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Abstract

The Birch and Swinnerton-Dyer conjecture famously predicts that the rank of an

elliptic curve, or more generally an abelian variety, can be computed from its L-

function. A consequence of this, known as the parity conjecture, is a purely arith-

metic result which bypasses the conjectural theory of L-functions and asserts that

the parity of the rank is determined by the root number.

This thesis investigates the parity conjecture for Jacobians of hyperelliptic curves

and collates some of the first pieces of evidence (beyond elliptic curves) for the Birch

and Swinnerton-Dyer conjecture. In doing this, we exhibit formulae for the parity

of the rank of certain abelian varieties which use only the local theory of curves.



Impact Statement

The Birch and Swinnerton-Dyer conjecture is considered one of the most challenging

problems in modern mathematics, marrying the two main streams of number theory.

Despite being formulated in the 1960s, a proof of this result still appears out of our

reach. In the setting of elliptic curves, there is plenty of theoretical and numerical

evidence in support of the conjecture, however, this is lacking when we consider

higher dimensional abelian varieties. This thesis provides theoretical evidence in the

context of Jacobians of hyperelliptic curves. This is achieved by considering the

parity of their ranks, for which we provide recipes that serve as useful computational

tools.

Outside of academia, number theory plays a fundamental role in the develop-

ment of cryptographic algorithms. Many of these rely on objects studied in this

thesis, namely, elliptic curves, hyperelliptic curves, and isogenies. Whilst this is not

the purpose of the thesis, and such applications are not discussed here, some of the

ideas we present could be of interest to cryptographers.
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Chapter 1

Introduction

Understanding the rational points on varieties defined over the rational numbers is

the modern perspective on the theory of Diophantine equations which dates back to

the 3rd century. More recently, this study has been extended to varieties over number

fields. Around the 1900s, it was observed that a group law can be defined on the

points of an elliptic curve and in the 1920s, Mordell and Weil proved the following

breakthrough result concerning the group structure (which can also be stated for the

Jacobian associated to a curve, or more generally, an abelian variety).

Theorem (Mordell–Weil). Let E be an elliptic curve over a number field K. The

K-rational points of E form a finitely generated abelian group, i.e.

E(K) ∼= Zrk(E) × E(K)tors

for some rk(E) ∈ N called the rank of E, and some finite group E(K)tors called the

torsion subgroup of E(K).

In light of this theorem, whether an elliptic curve has finitely many or infinitely

many points is determined by its rank. However, very little is known about this global

invariant, and currently, there is no effective method for its calculation. Number

theorists have often observed that global information about varieties can be deduced

from ‘piecing together’ local information, which involves studying varieties over local

fields such as C, R and Qp. The Hasse–Minkowski Theorem is a classical example of

this technique, stating that two quadratic forms over a number field are equivalent
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if and only if they are equivalent over every local completion of the field. In this

thesis, we will demonstrate that the parity of the rank of various abelian varieties

can be determined from local information. While the formulae we provide serve as

useful computational tools, they also offer some of the first pieces of evidence (beyond

elliptic curves) for the renowned Birch and Swinnerton–Dyer conjecture.

1.1 The Birch and Swinnerton-Dyer and parity con-

jectures

In the 1960s, Birch and Swinnerton-Dyer proposed a local description of the rank

of an elliptic curve by relating it to the number of points on the reduction of the

curve over finite fields. This local data is encoded in the associated L-function (a

meromorphic function on the complex plane).

Conjecture (Birch and Swinnerton-Dyer [4, 5], Tate [66]). Let A be an abelian

variety over a number field K. Assuming that L(A, s) has an analytic continuation

to C,

rk(A) = ords=1 L(A, s).

This conjecture is regarded as one of the most challenging mathematical prob-

lems and has currently only been proved in special cases. In particular, it is known

to hold for modular elliptic curves (those whose L-functions are known to have an

analytic continuation) such that the order of vanishing of their L-function at s = 1 is

at most 1 ([30], [35]). Virtually nothing is known for abelian varieties of dimension

greater than 1, and the numerical evidence is much more limited. In this thesis,

we consider the Birch and Swinnerton-Dyer conjecture for Jacobians of hyperelliptic

curves, the first natural family of curves to look at after elliptic curves.

As indicated by the Birch and Swinnerton-Dyer conjecture, the L-function of

an abelian variety is conjectured to have an analytic continuation and to satisfy a

functional equation.

Conjecture (Hasse–Weil, see [58]). Let A be an abelian variety of dimension n over

a number field K of degree d. The L-function L(A, s) has an analytic continuation
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to the whole of C, and

L∗(A, 2− s) = w(A)L∗(A, s)

where w(A) ∈ {±1} is the global root number of A, and

L∗(A, s) := N
s/2
A |∆K |ns(2π)−ndsΓ(s)ndL(A, s)

with NA the conductor of A and ∆K the discriminant of K.

Since this essentially says that L(A, 2− s) = w(A)L(A, s), we can observe that

the root number controls the parity of the order of vanishing of L(A, s) at s = 1.

Combining this with the Birch and Swinnerton-Dyer conjecture yields the ‘Birch

and Swinnerton-Dyer conjecture modulo 2’, more commonly referred to as the parity

conjecture.

Conjecture (The parity conjecture). Let A be an abelian variety over a number

field K. Then

(−1)rk(A) = w(A).

The appeal of the parity conjecture is that it is a purely arithmetic statement

which does not involve the conjectural theory of L-functions. It provides an effective,

local method to compute the parity of the rank because the global root number is

defined as a product of local root numbers and these can be computed via the local

Galois representations of A. We note that knowing the parity of the rank is sometimes

enough to assert that an abelian variety has infinitely many points; for instance, if

the rank is odd, then it is non-zero.

While the parity conjecture may seem like a straightforward statement, there is

currently no known successful approach to resolve it unconditionally. The challenge

arises from our limited understanding of the rank of an abelian variety. In particular,

distinguishing the points on an abelian variety from the elements of a (potentially in-

finite) group known as the Shafarevich–Tate group, denoted X(A), poses significant

difficulties. With this in mind, a weaker version of the parity conjecture concerning
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the p∞-Selmer rank of an abelian variety, denoted rkp(A), has been formulated.

Conjecture (The p-parity conjecture). Let p ∈ Z be a prime and A be an abelian

variety over a number field K. Then

(−1)rkp(A) = w(A).

In certain settings, the parity of the p∞-Selmer rank is computable and this can

lead to a proof of the p-parity conjecture. Most notably, the p-parity conjecture is

known for elliptic curves over the rationals ([19]), for elliptic curves over number

fields admitting a p-isogeny ([20], [8]), for elliptic curves over totally real number

fields when p ̸= 2 (and in all non-complex multiplication cases and some complex

multiplication cases when p = 2) ([20],[48],[49],[50],[51]) and for quadratic twists of

elliptic curves ([37]). However, the p-parity conjecture remains an open problem

for elliptic curves over general number fields. In higher dimensions, the 2-parity

conjecture is known for Jacobians of hyperelliptic curves that are base-changed from

a subfield of index 2 ([47]), and for odd p, the p-parity conjecture is known for abelian

varieties admitting a suitable isogeny ([9]).

When #X(A) (or more specifically #X(A)[p∞]) is finite, then rkp(A) = rk(A),

and thus the p-parity conjecture implies the parity conjecture. Therefore, as conse-

quences of the aforementioned cases of the p-parity conjecture, corresponding cases

of the parity conjecture have been proven, assuming the finiteness of relevant parts of

the Shafarevich–Tate group. Furthermore, assuming finiteness of the p-primary part

of the Shafarevich–Tate group for several primes p, the parity conjecture is known to

hold over general number fields for elliptic curves ([20]) and for principally polarized

abelian surfaces subject to certain local conditions ([24]).

Without knowing that L-functions have an analytic continuation, this is the

only theoretical evidence we have for the Birch and Swinnerton-Dyer conjecture

for abelian varieties of dimension greater than 1. The motivation behind the work

presented in this thesis is to offer additional supporting evidence, specifically in the

form of the parity conjecture for Jacobians of hyperelliptic curves of arbitrary genus.
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1.2 Local formulae

Developing methods to describe the global behaviour of varieties locally (varieties

are better understood over local fields) has received a lot of attention since the early

20th century. The parity conjecture provides such a method, predicting that

(−1)rk(A) = w(A) :=
∏

v place of K

wv(A)

for an abelian variety A over a number field K, where the local root numbers wv(A)

can be determined from viewing A over the local field Kv. We refer to this as a local

formula for the parity of the rank.

Example 1.2.1. Let C : y2 = x6 − 2x2 + 5. Using Sage [63], we compute that

wp(JacC) = w∞(JacC) = + 1 for each prime p ∈ Z.

Therefore, w(JacC/Q) = +1 and the parity conjecture predicts that rk(JacC/Q) is

even.

Now consider the variety over Q(
√
17). Then

wv(JacC) = +1 for each place v ̸= 5, and w5(JacC) = −1

(note that 5 is inert). In this case, w(JacC/Q(
√
17)) = −1 and the parity conjecture

instead predicts that rk(JacC/Q(
√
17)) is odd, i.e JacC has infinitely many Q(

√
17)-

points.

In particular, assuming the parity conjecture, we’re able to conclude that JacC

has points of infinite order which are defined over Q(
√
17) but not over Q.

One of the goals of this thesis is to construct analogous local formulae which

hold independently of the Birch and Swinnerton-Dyer conjecture.

Soon after the formulation of the Birch and Swinnerton–Dyer conjecture, Birch

commented (and Cassels formalised) that the parity of the rank of an elliptic curve

admitting an isogeny can be controlled via local arithmetic ([3]). In light of this,
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isogenies have since been extensively used to derive local formulae for the parity of

various ranks ([36], [47], [24], [14], [19], [40]). In this thesis, we construct isogenies

involving Jacobians of hyperelliptic curves of arbitrary genus and explain how, in

a similar vein to the aforementioned works, we can control the parity of the rank

locally.

To give the reader a flavour, let K be a number field, f(x) ∈ K[x] be a separable

cubic with f(0) ̸= 0 and consider the genus 2 curve C : y2 = f(x2). We will see

(Theorem 6.1.3 & Remark 6.1.4) that

rk2(JacC) ≡
∑

v place of K

ord2 λv(f, x) mod 2

where for v ∤ 2∞

ord2 λv(f, x) = ord2 cv(E) + ord2 cv(JacE′) − ord2 cv(JacC) − ord2 µv(C)

with E : y2 = f(x), E ′ : y2 = xf(x) and cv, µv the local Tamagawa number and

deficiency term (Definition 2.3.9) at v.

1.2.1 Comparing local formulae

We are able to observe that the local recipe for the parity of the 2∞-Selmer rank of

JacC given above differs from the one provided by the 2-parity conjecture.

Example 1.2.2. Let f(x) = x3− 2x+5 ∈ Q[x] so that C : y2 = x6− 2x2+5. Using

Sage [63] and that (1, 2) ∈ C(Q),

c5(E) = 1, c5(JacE′) = 2, c5(JacC) = 1, µ5(C) = 1.

Therefore,

(−1)ord2λ5(f,x) = −1 ̸= w5(JacC) = +1.

It turns out that ord2 λv(f, x) is odd precisely when v = 5 or ∞, resulting in

rk(JacC/Q) being even. Miraculously, despite the constructions being different on a

local level, this global prediction aligns with the one given by the parity conjecture
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(see Example 1.2.1).

We can show that the local term (−1)ord2λv(f,x) only ever differs from wv(JacC)

at an even number of places v of K. Using this fact, we can then deduce the 2-parity

conjecture for JacC from our local formula. In particular,

(−1)rk2(JacC) =
∏

v place of K

(−1)ord2λv(f,x) = (−1)even
∏

v place of K

wv(JacC) = w(JacC).

More generally, the bulk of any argument deducing the parity conjecture from

an arbitrary local formula for the parity of the rank is in finding a suitable ‘local

error term’ Hv ∈ {±1}. The error term should describe the difference between the

local terms appearing in these two constructions at each place v; for instance, in the

context of the discussion above, we mean finding Hv satisfying

(−1)ord2λv(f,x) = Hvwv(JacC) for each v and
∏

v place of K

Hv = + 1.

This strategy has been used in proving most known instances of the parity

conjecture, but finding the local error term is a common challenge. Each proof to

date has exhibited a different ad hoc expression which we don’t know how to interpret

geometrically. Furthermore, these expressions have no obvious link to one another.

In the future, we hope to identify such a pattern in order to formulate a construction

which works more generally, rather than case-by-case.

In this thesis we exhibit a variety of local error terms which lead to proofs

of the parity conjecture in various cases. Most notably, we present two different

constructions that generalise the error term found in [17, Theorem 4].

1.3 Results of thesis

The key results proved in this thesis are summarised below.

1.3.1 Elliptic curves

As mentioned previously, isogenies provide the foundation for many local formulae.

With this in mind, we fix an arbitrary elliptic curve and construct an isogeny in
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order to deduce the following theorem.

Theorem 1.3.1 (=Theorem 4.4.4). Let K be a number field and E : y2 = x3+ax+b

(with a ̸= 0) be an elliptic curve over K. Let D : ∆2 = −27y4+54by2− (4a3+27b2).

Assuming that X(E), X(JacD) are finite,

rk(E) + rk(JacD) ≡
∑

v place of K

ord3 λv(E) mod 2

where λv(E) is a local invariant (see Definition 4.4.2).

Remark 1.3.2. Here, and in all other local formulae presented in this thesis, λv is

essentially a ratio of Tamagawa numbers/real periods of Jacobians of appropriate

curves. In particular, it can be computed via studying curves over the local field Kv.

Through numerical computations, we observe that the local term appearing here

is equivalent to the product of root numbers wv(E)wv(JacD) whenever v ∤ 3∞. In

particular, we exhibit the following local error term.

Theorem 1.3.3 (=Theorem 5.1.2). Let K be a number field and E : y2 = x3+ax+b

(with a ̸= 0) be an elliptic curve over K. Whenever

(i) Kv
∼= C,

(ii) Kv/Qp is finite, or

(iii) Kv
∼= R and E/Q(a, b) does not admit a 3-isogeny,

we have that

(−1)ord3λv(E)+ord3|3|v = wv(E)wv(JacD)

where D : ∆2 = −27y4 + 54by2 − (4a3 + 27b2) and λv(E) is the local invariant given

in Definition 4.4.2.

In fact, dropping the assumptions on the Shafarevich–Tate group, Theorem

1.3.1 gives a local formula for the 3∞-Selmer rank of E × JacD (=Theorem 4.5.3).

By combining this with the previous theorem and utilising known instances of the

2-parity conjecture, we obtain the following consequences.
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Theorem 1.3.4 (=Theorems 5.1.3 & 5.1.5). Let E : y2 = x3 + ax+ b be an elliptic

curve over a number field K and let D : ∆2 = −27y4 + 54by2 − (4a3 + 27b2).

• The 3-parity conjecture holds for E × JacD.

• Assuming that X(E) has finite 3-primary part and X(JacD) has finite 2- and

3-primary parts, the parity conjecture holds for E.

Another instance of a local formula for the parity of the rank, again deduced

from a suitable isogeny, allows us to prove further new results concerning elliptic

curves (and, ultimately, hyperelliptic curves).

Theorem 1.3.5 (=Theorem 4.3.3). Let K be a number field and X1 : y2 = f1(x),

X2 : z2 = f2(x), X0 : w2 = f1(x)f2(x) where f1(x), f2(x) ∈ K[x] are such that

f1(x)f2(x) is separable.

Assuming that X(JacX1), X(JacX2), X(JacX0) are finite,

rk(JacX1) + rk(JacX2) + rk(JacX0) ≡
∑

v place of K

ord2 λv(f1, f2) mod 2

where λv(f1, f2) is a local invariant (see Definition 4.3.2).

To recover ranks of elliptic curves, we first restrict to f1(x) being a monic cubic

and f2(x) = x. In this case, the places of K at which the local term differs from the

relevant product of local root numbers depends on the coefficients of f1(x).

Theorem 1.3.6 (=Theorem 6.1.8). Let K be a number field and E : y2 = f(x),

E ′ : w2 = xf(x) for f(x) = x3 + ax2 + bx + c ∈ K[x] a separable monic cubic with

c ̸= 0. At each place v of K,

(−1)ord2λv(f,x) ·

(b,−c)v(−2L,∆f )v(L,−b)v b, L ̸= 0

(−c,−1)v(2c,∆f )v bL = 0

= wv(E)wv(JacE′)

where L = ab−9c, ∆f denotes the discriminant of f and λv(f, x) is the local invariant

given in Definition 4.3.2.
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We formulated this result by initially visualising the curves over R. Our strategy

involved compiling a list of invariants Ii in the coefficients of f(x), alongisde an

extensive list of cubics f(x) ∈ R[x]. We computed (−1)ord2λR(f,x), wR(E)wR(JacE′)

and the Hilbert symbols (Ii, Ij)R for each cubic and then, using linear algebra, were

able to find a suitable product of the

(Ii, Ij)R. Taking our list of invariants to

be −1, the coefficients of f(x) and its dis-

criminant was not good enough. To cook

up a more exotic invariant, we fixed cer-

tain values of a and determined for which

b, c the product of Hilbert symbols should

evaluate to −1. When a = 1, such val-

ues are indicated by the shaded region in

Figure 1.1. This pictorial description sug-
Figure 1.1

gested that the line b = 9c would be a good candidate, since the shaded region is

the disjoint union of {b > 9c} ∩ {∆f < 0} and {b < 9c} ∩ {c > 0} which are picked

out by (9c− b,∆f )R and (b− 9c,−c)R respectively. Varying a, it became clear that

the correct generalisation of this line was L = 0 where L := ab− 9c, and so this was

appended to our list. Running the argument described above then returned an error

term which worked over R. Experimentation over non-Archimedean fields showed

that the only correction needed was the Hilbert symbol (2,∆f )v (which is trivial over

R).

As a consequence to this comparison, and using that Theorem 1.3.5 can be

rephrased to describe the parity of the 2∞-Selmer rank (=Theorem 4.5.2), we obtain

the 2-parity conjecture for certain genus 2 curves and for elliptic curves whose 2-

torsion groups are isomorphic as Galois modules.

Theorem 1.3.7 (=Theorems 6.3.2 & 6.3.4). Let K be a number field. The 2-parity

conjecture holds for

• the Jacobian of C : y2 = f(x2) where f(x) ∈ K[x] is a separable cubic such

that f(0) ̸= 0, and
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• E1 if and only if it holds for E2, where E1, E2 are elliptic curves over K such

that E1[2] ∼= E2[2] as GK-modules.

These results allow us to complete the proof of the p-parity conjecture for elliptic

curves over totally real fields.

Theorem 1.3.8 (=Theorem 6.4.1 & Corollary 6.4.2). Let K be a totally real number

field. The 2-parity conjecture holds for elliptic curves over K with complex multi-

plication, and consequently, the p-parity conjecture holds for all elliptic curves over

K.

1.3.2 Hyperelliptic curves y2 = xf(x)

The generality of the local formula given in Theorem 1.3.5 allows us to ask whether

the error term given in Theorem 1.3.6 has a natural generalisation? With this in

mind, we state the following conjecture concerning an error term Hv(f) which we

discuss below.

Conjecture 1.3.9 (=Conjecture 7.2.5). Let K be a number field and X1 : y
2 = f(x),

X0 : w2 = xf(x) for f(x) ∈ K[x] separable, monic, non-constant and such that

f(0) ̸= 0. At each place v of K,

(−1)ord2λv(f,x)Hv(f) = wv(JacX1)wv(JacX0)

where λv(f, x) is the local invariant given in Definition 4.3.2.

When f(x) is linear, Hv(f) = +1. When f(x) = x2 + ax + b, this conjecture

is [17, Theorem 4] and so we set Hv(f) = (a,−b)v(−2a, a2 − 4b)v. When f(x) is a

cubic, we take Hv(f) to be the product of Hilbert symbols described in Theorem

1.3.6.

Now suppose that f(x) = x4 + ax3 + bx2 + cx + d ∈ K[x]. To find a candidate

for Hv(f), we use the strategy employed when f(x) was a cubic. Beginning with a

certain list of invariants, this returns

Hv(f) = (J1,−J2)v(J2,−∆f )v(−d, c)v(−c, J3)v(−J3, J4)v(−J4,∆f )v
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where J1, J2, J3, J4 are as in Notation 7.2.10 and, again, ∆f denotes the discriminant

of f(x). When all entries are non-zero, we prove the conjecture with respect to

this definition of Hv(f) in most cases (namely, when Kv
∼= C, Kv

∼= R and when

Kv/Qp odd, f(x) ∈ OKv [x] and the reduction of xf(x) has at worst two double roots).

By comparing these expressions for Hv(f) when deg f ≤ 4, we’re able to ob-

serve that the entries of the Hilbert symbols all appear as coefficients in a sequence

of polynomials associated to f(x), called the Sturm sequence. In particular, if

P0, P1, . . . , Pdeg f denotes this sequence of polynomials and all of them are non-zero

with Pi(0) non-zero, then writing ci for the lead coefficient of Pi and setting

Hv(f) =

deg f−1∏
i=0

(ci,−ci+1)v(−Pi(0), Pi+1(0))v

uniformly recovers the expressions found in low degree. We’re able to prove Con-

jecture 1.3.9 with respect to this general expression whenever Kv is Archimedean

(=Theorems 7.2.8 & 7.2.9). Unfortunately, it is not clear how the entries of these

Hilbert symbols encode information about the reduction types of the relevant curves,

and so we are unable to provide a general proof when Kv is non-Archimedean.

Corollary 1.3.10 (see Corollary 7.2.7). Let K be a number field and f(x) ∈ K[x]

be separable and completely reducible over K. Taking Hv to be as described above

and assuming Conjecture 1.3.9, the 2-parity conjecture holds for the Jacobian of

C : y2 = f(x).

1.3.3 More general hyperelliptic curves

The approach discussed above for finding an error term Hv(f) involved considering

Conjecture 1.3.9 when Kv
∼= R and then lifting this to the other completions of K.

If instead we initially consider completions Kv/Qp, i.e. we look for invariants

that encode the v-adic distances between the roots of xf(x), then there is an alter-

native way in which we can generalise the error term found in [17, Theorem 4]. This

is discussed in detail in §8.3.

Example 1.3.11. Let K be a number field and f(x) ∈ K[x] be separable, monic,
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have degree ≥ 2 and be such that f(0) ̸= 0. Write {α1, . . . , αn} for the roots of f

and assume that they are all defined over Kv, for v a place of K. Then (assuming

the Hilbert symbol entries are all non-zero),

Hv(f) = Hv(f, x) :=
∏

1≤i<j≤n

(
− (αi + αj),−αiαj

)
v

(
1
2
(αi + αj), (αi − αj)

2
)
v
.

In particular, if f(x) = x2 + ax + b is such a polynomial then this becomes

(a,−b)v(−1
2
a, a2 − 4b)v.

So far, we have considered Theorem 1.3.5 when f2(x) = x. However, we can

drop this assumption and define an error term Hv(f1, f2), analogously to the one

mentioned above, which works in full generality (=Conjecture 8.3.8). When f1, f2

are monic, this conjecture says the following.

Conjecture 1.3.12. Let K be a number field and X1 : y
2 = f1(x), X2 : z

2 = f2(x),

X0 : w
2 = f1(x)f2(x) where f1(x), f2(x) ∈ K[x] are monic and such that f1(x)f2(x)

is separable. At each place v of K for which the error term Hv(f1, f2) given in

Definition 8.3.4 is well-defined,

(−1)ord2λv(f1,f2)(−1,−1)
⌈

(deg f1−1)(deg f2−1)
2

⌉
v Hv(f1, f2) = wv(JacX1)wv(JacX2)wv(JacX0)

where λv(f2, f2) is the local invariant given in Definition 4.3.2.

We prove this conjecture whenever v | ∞, v ∤ 2∞ and the reduction of f1(x)f2(x)

has at worst one double root, and v | 2 and X1, X2, X0 all have good ordinary reduc-

tion with the roots of f1(x)f2(x) satisfying certain conditions (=Theorem 8.3.10).

Assuming this conjecture and the finiteness of the Shafarevich–Tate group, the

parity conjecture for the Jacobian of a hyperelliptic curve whose defining polynomial

is monic and reducible becomes equivalent to the parity conjecture for the product

of two Jacobians of lower genus hyperelliptic curves (=Theorem 8.6.1).

The same error term allows us to formulate similar results concerning Jacobians

of certain hyperelliptic curves whose defining polynomials are irreducible.
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Theorem 1.3.13 (=Theorem 8.2.6). Let K be a number field, K(
√
ξ)/K a quadratic

extension and C : v2 = f0(x)f̄0(x), C0 : y2 = f0(x) where f0(x), f̄0(x) ∈ K(
√
ξ)[x]

are GalK(
√
ξ)/K-conjugate and f0(x)f̄0(x) is separable.

Assuming that X(JacC/K), X(JacC0/K(
√
ξ)) are finite,

rk(JacC/K) + rk(JacC0/K(
√
ξ)) ≡

∑
v place of K

ord2 λv(f0;
√
ξ) mod 2

where λv(f0;
√
ξ) is a local invariant.

For now, we again only state our comparison of the local term λv(f0;
√
ξ) with

local root numbers when f0(x) is monic.

Conjecture 1.3.14 (=Conjecture 8.3.11). Let K be a number field, K(
√
ξ)/K

be a quadratic extension and C : v2 = f0(x)f̄0(x), C0 : y2 = f0(x) where f0(x),

f̄0(x) ∈ K(
√
ξ)[x] are monic, GalK(

√
ξ)/K-conjugate, of degree 2m > 1 and such that

f0(x)f̄0(x) is separable. At each place v of K for which the error term Hv(f1, f2)

given in Definition 8.3.4 is well-defined,

(−1)ord2λv(f0;
√
ξ)(−1,−1)vHv(f0, f̄0) = wv(JacC)

∏
place u | v
of K(

√
ξ)

wu(JacC0)

where λv(f0;
√
ξ) is a local invariant.

We prove this conjecture under the assumption that deg f0 ≥ 4 whenever v | ∞,

v ∤ 2∞ and the reduction of f0(x)f̄0(x) has at worst two double roots, and v | 2

and C0, C both have good ordinary reduction with the roots of f0(x)f̄0(x) satisfying

certain conditions (=Theorem 8.3.12).

Once again, assuming this conjecture and the finiteness of the Shafarevich–Tate

group, the parity conjecture for the Jacobian of a hyperelliptic curve whose defining

polynomial is irreducible, having degree 2m > 1 and admits a factorisation over a

quadratic extension becomes equivalent to the parity conjecture for the Jacobians of

lower genus hyperelliptic curves (=Theorem 8.6.2).
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By combining the global implications of the 2∞-Selmer rank analogues of the

scenarios discussed in this section, we deduce the following.

Theorem 1.3.15 (=Theorem 8.6.3). Assuming Conjectures 8.3.8 and 8.3.11, the

2-parity conjecture holds for the Jacobians of all hyperelliptic curves y2 = f(x) such

that Gal(f) is a 2-group.

We detail in Chapter 8 how this allows us to deduce a result concerning general

semistable hyperelliptic curves.

Corollary 1.3.16 (=Corollary 8.6.4). Let C : y2 = f(x) be a semistable hyperelliptic

curve over a number field K and write R ⊂ K for the set of roots of f(x). Assuming

Conjectures 8.3.8 and 8.3.11, and that #X(JacC/K(R))[p∞] is finite for each prime

p ≤ deg f , the parity conjecture holds for the Jacobian of C over K.

Moreover, using just the cases of the error term conjectures that we are able to

prove, we prove the following theorem which is only conditional on the finiteness of

the Shafarevich–Tate group.

Corollary 1.3.17 (=Corollary 8.6.7). Let K be a number field. Let f(x) ∈ OK [x] be

separable, monic, such that GalK(R)/K is a 2-group and GalK/K preserves a partition

{α1, β1}, . . . , {αn, βn} of R (the roots of f). Let p be a prime of OK and suppose

that the reduction of f(x) modulo p has at worst one double root whenever p ∤ 2, and

that

• (x− αi)(x− βi) ∈ Knr
p [x] for all i,

• ordp(αi − βi) = ordp(4) for all i,

• ordp(αi − αj) = ordp(βi − βj) = ordp(αi − βj) = 0 for all i ̸= j,

whenever p | 2. Write C : y2 = f(x). Assuming that #X(JacC/K(R))[p∞] is finite

for each prime p ≤ deg f , the parity conjecture holds for the Jacobian of C.
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1.4 Structure of thesis

In Chapter 2, we detail the background material that will be assumed throughout

this thesis, beginning with the construction of the Jacobian of a curve and a dis-

cussion of the types of curves that will be of interest. We then state results that

will be used when computing (the Birch and Swinnerton-Dyer) invariants associated

to the Jacobian of a curve. Several such invariants can be computed by studying

the curve over a non-Archimedean local field, therefore we introduce cluster pictures

for hyperelliptic and bihyperelliptic curves and present results which simplify these

computations. We conclude the chapter by giving the standard definitions of Brauer

relations, regulator constants and Hilbert symbols, and by stating relevant results

concerning them.

We discuss a uniform method for constructing isogenies involving Jacobians in

Chapter 3. This motivates Chapter 4, where we explain that an isogeny allows us

to relate the local data present in the Birch and Swinnerton-Dyer conjecture to the

parity of certain ranks. In particular, we derive formulae to compute the parity of

the rank of (i) the Jacobian of a hyperelliptic curve whose defining polynomial is

reducible, from that of lower genus curves and local data, and (ii) an elliptic curve,

again from local data.

The remainder of the thesis focuses on the parity conjecture. In Chapter 5, we

provide a proof for elliptic curves (under new assumptions of the Shafarevich–Tate

group). We continue our study of elliptic curves in Chapter 6, proving that the 2-

parity conjecture holds for elliptic curves with isomorphic 2-torsion and completing

the proof of the p-parity conjecture for elliptic curves over totally real fields. In

Chapter 7, we present a conjecture concerning hyperelliptic curves whose defining

polynomials have a linear factor. We prove this conjecture in several cases and

discuss how, as a consequence, we could deduce the 2-parity conjecture for Jacobians

of hyperelliptic curves whose defining polynomials factor completely. Chapter 8

concludes the thesis by considering hyperelliptic curves. We deduce that the 2-

parity conjecture holds for Jacobians of hyperelliptic curves whose Galois group is

a 2-group and which satisfy certain conditions. We explain how we expect to be



1.5. Notation 26

able to relax these conditions and extend this result to Jacobians of all hyperelliptic

curves (under relevant assumptions on the Shafarevich–Tate group).

1.5 Notation

Throughout this thesis we adhere to the following notation associated to a field K.

K a local field

K the algebraic closure of K

GK the absolute Galois group Gal(K/K)

OK the ring of integers of K

k the residue field, when K/Qp is finite

Knr the maximal unramified extension of K, when K/Qp is finite

FrobK a fixed choice of Frobenius automorphism in GK , when K/Qp is

finite

| · |K , | · |v the unique extension of the the normalised absolute value on a

local field K (resp. Kv) to K (resp. Kv)

Convention. All curves are assumed to be smooth, proper, connected and geomet-

rically connected (unless stated otherwise).

Convention. By X/K : {f1(x1, . . . , xm) = 0, . . . , fn(x1, . . . , xm) = 0}, we mean

that X is the unique smooth projective curve over K birationally equivalent to this

affine curve.

Let X be a curve over K, A an abelian variety over K, and v a place of K (when

K is a number field). The following table records the notation associated to X and

A.

A(K)tors the torsion subgroup of A(K)

Xp(A) HomZp

(
lim−→ Selpn(A),Qp/Zp

)
⊗Qp, the dual p∞-Selmer group

of A for a prime p ∈ Z

rkp(A) the p∞-Selmer rank of A

X(A) the Shafarevich–Tate group of A

Reg(A) the regulator of A

Ω1(A) the K-vector space of regular differentials on A
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nA, nX the number of connected components of A or X when K = R

cv(A), cK(A) the local Tamagawa number of A at v ∤ ∞, or over a finite

extension K/Qp

Cv(A, ω) cv(A) · |ω/ω0|v when v ∤∞, where ω0 is a Néron exterior form

on A;
∫
A(Kv)

|ω| when Kv
∼= R; 2dim(A)

∫
A(Kv)

|ω ∧ ω̄| when

Kv
∼= C; where ω is a basis element of

∧dimAΩ1(A/Kv)

C(A)
∏

v place of K Cv(A, ω) for a basis element ω of
∧dimAΩ1(A)

µv(X), µK(X) the deficiency term of X at v, or over a local field K of char-

acteristic 0, which encodes whether X is deficient (see Defi-

nition 2.3.9)

wv(A), wK(A) the local root number of A at v, or over a local field K of

characteristic 0

w(A)
∏

v place of K wv(A), the global root number of A

ΥX the dual graph of the special fibre of the minimal regular

model of X over OKnr when K/Qp is finite and X/K is

semistable (see [39, Chapter 10] for more details)

Finally, we provide a directory of other notation/terminology that we will use.

the divisor DS Notation 2.1.11

a Brauer relation Definition 2.5.1

the regulator constant CΘ Definition 2.6.1

the local terms λK(f1, f2), λv(f1, f2) Definition 4.3.2

the local terms λK(E), λv(E) Definition 4.4.2

the local terms λK(f0;
√
ξ), λv(f0;

√
ξ) Definition 8.2.5

C2×C2 and D8-hyperelliptic curves Definition 8.0.1

the Hilbert symbols H1(T ), H2(T ) Definition 8.3.3

the error term HK(f, g) Definition 8.3.4



Chapter 2

Preliminaries

2.1 Curves and their Jacobians

2.1.1 The Jacobian of a curve

Elliptic curves are objects of interest to number theorists due to their natural group

structure. An abelian variety, called the Jacobian, can be constructed from a curve

of arbitrary genus. We describe their points and group structure here and refer the

reader to [43] for further details.

Let X be a curve over a field K.

Definition 2.1.1. A divisor D on X is a formal sum

D =
∑

P∈X(K)

nP [P ]

where nP ∈ Z and nP = 0 for all but finitely many P ∈ X(K). The degree of D

is
∑

P nP . The set of all divisors on X is written Div(X) and those of degree 0 are

denoted by Div0(X).

We note that Div(X) forms a group under addition, of which Div0(X) is a

subgroup.

Definition 2.1.2. A divisor D is called principal if there exists a non-zero rational
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function on X, f ∈ K(X)×, such that

D =
∑

P∈X(K)

ordP (f)[P ]

where ordP (f) denotes the order of vanishing of f at P . The set of principal divisors

is written Prin(X).

Further, Prin(X) is a subgroup of Div0(X) since any non-zero rational function

has as many zeroes as it has poles (counting multiplicities).

Definition 2.1.3. The Jacobian of a curve X over a field K is

JacX = Pic0(X) := Div0(X)/Prin(X).

The points on JacX are classes of divisors of degree 0 on X. Moreover, since

Div0(X) carries an action of the absolute Galois group GK , the points in JacX(K)

are classes of divisors of degree 0 that are invariant under this action.

Theorem 2.1.4 ([43], Theorems 1.1 & 6.6, Proposition 2.1). The Jacobian of a curve

X of genus g over a field K is a principally polarised abelian variety of dimension g.

We will sometimes need to consider the Jacobian of a curve which is not con-

nected, in which case we refer the reader to [23, §A.6] for more details.

Remark 2.1.5. The Jacobian of a genus 0 curve is 0. The Jacobian of a genus 1

curve is an elliptic curve.

Lemma 2.1.6 ([11], §4). Let K be a field of characteristic not equal to 2 or 3. Let

f(x) = ax4 + bx3 + cx2 + dx+ e ∈ K[x] and C : y2 = f(x), then

JacC : Y 2 = X3 − 27IX − 27J,

where I = 12ae− 3bd+ c2 and J = 72ace+ 9bcd− 27ad2 − 27eb2 − 2c3.
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Remark 2.1.7. Suppose that f(x) = c(x−α1)(x−α2)(x−α3)(x−α4) for c ∈ K×,

α1, α2, α3, α4 ∈ K. Then JacC : Y 2 = (X − r1)(X − r2)(X − r3) where

r1 = 3c(α1α2 − 2α1α3 + α2α3 + α1α4 − 2α2α4 + α3α4),

r2 = 3c(α1α2 + α1α3 − 2α2α3 − 2α1α4 + α2α4 + α3α4),

r3 = − 3c(2α1α2 − α1α3 − α2α3 − α1α4 − α2α4 + 2α3α4).

In particular, r2 − r1 = 9c(α1 − α2)(α3 − α4), r1 − r3 = 9c(α2 − α3)(α1 − α4) and

r2 − r3 = 9c(α1 − α3)(α2 − α4).

It will sometimes be necessary to study Jacobians of curves over the reals. When

doing this, we will make use of the following lemma.

Lemma 2.1.8 ([29], Propositions 3.2 & 3.3). Let X be a curve of genus g over R.

The number of connected components of JacX(R) is

nJacX/R =


2nX/R−1 if nX/R > 0,

1 if nX/R = 0 and g is even,

2 if nX/R = 0 and g is odd,

where nX/R denotes the number of connected components of X(R).

2.1.2 Induced homomorphisms between Jacobians

Given a non-constant morphism π : X → Y of curves defined over a field K, we have

an induced K-homomorphism π∗ : JacX → JacY , given by

π∗ :
∑

P∈X(K)

nP [P ] 7−→
∑

P∈X(K)

nP [π(P )]

(on the level of divisors).

Additionally, there is an induced K-homomorphism in the reverse direction
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π∗ : JacY → JacX , given by

π∗ :
∑

Q∈Y (K)

nQ[Q] 7−→
∑

Q∈Y (K)

nQ

( ∑
P∈π−1(Q)

eπ(P )[P ]

)

(on the level of divisors), where eπ(P ) denotes the ramification degree of π at P .

Denote by λX and λY the canonical principal polarisations on JacX and JacY .

Lemma 2.1.9 ([23], Lemma A.17). We have that π∗ = λ−1
X ◦ π∨

∗ ◦ λY , where π∨
∗

denotes the dual of π∗.

2.1.3 Hyperelliptic curves

Let K be a field. By a hyperelliptic curve C over a field K, we mean a curve defined

over K of genus g ≥ 2 which admits a finite separable morphism C → P1
K of degree

2. When the characteristic of K is not equal to 2, we can always find a separable

f(x) ∈ K[x] of degree 2g + 1 or 2g + 2 such that

C : y2 = f(x),

i.e. C is the projective curve given by glueing the pair of affine patches

Ux : y2 = f(x) and Ut : v
2 = t2g+2f

(
1
t

)
along x = 1

t
and y = v

tg+1 .

