5.42 7.28 ± 3.72
Diff. rec. xt+1 86.48 ± 5.24 6.69 ± 4.59 86.35 ± 5.31 6.75 ± 4.55
Diff. rec. xT 87.45 ± 5.43 6.56 ± 5.44 87.45 ± 5.43 6.55 ± 5.43

(b) Abdominal CT

Method DDPM DDIM
DS ↑ HD ↓ DS ↑ HD ↓

Diff. 83.61 ± 4.87 5.10 ± 2.40 83.11 ± 4.81 5.00 ± 2.35
Diff. sc. xt 83.47 ± 4.85 5.17 ± 2.65 82.49 ± 4.88 5.42 ± 2.70
Diff. sc. xt+1 83.97 ± 4.85 4.93 ± 2.66 83.00 ± 4.89 5.10 ± 2.64
Diff. rec. xt+1 84.29 ± 5.12 4.59 ± 2.21 84.21 ± 4.89 4.96 ± 2.92
Diff. rec. xT 85.54 ± 5.20 4.40 ± 1.96 85.54 ± 5.20 4.41 ± 1.96

(c) Prostate MR

Method DDPM DDIM
DS ↑ HD ↓ DS ↑ HD ↓

Diff. 90.29 ± 12.98 8.46 ± 15.55 89.94 ± 13.00 8.55 ± 15.50
Diff. sc. xt 90.12 ± 12.39 9.55 ± 17.18 89.73 ± 12.61 9.67 ± 16.86
Diff. sc. xt+1 89.11 ± 14.70 9.63 ± 17.47 88.75 ± 14.77 9.62 ± 16.97
Diff. rec. xt+1 86.97 ± 10.94 9.83 ± 12.62 84.76 ± 13.42 12.52 ± 15.55
Diff. rec. xT 92.29 ± 8.55 7.03 ± 13.48 92.29 ± 8.55 7.03 ± 13.48

(d) Brain MR
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Figure 3: Segmentation performance per step. “Diff.” represents standard diffusion.
“Diff. sc. xt” and “Diff. sc. xt+1” represents self-conditioning from Chen et al. (2022b)
and Watson et al. (2023), respectively. “Diff. rec. xt+1” and “Diff. rec. xT ” represents
recycling from Fu et al. (2023) and the proposed recycling in this work, respectively. The
sampler is DDPM.
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Figure 4: Diffusion training strategies comparison on muscle ultrasound example.
“Diff.” represents standard diffusion. “Diff. sc. xt” and “Diff. sc. xt+1” represents self-
conditioning from Chen et al. (2022b) and Watson et al. (2023), respectively. “Diff. rec. xt+1”
and “Diff. rec. xT ” represents recycling from Fu et al. (2023) and the proposed recycling in
this work, respectively. The Dice score (DS) and Hausdorff distance (HD) for each sample
are labeled at the bottom. While different diffusion models have similar performance on the
first step, the proposed method (last row) can refine the segmentation mask.
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initial predictions from the trained models are dissimilar from ground truths. This results in
an out-of-sample inference and therefore a declining performance. In contrast, the proposed
method ingests model predictions for both the training and inference phases without the bias
toward ground truth. These observations reaffirm the importance and benefits of harmonizing
the training and inference processes. This alignment is crucial to mitigate data leakage,
prevent overfitting, and help generalization.

6.2 Comparison to Non-diffusion Models

Table 2: Segmentation performance comparison to non-diffusion models. “No diff.”
represents non-diffusion model. “Diff. rec. xT ” represents the diffusion model with proposed
recycling. “Ensemble” represents the model averaging the probabilities from “No diff.” and
“Diff. rec. xT ”. The inference sampler is DDPM. The best results are in bold and underline
indicates the difference to non-diffusion model is significant with p-value < 0.05.

Data Set Method DS ↑ HD ↓

Muscle Ultrasound
No diff. 88.15 ± 10.77 36.86 ± 30.04
Diff. rec. xT 88.23 ± 11.69 35.37 ± 31.79
Ensemble 88.88 ± 10.59 34.01 ± 28.75

Abdominal CT
No diff. 87.59 ± 5.10 6.36 ± 3.86
Diff. rec. xT 87.45 ± 5.43 6.56 ± 5.44
Ensemble 88.29 ± 5.21 5.60 ± 3.13

Prostate MR
No diff. 85.22 ± 5.18 4.62 ± 2.37
Diff. rec. xT 85.54 ± 5.20 4.40 ± 1.96
Ensemble 85.95 ± 5.12 4.32 ± 2.01

Brain MR
No diff. 92.43 ± 9.10 5.20 ± 9.56
Diff. rec. xT 92.29 ± 8.55 7.03 ± 13.48
Ensemble 92.67 ± 8.60 5.03 ± 8.41

The proposed diffusion models (“Diff. rec. xT ”) were compared with their non-diffusion
counterparts (“No diff.”), where models with identical architectures were trained under the
same scheme with the same compute budget. This provides a fair comparison without
application-specific adjustments. For diffusion models, the performance with DDPM was
selected. As shown in Table 2, The diffusion models yielded similar performance across all
data sets. The difference in Dice score is not significant for muscle ultrasound, abdominal CT,
and brain MR, but the diffusion model had a higher Dice score for prostate MR (p = 0.001).
Furthermore, Figure 5 shows that the proposed diffusion model achieved a higher Dice score
on more than 50% samples for muscle ultrasound, abdominal CT, and prostate MR data sets.
To the best of our knowledge, this is the first time that diffusion models achieved comparable
performance against standard non-diffusion-based models with the same architecture and
compute budget.

