
Covering and Separation for

Permutations and Graphs

Belinda Wickes

A thesis submitted for the requirements of the degree of

Doctor of Philosophy

School of Mathematical Sciences

Queen Mary, University of London

United Kingdom

September 2023

Statement of Originality

I, Belinda Wickes, confirm that the research included within this thesis is my own work

or that where it has been carried out in collaboration with, or supported by others, that

this is duly acknowledged below and my contribution indicated. Previously published

material is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is original, and does

not to the best of my knowledge break any UK law, infringe any third party’s copyright

or other Intellectual Property Right, or contain any confidential material.

I accept that Queen Mary University of London has the right to use plagiarism detection

software to check the electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of a degree by

this or any other university.

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author.

Belinda Wickes

27 September 2023

Details of collaboration and publications:

All the material in Part I was conducted in collaboration with my supervisor Dr. Robert

Johnson. The work in Part II is solely my own.

Much of the content of Chapter 1, and all the work in Chapters 2, 3, and 4 have been

published previously:

• J. R. Johnson, and B. Wickes. Shattering k-sets with Permutations. Order (2023).

The material in Chapter 8 has been accepted for publication, to appear as:

• B. Wickes. Separating Path Systems for the Complete Graph. Discrete Mathematics.

1

Abstract

This is a thesis of two parts, focusing on covering and separation topics of extremal

combinatorics and graph theory, two major themes in this area. They entail the existence

and properties of collections of combinatorial objects which together either represent all

objects (covering) or can be used to distinguish all objects from each other (separation).

We will consider a range of problems which come under these areas.

The first part will focus on shattering k-sets with permutations. A family of permutations

is said to shatter a given k-set if the permutations cover all possible orderings of the k

elements.

In particular, we investigate the size of permutation families which cover t orders for every

possible k-set as well as study the problem of determining the largest number of k-sets

that can be shattered by a family with given size. We provide a construction for a small

permutation family which shatters every k-set. We also consider constructions of large

families which do not shatter any triple.

The second part will be concerned with the problem of separating path systems. A

separating path system for a graph is a family of paths where, for any two edges, there is

a path containing one edge but not the other. The aim is to find the size of the smallest

such family.

We will study the size of the smallest separating path system for a range of graphs,

including complete graphs, complete bipartite graphs, and lattice-type graphs. A key

technique we introduce is the use of generator paths - constructed to utilise the symmetric

nature of Kn. We continue this symmetric approach for bipartite graphs and study the

limitations of the method. We consider lattice-type graphs as an example of the most

efficient possible separating systems for any graph.

2

Acknowledgements

I first extend the greatest of thanks to my supervisor, J. Robert Johnson, for all his

efforts and guidance throughout this endeavour. This thesis certainly would not have

been possible without his constant encouragement and enthusiasm, and I am particularly

grateful for his invaluable advice, both mathematical and otherwise.

I would also like to thank Oliver and Susan, for providing huge amounts of support and

distraction - whichever was needed more at the time.

Finally, I am grateful that this work was supported by an EPSRC doctoral studentship.