By the points at infinity on C we mean the points of C\Ux, i.e. the points of Ut

with t = 0. If deg f = 2g+1 there is a unique such point P∞ = (0, 0) and if deg f =

2g+2 there are two distinct such points P∞ = (0,
√
cf ) and ι(P∞) = (0,−√cf ) (here

cf is the lead coefficient of f and ι denotes the hyperelliptic involution).

Remark 2.1.10. All curves of genus 2 are hyperelliptic [7, Chapter 1, §1].
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2.1.4 The Jacobian of a genus 2 curve

Let C be a curve of genus 2 defined over a field K of characteristic not equal to 2.

Since such curves are hyperelliptic, we can write

C : y2 = f(x)

where f(x) ∈ K[x] is a polynomial of degree 6 with no repeated roots. We describe

the addition law on JacC , as given in [7, Chapter 2].

A point P ∈ JacC(K) can be given as a divisor on C of the form

P = [P1, P2] := P1 + P2 − P∞ − ι(P∞)

for some P1, P2 ∈ C(K).

Let [P1, P2], [Q1, Q2] ∈ JacC(K). There exists a cubic polynomial g(x) ∈ K[x]

such that P1, P2, Q1, Q2 are points on y = g(x). The principal divisor on C arising

from the function y − g(x) is

P1 + P2 +Q1 +Q2 + S1 + S2 − 3P∞ − 3ι(P∞) = 0 ∈ JacC(K)

where S1, S2 are the additional intersection points of C with y = g(x).

Therefore,

[P1, P2] + [Q1, Q2] = − [S1, S2]

and so letting R1 = ι(S1), R2 = ι(S2) and

noting that [R1, S1] = [R2, S2] = 0 gives

[P1, P2] + [Q1, Q2] = [R1, R2].
Figure 2.1: Addition on the Jacobian of

a genus 2 curve

2.1.5 The Jacobian of a hyperelliptic curve

Now let C : y2 = f(x) be a hyperelliptic curve of genus g defined over a field K of

characteristic not equal to 2. Roughly speaking, points in JacC(K) look like g-tuples
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of points in C(K). However, a geometric addition law is harder to describe.

We will only need to understand the 2-torsion points of the Jacobians of such

curves.

Notation 2.1.11. Let S ⊆ R be an even sized subset of the roots of f . Write

DS :=
∑
r∈S

(r, 0)− #S
2

(
(∞) + ι(∞)

)
∈ Div0(C)

where ∞ is any choice of point at infinity on C and ι denotes the hyperelliptic

involution.

Lemma 2.1.12. The (class of the) divisor DS belongs to JacC [2] and DS, D′
S are

divisors in the same class precisely when S = S ′ or when deg f is even and S ′ =

R− S.

Proof. See [10, Lemma 2.1].

This lemma describes all of the 2-torsion points on Jacobians of hyperelliptic

curves.

2.1.6 Bihyperelliptic curves

Let K be a field of characteristic not equal to 2. A bihyperelliptic curve over K has

an affine model B : {y2 = f1(x), z
2 = f2(x)} where f1(x), f2(x) ∈ K[x] are such

that f1(x)f2(x) has no repeated roots. Sometimes we call B the bihyperelliptic curve

arising from the hyperelliptic curves C1 : y
2 = f1(x), C2 : z

2 = f2(x) of genus g1, g2

respectively. More explicitly, B is given by glueing

Ux :

y
2 = f1(x)

z2 = f2(x)

and Ut :

v
2 = t2g1+2f1

(
1
t

)
u2 = t2g1+2f2

(
1
t

)
along x = 1

t
, y = v

tg1+1 , z = u
tg2+1 when deg f1 deg f2 is even, and

Ux :

y
2 = f1(x)

z2 = f2(x)

and Ut :

v
2 = t2g1+2f1

(
1
t

)
u2 = t2(g1+g2)+2f1

(
1
t

)
f2
(
1
t

)



2.1. Curves and their Jacobians 34

along x = 1
t
, y = v

tg1+1 , z = u
tg2v

when deg f1 deg f2 is odd.

By the points at infinity on B we mean the points of B\Ux, i.e. the points on

Ut with t = 0. If both deg f1, deg f2 are even then there are 4 such points, otherwise

there are just 2.

2.1.7 Quotient curves

Let X be a curve over a field K and let G be a finite group of K-automorphisms of

X.

By the quotient curve of X by G we mean the algebraic curve XG obtained by

identifying points of X that lie in the same G-orbit (equations defining XG can be

constructed from the equations defining X and the automorphisms in G).

Since there is an equivalence between the category of regular curves over K with

non-constant morphisms and the category of finitely generated field extensions of K

with transcendence degree one (see [62, Tag 0BY1]), the quotient curve XG is the

curve with function field K(X)G.

Example 2.1.13. Let K be a field of characteristic not equal to 2 and let

X : {y2 = f1(x), z
2 = f2(x)} be a bihyperelliptic curve over K.

Consider the K-automorphisms of X given by

τ1 : (x, y, z) 7→ (x, y,−z) and τ2 : (x, y, z) 7→ (x,−y, z).

These give rise to the quotient curves

X⟨τ1⟩ : y
2 = f1(x), X⟨τ2⟩ : z

2 = f2(x),

X⟨τ1τ2⟩ : (yz)
2 = f1(x)f2(x), X⟨τ1,τ2⟩ = P1 (with parameter x)

with corresponding quotient maps

π1 : X → X⟨τ1⟩

(x, y, z) 7→ (x, y),

π2 : X → X⟨τ2⟩

(x, y, z) 7→ (x, z),

π0 : X → X⟨τ1τ2⟩

(x, y, z) 7→ (x, yz).

The following result concerning the K-points on Jacobians of quotient curves
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will be used in Chapter 4.

Lemma 2.1.14 ([23], Theorem 1.3). Let X be a curve over a number field K. Let

H be a finite group of K-automorphisms of X. Then,

(JacX(K)⊗Z Q)H = JacXH
(K)⊗Z Q.

2.2 Weil restriction of abelian varieties

Let K be a field, K(
√
d)/K be a quadratic extension and A an abelian variety

over K(
√
d). The Weil restriction of scalars of A from K(

√
d) to K, denoted

ResK(
√
d)/KA, is an abelian variety over K of dimension 2 dimA. It is discussed

in [47, §3].

When viewed as an abelian variety over K(
√
d), we have that

ResK(
√
d)/KA

∼= A× A. (2.1)

In particular,

ResK(
√
d)/KA(K) =

{
(P, P ) ∈ A

(
K(
√
d)
)
× A

(
K(
√
d)
)}
,

because if (P,Q) ∈ ResK(
√
d)/KA(K) and σ ∈ GK , then σ(P,Q) = (σ(P ), σ(Q))

when σ(
√
d) =

√
d and σ(P,Q) = (σ(Q), σ(P )) otherwise.

Now let K be a number field and v be a place of K. If v splits in K(
√
d), then

viewed as an abelian variety over Kv we have the same isomorphism as detailed in

(2.1). If instead there is a unique place w of K(
√
d) above v, then viewed as an

abelian variety over Kv we have that

ResK(
√
d)/KA

∼= ResK(
√
d)w/Kv

A.
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2.3 Birch and Swinnerton-Dyer invariants

We recall the statement of the Birch and Swinnerton-Dyer conjecture for principally

polarised abelian varieties.

Conjecture 2.3.1 (Birch and Swinnerton-Dyer [4, 5], Tate [66]). Let A be a princi-

pally polarised abelian variety over a number field K of discriminant ∆K. Assuming

that L(A, s) has an analytic continuation to C,

(i) rk(A) = ords=1L(A, s),

(ii) if #X(A) is finite, then the leading term in the Taylor expansion of L(A, s) at

s = 1 is

BSD(A) :=
#X(A)Reg(A)C(A)

#A(K)2tors
√
|∆K |

dimA
.

We will be interested in computing the invariants appearing here, along with

the root number which appears in the parity conjecture, when A is the Jacobian of a

curve. In several instances, this data can be determined from the underlying curve.

2.3.1 Heights

The following result will be used when we compute regulators for Jacobians of quo-

tient curves.

Lemma 2.3.2 (To appear in [46]). Let X be a curve over a number field K. Let

H be a finite group of K-automorphisms of X and πH : X → XH the quotient map.

For each P , Q ∈ JacXH
(K),

〈
(πH)

∗P, (πH)
∗Q
〉

= #H
〈
P,Q

〉
H

where ⟨, ⟩ and ⟨, ⟩H denote the Néron–Tate height pairings on JacX(K) and JacXH
(K)

respectively.

2.3.2 Tamagawa numbers

At various points in this thesis, we will need to calculate Tamagawa numbers for

Jacobians of curves. We will often do this via the following lemma.
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Theorem 2.3.3 ([22], Lemma 2.22 & Remark 2.23). Let K be a non-Archimedean lo-

cal field of characteristic 0 with residue field k. For a semistable curve C/K, cK(JacC)

is given by the size of the Gk-invariants of the cokernel of

H1(ΥC ,Z)→ Hom(H1(ΥC ,Z),Z), ℓ 7→ ⟨ℓ, ·⟩.

2.3.3 Root numbers

Root numbers of abelian varieties over Archimedean fields are particularly easy to

describe.

Lemma 2.3.4 ([55], Proposition 1 or [57], Lemma 2.1). Let A be an abelian variety

over an Archimedean local field K. Then,

wK(A) = (−1)dimA.

When computing root numbers over non-Archimedean fields for Jacobians of

semistable curves we can again turn our attention to the dual graph.

Theorem 2.3.5 ([22], Theorem 2.20). Let K be a non-Archimedean local field of

characteristic 0 with residue field k. For a semistable curve C/K,

wK(JacC) = (−1)a

where a is the multiplicity of the trivial representation of Gk in the homology of the

dual graph H1(ΥC ,Q).

Theorem 2.3.6 ([12]). Let K/Qp be a finite extension and let E be a semistable

elliptic curve over K. Then wK(E) = −1 precisely when E has split multiplicative

reduction.

2.3.4 Deficiency and the Shafarevich–Tate group

We conclude our discussion of Birch and Swinnerton-Dyer invariants for Jacobians of

general curves by describing how we are able to control the size of the Shafarevich–
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Tate group up to squares. This is achieved by studying the local arithmetic of the

underlying curve.

In the 1960s, when considering elliptic curves, Cassels proved the following.

Theorem 2.3.7 (Cassels [6]). Let E be an elliptic curve defined over a number field

K. Assuming that #X(E) is finite, it is a square.

Unfortunately, the same does not hold upon replacing E with a general abelian

variety. Instead, in the case of principally polarised abelian varieties, we have the

following.

Theorem 2.3.8 (Poonen–Stoll [53], Theoerem 8). Let A be a principally polarised

abelian variety over a number field K. Write X0(A) for the quotient of X(A) by

its maximal divisible subgroup and let p ∈ Z be a prime. Then, #X0(A)[p
∞] is a

square when p ̸= 2, and a square or twice a square otherwise.

Moreover, when A is the Jacobian of a curve, we can explicitly describe

#X0(A)[2
∞] up to squares.

Definition 2.3.9. Let X be a curve of genus g over a local field K. We say that X

is deficient if it has no K-rational divisor of degree g−1 and we define the deficiency

term by

µK(X) =

2 if X is deficient,

1 otherwise.

When X is a curve over a number field K, we say that X is deficient at a place

v of K if it is deficient over Kv and write µv(X) for the deficiency term.

Example 2.3.10. Let X/Q : y2 = (x2 − 6)(x4 + 1) be a genus 2 curve. Since

(
√
6, 0) ∈ X(Q5) gives rise to a degree 1 divisor, X is not deficient over Q5 and

µ5(X) = 1.

Theorem 2.3.11 (Poonen–Stoll [53], Theorem 8 & Corollary 12). Let X be a curve

over a number field K. Write X0(JacX) for the quotient of X(JacX) by its maximal
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divisible subgroup. Then,

#X0(JacX)[2
∞] ≡

∏
v place of K

µv(X) mod Q×2.

There is currently no analogue of this result for general principally polarised

abelian varieties.

Remark 2.3.12. If X has genus 0, then JacX = 0 and so X(JacX) = 1 ⇒∏
v µv(X) = □. In particular, X is deficient at an even number of places of K.

Remark 2.3.13. A genus 1 curve E over a local field K is never deficient and so we

recover Cassels’ result on elliptic curves.

We now make some further comments regarding deficiency over Archimedean

local fields.

Remark 2.3.14. Curves over C are never deficient.

Lemma 2.3.15. A curve X of genus g over R is deficient if and only if g is even

and X(R) = ∅.

Proof. Any R-rational divisor on X looks like

∑
P∈X(C)\X(R)

nP ([P ] + [P̄ ]) +
∑

P∈X(R)

nP [P ].

From this, it is clear that no such divisor of degree g − 1 exists precisely when g is

even and X(R) = ∅.

Remark 2.3.16. We will use this characterisation of deficiency over R for hyperel-

liptic and bihyperelliptic curves. With this is mind, we note that

• y2 = f(x) has even genus if and only if deg f ≡ 1 or 2 mod 4,

• {y2 = f1(x), z
2 = f2(x)} has even genus if and only if both deg f1, deg f2 are

odd (since, by Theorem 3.3.2, the genus of this bihyperelliptic curve is the sum

of the genera of y2 = f1(x), z2 = f2(x), w2 = f1(x)f2(x)).
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2.4 Cluster pictures for hyperelliptic and bihyperel-

liptic curves

The central theme of this thesis involves using the arithmetic of curves over local

fields (R, C, or finite extensions of Qp) to make global assertions, more specifically,

concerning the ranks of Jacobians.

In the setting of semistable hyperelliptic curves, the machinery of cluster pictures

developed in [22] offers a convenient way to compute this local data. Similarly, the

local data for semistable bihyperelliptic curves can be computed from their chromatic

cluster pictures as in [27].

Here we recall the key definitions and results of these theories which are required

for this thesis.

2.4.1 Clusters

Definition 2.4.1. Let K/Qp be a finite extension for p ̸= 2 and let C : y2 = f(x)

be a hyperelliptic curve of genus g over K, i.e. deg f = 2g + 1 or 2g + 2, with R

denoting the set of roots of f . A cluster is a non-empty subset s ⊆ R of the form

s = D ∩ R for some disc D = {x ∈ K : v(x− z) ≥ d} and some z ∈ K, d ∈ Q. Any

such z = zs is called a centre of s. If |s| > 1, we say that s is a proper cluster and

we define its depth to be

ds = min
r,r′∈s

v(r − r′).

The cluster picture Σ of C is the collection of all clusters of the roots of f .

The cluster picture of C is a purely combinatorial object which allows us to

visualise how close the roots of f are K-adically. We draw cluster pictures by drawing

roots of f as and drawing ovals around roots in a proper cluster.

Example 2.4.2. Let C/Q7 : y
2 = (x2+73)((x+1)2− 72)(x− 1)(x− 2). The cluster

picture for C is

3/2 1
0

where, from left to right, the roots are
√
−73, −

√
−73, 6, −8, 1 and 2.
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In order to work with clusters, we introduce some additional terminology.

Definition 2.4.3. Let Σ be a cluster picture and s ∈ Σ a cluster. If s′ ⊊ s is a

maximal subcluster of s then we say that s′ is a child of s and s is a parent of s′,

written s′ < s and s = P (s′) respectively. The relative depth of s is δs = ds − dP (s).

Traditionally, we decorate the bottom right corner of a cluster with its relative

depth when drawing cluster pictures.

Example 2.4.4. Let C/Q7 : y2 = (x2 + 73)(x2 − 72)(x − 1)(x − 2). The cluster

picture for C is

1/2
1 0

where, from left to right, the roots are
√
−73, −

√
−73, 7, −7, 1 and 2.

Definition 2.4.5. A cluster s is even (odd respectively) if |s| is even (odd respec-

tively) and übereven if it’s an even cluster with only even children. Furthermore, s is

a twin if |s| = 2 and a cotwin if it is non-übereven with a child of size 2g. A cluster

s is principal if |s| ≥ 3 except if either s = R is even with exactly two children, or if

s = R is a cotwin.

The Galois group GK, in particular a choice of Frobenius element in GK, acts

on clusters via its action on the roots of f . This action preserves depths and con-

tainments of clusters. When drawing cluster pictures, we link clusters that are in

the same Frobenius orbit by lines; for instance, .

We provide the following definition in more generality than is necessary for this

thesis in the interest of completeness. The construction simplifies in most cases we

consider (see Remark 2.4.7).

Definition 2.4.6. For a cluster s, we write s∗ for the smallest cluster s∗ ⊇ s whose

parent is not übereven (and s∗ = R if no such cluster exists). If s is a cotwin, we

write s∗ for its child of size 2g.

For an even cluster s we fix a choice of θs =
√
cf
∏

r/∈s(zs − r), where cf is the

lead coefficient of f and zs is a centre for s. If s is either even or a cotwin, we define
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ϵs : GK → {±1} by

ϵs(σ) ≡
σ(θs∗)

θ(σs)∗
mod m,

where mod m denotes reduction to the residue field of K.

For all other clusters s, we set ϵs(σ) = 0.

We decorate the top right corner of an even cluster s satisfying s∗ = s with a +

or − to indicate the value of ϵs(FrobK).

Remark 2.4.7. Let C : y2 = f(x) and assume that R is not übereven. Whenever

t < R is a twin,

ϵt(σ) ≡
σ(θt)

θσt
.

Furthermore, if t = {r, s} is fixed by σ ∈ GK, then

ϵt(σ) = + 1 ⇐⇒ cf
f(x)

(x− r)(x− s)

∣∣∣
x= 1

2
(r+s)

= □.

2.4.2 Computing data for semistable hyperelliptic curves

When a hyperelliptic curve is semistable, many of its local arithmetic invariants

can be computed from its cluster picture. The following result classifies semistable

hyperelliptic curves.

Theorem 2.4.8 ([22], Theorem 7.1). Let K/Qp be a finite extension for p ̸= 2. Let

C : y2 = f(x) be a semistable hyperelliptic curve over K of genus ≥ 2 and write

R ⊂ K for the set of roots of f . Then, C/K has semistable reduction if and only if

(i) the extension K(R)/K has ramification degree at most 2,

(ii) every proper cluster of ΣC is IK-invariant, and

(iii) every principal cluster s ∈ ΣC has ds ∈ Z and

νs := v(cf ) +
∑
r∈R

dr∧s ∈ 2Z

where r ∧ s denotes the smallest cluster containing both r and s.
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When the cluster picture is particularly simple, the following results provide

convenient methods for computing local data. These are special cases of [2, Theorem

10.1], [2, Theorem 13.2 & Proposition 13.3] and [22, Theorem 12.4] respectively

Theorem 2.4.9. Let K/Qp be a finite extension for p ̸= 2 and let C be a hyperelliptic

curve over K of genus ≥ 2. Assume that all proper clusters of ΣC are twins or R,

and that R is not übereven. For each twin t > R, write

ct =

2δt if ϵt(Frobqt
K) = +1

gcd(2δt, 2) if ϵt(Frobqt
K) = −1

where qt is the size of the FrobK-orbit of t. The Tamagawa number of JacC is then

cK(JacC) =
∏
t

ct

where the product is taken over representatives of FrobK-orbits of twins.

Theorem 2.4.10. Let K/Qp be a finite extension for p ̸= 2 and C : y2 = f(x) be a

semistable hyperelliptic curve over K of genus ≥ 2. Assume that all proper clusters

of ΣC are twins or R, and that R is not übereven. Then

wK(JacC) = (−1)#{t<R/GK : ϵt(Frob
qt
K )=+1}

where qt is the size of the FrobK-orbit of t.

Theorem 2.4.11. Let K/Qp be a finite extension for p ̸= 2 and let C be a semistable

hyperelliptic curve over K of genus g ≥ 2. Assume that all proper clusters of ΣC are

twins or R, and that R is not übereven. Then C/K is not deficient.

2.4.3 Chromatic clusters

When studying bihyperelliptic curves we have an analogue of the cluster picture

defined in §2.4.1.

Definition 2.4.12. Let K/Qp be a finite extension for p ̸= 2 and let

B : {y2 = f1(x), z
2 = f2(x)} be a bihyperelliptic curve over K. The chromatic cluster
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picture Σchr ofB is the cluster picture Σ of the hyperelliptic curve C : w2 = f1(x)f2(x)

with a colouring function Σ→ {red, blue, black, purple}, assigning a colour to each

cluster according to the rules:

(i) clusters of size 1 consisting of a root of f1 (f2 respectively) are coloured red

(blue respectively),

(ii) clusters with an odd number of blue children and an even number of red chil-

dren (an odd number of red children and an even number of blue children

respectively) are coloured blue (red respectively),

(iii) clusters with an odd number of blue children and an odd number of red children

are coloured purple,

(iv) all other clusters are coloured black,

where purple children are counted as both red and blue. Blue, red and purple clus-

ters are called chromatic clusters. Clusters with purple children, or clusters with

both blue and red children have polychromatic children, whereas clusters whose only

chromatic children are red or blue have monochromatic children.

Example 2.4.13. Let B/Q7 : {y2 = (x2 + 73)(x− 6), z2 = (x + 8)(x− 1)(x− 2)}.

The chromatic cluster picture of B is

3/2 1
0

where, from left to right, the roots are
√
−73, −

√
−73, 6, −8, 1 and 2.

Note that, without the colouring, this is the cluster picture of C given in Example

2.4.2.

2.4.4 Computing data for semistable bihyperelliptic curves

In order to calculate Tamagawa numbers and root numbers of the Jacobian of a

semistable bihyperelliptic curve via Theorems 2.3.3 and 2.3.5, we need to be able to
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construct its dual graph. To do this we will use the following special case of [27,

Theorems 3.1 & 3.3].

Theorem 2.4.14. Let K/Qp be a finite extension for p ̸= 2 and let B be the bihyper-

elliptic curve arising from distinct hyperelliptic curves C1, C2 over K such that B is

semistable. Let Σchr be the chromatic cluster picture of B and assume that δR ∈ Z,

R is not übereven and that all proper clusters are twins or R. The dual graph, ΥB,

consists of one vertex v when R has polychromatic children, and two vertices v+,

v− when R has monochromatic children. These vertices are connected by chains as

follows

Name From To Length Condition
Lt v+ v− δt t chromatic twin

L+
t v+ vς(t,R),−ς(t,R)

2δt t black twin
L−
t v− v−ς(t,R),ς(t,R)

where ς(t,R) = −1 if t, R have monochromatic children of opposite colours and

1 otherwise (and v±,+ = v±,− = v± if R has monochromatic red children; v+,± =

v−,± = v± if R has monochromatic blue children; and v+ = v− = v if R has

polychromatic children).

Moreover, Frobenius acts on ΥB by

(i) FrobK(v
±) = v

±ϵRCi
,Ci

(FrobK) when R has monochromatic children and RCi
is

übereven,

(ii) FrobK(Lt) = ϵt,BLFrobK(t) for each chromatic twin t, and

(iii) FrobK(L
±
t ) = ϵt,Ci

L
±ϵt,Cj

FrobK(t) where {i, j} = {1, 2} if t has red children and {i, j} =

{2, 1} if t has blue children, for each black twin t

(where −L is the same loop but inverted).

Remark 2.4.15. To compute ϵt,C1 when t has blue children (or ϵt,C2 when t has red

children) we view t as a K-adic disk containing no roots.
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Remark 2.4.16. To determine whether or not a bihyperelliptic curve B is

semistable, we use Corollary 3.3.4 (which phrases this in terms of the hyperellip-

tic curves B projects onto) and Theorem 2.4.8.

Example 2.4.17. Let B/Q7 be as in Example 2.4.13, arising from the hyperelliptic

curves C1/Q7 : y
2 = (x2 + 73)(x− 6), C2/Q7 : z

2 = (x+ 8)(x− 1)(x− 2). Then

Σchr
B =

+

3/2

−
1

0
, ΣC1 =

+

3/2
0
, ΣC2 =

0
.

By Theorem 2.4.14, the dual graph ΥB has one vertex with one loop

of length 1 (inverted by Frob) and two loops of length 3 (fixed by

Frob).
1

3

3

2.5 Brauer relations

Isogenies between Jacobians of curves serve as crucial ingredients in many construc-

tions presented in this thesis. A rich source of such maps are representation theoretic

objects called ‘Brauer relations’.

Definition 2.5.1. Let G be a finite group and H a set of representatives of the

subgroups of G up to conjugacy. We call an expression

∑
i

Hi −
∑
j

H ′
j (Hi, H

′
j ∈ H)

a Brauer relation for G if
⊕

i C[G/Hi] ∼=
⊕

j C[G/H ′
j] (or equivalently, the character∑

i Ind
G
Hi
1 −

∑
j Ind

G
H′

j
1 = 0).

We recall that the induced character of 1 has a particularly nice description.

Lemma 2.5.2. Let G be a finite group with subgroup H. For g ∈ G,

IndG
H1(g) = #fixG/H(g)

i.e. the number of left cosets G/H fixed under left multiplication by g.
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Example 2.5.3. Let G = C2 × C2 := ⟨τ1, τ2⟩ and write χ+,+, χ+,−, χ−,+, χ−,−

for the irreducible representations, where the subscripts denote the images of τ1, τ2

respectively.

The permutation representations of G are displayed in the table below.

H C[G/H]

1 χ+,+ ⊕ χ+,− ⊕ χ−,+ ⊕ χ−,−

⟨τ1⟩ χ+,+ ⊕ χ+,−

⟨τ2⟩ χ+,+ ⊕ χ−,+

⟨τ1τ2⟩ χ+,+ ⊕ χ−,−

⟨τ1, τ2⟩ χ+,+

From this, we see that G has a unique Brauer relation (up to scaling by Z),

given by:

⟨τ1⟩ + ⟨τ2⟩ + ⟨τ1τ2⟩ − 2(C2×C2) − 1.

Example 2.5.4. Let G = S3 := ⟨σ, τ⟩, where σ3 = τ 2 = 1. Write 1, ϵ, ρ for the

irreducible representations of S3, where ϵ has dimension 1 and ρ has dimension 2.

The permutation representations of G are displayed in the table below.

H C[G/H]

1 1 ⊕ ϵ ⊕ ρ⊕2

⟨τ⟩ 1 ⊕ ρ

⟨σ⟩ 1 ⊕ ϵ

⟨σ, τ⟩ 1

From this, we see that G has a unique Brauer relation (up to scaling by Z),

given by:

2⟨τ⟩ + ⟨σ⟩ − 2S3 − 1.

Example 2.5.5. Let G = D8 := ⟨σ, τ⟩, where σ4 = τ 2 = 1 and στσ = τ−1.

It can be checked that G has the following 3 (linearly independent) Brauer
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relations:
⟨τ⟩ + ⟨σ2, στ⟩ − ⟨σ2, τ⟩ − ⟨τσ⟩,

⟨σ⟩ + ⟨σ2, στ⟩ + ⟨σ2, τ⟩ − ⟨σ2⟩ − 2D8,

⟨σ2⟩ + 2⟨τσ⟩ − 2⟨σ2, στ⟩ − 1.

2.6 Regulator constants

Here we introduce the concept of regulator constants, an extended discussion of

which can be found in [18]. We record some of their key properties. This theory will

be implemented in Chapter 4, where we will extract information about ranks from

regulators.

Definition 2.6.1. Let K be a field of characteristic 0. Let G be a finite group,

ρ a self-dual KG-representation and Θ =
∑

iHi −
∑
H ′

j a Brauer relation for G.

Fix a G-invariant, non-degenerate, K-bilinear pairing ⟨, ⟩ on ρ with values in some

extension L of K and define the regulator constant to be

CΘ(ρ) =

∏
i det

(
1

#Hi

〈
,
〉
| ρHi

)
∏

j det
(

1
#H′

j

〈
,
〉
| ρH′

j

) ∈ K×/K×2,

where (for H ≤ G) ρH is the space of H-invariant vectors of ρ and det
(

1
#H
⟨, ⟩ | V

)
is the determinant of the matrix with (i, j)-th entry 1

#H
⟨ei, ej⟩ for any K-basis {ei}

of V .

That CΘ(ρ) lies in K×/K×2, rather than L×/K×2, is true since the pairing can

be chosen to be K-valued.

Remark 2.6.2. It is important to note that that CΘ(ρ) is well-defined, non-zero and

independent of the choice of pairing ⟨, ⟩ (see [18, Lemma 2.15, Theorem 2.17]).

Example 2.6.3. Let G = C2×C2 := ⟨τ1, τ2⟩ and Θ = ⟨τ1⟩+ ⟨τ2⟩+ ⟨τ1τ2⟩ − 2G− 1.

Write χ+,+, χ+,−, χ−,+, χ−,− for the irreducible characters, where the subscripts

denote the images of τ1, τ2 respectively.
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We note that χH
+,+ = C for each H ≤ G, therefore

CΘ(χ+,+) =
(1
2
)3

1 · (1
4
)2

= 2.

For the other characters, χH = C for H ∈ {1, H ′} (where H ′ has order 2) and 0

otherwise, and so

CΘ(χ+,−) = CΘ(χ−,+) = CΘ(χ−,−) =
12 · 1

2

13
= 2 mod Q×2.

Lemma 2.6.4 ([18], Corollary 2.18). Let K be a field of characteristic 0. Let G be

a finite group, ρ1, ρ2 be self-dual KG-representations and Θ be a Brauer relation for

G. Then,

CΘ(ρ1 ⊕ ρ2) = CΘ(ρ1)CΘ(ρ2).

2.7 Hilbert symbols

Here we remind the reader of the definition of the Hilbert symbol and of its global

behaviour. More details can be found in [45].

Definition 2.7.1. Let K be a local field of characteristic 0 and let a, b ∈ K×. The

Hilbert symbol of a, b relative to K is

(a, b)K =

+1 z2 − ax2 − by2 = 0 has a solution (z, x, y) ̸= (0, 0, 0) in K3,

−1 otherwise.

If K = Kv where K is a number field and v is a place of K, we write (a, b)v.

Remark 2.7.2. The Hilbert symbol is symmetric, bimultiplicative and non-

degenerate [45, Theorem 4.4].

Theorem 2.7.3 (E.g. [45], 5.4). Let K be a number field and a, b ∈ K×. Then

∏
v place of K

(a, b)v = + 1.
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We now record some identities concerning Hilbert symbols which simplify their

computation.

Lemma 2.7.4. (i) If K ∼= C then (a, b)K = +1.

(ii) If K ∼= R then (a, b)K = −1 if and only if a, b < 0.

Lemma 2.7.5 ([24], Lemma 9.8 and [1]). Let K be a local field of characteristic 0

and let a, b ∈ K×. Then

(i) (a, b)K = (a+ b,−ab)K whenever a+ b ∈ K×, and

(ii) (a, b)K = (a0, b)L whenever a = NL/Ka0 for a0 ∈ L× and L/K a finite extension.

Lemma 2.7.6 ([24], Lemma 10.1). Let K/Q2 be a finite extension. If a =

□ · (1 + 4t) ∈ K× for some t ∈ OK, then (a, u)K = +1 for all u ∈ O×
K.



Chapter 3

Automorphisms, Brauer Relations

and Isogenies

Historically, isogenies between abelian varieties have proven to be valuable tools for

deducing information about ranks ([3], [36], [47], [24], [14], [19], [40]). In this chapter,

we describe the manner in which the automorphism group of a curve encodes isogenies

between Jacobians. In particular, we present a new proof of a theorem of Kani and

Rosen [32, Theorem 3] (=Theorem 3.2.2), which asserts that each Brauer relation for

the automorphism group of a curve gives rise to such an isogeny. This new strategy

involves comparing the Zeta functions of relevant quotient curves.

We provide two examples of isogenies which arise in this way and will be im-

portant in later parts of this thesis.

The final section of this chapter provides an explicit description of the isogeny

arising from a Brauer relation (due to Morgan, [23]). We include this for the inter-

ested reader, but it will not be used in developing the theory of the rest of the thesis.

This construction is important in proving of a result (of Konstantinou and Morgan)

concerning parities of ranks of Selmer groups, which we state in the next chapter.

3.1 Counting points

To illustrate our approach, let K be a field and f(x) ∈ K[x] be a separable quadratic

with f(0) ̸= 0. Define genus 1 curves E : y2 = xf(x) and E ′ : y2 = f(x2) which are



3.1. Counting points 52

related by the double cover

E ′ → E, (x, y) 7→ (x2, xy).

When we consider the elliptic curves E and JacE′ , this cover translates into the 2-

isogeny used in [17] to prove that the 2-parity conjecture holds for E (see Example

3.3.5).

The existence of an isogeny E → JacE′ can be seen from the equality of the

L-functions of the elliptic curves, which can be observed by comparing the number

of points they have over finite fields. We illustrate this point count in a more general

setting.

Let K be a field and f1(x), f2(x) ∈ K[x] be such that f1(x)f2(x) is separable.

Consider the diagram:

P1

X1 : y
2 = f1(x)

X : {y2 = f1(x), z
2 = f2(x)}

X2 : z
2 = f2(x)X0 : w

2 = f1(x)f2(x)

Figure 3.1: C2 × C2 diagram of covers of curves

where P1 has coordinate x.

Remark 3.1.1. If f1(x) = f(x) is a quadratic and f2(x) = x, then X1, X2 have

genus 0 and X0 = E, X = E ′ (where E, E ′ are as in the discussion above).

Recall that, for a curve C defined over a number field K and p a prime of K of

good reduction, the Zeta function is

Zp(C, T ) = exp

(∑
n≥1

#Cp(Fpn)

n
T n

)

where Cp denotes the reduction of C to the residue field Fp := OK/p.
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Proposition 3.1.2. Let K be a number field and p be a prime of K of good reduction

for X1, X2, X0 and X. Then,

Zp(X1, T )Zp(X2, T )Zp(X0, T ) = Zp(X,T )Zp(P1, T )2.

Proof. By definition of Zp, the result follows upon showing that for each n ≥ 1,

#(X1)p(Fpn) + #(X2)p(Fpn) + #(X0)p(Fpn) = #Xp(Fpn) + 2#P1
p(Fpn).

Write πX1 : (X1)p → P1
p, (x, y) 7→ x and similarly for πX2 , πX0 , πX . We instead show

that for each n ≥ 1 and each x ∈ P1
p(Fpn),

#π−1
X1
(x)(Fpn) + #π−1

X2
(x)(Fpn) + #π−1

X0
(x)(Fpn) = #π−1

X (x)(Fpn) + 2. (3.1)

Suppose first that x ∈ A1
p(Fpn), then π−1

X1
(x), π−1

X2
(x), π−1

X0
(x), and π−1

X (x) are as

displayed below.

x

{
(x,±

√
f1(x))

}

{
(x,±

√
f1(x),±

√
f2(x))

}

{
(x,±

√
f2(x))

}{
(x,±

√
f1(x)f2(x))

}

Case I: Suppose that f1(x), f2(x) ̸= 0 in Fpn . If both f1(x), f2(x) are

squares in Fpn , then #π−1
X1
(x)(Fpn) = #π−1

X2
(x)(Fpn) = #π−1

X0
(x)(Fpn) = 2 and

#π−1
X (x)(Fpn) = 4. If f1(x) is a square in Fpn and f2(x) is not, then #π−1

X1
(x)(Fpn) = 2

and #π−1
X2
(x)(Fpn) = #π−1

X0
(x)(Fpn) = #π−1

X (x)(Fpn) = 0 (similarly when f2(x) is a

square and f1(x) is not). Finally, if neither f1(x) nor f2(x) are squares in Fpn , then

#π−1
X1
(x)(Fpn) = #π−1

X2
(x)(Fpn) = #π−1

X (x)(Fpn) = 0 and #π−1
X0
(x)(Fpn) = 2. In each

case, (3.1) is satisfied.

Case II: Suppose that f1(x) = 0 and f2(x) ̸= 0 in Fpn (or f1(x) ̸= 0 and

f2(x) = 0). If f2(x) is a square in Fpn , then #π−1
X1
(x)(Fpn) = #π−1

X0
(x)(Fpn) = 1 and
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#π−1
X2
(x)(Fpn) = #π−1

X (x)(Fpn) = 2. Conversely, if f2(x) is not a square in Fpn , then

#π−1
X1
(x)(Fpn) = #π−1

X0
(x)(Fpn) = 1 and #π−1

X2
(x)(Fpn) = #π−1

X (x)(Fpn) = 0. Again,

in both cases, (3.1) is satisfied.

Now suppose that x ∈ (P1
p − A1

p)(Fpn). If deg f1, deg f2 are both even, then

#π−1
X1
(x)(Fpn) = #π−1

X2
(x)(Fpn) = #π−1

X0
(x)(Fpn) = 2 and #π−1

X (x)(Fpn) = 4. Oth-

erwise, two of #π−1
X1
(x)(Fpn), #π−1

X2
(x)(Fpn), #π−1

X0
(x)(Fpn) equal 1 with the other

equalling 2 and #π−1
X (x)(Fpn) = 2. In both cases, (3.1) is satisfied.

This identity of Zeta functions of curves can be converted into one of L-functions

of Jacobians. Via a result of Faltings, this then guarantees the existence of an isogeny

(this argument appears in more detail within the proof of Theorem 3.2.2).

Theorem 3.1.3. When K is a number field, there exists an isogeny JacX1×JacX2×

JacX0 → JacX .

We will study this isogeny in more detail in §3.3 since it will play an impor-

tant role in later chapters. In particular, we will eventually use it to obtain results

concerning the 2-parity conjecture for certain hyperelliptic curves.

3.2 Exhibiting isogenies from Brauer relations

Here we present the analogue of the Zeta function identity given in Proposition 3.1.2

for general curves and explain why such a relationship guarantees the existence of an

isogeny. The description of the isogeny is not given here, for this we refer the reader

to §3.5.

Proposition 3.2.1. Let K be a number field and X a curve over K. Let G be a

finite group of K-automorphisms of X and
∑

iHi −
∑

j H
′
j be a Brauer relation for

G. If p is a prime of K of good reduction for each quotient curve XHi
, XH′

j
then

∏
i

Zp(XHi
, T ) =

∏
j

Zp(XH′
j
, T ).

Before proving this result we highlight the consequences of interest to us, in

particular, how it can be converted into a statement concerning Jacobians of curves.
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For A an abelian variety over a number field K, its L-function is

L(A, s) :=
∏

p prime of K

Lp(A, |p|−s)−1,

where Lp(A, T ) ∈ Z[T ] has degree at most 2 dimA and is known as the L-factor of

A at p.

Suppose that A = JacX where X is a curve over K. For primes p at which X has

good reduction (all but finitely many), the L-factor can be computed directly from

the Zeta function. In particular, there are polynomials P0(X,T ), P2(X,T ) ∈ Z[T ]

such that

Lp(JacX , T ) = Zp(X,T )P0(X,T )P2(X,T ).

This equality allows us to convert results concerning Zeta functions of curves into

results concerning the L-functions of their Jacobians.

Theorem 3.2.2. Let K be a number field and X a curve over K. Let G be a finite

group of K-automorphisms of X and
∑

iHi −
∑

j H
′
j be a Brauer relation for G.

