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Stalled response near thermal equilibrium in
periodically driven systems

Lennart Dabelow 1,3 & Peter Reimann 2

The question of how systems respond to perturbations is ubiquitous in phy-
sics. Predicting this response for large classes of systems becomes particularly
challenging if many degrees of freedom are involved and linear response
theory cannot be applied. Here, we consider isolated many-body quantum
systems which either start out far from equilibrium and then thermalize, or
find themselves near thermal equilibrium from the outset. We show that time-
periodic perturbations ofmoderate strength, in the sense that theydonot heat
up the system too quickly, give rise to the following phenomenon of stalled
response:While the driving usually causes quite considerable reactions as long
as the unperturbed system is far from equilibrium, the driving effects are
strongly suppressed when the unperturbed system approaches thermal
equilibrium. Likewise, for systems prepared near thermal equilibrium, the
response to the driving is barely noticeable right from the beginning.
Numerical results are complemented by a quantitatively accurate analytical
description and by simple qualitative arguments.

Understanding the effect of time-dependent perturbations on
many-body quantum systems is a fundamental problem of
immediate practical relevance. Examples include the implementa-
tion of cold-atom1–6 and polarization-echo6–8 experiments, or the
control of general-purpose quantum computers and simulators2,3,6,9.
Periodic driving, in particular, has been exploited to design so-called
time crystals10 and various metamaterials with unforeseen topolo-
gical and dynamical properties, whose exploration has only just
begun11–14.

In this context, the majority of previous studies focused on the
long-time behavior and, in particular, on the properties of the so-
called Floquet Hamiltonian. A key aspect of such an approach is that
it can only capture the actual behavior of the periodically driven
system stroboscopically in time, i.e., at integer multiples of the
driving period, whereas the possibly still very rich behavior in
between those discrete time points remains inaccessible. For
instance, the stroboscopic dynamics may appear nearly stationary
even though the full, continuous dynamics still exhibits oscillations
with large amplitudes.

We adopt a complementary perspective and explore the con-
tinuously time-resolved responseon short-to-intermediate time scales.

Intuitively, one might naturally expect that periodic forcing leads to a
clearly noticeable change of the observable properties if its strength
and period are of the same order as themain intrinsic energy and time
scales of the undriven system.

In this work, we show that such a fairly pronounced response is
indeed observed for isolated many-body systems that are far away
from thermal equilibrium. Our main discovery, however, is that this
intuitively expected response is strongly suppressed near thermal
equilibrium, at least as long as heating effects of the driving remain
negligible. We dub this phenomenon “stalled response” in view of its
two principal manifestations: For a system that is prepared far away
from equilibrium, the observable response dies out as soon as the
corresponding undriven reference system approaches thermal equili-
brium. Similarly, when the system already starts out in thermal equi-
librium, the driving is barely noticeable right from the beginning. In
both cases, it is only at much later times that the driving effects may
reappear in the form of very slow heating. Besides numerical evidence
from several examples, we support our general prediction of stalled
response near thermal equilibrium with simple heuristic arguments
and with an analytical theory for large classes of many-body systems.
Remarkably, we can also identify the main qualitative signatures of

Received: 1 February 2023

Accepted: 14 December 2023

Check for updates

1RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan. 2Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany.
3Present address: School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK. e-mail: reimann@physik.uni-bielefeld.de

Nature Communications |          (2024) 15:294 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-6868-5857
http://orcid.org/0000-0002-6868-5857
http://orcid.org/0000-0002-6868-5857
http://orcid.org/0000-0002-6868-5857
http://orcid.org/0000-0002-6868-5857
http://orcid.org/0000-0001-5577-9486
http://orcid.org/0000-0001-5577-9486
http://orcid.org/0000-0001-5577-9486
http://orcid.org/0000-0001-5577-9486
http://orcid.org/0000-0001-5577-9486
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44487-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44487-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44487-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44487-2&domain=pdf
mailto:reimann@physik.uni-bielefeld.de


such a stalled response behavior in data from a very recent NMR
experiment8.

Results
We consider periodically driven many-body systems with Hamiltonians

HðtÞ=H0 + f ðtÞV , ð1Þ

where H0 models some unperturbed reference system, V is a pertur-
bation operator, and f(t) = f(t + T) is a (scalar) function with period T.

As usual, the expectation value of an observable (Hermitian
operator) A then follows as

Ah iρðtÞ :¼ tr fρðtÞAg , ð2Þ

whereρðtÞ :¼ UðtÞρð0ÞUyðtÞ is the (pureormixed) systemstate at time t
if the initial condition was ρ(0), and the propagator UðtÞ satisfies
d
dt UðtÞ= � iHðtÞUðtÞ and Uð0Þ=1 (identity operator). Likewise, the
unperturbed system starts out from the same initial state ρ(0), and
then evolves into ρ0(t) under the time-independent Hamiltonian H0,
yielding expectation values Ah iρ0ðtÞ :¼ tr fρ0ðtÞAg. Accordingly, the
system’s response to the driving is monitored by the deviations of
Ah iρðtÞ from Ah iρ0ðtÞ.

Phenomenology
To illustrate the announced phenomenon of stalled response, we first
present a numerical example in Fig. 1. Its specific choice is mainly
motivated by the fact that it will admit a direct comparison with our
analytical theory (presented below) without any free fit parameter.
Further examples will be provided later.

