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Design Iteration

Estimated Parameter Values of M1
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Future work

Case study

Introduction and Motivation

Key Equations for Ordinary Kriging Models

• Compare to industry-standard designs (space-filling, variance minimisation)
• Explore Monte Carlo methods in model discrimination and parameter estimation
• Explore average, instead of maximum, variance minimisation for exploration
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• In-silico case data generated using M1 with five random samples
• Five samples are selected randomly which constitute the initial information

• For all kernels:  𝛿 ௜,௝ ℎ = ቊ
1 if ℎ ∈ (𝑖, 𝑗)
0 otherwise

Design Objective

• The kernel of the GP[5] is correlation function R(h), relating semivariance
γ(h), distance h and the distribution variance 𝜎௓

ଶ of concentrations.

• Ordinary Kriging gives the best linear unbiased estimate of the mean
expected concentration, Z, and its variance, 𝜎ை௄

ଶ , using estimator 𝑍መ.

• Estimators based on samples 𝑍௜  and their relative importance weights 𝑤௜.

• Optimal weights 𝒘𝒊 found from samples i and j by substitution (3 into 2):

• And then minimising the Kriging variance: ∂ 𝜎ை௄
ଶ / ∂ wi = 0, giving matrices

for: optimal weights, W, correlation between sampled points A, and sampled
and unsampled locations P. To then find the predictions[2]:

Metals demands from electrification, infrastructure and industrial 
projects is projected to rise, but productivity remains low.Problem

• Unknown subsurface must be modelled to avoid mine planning mistakes
• High uncertainty in model selection and parameter estimation; few samples
• Surrogate models are employed (Kriging[5] a.k.a. Gaussian Process [5] (GP))
• Funding of mining projects depends on promising initial sampling results
• Industry standard[4] is to sample based on qualitative expert decisions, the 

reduction of prediction variance of one model or space filling designs 

A Model-Based Design of Experiments method is proposed that 
systematises exploration and model and parameter identification.Solution

• Parameter estimation criterion reduces parametric uncertainty
• Model discrimination criterion includes prediction uncertainty at all locations 

(adjusted for Kriging models), model probability and prediction difference
• Exploration criterion minimises prediction variance and avoids local optima
• Multi-objective sampling procedure that optimises sampling for all objectives
• Quantified metrics of parameter uncertainty and model discrimination ability

𝛾 ℎ =  𝜎௓
ଶ − 𝑅 ℎ (1)
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• Improved Epsilon Constraint Method[3] used to optimise multi-objective MBDoE[2]

• The sensitivity matrix Q is used to determine Fisher Information, H.[1]

• Determinant of H is used as the scalar criterion to optimise estimability.[1]

𝐇 = ∑ ∑
ଵ

ఙ೔ೕ
మ 𝑄௜௝
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௡೘
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(7)

Results

Kernel ExpressionType of Kernel

𝛾 h = 𝑠
3h

2𝑟
 −  

1

2

h

𝑟

ଷ

𝛿 ଴,௥ h + 𝑠 𝛿 ௥,ஶ h + 𝑛 𝛿 ଴,ஶ (h)
M1: Spherical[5]

𝛾 h = 𝑠 1 − 𝑒
ିଷ 

୦మ

௥మ 𝛿 ଴,௥ h + 𝑠 𝛿 ௥,ஶ h + 𝑛 𝛿 ଴,ஶ (h)M2: Gaussian[4]

• Model discrimination: Schwaab Criterion[2] (𝛹ெ஽); variables as in eqns. 1-5 
• Probability of models m and n, 𝑃௠, uses sum of Kriging variance instead of χ2

𝐃௠,௡ 𝑥, 𝑦, 𝜗 = 𝐙෠௠(𝑥, 𝑦, 𝜗) − 𝐙෠௡(𝑥, 𝑦, 𝜗) (9)

𝑉௠,௡ 𝑥, 𝑦, 𝜗 = 2σை௄ ௠,௡
𝑥, 𝑦 + 𝜎ை௄

ଶ
௠

𝑥, 𝑦, 𝜗 + 𝜎ை௄
ଶ

௡
𝑥, 𝑦, 𝜗 (10)

𝜙௠(𝜗) = ଵ
∑ ∑ ∑ ஢ೀ಼೘ ௫,௬,௞,ణ಼

ೖసభ
ೊ
೤సభ

೉
ೣసభ

ൗ (11)

𝑃௠(𝜗) =
థ೘(ణ)

∑ థ೘(ణ)ಾ
೘సభ

(12)

• For exploration, the location with maximum Kriging variance (eq. 5) is chosen.

Figure 2 - Map of generated deposit with 
initial samples (●), MBDoE samples (▲)

Figure 1 - Flowchart of proposed multi-objective MBDoE procedure. 
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Design Iteration

Moving Average of Kullback-Leibler
Divergence for Model Discrimination
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Design Iteration

Student's t-Test for Parameter Estimates 
of M1

Range (Est.)
Sill (Est.)
Nugget (Est.)
Reference T-Value

Figure 4 – Parameters: estimates and true values Figure 5 – Parameters: Student t-Test values

Figure 3 - Moving averages of model 
contributions to Kullback-Leibler Divergence 

• Experimental budget of five design iterations was spent (samples in fig. 1).
• Model discrimination identified the true model with 85% confidence (fig. 3).
• KL-divergence (fig. 3) shows distance between distributions; contribution 

of candidate models to KL moving average is sensitive discrimination metric.
• Correct estimates within error margin for two parameters (fig. 4).
• Statistical significance measured by t-test (fig. 5) based on degrees of 

freedom, error and estimated value used as metric of parameter estimates.
• Exploratory component assists in avoiding local optima for the other two 

objectives and to reduce the prediction variance in the process. 

• Model consists of semivariogram and Kriging type (eq. 1-5, table 1)
• Parameter estimation objectives: estimates pass the t-test (fig. 5) 
• Model discrimination objectives: correct models have low KL-divergence (fig. 4)

Table 1 – Two candidate Ordinary Kriging models with different kernel functions 

𝛹ெ஽ 𝑥, 𝑦, 𝜗 = ∑ ∑ (𝑃௠ , 𝑃௡)𝐃௠,௡ 𝑥, 𝑦, 𝜗 ୘𝐕௠,௡
ିଵ (𝑥, 𝑦, 𝜗)𝐃௠,௡ 𝑥, 𝑦, 𝜗ெ

௡ୀ௠ାଵ
ெିଵ
௠ୀଵ (8)

Conclusions
• MBDoE Procedure was proposed to optimise sampling for three design objectives
• Design criteria and success metrics, e.g. KL-divergence, were applied to Kriging
• True model and two of its parameters were identified; design space was explored