3

Contents

Statement of Originality . 1

Abstract . 2

Acknowledgements . 3

Table of Contents . 5

List of Tables . 6

List of Figures . 7

Introduction 8

Part I Shattering 11

1 Introduction 12

1.1 Background and previous work . 12

1.2 Partial and fractional shattering . 15

1.3 Structure of Part I . 17

1.4 Useful results . 19

1.4.1 Levenshtein’s perfect family construction 20

2 Partially shattering every k-tuple 26

2.1 Lower bounds . 27

2.2 The case k = 3 . 29

2.3 The case k > 3 . 33

3 Totally shattering a fraction of all k-tuples 36

3.1 Upper bound . 37

3.2 Lower bound . 38

3.3 Showing that F3(5, 6) =
4
5

. 41

4

CONTENTS

4 Completely shattering 50

5 Families which shatter no triples 53

6 Summary and open problems 65

Part II Separating 69

7 Introduction 70

7.1 Background and definitions . 70

7.2 Weak separation and strong separation . 72

7.3 Previous results . 73

7.4 Structure of Part II . 77

8 Complete graphs 79

8.1 Lower bound . 80

8.2 Symmetries and generator paths . 81

8.3 The case where n is prime . 88

8.4 General upper bound . 92

8.5 Proof of Theorem 8.13 . 97

8.6 Speculations on generator path construction 113

8.6.1 Zig-Zag . 113

8.6.2 Primitive roots . 116

9 Balanced complete bipartite graphs 119

9.1 Generalising generator paths . 119

9.2 Lower bound . 121

9.3 Upper bound . 123

10 Ladders and grids 132

10.1 Ladders . 132

10.2 Ladder-Tubes . 135

10.3 Grids . 138

11 Summary and open problems 142

References 145

5

List of Tables

5.1 Number of permutations after 1 and 2 iterations generated by a single

permutation depending on its tail length. 57

5.2 Number of permutations after 3 and 4 iterations generated by a single

permutation depending on its tail length. 57

8.1 Endpoints in each segment of L . 105

8.2 Path connections between each segment of L′ 110

6

List of Figures

8.1 Example of a separating path system of size n− 1 81

8.2 Rotations in K5 . 82

8.3 An example with n = 7 showing the vertex labels and matchings Mk 98

8.4 The linear forest L for n = 35 . 99

8.5 Examples of R when n−1
2

is and is not a multiple of 3 102

8.6 The segments of L for n = 35 . 103

8.7 Example of endpoints in T− . 105

8.8 The zig-zag path P on K9, with the P ′ shown as dashed 114

8.9 Example of the complete colouring showing P ′
0 in black, with n = 11 and

n = 13 . 115

9.1 The zig-zag path of K7 and the path P0 adapted from it in K7,7 124

9.2 Two trailing 1-type edges in P0 appearing together as leading 1-type edges

in P1, note that these are the only edges common to both paths 125

9.3 The path Q1 . 125

10.1 Example on L8 with the path P 1(F) where F = {2, 3, 5, 7} 133

10.2 Example on L8 with the path P 2(F ′) where F ′ = {2, 3, 5, 7} 134

10.3 Example of the graph L2
8 . 135

10.4 An example of L2
8 and the paths Ra in blue and Rd in red 136

10.5 An example of L2
8 and the path P 2(F ′) where F ′ = {2, 4, 5} 137

10.6 Example of the grid L(8, 8) and the path P (F) where F ⊆ [28] given by

F = {6, 9, 10, 11, 14, 15, 16, 18, 20, 23, 25, 27, 28}. 139

7

Introduction

Covering and separation are both key themes in the area of extremal combinatorics. In

general, extremal combinatorics is the study of a collection of objects that satisfy some

given property, and in particular is the study of the size of such a collection. The typical

framing of a question in this area would be - how large or small can a family of objects

be, given that together they satisfy a certain condition? The classical example of this

is Mantel’s Theorem, which answers the question: How many edges can a graph on n

vertices have, given that it contains no triangles?

The objects in question usually have an intrinsic structure, which may not be directly

related to the condition we are trying to satisfy, and are comprised of a number of com-

ponents (e.g. edges in a graph or elements in a set system). They are also usually finite,

although we tend to be interested in the cases where they are arbitrarily large. Standard

examples of combinatorial objects include graphs, permutations, set systems, codes, and

posets. The conditions we consider are typically a requirement for certain relationships

between objects to be achieved (e.g. ensuring no set is a subset of another in the collec-

tion), but can also be thought of as properties of sub-structures within the objects (e.g.

ensuring a graph contains no copy of a triangle).