Then,

(i)
∏

i L(JacXHi
, s) =

∏
j L(JacXH′

j

, s),

(ii) there’s a K-isogeny ∏
i

JacXHi
→
∏
j

JacXH′
j

,

(iii)
∑

i rk(JacXHi
) =

∑
j rk(JacXH′

j

).

Proof. We need only prove (i) since (ii) follows immediately using the multiplicativity

of L and a result of Faltings ([26, §5, Corollary 2]), and (iii) follows from (ii) using

that the rank is invariant under isogeny.
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Let p be a prime as in Proposition 3.2.1, then

∏
i

Lp(JacXHi
, T ) =

∏
i

Zp(XHi
, T ) ·

∏
i

P0(XHi
, T ) ·

∏
i

P2(XHi
, T )

=
∏
j

Zp(XH′
j
, T ) ·

∏
i

P0(XHi
, T ) ·

∏
i

P2(XHi
, T )

=
∏
j

Lp(JacXH′
j

, T ) ·
∏

i P0(XHi
, T ) ·

∏
i P2(XHi

, T )∏
j P0(XH′

j
, T ) ·

∏
j P2(XH′

j
, T )

=
∏
j

Lp(JacXH′
j

, T )

having deduced the final equality using that the roots of Lp, P0 and P2 have absolute

value (
√

#Fp)
−1, 1 and (#Fp)

−1 respectively (by the Riemann hypothesis part of the

Weil conjectures, [13]) and the constant terms of
∏

i Lp(JacXHi
, T ),

∏
j Lp(JacXH′

j

, T )

are equal.

Since this equality of L-factors holds for almost all primes p, it must in fact hold

at every prime ([26, §5, Corollary 2]) which gives the required identity concerning

L-functions.

Remark 3.2.3. We note that Theorem 3.2.2 applies when X is not geometrically

connected, using the notion of the Jacobian as given in [23, §A.6].

The remainder of this section is dedicated to proving Proposition 3.2.1.

Notation 3.2.4. Fix n ∈ N and write Cn = ⟨h⟩. For each m ∈ N,

ρm(h) =

exp(2πi/m) m | n

0 m ∤ n

defines a (1-dimensional) representation of Cn. Let G be a finite group, then

ρ̃m((g, h)) = ρm(h) for each g ∈ G defines a (1-dimensional) representation of G×Cn.

Lemma 3.2.5. Let S be a set acted on by Cn. The number of orbits of S of length

divisible by m ∈ N is ⟨ρm,C[S]⟩Cn .
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Proof. Suppose that m | n, otherwise the result is clear. Fix O to be an orbit of

the action. Since Cn acts transitively on O, there’s a subgroup H ≤ Cn such that

O ∼= Cn/H (as sets with Cn-actions). Therefore,

⟨ρm,C[O]⟩Cn = ⟨ρm, IndCn
H 1⟩Cn =

1 m | #O

0 m ∤ #O

and the result follows using that ⟨ρm,C[S]⟩Cn =
∑
⟨ρm,C[O]⟩Cn where the sum is

taken over the orbits of S.

Lemma 3.2.6. Let G be a finite group. Let S ′ be a set acted on by G × Cn. The

number of G-orbits of S ′ in a Cn-orbit of length divisible by m ∈ N is ⟨ρ̃m,C[S ′]⟩G×Cn .

Proof. Let S be the set of G-orbits of S ′. Since C[S] ∼= C[S ′]G as Cn-representations,

Lemma 3.2.5 says that the number of G-orbits of S ′ in a Cn-orbit with length di-

visible by m ∈ N is ⟨ρm,C[S ′]G⟩Cn . Since ρ̃m acts trivially on G, this is equal to

⟨ρ̃m,C[S ′]⟩G×Cn .

Lemma 3.2.7. Let G be a finite group and
∑

iHi−
∑

j H
′
j be a Brauer relation for

G. Let S ′ be a set acted on by G× Cn. For each m ∈ N

∑
i

θm(Hi) −
∑
j

θm(H
′
j) = 0

where (for H ≤ G) θm(H) denotes the number of H-orbits of S ′ in a Cn-orbit with

length divisible by m ∈ N.

Proof. Fix m ∈ N and H ≤ G, then

θm(H)
Lemma 3.2.6

= ⟨ResG×Cn
H×Cn

ρ̃m,Res
G×Cn
H×Cn

C[S ′]⟩H×Cn

Frobenius Reciprocity
= ⟨ρ̃m ⊗ C[(G×Cn)/(H×Cn)],C[S ′]⟩G×Cn .

The Brauer relation
∑

iHi −
∑

j H
′
j for G lifts to the Brauer relation∑

i(Hi × Cn)−
∑

j(H
′
j × Cn) for G×Cn and so the result holds using the expression

for θm(H) above.
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Proof of Proposition 3.2.1. For each H ≤ G write π̄H : (XH)p → (XG)p for the

projection map on the reduced curves. As in the proof of Proposition 3.1.2, to

deduce the result it is enough to show that for each m ≥ 1 and each x ∈ (XG)p(Fpm),

∑
i

#π̄−1
Hi
(x)(Fpm) −

∑
j

#π̄−1
H′

j
(x)(Fpm) = 0.

Write Cn := ⟨Frobp⟩ and S ′ := π̄−1
1 (x)(Fp) (acted on by G × Cn). We observe

that for H ≤ G,

π−1
H (x)(Fpm) ∼= {H-orbits of S ′ in a Cn-orbit of length divisible by m}

and so the above identity holds by Lemma 3.2.7.

3.3 Explicit construction of isogenies for C2 × C2

We now explain how the isogeny detailed in Theorem 3.1.3 can be observed from

Theorem 3.2.2. We explicitly describe the isogeny and discuss its properties which

will be important in later chapters.

Notation 3.3.1. Let K be a field of characteristic 0 and f1(x), f2(x) ∈ K[x] be

such that f1(x)f2(x) is separable. Define a bihyperelliptic curve over K by

X : {y2 = f1(x), z
2 = f2(x)}.

The group G = C2 × C2 := ⟨τ1, τ2⟩ acts on X where τ1 : (x, y, z) 7→ (x, y,−z),

τ2 : (x, y, z) 7→ (x,−y, z). The unique Brauer relation for G, up to multiplication by

integers, is given by

⟨τ1⟩ + ⟨τ2⟩ + ⟨τ1τ2⟩ − 2G − {1}

(see Example 2.5.3). When K is a number field, applying Theorem 3.2.2(ii) with

respect to this gives the existence of an isogeny JacX⟨τ1⟩
×JacX⟨τ2⟩

×JacX⟨τ1τ2⟩
→ JacX ,

since XG = P1 with parameter x, realised by the map πx : (x, y, z) 7→ x. We now
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describe this explicitly using the models for the quotient curves given in Example

2.1.13 and the induced maps between Jacobians described in §2.1.2. We refer the

reader to Figure 3.1 for a pictorial summary.

Theorem 3.3.2. Let K be a field of characteristic 0 and f1(x), f2(x) ∈ K[x] be such

that f1(x)f2(x) is separable. Define X1 : y2 = f1(x), X2 : z2 = f2(x), X0 : w2 =

f1(x)f2(x) and X : {y2 = f1(x), X2 : z
2 = f2(x)}. Then

ψ :=
(
(π1)∗, (π2)∗, (π0)∗

)
: JacX → JacX1 × JacX2 × JacX0 ,

ϕ := (π1)
∗ + (π2)

∗ + (π0)
∗ : JacX1 × JacX2 × JacX0 → JacX .

are mutually-dual isogenies, where π1 : (x, y, z) 7→ (x, y) ∈ X1, π2 : (x, y, z) 7→

(x, z) ∈ X2 and π0 : (x, y, z) 7→ (x, yz) ∈ X0 whenever (x, y, z) ∈ X. Moreover, they

satisfy ψ ◦ ϕ = [2] = ϕ ◦ ψ.

Proof. That ψ and ϕ are isogenies follows from their compositions being the

multiplication-by-two maps, which is argued below. Their mutual duality is noted in

Example 3.5.4, by applying Theorem 3.5.2 (this is essentially due to the mutually-

duality of π∗ and π∗, see Lemma 2.1.9).

Let P ∈ X(K), then ϕ ◦ ψ maps the divisor [P ] to

3[P ] + [τ1P ] + [τ2P ] + [τ1τ2P ] = 2[P ] + (πx)
∗((πx)∗(P )).

Therefore (ϕ ◦ ψ)(D) = 2D + (πx)
∗((πx)∗(D)) when D ∈ Div(X). When the degree

of D is 0, noting that (πx)∗(D) ∈ Div0(P1) and hence (πx)
∗((πx)∗(D)) ∈ Div0(X) are

principal, gives that ϕ ◦ ψ is multiplication by 2 on JacX .

Now consider the composition ψ ◦ϕ. Let P ∈ X1(K), then ψ ◦ϕ maps ([P ], 0, 0)

to (
2[P ], (π2)∗◦(π1)∗(P ), (π0)∗◦(π1)∗(P )

)
where (π2)∗◦(π1)∗(P ) and (π0)∗◦(π1)∗(P ) are the pullbacks to Div(X2) and Div(X0)

of a point on P1. If D ∈ Div0(X1) then (π2)∗ ◦ (π1)∗(D) and (π0)∗ ◦ (π1)∗(D) are

principal (since (π1)
∗(D) is) and so ψ ◦ ϕ sends points of JacX1 × JacX2 × JacX0
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of the form (D, 0, 0) to (2D, 0, 0). Arguing similarly gives the result for points of

the form (0, D, 0) and (0, 0, D) and therefore that ψ ◦ ϕ is multiplication by 2 on

JacX1 × JacX2 × JacX0 .

Corollary 3.3.3. The degree of ϕ and ψ is 2deg f1+deg f2−3 when both deg f1, deg f2

are even, and 2deg f1+deg f2−2 otherwise.

Proof. Since ψ ◦ ϕ = [2] on JacX1 × JacX2 × JacX0 ,

degψ ◦ ϕ = 22 dim(JacX1
×JacX2

×JacX0
)

= 22
(⌊

deg f1−1
2

⌋
+
⌊

deg f2−1
2

⌋
+
⌊

deg f1+deg f2−1
2

⌋)
.

The result then follows from the the mutual duality of ϕ and ψ, i.e. that deg ϕ =

degψ.

Corollary 3.3.4. Let K/Qp be a finite extension for p ̸= 2. The bihyperelliptic

curve X/K is semistable if and only if the hyperelliptic curves X1, X2, X0/K are all

semistable.

Proof. Since JacX is isogenous to JacX1 × JacX2 × JacX0 , their Tate modules are

isomorphic ([64]). By [31, Proposition 3.5], semistability can be determined from

the Tate module.

Example 3.3.5. Let f1(x) = ax2 + bx + c ∈ K[x], f2(x) = x so that X0 : w2 =

ax3 + bx2 + cx and X : z2 = ay4 + by2 + c.

Theorem 3.3.2 gives a 2-isogeny ϕ : X0 → JacX between elliptic curves. Apply-

ing Lemma 2.1.6, we see that

JacX : Z2 = Y 3 − 27(b2 + 12ac)Y + 54b(b2 − 36ac)

∼= E : Z2 = Y 3 − 2bY 2 + (b2 − 4ac)Y,

where the isomorphism comes from shifting the 2-torsion point (−6b, 0) to (0, 0). In
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the case when a = 1, ϕ must therefore be the classical 2-isogeny

X0 ∋ (x,w) 7→ (x+ b+ cx−1, w − cx−2w) ∈ E

(for example, see [17]).

Example 3.3.6. Let f1(x) = d ∈ K× and f2(x) be a cubic.

Theorem 3.3.2 gives a 2-isogeny

ϕ : E × Ed → JacX ∼= ResK(
√
d)/KE

where E = X2 : z2 = f2(x), Ed = X0 : w2 = df2(x) is the quadratic twist of E by

d and, since X : {y2 = d z2 = f2(x)}, the isomorphism on the right-hand-side holds

by [23, Lemma A.22]. This is another classical isogeny (for example, see [37]). The

analogous one obtained by letting f2(x) have arbitrary degree is studied in [47].

It will often be important to have an understanding of the kernel of the isogeny

ϕ. Since ψ ◦ ϕ = [2], we observe that kerϕ ≤ JacX1 [2]× JacX2 [2]× JacX0 [2].

Recall that, given a hyperelliptic curve C : y2 = f(x) over a field K and R ⊂ K

the roots of f(x), there is a correspondence between points in JacC [2] and even

sized subsets of R (c.f. Notation 2.1.11 and Lemma 2.1.12). This correspondence is

one-to-one when deg f is odd and two-to-one when deg f is even.

Lemma 3.3.7. Let K be a field of characteristic 0, f1(x), f2(x) ∈ K[x] be such

that f1(x)f2(x) is separable and write R1, R2 ⊂ K for the roots of f1(x), f2(x),

respectively. Then,

kerϕ =
{(
DS, DT , DS∪T

)
: S ⊆ R1, T ⊆ R2 have even size

}
where ϕ is the isogeny constructed in Theorem 3.3.2 and DS, DT , DS∪T are as in

Notation 2.1.11.

Proof. The given kernel can be seen to satisfy the size constraint imposed by

Corollary 3.3.3. In particular, the points (DS, DT , DS∪T ) are distinct as S,
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T vary unless deg f1, deg f2 are both even, in which case (DS, DT , DS∪T ) =

(DR1−S, DR2−T , D(R1−S)∪(R2−T )).

It remains to check that ϕ
(
(DS, DT , DS∪T )

)
= 0. Let ∞0 denote the point at

infinity on P1 and πx : X → P1, (x, y, z) 7→ x, then

(π1)
∗(DS) =

∑
r∈S

(
(r, 0,

√
f2(r)) + (r, 0,−

√
f2(r))

)
− #S

2
π∗
x(∞0),

(π2)
∗(DT ) =

∑
r∈T

(
(r,
√
f1(r), 0) + (r,−

√
f1(r), 0)

)
− #T

2
π∗
x(∞0).

Since

(π0)
∗(DS∪T ) = (π1)

∗(DS) + (π2)
∗(DT ),

and the class of each of these divisors is 2-torsion (for example, 2 · (π1)∗(DS) is

the principal divisor coming from
∏

α∈S(x − α) ∈ K(X)×), we have shown that

(DS, DT , DS∪T ) ∈ kerϕ.

Example 3.3.8. Let f1(x) = (x2 − 2)(x+ 5) and f2(x) = (x− 1)2 − 3.

By Lemma 3.3.7, the kernel of ϕ is precisely

{(
DS, 0, DS

)
,
(
DS, 0, DS∪R2

)
: S = ∅, {−

√
2,
√
2}, {

√
2,−5}, {−

√
2,−5}

}
,

having used that D∅ = DR2 = 0 ∈ JacX2 .

3.4 Explicit construction of isogenies for S3

We now describe and study another isogeny which we exhibit via Theorem 3.1.3.

This will be used in a later chapter when we discuss the parity conjecture for elliptic

curves.

Notation 3.4.1. Let K be a field of characteristic 0 and f(x) = x3 + ax+ b ∈ K[x]

be a separable cubic. Let g(y2) = −27y4 + 54by2 − (4a3 + 27b2) ∈ K[y] be the

discriminant of f(x)− y2 (viewed as a polynomial in x). Define a curve over K by

X : {y2 = f(x), ∆2 = g(y2)}.
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Lemma 3.4.2. When a ̸= 0, X is a genus 3 bihyperelliptic curve. It is isogenous to

E × JacC where C : W 2 = −(3x2 + 4a)f(x) has genus 2.

Proof. By definition,

X : {y2 = f(x), ∆2 = g(f(x)) = −(3x2 + a)2(3x2 + 4a)}.

Letting z = ∆/(3x2 + a) gives X : {y2 = f(x), z2 = −(3x2 + 4a)}. This is a

bihyperelliptic curve which, by Theorem 3.3.2 with f1(x) = f(x), f2(x) = −(3x2 +

4a), is isogenous to E × JacC and so has genus 3.

Write x′ = −x
2
+ 6ax2+9(y2−b)x+4a2

2∆
. The group G = S3 := ⟨σ, τ⟩ acts on X where

σ : (x, y,∆) 7→ (x′, y,∆) and τ : (x, y,∆) 7→ (x, y,−∆). We note that σ has order 3

and that σ2 : (x, y,∆) 7→ (−x− x′, y,∆).

The quotients of X by the subgroups of S3, up to conjugacy, are displayed in

Figure 3.2, where P1 has coordinate y.

E = X⟨τ⟩ : y
2 = f(x)

P1

X

D = X⟨σ⟩ : ∆
2 = g(y2)

Figure 3.2: S3 diagram of covers of curves

We note that D has genus 1 when a ̸= 0.

The unique Brauer relation for G, up to multiplication by integers, is given by

2⟨τ⟩ + ⟨σ⟩ − 2G − {1}

(see Example 2.5.4). When K is a number field, applying Theorem 3.2.2(ii) with

respect to this gives the existence of an isogeny E×E×JacD → JacX , since JacXG
=

0.
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We observe that the quotient maps for E and D are

πE : X → E

(x, y,∆) 7→ (x, y),

πD : X → D

(x, y,∆) 7→ (y,∆).

As in Theorem 3.3.2, they allow us to explicitly construct our isogeny.

Theorem 3.4.3. Let K be a field of characteristic 0, f(x) = x3 + ax + b ∈ K[x] a

separable cubic and g(y2) = −27y4+54by2−(4a3+27b2) ∈ K[y]. Define E : y2 = f(x),

D : ∆2 = g(y2) and X : {y2 = f(x), ∆2 = g(y2)}. Then

ψ :=
(
(πE)∗, (πE)∗ ◦ σ∗, (πD)∗

)
: JacX → E × E × JacD,

ϕ := (πE)
∗ + σ∗ ◦ (πE)∗ + (πD)

∗ : E × E × JacD → JacX ,

are mutually-dual isogenies of degree 9, where πE : (x, y,∆) 7→ (x, y) ∈ E,

πD : (x, y,∆) 7→ (y,∆) ∈ X2, σ : (x, y,∆) 7→ (−x
2
+ 6ax2+9(y2−b)x+4a2

2∆
, y,∆) ∈ X

whenever (x, y, z) ∈ X and ϕ(P,Q,R) = (πE)
∗P + σ∗ ◦ (πE)∗Q+ (πD)

∗R.

Proof. That ψ and ϕ are isogenies follows upon showing that ψ ◦ ϕ ∈ End(E ×E ×

JacD), which is argued below. Their mutual duality is noted in Example 3.5.6, by

applying Theorem 3.5.2 (this is essentially due to the mutually-duality of π∗ and π∗,

see Lemma 2.1.9).

First observe that (πE)∗◦(πE)∗ = (πE)∗◦σ∗◦σ∗◦(πE)∗ = [2]E and (πD)∗◦(πD)∗ =

[3]JacD . Additionally,

(πE)∗ ◦ σ∗ ◦ (πE)∗ = (πE)∗ ◦ σ∗ ◦ (πE)∗ = [−1]E

since (x, y) + (x′, y) + (−x− x′, y) = 0 for any (x, y) ∈ E. Using this, alongside the

fact that (y,∆)+(y,−∆) = 0 for any (y,∆) ∈ D, we see that all other compositions

are 0 and so

(ψ ◦ ϕ)(P,Q,R) =
(
2P −Q, 2Q− P, 3R

)
=⇒ ψ ◦ ϕ ∈ End(E × E × JacD).
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From this we deduce that kerψ ◦ ϕ = {(P,−P,R) : P ∈ E[3], R ∈ JacD[3]}. In

particular, degψ ◦ ϕ = 81 and (using that ψ, ϕ are duals) deg ϕ = degψ = 9.

3.5 The general construction

Theorem 3.2.2 asserts the existence of an isogeny between the Jacobians of quotients

of a curve X defined over a number field, given a Brauer relation for a finite group

of its automorphisms. We exhibited such isogenies in the previous two sections.

For completeness, we now provide an explicit description of the isogeny in general

(as given in [23, §3]) where K can be any field of characteristic 0. The content of

this section is not required for the rest of this thesis.

Construction 3.5.1. Let K be a field of characteristic 0 and X a curve over K.

Let G be a finite group of K-automorphisms of X and
∑

iHi −
∑

j H
′
j be a Brauer

relation for G.

(1). Let Φ :
⊕

j Z[G/H ′
j] →

⊕
i Z[G/Hi] be a G-module homomorphism and

write

Φj,i : Z[G/H ′
j] → Z[G/Hi]

for the corresponding G-module homomorphisms of the summands for each i, j.

(2). For each i, j, fix some
∑

g∈G agg ∈ Z[G] to be such that
∑

g∈G aggHi =

Φj,i(H
′
j) ∈ Z[G/Hi] and define the endomorphism

Φ̃j,i :=
∑
g∈G

agg∗ : JacX → JacX

(where g∗ : P 7→ g · P for P ∈ X(K)). We note that Φ̃j,i restricted to JacHi
X is

independent of the choice of
∑

g∈G agg.

(3). For each i, j, define the homomorphism

fΦj,i
:=

1

#H ′
j

(
(πH′

j
)∗ ◦ Φ̃j,i ◦ (πHi

)∗
)
: JacXHi

→ JacXH′
j

where (for H ≤ g) (πH)∗, (πH)∗ are the induced homomorphisms for the quotient

maps πH : X → XH (see §2.1.2). Since (πHi
)∗ in fact maps JacXHi

into JacHi
X , fΦj,i
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is independent of the choice of Φ̃j,i made in (2).

(4). Define

fΦ :=
(∑

i

fΦj,i

)
j
:
∏
i

JacXHi
→
∏
j

JacXH′
j

.

Theorem 3.5.2. Let K be a field of characteristic 0 and X a curve over K. Let G

be a finite group of K-automorphisms of X with Brauer relation
∑

iHi−
∑

j H
′
j and

Φ :
⊕

j Z[G/H ′
j]→

⊕
i Z[G/Hi] an injective G-module homomorphism. Then

fΦ :
∏
i

JacXHi
→
∏
j

JacXH′
j

as in Construction 3.5.1 is a K-isogeny and (fΦ)
∨ = fΦ∨.

Proof. Omitted. See [23, Theorem 3.2].

Remark 3.5.3. In light of this construction, we could have asserted the existence of

the isogeny in Theorem 3.2.2(ii) independently of Faltings theorem ([26, §5, Corollary

2]).

Example 3.5.4. Let G = C2×C2 := ⟨τ1, τ2⟩ act on X : {y2 = f1(x), z
2 = f2(x)} as

in §3.3. Applying Theorem 3.5.2, we can recover the isogeny ϕ described in Theorem

3.3.2.

There is an injective C2 × C2-module homomorphism given by

Φ : Z[G/G]⊕ Z[G/G]⊕ Z[G/{1}]→ Z[G/⟨τ1⟩]⊕ Z[G/⟨τ2⟩]⊕ Z[G/⟨τ1τ2⟩]

x1 7→ (1 + τ2)y1,

x2 7→ (1 + τ1)y2,

x3 7→ y1 + y2 + y3,

where xj denotes the trivial coset in Z[G/H ′
j] (H ′

1 = H ′
2 = G, H ′

3 = {1}) and yi

denotes the trivial coset in Z[G/Hi] (H1 = ⟨τ1⟩, H2 = ⟨τ2⟩, H3 = ⟨τ1τ2⟩).
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Since JacXH′
j

= 0 for j = 1, 2, the isogeny is

fΦ = fΦ3,1 + fΦ3,2 + fΦ3,3 : JacXH1
× JacXH2

× JacXH3
→ JacX .

We observe that Φ3,i(H
′
3) = Hi for i = 1, 2, 3 and so take Φ̃3,i = 1 be the identity

endomorphism on JacX . Since (πH′
3
)∗ is also the identity endomorphism on JacX , it

follows that

fΦ3,i
= (πHi

)∗ for i = 1, 2, 3.

Therefore fΦ = ϕ.

By Theorem 3.5.2, Construction 3.5.1 also gives the dual of this isogeny, i.e.

(fΦ)
∨ = fΦ∨ = (fΦ∨

1,3
, fΦ∨

2,3
, fΦ∨

3,3
) : JacX → JacXH1

× JacXH2
× JacXH0

.

First observe that Φ∨
1,3(H1) = (1 + τ1)H

′
3, therefore we can take fΦ∨

1,3
=

1
2

(
(πH1)∗ ◦ (1∗ + τ1∗)

)
= (πH1)∗. Similarly, fΦ∨

2,3
= 1

2

(
(πH2)∗ ◦ (1∗ + τ2∗)

)
= (πH2)∗

and fΦ∨
3,3

= 1
2

(
(πH3)∗ ◦ (1∗ + τ1τ2∗)

)
= (πH3)∗.

Therefore, (fΦ)∨ = ϕ∨ = ψ (as in Theorem 3.3.2).

Example 3.5.5. Continuing with the notation in Example 3.5.4, define an injective

C2 × C2-module homomorphism Φ′ by Φ′(xi) = Φ(xi) for i = 1, 2 and Φ′(x3) =

3Φ(x3).

Applying Construction 3.5.1 with respect to Φ′ gives another isogeny

fΦ′ = [3] ◦ fΦ : JacXH1
× JacXH2

× JacXH3
→ JacX .

Example 3.5.6. Let G = S3 := ⟨σ, τ⟩ act on X : {y2 = f(x), ∆2 = g(y2)} as in

§3.4. Again we apply Theorem 3.5.2 to recover the isogeny ϕ described in Theorem

3.4.3.
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There is an injective S3-module homomorphism given by

Φ : Z[G/G]⊕ Z[G/G]⊕ Z[G/{1}]→ Z[G/⟨τ⟩]⊕ Z[G/⟨τ⟩]⊕ Z[G/⟨σ⟩]

x1 7→ (1 + σ + σ2)y1 + (1 + σ + σ2)y2 + (1 + τ)y3,

x2 7→ (1 + σ + σ2)y2 + (1 + τ)y3,

x3 7→ y1 + σ2y2 + y3,

where xj denotes the trivial coset in Z[G/H ′
j] (H ′

1 = H ′
2 = G, H ′

3 = {1}) and yi

denotes the trivial coset in Z[G/Hi] (H1 = H2 = ⟨τ⟩, H3 = ⟨σ⟩).

Since JacXH′
j

= 0 for j = 1, 2, the isogeny is

fΦ = fΦ3,1 + fΦ3,2 + fΦ3,3 : JacXH1
× JacXH2

× JacXH3
→ JacX .

Upon observing that Φ3,1(H
′
3) = H1, Φ3,2(H

′
3) = σ2H2 and Φ3,3(H

′
3) = H3, we

may fix Φ̃3,1 = Φ̃3,3 = 1 to be the identity endomorphism on JacX and Φ̃3,2 = (σ2)∗ =

σ∗. Plugging these into the expression for fΦ, we see that this is precisely the isogeny

ϕ. Namely,

JacX⟨τ⟩ × JacX⟨τ⟩ × JacX⟨σ⟩ ∋ (P,Q,R) 7→ π∗
⟨τ⟩P + σ∗ ◦ π∗

⟨τ⟩Q+ π∗
⟨σ⟩R ∈ JacX .

As in Example 3.5.4, f∨
Φ =

(
fΦ∨

1,3
, fΦ∨

2,3
, fΦ∨

3,3

)
. We note that Φ∨

1,3(H1) =

(1 + τ)H ′
3, Φ∨

2,3(H2) = (1 + τ)σH ′
3 and Φ∨

3,3(H3) = (1 + σ + σ2)H ′
3. Therefore,

we can take fΦ∨
1,3

= 1
2
((πH1)∗ ◦ (1∗ + τ∗)

)
= (πH1)∗, fΦ∨

2,3
= 1

2

(
(πH2)∗ ◦ (σ∗ + τσ∗)

)
=

(πH2)∗ ◦σ∗, fΦ∨
3,3

= 1
3

(
(πH3)∗ ◦ (1∗σ∗ + σ2

∗)
)
= (πH3)∗ to see that (fΦ)∨ = ϕ∨ = ψ (as

in Theorem 3.4.3).



Chapter 4

Determining Parities of Ranks of

Jacobians of Curves

Combining the conjectural framework of L-functions with the Birch and Swinnerton-

Dyer conjecture yields the parity conjecture. This conjecture asserts that the parity

of the rank of an abelian variety is determined by its local root numbers. Since

the local arithmetic of abelian varieties (specifically, Jacobians of curves) is better

understood than the global arithmetic, having such a local-global tool which can be

used unconditionally is desirable.

In this chapter, we exploit the isogenies constructed from automorphisms in the

previous chapter by applying the isogeny invariance of the Birch and Swinnerton-

Dyer conjecture to them. By doing this, we are able to construct an arithmetic

analogue of the local root number. We will see that, assuming the Shafarevich–Tate

conjecture (this is a weaker assumption than what is currently needed for the parity

conjecture to hold), this controls the parity of the rank in certain situations.

The final section discusses the analogous results (from [23], included without

proof) that we obtain when replacing ranks with p∞-Selmer ranks.

We will not attempt to compare local root numbers with their arithmetic ana-

logues here; this will be the focus of the remaining chapters.
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4.1 Parities of ranks of isogenous elliptic curves

As noted in §1.2, Birch once commented that the parity of the rank of an elliptic curve

admitting an isogeny is controlled by local data, specifically Tamagawa numbers and

periods [3]. This is a consequence of the conjectured lead term of the L-function

being invariant under isogeny.

Theorem 4.1.1 (Cassels–Tate [6, 66]). Let A, A′ be isogenous abelian varieties

defined over a number field K. Assuming that X(A), X(A′) are finite,

BSD(A/K) = BSD(A′/K).

In particular, let E, E ′ be isogenous elliptic curves defined over a number field

K. Under the finiteness assumption on their Shafarevich–Tate groups, and noting

Theorem 2.3.7, we see that

Reg(E)

Reg(E ′)
=

C(E ′)

C(E)
· #X(E ′)

#X(E)
· #E(K)2tors

#E ′(K)2tors
=

C(E ′)

C(E)
·□ (4.1)

where □ ∈ Q× is a square.

Example 4.1.2. Let E/Q : y2 + xy = x3 − x (65.a1), E ′/Q : y2 + xy = x3 + 4x+ 1

(65.a2).

We evaluate the right-hand-side of (4.1). Taking ω and ω′ to be the global

minimal differentials on E and E ′ respectively, Cp(E,ω) = cp(E) and Cp(E
′, ω′) =

cp(E
′) for all primes p ∈ Z. We then note that

c5(E
′) = c13(E

′) = 2, C∞(E,ω) = 5.382 . . . , C∞(E ′, ω′) = 2.691 . . . ,

and cp(E), cp(E ′) = 1 otherwise. Therefore,

Reg(E)

Reg(E ′)
= c5(E

′) · c13(E ′) · C∞(E ′, ω′)

C∞(E,ω)
·□ = 2 ·□ ̸= 1

and so rk(E) = rk(E ′) > 0 (otherwise Reg(E) = Reg(E ′) = 1). In particular, we

have observed the existence of infinitely many rational points on E and E ′ by looking
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only at their local behaviour.

A stronger conclusion can in fact be made about the ranks of isogenous elliptic

curves via the following lemma.

Lemma 4.1.3 ([16], Lemma 1.3). Let E,E ′ be elliptic curves defined over a number

field K and ϕ : E → E ′ a K-rational isogeny of degree d. Then

Reg(E/K)

Reg(E ′/K)
≡ drk(E/K) mod Q×2.

Combining this with (4.1) gives the following formula for the parity of the ranks

of elliptic curves admitting d-isogenies:

rk(E) = rk(E ′) ≡
∑

v place of K

ordd

(Cv(E
′, ω′)

Cv(E,ω)

)
mod 2. (4.2)

Upon fixing choices of global differentials ω and ω′, the right-hand-side of this

expression only concerns E and E ′ over local fields and so we call this a local formula.

Such formulae are desirable since we understand the local arithmetic of curves much

better than the global arithmetic.

Example 4.1.4. Applying (4.2) with d = 2 to the 2-isogenous elliptic curves

E/Q : y2 + xy = x3 − x, E ′/Q : y2 + xy = x3 + 4x + 1 (as in Example 4.1.2), we

determine that their ranks are odd (and not just non-zero).

4.2 Rank parity formulae

Our goal here is to develop the argument presented in the previous section so that it

is applicable to isogenies arising from Brauer relations, which involve the Jacobians

of higher genus curves. In previous works, regulator constants (see §2.6) have been

used to manipulate expressions concerning regulators of elliptic curves over field

extensions into ones encoding the parity of a suitable rank (see [18, §1.iv.]). The new

technique we employ here involves replacing extensions of number fields by covers of

curves.

We begin with an analogue of Lemma 4.1.3.
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Lemma 4.2.1. Let X be a curve defined over a number field K, G be a finite group

of K-automorphisms of X and Θ =
∑

iHi−
∑

j H
′
j be a Brauer relation for G. Then

∏
j Reg(JacXH′

j

)∏
i Reg(JacXHi

)
≡ CΘ(JacX(K)⊗Z Q) mod Q×2.

Proof. Let H ≤ G, write {P1, . . . , PN} for a basis of JacXH
(K)/JacXH

(K)tors and

⟨, ⟩, ⟨, ⟩H for the Néron–Tate height pairings on JacX(K), JacXH
(K) respectively.

Then

Reg(JacXH
) :=

∣∣∣ det(〈Pi, Pj

〉
H

)∣∣∣
Lemma 2.3.2

=
∣∣∣ det( 1

#H

〈
(πH)

∗Pi, (πH)
∗Pj

〉)∣∣∣
Lemma 2.1.14≡

∣∣∣ det( 1
#H

〈
,
〉
| (JacX(K)⊗Z Q)H

)∣∣∣ mod Q×2.

The result now follows readily by taking the specified quotient of regulators.

This lemma is of interest to us because, as we’ll see later (Lemmata 4.3.1,

4.4.1 & 8.2.7), this regulator constant encodes information about parities of ranks

of Jacobians. With this in mind, the following closely resembles the local formula

given in (4.2).

Theorem 4.2.2. Let X be a curve defined over a number field K, G be a finite group

of K-automorphisms of X and Θ =
∑

iHi −
∑

j H
′
j be a Brauer relation for G.

Assuming that X(JacX) is finite,

CΘ(JacX(K)⊗Z Q) ≡
∏

v place of K

(
Cv(
∏

i JacXHi
, ω′) ·

∏
i µv(XHi

)

Cv(
∏

j JacXH′
j

, ω) ·
∏

j µv(XH′
j
)

)
mod Q×2

where ω′, ω denote fixed choices of non-zero global exterior forms for
∏

i JacXHi
,∏

j JacX′
Hj

respectively.

Proof. Applying Theorem 4.1.1 to the K-isogeny
∏

i JacXHi
→
∏

j JacXH′
j

guaran-

teed by Theorem 3.2.2(ii) gives the following equality of Birch and Swinnerton-Dyer
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invariants

Reg
(∏

j JacXH′
j

)
Reg

(∏
i JacXHi

) =
C
(∏

i JacXHi

)
C
(∏

j JacXH′
j

) · #X
(∏

i JacXHi

)
#X

(∏
j JacXH′

j

) · #∏j JacXH′
j

(K)2tors

#
∏

i JacXHi
(K)2tors

.

Since the regulator and Shafarevich–Tate groups are known to be multiplicative [66],

combining this expression with Lemma 4.2.1 and Theorem 2.3.11 yields the required

identity.

Upon having fixed the global exterior forms ω, ω′, this becomes a local formula

for CΘ(JacX(K) ⊗Z Q) mod Q×2. The dependence of the local terms on this initial

choice could in fact be removed (see [23, Definition 6.16]), but this is not necessary

for this thesis.

Remark 4.2.3. The local terms appearing in Theorem 4.2.2 involve abelian varieties

whose dimensions are (potentially) large. In view of computing these, it is useful to

note that if ωi is a non-zero global exterior form for JacXHi
then

Cv

(∏
i

JacXHi
,
∧
i

ωi

)
=
∏
i

Cv(JacXHi
, ωi),

see [23, Remark 6.3].

An isogeny ϕ : A → B of abelian varieties over a field K naturally induces a

K-linear map ϕ∗ :
∧dimB Ω1(B)→

∧dimA Ω1(A) (see [59, §6.1]).

Example 4.2.4. Let ψ : JacX → JacX1 × JacX2 × JacX0 be the isogeny defined in

Theorem 3.3.2, arising from a Brauer relation for C2 × C2.

We demonstrate how to compute ψ∗ω when ω = P ∗
1 (ω1) ∧ P ∗

2 (ω2) ∧ P ∗
0 (ω0) and

ωi is a global exterior form for JacXi
with Pi : JacX1 × JacX2 × JacX0 → JacXi

the

projection map. This will be used later on, within the proof of Lemma 5.2.6.
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Since, by definition, ψ∗ distributes over wedge products

ψ∗ω = ψ∗P ∗
1 (ω1) ∧ ψ∗P ∗

2 (ω2) ∧ ψ∗P ∗
0 (ω0)

= (P1 ◦ ψ)∗ω1 ∧ (P2 ◦ ψ)∗ω2 ∧ (P0 ◦ ψ)∗ω0

= ((π1)∗)
∗ω1 ∧ ((π2)∗)

∗ω2 ∧ ((π0)∗)
∗ω0.

In practice, it is often useful to note the following lemmata when computing the

local terms in Theorem 4.2.2.

Lemma 4.2.5. Let ϕ : A→ B be an isogeny of abelian varieties defined over a num-

ber field K. Let v be a place of K and let ω be a basis element of
∧dimB Ω1(B/Kv).

Then,
Cv

(
A, ϕ∗ω

)
Cv

(
B,ω

) =
#kerϕ(Kv)

# cokerϕ(Kv)
.

Proof. This is standard, see for example [42, Theorem 7.3].

Lemma 4.2.6. Let A be an abelian variety defined over a number field K and S a

finite set of non-Archimedean places of K. There exists a non-zero global exterior

form ω on A such that |ω/ω0
A/Kv
|v = 1 for each v ∈ S.

Proof. Let ω′ ∈
∧dimAΩ1(A/K) be a basis element. For each place v ∈ S, write

mv = ω′/ω0
A/Kv

∈ Kv. By the Chinese Remainder Theorem, there exists m ∈ K×

such that m ·mv ∈ O×
Kv

for all v ∈ S. Therefore ω = m · ω′ satisfies the lemma.

In all of the examples considered in this thesis, the following version of Theorem

4.2.2 will be applicable and more convenient.