By ensembling these two models via averaging the probabilities, we achieved mean
Dice scores of 88.88%, 88.29%, 85.95%, and 92.67% on muscle ultrasound, abdominal CT,
prostate MR, and brain MR data sets, respectively. The improvements in Dice score were
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Figure 5: Balnd-altmann plot for comparison of diffusion and ensemble models
against non-diffusion models. “No diff.” represents non-diffusion model. “Diff. rec. xT ”
represents the diffusion model with proposed recycling. “Ensemble” represents ensembled
model by averaging predicted probabilities. The inference sampler is DDPM. DS and HD
represents Dice score and Hausdorff distance, respectively. The differences are calculated
against non-diffusion models. Positive dice score difference and negative Hausdorff distances
indicate improvements. The green solid lines indicates the average difference and the dash
lines are mean ±1.96 standard deviation of the difference. The percentage indicates the
number of samples having better performance against non-diffusion baseline. Ensemble
models brings an improvement of Dice score for 18.44%−40.00% samples across applications.
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Figure 6: Segmentation error of non-diffusion-based and diffusion-based models.
“No diff.” represents non-diffusion model. “Diff. rec. xT ” represents the diffusion model
with proposed recycling. “Ensemble” represents ensembled model by averaging predicted
probabilities. The ground truth segmentation is visualised. For each point on the surface, the
distance to the surface of predicted segmentation is calculated and displayed with red color.
The Dice score (DS) and Hausdorff distance (HD) for each sample are labeled at bottom.
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significant across all four data sets (p = 0.037 for brain MR and p < 0.001 for other data
sets). Especially, Figure 5 shows that the ensemble model reached a higher Dice score
compared to non-diffusion models on 70.83%, 91.11%, 89.02%, and 64.54% samples in the
test set for muscle ultrasound, abdominal CT, prostate MR data and brain MR, respectively.
These scores marked an absolute increase of 19.36%, 40.00%, 28.04%, and 19.44% compared
to the diffusion model alone. Moreover, Abdominal CT and prostate MR are two data
sets with multiple classes and their per-class segmentation performances are summarised
in Table 8 and Table 9 in Appendix F.1, respectively. Upon comparing diffusion models and
non-diffusion models, neither consistently outperformed the other across all classes. However,
the ensemble model reached the best performance across all classes and the improvement
of Dice score is significant for 13 out of 15 classes in Abdominal CT data and all classes
in prostate MR data (all p-values <= 0.01, excluding Spleen p = 0.06 and Gall bladder
p = 0.876). Multiple examples have also been visualized in Figure 6 and Figure 11 for the
segmentation error.

We highlight that the value of the competitive performance from alternative methods, in
particular a different class of generative model-based approaches, is beyond the replacement of
current segmentation algorithms for specific potential applications. Our results demonstrate a
consistent improvement by combining diffusion and non-diffusion models across applications,
even when they yielded a similar performance individually. This is one of the possible
potential uses of the proposed improved diffusion models in addition to the well-established
non-diffusion baseline. Future research could explore application-specific tuning for further
performance improvements.

6.3 Ablation Studies

6.3.1 Number of sampling steps

Diffusion models were trained using a thousand steps, yet employing the same number of
steps for inference can be cost-prohibitive, particularly for processing 3D image volumes. As
a result, practical inference commonly utilizes a condensed schedule with a limited number
of steps. While this approach reduces computational expenses, the resulting sample quality
might be compromised. An ablation study of the numbers of timesteps during inference
has therefore been performed across data sets with the proposed recycling-based diffusion
model. DDPM sampler was used. The results have been summarised in Table 3. Notably,
increasing the number of steps yielded a higher Dice score for the muscle ultrasound dataset
but the difference is not significant (p >= 0.05). For prostate MR and brain MR data
sets, the models maintained almost the same performance regardless of the inference length
(p >= 0.05). Given that longer inference times and increased device memory usage are
associated with more timesteps (e.g. out-of-memory errors were encountered with Abdominal
CT at 11 steps), the trade-off between computational resources and performance suggests
that a five-step sampling schedule provides the optimal balance.

6.3.2 Inference Variance

Different from deterministic models, the inference process of the diffusion model inherently
incorporates stochasticity and models a distribution of the segmentation masks. Using the
DDPM sampler with the proposed recycling-based diffusion model, the inference on each
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Table 3: Diffusion with different number of sampling steps. Sampler is DDPM.
Diffusion models were trained using the proposed recycling method (Diff. rec. xT ). OOM
indicates that out of memory errors were encountered. Best results are in bold.