In this thesis we will consider two types of combinatorial object - permutations and

graphs - and two conditions - covering and separating. Both are classical examples of

a combinatorial problem and are closely related to each other - where covering is used

to represent every object, and separating to distinguish all objects. Each will be self

contained in its own part of the thesis, with a thorough introduction of the problem along

with all formal definitions and background. Each part will explore a variety of different

settings within the confines of the problem, and conclude with open directions for further

study.

We will first look at a covering problem on permutations. A covering condition ensures

that all copies of a prescribed sub-structure appear in our family of objects. The particular

8

INTRODUCTION

problem we will be considering is families of permutations of n elements which shatter

every k-set. Shattering is a covering condition which stipulates that a given set of k

elements has all its possible orderings covered by the family.

This problem originated in set theory, where shattering a k-set S means that all possible

subsets of S can be found by taking the intersection of S with some set from the family.

The most well known result in this area is the Sauer–Shelah Lemma on VC-dimension,

which determines the maximum number of sets in a family given the maximum size of a

shattered set. It also has a direct relation to families which are k-independent, another

famous problem of set theory. In general, set-theoretic problems often have interesting

analogues regarding permutations, which are typically less well understood, and shattering

is no exception. Inevitably, the techniques and ideas used to understand the set-theoretic

versions do not carry over, and a different approach is required to solve the analogous

permutation problems.

We will introduce the notion of partial shattering, an alteration of the problem where only

t orderings need to be covered as opposed to all k!. We compare this to other variations of

the problem, and determine the minimum size of a family which partially shatters every

3-set for all values of t. We also extend these arguments to the case where k > 3. We will

also consider the question of determining the largest proportion of k-sets which can be

shattered by a family of fixed size, providing construction techniques and exploring the

uses of certain known families.

The order of magnitude for the smallest shattering families is known when k > 3, but only

through probabilistic methods, and there is a lack of any constructions which approach

this bound. To this end we provide an example construction which is significantly smaller

than any trivial known shattering family, although still does not match the known smallest

size. Finally, we look at possible extremal examples of families which are large but

do not shatter any 3-set, constructing many large non-shattering families matching the

conjectured bound.

In the second part of the thesis, we consider a separation problem on graphs. A separation

condition ensures the objects in our family can be used to differentiate between all their

components. Separating systems also have their origins in set theory, with the principal

notion being that two elements of some ground set are separated by a subset of that ground

set if it contains one element but not the other. It is essentially trivial that separating

all pairs of elements from an n element ground set requires log2(n) subsets, and moreover

requires no more than log2(n) subsets. When we consider our sets as elements of a graph

9

INTRODUCTION

G however, we gain properties from the inherent structure of G. This inherited structure

makes the problem more complex but also more interesting.

We will study separating path systems of a graph G - a collection of paths in G such that,

for any two edges of G, the collection contains a path covering one of the edges but not

the other. This means we are able to distinguish every edge of G by the paths which

contain it. It is easy to see that every graph has a separating path system, the edge set

of G is one for instance since a single edge is also a path. Naturally, we are interested

in the smallest possible separating path system of G, that is one which uses the fewest

paths.

We will investigate the question of finding the smallest separating path system for a

variety of natural classes of graph: complete graphs, bipartite graphs, and lattice-type

graphs. In each case, providing upper bounds through constructions, and lower bounds

by counting arguments. We make use of the symmetry of G in the case of complete graphs

and complete bipartite graphs, by introducing the technique of using a generator path. In

the case of the complete graph, we are able to completely reduce the problem to that of

finding one generator path.

10

Part I

Shattering

11

Chapter 1

Introduction

1.1 Background and previous work

Let Sn be the set of all permutations of {1, . . . , n} thought of as ordered n-tuples. Our

aim is to study properties of families of permutations from Sn inspired by concepts of

shattering from extremal set theory. We begin with the notion of shattering for sets.