Corollary 4.2.7. Let X be a curve defined over a number field K, G be a finite

group of K-automorphisms of X and Θ =
∑

iHi −
∑

j H
′
j be a Brauer relation for

G. Suppose that there is a unique H ′
j with JacXH′

j

̸= 0, so that Theorem 3.2.2(ii)

gives rise to an isogeny ϕ :
∏

i JacXHi
→ JacX′.
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Assuming that X(JacX) is finite, then for p ∈ Z a prime,

ordp CΘ(JacX(K)⊗Z Q) ≡
∑
v|∞

ordp

(
#kerϕ(Kv)

# cokerϕ(Kv)
·
∏

i µv(XHi
)

µv(X ′)

)

+
∑
v∤∞

ordp

(∏
i cv(JacXHi

)µv(XHi
)

cv(JacX′)µv(X ′)
·

∣∣∣∣∣ ϕ
∗ω0

JacX′/Kv

ω0∏
i JacXHi

/Kv

∣∣∣∣∣
v

)
mod 2.

Proof. Let ω be a non-zero global exterior form for JacX′ which is minimal at all

places v of K such that v | p (such a choice is possible by Lemma 4.2.6) and let

ω′ = ϕ∗ω. The stated formula is then deduced from Theorem 4.2.2 as follows.

By Lemma 4.2.5,

ordp

(∏
v|∞

Cv

(∏
i JacXHi

, ϕ∗ω
)
·
∏

i µv(XHi
)

Cv

(
JacX′ , ω

)
· µv(X ′)

)

=
∑
v|∞

ordp

(
#kerϕ(Kv)

# cokerϕ(Kv)
·
∏

i µv(XHi
)

µv(X ′)

)
.

By the multiplicativity of the Tamagawa number (see [66]),

ordp

(∏
v∤∞

Cv

(∏
i JacXHi

, ϕ∗ω
)
·
∏

i µv(XHi
)

Cv

(
JacX′ , ω

)
· µv(X ′)

)

=
∑
v∤∞

ordp

(∏
i cv(JacXHi

)µv(XHi
)

cv(JacX′)µv(X ′)
·

∣∣∣∣∣ ϕ∗ω

ω0∏
i JacXHi

/Kv

∣∣∣∣∣
v

·

∣∣∣∣∣ω
0
JacX′/Kv

ω

∣∣∣∣∣
v

)
.

Finally, if v ∤ p∞ then ordp(| · |v) = 0, and if v | p then by the assumptions on ω we

see that
∣∣ω0

JacX′/Kv
/ω
∣∣
v
= 1 and

∣∣∣∣∣ ϕ∗ω

ω0∏
i JacXHi

/Kv

∣∣∣∣∣
v

=

∣∣∣∣∣ ϕ∗ω

ϕ∗ω0
JacX′/Kv

·
ϕ∗ω0

JacX′/Kv

ω0∏
i JacXHi

/Kv

∣∣∣∣∣
v

=

∣∣∣∣∣ ϕ
∗ω0

JacX′/Kv

ω0∏
i JacXHi

/Kv

∣∣∣∣∣
v

.
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We now explain how we obtain a local formula for the parity of the rank from

Corollary 4.2.7 in the settings discussed in §3.3 and §3.4.

4.3 Rank parity formulae for C2 × C2

Recall the set up of §3.3. In particular, K is a field of characteristic 0 and

X : {y2 = f1(x), z
2 = f2(x)}

admits an action of C2 × C2 = ⟨τ1, τ2⟩ where f1(x), f2(x) ∈ K[x] are such that

f1(x)f2(x) is separable. We additionally define

X1 : y
2 = f1(x), X2 : z

2 = f2(x), X0 : w
2 = f1(x)f2(x).

Lemma 4.3.1. Let K be a number field and Θ = ⟨τ1⟩+⟨τ2⟩+⟨τ1τ2⟩−2C2×C2−{1}.

Then,

CΘ(JacX(K)⊗Z Q) = 2rk(JacX) = 2rk(JacX1
)+rk(JacX2

)+rk(JacX0
).

Proof. Write JacX(K)⊗ZQ = χ⊕n1
+,+⊕χ⊕n2

+,−⊕χ⊕n3
−,+⊕χ⊕n4

−,− for the decomposition into

irreducible characters of C2 × C2, where the subscripts denote the images of τ1, τ2

respectively. Taking dimensions gives that n1+n2+n3+n4 = rk(JacX). Using that

the rank is invariant under isogeny, this is equal to rk(JacX1)+rk(JacX2)+rk(JacX0).

The result then follows by Lemma 2.6.4 and Example 2.6.3.

Definition 4.3.2. Let K be a local field of characteristic 0 and ϕ : JacX1 × JacX2 ×

JacX0 → JacX be the K-isogeny constructed in Theorem 3.3.2. We define the local

invariant λK(f1, f2) to be



2deg f1 deg f2+1 K ≃ C,

#kerϕ|(JacX1
×JacX2

×JacX0
)(K)◦

nJacX1
nJacX2

nJacX0

nJacX

µ(X1)µ(X2)µ(X0)
µ(X)

K ≃ R,

c(JacX1
)c(JacX2

)c(JacX0
)

c(JacX)
µ(X1)µ(X2)µ(X0)

µ(X)
K/Qp finite, p ̸= 2,

c(JacX1
)c(JacX2

)c(JacX0
)

c(JacX)
µ(X1)µ(X2)µ(X0)

µ(X)

∣∣∣ ϕ∗ω0
JacX/K

ω0
JacX1

×JacX2
×JacX0

/K

∣∣∣
K

K/Q2 finite.
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Theorem 4.3.3. Let K be a number field and X1 : y2 = f1(x), X2 : z2 = f2(x),

X0 : w
2 = f1(x)f2(x) where f1(x), f2(x) ∈ K[x] are such that f1(x)f2(x) is separable.

Assuming that X(JacX1), X(JacX2), X(JacX0) are finite,

rk(JacX1) + rk(JacX2) + rk(JacX0) ≡
∑

v place of K

ord2 λv(f1, f2) mod 2

where λv(f1, f2) is as in Definition 4.3.2.

Proof. Let G = C2 ×C2, Θ = ⟨τ1⟩+ ⟨τ2⟩+ ⟨τ1τ2⟩ − 2G− {1} and p = 2. Combining

Corollary 4.2.7 and Lemma 4.3.1 gives a modulo 2 formula for rk(JacX1)+rk(JacX2)+

rk(JacX0). That the terms on the right-hand-side of this formula are congruent to

ord2 λv(f1, f2) is argued case-by-case.

When Kv
∼= C, this holds since #cokerϕ(C) = 1, #kerϕ(C) = 2deg f1 deg f2+1 ·□

by Corollary 3.3.3 and µ = 1 (see Remark 2.3.14).

When Kv
∼= R, [24, Lemma 3.4] converts the kernel/cokernel contribution into

the required form.

Finally, when Kv/Qp we use that ord2(| · |v) = 0 for odd p.

Example 4.3.4. Let K = Q(
√
−19), f1(x) = x and f2(x) = −27x2+ 35

2
x− 43

16
. Then

X1 : y
2 = f1(x), X2 : z

2 = f2(x) have genus 0 and

X0 : w
2 = −27x3 + 35

2
x2 − 43

16
x, X : z2 = −27y4 + 35

2
y2 − 43

16

and have genus 1 with JacX : Z2 = Y 3 − 31779Y − 2179170 (by Lemma 2.1.6).

First note that, µv(X0) = µv(X) = 1 (by Remark 2.3.13) and µv(X1) =

µv(X2) = 1 (X1, X2 have a K-point ⇒ a Kv rational divisor of any degree) at

each place v of K. Using that X0, JacX have good reduction away from v | 3 · 43,

Theorem 4.3.3 reduces to

rk(X0) = rk(JacX) ≡ ord2 λ∞(x, f2) +
∑

v|2,3,43

ord2 λv(x, f2) mod 2

where ∞ denotes the unique place of K whose completion is C. We proceed by
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computing the terms on the right-hand side.

Since deg f1 deg f2 = 2, ord2 λ∞(x, f2) ≡ 1 mod 2.

Let v be the unique place above 2 (this is inert in K). Using that X0 and JacX

have good reduction at v and that the residue field of Kv has size 4,

ord2 λv(x, f2) = ord2

(
|ϕ∗ω0

JacX
/ω0

X0
|v
)
≡ 0 mod 2.

Now let v be the unique place above 3 (this is also inert in K). Since cv(X0) = 6

and cv(JacX) = 3 (as computed in Sage [63]), ord2 λv(x, f2) ≡ 1 mod 2.

Finally, let v1, v2 | 43 (this splits in K) be distinct. Then Kv1
∼= Kv2 and so

ord2 λv1(x, f2) + ord2 λv2(x, f2) ≡ 0 mod 2.

In summary, if X(X0) is finite then by Theorem 4.3.3,

rk(X0) = rk(JacX) ≡ 1 + 1 ≡ 0 mod 2.

Remark 4.3.5. In general, such a computation would require the local data attached

to hyperelliptic and bihyperelliptic curves, not just elliptic curves. In many cases we

can compute the Tamagawa numbers for these using Theorem 2.3.3 and Theorems

2.4.9 and 2.4.14.

4.4 Rank parity formulae for S3

Recall the set up of §3.4. In particular, K is a field of characteristic 0 and

X : {y2 = f(x), ∆2 = g(y2)}

admits an action of S3 = ⟨σ, τ⟩ where f(x) = x3 + ax + b ∈ K[x] is a separable

cubic and g(y2) = −27y4 + 54by2 − (4a3 + 27b2) ∈ K[y]. We assume that a ̸= 0 to

additionally define genus 1 curves

E : y2 = f(x), D : ∆2 = g(y2).
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Lemma 4.4.1. Let K be a number field and Θ = 2⟨τ⟩+ ⟨σ⟩ − 2S3 − {1}. Then,

CΘ(JacX(K)⊗Z Q) = 3rk(E)+rk(JacD).

Proof. Write JacX(K) ⊗Z Q = 1⊕n1 ⊕ ϵ⊕n2 ⊕ ρ⊕n3 for the decomposition into irre-

ducible representations of S3, where ϵ has dimension 1 and ρ has dimension 2. By

[18, Example 1.5],

CΘ(1) = CΘ(ϵ) = CΘ(ρ) = 3

and so Lemma 2.6.4 yields that CΘ(JacX(K) ⊗Z Q) = 3n1+n2+n3 . Applying Lemma

2.1.14 with H = ⟨τ⟩ and taking dimensions immediately gives that rk(E) = n1 + n3

(since H fixes a 1 dimensional subspace of ρ). Similarly, letting H = ⟨σ⟩ gives that

rk(JacD) = n1 + n2 and letting H = S3 gives that 0 = rk(JacP1) = n1. The result

then follows.

Definition 4.4.2. Let K be a local field of characteristic 0 and ϕ : E×E× JacD →

JacX be the K-isogeny constructed in Theorem 3.4.3. We define the local invariant

λK(E) to be 

1 K ≃ C,

#kerϕ(K) K ≃ R,

c(JacD)
c(JacX)

K/Qp finite, p ̸= 3,

c(JacD)
c(JacX)

∣∣∣ ϕ∗ω0
JacX/K

ω0
E×E×JacD/K

∣∣∣
K
K/Q3 finite.

Remark 4.4.3. Let ϕ′ : E ×E × JacD → JacX be any K-isogeny. We could instead

define an invariant λK(E, ϕ′) to be as above when K ∼= R or K/Qp finite (replacing

ϕ by ϕ′) and equal to deg ϕ′ when K ∼= C. The following theorem would still hold

upon replacing λK(E) by λK(E, ϕ′).

Theorem 4.4.4. Let K be a number field and E : y2 = x3 + ax+ b (with a ̸= 0) an

elliptic curve over K. Let D : ∆2 = −27y4 + 54by2 − (4a3 + 27b2).

Assuming that X(E), X(JacD) are finite,

rk(E) + rk(JacD) ≡
∑

v place of K

ord3 λv(E) mod 2



4.4. Rank parity formulae for S3 80

where λv(E) is as in Definition 4.4.2.

Proof. Let G = S3, Θ = 2⟨τ⟩+ ⟨σ⟩−2G−{1} and p = 3. Combining Corollary 4.2.7

and Lemma 4.4.1 gives a modulo 2 formula for rk(E)+rk(JacD). We now argue that

the terms on the right-hand-side of this formula are congruent to ord3 λv(E). First

note that ord3(µv) = 0 since µv = 1 or 2.

When Kv
∼= C, this holds since #cokerϕ(C) = 1 and #kerϕ(C) = 9 by Theo-

rem 3.4.3.

When Kv
∼= R, apply [24, Lemma 3.4] and use that ord3(nA) = 0 for any

abelian variety A/Kv to see that ord3(
#kerϕ(Kv)

# cokerϕ(Kv)
) = ord3(#kerϕ|(E×E×JacD)(Kv)◦) =

ord3(#kerϕ(Kv)).

Finally, when Kv/Qp we use that ord3(c(E)
2) ≡ 0 mod 2 and ord3(| · |v) = 0

when p ̸= 3.

By Lemma 3.4.2, X has genus 3 whenever a ̸= 0. At present, the theory of

non-hyperelliptic genus 3 curves over p-adic fields is limited and so determining their

local invariants, such as Tamagawa numbers, can pose a challenge. Recall that we

exhibited a bihyperelliptic model for X, allowing us to study the curve locally via

[27]. Since we are only interested in the 3-part of its Tamagawa number (c.f. Theorem

4.4.4), we note the following.

Lemma 4.4.5. Let K/Qp be a finite extension, E : y2 = f(x) := x3 + ax+ b ∈ K[x]

(with a ̸= 0), C : W 2 = −(3x2+4a)f(x) and X : {y2 = f(x), ∆2 = −27y4+54by2−

(4a3 + 27b2)}. Then

ord3 c(JacX) = ord3 c(E)c(JacC).

Proof. As observed in Lemma 3.4.2, there’s an isogeny E×JacC → JacX of degree 8

(by Corollary 3.3.3). A straightforward generalisation of [21, Lemma 6.2] gives that

c(JacX) = 2n · c(E)c(JacC) for some n ∈ Z.

Example 4.4.6. Let K = Q(
√
−19) and fix f(x) = x3 − 1

3
x+ 35

108
. Then

E : y2 = x3 − 1

3
x+

35

108
, D : ∆2 = −27y4 + 35

2
y2 − 43

16
,
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and JacD : Z2 = Y 3 − 31779Y − 2179170 (by Lemma 2.1.6).

Noting that E, JacD, JacX have good reduction when v ∤ 3 · 43, Theorem 4.4.4

says that

rk(E) + rk(JacD) ≡
∑
v|3,43

ord3 λv(E) mod 2

since ord3 λ∞(E) = 0 (where ∞ denotes the unique place of K whose completion is

C). We proceed by computing the terms on the right-hand side.

Let v be the unique place above 3 (this is inert in K). Since cv(JacD) = 3 it

remains to compute ord3 cv(JacX) = ord3 cv(E)cv(JacC) (as in Lemma 4.4.5). We

have cv(E) = 1 and cv(JacC) = 2, where the Tamagawa number for C has been

computed using [22, Theorem 8.5] with ΣC/Kv =
+

1 −1. Therefore ord3 λv(E) ≡

1 mod 2.

As in Example 4.3.4, 43 splits in K and so ord3 λv1(E)+ ord3 λv2(E) ≡ 0 mod 2

where v1, v2 | 43 are distinct.

To summarise, if X(E) and X(JacD) are finite then by Theorem 4.4.4,

rk(E) + rk(JacD) ≡ 1 mod 2.

In light of Example 4.3.4, where we showed that rk(JacD) ≡ 0 mod 2, we can in

fact assert that rk(E) is odd (conditional on the finiteness of X(E) and X(JacD))

and that E has infinitely many K-points.

This isn’t an isolated example, we can always apply both Theorem 4.3.3 and

Theorem 4.4.4 to compute the parity of the rank of a general elliptic curve.

Remark 4.4.7. Recall that D : ∆2 = −27y4 + 54by2 − (4a3 + 27b2). By Example

3.3.5,

JacD : Z2 = Y 3 − 34992(a3 + 9b2)Y − 11337408(a3 + 6b2)

admits a 2-isogeny. Mapping the 2-torsion point (−324b, 0) to (0, 0) and replacing

Y, Z by 62Y, 63Z we see that

JacD : Z2 = Y 3 − 27bY 2 − 27a3Y.
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Corollary 4.4.8. Let E : y2 = x3 + ax + b (with a ̸= 0) be an elliptic curve over

a number field K. Let g(x) = −27x2 + 54bx − (4a3 + 27b2). Assuming that X(E),

X(Jac∆2=g(y2)) are finite,

rk(E) ≡
∑

v place of K

ord3 λv(E) + ord2 λv(g(x), x) mod 2

where λv(E) is as in Definition 4.4.2 and λv(g(x), x) is as in Definition 4.3.2.

Proof. By Theorem 4.4.4,

rk(E) + rk(Jac∆2=g(y2)) ≡
∑

v place of K

ord3 λv(E) mod 2.

Applying Theorem 4.3.3 with f1(x) = g(x) and f2(x) = x gives that

rk(Jac∆2=g(y2)) ≡ rk(Jacw2=xg(x)) ≡
∑

v place of K

ord2 λv(g(x), x) mod 2

since Jac∆2=g(y2) is isogenous to Jacw2=xg(x). Summing these two expressions gives

the desired formula.

4.5 Selmer group analogue

The formulae exhibited in the previous sections all rely on the finiteness of the

Shafarevich–Tate group. Here we state an analogue for Selmer groups (whose proof

will be omitted), where this assumption can be dropped.

Theorem 4.5.1 ([23], Theorem 7.4). Let X be a curve defined over a number field

K, G be a finite group of K-automorphisms of X and Θ =
∑

iHi −
∑

j H
′
j be a

Brauer relation for G. For p ∈ Z a prime,

ordp CΘ(Xp(JacX)) ≡
∑

v place of K

ordp

(
Cv(
∏

i JacXHi
, ω) ·

∏
i µv(XHi

)

Cv(
∏

j JacXH′
j

, ω′) ·
∏

j µv(XH′
j
)

)
mod 2

where ω, ω′ denote fixed choices of non-zero global exterior forms for
∏

i JacXHi
,∏

j JacXH′
j

respectively.
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Of particular interest to us are the analogues this provides of the explicit local

formulae given in §4.3 and §4.4.

Theorem 4.5.2. Let K be a number field and X1 : y2 = f1(x), X2 : z2 = f2(x),

X0 : w
2 = f1(x)f2(x) where f1(x), f2(x) ∈ K[x] are such that f1(x)f2(x) is separable.

Then

rk2(JacX1) + rk2(JacX2) + rk2(JacX0) ≡
∑

v place of K

ord2 λv(f1, f2) mod 2

where λv(f1, f2) is as in Definition 4.3.2.

Theorem 4.5.3. Let K be a number field and E : y2 = x3 + ax+ b (with a ̸= 0) an

elliptic curve over K. Let D : ∆2 = −27y4 + 54by2 − (4a3 + 27b2). Then

rk3(E) + rk3(JacD) ≡
∑

v place of K

ord3 λv(E) mod 2

where λv(E) is as in Definition 4.4.2.

As before, these instances of Theorem 4.5.1 are deduced by looking at Brauer

relations in the groups C2×C2 and S3. As in Corollary 4.4.8, we can apply them both

with relevant assumptions on the Shafarevich–Tate group to formulate an arithmetic

analogue of the parity conjecture for elliptic curves, i.e. an expression in local data

for the parity of the rank.

Using Brauer relations in C2 × C2, D2p (for p a prime) and D8, this same

procedure allows us to formulate an arithmetic analogue of the parity conjecture

for arbitrary Jacobians. Once again, the proof of this relies on the finiteness of

the Shafarevich–Tate group, but bypasses the conjectured analytic continuation of

L-functions, their conjectured functional equations and the Birch–Swinnerton-Dyer

conjecture (all of which are currently required for the parity conjecture to hold). We

will not discuss the proof here and instead refer the reader to [23, Theorem 8.16(i)].

These formulae provide starting points for proving new cases of the parity con-

jecture, the focus of the remainder of this thesis.



Chapter 5

The Parity Conjecture for Elliptic

Curves

In the previous chapter, Corollary 4.4.8 detailed a local formula for the parity of the

rank of an arbitrary elliptic curve (assuming the finiteness of the Shafarevich–Tate

group) which resembles the parity conjecture. Recall,

Conjecture (The parity conjecture). Let E be an elliptic curve over a number field

K. Then

(−1)rk(E) =
∏

v place of K

wv(E).

At present, there is no unconditional proof of this conjecture. For an arbitrary

elliptic curve, it is known to be true under the assumption that X(E/K(E[2])) has

finite 2- and 3-primary parts [20, Theorem 1.2]. In this chapter we provide a new

proof, under different assumptions on the Shafarevich–Tate group.

Specifically, we compare the local terms λv(E) appearing in Theorem 4.5.3,

which control the parity of the 3∞-Selmer rank of E × JacD (D is a genus 1 curve

closely related to E), to the product of local root numbers wv(E)wv(JacD). It turns

out that these terms are not equal place-by-place and we provide a description of

their difference (in most cases) in Theorem 5.1.2. An immediate consequence of

this comparison is that the terms match globally (i.e. when summing/taking the

product over all places of K). We therefore deduce that the 3-parity conjecture

holds for E×JacD (=Theorem 5.1.3). The parity conjecture for E then follows from
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known cases of the 2-parity conjecture and imposing relevant assumptions on X(E),

X(JacD) (=Theorem 5.1.5).

5.1 Global results

We adopt the notation of §3.4 and §4.4, which we recall below.

Notation 5.1.1. Let K be a field of characteristic 0 and f(x) = x3 + ax+ b ∈ K[x]

be a separable cubic. Let g(y2) = −27y4 + 54by2 − (4a3 + 27b2) ∈ K[y] be the

discriminant of f(x) − y2 (viewed as a polynomial in x). Assume that a ̸= 0 and

define curves over K by

E : y2 = f(x), D : ∆2 = g(y2), X : {y2 = f(x), ∆2 = g(y2)}.

Let ϕ : E × E × JacD → JacX be the K-isogeny constructed in §3.4.

Recall that E and JacD are elliptic curves and X is a genus 3 curve (see Lemma

3.4.2). When K is a number field, Theorem 4.5.3 gives a formula for the parity of

the 3∞-Selmer rank of E × JacD. From this, we are able to deduce the 3-parity

conjecture via the following result.

Theorem 5.1.2 (Local Theorem I). Let E : y2 = x3 + ax + b (with a ̸= 0) be an

elliptic curve over a local field K. Whenever

(i) K ∼= C,

(ii) K/Qp is finite, or

(iii) K ∼= R and a, b ∈ Q are such that E/Q(a, b) does not admit a 3-isogeny,

we have that

(−1)ord3λK(E)+ord3|3|K = wK(E)wK(JacD)

where D : ∆2 = −27y4 + 54by2 − (4a3 + 27b2) and λK(E) is as in Definition 4.4.2.

We postpone the proof of this theorem to the subsequent section and first present

its global consequences.
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Theorem 5.1.3. Let E : y2 = x3 + ax + b be an elliptic curve over a number field

K and let D : ∆2 = −27y4 + 54by2 − (4a3 + 27b2). The 3-parity conjecture holds for

E × JacD.

Proof. If a = 0 then E admits a 3-isogeny andD has genus 0. The 3-parity conjecture

is known to hold for such elliptic curves by [20, Theorem 1.8] and so we’re done (since

JacD = 0).

If a ̸= 0 and E admits a 3-isogeny then 3x4+6ax2− 12bx− a2 (the 3rd division

polynomial for E) has a root r ∈ K×. Since JacD : Z2 = Y 3 − 27bY 2 − 27a3Y

(by Remark 4.4.7) has 3rd division polynomial x4 − 36bx3 − 54a3x2 − 243a6 with

root −3a2/r ∈ K, we see that JacD also admits a 3-isogeny. Again, the 3-parity

conjecture is then known to hold for both E and JacD.

If a ̸= 0 and E does not admit a 3-isogeny then Theorem 5.1.2 says that, for

each place v of K, (−1)ord3λv(E)+ord3|3|v = wv(E)wv(JacD). The result then follows

upon taking the product over all such v and then invoking Theorem 4.5.3 and the

fact that
∏

v |3|v = 1 (the product formula for absolute values on K).

Corollary 5.1.4. Let E : y2 = x3 + ax + b be an elliptic curve over a number field

K and let D : ∆2 = −27y4 + 54by2 − (4a3 + 27b2). Then

(−1)rk3(E)+rk3(JacD)+rk2(JacD) = w(E).

Proof. By Remark 4.4.7, JacD admits a 2-isogeny and so it is known to satisfy the

2-parity conjecture ([20, Theorem 1.8]).

Imposing certain assumptions on the Shafarevich–Tate group we are now able

to deduce that the parity conjecture holds for elliptic curves.

Theorem 5.1.5. Let E : y2 = f(x) be an elliptic curve over a number field K. Let

D : ∆2 = g(y2) where g(y2) ∈ K[y] is the discriminant of f(x)− y2. Assuming that

X(E) has finite 3-primary part and X(JacD) has finite 2- and 3-primary parts, the

parity conjecture holds for E.
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Remark 5.1.6. The assumption that the 2- and 3-primary parts of X(JacD)

are finite could in fact be replaced by the weaker assumption that rk3(JacD) ≡

rk2(JacD) mod 2.

5.2 Proof of Local Theorem I

We now turn our attention to proving Theorem 5.1.2.

Proposition 5.2.1. Theorem 5.1.2 holds when K ∼= C.

Proof. Clearly (−1)ord3 λK(E) = (−1)ord3 |3|K = +1 and since E and JacD are elliptic

curves, wK(E) = wK(JacD) = −1 (Lemma 2.3.4).

Lemma 5.2.2. Let K/Qp be finite. It is sufficient to prove Theorem 5.1.2 when

a, b ∈ OK.

Proof. Let E be as in the statement of Theorem 5.1.2 and let u ∈ K× be such

that u4a, u6b ∈ OK. Let E ′ : y2 = x3 + u4ax + u6b ∈ OK[x] and define D′, X ′ as

usual. Then X ∋ (x, y,∆) 7→ (u−2x, u−3y, u−6∆) ∈ X ′ is an isomorphism, giving

that E ∼= E ′, D ∼= D′ too. Therefore, proving Theorem 5.1.2 for E is equivalent to

proving it for E ′.

Proposition 5.2.3. Theorem 5.1.2 holds when K/Qp is finite, p ̸= 2, 3 and E ×

JacD/K is semistable.

Proof. Below, all equivalences are taken modulo π, where π is a uniformiser of K.

We write v for a normalised valuation on K, i.e. v(π) = 1. We may assume by

Lemma 5.2.2 that a, b ∈ OK. Consider the model JacD : Z2 = Y 3 − 27bY 2 − 27a3Y

(given in Remark 4.4.7) and let C : W 2 = −(3x2 + 4a)(x3 + ax + b). By Lemma

4.4.5, it suffices to show that

(−1)ord3(cK(JacD)cK(E)cK(JacC)) = wK(E)wK(JacD).

Let d := 4a3 + 27b2 and note that ∆E = −16d, ∆JacD = −314928a6d and

∆C = 12288ad3. Since E is semistable, we can assume that a ≡ 0 ⇒ b ̸≡ 0 (if not,

we can perform a change of variables so that this is satisfied).
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We use Tate’s algorithm ([65] or [61, Chapter IV, §9]) to compute cK(E),

cK(JacD), Theorem 2.4.9 to compute cK(JacC) from ΣC/K and Theorem 2.3.6 for

wK(E), wK(JacD).

Suppose a, d are units. E, JacD and JacC have good reduction, so cK(JacD) =

cK(E) = cK(JacC) = 1 and wK(E) = wK(JacD) = +1.

Suppose a ≡ 0. Then b, d are units and so cK(E) = 1, wK(E) = +1. Observe

that the reductions of JacD and C are Z2 = Y 2(Y − 27b) and W 2 = −3x2(x3 + b)

respectively with ΣC/K =
ϵ

v(a)
0
. If −3b is a square modulo π then cK(JacD) =

6v(a), cK(JacC) = v(a) (since ϵ = +) and wK(JacD) = −1. If −3b is not a square

modulo π then cK(JacD) = 2, wK(JacD) = +1 and cK(JacC) = gcd(v(a), 2) (since

ϵ = −).

Suppose d ≡ 0. Then a, b are units. Observe that the reductions of E, JacD and

C are y2 = (x− 3b
a
)(x+ 3b

2a
)2, Z2 = Y (Y − 27

2
b)2 and W 2 = −3(x− 3b

a
)2(x+ 3b

2a
)2(x+ 3b

a
)

respectively with ΣC/K =
ϵ

v(d)

ϵ

2v(d)
0
. If 6b is a square modulo π then cK(E) =

cK(JacD) = v(d), cK(JacC) = 2v(d)2 (since ϵ = +) and wK(E) = wK(JacD) = −1. If

6b is not a square modulo π then cK(E) = cK(JacD) = gcd(v(d), 2) (since ϵ = −),

cK(JacC) = 2gcd(v(d), 2) and wK(E) = wK(JacD) = +1.

Proposition 5.2.4. Theorem 5.1.2 holds when K ∼= R, a, b ∈ Q and E/Q(a, b) does

not admit a 3-isogeny.

Proof. Note that ord3|3|K = 1. Since E and JacD are elliptic curves, wK(E) =

wK(JacD) = −1 (see Lemma 2.3.4). By definition of λK(E), it remains to compute

(−1)ord3#kerϕ(K).

It follows from the proof of Theorem 3.4.3 that kerϕ ≤
{
(P,−P,R) : P ∈

E[3], R ∈ JacD[3]
}

and #kerϕ = 9. Consider the projection f : kerϕ → E[3] onto

the first coordinate. Since E does not admit a Q(a, b)-rational 3-isogeny, E[3] has

no non-trivial subgroup which is stable under GQ(a,b), therefore f(kerϕ) = 0 or E[3].

By this observation, either kerϕ =
{
(0, 0, R) : R ∈ JacD[3]

}
or kerϕ ∼= E[3] and in

both cases #kerϕ(K) = 3. In particular, (−1)ord3#kerϕ(K) = −1.

Lemma 5.2.5. Theorem 5.1.2 holds when K/Q2 is finite and E : y2 = x3− 1
3
x+ 35

108
.



5.2. Proof of Local Theorem I 89

Proof. Note that ord3|3|K = 0. E, JacD and JacX all have good reduction over K,

so wK(E) = wK(JacD) = +1 and λK(E) = 1.

Let Y/K be a curve over a local field. Write ω0
Y for the wedge product of a basis

of integral differentials of Y , i.e. an OK-basis of the global sections of the relative

dualising sheaf of a regular model of Y , as an OK lattice in Ω1(Y ) (see [38]).

Lemma 5.2.6. Let K/Q3 be finite. Then∣∣∣∣∣ ϕ∗ω0
JacX/K

ω0
E×E×JacD/K

∣∣∣∣∣
K

=

∣∣∣∣∣ 3γαβ
∣∣∣∣∣
K

where α, β, γ ∈ K are such that ω0
E = αdx

y
, ω0

D = β dy
∆

and ω0
C = γ(dx

W
∧ xdx

W
) for

C : W 2 = −(3x2 + 4a)(x3 + ax+ b).

Proof. We first observe that∣∣∣∣∣ ϕ∗ω0
JacX/K

ω0
E×E×JacD/K

∣∣∣∣∣
K

= 9

∣∣∣∣∣ ω0
JacX/K

(ϕ∨)∗ω0
E×E×JacD/K

∣∣∣∣∣
K

using the description of ϕ∨ ◦ ϕ given in Theorem 3.4.3. Let ψ =
(
(π2)∗, (π0)∗

)
:

JacX → E × JacC denote the isogeny of degree 8 identified in Theorem 3.3.2 (where

we let f1(x) = −(3x2 + 4a), f2(x) = x3 + ax + b so that X1 = P1, X2 = E and

X0 = C). Then∣∣∣∣∣ ω0
JacX/K

(ϕ∨)∗ω0
E×E×JacD/K

∣∣∣∣∣
K

=

∣∣∣∣∣ ω0
JacX

ψ∗ω0
E×JacC

·
ψ∗ω0

E×JacC

(ϕ∨)∗ω0
E×E×JacD

∣∣∣∣∣
K

where we observe that, by [21, Lemma 4.3], the first term is a unit. We compute

ψ∗ω0
E×JacC

= ψ∗(ω0
E ∧ ω0

C)

= ((π2)∗)
∗ω0

E ∧ ((π0)∗)
∗ω0

C

= αγ
(dx
y
∧ dx
W
∧ xdx

W

)
= αγ

(dx
y
∧ (3x2 + a)dx

y∆
∧ x(3x

2 + a)dx

y∆

)



5.2. Proof of Local Theorem I 90

where the first equality uses that the Néron model respects products [54, Propo-

sition 9.6.8] and that ω0
JacC

= ω0
C [67, Lemma 9], and the second uses Example

4.2.4. Similarly, (ϕ∨)∗(ω0
E×E×JacD

) = ((πE)∗)
∗ω0

E ∧ ((πE)∗ ◦ σ∗)∗ω0
E ∧ ((πE)∗)

∗ω0
D =

α2β
(
dx
y
∧ dx′

y
∧ dy

∆

)
where x′ = −x

2
+ 6ax2+9(y2−b)x+4a2

2∆
(as in the definition of σ).

Now using the identities 2ydy = (3x2 + a)dx and ∆d∆ = −54y(y2 − b)dy, we

see that

dx′

y
= −dx

2y
+

3x(3x2 + a)dx

2y∆
and

dy

∆
=

(3x2 + a)dx

2y∆
.

Therefore dx
y
∧ dx′

y
∧ dy

∆
= −3

4
· dx

y
∧ (3x2+a)dx

y∆
∧ x (3x2+a)dx

y∆
and the result follows.

Lemma 5.2.7. Let E : y2 = x3 + ax + b an elliptic curve over a finite extension

K/Qp with a ̸= 0. There is an ϵ > 0 such that changing a, b to any a′ ̸= 0, b′ with

|a− a′|K, |b− b′|K < ϵ does not change wK(E), wK(JacD) and ord3 λK(E) mod 2.

Proof. Root numbers are functions of VℓE = TℓE ⊗Qℓ, so their local constancy can

be seen from that of the Tate module [34, p. 569]. The same argument applies

to the 3-part of the Tamagawa number when p ̸= 3 since, for A/K an abelian

variety, ord3 cK(A) = ord3#Φ(A)[3∞] and by [31] (or see [33, §2]) Φ(A)[3∞] ∼=

H1(IK, T3(A))tors (Φ denotes the group of connected components of the special fi-

bre of the Néron model of A over OK).

Now consider λK(E) when p = 3. By Lemmata 4.4.5 and 5.2.6 (and using

their notation) we need to show that ord3 cK(E), ord3 cK(JacD), ord3 cK(JacC) and

ord3|3γ/αβ|K are locally constant. For the terms concerning E and JacD this follows

from Tate’s algorithm [65] (or [61, Chapter IV, §9]). For the terms concerning JacC

this follows from the proof of [24, Lemma 11.2].

With this in mind, we are now able to prove the remaining cases of Theorem

5.1.2.

Proposition 5.2.8. Theorem 5.1.2 holds when

1. K/Q3 is finite,

2. K/Q2 is finite,
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3. K/Qp is finite, p ̸= 2, 3 and E × JacD/K is not semistable.

Proof. We deduce these cases from known instances of the 3-parity conjecture. In

particular, we approximate f(x) = x3 + ax+ b ∈ K[x] by a separable cubic f0(x) =

x3 + a0x + b0 ∈ OL[x] with a0 ̸= 0 where L is a totally real field, subject to certain

conditions. Let E0 : y
2 = f0(x) and define D0, ϕ0 for this elliptic curve as usual.

(1). Let L be a totally real number field with a unique prime q | 3 and

with Lq
∼= K (to see that such a field exists, if K = Q3[x]/(h(x)) for some monic

h(x) ∈ Q3[x] then approximate h(x) by h̃(x) ∈ Q[x] which has all real roots; take

L = Q[x]/(h̃(x))). Fix a prime p′ ∤ 2, 3. Choose a0, b0 ∈ OL to be q-adically close to

a, b respectively and r-adically close to −1
3
, 35
108

respectively whenever r | 2. Ensure

that p′ ∤ 4a30 + 27b20 and 3 ∤ #E0(Fp′2) so that E0 does not admit a 3-isogeny (this is

possible since there exists an E0/Fp′ with #E0(Fp′) ≡ 2 mod 3 by [56, Theorem 1a],

[68]). For primes p ∤ 2, 3, ensure that p ∤ b0 whenever p | a0. Theorem 5.1.2 holds for

E0/Lv whenever Lv/Qp is finite and p ̸= 3 (when p ̸= 2, 3 this is Proposition 5.2.3,

when p = 2 this is Lemmata 5.2.5 and 5.2.7), or Lv
∼= R (by Proposition 5.2.4). Since

the 3-parity conjecture is known to hold for E0/L and JacD0/L (by [51, Theorem

E]),

1 = (−1)rk3(E0/L)+rk3(JacD0
/L)w(E0/L)w(JacD0/L)

Thm. 4.5.3
=

∏
v place of L

(−1)ord3λv(E0)wv(E0)wv(JacD0)

= (−1)ord3λq(E0)wq(E0)wq(JacD0) ·
∏

v ̸=q place of L

(−1)ord3|3|v

Lemma 5.2.7
= (−1)ord3λK(E)+ord3|3|KwK(E)wK(JacD).

(2). Let L be a totally real number field with a unique prime q | 2 and with

Lq
∼= K. Fix a prime p′ ∤ 2, 3. Choose a0, b0 ∈ OL to be q-adically close to a, b

respectively. Ensure that p′ ∤ 4a30+27b20 and 3 ∤ #E(Fp′2). For primes p ∤ 2, 3, ensure

that p ∤ b0 whenever p | a0. Theorem 5.1.2 holds for E0/Lv whenever Lv/Qp is finite

and p ̸= 2 (when p ̸= 2, 3 this is Proposition 5.2.3, when p = 3 this is (1)), or Lv
∼= R
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(by Proposition 5.2.4). Arguing as above proves that Theorem 5.1.2 must also hold

for E0/Lq and hence E/K.

(3). Argue as in (2), replacing 2 by p and the condition p ∤ 2, 3 by p ∤ 2, 3, p.

Proof of Theorem 5.1.2. This is Proposition 5.2.1 when K ∼= C, 5.2.8(2) when K/Q2,

5.2.8(1) when K/Q3, Propositions 5.2.3 and 5.2.8(3) when K/Qp for p ̸= 2, 3 and

Proposition 5.2.4 when K ∼= R.



Chapter 6

The p-Parity Conjecture for Elliptic

Curves over Totally Real Fields

In Chapter 5, we saw an instance in which the formulae developed in Chapter 4

can be used to prove the parity conjecture. In particular, we proved that the parity

conjecture holds for elliptic curves over number fields under certain assumptions on

the Shafarevich–Tate group (=Theorem 5.1.5).