Data Set # Sampling Steps Dice Score Hausdorff Distance

Muscle Ultrasound
2 88.01 ± 12.07 36.55 ± 32.66
5 88.23 ± 11.69 35.37 ± 31.79
11 88.30 ± 11.29 35.25 ± 30.64

Abdominal CT
2 87.44 ± 5.43 6.56 ± 5.42
5 87.45 ± 5.43 6.56 ± 5.44
11 OOM OOM

Prostate MR
2 85.54 ± 5.19 4.40 ± 1.96
5 85.54 ± 5.20 4.40 ± 1.96
11 85.54 ± 5.20 4.40 ± 1.96

Brain MR
2 92.29 ± 8.54 7.03 ± 13.47
5 92.29 ± 8.55 7.03 ± 13.48
11 92.29 ± 8.57 7.02 ± 13.48

Table 4: Diffusion model performance across different inference seeds. For each
sample, the maximum difference (∆) across five random seeds is calculated. The average
across all samples is reported.

Data Set Mean ∆ Dice Score
Step 1 Step 2 Step 3 Step 4 Step 5

Muscle Ultrasound 0.0212 0.0165 0.0122 0.0081 0.0051
Abdominal CT 0.0009 0.0010 0.0009 0.0008 0.0004
Prostate MR 0.0004 0.0004 0.0004 0.0004 0.0002
Brain MR 0.0005 0.0005 0.0005 0.0003 0.0001

Data Set Mean ∆ Hausdorff Distance
Step 1 Step 2 Step 3 Step 4 Step 5

Muscle Ultrasound 10.0582 7.0020 4.7440 3.1758 1.8164
Abdominal CT 0.1481 0.1339 0.1221 0.0751 0.0673
Prostate MR 0.0447 0.0426 0.0499 0.0431 0.0209
Brain MR 0.0758 0.0779 0.0678 0.0616 0.0197

data set has been repeated with five different random seeds. Consequently, each sample
has five distinct predicted masks. The maximum differences across five predictions were
computed for the Dice score and Hausdorff distance, denoted by ∆ Dice score and ∆ Hausdorff
distance, respectively. The average of this performance difference across all samples in the
test set has been reported in Table 4 for all data sets. While the magnitude of the average
difference (mean ∆) varies across data sets, a common trend was observed where mean ∆

526



Recycling for Medical Image Segmentation with Diffusion Denoising Models

diminished during the sampling process for both metrics. In other words, despite different
initial predictions, the model’s predictions gradually converge as the difference across seeds
decreases. Moreover, the relative magnitude of the mean ∆ Hausdorff distance (e.g. 1.82
at the last step for muscle ultrasound represents around 5% fluctuation compared to 35.37,
the mean Hausdorff distance to ground truth) was larger than the relative magnitude for
Dice score (e.g. 0.0051 at the last step for muscle ultrasound was around 0.006% fluctuation
compared to 88.23 the mean Hausdorff distance to ground truth). We hypothesize that
the variation among predictions may predominantly revolve around local refinements in
mask boundaries, as opposed to significant alterations like expansion or contraction of
foreground areas. This may open a direction for further improving diffusion training: instead
of performing independent noising per pixel/voxel results in fragmented and disjointed masks,
the noising can be morphology-informed such that the noise-corrupted masks expand or
contract the foreground with continuous boundaries.

6.3.3 Transformer

Table 5: Segmentation performance without Transformer. “No diff.” represents
non-diffusion model. “Diff. rec. xT ” represents the diffusion model with proposed recycling.
The inference sampler is DDPM. The best results are in bold and underline indicates the
difference to non-diffusion model is significant with p-value < 0.05.

Data Set Method Transformer DS ↑ HD ↓

Muscle US
No diff. 86.66 ± 13.16 45.01 ± 38.86

✓ 88.15 ± 10.77 36.86 ± 30.04

Diff. rec. xT
88.36 ± 12.60 35.67 ± 34.12

✓ 88.23 ± 11.69 35.37 ± 31.79

Abdominal CT
No diff. 87.48 ± 5.02 6.63 ± 4.03

✓ 87.59 ± 5.10 6.36 ± 3.86

Diff. rec. xT
86.89 ± 5.49 6.91 ± 4.35

✓ 87.45 ± 5.43 6.56 ± 5.44

Prostate MR
No diff. 84.82 ± 5.69 4.55 ± 2.17

✓ 85.22 ± 5.18 4.62 ± 2.37

Diff. rec. xT
85.63 ± 5.19 4.59 ± 2.71

✓ 85.54 ± 5.20 4.40 ± 1.96

Brain MR
No diff. 92.03 ± 9.67 5.29 ± 8.53

✓ 92.43 ± 9.10 5.20 ± 9.56

Diff. rec. xT
92.04 ± 9.47 7.25 ± 13.76

✓ 92.29 ± 8.55 7.03 ± 13.48

Compared to Fu et al. (2023), the model includes a Transformer layer at the bottom
encoder of U-net. This component has one layer representing 16% and 6% of the trainable
parameters for 2D and 3D networks, correspondingly (see Table 7 in Appendix E). An
ablation study has been performed for the proposed recycling approach and non-diffusion
models. The results have been summarised in Table 5. For non-diffusion models, the addition
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of the Transformer component brought improvement in Dice score across all applications
(p < 0.001 for muscle ultrasound; p >= 0.05 for abdominal CT; p = 0.001 for prostate
MR; and p = 0.0178 for brain MR), making this architecture the stronger reference model.
For diffusion, significantly higher Dice scores have been observed for abdominal CT data
(p < 0.001), and the differences were not significant for other applications (p >= 0.05).