Let F be a family of subsets of [n] = {1, 2, . . . , n} and let A ⊆ [n], we say that A is

shattered by F if for each B ⊆ A there exists a set S ∈ F such that A ∩ S = B. The

notion of shattered sets has uses throughout combinatorics and computer science, with

the focus being on the size of families that shatter certain sets. In particular we have the

of VC-dimension of a family F , which is the maximum size of a set A which is shattered

by F . For examples of work in this area see [1], [14], [25], [26], and [29]. The most

standout result here is the Sauer-Shelah Lemma (found independently in [25], [26], and

[29]) which states that |F| = O(nk) if F has VC-dimension k.

A family R of subsets of [n] is k-independent if any R1, R2, . . . , Rk ∈ R have the property

that all 2k intersections ∩k
i=1Ji are non-empty, where Ji takes on either Ri or its comple-

ment Rc
i . A large k-independent family R gives rise to a small family F , where F ⊆ 2[r] is

a family that shatters all the k-subsets of [r] and |R| = r. We can think of R as the dual

to the family F . To see this, first note that for each x ∈ [n] we can define a set F (x) ⊆ [r]

by setting i ∈ F (x) if and only if x ∈ Ri. Since R is k-independent, a family consisting

of all such F (x) sets must shatter all k-subsets of [r]. Set F = {F (x) : x ∈ [n]} then

clearly |F| = n, so the bigger r is, the greater the number of k-subsets shattered by n sets.

Kleitman and Spencer [14] posed the question ‘How large can a family of k-independent

sets be?’ which is equivalent to the question ‘How small can a family that shatters every

12

1.1. BACKGROUND AND PREVIOUS WORK

k-subset of [n] be?’.

Theorem 1.1 (Kleitman and Spencer [14]). For fixed k and n sufficiently large there are

absolute constants d1 and d2 such that

2kd2 log n ≤ gk(n) ≤ k2kd1 log n

where gk(n) is the size of the smallest family from 2[n] that shatters every k-subset of [n].

Our starting point is an analogue of this family size problem using permutations in place of

sets. This has been studied under a variety of names ([12], [21], [27], [28], [31]): completely

scrambling permutation families, mixing permutations, and sequence covering arrays. We

first formalise the problem, establish notation, and summarise the previous work.

Consider the set Sn of all permutations of [n], any permutation P ∈ Sn corresponds to a

particular linear order of the elements of [n], so P can be written as

P = (p1, p2, . . . , pn) where {p1, p2, . . . , pn} = [n].

Note that this is not cycle notation, rather it can be thought of as the second line of

two-row notation. We remark that all permutations and fixed orderings will be written in

this format from now on, all sets and k-tuples will be written using standard set notation.

For all a, b ∈ [n], we write

a <P b

to mean that a precedes b in the permutation P ∈ Sn.

Suppose R is a permutation of [k]. For a k-tuple {a1, . . . , ak} ⊆ [n] with a1 < · · · < ak

and a P ∈ Sn, we say {a1, . . . , ak} follows the pattern R ∈ Sk in P if ai <P aj for all

i, j ∈ [k] with i <R j. That is, {a1, . . . , ak} follows the pattern R in P if the restriction

of P to {a1, . . . , ak} is order isomorphic to R. For any k-tuple X from [n], we use PX to

denote the permutation pattern from Sk followed by X in P ∈ Sn. We can express our

shattering condition through permutation patterns.

Definition 1.2. We say that a family S ⊆ Sn shatters the k-tuple X ⊆ [n] if

{PX : P ∈ S} = Sk.

In other words, S shatters X if every possible ordering of the elements of X appears in

the permutations of S.

13

1.1. BACKGROUND AND PREVIOUS WORK

Example 1.3. The following family of permutations from S5 shatters every triple from

[5]:

(1, 2, 3, 4, 5) (2, 4, 1, 5, 3) (5, 3, 4, 1, 2) (3, 1, 2, 5, 4)

(1, 4, 3, 5, 2) (4, 2, 3, 5, 1) (5, 3, 2, 1, 4) (5, 1, 2, 4, 3).