Here we demonstrate that these assumptions can be weakened when the under-

lying number field is totally real, by completing the proof of the p-parity conjecture

over such fields. We address the case when p = 2 and the elliptic curve has complex

multiplication (=Theorem 6.4.1), with the other cases being dealt with in [19], [20],

[48], [49], [50], [51].

To achieve this result we first prove new cases of the 2-parity conjecture over

general number fields for abelian surfaces isomorphic to a product of certain elliptic

curves, and for elliptic curves whose 2-torsion groups are isomorphic as Galois mod-

ules (=Theorems 6.3.1, 6.3.2, 6.3.4). As in the previous chapter, these global results

are deduced from a comparison of local invariants (=Theorem 6.1.8), specifically root

numbers and the terms appearing in Theorem 4.5.2 when f1(x) is a monic cubic and

f2(x) = x.

The results of this chapter can also be found in [28].
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6.1 Strategy

Notation 6.1.1. Let K be a field of characteristic 0 and f(x) ∈ K[x] be a separable

monic cubic with roots α1, α2, α3 ∈ K
×. Define curves over K by

E : y2 = f(x), E ′ : w2 = xf(x), X : y2 = f(x2)

and let ϕ : E × JacE′ → JacX be the K-isogeny constructed in Theorem 3.3.2 (by

letting f1(x) = f(x) and f2(x) = x).

Observe that E and JacE′ are elliptic curves and X is a genus 2 curve. Moreover,

JacE′ has the following nice model.

Remark 6.1.2. The map x0 = −α1α2α3

x
, w0 =

α1α2α3w
x2 gives

JacE′ : w2
0 = (x0 + α2α3)(x0 + α1α3)(x0 + α1α2).

Theorem 4.5.2 (again with f1(x) = f(x) and f2(x) = x) gives the following

formula for the parity of the 2∞-Selmer rank of E × JacE′ .

Theorem 6.1.3. Let K be a number field and E : y2 = f(x), E ′ : w2 = xf(x) for

f(x) ∈ K[x] a separable cubic with f(0) ̸= 0. Then,

rk2(E) + rk2(JacE′) ≡
∑

v place of K

ord2 λv(f, x) mod 2

where λv(f, x) is as in Definition 4.3.2. Namely, for K a local field and f(x) ∈ K[x]

a separable monic cubic such that f(0) ̸= 0,

λK(f, x) =



24 K ≃ C,

#kerϕ|(E×JacE′ )(K)◦
nEnJacE′
nJacX

µ(X)
K ≃ R,

c(E)c(JacE′ )
c(JacX)µ(X)

K/Qp finite, p ̸= 2,

c(E)c(JacE′ )
c(JacX)µ(X)

∣∣∣ ϕ∗ω0
JacX

ω0
E×JacE′

∣∣∣
K

K/Q2 finite.
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Remark 6.1.4. Noting that rk2(E) + rk2(JacE′) = rk2(JacX) (E × JacE′ and JacX

are isogenous), this theorem also provides a local formula for the parity of the 2∞-

Selmer rank of (Jacobians of) genus 2 curves of the form y2 = f(x2).

With this in mind, we compare (−1)ord2λv(f,x) place-by-place to the product of

root numbers wv(E)wv(JacE′) appearing in the analogous statement of the 2-parity

conjecture. As in the previous chapter (c.f. Theorem 5.1.2), it turns out that these

terms are not always equal and we are able to show that they must differ at exactly

an even number of places.

Definition 6.1.5. Let K be a local field of characteristic 0 and let f(x) = x3+ax2+

bx+ c ∈ K[x] be such that c ̸= 0. Write ∆f := 18abc− 4a3c+ a2b2 − 4b3 − 27c2 ̸= 0

for the discriminant of f , L := ab− 9c and define HK(f) to be the following product

of Hilbert symbols

HK(f) =

(b,−c)K · (−2L,∆f )K · (L,−b)K b, L ̸= 0,

(−c,−1)K · (2c,∆f )K otherwise.

Remark 6.1.6. As b or L approach 0, both expressions for HK(f) agree. This can

be seen in the proof of Lemma 6.2.7.

Remark 6.1.7. The invariant L can be written in terms of the roots of f as

L = 8α1α2α3 − (α1 + α2)(α1 + α3)(α2 + α3).

Theorem 6.1.8 (Local Theorem II). Let K be a local field of characteristic 0 and

and E : y2 = f(x), E ′ : w2 = xf(x) for f(x) ∈ K[x] a separable monic cubic with

f(0) ̸= 0. Then

(−1)ord2λK(f,x)HK(f) = wK(E)wK(JacE′)

where λK(f, x) is as in Definition 4.3.2 and HK(f) is as in Definition 6.1.5.

The key, global, consequences of this Theorem are discussed in §6.3 and §6.4.
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6.2 Proof of Local Theorem II

6.2.1 Proof over Archimedean fields

We begin by proving that Theorem 6.1.8 holds when K is an Archimedean local field,

the cases in which we can best visualise λK(f, x).

Proposition 6.2.1. Theorem 6.1.8 holds when K ∼= C.

Proof. Clearly (−1)ord2λK(f,x) = HK(f) = +1 and since E and JacE′ are elliptic

curves, wK(E) = wK(JacE′) = −1 (see Lemma 2.3.4).

Proposition 6.2.2. Theorem 6.1.8 holds when K ∼= R.

Proof. As in the proof of 6.2.1, wK(E)wK(JacE′) = +1. Therefore, we need only

verify that (−1)ord2λK(f,x) = HK(f). Table 6.1 gives the values of nE, nJacE′ , nJacX ,

#kerϕ|(E×JacE′ )(K)◦ , µ(X), λK(f, x) and HK(f) for each possible arrangement of the

real roots of xf(x). In particular, column 2 lists the real roots of xf(x) from smallest

to largest where the roots of f are denoted by red circles ( ) and the root 0 (of x) is

denoted by a blue diamond ( ).

Case Real roots nE nJacE′ nJacX #kerϕ|(E×JacE′ )(K)◦ µ(X) λK(f, x) HK(f)
1 2 2 4 2 1 2 −1
2 2 2 2 1 1 2 −1
3 2 2 1 1 1 4 +1
4 2 2 1 1 1 4 +1
5 1 1 1 2 1 2 −1
6 1 1 1 2 1 2 −1

Table 6.1: Data for Proposition 6.2.2

The contents of columns 3, 4 and 5 are determined using Lemma 2.1.8 and from

observing that nE = nE′ = 2 when f has 3 real roots and 1 otherwise, and that

nX = 3 when f has 3 positive real roots, 2 when f has 2 positive real roots and 1

otherwise.

For column 6 we use the description of kerϕ as given in Lemma 3.3.7, to deduce

that

kerϕ =
{
O,
(
(αi, 0), (−

α1α2α3

αi

, 0)
)

for i = 1, 2, 3
}
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(for example, T = ∅ ⊆ Rx, S = {α1, α2} ⊆ Rf gives (DS, DS) where JacE ∋ DS =

(α1, 0)+(α2, 0)−2∞ = (α3, 0)−∞ and JacE′ ∋ DS = (α1, 0)+(α2, 0)−∞− ι(∞) =

(α3, 0) + (0, 0)−∞− ι(∞) 7→ (−α1α2, 0)−∞JacE′ by Remark 6.1.2).

We count how many elements lie on the identity component of (E × JacE′)(K)

(i.e. each entry of the pair of points lies on the identity component of the correspond-

ing curve). Clearly the point O on E×JacE′ always satisfies this condition. Let α3 be

the largest real root of f , so that (α3, 0) ∈ E(K)◦ and (α1, 0), (α2, 0) /∈ E(K)◦. Now

#kerϕ|(E×JacE′ )(K)◦ is 2 precisely when (−α1α2, 0) ∈ JacE′(K)◦, i.e. when −α1α2 is

the largest real element of T = {−α1α2,−α2α3,−α1α3}, and 1 otherwise. In cases

(1) to (4), T ⊆ R and it can be observed that −α1α2 is the largest precisely when

α1, α2 > 0. In cases (5) and (6), α1 = α2 and so −α1α2 is the only real element of

T , in particular it is the largest real element.

Column 7 keeps track of the deficiency contribution from X, which is 1 since

X(R) is always non-empty.

Column 8 gives the value of λK(f, x).

We now justify the value of HK(f), as given in column 9, via a case-by-case

analysis of the signs of the Hilbert symbol entries.

First observe that when b, L ̸= 0, (L,−b) = (L,−ac) · (ab,−c) since (L, abc) =

(ab,−c) by Lemma 2.7.5(i). Therefore,

HK(f) = (−2L,∆f ) · (L,−ac) · (a,−c).

Since the sign of a is easier to control than that of b, we will use this equivalent

expression whenever b, L ̸= 0.

(1) and (4). ∆f , b, ac > 0. Applying the AM-GM inequality gives that for i ̸= j,

αi + αj > 2
√
αiαj in case (1) and αi + αj > −2

√
αiαj in case (4). In particular,

in case (1) we have L < 0 and HK(f) = −1 and in case (4) we have L > 0 and

HK(f) = +1.

(2). ∆f , c > 0. If b, L ̸= 0 then HK(f) = (L,−a) · (a,−1) which is −1 unless

a, L > 0. Suppose α1 < 0. If a > 0 then α1 + α2, α1 + α3 < 0, α2 + α3 > 0 and so

L < 0 by Remark 6.1.7. If bL = 0 then clearly HK(f) again evaluates to −1.
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(3). ∆f > 0, c < 0. If b, L ̸= 0 then HK(f) = (L, a) which is +1 unless a, L < 0.

Suppose α1, α2 < 0. If a < 0 then α1 + α3, α2 + α3 > 0, α1 + α2 < 0 and so L > 0

by Remark 6.1.7. If bL = 0 then clearly HK(f) again evaluates to +1.

(5). ∆f , c < 0. If b, L ̸= 0 then HK(f) = −(L,−a) which is −1 unless a > 0,

L < 0. Suppose α2 = ᾱ1. If a > 0 then α1 + α2 < 0 and so L > 0 by Remark 6.1.7.

If bL = 0 then clearly HK(f) again evaluates to −1.

(6). ∆f < 0, c > 0. If b, L ̸= 0 then HK(f) = −(−L, a) which is −1 unless

a < 0, L > 0. Suppose α2 = ᾱ1. If a < 0 then α1 + α2 > 0 and so L < 0 by Remark

6.1.7. If bL = 0 then clearly HK(f) again evaluates to −1.

6.2.2 Proof over non-Archimedean fields for nice reduction

types

We now focus on proving that Theorem 6.1.8 holds when K/Qp is a finite extension,

p ̸= 2, and the reduction of xf(x) has at worst one double root.

Lemma 6.2.3. Let K/Qp be a finite extension. It is sufficient to prove Theorem

6.1.8 when f(x) ∈ OK[x].

Proof. Let f0(x) = x3 + ax2 + bx+ c ∈ K[x] and choose u ∈ K× such that u2a, u4b,

u6c ∈ OK. Define f(x) = x3 + u2ax2 + u4bx+ u6c ∈ OK[x]. Since y2 = f0(x) ∼= y2 =

f(x), w2 = xf0(x) ∼= w2 = xf(x) and HK(f0) = HK(f) (the Hilbert symbol entries

have been scaled by squares), Theorem 6.1.8 holds for f0(x) if and only if it holds

for f(x).

Proposition 6.2.4. Theorem 6.1.8 holds when K/Qp is a finite extension, p ̸= 2,

and both E, E ′ are semistable with ΣE′ = 0 or
0
.

Proof. By Lemma 6.2.3, we may assume that f(x) = x3 + ax2 + bx+ c ∈ OK[x].

The inputs of Table 6.2 (columns 2 and 3) are the cluster pictures of E and E ′,

where the roots of f are denoted by red circles ( ) and the root 0 (of x) is denoted

by a blue diamond ( ). Column 1 indexes the various cases using the reduction types

of X/K as defined in [22, Table 1.1].
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Column 4 gives the cluster picture for JacE′ , which is easily determined from

that of E ′ via Remark 6.1.2.

Column 5 gives the dual graph of the minimal regular model of X/K, denoted

ΥX , where an arrow is used to indicate the action of Frobenius. This is determined

using Theorem 2.4.14 (with f1(x) = f(x), f2(x) = x so that B = X).

Columns 6 and 7 list the Tamagawa numbers for E and JacE′ , calculated from

their respective cluster pictures using [60, Table 15.1].

Similarly, column 8 contains the Tamagawa number for JacX but calculated

from ΥX using Theorem 2.3.3.

Column 9 keeps track of the deficiency contribution from X/K, using Theorem

2.4.11.

Column 10 gives the value of (−1)ord2λK(f,x).

Column 11 gives wK(E)wK(JacE′) using Theorem 2.3.6.

It remains to compute the value of HK(f) via a case-by-case analysis of the

valuations of b, c, L, ∆f . Recall that α1, α2, α3 denote the roots of f . Below, all

equivalences are taken modulo π, where π is a uniformiser of K. We write v for a

normalised valuation on K, i.e. v(π) = 1.

Type 2. We must show that HK(f) = +1. We have that v(c) = v(∆f ) = 0.

Suppose b, L ̸= 0. Then HK(f) = (b,−c)(L,−b∆f ). If v(b) = v(L) = 0, we are

done. Suppose that K/Qp and p ̸= 3. If b ≡ 0 then L ≡ −9c, and so HK(f) = +1. If

L ≡ 0 then v(a) = v(b) = 0 and −b∆f ≡ 4
b2
(b3 − 27c2)2, and so again HK(f) = +1.

Now suppose that K/Q3 and L ≡ 0. Write b = πv(b)u1, 3 = πv(3)u2 for units

u1, u2 and assume that v(b) > 0 (if v(b) = 0 then we again observe that −b∆f is a

square). Note that ∆f ≡ −a3c, so v(a) = 0.

• If v(b) < 2v(3), then L = πv(b)(au1−π2v(3)−v(b)cu22) where au1−π2v(3)−v(b)cu22 ≡

au1. So HK(f) = +1 having used the standard identity (π,−π) = 1.

• If v(b) = 2v(3), then L = πv(b)(au1 − cu22) and HK(f) = (au1 − cu22,−u1∆f ),

having used that v(b) is even. If v(au1 − cu22) = 0 then we are done, else

−u1∆f ≡ u22a
2c2 and so HK(f) = +1.
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• If v(b) > 2v(3), then L = π2v(3)(πv(b)−2v(3)au1−cu22) where πv(b)−2v(3)au1−cu22 ≡

−cu22 and so HK(f) = +1.

Suppose bL = 0. Clearly HK(f) = +1.

Types 1+n or 1−n . Suppose that α1 ≡ 0 with v(α1) = n. Since θt,E′ =√
1
4
(α1 − 2α2)(α1 − 2α3), it can be observed that we are in type 1+n when α2α3 ∈

(K×)2 (when θt,E′ ∈ K×), and type 1−n otherwise. It is required to show that

HK(f) = −1 precisely when n is odd and α2α3 /∈ (K×)2, i.e. thatHK(f) = (πn, α2α3).

We have that v(b) = v(∆f ) = 0 and v(c) = n.

Suppose L ̸= 0. Then HK(f) = (b, πn)(L,−b∆f ) and since b ≡ α2α3 it remains

to show that (L,−b∆f ) = +1. If v(L) = 0 we are done. If not, then L ≡ −α2α2(α2+

α3) and so α2 ≡ −α3 and −b∆f ≡ 4α8
3.

Suppose L = 0. Then HK(f) = (πn,−∆f ) where ∆f = − 4
b3
(b3 − 27c2)2 and

b ≡ α2α3.

Types I+,+
n,n , I+n∼n(a), I+n∼n(b), or I−,−

n,n . Suppose that v(α1) = 0 and

α2 ≡ α3 with v(α2 − α3) = n
2
. Since θt,E =

√
1
2
(α2 + α3)− α1 and θt,E′ =√

1
2
(α2 + α3)(

1
2
(α2 + α3)− α1), it can be observed that we are in type I+,+

n,n or I−,−
n,n

when 1
2
(α2 + α3) ∈ (K×)2 (when θt,E, θt,E′ ∈ K×, or θt,E, θt,E′ ̸∈ K×), and type

I+,−
n,n or I−,+

n,n otherwise. It is required to show that HK(f) = −1 precisely when n

is odd and 1
2
(α2 + α3) /∈ (K×)2, i.e. that HK(f) = (πn, 1

2
(α2 + α3)). We have that

v(c) = v(L) = 0 and v(∆f ) = n.

Suppose b ̸= 0. Then HK(f) = (b,−cL)(−2L, πn) and as L ≡ −(α2 + α3)(α1 −
1
2
(α2 + α3))

2 it remains to show that (b,−cL) = +1. If v(b) = 0 we are done. If

not, since b ≡ 1
2
(α2 + α3)(2α1 +

1
2
(α2 + α3)) we have that α1 ≡ −1

4
(α2 + α3) and

−cL ≡ 9
256

(α2 + α3)
6.

Suppose b = 0. Then HK(f) = (2c, πn) where 2c = 2α2
1(α2 + α3).

6.2.3 Proof in the remaining cases

Here we prove that Theorem 6.1.8 holds in all remaining cases using a global–local

argument. Namely, when K/Qp is finite and p = 2, or p is odd and the reduction of

xf(x) has worse than one double root.
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Continuity of local invariants

Lemma 6.2.5 ([20], Lemma 3.2). Let K be a local field of characteristic 0. The

Hilbert symbol (A,B) is a continuous function of A,B ∈ K×.

Lemma 6.2.6. Let K be a local field of characteristic 0 and f(x) = x3+ax2+bx+c ∈

K[x] a separable cubic. Define E : y2 = f(x), E ′ : w2 = xf(x). The invariants b,

c, L := ab− 9c, ∆f (the discriminant of f), wK(E), wK(JacE′) and λK(f, x) (as in

Definition 4.3.2) are continuous in the coefficients of f(x).

Proof. This can be seen from [24, Lemma 11.2].

Lemma 6.2.7. Let K be a local field of characteristic 0 and f(x) = x3+ax2+bx+c ∈

OK[x] be separable. There is an ϵ > 0 such that if f̃(x) = x3 + ãx2 + b̃x+ c̃ ∈ OK[x]

is separable and |a− ã|K, |b− b̃|K, |c− c̃|K < ϵ, then Theorem 6.1.8 holds for f(x) if

and only if it holds for f̃(x).

Proof. If b, L ̸= 0 then, ensuring that b̃, L̃ ̸= 0, this is clear from Lemmata 6.2.5 and

6.2.6. If b = b̃ = 0 or L = L̃ = 0 then, again, this is clear. When we are not in either

of these cases, Lemma 6.2.6 still asserts that the root numbers are unchanged and

that λK(f, x) = λK(f̃ , x), but showing that HK(f) = HK(f̃) is more delicate.

Suppose that K is non-Archimedean. Let π denote a fixed choice of uniformiser

and v a normalised valuation. We write □ for a non-zero square element in K.

Suppose that b = 0 and b̃ ̸= 0. Let N = v(c) + v(36) + 1 and pick a ≡ ã, b ≡ b̃,

c ≡ c̃ mod πN . Then L̃ = ãb̃− 9c̃ ≡ −9c̃ ̸≡ 0 mod πN
K and so L̃ = −c̃ ·□. Therefore

HK(f̃) = (b̃,−c̃)(2c̃,∆f̃ )(−c̃,−b̃) = (2c̃,∆f̃ )(−c̃,−1) which by Lemma 6.2.5 is equal

to HK(f).

Now suppose that L = 0 and L̃ ̸= 0. Let N = v(b)+2v(a2− 3b)+ v(16)+1 and

pick a ≡ ã, b ≡ b̃, c ≡ c̃ mod πN . We have that ãb̃ ≡ 9c̃ mod πN , therefore 9∆f̃ ≡

−4b̃(ã2−3b̃)2 ̸≡ 0 mod πN and ∆f̃ = −b̃ ·□. So, HK(f̃) = (b̃,−c̃)(−2L̃,−b̃)(L̃,−b̃) =

(b̃,−c̃)(−2,−b̃) and by Lemma 6.2.5 this is equal to HK(f) since ∆f = −b ·□.

The case when K is Archimedean and bL = 0 follows from Table 6.1 since f and

f̃ will have the same number of positive and negative real roots.
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Reduction steps

Lemma 6.2.8. Let K be a number field and f(x) = x3 + ax2 + bx+ c ∈ OK [x] be a

separable cubic such that a2 − 3b, b, a2 − 4b, ab− 9c, c ̸= 0. Fix a prime p ∤ 2, 3 and

suppose that the following conditions are satisfied:

(i) p | a2 − 3b ⇒ p ∤ ab− 9c,

(ii) p | b(a2 − 4b) ⇒ p ∤ c.

Then xf(x) either has distinct roots, or no worse than 1 double root modulo p.

Proof. We must prove that (i) and (ii) guarantee that xf(x) has at least 3 distinct

roots mod p.

Suppose that three roots of xf(x) are congruent mod p. This happens when

either (1) all three roots of f(x) are congruent, or (2) two roots of f(x) are congruent

to 0. Situation (1) occurs if f(x), f ′(x) = 3x2+2ax+b, f ′′(x) = 6x+2a share a root

mod p, i.e. when f(−a
3
) ≡ f ′(−a

3
) ≡ 0 mod p. Condition (i) ensures that this does

not happen. We are in situation (2) whenever f(0) ≡ f ′(0) ≡ 0 mod p. Condition

(ii) ensures that this does not happen.

Now suppose that xf(x) has two double roots mod p, so that two roots of f(x)

are (non-zero and) congruent mod p with the remaining root congruent to zero. Here

f(0) ≡ 0 and ∆f ≡ 0. By definition of ∆f , these happen simultaneously when c ≡ 0

and a2b2 − 4b3 ≡ 0, so again condition (ii) ensures that this does not happen.

Remark 6.2.9. Using cluster pictures, Lemma 6.2.8 says that ΣE′/Kp is either 0

or
0
. In particular, Proposition 6.2.4 holds for such a choice of f(x).

Lemma 6.2.10. Let K/Q3 be a finite extension and let f(x) = x3 + x + 1 ∈ K[x]

then Theorem 6.1.8 holds.

Proof. E and JacE′ have good reduction over K so wK(E) = wK(JacE′) = 1 and

λK(f, x) = 1. Additionally, HK(f) = (1,−1)(18,−31)(−9,−1) = +1.

As in the proof of Proposition 5.2.8, we deduce the remaining cases of Theorem

6.1.8 from known instances of the 2-parity conjecture.
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Proposition 6.2.11. Theorem 6.1.8 holds when

1. K/Q2 is finite,

2. K/Qp is finite, p odd.

Proof. (1). Let K/Q2 be a finite extension. Pick a totally real number field F with

a unique prime p | 2 so that Fp
∼= K. Fix another prime p ̸= p′ ∤ 2, 3. By Lemma

6.2.3, we may assume that f(x) = x3 + ax2 + bx + c ∈ OK[x]. We will approximate

f(x) by f̃(x) = x3 + ãx2 + b̃x + c̃ ∈ OF [x] (with non-zero discriminant) subject to

the following:

(i) pick ã to be p-adically close to a, p′-adically close to −1 and q-adically close to

0 for all q | 3,

(ii) pick b̃ ̸= 0, 1
4
ã2, 1

3
ã2 so that b̃ is p-adically close to b, p′-adically close to −1 and

q-adically close to 1 for all q | 3,

(iii) pick c̃ ̸= 0, 1
9
ãb̃ so that c̃ is p-adically close to c, p′-adically close to 1, q-adically

close to 1 for all q | 3, and such that if q ∤ 2, 3, p′ then conditions (1) and (2)

of Lemma 6.2.8 are satisfied (namely: 9c̃ ̸≡ ãb̃ mod q for all q | ã2 − 3b̃, and

c̃ ̸≡ 0 mod q for all q | b̃(ã2 − 4b̃)).

Let Ẽ : y2 = f̃(x) and Ẽ ′ : w2 = xf̃(x). By construction, f̃(x) is p-adically

close to f(x), p′-adically close to x3− x2− x+1, q-adically close to x3 + x+1 when

q | 3, and q-adically close to a monic cubic for which Proposition 6.2.4 holds when

q ∤ 2, 3, p′. Invoking Lemma 6.2.7, this means that Theorem 6.1.8 holds for f̃ ∈ Fv[x]

whenever v ̸= p, and proving it for f̃ ∈ Fp[x] is equivalent to proving it for f ∈ K[x].

Noting that Ẽ and JacẼ′ have multiplicative reduction over Fp′ enforces that

ordp′j(Ẽ), ordp′j(JacẼ′) < 0. In particular, the 2-parity conjecture holds for Ẽ and

JacẼ′ (it is known to hold for elliptic curves over totally real number fields with
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non-integral j-invariant by [20, Theorem 2.4]). Therefore,

1 = (−1)rk2(Ẽ/F )+rk2(JacẼ′/F )w(Ẽ/F )w(JacẼ′/F )

Thm. 6.1.3
=

∏
v place of F

(−1)ord2λv(f̃ ,x)wv(Ẽ)wv(JacẼ′)

= (−1)ord2λp(f̃ ,x)wp(Ẽ)wp(JacẼ′) ·
∏
v ̸=p

HFv(f̃)

= (−1)ord2λp(f̃ ,x)wp(Ẽ)wp(JacẼ′) ·HFp(f̃)

where the last equality follows from the product law for Hilbert symbols. In conclu-

sion, we now know that Theorem 6.1.8 holds for f̃(x) ∈ Fp[x] and so it must also

hold for f(x) ∈ Fp[x] where Fp
∼= K.

(2). Let K/Qp be a finite extension and p odd. We repeat the above argument,

replacing 2 by p (when p = 3 we also replace the condition “q | 3” by “q | 3 and

q ̸= p”).

Proof of Theorem 6.1.8. This is Proposition 6.2.1 when K ∼= C, Proposition 6.2.2

when K ∼= R and Proposition 6.2.11 when K/Qp is finite.

6.3 The 2-parity conjecture for elliptic curves with

isomorphic 2-torsion

We now present the 2-parity results which we deduce from Theorem 6.1.8.

Theorem 6.3.1. Let K be a number field and E : y2 = f(x), E ′ : w2 = xf(x) for

f(x) ∈ K[x] a separable monic cubic with f(0) ̸= 0. The 2-parity conjecture holds

for E if and only if it holds for JacE′.

Proof. By Theorem 6.1.8, (−1)ord2λv(f,x)Hv(f) = wv(E)wv(JacE′) at each place v of

K. Taking the product over all such v and then invoking Theorem 6.1.3 and the

product formula for Hilbert symbols, gives that

(−1)rk2(E)+rk2(JacE′ ) = w(E)w(JacE′).
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Theorem 6.3.2. Let K be a number field and X : y2 = cf(x2) for f(x) ∈ K[x] a

separable monic cubic with f(0) ̸= 0 and c ∈ K×. The 2-parity conjecture holds for

the Jacobian of the genus 2 curve X.

Proof. Let E : y2 = f(x), E ′ : y2 = xf(x) and Ec : y
2 = cf(x), E ′

c : w
2 = cxf(x).

By Theorem 3.3.2 (with f1(x) = cf(x), f2(x) = x), there is an isogeny Ec× JacE′
c
→

JacX . Proving the 2-parity conjecture for JacX is therefore equivalent to proving

it for Ec × JacE′
c
. We observe that the 2-parity conjecture for quadratic twists [20,

Corollary 1.6] says that the 2-parity conjecture holds for Ec and JacE′
c

if and only

if it holds for E and JacE′ respectively. This further reduces proving the 2-parity

conjecture for JacX to proving it for E × JacE′ , which holds by Theorem 6.3.1.

Lemma 6.3.3. Let K be a number field and E1, E2 be elliptic curves over K. If

E1[2] ∼= E2[2] as GK-modules, then either E2 is a quadratic twist of E1 or there exists

a separable monic cubic f(x) ∈ K[x] with f(0) ̸= 0 and some d ∈ K× such that

E1 : y
2 = f(x), E2 : dw

2 = xf(x).

Proof. Write E1 : y2 = g1(x), E2 : w2 = g2(x) for monic cubics g1, g2 ∈ K[x] and

Φ : E1[2]→ E2[2] for a GK-module isomorphism. Let α1, α2, α3 and β1, β2, β3 denote

the roots of g1(x) and g2(x) respectively, labelled so that Φ((αi, 0)) = (βi, 0). Define

A = α1α2(β1 − β2) + α3α1(β3 − β1) + α2α3(β2 − β3),

B = α1α2β3(β2 − β1) + α3α1β2(β1 − β3) + α2α3β1(β3 − β2),

C = β1(α2 − α3) + β2(α3 − α1) + β3(α1 − α2),

D = β1β2(α1 − α2) + β2β3(α2 − α3) + β3β1(α3 − α1),

then h(z) := Dz−B
A−Cz

is the Möbius transformation mapping αi to βi. Using that GK

permutes the roots of g1 and the roots of g2 in the same way, one can readily check

that h(z) is defined over K. Observing that h(x) − h(αi) = AD−BC
(A−Cx)(A−Cαi)

(x − αi)
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gives

g2(h(x)) =
(AD −BC)3

(A− Cx)3(A− Cα1)(A− Cα2)(A− Cα3)
g1(x).

Clearly, E2 : w
2 = g2(h(x)) and hence also,

E2 : w
2 =


A(A−Cα1)(A−Cα2)(A−Cα3)

AD−BC
(1− C

A
x)g1(x) A ̸= 0,

−Cα1α2α3

B
xg1(x) A = 0.

If A,C ̸= 0, we set x0 = 1− C
A
x so that E1 : y

2 = f(x0) and E2 : w
2 = dx0f(x0)

where f(x0) = g1(
A
C
(1 − x0)) and d ∈ K×. If A ̸= 0 and C = 0, then E2 is just a

quadratic twist of E1. Finally, if A = 0 then the result is clear.

Theorem 6.3.4. Let K be a number field and E1, E2 be elliptic curves over K. If

E1[2] ∼= E2[2] as GK-modules, then the 2-parity conjecture holds for E1 if and only

if it holds for E2.

Proof. By Lemma 6.3.3, either E2 is a quadratic twist of E1 and this is just [20,

Corollary 1.6], or E1 : y2 = f(x) and E2 : dw2 = xf(x) for some separable monic

cubic f(x) ∈ K[x] with f(0) ̸= 0 and some d ∈ K×. Since E2
∼= Jacdw2=xf(x), the

2-parity conjecture holds for E2 if and only if it holds for Jacw2=xf(x) by [20, Corollary

1.6]. In turn, Theorem 6.3.1 says that the 2-parity conjecture holds for Jacw2=xf(x)

if and only if it holds for E1.

6.4 The p-parity conjecture for elliptic curves over

totally real fields

We conclude this chapter by explaining how we are able to deduce the missing case

of the p-parity conjecture for elliptic curves over totally real number fields from the

2-parity results presented in the previous section.

Theorem 6.4.1. Let E be an elliptic curve with complex multiplication over a totally

real number field K. The 2-parity conjecture holds for E.

Proof. Write E : y2 = f(x) where f(x) = (x− α1)(x− α2)(x− α3). For γ ∈ K, set
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fγ(x) = f(x− γ) and define E(γ) = Jacy2=xfγ(x). By Remark 6.1.2,

E(γ) : y2 = (x+ (α1 + γ)(α2 + γ))(x+ (α1 + γ)(α3 + γ))(x+ (α2 + γ)(α3 + γ))

from which it is clear that E[2] ∼= E(γ)[2] as GK-modules. Since j(E(γ)) is a non-

constant rational function in γ, there exists some γ0 ∈ K such that j(E(γ0)) ̸∈ OK

and so E(γ0) does not have complex multiplication. In particular, the 2-parity

conjecture holds for E(γ0) by [20, Theorem 2.4]. Applying Theorem 6.3.4 gives that

the 2-parity conjecture also holds for E.

Corollary 6.4.2. Let p ∈ Z be a prime. The p-parity conjecture holds for all elliptic

curves over totally real number fields.

Proof. When p is odd, this is [51, Theorem E] and [49, Theorem A]. When p = 2

and the elliptic curve does not have complex multiplication, this is [20, Theorem

2.4]. When p = 2 and the elliptic curve has complex multiplication, this is Theorem

6.4.1.



Chapter 7

A Conjecture Concerning

Hyperelliptic Curves

In the previous chapter, we saw that a product of Hilbert symbols (=Definition 6.1.5)

correctly describes the difference between local root numbers and the local invariants

appearing in Theorem 4.5.2 when f1(x) is a monic cubic and f2(x) = x (=Theorem

6.1.8). The entires of these Hilbert symbols depend only on the coefficients of the

cubic, resembling the construction of Dokchitser and Dokchitser ([17, Theorem 4])

which addresses the case when f1(x) is a monic quadratic.

With this in mind, we now present a conjectural generalisation of these two re-

sults (=Definition 7.2.3 & Conjecture 7.2.5), i.e. when we allow f1(x) to be a monic

polynomial of arbitrary degree. (The next, and final, chapter aims to deal with

the comparison in full generality, when f1(x), f2(x) are arbitrary coprime polynomi-

als.) We again describe the local difference as a product of Hilbert symbols whose

entries depend on the coefficients of f1(x); specifically, they arise as coefficients of

polynomials in the Sturm sequence for f1(x).

We provide a proof of this conjecture over Archimedean local fields (=Proposi-

tions 7.2.8 & 7.2.9) and in certain nice cases when the field is non-Archimedean and

f1(x) is a quartic (=Proposition 7.2.11). More generally, when the underlying field

is non-Archimedean, the conjecture is supported by numerical evidence.

As before, we highlight the global consequences of this local statement. For

instance, the 2-parity conjecture for Jacobians of hyperelliptic curves whose defining
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polynomial is completely reducible (=Corollary 7.2.7).

The statements of some of the results of this chapter can also be found in [28].

7.1 Sturm polynomials

We recall the definition of the Sturm sequence for a real polynomial.

Definition 7.1.1. Let f(x) ∈ R[x]. The Sturm sequence for f is a sequence of

polynomials P0, P1, . . . defined via

P0 = f(x), P1 = f ′(x), Pi+1 ≡ −Pi−1 mod Pi for i ≥ 1,

where either degPi+1 < degPi or Pi+1 = 0. The sequence terminates once one of the

Pi is zero.

Example 7.1.2. The Sturm sequence for f(x) = x2 + ax+ b ∈ R[x] is

P0 = f(x), P1(x) = 2x+ a, P2(x) =
1

4
(a2 − 4b).

Example 7.1.3. The Sturm sequence for f(x) = x3 + ax2 + bx+ c ∈ R[x] is

P0 = f(x), P1(x) = 3x2 + 2ax+ b, P2(x) =
1
9

(
(2a2 − 6b)x+ (ab− 9c)

)
,

P3(x) =
9

4(a2−3b)2
(a2b2 − 4b3 − 4a3c+ 18abc− 27c2),

(assuming P2(x) ̸= 0, else P3(x) is not defined).

Definition 7.1.4. Let P0, P1, . . . be the Sturm sequence for f(x) ∈ R[x]. Let

x0 ∈ R. Write κ(x0) for the number of sign changes (ignoring zeros) in the sequence

of real numbers P0(x0), P1(x0), . . . .

Theorem 7.1.5 (Sturm’s theorem). The number of roots of f(x) ∈ R[x] in the

interval (a, b] ⊆ R is κ(a)− κ(b).

Since the Sturm sequence for f(x) provides us with a way to compute the num-

ber of roots it has in any half-open interval, we will see that it provides good can-
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didates for expressions in the coefficients of f(x) which control the behaviour of the

hyperelliptic curve y2 = f(x) (over the reals).

7.2 Conjecture based on experimental data

We now generalise the set up presented in §6.1 in order to formulate an analogue of

Theorem 6.1.8 which works in higher genus.

Notation 7.2.1. Let K be a field of characteristic 0 and f(x) ∈ K[x] be separable,

monic and such that f(0) ̸= 0. Define curves over K by

X1 : y
2 = f(x), X0 : w

2 = xf(x), X : y2 = f(x2)

and let ϕ : JacX1 × JacX0 → JacX denote the K-isogeny constructed in Theorem

3.3.2 (by letting f1(x) = f(x) and f2(x) = x).

Theorem 4.5.2 (again with f1(x) = f(x), f2(x) = x) gives the following formula

for the parity of the 2∞-Selmer rank of JacX1 × JacX0 (or equivalently, of JacX).

Theorem 7.2.2. Let K be a number field and X1 : y
2 = f(x), X0 : w

2 = xf(x) for

f(x) ∈ K[x] separable, monic and such that f(0) ̸= 0. Then

rk2(JacX1) + rk2(JacX0) ≡
∑

v place of K

ord2 λv(f, x) mod 2

where λv(f, x) is as in Definition 4.3.2. Namely, for K a local field and f(x) ∈ K[x]

separable, monic and such that f(0) ̸= 0,

λK(f, x) =



2deg f+1 K ≃ C,

#kerϕ|(JacX1
×JacX0

)(K)◦
nJacX1

nJacX0
µ(X1)

nJacX
µ(X)

K ≃ R,

c(JacX1
)c(JacX0

)µ(X1)

c(JacX)µ(X)
K/Qp finite, p ̸= 2,

c(JacX1
)c(JacX0

)µ(X1)

c(JacX)µ(X)

∣∣∣ ϕ∗ω0
JacX

ω0
JacX1

×JacX0

∣∣∣
K

K/Q2 finite,

where X : y2 = f(x2).
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As in the preceding chapters, we compare the terms (−1)ord2λv(f,x) (in this arith-

metic analogue of the 2-parity conjecture for JacX1 × JacX0) to wv(JacX1)wv(JacX0).

This comparison is carried out most easily over the reals, since computing

λR(f, x) boils down to counting the connected components of the hyperelliptic curves

X1, X0 and X, which can be determined from the number of real roots of f(x) and

f(x2). Sturm’s theorem allows us to count the latter, i.e. the number of real roots

of f(x) greater than 0, and so the Sturm polynomials evaluated at 0 and ∞ provide

good candidates for invariants describing the required difference.

Definition 7.2.3. Let K be a local field of characteristic 0 and f(x) ∈ K[x] be

separable and monic. Let P0, P1, . . . , Pdeg f ̸= 0 denote the Sturm sequence for f(x),

write ci for the lead coefficient of Pi and assume that
∏deg f−1

i=0 Pi(0) ̸= 0. Define

HK(f) =

deg f−1∏
i=0

(ci,−ci+1)K · (−Pi(0), Pi+1(0))K.

Remark 7.2.4. When f is a quadratic, Example 3.3.5 notes that ϕ becomes a 2-

isogeny of elliptic curves and this construction recovers the error term given in [17,

Theorem 4] (see Example 7.1.2). When f is a cubic, this is precisely HK(f) as in

Definition 6.1.5 when b, L ̸= 0 (see Example 7.1.3).

Conjecture 7.2.5. Let K be a local field of characteristic 0 and X1 : y2 = f(x),

X0 : w2 = xf(x) for f(x) ∈ K[x] separable, monic and such that f(0) ̸= 0.