As sketched in Fig. 1, we consider an L × L spin-12 lattice with L = 5
and open boundary conditions, where nearest neighbors are coupled
by Heisenberg terms in the unperturbed system (solid links in the
sketch),

H0 :¼
XL�1

i,j = 1

σ i,j � ðσ i+ 1,j +σi,j + 1Þ : ð3Þ

The vector σ i,j = ðσx
i,j,σ

y
i,j ,σ

z
i,jÞ collects the Pauli matrices acting on site

(i, j). The perturbation additionally introduces spin-flip terms in the z

direction between next-nearest neighbors (dashed links in the sketch),

V :¼
XL�1

i,j = 1

X
α = x,y

ðσα
i,jσ

α
i+ 1,j + 1 + σ

α
i+ 1,jσ

α
i,j + 1Þ : ð4Þ

Since the magnetization Sz :¼ P
i,jσ

z
i,j commutes with both H0 and V,

we focus on one of the two largest subsectors, namely the one with
eigenvalue − 1 for Sz.

To prepare the system out of equilibrium, we fix the spins at sites
(2, 2) and (3, 3) in the “up” state (red in the sketch in Fig. 1) andorient all
other spins randomly. To obtain a well-defined energy, we additionally
emulate amacroscopic energymeasurement by actingwith aGaussian
filter15–17 of a target mean energy E = − 12 and standard deviation ΔE = 4
on the so-defined state. Formally, the initial condition can thus be
expressed as ρð0Þ= ψ

�� �
ψ
� �� with
ψ
�� � / e�ðH0�EÞ2=4ΔE2

Q ϕ
�� �

, ð5Þ

where ϕ
�� �

is a Haar-random state in the Sz = − 1 sector. The projector
Q :¼ π +

2,2 π
+
3,3 with π ±

i,j :¼ ð1 ± σz
i,jÞ=2 enforces σz

2,2 = σ
z
3,3 = 1, and this

deflection is only weakly reduced by the subsequent Gaussian energy
filter (cf. Fig. 1). From a different viewpoint, the situation may also be
seen as a small non-equilibrium system in contact with a large thermal
bath (red and black vertices, respectively, in the sketch).

Accordingly, an obvious choice for the considered observable is
the correlation between the initially disequilibrated sites, A= σz

2,2 σ
z
3,3.

Incidentally, the ground-state energy of H0 from (3) is approxi-
mately− 60, whereas the infinite-temperature state has an energy of
approximately − 1. Hence, our choice of the target energy
E = − 12 should be reasonably generic and corresponds, as detailed in
Supplementary Note 2.2, to an inverse temperature β ≈0.08. Further
examples for different target energies/temperatures can also be found
in Supplementary Note 2.2.

In Fig. 1 we present numerical results, obtained by Suzuki-Trotter
propagation, for the unperturbed system H0 and for a sinusoidally
driven system (1) with

f ðtÞ= f 0 sinð2πt=TÞ , ð6Þ

yielding the solid black and blue lines, respectively.

Fig. 1 | Stalled response in a 5 × 5 lattice spin system. Time-dependent expecta-
tion values Ah iρðtÞ of the magnetization correlation A = σz

2,2 σ
z
3,3 are shown for a

periodically driven system (see sketch) with Hamiltonian (1), (3), (4), (6). Solid black
and blue lines: numerical results for non-equilibrium initial conditions (5) with
Q=π +

2,2π
+
3,3, for driving amplitudes f0 = 0 (unperturbed, black) and for driving

periods T and amplitudes f0 as indicated in each panel (driven, blue). Solid green
and red lines: same but for equilibrium initial conditions (5) with Q=1. Dashed
lines: corresponding theoretical predictions (9), adopting the numerically obtained
unperturbed behavior Ah iρ0 ðtÞ, squared response function ∣γt(t)∣2 (by numerical
integration of (10)), and thermal equilibrium value Ath = −0.026 (see below Eq. (6)).
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The key observation is that the driven (blue) and undriven
(black) expectation values in Fig. 1 differ quite notably during the
initial relaxation of the unperturbed system, but they become
(nearly) indistinguishable upon approaching their (almost) steady
long-time values. Moreover, both long-time values agree very well
with the thermal expectation value Ath≃ − 0.026, obtained numeri-
cally by evaluating A= σz

2,2 σ
z
3,3 in themicrocanonical ensemble of the

unperturbed system. In other words, the perturbations by the per-
iodic driving get stalled upon thermalization of the undriven
system.

To further highlight this phenomenon, let us also consider the
analogous equilibrium initial conditions withQ=1 in (5). Hence, the
initial state populates the same energy window as in the non-
equilibrium setting, but the observable expectation values now
(approximately) assume the pertinent thermal equilibrium
values15–17. The solid green and red lines in Fig. 1 illustrate the so-
obtained numerical results for the unperturbed and the driven
system. In particular, the initial expectation value is now very close
to the thermal equilibrium value Ath ≃ − 0.026. Moreover, the
effects of the driving are indeed barely noticeable, and are even
expected to become still smaller for larger system sizes, as detailed
in Supplementary Note 2.3.

The bottom line of all these numerical findings is that the same
system exhibits a quite significant response to the periodic driving
away from thermal equilibrium, but hardly shows any reaction to the
same driving as the unperturbed system approaches thermal equili-
brium, or if it already started out near thermal equilibrium (stalled
response).

Note that the driving amplitudes in Fig. 1 are far outside the linear
response regime, as can be inferred, e.g., by comparing the blue curves
of Fig. 1c and f (see also Supplementary Note 2.1). We also remark that
for noncommuting perturbations and observables (as in Fig. 1), linear
response theory generically excludes that there is no response at all.
The main challenge is to understand why the non-linear response
remains so weak at thermal equilibrium.

Likewise, the observable response becomes uninterestingly weak
for extremely small or large driving periods T, regardless of the initial
conditions and their proximity to thermal equilibrium. Hence, our
focus here is on the natural regime of moderate T values that are
similar to, or slightly below the relaxation time of the unperturbed
system, where the stalling effect is most pronounced and interesting.
The interplay of the various time scales is further elaborated in Sup-
plementary Note 1.1.