We are interested in families that shatter many different sets at the same time, in partic-

ular when all sets of the same size are shattered by one family. Let fk(n) be the smallest

integer such that there exists a family S of permutations from Sn that shatters every

k-tuple from [n] and has |S| = fk(n). Throughout, if a family is said to shatter every

k-tuple in [n], then it is implied that said family is a subset of Sn.

Clearly we have that fk(n) ≥ |Sk|, otherwise we certainly cannot shatter any k-tuple. It

is also plain that fk(k) = k! since the family Sk is suitable.

The order of magnitude of the value fk(n) is known asymptotically. The upper bound

given by Spencer [27] can be seen with a simple probabilistic argument, the lower bound

is more involved and was shown by Radhakrishnan [21](
(k − 1)!

log e
+ o(1)

)
log n ≤ fk(n) ≤

k

log k!− log(k!− 1)
log n.

To simplify the notation throughout, log(n) = log2(n) unless otherwise stated.

In the case where k = 3 the best upper bound is actually given by a construction rather

than using the probabilistic method. The construction is given by Tarui in [28] and the

lower bound from Füredi [12]

2

log e
log n ≤ f3(n) ≤ 2 log n+ (1 + o(1)) log log n.

For k > 3 no explicit construction that matches the order of magnitude of the probabilistic

upper bound is known.

Our main focus will be partial and fractional variations of this problem, which we intro-

duce in the next section.

The study of shattering with permutations is appealing in its own right, providing a range

of interesting combinatorial structures and problems. It also follows in the footsteps of

many natural set theoretic questions which have an analogue to combinatorial problem in

terms of permutations requiring different techniques to the used. However, shattering as

defined in 1.2 also has a particular practical application for manufacturing and computer

science in the form of event sequence testing (see [15]).

14

1.2. PARTIAL AND FRACTIONAL SHATTERING

Event sequence testing aims to provide a means of checking for failures or malfunctions of

a sequential process before commencing full operation. Many procedures are event based

and ordered, meaning that during a process several steps or events take place one by one,

and the order which they occur may have an (unwanted) effect on the outcome or cause

the software to fail or become dangerous. For instance a certain fault may only occur

after particular devices have been connected.

Often the events are due to user interaction with the system, plugging in or connect-

ing a device or choosing options on an interface. Therefore, even if a certain order of

operations is prescribed, human error cannot be eliminated from the procedure. To miti-

gate the occurrence of such failures the system should be thoroughly tested to check any

malfunctions due to the changes in the sequence of events. Clearly for a process which

involves n events, n! tests must be conducted to check every eventuality. This is heavily

time consuming, especially in the case where a user must input every event manually. If

we expect that the errors in sequence ordering are likely to be small compared to the total

number of events, as would be the case with user error, then we need only test the orders

of a smaller number of events. That is, for a process with a total of n possible events,

where we expect there to be at most k ordering errors, we only need to check the orders

of every set of k events from the n possible choices. Clearly, this is equivalent to finding

small families of permutations from Sn which shatter every k-tuple from [n].

1.2 Partial and fractional shattering

As well as the problem of determining the smallest size of a permutation family that

shatters every k-tuple, it is natural to ask about small families that cover some subset

of orders for every k-tuple. Equally it is natural to consider small families that shatter

some partial collection of k-tuples. Our main aim is to introduce and investigate these

variations of the original family size problem. There are two different problems we will

consider.

• Given t ≤ k!, find the smallest family of permutations from Sn which ensures each

k-tuple appears in at least t orders.

• Given α ∈ [0, 1], find the smallest family that shatters at least α
(
n
k

)
of all k-tuples.

Note that there is another immediate definition of partial shattering. The problem is,

given some fixed set of patterns T ⊆ Sk, find the smallest family of permutations from Sn

such that every k-tuple follows all of the patterns in T . It turns out that for any S ⊆ Sn

15

1.2. PARTIAL AND FRACTIONAL SHATTERING

in which all k-tuples follow a specific non-monotone pattern, we have |S| = O(log n) (see

Lemma 2.3). This matches the lower bound for total shattering, making this variation

uninteresting.