Let P0, P1, . . . , Pdeg f ̸= 0 denote the Sturm sequence for f(x) and assume that∏deg f−1
i=0 Pi(0) ̸= 0. Then

(−1)ord2λK(f,x)HK(f) = wK(JacX1)wK(JacX0)

where λK(f, x) is as in Definition 4.3.2 and HK(f) is as in Definition 7.2.3.

If Pi(0) = 0 or degPi+1 < degPi − 1 for some i, then HK(f) is no longer well-

defined. It is expected that a different Hilbert symbol expression can be found so

that the conjecture still holds (as in Definition 6.1.5, when bL = 0).
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Corollary 7.2.6. Let K be a number field and X1 : y
2 = f(x), X0 : w

2 = xf(x) for

f(x) ∈ K[x] separable and monic. Assuming Conjecture 7.2.5, the 2-parity conjecture

holds for JacX1 if and only if it holds for JacX0.

Proof. This is argued as in the proof of Theorem 6.3.1.

Corollary 7.2.7. Let K be a number field and C : y2 = f(x) for f(x) =

(x− α1) · · · (x− αn) separable with αi ∈ K for each i. For each 1 ≤ k ≤ n − 2,

write Pk,0, . . . , Pk,n−k ̸= 0 for the Sturm sequence of
∏n

j=k+1(x + αk − αj). Assum-

ing
∏

k,i Pk,i(0) ̸= 0 and Conjecture 7.2.5 holds, the 2-parity conjecture holds for the

Jacobian of C.

Proof. Let f1(x) =
∏n

j=2(x+α1−αj) and f2(x) = x. By Corollary 7.2.6, the 2-parity

conjecture holds for Jacw2=f1(x)f2(x)
∼= JacC if and only if it holds for Jacy2=f1(x).

Applying this repeatedly, we end up seeing that the 2-parity conjecture holds for

JacC if and only if it holds for Jacy2=(x+αn−2−αn−1)(x+αn−2−αn) = 0.

7.2.1 Proof over Archimedean fields

In certain cases, we are able to prove Conjecture 7.2.5; for instance, when K is

Archimedean.

Proposition 7.2.8. Conjecture 7.2.5 holds when K ∼= C.

Proof. We have that (−1)ord2λK(f,x) = (−1)deg f+1 (by definition), HK(f) = +1 and

wK(JacX1)wK(JacX0) = (−1)deg f−1 (see Lemma 2.3.4).

Proposition 7.2.9. Conjecture 7.2.5 holds when K ∼= R.

Proof. Write r1 < . . . < rdeg f−2a for the real roots of f(x) and let 10<rj = 1 if 0 < rj,

and 0 otherwise. By Lemmata 8.4.10 and 8.4.11, it is enough to prove that

HK(f) = (−1)a+
∑

j≡deg f+1 mod 2 10<rj = (−1)
⌊

κ(0)+κ(∞)
2

⌋
(7.1)

since a ≡ 0 mod 2 ⇔ ∆f = cdegf · □ > 0 ⇔ κ(∞) ≡ 0 mod 2 and∑
j≡deg f+1 mod 2 10<rj ≡

⌊κ(0)−κ(∞)
2

⌋
mod 2.
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Write sign(ci) = +1 if ci > 0, and −1 otherwise. Let c0 = c′0, c
′
1, . . . , c

′
κ(∞) be a

sublist of c0, c1, . . . , cdeg f such that sign(c′i) ̸= sign(c′i+1). Then

deg f−1∏
i=0

(ci,−ci+1)K =

κ(∞)−1∏
i=0

(c′i,−c′i+1)K = (c′0,−c′1)
κ(∞)
K ·(−1)⌊

κ(∞)
2

⌋ = (−1)⌊
κ(∞)

2
⌋

using that the list of c′i alternates in sign and c′0 > 0 (f is monic). Doing the same

to construct a list P0(0) = P0(0)
′, P1(0)

′, . . . , Pκ(0)(0)
′ gives

deg f−1∏
i=0

(−Pi(0), Pi+1(0))K =

κ(0)−1∏
i=0

(−Pi(0)
′, Pi+1(0)

′)K

= (−P0(0)
′, P1(0)

′)
κ(0)
K · (−1)⌊

κ(0)
2

⌋ = (−1)κ(0)κ(∞)+⌊κ(0)
2

⌋

since the list of Pi(0)
′ alternates in sign and sign(P0(0)

′) = (−1)κ(0)+κ(∞). Therefore

HK(f) = (−1)⌊
κ(∞)

2
⌋+κ(0)κ(∞)+⌊κ(0)

2
⌋ = (−1)⌊

κ(0)+κ(∞)
2

⌋

as in (7.1).

7.2.2 Proof over non-Archimedean fields for nice reduction

types, when f is a quartic

We are currently unable to prove Conjecture 7.2.5 in complete generality since we

lack an understanding of the relationship between the entries of the Hilbert symbols

defining HK(f) and the reduction types of X1, X0 and X over non-Archimedean

fields.

Despite this, we are able to prove the simplest unsolved case: when K is non-

Archimedean of odd residue charcteristic, f(x) is a quartic and X1, X0 have nice

reduction types (see Proposition 6.2.4 when deg f = 3 and [17, Theorem 4] when

deg f = 2).

Notation 7.2.10. Let K be a field and f(x) = x4 + ax3 + bx2 + cx + d ∈ K[x] be
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separable. Write ∆f for the discriminant of f(x) and define

J1 = 3a2 − 8b,

J2 = 2a2b2 − 8b3 − 6a3c+ 28abc− 36c2 − 12a2d+ 32bd,

J3 = ac− 16d,

J4 = a2bc− 4b2c+ 3ac2 − 9a3d+ 32abd− 48cd.

When K = K is a local field of characteristic 0, for such a quartic f(x),

HK(f) = (J1,−J2)K · (J2,−∆f )K · (−d, c)K · (−c, J3)K · (−J3, J4)K · (−J4,∆f )K

(assuming that J1, J2, J3, J4, ∆f , d, c ̸= 0).

Since the entries of these Hilbert symbols come from the Sturm sequence of f(x),

which is determined recursively via Euclid’s algorithm, there are various identities

relating them. For example,

J2
1∆f + J1J

2
4 + J2

2J3 − 2(ab− 6c)J2J4 = 0. (7.2)

Proposition 7.2.11. Conjecture 7.2.5 holds when K/Qp is finite, p ̸= 2, f(x) ∈

OK[x] is a quartic and both X1, X0 are semistable with ΣX0 = 0, 0
or

0
.

Proof. The inputs of Table 7.1 (columns 1 and 2) are the possible cluster pictures

for X1 and X0 where the roots of f are denoted by red circles ( ) and the root 0 (of

x) is denoted by a blue diamond ( ), under the imposed assumption. We note that

µ(X1) = µ(X) = 1, since X1 has genus 1 and X has genus 3 (c.f. Theorem 2.4.11),

and so we don’t declare these quantities.

Column 3 gives the cluster picture for JacX1 , which is determined from the

cluster picture for X1 using Remark 2.1.7 (normalised so that dR = 0).

Column 4 gives the dual graph of the minimal regular model for X, where an

arrow is used to indicate the action of Frobenius. This is determined using Theorem
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ñ
ñ
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2.4.14 (letting f1(x) = f(x), f2(x) = x so that B becomes X, whose chromatic

cluster picture is as in column 2).

Columns 5, 6 and 7 list the Tamagawa numbers for JacX1 , JacX0 and JacX ,

where the first and second are calculated from their cluster pictures using [60, Table

15.1] and Theorem 2.4.9 respectively, and the third is calculated from ΥX using

Theorem 2.3.3.

Column 8 gives the value of (−1)ord2λK(f,x).

Columns 9 and 10 give wK(JacX1) and wK(JacX0) calculated using Theorems

2.3.6 and 2.4.10 respectively.

It remains to compute the value of HK(f). Unless specified otherwise, equiv-

alences are taken modulo π, where π is a uniformiser of K and we write v for a

normalised valuation on K, i.e. v(π) = 1. By assumption, a, b, c, d ∈ OK and we let

α1, α2, α3, α4 denote the roots of f .

Row 1. d, ∆f are units. A case-by-case analysis of the valuations of J1 and J2

gives that (J1,−J2)(J2,−∆f ) = +1. This is clear when J1 is a unit, since either J2

is also a unit, or J2 ≡ 0 ⇒ −J1∆f ≡ □ by (7.2). Write J1 = Zπk (for k > 0) and

a3 − 16c = Y πl where Z, Y ̸≡ 0. Since ∆f ≡ −(a4 − 256d) · □ (where □ denotes a

square unit), we have that a4 − 256d is a unit. If k ̸= 2l, then the identity follows

using that J2 ≡ Z(a4−256d)πk ·□ mod πk+1 when k < 2l and J2 ≡ −π2l·□ mod π2l+1

when k > 2l (where □ again denotes a square unit). If k = 2l, then either v(J2) = 2l

or Z(a4− 256d) ≡ □ and again the identity holds. Similarly, a case-by-case analysis

of the valuations of c, J3 and J4 gives that (−d, c)(−c, J3)(−J3, J4)(−J4,∆f ) = +1.

This is clear when c, J3 and J4 are all units. When J3 is a unit, the product becomes

(c,−dJ3)(J4,−J3∆f ) which is visibly equal to +1 upon observing that c ≡ 0 ⇒

−dJ3 ≡ 16d2 and J4 ≡ 0 ⇒ −J3∆f ≡ □ (when J1 ̸≡ 0 this follows from (7.2), else

3 ≡ 0 or a3 ≡ 16c). Now suppose that J3 ≡ 0. If c, J4 are units then −cJ4 ≡ □.

Otherwise, write J3 = Zπk and J1 = Y πl where Z, Y ̸≡ 0 and k, l > 0. Since

∆f ≡ 3c(a3− 16c) ·□ (where □ denotes a square unit), we have that 3, a3− 16c are

units. It remains to show that (πk,−cJ4)(J4,−3Zc(a3 − 16c)) = +1. If k ̸= 2l, then

the identity follows using that J4 ≡ −3Z(a3− 16c)πk ·□ mod πk+1 when k < 2l and
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J4 ≡ −cπ2l · □ mod π2l+1 when k > 2l (where □ denotes a square unit). If k = 2l,

then either v(J4) = 2l or −3Zc(a3 − 16c) ≡ □ and again the identity holds. In

conclusion, HK(f) = +1.

Rows 2, 3. d ≡ 0 and ∆f is a unit (therefore, so is c). Arguing as above,

again gives that (J1,−J2)(J2,−∆f ) = +1. Additionally, a case-by-case analysis of

the valuations of J3 and J4 gives that (−c, J3)(−J3, J4)(−J4,∆f ) = +1 where we

argue as before when J3 ̸≡ 0. Otherwise, write J3 = Wπk, d = Y πl, b = Zπi where

W,Y, Z ̸≡ 0 and k, l, i > 0, then ∆f ≡ −3 · □ where □ denotes a square unit (3

is a unit since ∆f ̸≡ 0). It remains to show that (−c, πk)(3Wπk, J4) = +1. This

follows from observing that J4 ≡ 3cWπk − cπ4l · □ mod πmin{k,4l}+1 when 2l < i,

J4 ≡ 3cWπk − cπ2i · □ mod πmin{k,2i}+1 when 2l > i and J4 ≡ 3cWπk − c(c2Z −

96Y 2)2π4l · □ mod πmin{k,4l}+1 when 2l = i (where □ denotes a square unit). In

conclusion, letting v(α1) = m, HK(f) = (−d, c) = (−α2α3α4, π)
m which evaluates to

the claimed values upon varying the sign attached to the twin.

Rows 4, 5, 10, 11. Suppose that v(α1 − α2) = n
2
, then HK(f) =

(J1,−J2)(−α3α4, c)(−c, J3)(J3,−(α1 + α2)(α3 − α4)
2)(α1+α2

2
, πn). Since J2 is a unit

and J1 ≡ 0 ⇒ J2 ≡ − 9
64
(a3 − 16c)2 we have that (J1,−J2) = +1. That

(−α3α4, c)(−c, J3)(J3,−(α1 + α2)(α3 − α4)
2) = +1 can be seen via a case-by-case

analysis of the valuations of c and J3 since c ≡ 0 ⇒ J3 ≡ −α3α4 · □ ̸≡ 0 and

J3 ≡ 0 ⇒ c ≡ −(α1 + α2)(α3 − α4)
2 · □ ̸≡ 0. Therefore HK(f) = (α1+α2

2
, π)n which

evaluates to the claimed values upon varying the signs attached to the twins.

Rows 6–9, 12–15. Suppose that v(α1−α2) =
n
2

and v(α3) = m, then HK(f) =

(J1,−J2)(πm,−α4)(−(α1 + α2)α4, J3)(
α1+α2

2
, πn). Arguing as above (J1,−J2) = +1

and since J3 ≡ 0⇒ α1 + α2 ≡ −α4, HK(f) = (−α4, π)
m(α1+α2

2
, π)n which evaluates

to the claimed values upon varying the signs attached to the twins.

Rows 16–18. Suppose that v(α1 − α2) = n1

2
and v(α3 − α4) = n2

2
, then

HK(f) = (J2,−∆f )(−(α1 + α2)(α3 + α4), J4)(−J4,∆f ).

Suppose that n1 > n2. Since J2 ≡ 2(α3−α4)
2(α1+α2

2
−α3)

2(α1+α2

2
−α4)

2 mod πn1

and J4 ≡ −(α1+α2)(α3−α4)
2(α1+α2

2
−α3)

2(α1+α2

2
−α4)

2 mod πn1 , HK(f) = (2(α3−

α4)
2,−(α1−α2)

2(α3−α4)
2)(−(α1+α2)(α3+α4), (α3−α4)

2)((α1+α2)(α3−α4)
2, (α1−
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α2)
2(α3−α4)

2) = (π, α1+α2

2
)n1(π, α3+α4

2
)n2 . This evaluates to the claimed values upon

varying the signs attached to the twins.

Suppose that n1 = n2. Write (α1 − α2)
2 = Sπn1 , (α3 − α4)

2 = Tπn1 where

S, T ̸≡ 0, then HK(f) = (J2,−ST )(J4,−ST (α1 + α2)(α3 + α4)). Observe that

J2 ≡ 2πn1(α1+α2

2
− α3+α4

2
)2(S + T ) mod πn1+1 and J4 ≡ −πn1(α1+α2

2
− α3+α4

2
)2((α3 +

α4)S+(α1+α2)T ) mod πn1+1. Via a case-by-case analysis of the valuations of S+T

and (α3 + α4)S + (α1 + α2)T it can be seen that HK(f) = ((α1 + α2)(α3 + α4), π)
n1 .

This evaluates to the claimed values upon varying the signs attached to the twins.

Rows 19, 20. Write (α1−α2)
2 = Sπn, (α3−α4)

2 = Tπn where S, T ̸≡ 0, then

HK(f) = (J2,−ST (α1+α2

2
− α3+α4

2
)2)(J4,−ST (α1 + α2)(α3 + α4)(

α1+α2

2
− α3+α4

2
)2).

Arguing as above, via a case-by-case analysis of the valuations of S + T and (α3 +

α4)S + (α1 + α2)T , it can be seen that HK(f) = ((α1 + α2)(α3 + α4), π)
n which

again evaluates to the claimed values upon varying the sign attached to the orbit of

twins.



Chapter 8

The Parity Conjecture for

Hyperelliptic Curves

We now shift our attention to arbitrary genus hyperelliptic curves, where, be-

yond genus 2, very little progress has been made towards proving the Birch and

Swinnerton–Dyer and parity conjectures.

So far in this thesis, we have been able to deduce several instances of the parity

conjecture for low genus curves (under assumptions on the Shafarevich–Tate group)

through comparing the terms appearing in Theorem 4.5.1 to local root numbers.

We began thinking about higher genus curves in the previous chapter (hyperelliptic

curves whose defining polynomials have a linear factor), and we provided a conjec-

tural generalisation of the method of Chapter 6. Here, we advance this further by

considering all hyperelliptic curves.

Our strategy is to reduce the problem to studying hyperelliptic curves with nice

models (those whose Galois group is a 2-group).

Definition 8.0.1. Let C : y2 = f(x) be a hyperelliptic curve over a number field K.

If f(x) = f1(x)f2(x) for f1(x), f2(x) ∈ K[x] with deg f1, deg f2 < deg f , then

we call C a C2×C2-hyperelliptic curve.

If f(x) = f0(x)f̄0(x) for GalL/K-conjugate polynomials f0(x), f̄0(x) ∈ L[x] where

L/K is a quadratic extension, then we call C a D8-hyperelliptic curve.

For both kinds of hyperelliptic curve, we present an arithmetic analogue of the

2-parity conjecture i.e. a method to compute the parity of the 2∞-Selmer rank of
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their Jacobians from the local data attached to higher genus curves (=Theorems

8.2.1 & 8.2.6). In the setting of D8-hyperelliptic curves, we use properties of the

Weil restriction to achieve this.

As in previous chapters, we then compare the local data appearing in these

constructions to local root numbers and provide a conjectural description of the

difference (=Conjectures 8.3.8 & 8.3.11) which we call the error term. The main

feature of the error term is a product of Hilbert symbols whose entries are defined via

the roots of the hyperelliptic curve’s defining polynomial, rather than its coefficients

(as in Chapters 6 and 7). We observe that, when considering elliptic curves, this

recovers the error term exhibited in [17, Theorem 4].

There are several cases in which we are able to prove the aforementioned con-

jectures (=Theorems 8.3.10 & 8.3.12); namely, at infinite places of the number field

and at finite places where the reduction type of the hyperelliptc curve is nice. We

expect to be able to prove the remaining cases using the following argument which we

omit from this thesis (since it is work in progress). First, we show that the theorems

hold over completions of (global) function fields with the reduction types specified

in 8.3.10 & 8.3.12. Then, we extend this to all reduction types over completions of

function fields using a global-to-local method (resembling the proofs of Propositions

5.2.8 & 6.2.11), since the parity conjecture is known to hold over function fields.

The proof is complete upon observing that the truth of Conjectures 8.3.8 & 8.3.11

depend only on the cluster pictures (or similar local data) and that the function field

setting covers all possibilities.

We conclude the chapter with a discussion of the global implications of our

local results. In particular, we explain how the parity conjecture for semistable

hyperelliptic curves follows from the error term conjectures for C2×C2- and D8-

hyperelliptic curves, and the finiteness of the Shafarevich–Tate group (=Corollary

8.6.4). We also highlight the instances of the 2-parity conjecture which follow from

cases of the error term conjectures we’ve been able to prove, and therefore hold

unconditionally (=Theorem 8.6.6).
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8.1 Reducing the problem to curves with nice auto-

morphisms

Our first step towards proving the parity conjecture for semistable hyperelliptic

curves is to reduce the problem to a smaller family.

Theorem 8.1.1. Let K be a number field. Suppose that the 2-parity conjecture holds

for the Jacobians of all C2×C2-hyperelliptic curves over K, and of all D8-hyperelliptic

curves over K whose defining polynomial has degree a power of 2.

Let C : y2 = f(x) be a semistable hyperelliptic curve over K and write R ⊂ K

for the set of roots of f(x). If X(JacC/K(R))[p∞] is finite for each prime p ≤ deg f ,

then the parity conjecture holds for the Jacobian of C.

Proof. Applying [24, Theorem B.1] with F = K(R) and A = JacC (for which there

are no primes of unstable reduction), we see that it is enough to prove the parity

conjecture for JacC/K(R)H wheneverH ≤ GalK(R)/K is a 2-group. This is equivalent

to the 2-parity conjecture for JacC/K(R)H , since #X(JacC/K(R))[2∞] and hence

#X(JacC/K(R)H)[2∞] are assumed to be finite. The 2-parity conjecture for such

curves follows from the 2-parity conjecture for Jacobians of all hyperelliptic curves

such that the Galois group of their defining polynomial is a 2-group. We now show

that these are either C2×C2-hyperelliptic curves, or D8-hyperelliptic curves whose

defining polynomial has degree a power of 2.

Let C̃ : y2 = f̃(x) be such a curve, i.e. G := GalK(R̃)/K is a 2-group where

R̃ ⊂ K denotes the roots of f̃(x).

If f̃(x) is reducible over K, then C̃ is a C2×C2-hyperelliptic curve and the parity

conjecture holds by assumption.

If f̃(x) is irreducible over K, then G acts transitively on R̃. Fix r ∈ R̃. As

G is a 2-group, there is a chain of normal subgroups StabG(r) = H0 < H1 < H2 <

. . . < Hn−1 < Hn = G with each successive quotient having size 2 (c.f. the Sylow

theorems). By the orbit-stabiliser theorem, Hn−1 permutes R̃ in two orbits R̃1, R̃2

which are preserved by G (since Hn−1 is normal in G). Therefore f̃(x) = f0(x)f̄0(x)

over L = K(R̃)Hn−1 (where the roots of f0(x), f̄0(x) are R̃1, R̃2 respectively), i.e. C̃
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is a D8-hyperelliptic curve whose defining polynomial has degree a power of 2, and

again the parity conjecture holds by assumption.

8.2 Controlling the parity of the rank

We now explain how we can use familiar local data and lower genus hyperelliptic

curves to determine the parity of the 2∞-Selmer rank of the Jacobian of a C2×C2-

or D8-hyperelliptic curve.

8.2.1 C2×C2-hyperelliptic curves

Theorem 8.2.1 (=Theorem 4.5.2). Let K be a number field and X1 : y2 = f1(x),

X2 : z2 = f2(x), X0 : w2 = f1(x)f2(x) where f1(x), f2(x) ∈ K[x] are such that

f1(x)f2(x) is separable. Then

rk2(JacX1) + rk2(JacX2) + rk2(JacX0) ≡
∑

v place of K

ord2 λv(f1, f2) mod 2

where λv(f1, f2) is as in Definition 4.3.2.

8.2.2 D8-hyperelliptic curves

Let K be a field of characteristic 0 and K(
√
ξ)/K be a quadratic extension.

Notation 8.2.2. Let f0(x) ∈ K(
√
ξ)[x] be such that f0(x)f̄0(x) is separable, where

f̄0(x) denotes the GalK(
√
ξ)/K-conjugate of f0(x). Define curves over K by

C : v2 = f0(x)f̄0(x), X :
{
y2 = f0(x), z

2 = f̄0(x), w
2 = ξ

}
(for a model of X fixed by GalK(

√
ξ)/K , instead consider {y2 + z2 = f0(x) +

f̄0(x), (yz)
2 = f0(x)f̄0(x), w

2 = ξ}).

The group G = D8 := ⟨σ, τ⟩ acts on X where σ : (x, y, z, w) 7→ (x, z,−y,−w),

τ : (x, y, z, w) 7→ (x, y,−z, w). There are three linearly independent Brauer relations

for G, one of which is given by

⟨τ⟩ + ⟨σ2, στ⟩ − ⟨σ2, τ⟩ − ⟨τσ⟩.
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Applying Theorem 3.2.2(ii) with respect to this gives the existence of an isogeny

JacX⟨τ⟩ × JacX⟨σ2,στ⟩
→ JacX⟨σ2,τ⟩

× JacX⟨τσ⟩ .

The quotients of X by the subgroups of G, up to conjugacy, are displayed in

Figure 8.1.

P1 (with parameter x)

X⟨σ2,τ⟩ : {x, w2 = ξ} X⟨σ⟩ C = X⟨σ2,στ⟩ : v
2 = f0(x)f̄0(x)

X⟨τ⟩ : {y2 = f0(x), w
2 = ξ} X⟨σ2⟩ X⟨τσ⟩

X

Figure 8.1: D8 diagram of covers of curves

Additionally, since the function field of X⟨τσ⟩ is K(X)⟨τσ⟩ = K(x, y + z) (c.f. §2.1.7)

we see that

X ′ = X⟨τσ⟩ : u
4 − 2(f0(x) + f̄0(x))u

2 + (f0(x)− f̄0(x))2 = 0.

Notation 8.2.3. Write C0 : y
2 = f0(x), C̄0 : z

2 = f̄0(x) for hyperelliptic curves over

K(
√
ξ) and ResK(

√
ξ)/KJacC0 for the Weil restriction of JacC0 from K(

√
ξ) to K (see

§2.2).

In the next lemma, we note that the K-isogeny identified above can be rewritten

in terms of these explicit curves. Additionally, we show that, when viewed over the

quadratic extension K(
√
ξ), the isogeny coincides with the one constructed in §3.3.

Lemma 8.2.4. As abelian varieties over K, JacX⟨τ⟩
∼= ResK(

√
ξ)/KJacC0 . In particu-

lar, there exists a K-isogeny ϕ : ResK(
√
ξ)/KJacC0 × JacC → JacX′ with

kerϕ =
{(

(DS, DT ), DS∪T
)
: S ⊆ Rf0 , T ⊆ Rf̄0 have even size

}
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which, via the isomorphism noted in (2.1), becomes the K(
√
ξ)-isogeny JacC0 ×

JacC̄0
× JacC → JacX′ constructed in Theorem 3.3.2 (with K replaced by K(

√
ξ),

f1(x) = f0(x), f2(x) = f̄0(x)).

Proof. The isomorphism is immediate from [23, Lemma A.22].

The proposed kernel is a finite subgroup of ResK(
√
ξ)/KJacC0(K)×JacC(K) and is

stable under the action ofGK , since σ
(
(DS, DT ), DS∪T

)
=
(
(Dσ(S), Dσ(T )), Dσ(S)∪σ(T )

)
or
(
(Dσ(T ), Dσ(S)), Dσ(S)∪σ(T )

)
for σ ∈ GK . Therefore, [44, Chapter 4, Lemma 2.1]

guarantees the existence of a K-isogeny ϕ : ResK(
√
ξ)/KJacC0 × JacC → A (for some

abelian variety A/K) with such kernel.

Applying the construction in §3.3 with f1(x) = f0(x), f2(x) = f̄0(x) gives rise

to a K(
√
ξ)-isogeny JacC0 × JacC̄0

× JacC → Jac{y2=f0(x), z2=f̄0(x)}
∼= JacX′ , with

the isomorphism following from the curves viewed over K(
√
ξ) having the same

function fields ([62, Tag 0BY1]). By Lemma 3.3.7, this isogeny has the same kernel

as the isogeny ϕ (as above) and so it must in fact be defined over K, giving that

A ∼= JacX′ .

Definition 8.2.5. Let K be a local field of characteristic 0, K(
√
ξ)/K be a quadratic

extension and ϕ : ResK(
√
ξ)/KJacC0 × JacC → JacX′ be the K-isogeny as in Lemma

8.2.4. We define the local invariant λK(f0;
√
ξ) to be


#kerϕ|(ResK(

√
ξ)/KJacC0

×JacC)(K)◦
nJacC

nJacX′

µK(C)
µK(X′)

K ≃ R,
cK(JacC)cK(

√
ξ)(JacC0

)

cK(JacX′ )

µK(C)µK(
√
ξ)(C0)

µK(X′)
K/Qp finite, p ̸= 2,

cK(JacC)cK(
√
ξ)(JacC0

)

cK(JacX′ )

µK(C)µK
√

ξ)(C0)

µK(X′)

∣∣∣ ϕ∗ω0
JacX′/K

ω0
ResK(

√
ξ)/KJacC0

×JacC/K

∣∣∣
K
K/Q2 finite.

Theorem 8.2.6. Let K be a number field, K(
√
ξ)/K a quadratic extension and

C : v2 = f0(x)f̄0(x), C0 : y
2 = f0(x) where f0(x), f̄0(x) ∈ K(

√
ξ)[x] are GalK(

√
ξ)/K-

conjugate and f0(x)f̄0(x) is separable.

Assuming that X(JacC/K), X(JacC0/K(
√
ξ)) are finite,

rk(JacC/K) + rk(JacC0/K(
√
ξ)) ≡

∑
v place of K

ord2 λv(f0;
√
ξ) mod 2
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where λv(f0;
√
ξ) is as in Definition 8.2.5 when Kv(

√
ξ)/Kv is a quadratic extension

and λv(f0;
√
ξ) := λKv(

√
ξ)(f0, f̄0) is as in Definition 4.3.2 when Kv(

√
ξ) ∼= Kv.

We will prove this below by applying the isogeny invariance of the Birch and

Swinnerton-Dyer conjecture to the K-isogeny ϕ : ResK(
√
ξ)/KJacC0 × JacC → JacX′

constructed in Lemma 8.2.4. Since this isogeny involves a Weil restriction, the proof

is slightly more delicate than those of Theorems 4.3.3 and 4.4.4.

Lemma 8.2.7. Let K be a number field and Θ = ⟨τ⟩ + ⟨σ2, στ⟩ − ⟨σ2, τ⟩ − ⟨τσ⟩.

Then,

CΘ(JacX(K)⊗Z Q) = 2rk(JacC/K)+rk(JacC0
/K(

√
ξ)).

Proof. Write JacX(K)⊗ZQ = χ⊕n1
+,+⊕χ⊕n2

+,−⊕χ⊕n3
−,+⊕χ⊕n4

−,−⊕ρ⊕n5 for the decomposition

into irreducible representations of D8, where each χ has dimension 1 with subscripts

denoting the images of σ, τ respectively, and ρ has dimension 2. By [18, Example

2.22],

CΘ(χ+,+) = CΘ(χ+,−) = 1, CΘ(χ−,+) = CΘ(χ−,−) = CΘ(ρ) = 2

and so Lemma 2.6.4 yields that CΘ(JacX(K) ⊗Z Q) = 2n3+n4+n5 . Applying

Lemma 2.1.14 with H = ⟨σ2, στ⟩ and taking dimensions immediately gives that

rk(JacC/K) = n1 + n4. Instead letting H = ⟨τ⟩, we see that

n1 + n3 + n5 = rk(JacXH
/K) = rk(JacC0/K(

√
ξ))

since H fixes a 1-dimensional subspace of ρ and JacXH
∼= ResK(

√
ξ)/K(JacC0) (Lemma

8.2.4). The result then follows.

Proof of Theorem 8.2.6. Consider the K-isogeny ϕ : ResK(
√
ξ)/KJacC0 × JacC →

JacX′ as given in Lemma 8.2.4. As in the proof of Theorem 4.2.2,

CΘ(JacX(K)⊗Z Q) ≡
C
(
Res JacC0 × JacC

)
C
(
JacX′)

· #X(JacC0)#X(JacC)

#X(JacX′)
mod Q×2

having used that X(ResK(
√
ξ)/KJacC0) = X(JacC0) (see [41, Theorem 1]).



8.2. Controlling the parity of the rank 128

Let ω be a non-zero global exterior form for JacX′ which is minimal at all places

of K above 2 (c.f. Lemma 4.2.6), and let ω′ = ϕ∗ω. Applying Lemma 4.2.5 when

v | ∞, multiplicativity of cv when v ∤∞, and Theorem 2.3.11, gives that

≡
∏
v|∞

place of K

#kerϕ(Kv)

# cokerϕ(Kv)

∏
v∤∞

place of K

cv(Res JacC0)cv(JacC)

cv(JacX′)

∣∣∣∣∣ ϕ∗ω

ω0
Res JacC0

×JacC

ω0
JacX′

ω

∣∣∣∣∣
v

·
∏

v place of K

µv(C)
∏

w|v µw(C0)

µv(X ′)
mod Q×2

where w denotes a place of K(
√
ξ).

In light of Lemma 8.2.7, it remains to show that the 2-adic valuation of the

displayed term at a place v of K has the same parity as ord2 λv(f0;
√
ξ).

Suppose that there are two places w1, w2 of K(
√
ξ) above v. In particular,

Kv(
√
ξ)wi

∼= Kv for i = 1, 2 and {C0/K(
√
ξ)w1 , C0/K(

√
ξ)w2} ∼= {C0/Kv, C̄0/Kv}.

By definition, λv(f0;
√
ξ) = λKv(

√
ξ)(f0, f̄0). When Kv

∼= C, this is clear since

#cokerϕ(Kv) = 1, #kerϕ(Kv) = 22 deg f0−3 when deg f0 is even, 22 deg f0−2 when

deg f0 is odd, and µ = 1. When Kv
∼= R, this follows from (2.1) and [24, Lemma

3.4]. When Kv/Qp is finite, this follows from (2.1) and that ord2(| · |v) = 0 when p

is odd.

Now suppose that there’s a unique place w of K(
√
ξ) above v so that K(

√
ξ)w ∼=

Kv(
√
ξ) is a quadratic extension of Kv and λv(f0;

√
ξ) is as in Definition 8.2.5.

When Kv
∼= R (and K(

√
ξ)w ∼= C), this follows from [24, Lemma 3.4] and the fact

that Res JacC0(R) ∼= JacC0(C). When Kv/Qp is finite, this clear upon noting that

cv(Res JacC0) =
∏

w|v cw(JacC0) (see [41, Proposition 2(a)]) and that ord2(| · |v) = 0

when p is odd.

Theorem 4.5.1 provides an analogous local formula for the parity of the 2∞-

Selmer rank of ResK(
√
ξ)/KJacC0 × JacC .

Theorem 8.2.8. Let K be a number field, K(
√
ξ)/K a quadratic extension and

C : v2 = f0(x)f̄0(x), C0 : y
2 = f0(x) where f0(x), f̄0(x) ∈ K(

√
ξ)[x] are GalK(

√
ξ)/K-
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conjugate and f0(x)f̄0(x) is separable. Then,

rk2(JacC/K) + rk2(JacC0/K(
√
ξ)) ≡

∑
v place of K

ord2 λv(f0;
√
ξ) mod 2

where λv(f0;
√
ξ) is as in Definition 8.2.5 when Kv(

√
ξ)/Kv is a quadratic extension

and λv(f0;
√
ξ) := λKv(

√
ξ)(f0, f̄0) is as in Definition 4.3.2 when Kv(

√
ξ) ∼= Kv.

8.3 Exhibiting an error term

Here we describe a conjectural error term for the formulae given in Theorems

8.2.1(=4.5.2) and 8.2.8. More precisely, we construct a product of Hilbert symbols

which we aim to show controls the difference between the local invariants appearing

in these formulae and relevant local root numbers.

Let K be a field of characteristic 0 and let f(x)g(x) ∈ K[x] be a separable

polynomial with f(x), g(x) ∈ L[x] for L/K finite and such that the set {f(x), g(x)}

is fixed by GalL/K . Write Rf , Rg ⊂ K for the roots of f(x), g(x) respectively.

Assumption (⋆). For each distinct pair r1, r2 ∈ Rf and s ∈ Rg assume that

r1 + r2 ̸= 2s. Similarly upon swapping the roles of f and g.

Lemma 8.3.1. Let K be a field of characteristic 0 and f(x)g(x) ∈ K[x]. There

exists a t ∈ K such that ft(x) := f( x
1−tx

), gt(x) := g( x
1−tx

) satisfy Assumption (⋆).

Proof. The roots of ft(x), gt(x) are { r
1+tr

: r ∈ Rf}, { r
1+tr

: r ∈ Rg} respectively.

We note that

r1
1 + tr1

+
r2

1 + tr2
= 2

s

1 + ts
⇐⇒ t =

r1 + r2 − 2s

s(r1 + r2)− 2r1r2
.

Therefore, for all but finitely many t ∈ K, ft(x), gt(x) satisfy Assumption (⋆).

Notation 8.3.2. Let

T =
{
{r1, r2, s} : r1 ̸= r2 ∈ Rf , s ∈ Rg or r1 ̸= r2 ∈ Rg, s ∈ Rf

}
.
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For T ∈ T , write ΓT ≤ GK for the subgroup of elements preserving T as a set and

let K(T ) := K
ΓT

= K(r1 + r2, r1r2, s).

Definition 8.3.3. Let T = {r1, r2, s} ∈ T . When K = K is a local field, we define

HK(T ) = H1(T )H2(T ) ∈ {±1} where

H1(T ) =
(
−(r1 + r2 − 2s),−(r1 − s)(r2 − s)

)
K(T )

,

H2(T ) =
(
1
2
(r1 + r2)− s, (r1 − r2)2

)
K(T )

.

Definition 8.3.4. Let O denote a GK-orbit of T and fix an orbit representative

TO ∈ O. When K = K is a local field, we define

HK(f, g) =
∏

O∈T /GK

HK(TO) ∈ {±1}

which we denote by Hv(f, g) when K = Kv (for K a number field, v a place of K).

Example 8.3.5. Let K be a local field of characteristic 0, f(x) = x2+ax+ b ∈ K[x]

and g(x) = x. Then T =
{
{r1, r2, 0}

}
where r1, r2 ∈ K denote the roots of f(x).

Let T = {r1, r2, 0}. Since K(T ) = K, it follows that

HK(f, g) = (a,−b)K(−1
2
a, a2 − 4b)K = (a,−b)K(−2a, a2 − 4b)K.

We note that this is the error term for elliptic curves admitting a 2-isogeny found

in [17, Theorem 4].

Lemma 8.3.6. Let K be a number field and suppose that GK acts transitively on

S ⊆ T . Fix T ∈ S. For each place v of K, there’s a one-to-one correspondence

{
GKv -orbits of S

}
←→

{
places w | v of K(T )

}
.

Explicitly, fixing a place z of K above v, σ−1 ∈ GK induces an isomorphism of local

fields

Kv(σT ) ∼= K(T )σ−1w,
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where w is a place of K(T ) such that z | w.

Proof. We have an isomorphism S ∼= GK/GK(T ) of GK-sets and, fixing an embedding

K ↪→ Kv, or equivalently a place z | v of K, an isomorphism GKv
∼= Dz of groups

(where Dz denotes the decomposition group of GK). Both the GKv -orbits of S and

the places w of K(T ) above v are in one-to-one correspondence with the Dz−GK(T )

double cosets of GK (for the latter, see e.g. [52, Chapter 1, §9]). In particular, let

TO = σT be a representative for O ∈ S/GKv (for some σ ∈ GK). Then O corresponds

to the place w of K(T ) such that σ−1z | w.

Let w be a place of K(T ) such that z | w. Writing w = mKz
∩ OK(T ) we see

that Kv(σT ) ∼= K(σT )w. Applying σ−1 gives the required isomorphism.

Theorem 8.3.7. Let K be a number field and f(x)g(x) ∈ K[x] be a separable poly-

nomial with f(x), g(x) ∈ L[x] for L/K finite and such that the set {f(x), g(x)} is

fixed by GalL/K. Then ∏
v place of K

Hv(f, g) = + 1

where Hv(f, g) is as in Definition 8.3.4.

Proof. Suppose that GK acts transitively on S ⊆ T and fix T ∈ S. Let O ∈ S/GKv

be represented by the triple TO = σT , for some σ ∈ GK .

Fix v a place of K. By the correspondence and isomorphism of local fields

detailed in Lemma 8.3.6, the product of Kv(σT )-valued Hilbert symbols Hv(σT ) is

equal to the product of K(T )w-valued Hilbert symbols Hw(T ), where w is the place

of K(T ) in correspondence with O (i.e. σ−1z | w). In particular,

∏
O∈S/GKv

Hv(TO) =
∏

w|v place of K(T )

Hw(T ).