Finally, it is well-established that, for sufficiently large times, the
driving will ultimately heat up the system towards a thermal steady
state with infinite temperature18–22. However, it is equally well-
established that this heating may often happen only very slowly, par-
ticularly for sufficiently small driving periods T23–26. Our present stalled
response effect thus complements and substantially extends those
previous predictions from Refs. 18–22.

Theory
Our next goal is to establish an analytical theory for reasonably general
classes of many-body quantum systems which explains these numer-
ical findings. We start by collecting the basic ingredients and
assumptions, then present the main result, and finally sketch the
derivation.

First, we focus on initial states ρ(0) with a well-defined macro-
scopic energy. Denoting by Eμ and μ

�� �
the eigenvalues and -vectors of

the unperturbed Hamiltonian H0, this means that non-negligible level
populations μ

� ��ρð0Þ μ�� �
only occur for energies Eμ within a sufficiently

small energy interval Δ, such that the density of states can be
approximated by a constant D0 throughout Δ.

Second, within this energy interval Δ, the matrix elements Vμν :¼
μ
� ��V νj i of the perturbation operator V are assumed to exhibit a well-

defined perturbation profile

~vðEÞ :¼ jVμν j2
h i

E
, ð7Þ

where [⋯ ]E denotes a local average over matrix elements with
∣Eμ − Eν∣ ≈ E. The perturbation profile’s Fourier transform is denoted as

vðtÞ :¼
Z

dE D0 ~vðEÞ eiEt : ð8Þ

In passing, we note that at sufficiently high temperatures, v(t) can be
approximated by the two-point correlation function V ðtÞV� �

ρmc
=2,

where V ðtÞ :¼ eiH0tVe�iH0t and ρmc is the microcanonical ensemble
corresponding to the energy interval Δ; see Supplementary Note 3 for
details.

Third, the time-dependent perturbations f(t)V in (1) should not
become overly strong compared to H0, so that establishing a con-
nection between the unperturbed anddriven systems remains sensible
and the above mentioned heating effects stay reasonably weak.

In terms of the above introduced quantities, our main analytical
result is the prediction

Ah iρðtÞ =Ath + jγtðtÞj2 Ah iρ0ðtÞ � Ath

h i
, ð9Þ

where Ath = tr ðρmcAÞ is the thermal expectation value introduced
below Eq. (6). The driving effects are encoded in the response function
γτ(t), evaluated at τ = t in (9), which is obtained as the solution of the
parametrically τ-dependent family of integro-differential equations

_γτðtÞ=
Z t

0
ds γτðsÞ γτðt � sÞ ½aτvðsÞ+bτ€vðsÞ� ð10Þ

with initial condition γτ(0) = 1 and coefficients

aτ :¼ �½F1ðτÞ=τ�2 , bτ :¼ ½F2ðτÞ=τ � F1ðτÞ=2�2 , ð11Þ

where F1ðτÞ :¼
R τ
0 dt f ðtÞ and F2ðτÞ :¼

R τ
0 dt F1ðtÞ. We emphasize that

the theory and Eq. (10) in particular are nonlinear, which – in light of
the numerically observed response characteristics (see Fig. 1) – is
essential to faithfully reproduce the observed behavior.

To derive these results, we combined and advanced three major
theoretical methodologies: (i) a Magnus expansion27 for the propa-
gator UðtÞ (see below Eq. (2)); (ii) a mapping of the time-dependent
problem (1) to a parametrically τ-dependent family of time-
independent auxiliary systems; (iii) a typicality (or random matrix)
framework28–30 to determine the generic behavior (9) for the vast
majority of all systems sharing the sameH0, ~vðEÞ, and f(t). Details of the
derivation are collected in the Methods.

Of the adopted techniques, the Magnus expansion in particular
implies that suchanapproachonly covers the transient dynamicsup to
a certain maximal time, which increases as the driving period T
becomes smaller. Since thismaximal timehas been related to theonset
of heating18,22,31, the result (9) does not capture such heating effects
anymore. Yet it may well remain valid over a quite extended time
interval since heating is suppressed exponentially for smallT7,8,23–26, see
also Supplementary Note 1 for a more detailed discussion of the rele-
vant time scales and of the response function γτ(t).

Due to the employed typicality framework, in turn, the prediction
(9) may not reproduce the dynamics accurately in certain setups with
strong correlations between the observable A and the perturbation V.

A more in-depth discussion of the expected regime of applic-
ability is provided in the Methods.
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Interpretation and further examples
For a quantitative comparison of our theoretical prediction (9) to
specific examples, some approximate knowledge of the perturbation
profile (7) is clearly indispensable. Qualitatively, however, the theory
quite remarkably allows us to make some largely general predictions
without any such specific knowledge.

Thefirst and foremost of thesepredictions is based on the general
upper bound ∣γt(t)∣≤1, whose detailed analytical derivation is provided
in Supplementary Note 7 (see also Supplementary Note 1.2). It then
immediately follows from (9) that the driving effects are strongly
suppressed whenever Ah iρ0ðtÞ ’ Ath, i.e., whenever the unperturbed
system is close to thermal equilibrium. The latter in turn is true for all
times t if the unperturbed system is at thermal equilibrium from the
outset, and for all sufficiently late times t if the unperturbed system
starts out far from equilibrium and is know to thermalize in the long
run. Altogether, our stalled response phenomenon is thus analytically
predicted to occur under very general circumstances.

Next we turn to a more detailed quantitative comparison of the
theoretical prediction (9) with concrete numerical examples. For the
setup considered in Fig. 1, exact diagonalization of a smaller system
with L = 432 suggests that the perturbation profile ~vðEÞ from (7) can be
approximated very well by an exponential decay ~vð0Þ e�jEj=Δv . Utilizing
Ref. 30, one moreover finds for the L = 5 system in the relevant energy
window the numerical estimates ~vð0ÞD0 ’ 3:6 and Δv≃ 3.0, yielding
v(t) via (8). All quantities entering the theoretical prediction (9)–(10)
are thus either numerically available [ Ah iρ0ðtÞ, Ath] or otherwise known
[v(t), aτ, bτ], i.e., there remains no free fit parameter.

