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Introduction and Motivation

Metals demands from electrification, infrastructure and industrial
projects is projected to rise, but productivity remains low.
Unknown subsurface must be modelled to avoid mine planning mistakes
High uncertainty in model selection and parameter estimation; few samples
Surrogate models are employed (Kriging!®! a.k.a. Gaussian Process [ (GP))
Funding of mining projects depends on promising initial sampling results
Industry standard™! is to sample based on qualitative expert decisions, the
reduction of prediction variance of one model or space filling designs

. A Model-Based Design of Experiments method is proposed that
Solution - : : o
systematises exploration and model and parameter identification.
Parameter estimation criterion reduces parametric uncertainty
Model discrimination criterion includes prediction uncertainty at all locations
(adjusted for Kriging models), model probability and prediction difference
Exploration criterion minimises prediction variance and avoids local optima

Multi-objective sampling procedure that optimises sampling for all objectives
Quantified metrics of parameter uncertainty and model discrimination ability
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Methodology

. Model consists of semivariogram and Kriging type (eq. 1-5, table 1)
+  Parameter estimation objectives: estimates pass the t-test (fig. 5)
. Model discrimination objectives: correct models have low KL-divergence (fig. 4)
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. For exploration, the location with maximum Kriging variance (eq. 5) is chosen.

L1} Case study

. In-silico case data generated using M1 with five random samples
. Five samples are selected randomly which constitute the initial information
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Table 1 — Two candidate Ordinary Kriging models with different kernel functions

Type of Kernel

M1: Sphericall® 3h  1/h\3
y(h) = {(S) (E -3 (;) )} S0,y (h) + 5 8,00y (h) + 710 80,00 (h)
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h
M2: Gaussiani“ JNAGES {(S) (1 = e_3r_z)}5(0,r) (h) + 5 8(r,e0) (h) + 71 8g,e0) ()
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Figure 1 - Flowchart of proposed multi-objective MBDoE procedure.

Figure 2 - Map of generated deposit with
initial samples (e), MBDOE samples (A )
Estimated Parameter Values of M1

Figure 3 - Moving averages of model
contributions to Kullback-Leibler Divergence
Student's t-Test for Parameter Estimates

Key Equations for Ordinary Kriging Models

« The kernel of the GP! is correlation function R(h), relating semivariance
y(h), distance h and the distribution variance o7 of concentrations.
y(h) = of — R(h) (1
« Ordinary Kriging gives the best linear unbiased estimate of the mean
expected concentration, Z, and its variance, o3, using estimator Z.
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« Estimators based on samples Z; and their relative importance weights w;.
Z=3Lwz ®3)
« Optimal weights w; found from samples i and j by substitution (3 into 2):
08k = 23N, wiR(Z,Z) + XL, TN, wiw;R(Z, Z;) 4)

« And then minimising the Kriging variance: 3 ¢Z; / 8 w, = 0, giving matrices
for: optimal weights, W, correlation between sampled points A, and sampled
and unsampled locations P. To then find the predictions(?:

YL R(Z0 Z) w = R(Z: Z) ®)

Design Objective

« Improved Epsilon Constraint Method!®! used to optimise multi-objective MBDoE2!
+ The sensitivity matrix Q is used to determine Fisher Information, H.["l
» Determinant of H is used as the scalar criterion to optimise estimability.["]
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«  Model discrimination: Schwaab Criterion! (¥"P); variables as in eqns. 1-5
. Probability of models m and n, B,,, uses sum of Kriging variance instead of x2

WP (x,y,9) = Tm=1 ntem+1 (P PODmn (%, 7, DTV 5 (4,7, ) Dpn(x,7,9)  (8)
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Figure 4 — Parameters: estimates and true values Figure 5— Parameters: Student t-Test values

Experimental budget of five design iterations was spent (samples in fig. 1).
Model discrimination identified the true model with 85% confidence (fig. 3).
KL-divergence (fig. 3) shows distance between distributions; contribution
of candidate models to KL moving average is sensitive discrimination metric.
Correct estimates within error margin for two parameters (fig. 4).
Statistical significance measured by t-test (fig. 5) based on degrees of
freedom, error and estimated value used as metric of parameter estimates.
Exploratory component assists in avoiding local optima for the other two
objectives and to reduce the prediction variance in the process.

Q Conclusions

« MBDoE Procedure was proposed to optimise sampling for three design objectives
« Design criteria and success metrics, e.g. KL-divergence, were applied to Kriging
« True model and two of its parameters were identified; design space was explored

© Future work

» Compare to industry-standard designs (space-filling, variance minimisation)
» Explore Monte Carlo methods in model discrimination and parameter estimation
» Explore average, instead of maximum, variance minimisation for exploration

Author Information & Affiliations:
= Sargent Centre
Philipp & i E;c:iférico
Deussen .
¥ Galvanin

Change the world

Engineering

? s,
illfor Process Systems E.,:g UCL ENGINEERING