6.3.4 Length of training noise schedule

It’s worth noting that Fu et al. (2023) recommended incorporating a shortened variance
schedule during training, mirroring that used during inference, in addition to the recycling
technique. This modification resulted in enhanced performance for every training strategy
on the muscle ultrasound data set (as detailed in Table 10a). However, this adaptation
did not yield enhancements for the proposed training strategies (“Diff. rec. xT ”) in the
abdominal CT data set (as depicted in Table 10b). Moreover, not all differences observed were
statistically significant. This may suggest that the advantage of the modified training variance
schedule may be application-dependent and sensitive to the change of model architectures
and hyper-parameters. In this work, the variance schedule was maintained at 1001 steps.

7. Conclusion

In this research, we have proposed a novel training strategy for diffusion-based segmentation
models. The aim is to remove the dependency on ground truth masks during denoising
training. In contrast to the standard diffusion-based segmentation models and those employing
self-conditioning or alternative recycling techniques, our approach consistently maintains or
enhances segmentation performance throughout progressive inference processes. Through
extensive experiments across four medical imaging data sets with different dimensionalities
and modalities, we demonstrated statistically significant improvement against all diffusion
baseline models for both DDPM and DDIM samplers. Our analysis for the first time
identified a common limitation of existing diffusion model training for segmentation tasks.
The use of ground truth data for denoising training leads to data leakage. By utilizing the
model’s prediction at the initial step instead, we align the training process with inference
procedures, effectively reducing over-fitting and promoting better generalization. While
existing diffusion models underperformed non-diffusion-based segmentation model baselines,
our innovative recycling training strategies effectively bridged the performance gap. This
enhancement allowed diffusion models to attain comparable performance levels. To the best of
our knowledge, this is the first time diffusion models have achieved such parity in performance
while maintaining identical architecture and compute budget. By ensembling the diffusion
and non-diffusion models, constant and significant improvements have been observed across
all data sets, demonstrating one of its potential values. Nevertheless, challenges remain
on the road to advancing diffusion-based segmentation models further. Future work could
explore discrete diffusion models that are tailored for categorical data or implement diffusion
in latent space to further reduce compute costs. Although the presented experimental results
primarily demonstrated methodological development, the fact that these were obtained on
four large clinical data sets represents a promising step toward real-world applications. We
would like to argue the potential importance of the reported development, which may lead to
better clinical outcomes and improved patient care in respective applications. For example,
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avoiding surrounding healthy structures may be sensitive to their localization in planning
imaging, in both the abdominal CT and prostate MR tasks. This sensitivity can be high and
nonlinear therefore arguably a perceived marginal improvement might benefit those with
smaller targets, such as those in liver resection and focal therapy of prostate cancer, or highly
variable ultrasound imaging guidance.
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Appendix A. Denoising Diffusion Probabilistic Model

We review the formulation of denoising diffusion probabilistic models (DDPM) from Sohl-
Dickstein et al. (2015); Ho et al. (2020); Nichol and Dhariwal (2021).

A.1 Definition

xT GGGBFGGG · · · GGGBFGGG xt

pθ(xt−1 | xt)
GGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGG

q(xt | xt−1)
xt−1 GGGBFGGG · · · GGGBFGGG x0

Consider a continuous diffusion process (also named forward process or noising process):
given a data point x0 ∼ q(x0) in RD, we add noise to xt for t = 1, · · · , T with the following
multivariate normal distribution:

q(xt | xt−1) = N (xt;
√

1− βt xt−1, βtI)

where βt ∈ [0, 1] is a variance schedule. Given sufficiently large T and a well-defined variance
schedule, the distribution of xT approximates an isotropic multivariate normal distribution.

q(xt | x0) → N (xt;0, I)

Therefore, we can define a reverse process (also named denoising process): given a sample
xT ∼ N (xT ;0, I), we denoise the data using neural networks µθ : RD → RD and Σθ : RD →
RD×D as follows:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

In this work, an isotropic variance is assumed with Σθ(xt, t) = σ2
t I, such that

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t), σ
2
t I)

A.2 Variational Lower Bound

Consider z = x1:T | x0 as latent variables for x0, we can derive the variational lower bound
(VLB) as follows:

log pθ(x0) =DKL(q(z) ∥ pθ(z | x0)) + Eq(z)

[
log

pθ(x0, z)

q(z)

]
≥Eq(z)

[
log

pθ(x0, z)

q(z)

]
=−

(
Eq(x1|x0) L0 +

T∑
t=2

Eq(xt|x0) Lt−1 + LT

)
where

L0 = − log pθ(x0 | x1) (reconstruction loss)
Lt−1 = DKL(q(xt−1 | xt,x0)∥pθ(xt−1 | xt)) (diffussion loss)
LT = DKL(q(xT | x0)) ∥ pθ(xT ). (prior loss)
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A.3 Diffusion Loss

In particular, we can derive the closed form Lt−1 with

q(xt | x0) = N (xt;
√
ᾱt x0, (1− ᾱt)I)

q(xt−1 | xt,x0) = N (xt−1; µ̃(xt,x0), β̃tI)

where

αt = 1− βt

ᾱt =

t∏
s=1

αs

µ̃(xt,x0) =

√
ᾱt−1βt
1− ᾱt

x0+
1− ᾱt−1

1− ᾱt

√
αt xt, (6)

β̃t =
1− ᾱt−1

1− ᾱt
βt.