As can be inferred from the solid blue and dashed purple lines in
Fig. 1, the theory indeed describes the nontrivial details of the driven
dynamics remarkably well. Notably, it reproduces the pronounced
drop compared to the unperturbed curve around t = T/2 and the quite
surprising comeback around t = T. Moreover, it indeed also explains
the stalled response behavior in Fig. 1 very well, for initial conditions
both close to and far from thermal equilibrium.

Within the framework of Floquet theory, a related, but distinct
effect is well-known under the name “Floquet
prethermalization”7,8,20,23,24,26,33,34: The dynamics described by the Flo-
quet Hamiltonian approaches a prethermal plateau value before

heating becomes significant and pushes the system towards infinite
temperature. However, the dynamics encoded in the Floquet Hamil-
tonian only agrees with the actual dynamics of the driven system
stroboscopically, i.e., only at integer multiples of the driving period. A
prethermal plateau of the Floquet-Hamiltonian dynamics therefore
still leaves room for strong oscillations of the actual dynamics between
the stroboscopic time points where both agree. Accordingly, the sali-
ent new insight provided by our present results is that no such strong
oscillations are observed if the unperturbed system relaxes to or starts
out from a thermal equilibrium state. In other words, our stalled
response effect amounts to a highly nontrivial extension of the
established Floquet prethermalization phenomenon since it means
that the plateau value is assumed not only stroboscopically, but even
continuously in t. An extended discussion of the relation between our
approach and Floquet theory can be found in Supplementary Note 4.

As a second example, we consider a nonintegrable variant of the
transverse-field Ising model in Fig. 2, see the figure caption for details.
We particularly emphasize that, for variety and in contrast to Fig. 1, this
setup consists of a one-dimensional system and globally out-of-
equilibrium initial conditions.

Qualitatively, the numerical results in Fig. 2 once again confirm
the main message of our paper, namely the occurrence of stalled
response: Initially, the dynamics shows a pronounced response when
starting away from equilibrium (solid black vs. blue lines). Stalling of
that response appears as the unperturbed system approaches thermal
equilibrium, meaning that the oscillations caused by the driving
become smaller and smaller. This is highlighted in the insets, in par-
ticular. (A special feature of this example is that already the unper-
turbed system (black lines) exhibits a relatively complex and long-
lasting relaxation process.) Likewise, the effects of the driving are
barely visible on the scale of the plot when starting directly from a
thermal equilibrium state (solid green vs. red lines).

For a quantitative comparison of the numerical results with the
theoretical prediction (9), we assume, as in the previous example, an
approximately exponential perturbation profile ~vðEÞ= ~vð0Þe�jEj=Δv [cf.
Eq. (7)], and use again the theory from Ref. 30 to estimate ~vð0ÞD0 ’
0:46 and Δv≃0.6. The resulting theoretical curves in Fig. 2 (dashed
lines) describe the numerics reasonably well in the initial regime. In

Fig. 2 | Stalled response in a one-dimensional Ising-type model. The unper-
turbed Hamiltonian H0 in (1) is the transverse-field Ising model (see sketch), exhi-
biting periodic boundary conditions and additional next-nearest-neighbor
couplings to break integrability, H0 :¼ �J

PL
j = 1ðσx

j σ
x
j + 1 + ϵ σ

x
j σ

x
j + 2 + g σz

j Þ with
J = ϵ= g = 1

2 and L = 24. The driving operator is a longitudinal magnetic field,
V :¼ �J

PL
j = 1 σ

x
j . Time-dependent expectation values Ah iρðtÞ of (a) the single-site

magnetization A = σz
1 , (b) the nearest-neighbor correlation A= σz

1σ
z
2, and (c) the

next-nearest-neighbor correlation A = σz
1σ

z
3 are shown for the periodically driven

system (1), (6), with driving amplitude f0 = 4 and periodT =0.5. Solid black and blue
lines: numerical results for nonequilibrium initial conditions (5) with

ϕ
�� �

= "#"# � � �
�� �

(Néel state, see sketch), Q=1, E = − 2.4, and ΔE = 1. (The corre-
sponding inverse temperature, ground-state energy, and infinite-temperature
energy are now approximately 0.2, − 18.5, and 0, respectively, see also above Eq.
(6).) Solid green and red lines: same but for equilibrium initial conditions (5), i.e.,
with a Haar-random state ϕ

�� �
. Dashed lines: corresponding theoretical predictions

(9), adopting the numerically obtained unperturbed behavior Ah iρ0 ðtÞ, squared
response function ∣γt(t)∣2 (by numerical integration of (10)), and thermal equili-
brium values Ath≃0.066, 0, 0 in (a–c), respectively. Insets: Same numerical data,
but with rescaled x and y axes to display the long-time behavior.
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accordance with the discussion below Eq. (11), for larger times the
theory is no longer quantitatively very accurate (but still correctly
predicts the occurrence of stalling per se). For this reason, no dashed
lines are shown in the insets.

Yet another interesting general prediction of the theory (9) (see
also beginning of this section) is that noticeable effects of the driving
(as encoded in ∣γt(t)∣2) may actually persist even beyond the relaxation
time scale of the unperturbed system if its long-time expectation value
�A0 :¼ Ah iρ0ðtÞ (infinite time average) differs from the thermal value Ath.
This can happen, for example, if the perturbation V breaks a con-
servation law of H0.