Taking the product over places v of K gives +1 (by the product law for Hilbert

symbols over K(T )) and the result follows upon applying this to each GK-orbit of

T .

We now explain the manner in which HK allows us to describe the difference

between the local invariants λK of Theorems 8.2.1 and 8.2.8 and local root numbers.
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We begin with the construction concerning C2×C2-hyperelliptic curves (those whose

defining polynomials are reducible).

Conjecture 8.3.8. Let K be a local field of characteristic 0 and X1 : y2 = f1(x),

X2 : z2 = f2(x), X0 : w2 = f1(x)f2(x) for f1(x), f2(x) ∈ K[x] such that f1(x)f2(x)

is separable and Assumption (⋆) holds. Then

(−1)ord2λK(f1,f2)wK(JacX1)wK(JacX2)wK(JacX0) = (−1,−1)
⌈

(n1−1)(n2−1)
2

⌉
K HK(f1, f2)·

(−1, c
1
2
n2(n2+1)

f1
c

1
2
n1(n1+1)

f2
)K(cf1 , cf2)

n1n2
K (∆f1Rf1,f2 , cf2)K(∆f2Rf2,f1 , cf1)K

where cfi, ni denote the lead coefficient and degree of fi, ∆ denotes the discriminant,

R denotes the resultant, HK(f1, f2) is as in Definition 8.3.4 and λK(f1, f2) is as in

Definition 4.3.2.

Remark 8.3.9. When f1(x) ∈ K[x] is a monic quadratic and f2(x) = x, this is [17,

Theorem 4] (c.f. Example 8.3.5 for HK in this case). An open problem is to show

that this becomes Theorem 6.1.8 when f1(x) ∈ K[x] is a monic cubic and f2(x) = x.

Unfortunately a complete proof of Conjecture 8.3.8 is currently out of our reach,

with particularly troublesome cases being when K/Q2, or when K/Qp and JacX1 ×

JacX2 × JacX0 is not semistable over K (in these situations, the theory concerning

the local invariants for hyperelliptic/bihyperelliptic curves is much less developed).

However, in the next section we provide proofs in the following cases.

Theorem 8.3.10 (Local Theorem III). Let K be a local field of characteristic 0 and

X1 : y
2 = f1(x), X2 : z

2 = f2(x), X0 : w
2 = f1(x)f2(x) for monic f1(x), f2(x) ∈ K[x]

such that f1(x)f2(x) is separable and Assumption (⋆) holds. Conjecture 8.3.8 holds

when:

(1) K is Archimedean,

(2) K/Qp is finite, p ̸= 2, and the reduction of f1(x)f2(x) has at worst one double

root, or

(3) K/Q2 is finite and X1, X2, X0 have good ordinary reduction with
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ΣX1 = v(4) v(4) v(4)
0
, ΣX2 = v(4) v(4) v(4)

0
,

ΣX0 = v(4) v(4) v(4) v(4)
0
.

In particular,

(−1)ord2λK(f1,f2)wK(JacX1)wK(JacX2)wK(JacX0) = (−1,−1)
⌈

(n1−1)(n2−1)
2

⌉
K HK(f1, f2)

where ni denotes the degree of fi, HK(f1, f2) is as in Definition 8.3.4 and λK(f1, f2)

is as in Definition 4.3.2.

Proof. For (1), this is Propositions 8.4.1 and 8.4.12. For (2), this is Proposition

8.4.16. For (3), this is Proposition 8.4.21.

We now state an analogous local conjecture and theorem for D8-hyperelliptic

curves (those whose defining polynomials are irreducible but admit a factorisation

over a quadratic extension). In view of the parity conjecture, it is enough to consider

such curves whose defining polynomials have degree a power of 2 (c.f. Theorem 8.1.1).

Conjecture 8.3.11. Let K be a local field of characteristic 0, K(
√
ξ)/K be a

quadratic extension and C0 : y2 = f0(x), C : w2 = f0(x)f̄0(x) for GalK(
√
ξ)/K-

conjugate f0(x), f̄0(x) ∈ K(
√
ξ)[x] of degree n = 2m > 1 such that f0(x)f̄0(x) is

separable and Assumption (⋆) holds. Then

(−1)ord2λK(f0;
√
ξ)wK(JacC)wK(

√
ξ)(JacC0) =

(−1,−1)KHK(f0, f̄0)(−1, cf0f̄0)
n
2
K(Rf0,f̄0 , cf0f̄0)K(∆f̄0 , cf0)K(

√
ξ)

where cf0, cf̄0 denote the lead coefficients of f0, f̄0 respectively, ∆ denotes the discrim-

inant, R denotes the resultant, HK(f0, f̄0) is as in Definition 8.3.4 and λK(f0;
√
ξ) is

as in Definition 8.2.5.

As in the case of C2×C2-hyperelliptic curves, at present we are only able to

prove this conjecture in certain instances. This is the focus of §8.5.
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Theorem 8.3.12 (Local Theorem IV). Let K be a local field of characteristic 0,

K(
√
ξ)/K be a quadratic extension and C0 : y2 = f0(x), C : w2 = f0(x)f̄0(x) for

monic, GalK(
√
ξ)/K-conjugate f0(x), f̄0(x) ∈ K(

√
ξ)[x] of degree n = 2m ≥ 4 such that

f0(x)f̄0(x) is separable and Assumption (⋆) holds. Conjecture 8.3.11 holds when:

(1) K is Archimedean (i.e. K ∼= R),

(2) K/Qp is finite, p ̸= 2, and the reduction of f0(x)f̄0(x) has at worst two double

roots, or

(3) K/Q2 is finite, K(
√
ξ)/K is unramified, and C0, C have good ordinary reduction

with

ΣC0/K(
√
ξ) = v(4) v(4) v(4)

0
, ΣC/K = v(4) v(4) v(4) v(4)

0
.

In particular,

(−1)ord2λK(f0;
√
ξ)wK(JacC)wK(

√
ξ)(JacC0) = (−1,−1)KHK(f0, f̄0)

where HK(f0, f̄0) is as in Definition 8.3.4 and λK(f0;
√
ξ) is as in Definition 8.2.5.

Proof. For (1), this is Proposition 8.5.7. For (2), this is Proposition 8.5.13. For (3),

this is Proposition 8.5.14.

Remark 8.3.13. We omit a proof of Theorem 8.3.12 when deg f0 = 2 for ease of

exposition (in this case the methods used to compute the required local invariants

are different). This does not impact the global results we obtain since, when K

is a number field and f0(x) ∈ K(
√
ξ)[x] is a monic quadratic, JacC is an elliptic

curve with a K-rational 2-torsion point (see Remark 2.1.7) for which the 2-parity

conjecture is already known to hold ([20, Theorem 1.8]).

Remark 8.3.14. We note that when K/Q2 and X1, X2, X0/K or C0/K(
√
ξ), C/K

have good ordinary reduction, [25, Theorem 1.2] guarantees that the curves admit

models with the cluster pictures specified in Theorems 8.3.10 and 8.3.12 whenever

the size of the residue field of K exceeds the genus of X0 or C.
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Remark 8.3.15. When K/Qp and p ̸= 2, we expect to be able to generalise the

proofs of Propositions 8.4.16 and 8.5.13 to prove Conjectures 8.3.8 and 8.3.11 when-

ever the hyperelliptic curves are all semistable with nice cluster pictures; for instance,

their top clusters are principal and not übereven.

Given this generalisation, we then expect to be able to use deformation argu-

ments to extend the proof to the cases when

• p ̸= 2 and X0, C are tame, and

• p = 2 and X0, C have good ordinary reduction.

This is work in progress.

8.4 Proof of Local Theorem III

Throughout this section we assume the set up of Theorem 8.3.10. In particular,

K is a local field of characteristic 0 and f1(x), f2(x) ∈ K[x] are monic, such that

f1(x)f2(x) is separable and Assumption (⋆) holds. We define hyperelliptic curves

over K by

X1 : y
2 = f1(x), X2 : z

2 = f2(x), X0 : w
2 = f1(x)f2(x),

and a bihyperelliptic curve over K by

X : {y2 = f1(x), z
2 = f2(x)}.

8.4.1 Proof over Archimedean fields

We first prove that Theorem 8.3.10 holds when K is an Archimedean local field.

This is straightforward when K ∼= C, in which case we recall that

λK(f1, f2) = 2deg f1 deg f2+1.

Proposition 8.4.1. Theorem 8.3.10 holds when K ∼= C.
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Proof. Using that (−,−)K = +1, we need only show that

(−1)ord2λK(f1,f2)wK(JacX1)wK(JacX2)wK(JacX0) = + 1.

This follows from the definition of λK and noting that wK(JacX1) = (−1)⌊
deg f1−1

2
⌋,

wK(JacX2) = (−1)⌊
deg f2−1

2
⌋, wK(JacX0) = (−1)⌊

deg f1+deg f2−1
2

⌋ (by Lemma 2.3.4).

When K ∼= R, we begin by determining HK(f1, f2).

Lemma 8.4.2. Let K ∼= R and T = {r1, r2, s} ∈ T . Then H1(T )H2(T ) = −1

precisely when s ∈ R and either

(1) r1, r2 ∈ R with r1, r2 > s, or

(2) r1, r2 are complex conjugates.

Proof. If K(T ) ∼= C then H1(T ) = H2(T ) = +1 by definition. Therefore, suppose

that K(T ) ∼= R, i.e. s ∈ R and {r1, r2} is fixed under the action of complex conjuga-

tion.

If r1, r2 ∈ R then (r1− r2)2 > 0 and so H2(T ) = +1. It’s then easy to check that

both entries of H1(T ) are < 0 only when r1, r2 > s.

If r1, r2 are complex conjugates then (r1 − r2)2 < 0 and (r1 − s)(r2 − s) > 0.

Therefore, H1(T )H2(T ) = (−(r1 + r2 − 2s),−1)K(12(r1 + r2)− s,−1)K = −1.

Notation 8.4.3. Write n1, n2 for the degrees of f1, f2 respectively and

Rf1 ∩ R =
{
α1, . . . , αn1−2a1 : αi < αi+1

}
,

Rf2 ∩ R =
{
β1, . . . , βn2−2a2 : βi < βi+1

}
,

where Rf1 , Rf2 ⊂ K denote the roots of f1, f2 respectively.

For t1, t2 ∈ R, write

1t1<t2 =

1 t1 < t2,

0 otherwise.
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Corollary 8.4.4. Let K ∼= R. Then,

HK(f1, f2) = (−1)
1
2
n1(n2(1−n1)+2a2)+

∑
i+j≡n1+n2+1 mod 2 1αi<βj

Proof. This follows, as below, from counting the triples detailed in Lemma 8.4.2.

Let t ∈ R. The number of triples {t, βj, βk} with βj, βk > t is

(∑
j 1t<βj

2

)
=

1

2

((∑
j

1t<βj

)2 −∑
j

1t<βj

)
=
∑
j<i

1t<βj
1t<βi

=
∑
j

(n2 − 2a2 − j)1t<βj

≡
∑

j≡n2+1 mod 2

1t<βj
mod 2.

Thus, the number of triples {αi, βj, βk} of the first type is congruent to∑
i

∑
j≡n2+1 mod 2 1αi<βj

modulo 2. By symmetry, and using that 1t<αi
= 1− 1αi<t,

the number of triples {αi, αk, βj} of the first type is congruent to 1
2
n2(n1(1 − n1) −

2a1) +
∑

i≡n1+1 mod 2

∑
j 1αi<βj

modulo 2.

Since the number of triples of the second type is (n1− 2a1)a2+(n2− 2a2)a1, we

obtain the required expression for HK(f1, f2).

Having described HK, it remains to compute the right-hand-side of Theorem

8.3.10. This could be computed directly, however we will use the following result to

make an immediate simplification.

Lemma 8.4.5 (To appear in [46]). Suppose that A, B are principally polarised

abelian varieties over R and that ϕ : A → B is an isogeny with ϕ ◦ ϕ̂ = [2] = ϕ̂ ◦ ϕ.

Then

(−1)ord2

(
#kerϕ(R)

# cokerϕ(R)

)
· w(A) = (−1)ord2#kerϕ−1|A−1(R)◦

where ϕ−1 is the induced isogeny on the quadratic twists by −1, i.e. ϕ−1 :=

ψB ◦ ϕ ◦ ψ−1
A and ψA : A → A−1, ψB : B → B−1 are isomorphisms over C such
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that ψA(−P ) = ψA(P ) for each P ∈ A(C), and similarly for ψB.

In particular, in line with Corollary 4.2.7, when K ∼= R

(−1)ord2λK(f1,f2)wK(JacX1)wK(JacX2)wK(JacX0)

= (−1)ord2#kerϕ−1|(JacX1
×JacX2

×JacX0
)−1(K)◦ .

We now state two lemmata which will allow us to compute this quantity.

Lemma 8.4.6. Let ϕ : JacX1 × JacX2 × JacX0 → JacX be the K-isogeny defined in

Theorem 3.3.2 and let ϕ−1 be as in Lemma 8.4.5. Then

kerϕ−1 =
{(
DS, DT , DS∪T

)
: S ⊆ Rf1 , T ⊆ Rf2 have even size

}
where Rf1, Rf2 ⊂ C denote the roots of f1(x), f2(x) respectively.

Proof. Write A = JacX1×JacX2×JacX0 then A−1 = Jac(X1)−1×Jac(X2)−1×Jac(X0)−1

(since the hyperelliptic involution on a hyperelliptic curve induces multiplication by

−1 on its Jacobian [47, §1.5.2]). The result then follows from Lemma 3.3.7 since

kerϕ−1 = ψA(kerϕ).

Lemma 8.4.7. Let f(x) ∈ R[x] be monic and separable. Define C : y2 = −f(x) and

let S ⊆ Rf have even size. Then DS ∈ JacC(R)◦ if and only if S is closed under

conjugation and deg(DS ∩ c) is even for each connected component c of C(R).

Proof. This is [29, Proposition 4.2] when C(R) ̸= ∅ or when C(R) = ∅ and 1
2
(deg f−

2) is even, and [15, Lemma 2.2.3] otherwise.

To be able to count the required points in the kernel it is convenient to construct

the following graph. We write (X1)−1, (X2)−1, (X0)−1 for the quadratic twists of X1,

X2, X0 by −1 respectively.

Definition 8.4.8. Let G = (V,E) be a coloured graphed where: V = Rf1f2 ∩ R

with roots of f1, f2 coloured red, blue respectively, and edges in E determined by

the following rules
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• there is a red edge between two red roots precisely when they correspond to

points on the same connected component of (X1)−1,

• there is a blue edge between two blue roots precisely when they correspond to

points on the same connected component of (X2)−1,

• there is a black edge between any two roots corresponding to points on the

same connected component of (X0)−1.

Write Y for the collection of connected subsets of G (i.e. Γ ⊆ V such that x ∈ Γ⇒

all neighbours of x ∈ Γ) and nG for the number of connected components of G.

Suppose that Rf1f2 ⊂ R. Then there’s a one-to-one correspondence

Y/complements ←→ kerϕ−1|Jac(X1)−1
×Jac(X2)−1

×Jac(X0)−1
(R)◦

where for Γ ⊆ V a connected subset of G, we write Γ ∼ V \Γ and Y/complements :=

Y/ ∼.

In particular, let Γ = S ∪ T ∈ Y/complements where S ⊆ Rf1 , T ⊆ Rf2 .

Without loss of generality we may assume that S, T have even size (#S ∪ T is even

when deg f1f2 is even, and so if #S, #T are odd then replace Γ by V \ Γ; when

deg f1 is even and deg f2 is odd then #S is even, if #T is odd then replace Γ by

V \ Γ). Then

Γ 7−→ (DS, DT , DS∪T ), ∅ 7−→ 0.

Conversely, let P = (DS, DT , DS∪T ) ∈ kerϕ−1|Jac(X1)−1
×Jac(X2)−1

×Jac(X0)−1
(R)◦ for

even sized subsets S ⊆ Rf1 , T ⊆ Rf2 . Then

P 7−→ S ∪ T.

Example 8.4.9. Let f1(x) = (x2 − 2)(x+ 5) and f2(x) = (x− 1)2 − 3, then we can

construct the graph G (Figure 8.2).

Using the correspondence detailed above, we observe that there are only two

points in kerϕ−1 belonging to Jac(X1)−1 × Jac(X2)−1 × Jac(X0)−1(R)◦. In particu-
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−5 −
√
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√
3

√
2 1+

√
3

Figure 8.2: The graph G when f1(x) = (x2 − 2)(x+ 5), f2(x) = (x− 1)2 − 3.

lar, writing Y/complements = {∅, Γ} where Γ denotes the rightmost connected

component of G, these are (0, 0, 0) corresponding to ∅ and (DS, 0, DS∪Rf2
) with

S = {−
√
2,
√
2} corresponding to Γ.

This can also be seen directly, using that kerϕ−1 is as given in Example 3.3.8,

alongside Lemma 8.4.7 and the following plots of (X1)−1, (X2)−1 and (X0)−1 over R

(Figure 8.3).

−6 −4 −2 2

x

y

−2 −1 1 2

x

z

−6 −4 −2 2

x

w

Figure 8.3: The curves y2 = −f1(x), z2 = −f2(x), w2 = −f1(x)f2(x) when f1(x) =
(x2 − 2)(x+ 5), f2(x) = (x− 1)2 − 3.

Note that if f1(x) = (x2 − 2)(x+ 5)(x2 + 1), then Lemma 8.4.7 indicates that 4

elements of kerϕ−1 belong to Jac(X1)−1×Jac(X2)−1×Jac(X0)−1(R)◦. These are (0, 0, 0)

and (DS, 0, DS∪Rf2
) for S = {−

√
2,
√
2}, {−i, i} and {−

√
2,
√
2,−i, i}. However, the

graph G remains unchanged.

Lemma 8.4.10. Let K ∼= R and suppose that f1(x), f2(x) are monic with a1, a2 pairs

of complex conjugate roots respectively. Let G be the graph constructed in Definition

8.4.8. Then

(−1)ord2λK(f1,f2)wK(JacX1)wK(JacX2)wK(JacX0) = (−1)nG−1+a1+a2 .

Proof. By assumption, X1(K), X2(K), X0(K), X(K) ̸= ∅ and so µ = 1 for each curve.

Therefore, writing A = JacX1 × JacX2 × JacX0 and applying Lemma 8.4.5, the
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lefthand-side is precisely

(−1)ord2#kerϕ−1|A−1(R)◦ .

Suppose that Rf1f2 ∩ R ̸= ∅. When Rf1f2 ⊂ R (i.e. a1 = a2 = 0), by con-

struction there is a one-to-one map between kerϕ−1|A−1(R)◦ and the collection of

connected subsets of G, up to complements. Therefore #kerϕ−1|A−1(R)◦ = 2nG−1.

When f1(x)f2(x) has complex roots, G only accounts for the points of kerϕ−1|A−1(R)◦

corresponding to subsets of real roots. The remaining elements are constructed by

appending all possible collections of pairs of complex conjugate roots (as in Example

8.4.9), giving that #kerϕ−1|A−1(R)◦ = 2nG−1+a1+a2 .

Now suppose that Rf1f2 ∩ R = ∅, i.e. n1 = 2a1, n2 = 2a2 (where n1, n2

are the degrees of f1, f2) and nG = 0. Then, by Lemma 8.4.7, there is a two-to-

one correspondence between elements of kerϕ−1|A−1(R)◦ and even sized subsets S ⊆

Rf1 , T ⊆ Rf2 which are closed under conjugation, up to complements. Therefore,

#kerϕ−1|A−1(R)◦ = 2a1−1+a2−1+1 = 2−1+a1+a2 .

Lemma 8.4.11. Let G be the graph constructed in Definition 8.4.8. Then

nG ≡
∑

i+j≡n1+n2+1 mod 2

1αi<βj
+


1
2
(n1 + n2(n2 + 1))− (a1 + a2) n1 even

1
2
(n1 + 1)− a1 n1 odd

mod 2

using the notation fixed in 8.4.3.

Proof. First suppose that n1 is even. If βn2−2a2 < α1 then the connected components

of G are {α2i+1, α2i+2}, {β2j+1, β2j+2} when n2 is even, and {α2i+1, α2i+2}, {β1},

{β2j+2, β2j+3} when n2 is odd. Therefore nG = n1

2
+ ⌈n2

2
⌉ − (a1 + a2).

If α1 ∈ (βn2−2a2−2i, βn2−2a2−2i+2), α2 ∈ (βn2−2a2−2k−1, βn2−2a2−2k+1) and

βn2−2a2 < α3 then {α1, α2, βn2−2a2−2i+1, . . . , βn2−2a2−2k} is now a connected com-

ponent. Since the other connected components are those listed above,

nG =
n1

2
+
⌈n2

2

⌉
− (a1 + a2)− i+ k

≡ 1
2
(n1 + n2(n2 + 1))− (a1 + a2) +

∑
i+j≡n2+1

1αi<βj
mod 2.
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Relaxing the condition that βn2−2a2 < α3, we see that each pair {α2l+1, α2l+2}

behaves like {α1, α2}. This gives the required formula.

Now suppose that n1 is odd. If βn2−2a2 < α1 then the connected components of

G are {β1, . . . , βn2−2a2 , α1} and {α2i+2, α2i+3}. Therefore nG = n1+1
2
− a1.

Relaxing the condition that βn2−2a2 < α1, we see that pairs {α2l+2, α2l+3} behave

like the pair {α1, α2} in the case when n1 is even. This gives rise to the required

expression, namely

nG ≡ 1
2
(n1 + 1)− a1 +

∑
i+j≡n2

1αi<βj
mod 2.

Proposition 8.4.12. Theorem 8.3.10 holds when K ∼= R.

Proof. Combining Corollary 8.4.4 and Lemma 8.4.10, it remains to show that

⌈(n1 − 1)(n2 − 1)

2

⌉
+

1

2
n1(n2(1− n1) + 2a2) +

∑
i+j≡n1+n2+1 mod 2

1αi<βj

≡ nG − 1 + a1 + a2 mod 2.

This is an easy check using the expression for nG mod 2 given in Lemma 8.4.11.

8.4.2 Proof over non-Archimedean fields for nice reduction

types

We now consider non-Archimedean local fields, beginning by proving that Theorem

8.3.10 holds when K/Qp is a finite extension for an odd prime p and the reduction

of f1(x)f2(x) has at worst one double root.

We write π for a fixed choice of uniformiser of K and v for a normalised valuation

on K, i.e. v(π) = 1.

As before, we first consider the term HK(f1, f2).

Lemma 8.4.13. Let K/Qp be a finite extension for p ̸= 2 and let T = {r1, r2, s} ∈ T
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satisfy v(r2 − s) = 0. Then HK(T ) equals
+1 if v(r1 − r2), v(r1 − s) = 0,(∏

σ∈GalK(r2)/K
(1
2
(r1 + s)− σ(r2)), π

)d
K if v(r1 − r2) = 0, v(r1 − s) = d,(∏

σ∈GalK(s)/K
(1
2
(r1 + r2)− σ(s)), π

)d
K if v(r1 − r2) = d

2
, v(r1 − s) = 0.

Proof. Write L = K(T ) and let πL denote a fixed choice of uniformizer for L.

Case 1. Both −(r1 − s)(r2 − s), (r1 − r2)2 are units in L. If 1
2
(r1 + r2) − s is

also a unit, then clearly H1(T ) = H2(T ) = +1. Else, H1(T )H2(T ) = (1
2
(r1 + r2) −

s,−(r1−s)(r2−s)(r1−r2)2)L where −(r1−s)(r2−s)(r1−r2)2 ≡ 1
4
(r1−r2)4 mod πL,

i.e. the second entry is a square.

Case 2. L = K(r2) and both 1
2
(r1 + r2)− s, (r1 − r2)2 are units in L, therefore

H2(T ) = +1. By Lemma 2.7.5(ii), H1(T ) = (2s− (r1+ r2), π)
d
L =

(∏
σ∈GalL/K

σ(2s−

r1− r2), π
)d
K and the result follows using that σ(2s− r1) = 2s− r1 ≡ 1

2
(r1+ s) mod π

for each σ ∈ GalL/K.

Case 3. L = K(s) and both 1
2
(r1 + r2) − s, −(r1 − s)(r2 − s) are units in

L, therefore H1(T ) = +1. By Lemma 2.7.5(ii), H2(T ) = (1
2
(r1 + r2) − s, π)dL =(∏

σ∈GalL/K
σ(1

2
(r1 + r2)− s), π

)d
K and the result follows using that r1 + r2 ∈ K.

Lemma 8.4.14. Let K/Qp be a finite extension for p ̸= 2 and suppose that ΣX0/K =

d 0
where the twin is given by t = {r, s} with r ∈ Rf1, s ∈ Rf2. Then

HK(f1, f2) =
(

f1(x)f2(x)
(x−r)(x−s)

∣∣∣
x= 1

2
(r+s)

, π
)d
K
.

Proof. By Lemma 8.4.13, triples t ̸⊂ T ∈ T contribute trivially to HK. All remaining
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triples are of the second type detailed in Lemma 8.4.13, thus

HK(f1, f2) =
∏

r′∈(Rf1
−{r})/GK

HK({r, r′, s})
∏

s′∈(Rf2
−{s})/GK

HK({s, s′, r})

=
( ∏

r′∈(Rf1
−{r})/GK

σ∈GalK(r′)/K

(
1
2
(r + s)− σ(r′)

) ∏
s′∈(Rf2

−{s})/GK

σ∈GalK(s′)/K

(
1
2
(r + s)− σ(s′)

)
, π
)d
K

=
( ∏

z∈Rf1f2
−t

(
1
2
(r + s)− z

)
, π
)d
K
.

Lemma 8.4.15. Let K/Qp be a finite extension for p ̸= 2 and suppose that ΣX0/K =

d
2 0

where the twin is given by t = {r1, r2} ⊆ Rf1. Then

HK(f1, f2) =
(
f2
(
1
2
(r1 + r2)

)
, π
)d
K
.

Similarly upon replacing f1 by f2.

Proof. By Lemma 8.4.13, triples t ̸⊂ T ∈ T contribute trivially to HK. All remaining

triples are of the third type detailed in Lemma 8.4.13, thus

HK(f1, f2) =
∏

s∈Rf2
/GK

HK({r1, r2, s})

=
( ∏

s∈Rf2
/GK

σ∈GalK(s)/K

(
1
2
(r1 + r2)− σ(s)

)
, π
)d
K

=
( ∏

s∈Rf2

(
1
2
(r1 + r2)− s

)
, π
)d
K
.

Recall that when K/Qp is finite and p ̸= 2,

λK(f1, f2) =
cK(JacX1)cK(JacX2)cK(JacX0)

cK(JacX)

µK(X1)µK(X2)µK(X0)

µK(X)
.

Proposition 8.4.16. Theorem 8.3.10 holds when K/Qp is finite for p ̸= 2 and the

reduction of f1(x)f2(x) has at worst one double root.
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Proof. Without loss of generality, we assume that X2 has good reduction so that

cK(JacX2) = 1, µK(X2) = 1 and wK(JacX2) = +1. Since (−1,−1)K = +1, it remains

to prove that

HK(f1, f2) = (−1)ord2
cK(JacX1

)cK(JacX0
)µK(X1)µK(X0)

cK(JacX )µK(X) wK(JacX1)wK(JacX0).

The inputs of Table 8.1 (columns 1 and 2) are the possible non-trivial clusters

belonging to ΣJacX1
and Σchr

JacX
(or ignoring the colouring, ΣJacX0

), where the roots of

f1 and f2 are denoted by red circles ( ) and blue diamonds ( ) respectively.

Column 3 gives the dual graph of the minimal regular model of X/K, denoted

ΥX , where an arrow is used to indicate the action of Frobenius. This is determined

using Theorem 2.4.14 (note that B = X).

Columns 4 and 5 list the Tamagawa numbers for JacX1 and JacX0 , calculated

from their respective cluster pictures using Theorem 2.4.9 (or from the cluster picture

of the Jacobian as given in Table 6.2 if either deg f1 or deg f1 + deg f2 = 4).

Similarly, column 6 contains the Tamagawa number for JacX but this time

calculated from ΥX using Theorem 2.3.3.

Columns 7 and 8 keep track of the deficiency contribution from X1 and X0 using

Theorem 2.4.11 (or, when X1 : y2 = x2 + ax + b, µ(X1) = +1 since the points at

infinity are defined over K).

Similarly, column 9 lists the deficiency contribution from X computed via [47,

Lemma 6.11] or [53] (these results indicate that µ is determined from Υ, so we could

instead identify a hyperelliptic curve C/K such that ΥC = ΥX and then use Theorem

2.4.11).

Column 10 gives the value of (−1)ord2λK(f1,f2).

Columns 11 and 12 list wK(JacX1) and wK(JacX0), calculated using Theorem

2.3.5 or Theorem 2.4.10.

Column 13 displays the value of HK. For row 1, this is +1 since all triples in T

are of the first type detailed in Lemma 8.4.13. For rows 2 and 3, we observe Lemma

8.4.14 and note that the first entry of the Hilbert symbol is a square precisely when

the sign attached to t is + (c.f. Remark 2.4.7). Similarly for rows 4-7, we observe
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Lemma 8.4.15 and note that the first entry of the Hilbert symbol is a square precisely

when the sign attached to t in each cluster picture is the same (c.f. Remark 2.4.7).

Having now dealt with Theorem 8.3.10 when K is non-Archimedean of odd

residue characteristic, we turn our attention to what happens when K/Q2 and X1,

X2, X0 have cluster pictures

ΣX1 = v(4) v(4) v(4)
0
, ΣX2 = v(4) v(4) v(4)

0
,

ΣX0 = v(4) v(4) v(4) v(4)
0
.

Lemma 8.4.17. Let K/Q2 be finite, r1 ̸= r2 ∈ Rf1 and s, s′ ∈ Rf2 satisfy v(s−s′) =

v(4). If T = {r1, r2, s}, T ′ = {r1, r2, s′} are not GK-conjugate, then H1(T )H1(T
′) =

H2(T )H2(T
′) = +1. Similarly, upon swapping the roles of f1, f2.

Proof. Write L := K(T ) = K(T ′) and s− s′ = 4t where t ∈ O×
L . We will repeatedly

use the Hilbert symbol identity given in Lemma 2.7.6 and the fact that 1 + 8x = □

whenever x ∈ O×
L .

Suppose that v(r1 − r2) = v(4). Then u := 1
2
(r1 + r2) − s ∈ O×

L and

H2(T )H2(T
′) = (u, (r1−r2)2)L(u+4t, (r1−r2)2)L = (u2(1+4tu−1), (r1−r2)2)L = +1.

Now write v := −(r1 − s)(r2 − s) ∈ O×
L , then H1(T )H1(T

′) = (−2u, v)L(−2(u +

4t), v(1− 8tv−1(u+ 2t)))L = (4u2(1 + 4tu−1), v)L = +1.

Instead suppose that v(r1 − r2) = 0 then u := r1 + r2 − 2s ∈ O×
L and

H2(T )H2(T
′) = (1

2
u, (r1−r2)2)L(12(u+8t), (r1−r2)2)L = (u2(1+8tu−1), (r1−r2)2)L =

+1. With v as before, H1(T )H1(T
′) = (−u, v)L(−u(1 + 8tu−1), v(1 − 4tv−1(u +

4t)))L = +1.

Lemma 8.4.18. Let K/Q2 be finite, r1 ̸= r2 ∈ Rf1 and s, s′ ∈ Rf2 satisfy v(s−s′) =

v(4). If T = {r1, r2, s}, T ′ = {r1, r2, s′} are GK-conjugate, then H1(T ) = H2(T ) =

+1. Similarly, upon swapping the roles of f1, f2.

Proof. Write L := K(T ) and L0 := K(ss′, s + s′, r1r2, r1 + r2) where [L : L0] = 2

(since s /∈ L0). Write s − s′ = 4t where t ∈ O×
L and note that t2 ∈ L0. Let

z := 1
2
(r1 + r2) − 1

2
(s + s′) ∈ L0. Either z is a unit (when v(r1 − r2) = v(4)) or
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2z is a unit (when v(r1 − r2) = 0). In both cases, H2(T ) = (z − 2t, (r1 − r2)2)L =

(z2(1− 4t2z−2), (r1 − r2)2)L0 = +1 since (r1 − r2)2 ∈ L0.

Suppose that z is a unit, i.e. r1 − r2 = 4v for v ∈ O×
L with v2 ∈ L0. Then

(r1 − s)(r2 − s) = (z − 2t)2 − 4v2 and

H1(T ) = (−2(z − 2t),−(z − 2t)2(1− 4v2(z − 2t)−2))L

= (−2(z − 2t),−1)L(2, 1− 4v2(z − 2t)−2)L

= (4z2(1− 4t2z−2),−1)L0(2, 1− 8v2(z2 − 4t2)−2(z2 + 4t2) + 16v4(z2 − 4t2)−2)L0

= +1

having used Lemma 2.7.5(ii).

Suppose instead that 2z is a unit. Then

H1(T ) = (−2z(1− 4t(2z)−1),−(r1 − s)(r2 − s))L

= (−2z,−(r1 − s)(r2 − s))L

= (−2z, (r1 − s)(r2 − s)(r1 − s′)(r2 − s′))L0

having used Lemma 2.7.5(ii). Since (r1 − s)(r1 − s′) = (r1 − 1
2
(s + s′))2 − 4t2 and

similarly for (r2 − s)(r2 − s′), we see that the right-hand entry can be replaced by

(r1− 1
2
(s+ s′))2(r2− 1

2
(s+ s′))2 which is a square in L0. Therefore H1(T ) = +1.

Corollary 8.4.19. Let K/Q2 be finite and X1, X2, X0 be as in Theorem 8.3.10.

Then HK(f1, f2) = +1.

Proof. This is immediate from Lemmata 8.4.17 and 8.4.18.

Lemma 8.4.20. Let K/Q2 be a finite extension and X1, X2, X0 be as in Theorem

8.3.10. Then

ord2 λK(f1, f2) ≡ [K : Q2]
(
1
2
(deg f1 + deg f2)− 1

)
mod 2.

Proof. We first note that µK = 1 for all curves since they are assumed to have good
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reduction. By Lemma 4.2.5 and [24, Theorem A.1] with A = JacX1 × JacX2 × JacX0 ,

λK(f1, f2) =
#kerϕ(K)
# cokerϕ(K)

= 2−[K:Q2] dimF2 (A1(K)[2]∩A(K)[ϕ])

where the elements of A1(K) (the kernel of reduction on A) are described in [25,

Proposition 1.16]. In particular, using Notation 2.1.11 and writing T1, T2 for the

collections of twins in ΣX1 , ΣX2 ,

A1(K̄) =
{
(DS1 , DS2 , DS0) : S1 ∈P(T1), S2 ∈P(T2), S0 ∈P(T1 ⊔ T2)

}
where P denotes the power set and we recall that DS = DSc . By Lemma 3.3.7, such

an element additionally belongs to A(K)[ϕ] when either S0 = S1∪S2 or (Rf1−S1)∪S2.

Therefore, #(A1(K)[2]∩A(K)[ϕ]) = 2
deg f1

2
+

deg f2
2

−1 (i.e. twice the number of possible

S1, up to complements, times the number of possible S2, up to complements) and

the result follows.

Proposition 8.4.21. Theorem 8.3.10 holds when K/Q2 is finite and X1, X2, X0 have

good ordinary reduction with

ΣX1 = v(4) v(4) v(4)
0
, ΣX2 = v(4) v(4) v(4)

0
,

ΣX0 = v(4) v(4) v(4) v(4)
0
.

Proof. By assumption, wK(JacX1) = wK(JacX2) = wK(JacX0) = +1. By Corollary

8.4.19, HK(f1, f2) = +1. Finally,

(−1,−1)⌈
(deg f1−1)(deg f2−1)

2
⌉

K = (−1)[K:Q2]
(deg f1−1)(deg f2−1)+1

2
Lem. 8.4.20

= (−1)ord2λK(f1,f2)

since deg f1, deg f2 are even.

8.5 Proof of Local Theorem IV

Throughout this section we assume the set up of Theorem 8.3.12. In particular,

K is a local field of characteristic 0, K(
√
ξ)/K is a quadratic extension and f0(x),
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f̄0(x) ∈ K(
√
ξ)[x] are monic, GalK(

√
ξ)/K-conjugate of degree n = 2m ≥ 4 such that

f0(x)f̄0(x) is separable and Assumption (⋆) holds. We define hyperelliptic curves by

C0/K(
√
ξ) : y2 = f0(x), C/K : w2 = f0(x)f̄0(x),

and an additional curve by

X ′/K : u4 − 2(f0(x) + f̄0(x))u
2 + (f0(x)− f̄0(x))2 = 0.

8.5.1 Proof over Archimedean fields

As in §8.4, we first prove that Theorem 8.3.12 holds when K is an Archimedean

local field. Since K(ξ)/K is not a quadratic extension when K ∼= C, we restrict our

attention to K ∼= R and
√
ξ /∈ R.

Recall that

λK(f0;
√
ξ) = #kerϕ|(ResK(

√
ξ)/KJacC0

×JacC)(K)◦
nJacC/K

nJacX′/K

µK(C)

µK(X ′)
.

We first compute the contribution coming from the kernel of ϕ, for which require

the following analogue of Lemma 8.4.7.

Lemma 8.5.1 (To appear in [46]). Let f(x) ∈ R[x] be monic, separable, have no

real roots and such that deg f ≡ 0 mod 4. Define C : y2 = f(x) and let S ′ ⊆ Rf

have even size. Then, DS′ ∈ JacC(R)◦ if and only if

(1) S ′ = S̄ ′ and #S ′ ≡ 0 mod 4, or

(2) S ′ ⊔ S̄ ′ = Rf and #{r ∈ S ′ : Im(r) < 0} ≡ 0 mod 2.

Sketch proof. We note that nC/R = nJacC/R = 2 and write c+ (respectively, c−) for

the connected component of C(R) consisting of points of the form (x, y) with y > 0

(respectively, y < 0) along with one of the points at infinity P+
∞ (respectively, P−

∞).

The result is a consequence of the following observations:

(i) D{r,r̄} /∈ JacC(R)◦ for all r ∈ Rf , and
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(ii) DS′ ∈ JacC(R)◦ if and only if #{r ∈ S ′ : Im(r) < 0} ≡ 0 mod 2 for some

S ′ ⊂ Rf such that S ′ ⊔ S̄ ′ = Rf .

For (i), this is immediate from [29, Proposition 4.2] (i.e. DS ∈ JacC(R)◦ if and

only if deg(DS ∩ c±) are even).