A.3.1 Noise Prediction Loss (ϵ-parameterization)s

Consider the reparameterization in Ho et al. (2020),

xt(x0, ϵ) =
√
ᾱt x0+

√
1− ᾱt ϵ

ϵθ(xt, t) =
1√

1− ᾱt
xt−

√
ᾱt√

1− ᾱt
x0

µθ(xt, t) =
1√
αt

(xt−
βt√
1− ᾱt

ϵθ(xt, t))

We can derive a closed form of Lt−1

Lt−1(xt,x0) =
1

2σ2
t

β2
t

αt(1− ᾱt)
∥ ϵ− ϵθ ∥22 + C

If σ2
t = β̃t =

1−ᾱt−1

1−ᾱt
βt, using the signal-to-noise ratio (SNR) defined in Kingma et al.

(2021), SNR(t) = ᾱt
1−ᾱt

, the loss can be derived as

Lt−1(xt,x0) = (
SNR(t− 1)

SNR(t)
− 1)∥ ϵ− ϵθ ∥22 + C

A.3.2 Sample Prediction Loss (x0-parameterization)

Similar to Eq. (6), consider the parameterization (Kingma et al., 2021),

µθ(xt, t) =

√
ᾱt−1βt
1− ᾱt

x0,θ +
1− ᾱt−1

1− ᾱt

√
αt xt

We can derive a closed form of Lt−1

Lt−1(xt,x0) =
1

2σ2
t

ᾱt−1β
2
t

(1− ᾱt)2
∥x0,θ −x0 ∥22 + C.
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If σ2
t = β̃t =

1−ᾱt−1

1−ᾱt
βt, using the signal-to-noise ratio (SNR) defined in Kingma et al.

(2021), SNR(t) = ᾱt
1−ᾱt

, the loss can be derived as

Lt−1(xt,x0) =
1

2
(SNR(t− 1)− SNR(t))∥x0,θ −x0 ∥22 + C.

A.4 Training

Empirically, instead of using the variational lower bound, the neural network can be trained
on one of the following simplified loss (Ho et al., 2020)

Lsimple,ϵt(θ) = Et,x0,ϵt ∥ ϵt− ϵt,θ ∥22 = Et,x0,ϵt L(ϵt, ϵt,θ), (ϵ -parameterization)

Lsimple,x0(θ) = Et,x0,ϵt ∥x0−x0,θ ∥22 = Et,x0,ϵt L(x0,x0,θ). (x0 -parameterization)

with t uniformly sampled from 1 to T and ϵt ∼ N (0, I). L(·, ·) is a loss function in the
space of x. With the importance sampling proposed in Nichol and Dhariwal (2021), t can be
sampled with a probability proportional to Ex0,xt L(x0, x̂0). In other words, a time step t is
sampled more often if the loss is larger.

As the previous work (Fu et al., 2023) has extensively compared the ϵ-parameterization
and x0-parameterization, as well as the benefits of including Dice loss, in this work, we
use x0-parameterization with a weighted sum of cross-entropy and foreground-only Dice
loss Kirillov et al. (2023).

A.5 Variance Resampling

Given a variance schedule {βt}Tt=1 (e.g. T = 1001), a subsequence {βk}Kk=1 (e.g. K =
5) can be sampled with {tk}Kk=1. Following Nichol and Dhariwal (2021), we can define
βk = 1 − ᾱtk

ᾱtk−1
then αk = 1 − βk and ᾱk =

∏k
s=1 αs can be recalculated correspondingly.

In this work, tk is uniformly downsampled. For instance, if T = 1001 and K = 5, then
{tk}Kk=1 = {1, 251, 501, 751, 1001}.

Appendix B. Denoising Diffusion Implicit Model

Definition Song et al. (2020a) parameterize q(xt−1 | xt,x0) as follows, with ϵ = xt −
√
ᾱt x0√

1−ᾱt
,

q(xt−1 | xt,x0) = N (xt−1;
√
ᾱt−1 x0+

√
1− ᾱt−1 − σt ϵ, σ

2
t I).

For any variance schedule σt, this formulation ensures q(xt | x0) = N (xt;
√
ᾱt x0, (1− ᾱt)I).

Particularly, if σ2
t = β̃t, this represents DDPM. If σt = 0 for t > 1 and σ1 =

√
β̃1, the model

is deterministic and named as denoising diffusion implicit model (DDIM).