To verify this prediction, we consider a third example in Fig. 3.
Here the unperturbed system consists of two isolated spin chains of
L = 14 sites with periodic boundary conditions and Hamiltonian

H0 :¼ Hð1Þ +Hð2Þ , HðiÞ :¼
XL
j = 1

σ i,j � σ i,j + 1 , ð12Þ

while the perturbation in (1) connects the chains sitewise,

V :¼
XL
j = 1

σ1,j � σ2,j ; ð13Þ

see also the sketch in the inset. The initial state is again of the form (5)
with E = − 14 and ΔE = 4, restricted to the sector with vanishing
Sz :¼ P

jðσz
1,j + σ

z
2,jÞ. (The corresponding inverse temperature, ground

state energy, and infinite-temperature energy are now approximately
0.12, − 50, and − 1, respectively see also above Eq. (6).) However, for the
nonequilibrium setupwenowfix two spins in the “up” state for thefirst
chain and two in the “down” state for the second chain (red and blue,
respectively, in the sketch), i.e., Q :¼ π +

1,1π
+
1,2π

�
2,1π

�
2,2. Since the two

chains (i = 1, 2) do not interact in the unperturbed system, their
magnetizations Szi :¼

P
jσ

z
i,j are conserved individually, and thus

maintain their initial expectation values 2 and − 2, respectively, under
evolution with H0. In the driven system, by contrast, only the total
Sz :¼ Sz1 + S

z
2 is conserved. Choosing the single-site magnetization

A= σz
1,1 as our observable, we thus find by symmetry that �A0 = 2=L is the

long-timeexpectation valueof theunperturbeddynamics,whereas the
thermal value of the joint system is Ath = 0.

The numerics in Fig. 3 (solid blue line) visualizes the aforemen-
tioned imperfect stalling upon breaking a conservation law: The

suppression of the response is the stronger the closer the unperturbed
system is to thermal equilibrium. Crucially, however, the driving
effects still remain visible even when the unperturbed dynamics has
essentially reached its nonthermal long-time value �A0. Altogether, this
confirms the prediction of (9) that proximity to thermal equilibrium is
indeed the decisive condition for stalled response and not, for exam-
ple, relaxation of the unperturbed system. Furthermore, this example
highlights once again that stalled response and Floquet pre-
thermalization are distinct effects: The present system exhibits Flo-
quet prethermalization, meaning that the stroboscopic dynamics
approaches a stationary plateau, but no stalled response since Ah iρðtÞ
continues to oscillate.

For a quantitative comparison with the theory (9), we again adopt
the sameansatz asbefore and estimate ~vð0ÞD0 =0:98 andΔv = 4.2 via30.
The so-obtained prediction (9) (dashed purple) agrees rather well with
the numerics for t≲ 1. At later times, the quantitative deviations
between the prediction and the numerics increase. As suggestedbelow
(11) anddiscussed inmoredetail in theMethods,we can attribute these
deviations to the adopted Magnus expansion and its truncation at
second order. Yet the above mentioned general qualitative prediction
of our theory remains valid nonetheless.

Basic physical mechanisms
Intuitively, the basic physics behind all our above mentioned numer-
ical and analytical findings can also be understood by means of the
following simple arguments: As long as heating is insignificant, wemay
focus on the dynamics within the initially populated energy interval Δ
(see above (7)). Denoting by P the projector onto the eigenstates μ

�� �
with Eμ∈Δ, the Hamiltonian H(t) from (1) can thus be reasonably well
approximated by its projection/restriction ~HðtÞ :¼ PHðtÞP to Δ. Since
themicrocanonical ensemble ρmc :¼ P=tr fPg commutes with ~HðtÞ, it is
a stationary state with respect to ~HðtÞ. Within the present approx-
imation, a system in thermal equilibrium is thus completely unaffected
by the periodic driving, and analogously the effects remain weak if the
system is in a state close to thermal equilibrium. (Incidentally, the
relaxation of a non-equilibrium initial state under ~HðtÞ can be heur-
istically understood by similar arguments as in Ref. 19.) On the other
hand, subleading effects like small remnant oscillations and slow
heating cannot be understood within this simplified picture. Rather,
these effects must be attributed to the neglected corrections HðtÞ �
~HðtÞ and, as a consequence, are intimately connected with each other.

A complementary, and evenmore simplistic argument is based on
the well-established fact35–37 that the vast majority of all pure states
with energies in Δ behave akin to ρmc for sufficiently large many-body
systems. This so-called typicality property suggests that once the
system has reached (or starts out from) such a state, it remains within
this vast majority in the absence as well as in the presence of the
periodic driving.

Essentially, our stalled response effect thus seems to be the result
of a subtle interplay between the system’s many-body character and
intriguing peculiarities of thermal equilibrium states. The above
intuitive arguments moreover suggest that the indispensable pre-
requisites for stalled response per semay be substantially weaker than
those of our analytical theory (see also Supplementary Note 2.4).

Discussion
Our core message is that the same many-body system may either
exhibit a quite significant response when perturbed by a periodic
driving, or may not show any notable reaction to the same driving,
depending on whether the unperturbed reference system finds itself
far from or close to thermal equilibrium.We demonstrated this stalled
response effect by numerical examples, and further substantiated it by
sophisticated analytical methods and by simple physical arguments.

Previous theoretical and experimental studies of periodically dri-
ven many-body systems (e.g., Refs. 6–8,13,19–21,23,24,31,33,34,38,39

Fig. 3 | Imperfect stalling upon breaking a conservation law. Time-dependent
expectation values Ah iρðtÞ of the single-site magnetization A = σz

1,1 are shown for a
periodically driven 2 × 14 spin double-chain (see inset) with Hamiltonian (1), (6),
(12), (13), and driving period T =0.25. Solid black and blue lines: numerical results
for non-equilibrium initial conditions (5) with Q=π +

1,1π
+
1,2π

�
2,1π

�
2,2, for driving

amplitudes f0 = 0 (unperturbed, black) and f0 = 3.2 (driven, blue). Solid green and
red lines: same but for equilibrium initial conditions (5) with Q=1. Dashed lines:
corresponding theoretical predictions (9), obtained as in Fig. 1 but with Ath = 0.
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among many others) have been very successful in characterizing the
long-term properties of such systems, including heating
effects18–22,31,40,41 and their suppression6–8,21,23–26,38,39,42. The latter, in par-
ticular, facilitates the phenomenon of Floquet
prethermalization7,8,20,23,24,26,33,34, a long-lived, stroboscopically quasis-
tationary phase which has been exploited, for instance, to design var-
ious meta materials with promising topological and dynamical
properties11–14,34.