For (ii), to be able to apply [29, Proposition 4.2] we first need to identify a divisor

linearly equivalent to DS′ that is fixed by complex conjugation. Define f1(x) =∏
r∈S′(x − r) and write f1(x) = g(x) + ih(x) for g(x), h(x) ∈ R[x]. Then DS′ =

D ∈ JacC where

D := −
∑

α root of h(x)

[(α, g(α))] − (1
4
deg f − deg h)[P+

∞] + 1
4
deg f [P−

∞].

Since D is fixed by complex conjugation, DS′ ∈ JacC(R)◦ if and only if deg(D ∩ c±)

are even. We see that

deg(D ∩ c+) = − deg(D ∩ c−) = −#{α : h(α) = 0, g(α) > 0} − 1
4
deg f + deg h

and the right-hand-side is even if and only if

(−1)
1
4
deg fRg,h > 0 ⇐⇒ Rf1,f̄1 > 0 ⇐⇒

∏
r∈S′

Im(r) > 0

using standard properties of the resultant.

Lemma 8.5.2. When K ∼= R,

#kerϕ|(ResK(
√
ξ)/KJacC0

×JacC)(K)◦ =

2deg f0−1 if Rf0,f̄0 > 0,

2deg f0−2 if Rf0,f̄0 < 0,

where Rf0,f̄0 denotes the resultant of f0, f̄0.

Proof. Using Lemma 8.2.4, we deduce that

kerϕ(K) =
{(

(DS, DS̄), DS∪S̄
)
,
(
(DS, DS̄), D(Rf0

−S)∪S̄
)
: S ⊆ Rf0 has even size

}
.
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Since nResK(
√
ξ)/KJacC0

/K = 1, we need only check when DS∪S̄, D(Rf0
−S)∪S̄ ∈ JacC(R)◦.

By Lemma 8.5.1, the first is always on the identity component (since S has even

size), and D(Rf0
−S)∪S̄ ∈ JacC(R)◦ if and only if

#{r ∈ (Rf0 − S) ∪ S̄ : Im(r) < 0}

≡ #{r ∈ (Rf0 − S) : Im(r) < 0}+#{r ∈ S : Im(r) > 0}

≡ #{r ∈ Rf0 : Im(r) < 0}

≡ 0 mod 2.

Therefore, #{D(Rf0
−S)∪S̄ ∈ JacC(R)◦} = 2deg f0−2 if #{r ∈ Rf0 : Im(r) < 0} is even

and 0 otherwise. In particular,

#kerϕ|(ResK(
√

ξ)/KJacC0
×JacC)(K)◦ =

2deg f0−1 if
∏

r∈Rf0
Im(r) > 0,

2deg f0−2 otherwise.

The result then follows upon observing that Rf0,f̄0 =
∏

r,s∈Rf0
(r − s̄) ≡

(−1)
deg f0

2

∏
r∈Rf0

(r − r̄) ≡
∏

r∈Rf0
Im(r) mod R×

>0.

We now turn our attention to the curve X ′. Let s(x), t(x) ∈ R[x] be such that

f0(x) = s(x)+it(x) (since f0 is assumed monic, so is s(x) and deg f0 = deg s > deg t),

then

X ′ : u4 − 4s(x)u2 + 4t(x)2 = 0.

Observe that X ′(C) = {(x, u+,+), (x, u+,−), (x, u−,+), (x, u−,−) : x ∈ C} where

u±,+ := ±
√

2s(x) + 2
√
s(x)2 − t(x)2, u±,− := ±

√
2s(x)− 2

√
s(x)2 − t(x)2,

define 4 distinct points unless t(x) = 0 (then u+,− = u−,− when s(x) > 0 and

u+,+ = u−,+ when s(x) < 0), or s(x)2 = t(x)2 (then u+,+ = u+,− and u−,+ = u−,−).

In particular, we have that

X ′(R) =
{
(x, u+,+), (x, u+,−), (x, u−,+), (x, u−,−) : x ∈ R, s(x) > 0, s(x)2 ≥ t(x)2

}
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and X ′(R) ̸= ∅ (since X ′ has real points as |x| → ∞), therefore µR(X
′) = 1. To

visualise the behaviour of X ′ at infinity we view it via the following two models.

Model 1. Let v = 1/x and w = x
1
2
deg s/u. Then

X ′ : 1− 4w2(vdeg ss(1/v)) + 4w4v2(deg s−deg t)(vdeg tt(1/v))2 = 0.

Fixing v = 0 gives the smooth points (v, w) = (0,±1/2), which correspond to two

of the points at infinity in the coordinates (x, u). In particular, we see that points

satistfying u/x
1
2
deg s → 2 as |x| → ∞ approach each other (these are (x, u+,+) as

x→ ±∞), and similarly for those satistfying u/x
1
2
deg s → −2 (these are (x, u−,+) as

x→ ±∞).

Model 2. Now let v = 1/x and w = xdeg t/ux
1
2
deg s. Then

X ′ : v2(deg s−deg t) − 4w2(vdeg ss(1/v)) + 4w4(vdeg tt(1/v))2 = 0.

Fixing v = 0 gives the smooth points (v, w) = (0,±1/ct) (where ct is the lead coeffi-

cient of t(x)), which correspond to the other two points at infinity in the coordinates

(x, u). In particular, we see that points satistfying ux
1
2
deg s/xdeg t → ct as |x| → ∞

approach each other (assume that ct > 0, these are (x, u+,−) as x→ ±∞ when deg t

is even and (x, u+,−) as x→ +∞, (x, u−,−) as x→ −∞ when deg t is odd), and sim-

ilarly for those satistfying ux
1
2
deg s/xdeg t → −ct (again assuming that ct > 0, these

are (x, u−,−) as x→ ±∞ when deg t is even and (x, u−,−) as x→ +∞, (x, u+,−) as

x→ −∞ when deg t is odd).

We use this to count the number of connected components of X ′ over R.

Remark 8.5.3. We note that the given model for X ′ may be singular and that we

must consider its disingularization when counting connected components.

Lemma 8.5.4. Fix a monic polynomial f0(x) = s(x)+it(x) where s(x), t(x) ∈ R[x].

Then,

nX′/R ≡ #{r ∈ R : t(r) = 0, s(r) < 0} mod 2.

Proof. Suppose that s(x) > 0 and s(x)2 ≥ t(x)2 if and only if x ∈ (−∞, a] ∪ I1 ∪
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. . . ∪ Im ∪ [b,∞) for (−∞, a], I1, . . . , Im, [b,∞) ⊂ R. Write ni (n∞ respectively) for

the number of connected components of X ′ over R with x ∈ Ii (x ∈ (−∞, a] ∪

[b,∞) respectively). Then nX′/R = n∞ + n1 + · · · + nm. We observe that ni = 2 if

#{r ∈ Ii : t(r) = 0} is even and 1 otherwise. Additionally, the discussion about the

behaviour of X ′ at infinity preceding this lemma allows us to deduce that n∞ = 2

if deg t +#{r ∈ (−∞, a] ∪ [b,∞) : t(r) = 0} is even, and 1 otherwise (see Example

8.5.5). Therefore,

nX′/R ≡ deg t + #{r ∈ (−∞, a] ∪ [b,∞) : t(r) = 0} +
m∑
i=1

#{r ∈ Ii : t(r) = 0}

≡ deg t + #{r ∈ R : t(r) = 0, s(r) > 0}

≡ #{r ∈ R : t(r) = 0, s(r) < 0} mod 2.

Example 8.5.5. Let f0(x) = x4 − 2x3 − x2 + (3 + i)x + 2(1 + i), then s(x) =

x4 − 2x3 − x2 + 3x+ 2 and t(x) = x+ 2.

Notice that X ′ has real points (i.e. s(x) > 0 and s(x)2 ≥ t(x)2) whenever

x ∈ (−∞,−1] ∪ [0, 1] ∪ [2,∞). In particular, we have the following plot.

-2 2

u+,+u+,+

u+,−

u+,−

u−,−

u−,−

u−,+ u−,+

x

u

Figure 8.4: The curve X ′ : u4 − 4(x4 − 2x3 − x2 + 3x+ 2)u2 + 4(x2 + 4x+ 4) = 0

Our earlier discussion indicates that u+,+ joins itself as x→ ±∞ and similarly

for u−,+. Since deg t is odd, u+,− as x→ +∞ joins u−,− as x→ −∞ and vice versa.

(This is illustrated in Figure 8.4 by the colouring of the labels.) We therefore observe

that nX′/R = 4.
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Corollary 8.5.6. Fix a monic polynomial f0(x) = s(x) + it(x) where s(x), t(x) ∈

R[x] and deg f0 ≡ 0 mod 4. Then,

ord2 nJacX′/R ≡

0 if Rf0,f̄0 < 0

1 if Rf0,f̄0 > 0

mod 2

where Rf0,f̄0 denotes the resultant of f0, f̄0.

Proof. By Lemmata 2.1.8 and 8.5.4, ord2 nJacX′/R = nX′/R − 1 ≡ #{x ∈ R : t(x) =

0, s(x) < 0} + 1 mod 2. Therefore ord2 nJacX′/R ≡ 0 precisely when Rs,t < 0, where

Rs,t ≡ (−1)
deg f0

2 Rf0,f̄0 mod R×
>0 (using standard properties of resultants).

Proposition 8.5.7. Theorem 8.3.12 holds when K ∼= R.

Proof. Since Rf0 ∩ R, Rf̄0 ∩ R = ∅ (else f0(x)f̄0(x) is not separable), we see that

HK(f0, f̄0) = +1 by Lemma 8.4.2. Using that wK(JacC) = wK(
√
ξ)(JacC0) = −1

(Lemma 2.3.4), it remains to show that (−1)ord2λK(f0;
√
ξ) = +1.

We observe that nC/K = 2. Therefore µK(C) = 1 and nJacC/K = 2 (by Lemma

2.1.8). Additionally, µK(X
′) = 1 (as noted in the discussion preceding Lemma 8.5.4).

Combining this with Lemmata 8.5.2 and 8.5.6 gives the required result.

8.5.2 Proof over non-Archimedean fields for nice reduction

types

We now consider non-Archimedean local fields, beginning with the case where K/Qp

is a finite extension for an odd prime p and the reduction of f0(x)f̄0(x) has at worst

two double roots. We then move onto the case where K/Q2 is a finite extension and

C0, C have good ordinary reduction.

We write π for a fixed choice of uniformiser of K and v for a normalised valuation

on K, i.e. v(π) = 1.

Remark 8.5.8. We note that, when p ̸= 2, the assumption on the reduc-

tion of f0(x)f̄0(x) ensures that K(
√
ξ)/K is unramified, and consequently that

ResK(
√
ξ)/KJacC0 and JacX′ are semistable over K. In particular, if K(

√
ξ)/K is
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ramified then for each r ∈ Rf0 there’s an s ∈ Rf̄0 such that v(r − s) > 0

(since GalK(
√
ξ)/K = IK(

√
ξ)/K acts trivially on the residue field) and the reduction

of f0(x)f̄0(x) has worse than two double roots.

Lemma 8.5.9. Let K/Qp be a finite extension for p ̸= 2.

(i) If ΣC/K = d 0
where the twin is given by t = {r, s} with r ∈ Rf0,

s ∈ Rf̄0, then

HK(f0, f̄0) =
(

f0(x)f̄0(x)
(x−r)(x−s)

∣∣∣
x= 1

2
(r+s)

, π
)d
K
.

(ii) If ΣC/K = d1 d2 0
where the twins are given by t1 = {r1, s1},

t2 = {r2, s2} with r1, r2 ∈ Rf0, s1, s2 ∈ Rf̄0, then

HK(f0, f̄0) =
(

f0(x)f̄0(x)
(x−r1)(x−s1)

∣∣∣
x= 1

2
(r1+s1)

, π
)d1
K

(
f0(x)f̄0(x)

(x−r2)(x−s2)

∣∣∣
x= 1

2
(r2+s2)

, π
)d2
K
.

(iii) If ΣC/K = d 0
where the twins are given by t1 = {r1, s1}, t2 =

{r2, s2} with r1, r2 ∈ Rf0, s1, s2 ∈ Rf̄0, then

HK(f0, f̄0) =
(

f0(x)f̄0(x)
(x−r1)(x−s1)

∣∣∣
x= 1

2
(r1+s1)

f0(x)f̄0(x)
(x−r2)(x−s2)

∣∣∣
x= 1

2
(r2+s2)

, π
)d
K
.

Proof. (i). By Lemma 8.4.13, triples t ̸⊂ T ∈ T contribute trivially to HK. There-

fore, using that H2({r, r′, s}) = +1 for each r′ ∈ Rf0−{r} (as in the proof of Lemma
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8.4.13), HK(f0, f̄0) =
∏

r′∈(Rf0
−{r})/GK(ξ)

H1({r, r′, s}) where

H1({r, r′, s}) =
(
2s− (r + r′),−(r − s)(r′ − s)

)
K(r,r′)

=
( ∏

σ∈GalK(r,r′)/K

σ(2s− (r + r′)), π
)d
K

=
( ∏

r′′∈Rf0
−{r}

GK-conjugate to r′

(2s− (r + r′′))
∏

s′′∈Rf̄0
−{s}

GK-conjugate to r′

(2r − (s+ s′′)), π
)d
K

=
( ∏

z∈Rf0f̄0
−t

GK-conjugate to r′

(
1
2
(r + s)− z

)
, π
)d
K
.

(Note that K({r, r′, s}) = K(r, r′) since t is fixed by GalK(
√
ξ)/K.)

(ii). This follows from (i).

(iii). Note that GK swaps r1 with s2 and r2 with s1. As in the previous cases,

we see that

HK(f0, f̄0) =
∏
i=1,2

H1({r1, r2, si})
∏

r∈(Rf0
−{r1,r2})/GK(

√
ξ)

H1({r, r1, s1})H1({r, r2, s2}).

The result follows upon first observing that

∏
i=1,2

H1({r1, r2, si}) =
( ∏

σ∈GalK(r1,r2)/K

σ(2s1 − (r1 + r2))σ(2s2 − (r1 + r2)), π
)d
K

=
((

1
2
(r1 + s1)− r2

)(
1
2
(r1 + s1)− s2

)(
1
2
(r2 + s2)− r1

)(
1
2
(r2 + s2)− s1

)
, π
)d
K

and second that for each r ∈ Rf0 − {r1, r2},

∏
i=1,2

H1({r, ri, si}) =
( ∏

σ∈GalK(r1,r2,r)/K

σ(2s1 − (r1 + r))σ(2s2 − (r2 + r)), π
)d
K

=
( ∏

z∈Rf0f̄0
−(t1∪t2)

GK-conjugate to r

(1
2
(r1 + s1)− z)(12(r2 + s2)− z), π

)d
K
.
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Lemma 8.5.10. Let K/Qp be a finite extension for p ̸= 2 and suppose that

ΣC/K = d
2 0

where the twins are given by t1 = {r1, r2} ⊂ Rf0 and

t2 = {s1, s2} ⊂ Rf̄0. Then

HK(f0, f̄0) =
(
f0
(
1
2
(s1 + s2)

)
f̄0
(
1
2
(r1 + r2)

)
, π
)d
K
.

Proof. Suppose first that GK permutes t1 ∪ t2 in two orbits. By Lemma 8.4.13,

triples ti ̸⊂ T ∈ T for some i = 1, 2 contribute trivially to HK. Therefore, using that

H1({r1, r2, s}) = +1 for each s ∈ Rf̄0 (as in the proof of Lemma 8.4.13), we see that

HK(f0, f̄0) =
∏
i=1,2

H2({r1, r2, si})
∏

s∈(Rf̄0
−t2)/GK(

√
ξ)

H2({r1, r2, s}).

The result follows upon first observing that

∏
i=1,2

H2({r1, r2, si}) =
( ∏

σ∈GalK(r1,r2)/K

σ
(
1
2
(r1 + r2)− s1

)
σ
(
1
2
(r1 + r2)− s2

)
, π
)d
K

=
((

1
2
(r1 + r2)− s1

)(
1
2
(r1 + r2)− s2

)(
1
2
(s1 + s2)− r1

)(
1
2
(s1 + s2)− r2

)
, π
)d
K

and second that for each s ∈ Rf̄0 − t2,

H2({r1, r2, s}) =
( ∏

σ∈GalK(s,r1+r2,r1r2)/K

σ
(
1
2
(r1 + r2)− s

)
, π
)d
K

=
( ∏

s′∈Rf̄0
−t2

GK-conjugate to s

(
1
2
(r1 + r2)− s′

) ∏
r′∈Rf0

−t1
GK-conjugate to s

(
1
2
(s1 + s2)− r′

)
, π
)d
K
.

Now suppose that GK acts transitively on t1 ∪ t2 so that {r1, r2, s1}, {r1, r2, s2}

are GK-conjugate and

HK(f0, f̄0) = H2({r1, r2, s1})
∏

s∈(Rf̄0
−t2)/GK(

√
ξ)

H2({r1, r2, s}).
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Arguing as above, and using that in this case we have

H2({r1, r2, s1}) =
( ∏
σ∈GalK(r1)/K

σ
(
1
2
(r1 + r2)− s1

)
, π
)d
K

=
((

1
2
(r1 + r2)− s1

)(
1
2
(r1 + r2)− s2

)(
1
2
(s1 + s2)− r1

)(
1
2
(s1 + s2)− r2

)
, π
)d
K
,

completes the proof.

Recall that

λK(f0;
√
ξ) =

cK(JacC)cK(
√
ξ)(JacC0)

cK(JacX′)

µK(C)µK(
√
ξ)(C0)

µK(X ′)
.

To understand the curve X ′ over K, we will make use of the following lemma.

Lemma 8.5.11. Let K/Qp be finite for p ̸= 2 and K(
√
ξ)/K unramified. When C/K

and C0/K(
√
ξ) are semistable, the eigenvalues of the FrobK-action on H1(ΥX′/K,Z)

are given by the multi-set

{±
√
λ : λ an eigenvalue of FrobK(

√
ξ) on H1(ΥC0/K(

√
ξ),Z)}

∪ {eigenvalues of FrobK on H1(ΥC/K,Z)}.

Proof. Fix a prime ℓ ̸= p. For a semistable curve Y/K, H1(ΥY/K,Z) ⊗Z Qℓ
∼=

(VℓJacY )t, the toric part of Vℓ, as GK-representations (see [22, 2.18]). Using that Vℓ

is invariant under isogeny, respects products, and VℓResL/KA ∼= IndGK
GL
VℓA, we see

that

H1(ΥX′/K,Z)⊗Z Qℓ
∼= IndGK

GK(
√
ξ)
(H1(ΥC0/K(

√
ξ),Z)⊗Z Qℓ)⊕H1(ΥC/K,Z)⊗Z Qℓ.

The result follows since IndGK
GK(

√
ξ)
W ∼= W ⊕ FrobKW .

Example 8.5.12. Let K = Q3, ξ = 5 and f0(x) = (x−
√
5)(x−1−3

√
5)(x2−x−

√
5).

Then ΣC/K = −
1 0

and ΣC/K(
√
ξ) =

+

1 0
.
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Let B/K(
√
ξ) : {y2 = f0(x), z

2 = f̄0(x)} and note that B ∼= X ′ over K(
√
ξ)

(they have the same function fields). Theorem 2.4.14 with f1 = f0, f2 = f̄0 gives

that ΥX′/K(
√
ξ) = 1

.

By Lemma 8.5.11, FrobK acts on ΥX′/K and ΥC/K with the same eigenvalues.

In particular, it must be that ΥX′/K =
1

.

Now let f0(x) = (x−
√
5)(x+ 2

√
5)(x2 − x−

√
5) so that ΣC0/K(

√
ξ) =

−
1 0

and ΣC/K = +

1 0
.

Since ΣC/K(
√
ξ) =

+

1

+

1 0
, Theorem 2.4.14 gives that ΥX′/K(

√
ξ) =

2

2
.

By Lemma 8.5.11, FrobK acts on ΥX′/K with eigenvalues 1, 1, i, −i. In partic-

ular, it must be that ΥX′/K =
2

.

Proposition 8.5.13. Theorem 8.3.12 holds when K/Qp is finite for p ̸= 2, and the

reduction of f0(x)f̄0(x) has at worst two double roots.

Proof. Since (−1,−1)K = +1, we must prove that

HK(f0;
√
ξ) = (−1)ord2

cK(JacC )cK(
√
ξ)

(JacC0
)µK(

√
ξ)

(C0)

cK(JacX′ )µK(X′) wK(JacC)wK(
√
ξ)(JacC0),

where we’ve used that µK(C) = 1 (the genus of C is odd).

The inputs of Table 8.2 (columns 1 and 2) are the non-trivial clusters belonging

to ΣC0/K(
√
ξ) and Σchr

X/K (or, ignoring the colouring, ΣC/K), where the roots of f0 and

f̄0 are denoted by red circles ( ) and blue diamonds ( ) respectively.

Column 3 gives the dual graph of the minimal regular model of X ′/K, denoted

ΥX′/K, where an arrow is used to indicate the action of Frobenius. This is determined

using Theorem 2.4.14 and Lemma 8.5.11 as in Example 8.5.12.

Columns 4 and 5 list the Tamagawa numbers for JacC0/K(
√
ξ) and JacC/K,

calculated from their respective cluster pictures using Theorem 2.4.9.

Similarly, column 6 contains the Tamagawa number for JacX′/K but this time

calculated from ΥX′ using Theorem 2.3.3.

Column 7 keeps track of the deficiency contribution from C0/K(
√
ξ) using The-
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orem 2.4.11.

Column 8 lists the deficiency contribution of X ′/K computed from ΥX′ via [47,

Lemma 6.11], [53].

Column 9 gives the value of (−1)ord2λK(f0;
√
ξ).

Columns 10 and 11 list wK(
√
ξ)(JacC0) and wK(JacC), calculated using Theorem

2.3.5 or Theorem 2.4.10.

Column 12 records the value of HK(f0, f̄0). For row 1, this is +1 since all triples

in T are of the first type detailed in Lemma 8.4.13. For rows 2-8, we observe Lemma

8.5.9. In particular, in case (i) the first entry of the Hilbert symbol is a square

precisely when the sign attached to t is + and similarly in cases (ii) and (iii) (c.f.

Definition 2.4.6). For rows 9-12, we observe Lemma 8.5.10 and note that the first

entry of the Hilbert symbol is a square precisely when the signs attached to d
2
and

d
2
are the same (again, c.f. Definition 2.4.6).

When the residue characteristic of K is even, we instead have an analogue of

Proposition 8.4.21.

Proposition 8.5.14. Theorem 8.3.12 holds when K/Q2 is finite, K(
√
ξ)/K is un-

ramified and C0, C have good ordinary reduction with

ΣC0/K(
√
ξ) = v(4) v(4) v(4)

0
, ΣC/K = v(4) v(4) v(4) v(4)

0
.

Proof. By assumption, wK(
√
ξ)(JacC0) = wK(JacC) = +1. Recall that ϕ lifts to the

isogeny JacC0 × JacC̄0
× JacC → JacX′ constructed in §3.3 over K, so applying [24,

Theorem A.1] with A = ResK(
√
ξ)/KJacC0 × JacC and arguing as in the proof of

Lemma 8.4.20 gives that (−1)ord2λK(f0;
√
ξ) = (−1)[K:Q2]. It then suffices to prove that

HK(f0, f̄0) = +1, which follows as in Corollary 8.4.19 (using Lemmata 8.4.17 and

8.4.18).

8.6 Global consequences

We conclude this thesis by discussing the instances of the parity conjecture, for

Jacobians of hyperelliptic curves, that we are able to deduce from the preceding

local analysis.
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Theorem 8.6.1. Let K be a number field and X1 : y2 = f1(x), X2 : z2 = f2(x),

X0 : w2 = f1(x)f2(x) for f1(x), f2(x) ∈ K[x] such that f1(x)f2(x) is separable.

Assuming Conjecture 8.3.8, the 2-parity conjecture holds for JacX0 if and only if it

holds for JacX1 × JacX2.

Proof. Suppose that f1(x), f2(x) satisfy Assumption (⋆) (if not, let t be as in Lemma

8.3.1 and replace f1(x), f2(x) by f1( x
1−tx

), f2( x
1−tx

)). Consider the equality asserted

by Conjecture 8.3.8 when K = Kv for v a place of K. Taking the product over all

such v and then invoking Theorem 4.5.2, the product law for Hilbert symbols, and

Theorem 8.3.7, gives that

(−1)rk2(JacX1
)+rk2(JacX2

)+rk2(JacX0
)w(JacX1)w(JacX2)w(JacX0) = + 1.

Theorem 8.6.2. Let K be a number field, K(
√
ξ)/K be a quadratic extension

and C : w2 = f0(x)f̄0(x), C0 : y2 = f0(x) for GalK(
√
ξ)/K-conjugate f0(x),

f̄0(x) ∈ K(
√
ξ)[x] of degree 2m > 1 such that f0(x)f̄0(x) is separable. Assuming

Conjecture 8.3.11, the 2-parity conjecture holds for JacC/K if and only if it holds

for JacC0/K(
√
ξ).

Proof. Suppose that f0(x), f̄0(x) satisfy Assumption (⋆) (if not, let t be as in Lemma

8.3.1 and replace f0(x), f̄0(x) by f0( x
1−tx

), f̄0( x
1−tx

)). Consider the equality asserted

by Conjecture 8.3.11 when K = Kv for v a place of K. Taking the product over all

such v and then invoking Theorem 8.2.8, the product law for Hilbert symbols, and

Theorem 8.3.7, gives that

(−1)rk2(JacC/K)+rk2(JacC0
/K(

√
ξ))w(JacC/K)w(JacC0/K(

√
ξ)) = + 1.

Theorem 8.6.3. Assuming Conjectures 8.3.8 and 8.3.11, the 2-parity conjecture

holds for all hyperelliptic curves y2 = f(x) such that Gal(f) is a 2-group.

Proof. Let C : w2 = f(x) be a hyperelliptic curve over a number field K such that

Gal(f) is a 2-group.
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When deg f ≤ 2, JacC = 0 and so the 2-parity conjecture is already known to

hold.

Let n ∈ N and assume that the 2-parity conjecture holds whenever deg f < n.

Now fix deg f = n. By the proof of Theorem 8.1.1, C is either a C2×C2- or D8-

hyperelliptic curve. In the first case, f(x) admits a factorisation f1(x)f2(x) over K

and Theorem 8.6.1 then asserts that the 2-parity conjecture holds for JacC since, by

assumption, it holds for Jacy2=f1(x) and Jacz2=f2(x). If C is a D8-hyperelliptic curve

then we instead use Theorem 8.6.2.

Corollary 8.6.4. Let C : y2 = f(x) be a semistable hyperelliptic curve over a number

field K and write R ⊂ K for the set of roots of f(x). Assuming Conjectures 8.3.8

and 8.3.11, and that #X(JacC/K(R))[p∞] is finite for each prime p ≤ deg f , the

parity conjecture holds for the Jacobian of C over K.

Proof. This is an immediate consequence of Theorems 8.1.1 and 8.6.3.

Using the cases of Conjectures 8.3.8 and 8.3.11 proved in Theorems 8.3.10 and

8.3.12, we’re also able to provide some unconditional global results.

We begin with an explicit example.

Example 8.6.5. Consider the genus 2 hyperelliptic curve

X0/Q : w2 = (x− 1)(x− 13)(x2 − 5x+ 5)(x2 − 13x+ 41).

We will show that the 2-parity conjecture holds for its Jacobian.

Write f1(x) = (x−1)(x−13), f2(x) = (x2−5x+5)(x2−13x+41), r1 = 1
2
(5+
√
5),

r̄1 =
1
2
(5 −

√
5), r2 = 1

2
(13 +

√
5), r̄2 = 1

2
(13 −

√
5) and define additional curves by

X1/Q : y2 = f1(x), X2/Q : z2 = f2(x) and X/Q : {y2 = f1(x), z
2 = f2(x)}.

Whenever v ̸= 5 is a place of Q, Theorem 8.3.10 guarantees that

(−1)ord2λv(f1,f2)wv(JacX2)wv(JacX0) = Hv(f1, f2). (8.1)

We show that this also holds when v = 5. Since ΣX2/Q5 = 1
2

1
2

+

0
and
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ΣX0/Q5 =
−
1
2

−
1
2 0

, we compute that c5(JacX1) = 1, c5(JacX2) = 2 (see Ta-

ble 7.1), c5(JacX0) = 1 (by Theorem 2.4.9), µ5(X1) = µ5(X0) = 1 (X1, X0

have Q-points) and µ5(X2) = µ5(X) = +1 (X2 has genus 1 and the divisor

(0,
√
5,
√
41) + (0,−

√
5,
√
41) on X is Q5-rational). Observing the colouring in the

cluster picture for X0/Q5, [27, Theorems 3.1 & 3.3] gives that ΥX/Q5 =

1

1 and

so c5(JacX) = 4 by Theorem 2.3.3 (alternatively, ΥX = ΥC for C/Q5 a hyperel-

liptic curve with ΣC =
+
1
2

+
1
2 0

so that c5(JacX) = c5(JacC) can then be

determined using [2, Theorem 10.3]). In particular, ord2 λ5(f1, f2) = −1. From

the relevant cluster pictures, we also see that w5(JacX2) = −1 (see Table 7.1) and

w5(JacX0) = +1 (by Theorem 2.4.10). It remains to show that H5(f1, f2) = +1.

This is clear from Table 8.3.

TO H1(TO)H2(TO)

{1, 13, r1}
(
− 9 +

√
5, 1

2
(29 + 9

√
5))
)
Q5(

√
5)

(
1
2
(9−

√
5), 144

)
Q5(

√
5)
= +1

{1, 13, r2}
(
− 1 +

√
5, 1

2
(69 +

√
5)
)
Q5(

√
5)

(
1
2
(1−

√
5), 144

)
Q5(

√
5)
= +1

{r1, r2, 1}
(
− 7−

√
5,−1

2
(19 + 7

√
5)
)
Q5(

√
5)

(
1
2
(7 +

√
5), 16

)
Q5(

√
5)
= +1

{r1, r̄2, 1}
(
− 7,−7− 2

√
5
)
Q5(

√
5)

(
7
2
, 21− 8

√
5
)
Q5(

√
5)
= +1

{r1, r̄1, 1}
(
− 3,−1

)
Q5

(
3
2
, 5
)
Q5

= +1

{r2, r̄2, 1}
(
− 11,−29

)
Q5

(
11
2
, 5
)
Q5

= −1

{r1, r2, 13}
(
17−

√
5,−1

2
(139− 17

√
5)
)
Q5(

√
5)

(
− 1

2
(17−

√
5), 16

)
Q5(

√
5)
= +1

{r1, r̄2, 13}
(
17,−67− 2

√
5
)
Q5(

√
5)

(
− 17

2
, 21− 8

√
5
)
Q5(

√
5)
= +1

{r1, r̄1, 13}
(
21,−109

)
Q5

(
− 21

2
, 5
)
Q5

= −1

{r2, r̄2, 13}
(
13,−41

)
Q5

(
− 13

2
, 5
)
Q5

= +1

Table 8.3: Data for H5(f1, f2) in Example 8.6.5

Considering (8.1), taking the product over all places, and implementing Theo-

rems 8.3.7 & 4.5.2, we see that

(−1)rk2(JacX2
)+rk2(JacX0

)w(JacX2)w(JacX0) = + 1,
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i.e. the 2-parity conjecture holds for the abelian surface JacX0 if and only if it holds

for the elliptic curve JacX2 .

Now write g1(x) = x2 − 5x + 5, g2(x) = x2 − 13x + 41 and Y/Q : {y2 =

g1(x), z
2 = g2(x)}. Similarly to above, whenever v ̸= 5 is a place of Q, Theorem

8.3.10 guarantees that

(−1)ord2λv(g1,g2)wv(JacX2) = (−1,−1)vHv(g1, g2). (8.2)

We again verify this equality when v = 5. Since Jacy2=g1(x) = Jacz2=g2(x) = 0,

λ5(g1, g2) = c5(JacX2)/c5(JacY ). By above, c5(JacX2) = 2. Using that Σchr
Y/Q5

=

1
2

1
2

+

0
, [27, Theorems 3.1 & 3.3] gives ΥY/Q5 =

1

1

11

so that c5(JacY ) = 4 (by

Theorem 2.3.3). Therefore ord2 λ5(g1, g2) = −1 and, as above, w5(JacX2) = −1. In

this case, the computation of H5 is more succinct and we see, via Table 8.4, that

H5(g1, g2) = +1.

TO H1(TO)H2(TO)

{r1, r̄1, r2}
(
8 +
√
5,−16− 4

√
5
)
Q5(

√
5)
·
(
− 1

2
(8 +

√
5), 5

)
Q5(

√
5)
= +1

{r2, r̄2, r1}
(
− 8 +

√
5,−16 + 4

√
5
)
Q5(

√
5)
·
(
1
2
(8−

√
5), 5

)
Q5(

√
5)
= +1

Table 8.4: Data for H5(g1, g2) in Example 8.6.5

Taking the product over all places of (8.2), and again implementing Theorems

8.3.7 & 4.5.2, we see that

(−1)rk2(JacX2
)w(JacX2) = + 1

i.e. the 2-parity conjecture holds for the elliptic curve JacX2 and, moreover, it holds

for the abelian surface JacX0 .

More generally, we are able to prove the following case of the 2-parity conjecture

for hyperelliptic curves of arbitrary genus.
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Theorem 8.6.6. Let K be a number field. Let f(x) ∈ OK [x] be separable, monic and

such that GalK(R)/K is a 2-group and GK preserves a partition {α1, β1}, . . . , {αn, βn}

of R (the roots of f). Let p denote a prime of OK and suppose that the reduction of

f(x) modulo p has at worst one double root whenever p ∤ 2, and that

• (x− αi)(x− βi) ∈ Knr
p [x] for all i,

• ordp(αi − βi) = ordp(4) for all i,

• ordp(αi − αj) = ordp(βi − βj) = ordp(αi − βj) = 0 for all i ̸= j,

whenever p | 2. The 2-parity conjecture holds for the Jacobian of C : w2 = f(x).

Proof. When deg f ≤ 2, JacC = 0 and so the 2-parity conjecture is already known

to hold.

Let deg f = 4. Suppose that fi(x) := (x − αi)(x − βi) ∈ K[x] and that f1(x),

f2(x) satisfy Assumption (⋆) (if not, let t be as in Lemma 8.3.1 and replace f1(x),

f2(x) by f1(
x

1−tx
), f2( x

1−tx
)). Since the assumptions of Theorem 8.3.10 are satisfied

when K = Kv for each place v of K, we take the product over all places of the

asserted equality to obtain that

(−1)rk2(Jacy2=f1(x)
)+rk2(Jacz2=f2(x)

)+rk2(JacC)w(Jacy2=f1(x))w(Jacz2=f2(x))w(JacC)

= (−1)rk2(JacC)w(JacC) = + 1

(having noted Theorem 4.5.2, the product law for Hilbert symbols and Theorem

8.3.7). By assumption, if fi(x) /∈ K[x] then fi(x) ∈ K(
√
ξ)[x] for some ξ ∈ K. In

this case, JacC is an elliptic curve with a K-rational 2-torsion point (see Remark

2.1.7) for which the 2-parity conjecture is already known to hold by [20, Theorem

1.8].

We proceed by induction on the degree of f . In particular, fix N ∈ N and

assume that the 2-parity conjecture holds whenever deg f < N and the roots of f(x)

satisfy the assumptions of the theorem.
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Let deg f = N . Write O1, . . . , Om for the GK-orbits of {α1, β1}, . . . , {αn, βn},

and gi(x) =
∏

{αj ,βj}∈Oi
(x − αj)(x − βj) ∈ K[x]. Suppose that m ≥ 2 and, with-

out loss of generality, that g1(x), g2(x) · · · gm(x) satisfy Assumption (⋆). Since the

assumptions of Theorem 8.3.10 (with f1 = g1, f2 = g2 · · · gm) are satisfied when

K = Kv for each place v of K, we take the product over all places of the asserted

equality to obtain that

(−1)rk2(Jacy2=g1
)+rk2(Jacz2=g2···gm

)+rk2(JacC)w(Jacy2=g1)w(Jacz2=g2···gm)w(JacC) = + 1

(having noted Theorem 4.5.2, the product law for Hilbert symbols and Theorem

8.3.7). Since deg g1, deg g2 · · · gm < N , the 2-parity conjecture holds for Jacy2=g1

and Jacz2=g2···gm by assumption, and so we get the result for JacC . If m = 1, then

(as in the proof of Theorem 8.1.1) there is a quadratic extension K(
√
ξ)/K such

that GK(
√
ξ) permutes {α1, β1}, . . . , {αn, βn} in two orbits O1, O2. Define f0(x) =∏

{αj ,βj}∈O1
(x − αj)(x − βj) ∈ K(

√
ξ)[x] and, without loss of generality, suppose

that f0(x), f̄0(x) (the GalK(
√
ξ)/K-conjugate of f0) satisfy Assumption (⋆). Since the

assumptions of Theorem 8.3.12 are satisfied when K = Kv for each place v of K, we

take the product over all places of the asserted equality to obtain that

(−1)rk2(JacC/K)+rk2(JacC0
/K(

√
ξ))w(JacC/K)w(JacC0/K(

√
ξ)) = + 1

where C0 : y2 = f0(x) (having noted Theorem 8.2.8, the product law for Hilbert

symbols and Theorem 8.3.7). Since deg f0 < N , the 2-parity conjecture holds for

JacC0/K(
√
ξ) by assumption, and so we get the result for JacC .

As a consequence, imposing relevant assumptions on the size of the Shafarevich–

Tate group, we deduce the following instance of the parity conjecture for hyperelliptic

curves.

Corollary 8.6.7. Let K be a number field. Let f(x) ∈ OK [x] be separable, monic,

such that GalK(R)/K is a 2-group and GK preserves a partition {α1, β1}, . . . , {αn, βn}

of R (the roots of f). Let p denote a prime of OK and suppose that the reduction of

f(x) modulo p has at worst one double root whenever p ∤ 2, and that
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• (x− αi)(x− βi) ∈ Knr
p [x] for all i,

• ordp(αi − βi) = ordp(4) for all i,

• ordp(αi − αj) = ordp(βi − βj) = ordp(αi − βj) = 0 for all i ̸= j,

whenever p | 2. Write C : y2 = f(x). Assuming that #X(JacC/K(R))[p∞] is finite

for each prime p ≤ deg f , the parity conjecture holds for the Jacobian of C.

Proof. Applying [24, Theorem B.1] with F = K(R) and A = JacC (for which there

are no primes of unstable reduction), we see that it is enough to prove the parity

conjecture for JacC/K(R)H whenever H ≤ GalK(R)/K is a 2-group.

By Theorem 8.6.6, the 2-parity conjecture holds for such JacC/K(R)H and

this is equivalent to the parity conjecture since #X(JacC/K(R))[2∞] < ∞ ⇒

#X(JacC/K(R)H)[2∞] <∞.
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