Inference For DDIM, at inference time, the denoising starts with a Gaussian noise xT ∼
N (0, I) and the data is denoised step-by-step for t = T, · · · , 1:

pθ(xt−1 | xt) =

{
N (x̂0, σ

2
1I) t = 1

q(xt−1 | xt,x0,θ(xt, t)) t > 1
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Appendix C. Self-conditioning

The self-conditioning methods proposed in Chen et al. (2022b) (“Diff. sc. xt” in Equation (7))
and Watson et al. (2023) (“sc. xt+1” in Equation (8)) are illustrated below.

xt ∼ N (xt;
√
ᾱtx0, (1− ᾱt)I), (sc. xt, step 1, sampling) (7a)

x̂0 = StopGradient(fθ(I, t,xt,0)), (sc. xt, step 1, prediction) (7b)
x̂0 = Dropoutp=50%(x̂0), (sc. xt, step 2, dropout) (7c)

x̂0 = fθ(I, t,xt, x̂0), (sc. xt, step 2, prediction) (7d)
Ldenoising(θ) = Et,x0,xt L(x0, x̂0), (loss calculation) (7e)

xt+1 ∼ N (xt+1;
√
ᾱt+1 x0, (1− ᾱt+1)I), (sc. xt+1, step 1, sampling) (8a)

x̂0 = StopGradient(fθ(I, t+ 1,xt+1,0)), (sc. xt+1, step 1, prediction) (8b)
x̂0 = Dropoutp=50%(x̂0), (sc. xt+1, step 2, dropout) (8c)

xt ∼ N (xt; µ̃, β̃t+1I), (sc. xt+1, step 2, sampling) (8d)

µ̃ =

√
ᾱtβt+1

1− ᾱt+1
x0+

1− ᾱt

1− ᾱt+1

√
αt+1 xt+1

x̂0 = fθ(I, t,xt, x̂0), (sc. xt+1, step 2, prediction) (8e)
Ldenoising(θ) = Et,x0,xt L(x0, x̂0), (loss calculation) (8f)

Appendix D. Diffusion Noise Schedule

The noise schedule βt and
√
ᾱt have been visualised in Figure 7. The cross entropy and dice

score between xt and ground truth x0 have also been visualized to empirically measure the
amount of information of ground truth x0 contained in xt.

Appendix E. Implementation Details

Table 6: Training Hyper-parameters

Parameter Value

Optimiser AdamW (b1=0.9, b2=0.999, weight_decay=1E-8)
Learning Rate Warmup 100 steps
Learning Rate Decay 10,000 steps
Learning Rate Values Initial = 1E-5, Peak = 8E-4, End = 5E-5

Batch size 256 for Muscle Ultrasound and 8 for other data sets
Number of samples 320K for Muscle Ultrasound and 100K for other data sets
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Figure 7: Information contained in xt. Cross entropy and dice score between xt and
ground truth x0 are used to empirically measure the amount of information of ground truth
x0 contained in xt. The dashed line represents the information contained in the sampled
noise (between noise and ground truth x0), which is considered to be the limit. The values
are calculated using the sample “005095” in prostate MR data set.

Table 7: Network Size

Dimension Method Transformer
✓

2D No diff. 12,586,594 10,550,370
Diff. 13,335,554 11,299,330

3D No diff. 33,385,154 31,283,394
Diff. 34,135,266 32,033,506
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Appendix F. Results

F.1 Diffusion Training Strategy Comparison

Table 8: Per class Dice score comparison. “No diff.” represents non-diffusion model.
“Diff. rec. xT ” represents the diffusion model with proposed recycling. “Ensemble” represents
the model averaging the probabilities from “No diff.” and “Diff. rec. xT ”. The inference
sampler is DDPM. The best results are in bold and underline indicates the difference to
non-diffusion model is significant with p-value < 0.05.

Method Spleen RT kidney LT kidney Gall bladder

No diff. 96.62 ± 1.87 95.08 ± 10.74 96.29 ± 1.73 78.83 ± 27.82
Diff. rec. xT 96.40 ± 2.42 96.24 ± 1.90 96.27 ± 1.53 76.68 ± 29.25
Ensemble 96.78 ± 1.75 96.47 ± 2.44 96.50 ± 1.51 79.65 ± 27.29

Method Esophagus Liver Stomach Arota

No diff. 83.22 ± 11.08 97.36 ± 1.17 90.53 ± 14.78 94.65 ± 4.22
Diff. rec. xT 83.60 ± 10.32 97.33 ± 1.13 90.77 ± 14.46 94.66 ± 4.66
Ensemble 84.10 ± 11.15 97.54 ± 1.05 91.07 ± 14.91 94.96 ± 4.39

Method Postcava Pancreas Right adrenal gland Left adrenal gland

No diff. 90.45 ± 4.68 84.88 ± 11.40 77.80 ± 9.46 77.98 ± 11.95
Diff. rec. xT 90.55 ± 4.19 84.86 ± 11.15 76.63 ± 12.84 78.01 ± 11.60
Ensemble 91.18 ± 4.12 85.85 ± 11.12 78.51 ± 10.58 78.95 ± 11.45

Method Duodenum Bladder Prostate/uterus

No diff. 79.57 ± 14.89 88.09 ± 16.25 82.35 ± 18.90
Diff. rec. xT 79.80 ± 15.14 87.90 ± 16.65 81.90 ± 18.86
Ensemble 80.99 ± 15.07 88.61 ± 16.59 83.06 ± 18.68

(a) Abdominal CT: LT and RT stand for left and right, respectively.