Complementary to those long-term features for discrete time
points, our present focus is on how a many-body system approaches
such prethermal regimes continuously in time. Overall, we thus arrive
at the following general picture for periodically driven systems with
moderate driving periods and amplitudes: Given a thermalizing
unperturbed system that is prepared sufficiently far from equilibrium,
the periodic perturbations generically lead to quite notable response
effects on short-to-intermediate time scales. Subsequently, the
expectation values approacha (nearly) time-independent behavior. On
even much larger time scales, the system finally heats up to infinite
temperature,manifesting itself in a slowdrift of the expectation values
towards their genuine infinite-time limits.

In principle, our predictions can be readily tested with presently
available techniques in, for example, cold-atom1–6 or polarization-
echo6–8 experiments. In practice, previous experimental (as well as
theoretical) investigations mostly focused on the long-time behavior
and stroboscopic dynamics. A notable exception is the NMR experi-
ment from Ref. 8: In Figs. 3(a) and 5(a,b) therein, the NMR signal of the
initially out-of-equilibrium system undergoes vigorous oscillations at
first (called “transient approach” in Ref. 8). Then, their amplitude
gradually decreases as the runningmean approaches a quasistationary
value (called “prethermal plateau”8). Even later, the only noticeable
effect of the driving is a slow drift as the system heats up (called
“unconstrained thermalization”8). Unfortunately, the available experi-
mental details are not sufficient to compare the measurements quan-
titatively with our analytical theory (9). Nevertheless, the observed
NMR signal clearly shows the general qualitative features of stalled
response as predicted by Eq. (9).

Methods
We first lay out the three main steps in the derivation of (9)–(10), and
subsequently address the expected validity regime of the employed
approximations.

Magnus expansion
The time evolution of the driven quantum system with Hamiltonian
H(t) from (1) is encoded in the propagator UðtÞ introduced below Eq.
(1), which satisfies the Schrödinger-type equation d

dt UðtÞ= � iHðtÞUðtÞ.
Whereas this equation is formally solved by an (operator-valued)
exponential for time-independent Hamiltonians, no such simple
solution is available for the driven case. To make progress while
keeping the setting as general as possible, we adopt a Magnus
expansion27 of the propagator, writing

UðtÞ= eΩðtÞ , ΩðtÞ=
X1
k = 1

ΩkðtÞ , ð14Þ

where the individual terms Ωk(t) in the exponent consist of integrals
over k − 1 nested commutators of H(t) at different time points. The
virtue of the Magnus series compared to other expansion schemes
(e.g., a Dyson series) is that UðtÞ remains unitary when truncating (14)
at a finite order.

For Hamiltonians of the specific form (1), the first two terms of the
general Magnus expansion (see, e.g., Ref. 27) can be readily rewritten

as

Ω1ðtÞ= � i H0t + F1ðtÞV
� �

, ð15aÞ

Ω2ðtÞ= F2ðtÞ �
t
2
F1ðtÞ

� �
½V ,H0� , ð15bÞ

where ½V ,H0� :¼ VH0 � H0V (commutator), and F1,2(t) are defined
below Eq. (11).

Mapping to auxiliary systems
Adopting the Magnus expansion (14), the propagator UðtÞ= eΩðtÞ

assumes an exponential form similar to the case of time-independent
Hamiltonians. However, the time dependence of the exponent is
generally still complicated. To proceed, we introduce a one-parameter
family of time-independent auxiliary Hamiltonians

HðτÞ :¼ iΩðτÞ=τ , ð16Þ

where τ > 0 is treated as an arbitrary but fixed parameter. Starting from
the same initial state ρ(0) as in the actual system of interest, any of
these Hamiltonians H(τ) generates a time evolution with the state at
time t given by

ρðt,τÞ :¼ e�iHðτÞtρð0ÞeiHðτÞt : ð17Þ

Since ρðtÞ=UðtÞρð0ÞUðtÞy, the combination of Eqs. (14), (16), and (17)
implies that the state ρ(t) of the driven system of interest coincides
with the time-evolved state of the auxiliary system H(t) at time t, i.e.,

ρðtÞ=ρðt,tÞ : ð18Þ

Hence finding the dynamics of the original driven system is equivalent
to determining the behavior of all the auxiliary systems with time-
independent Hamiltonians H(τ) up to time t = τ, respectively.

Restricting ourselves to the second order of the Magnus expan-
sion, we adopt Eqs. (15) in (16) to approximate the auxiliary Hamilto-
nians as

HðτÞ ’ H0 +V
ðτÞ ð19Þ

with

V ðτÞ :¼ F1ðτÞ
τ

V +
F2ðτÞ
τ

� F1ðτÞ
2

� �
i½V ,H0� , ð20Þ

thereby splitting off the τ-independent reference Hamiltonian H0.

Typicality framework
It is empirically well established that the macroscopically observable
behavior of systems with many degrees of freedom can be described
by a few effective characteristics despite the vastly complicated
dynamics of their individual microscopic constituents. Detecting and
separating the macroscopically relevant properties of a many-body
system from the intractable microscopic details can arguably be con-
sidered as the paradigm of statistical mechanics. The final component
of our toolbox to describe the driven many-body dynamics aims at
adopting such an approach to the observable expectation
values Ah iρðtÞ.

To this end, we start with theHamiltonianH(t) =H0 + f(t)V from (1)
and temporarily consider an entire class (or a so-called ensemble) of
similar driving operators V. Ideally, we would like to establish that all
members of such an ensemble exhibit the same observable dynamics.
In practice, what is analytically feasible is a slightly weaker variant of
such a statement. Namely, we demonstrate that nearly all members V
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of the ensemble show in very good approximation the same typical
behavior, and that the fraction of exceptional members, leading to
noticeable deviations from the typical behavior, is exponentially small
in the system’s degrees of freedom.

In essence, the defining characteristic of the considered ensem-
bles is the perturbation profile ~vðEÞ from (7). Introducing the symbol
E½ � � � � to denote the average over the V ensemble, thematrix elements
Vμν are treated as independent (apart from the Hermiticity constraint,
Vμν =V

*
νμ) and unbiased (E½Vμν �=0) random variables with variance

E½jVμν j2�= ~vðEμ � EνÞ. Hence the property (7) of the true perturbation
is built into the ensemble in an ergodic sense, i.e., upon replacing local
averages [⋯ ]E (see below Eq. (7)) by ensemble averagesE½ � � � �. Due to
a generalized central limit theorem (cf. Supplementary Note 6), these
first two moments are essentially the only relevant characteristics of
the V ensemble, i.e., the precise distribution of the Vμν can still take
rather general forms. A detailed definition of the admitted ensembles
is provided in Supplementary Note 5.

For time-independent Hamiltonians of the formH =H0 + λVwith a
constant (time-independent) perturbation, it was demonstrated in
Refs. 29,30 that those ensembles can indeed be employed to predict
the observed dynamics in a large variety of settings. In the following,
we will extend the underlying approach to the auxiliary Hamiltonians
H(τ) of the form (19). The distribution of the Vμν thus induces a dis-
tribution of the matrix elements V ðτÞ

μν :¼ μ
� ��V ðτÞ νj i of V(τ) from (20). In

particular, we obtain E½V ðτÞ
μν �=0 and, together with the definitions (7),

(11), and (20),

E jV ðτÞ
μν j2

h i
= � aτ + Eμ � Eν

	 
2
bτ

� �
~vðEμ � EνÞ : ð21Þ

As a first step of our typicality argument, we then calculate the
ensemble average E½ Ah iρðt,τÞ� of the time-evolved expectation values.
Deferring the details to Supplementary Note 6, we eventually obtain
the relation

E½ Ah iρðt,τÞ�=Ath + jγτ ðtÞj2 Ah iρ0ðtÞ � Ath

h i
: ð22Þ

Here a Fourier transformation relates the response function (see
above (10)) via

γτ ðtÞ=
1
π

lim
η!0+

Z
dE eiEt ImGðE � iη,τÞ ð23Þ

to the function G(z, τ), which solves

Gðz,τÞ z +
Z

dE D0 Gðz � E,τÞ aτ � E2bτ

	 

~vðEÞ

� �
= 1 ð24Þ

and encodes the ensemble-averaged resolvent of H(τ) via
E½ðz � HðτÞÞ�1�=Gðz � H0,τÞ. In SupplementaryNote 7,we furthermore
show that Eqs. (23) and (24) imply the relation (10) for γτ(t).

As a next step, we turn to the deviations ξðt,τÞ :¼ Ah iρðt,τÞ �
E½ Ah iρðt,τÞ� between the driven dynamics induced by one particular
perturbation operator V and the average behavior. More explicitly, we
inspect the probability Pðjξðt,τÞj≥ xÞ that a randomly selected per-
turbation V generates deviations ξ(t, τ) that are larger than some
threshold x. As explained in more detail in Supplementary Note 8, we
can find a constant δ = 10�OðNdof Þ (decreasing exponentially with the
system’s degrees of freedom Ndof) such that

Pðjξðt,τÞj ≥ δΔAÞ≤ δ , ð25Þ

whereΔA is themeasurement range ofA (differencebetween its largest
and smallest eigenvalues). In other words, observing deviations which
exceed some exponentially small threshold value becomes

exponentially unlikely as the system size increases, a phenomenon that
is also sometimes called “concentration of measure” or “ergodicity” in
the literature. Consequently,

Ah iρðt,τÞ ’ E½ Ah iρðt,τÞ� ð26Þ

becomes an excellent approximation for the vast majority of pertur-
bations V in sufficiently large systems. Combining Eqs. (18), (22), and
(26), we thus finally recover our main result (9).

Limits of applicability
The class of systems whose Hamiltonian can be written in the form (1)
is extremely general. However, the methods described above contain
three major assumptions or idealizations that restrict the types of
admissible setups to some extent.

Thefirst issue ariseswhen adopting theMagnus expansion (14) for
the propagator UðtÞ. The question of its convergence is generally a
subtle issue and rigorously guaranteed in full generality only up to
times t such that the operator norm ∥H(s)∥ satisfies

R t
0 ds k HðsÞ k <π,

but can extend to considerably longer times in practice nonetheless27.
Due to the extensive growth of H(t) with the degrees of freedom,
guaranteed convergence is thus very limited for typical many-body
systems, but the expansion can still remain valuable as an asymptotic
series for short-to-intermediate times23,33. For periodically driven sys-
tems in particular, the (Floquet-)Magnus series amounts to a high-
frequency expansion and thus works best for small driving periods
T27,43. More generally, the smaller the characteristic time scale of the
driving protocol f(t) is, the larger is the time up towhich the expansion
offers a satisfactory approximation at any fixed order.