Method Bladder Bone Obturator internus Transition zone

No diff. 93.28 ± 9.90 93.12 ± 5.68 88.95 ± 3.53 79.61 ± 8.37
Diff. rec. xT 93.57 ± 9.61 93.84 ± 5.85 89.15 ± 3.62 79.79 ± 8.36
Ensemble 93.66 ± 9.84 93.77 ± 5.52 89.52 ± 3.51 80.57 ± 8.20

Method Central gland Rectum Seminal vesicle NV bundle

No diff. 88.75 ± 5.60 93.30 ± 3.48 77.55 ± 10.99 67.17 ± 14.34
Diff. rec. xT 89.13 ± 5.78 93.42 ± 3.51 78.39 ± 9.71 67.07 ± 15.50
Ensemble 89.45 ± 5.56 93.70 ± 3.37 78.91 ± 10.28 68.01 ± 14.85

(b) Prostate MR: Dice score per class. NV stands for neurovascular.

540



Recycling for Medical Image Segmentation with Diffusion Denoising Models

Table 9: Per class Hausdorff distance comparison “No diff.” represents non-diffusion
model. “Diff. rec. xT ” represents the diffusion model with proposed recycling. “Ensemble”
represents the model averaging the probabilities from “No diff.” and “Diff. rec. xT ”. The
inference sampler is DDPM. The best results are in bold and underline indicates the difference
to non-diffusion model is significant with p-value < 0.05.

Method Spleen Right kidney Left kidney Gall bladder

No diff. 3.22 ± 4.91 1.97 ± 1.46 4.13 ± 10.83 9.23 ± 16.71
Diff. rec. xT 2.86 ± 3.84 1.93 ± 0.83 3.13 ± 8.35 12.65 ± 21.74
Ensemble 2.89 ± 4.28 1.84 ± 1.11 2.70 ± 5.86 9.57 ± 18.86

Method Esophagus Liver Stomach Arota

No diff. 5.50 ± 6.81 3.50 ± 2.50 8.96 ± 13.99 6.62 ± 14.52
Diff. rec. xT 5.30 ± 6.41 3.79 ± 4.16 9.00 ± 14.03 5.41 ± 11.20
Ensemble 5.22 ± 6.63 3.06 ± 1.63 8.04 ± 12.87 5.47 ± 11.29

Method Postcava Pancreas Right adrenal gland Left adrenal gland

No diff. 4.80 ± 4.55 7.57 ± 8.62 4.39 ± 2.39 5.15 ± 5.40
Diff. rec. xT 4.62 ± 3.09 7.50 ± 8.62 4.66 ± 3.14 4.87 ± 4.64
Ensemble 4.41 ± 3.25 6.96 ± 8.40 4.41 ± 2.79 4.82 ± 4.92

Method Duodenum Bladder Prostate/uterus

No diff. 10.54 ± 8.44 9.10 ± 23.07 10.97 ± 19.01
Diff. rec. xT 9.31 ± 7.13 10.70 ± 31.83 13.35 ± 32.75
Ensemble 9.29 ± 7.37 6.52 ± 10.34 9.14 ± 13.11

(a) Abdominal CT: LT and RT stand for left and right, respectively.

Method Bladder Bone Obturator internus Transition zone

No diff. 3.30 ± 4.54 3.18 ± 9.77 4.60 ± 3.36 5.97 ± 4.97
Diff. rec. xT 3.20 ± 4.12 2.21 ± 1.62 4.50 ± 3.46 6.25 ± 4.96
Ensemble 2.95 ± 3.48 2.32 ± 1.46 4.34 ± 3.29 6.18 ± 5.11

Method Central gland Rectum Seminal vesicle NV bundle

No diff. 3.94 ± 2.28 4.46 ± 5.69 4.82 ± 3.85 6.68 ± 6.33
Diff. rec. xT 3.70 ± 1.93 4.25 ± 4.75 4.57 ± 2.66 6.55 ± 6.28
Ensemble 3.66 ± 1.93 4.16 ± 5.25 4.52 ± 2.83 6.45 ± 6.34