Physically, the breakdown of the Magnus expansion has been
related to the onset of heating18,22,31. Generically, many-body systems
subject to perpetual driving are expected to absorb energy indefinitely
and heat up to a state of infinite temperature18–22, unless there are
mechanisms preventing thermalization such as an extensive number
of conserved quantities38,42 or many-body localization21,39,44. Never-
theless, under physically reasonable assumptions about the system,
such as locality of interactions, it has been shown that the heating rate
is exponentially small in the driving frequency23–26. For sufficiently fast
driving, therefore, energy absorption is essentially suppressed for a
long time and the Magnus expansion can provide a good description
of the dynamics. A more quantitative discussion of the inter-
dependence of the relevant time scales is provided in Supplementary
Note 1.1.

In summary, theMagnus expansion is expected to work as long as
the state ρ(t) stays roughlywithin the initially occupiedmicrocanonical
energy window Δ of the unperturbed reference Hamiltonian intro-
duced above Eq. (7). Consequently, the stalled-response effect and the
applicability of the prediction (9) are generally expected to persist for
longer times at larger initial temperatures because the relative influ-
ence of heating is smaller in this case. Furthermore, higher tempera-
tures come with a higher density of states, such that finite-size effects
are smaller, too. The temperature dependence is discussed in more
detail in Supplementary Note 2.2.

A second limitation is our truncation of the Magnus expansion at
second order. In general, this will further restrict applicability towards
shorter times and/or faster driving, but still leaves room for a broad
and interesting parameter regime as demonstrated examplarily in
Figs. 1–3. In principle, including higher-order terms may be possible,
even though it leads to severe technical complications in the typicality
calculation outlined above (see also Supplementary Note 6), and is
thus beyond the scope of our present work. Besides the response
function γt(t), higher-order corrections are also expected to affect the
long-time value (Ath in Eq. (9)): It is well known from Floquet theory
that this plateau value of Floquet prethermalization is controlled by
the Floquet Hamiltonian23,24,26,33,34. The latter agrees with H0 to lowest
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order, but can yield different long-time behavior in general, even
though the corrections are generically expected to be small23.

A third potentially limiting factor for the applicability of our
present approach is the typicality framework, within which we intro-
duceensembles ofmatrix representationsVμνof thedriving operatorV
in the eigenbasis of the reference Hamiltonian H0. Our main result
states that the observable dynamics of nearly all membersV of such an
ensemble is described by Eqs. (9) and (10) (up to the limitiations dis-
cussed earlier). The final point to establish is that the true (non-ran-
dom) driving operator V of actual interest is one of those typical
members of the ensemble, which evidently requires a faithful model-
ing of the system’s most essential properties with regard to the
observable dynamics.

The classes of perturbation ensembles considered here are a
compromise between what is physically desirable and mathematically
feasible. From a physical point of view, we would like to emulate the
matrix structureof realisticmodels as closely as possible.We therefore
explicitly incorporate the possibility for sparse (most Vμν are strictly
zero) and banded (the typical magnitude ∣Vμν∣ decays with the energy
separation ∣Eμ − Eν∣ of the coupled levels) perturbationmatrices. These
features indeed commonly arise as a consequence of the local and few-
body character of interactions in realistic systems as supported by
semiclassical arguments45,46, analytical studies of lattice systems47,48,
and a large number of numerical examples (e.g. Refs. 49–51). Similar
assumptions are also well-established in random matrix theory and in
the context of the eigenstate thermalization hypothesis28,52–54. On the
other hand, the geometry of the underlyingmodel and the structure of
interactions (for instance their locality) are not explicitly taken into
account. Therefore, the existence of macroscopic transport currents
as a consequence of macroscopic spatial inhomogeneities can likely
invalidate the prediction (9)–(10), at least for observables A which are
sensitive to such initial spatial imbalances and their equalization in the
course of time.

This is ultimately related to our idealization of statistically inde-
pendent matrix elements Vμν for μ≤ν. In any realistic system, some of
the matrix elements will certainly mutually depend on each other.
However, it is generally hard to identify (let alone quantify) potential
correlations in any given system, so independence may also be
understood as unbiasedness in the absence of more detailed infor-
mation. Moreover, mild correlations will often not have a noticeable
impact on the properties relevant for the observable dynamics55.

A specific case where correlations can become relevant, though,
are observables A that are strongly correlated with the perturbation V,
most notably if A = V. Since we keep the observable fixed when calcu-
lating ensemble averages, most members of the V ensemble will
obviously violate such a special relationship. Unfortunately, it is not
straightforwardly possible to adapt the method such that the case
A =V can be described as well because including A =V in the ensemble
averages would also affect the unperturbed reference dynamics
Ah iρ0ðtÞ. Numerical explorations and further discussions of this case are
provided in Supplementary Note 2.4. Notably, the qualitative predic-
tions of the theory (9) and, in particular, the occurrence of stalled
response can still be seen for the observable A = V.

For the rest, we emphasize that it is not necessary for all members
V of a certain ensemble to be physically realistic. The decisive question
is whether their majority embody the key mechanism underlying the
observable dynamics in the sameway as the true systemof interest. To
give an example from textbook statistical mechanics, a large part of
states contained in the canonical ensemble (as a mixed density
operator) will be unphysical, and yet its suitability to characterize
macroscopically observable properties of closed systems in thermal
equilibrium is unquestioned provided that the temperature as the
pertinent macroscopic parameter is chosen appropriately.

More generally, the probabilistic nature of the result implies that
any given system can show deviations even if all prerequisites are

formally fulfilled, but the probability for such deviations is exponen-
tially suppressed in the system’s degrees of freedom, cf. Eq. (25). For
generic many-body systems, we therefore cannot but conclude that
Eqs. (9)–(10) are expected to hold unless there are specific reasons to
the contrary. The explicit example systems from Figs. 1–3 only corro-
borate this observation, noticeably even though the number of
degrees of freedom is still far from being truly macroscopic in those
systems.

Data availability
The data generated in this study are provided in the Supplementary
Information/SourceData file. Source data are providedwith this paper.
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