(b) Prostate MR: Dice score per class. NV stands for neurovascular.
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Figure 8: Segmentation performance difference between the last step and first
step using DDPM. “Diff.” represents standard diffusion. “Diff. sc. xt” and “Diff. sc. xt+1”
represents self-conditioning from Chen et al. (2022b) and Watson et al. (2023), respectively.
“Diff. rec. xt+1” and “Diff. rec. xT ” represents recycling from Fu et al. (2023) and the
proposed recycling in this work, respectively. The sampler is DDPM. DS and HD represents
Dice score and Hausdorff distance, respectively. The difference is the value at the last step
subtracted by the one at the first step. A positive value for Dice score difference or a negative
value for Hausdorff distance means improvement.
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Figure 9: Segmentation performance difference between the last step and first
step using DDIM. “Diff.” represents standard diffusion. “Diff. sc. xt” and “Diff. sc. xt+1”
represents self-conditioning from Chen et al. (2022b) and Watson et al. (2023), respectively.
“Diff. rec. xt+1” and “Diff. rec. xT ” represents recycling from Fu et al. (2023) and the
proposed recycling in this work, respectively. The sampler is DDIM. DS and HD represents
Dice score and Hausdorff distance, respectively. The difference is the value at the last step
subtracted by the one at the first step. A positive value for Dice score difference or a negative
value for Hausdorff distance means improvement.
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Figure 10: Segmentation performance per step. “Diff.” represents standard diffusion.
“Diff. sc. xt” and “Diff. sc. xt+1” represents self-conditioning from Chen et al. (2022b)
and Watson et al. (2023), respectively. “Diff. rec. xt+1” and “Diff. rec. xT ” represents
recycling from Fu et al. (2023) and the proposed recycling in this work, respectively. The
sampler is DDIM.
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F.2 Comparison to Non-diffusion Models
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Figure 11: Segmentation error of non-diffusion-based and diffusion-based models
for tumour in brain MR. “No diff.” represents non-diffusion model. “Diff. rec. xT ”
represents the diffusion model with proposed recycling. The ground truth segmentation is
visualised. For each point on the surface, the distance to the surface of predicted segmentation
is calculated and displayed with red color. The Dice score (DS) and Hausdorff distance (HD)
for each sample are labeled at bottom.
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F.3 Ablation Studies

Table 10: Diffusion with different training variance schedule. “Diff.” represents
standard diffusion. “Diff. sc. xt” and “Diff. sc. xt+1” represents self-conditioning from Chen
et al. (2022b) and Watson et al. (2023), respectively. “Diff. rec. xt+1” and “Diff. rec. xT ”
represents recycling from Fu et al. (2023) and the proposed recycling in this work, respectively.
“T” represents the length of variance schedule during training. The best results are in bold
and a underline indicates the difference to the second best is significant with p-value < 0.05.

T Method DDPM DDIM
DS ↑ HD ↓ DS ↑ HD ↓

1001

Diff. 86.60 ± 12.38 41.11 ± 35.48 86.18 ± 12.41 42.31 ± 35.82
Diff. sc. xt 86.35 ± 14.14 40.42 ± 37.53 85.96 ± 13.78 42.00 ± 36.76
Diff. sc. xt+1 87.14 ± 11.48 39.24 ± 32.83 86.30 ± 11.49 41.89 ± 32.72
Diff. rec. xt+1 87.44 ± 12.39 39.68 ± 36.21 87.43 ± 12.25 39.82 ± 35.39
Diff. rec. xT 88.23 ± 11.69 35.37 ± 31.79 88.21 ± 11.70 35.52 ± 31.91

5

Diff. 87.81 ± 10.98 37.39 ± 31.17 87.76 ± 11.00 37.56 ± 31.34
Diff. sc. xt 88.11 ± 11.06 35.94 ± 30.13 88.20 ± 10.73 35.57 ± 29.68
Diff. sc. xt+1 87.61 ± 10.88 37.76 ± 29.91 88.09 ± 10.66 35.73 ± 29.26
Diff. rec. xt+1 88.19 ± 10.60 36.10 ± 30.38 87.83 ± 11.01 37.22 ± 30.55
Diff. rec. xT 89.01 ± 10.79 33.70 ± 30.29 88.80 ± 11.54 34.26 ± 31.88

(a) Muscle Ultrasound

T Method DDPM DDIM
DS ↑ HD ↓ DS ↑ HD ↓

1001

Diff. 85.25 ± 5.36 7.12 ± 3.83 85.59 ± 5.24 7.13 ± 3.98
Diff. sc. xt 86.04 ± 5.12 7.06 ± 4.20 85.50 ± 5.14 7.21 ± 4.16
Diff. sc. xt+1 85.86 ± 5.27 6.98 ± 3.54 85.25 ± 5.42 7.28 ± 3.72
Diff. rec. xt+1 86.48 ± 5.24 6.69 ± 4.59 86.35 ± 5.31 6.75 ± 4.55
Diff. rec. xT 87.45 ± 5.43 6.56 ± 5.44 87.45 ± 5.43 6.55 ± 5.43

5

Diff. 86.42 ± 5.00 7.09 ± 4.40 86.52 ± 5.18 6.65 ± 3.88
Diff. sc. xt 86.68 ± 4.96 7.06 ± 6.98 86.39 ± 4.87 7.12 ± 6.95
Diff. sc. xt+1 86.34 ± 5.33 6.69 ± 3.46 86.13 ± 5.27 6.74 ± 3.55
Diff. rec. xt+1 87.27 ± 5.20 6.64 ± 4.69 87.27 ± 5.20 6.63 ± 4.69
Diff. rec. xT 87.38 ± 5.46 6.71 ± 4.46 87.37 ± 5.45 6.74 ± 4.49

(b) Abdominal CT
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