For our first problem we formally define partial shattering as follows, using the same

notation as Definition 1.2.

Definition 1.4. We say that a family S ⊆ Sn t-shatters the k-tuple X ⊆ [n] if we have

|{PX : P ∈ S}| ≥ t. We define fk(n, t) to be the smallest integer such that there exists a

family S, with |S| = fk(n, t), that t-shatters every k-tuple in [n].

Example 1.5. The following family of permutations from S5 3-shatters every triple from

[5]:

(1, 2, 3, 4, 5) (2, 5, 4, 1, 3) (5, 3, 2, 1, 4).

Indeed, for each triple we have the following orderings contained in the above family:

{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5}
(1, 2, 3) (1, 2, 4) (1, 2, 5) (1, 3, 4) (1, 3, 5)

(2, 1, 3) (2, 4, 1) (2, 5, 1) (4, 1, 3) (5, 1, 3)

(3, 2, 1) (2, 1, 4) (5, 2, 1) (3, 1, 4) (5, 3, 1)

{1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}
(1, 4, 5) (2, 3, 4) (2, 3, 5) (2, 4, 5) (3, 4, 5)

(5, 4, 1) (2, 4, 3) (2, 5, 3) (2, 5, 4) (5, 4, 3)

(5, 1, 4) (3, 2, 4) (5, 3, 2) (5, 2, 4) (5, 3, 4).

Clearly fk(n, k!) is the size of the smallest shattering family on k-tuples, fk(n, k!) = fk(n).

We also have the trivial cases fk(n, 1) = 1 and fk(n, 2) = 2 which can be seen by taking

only monotone permutations.

Spencer [27] and Füredi [12] also discuss variations which look to cover a subset of patterns

of each k-tuple where each element appears in a specific place. Neither of these variations

can be expressed in terms of partial t-shattering or vice versa. However, in [12] Füredi

additionally defines an extremely general framework called S-mixing, we note that partial

t-shattering is one of the most natural special instances of this S-mixing.

For our second problem it is more natural to ask the question in reverse than it is to fix

the fraction. We ask for the maximum number of shattered k-tuples from a family of

16

1.3. STRUCTURE OF PART I

fixed size.

Definition 1.6. Let Fk(n,m) be the largest α ∈ [0, 1] such that there exists a collection

R of exactly m permutations from Sn, with the property that α
(
n
k

)
k-tuples are totally

shattered by R. We call this fractional shattering of n with m permutations.

Example 1.7. Below is an example of a family of 6 permutations which shatters 8 out

of 10 possible triples from [5]. The only triples not shattered by the below permutations

are {1, 2, 5} and {3, 4, 5}.

(5, 1, 2, 3, 4) (2, 4, 1, 3, 5) (3, 5, 4, 1, 2)

(1, 4, 5, 3, 2) (4, 2, 5, 3, 1) (3, 2, 1, 5, 4)

This shows that F3(5, 6) ≥ 4
5
. In fact we have that F3(5, 6) = 4

5
, which we will see in

Section 3.3.

It is plain that Fk(n,m) = 0 whenever m < k! and that Fk(k, k!) = 1. In fact, by a result

of Levenshtein [18] we have that Fk(k + 1, k!) = 1.

This instance of shattering is genuinely different from partial shattering, and showcases

different behaviour as a result. The aim of partial shattering is to deal with rates of

growth, while fractional shattering enables us to shatter a fixed fraction of all k-tuples

using only a constant number of permutations.

1.3 Structure of Part I

The remainder of Part I will be structured as follows. We conclude this chapter with

some known results which will be frequently used throughout the remaining chapters of

this part.

We focus on partial shattering in Chapter 2, beginning by showing that fixing a non-

monotone pattern which all k-tuples follow results in a large (Θ(log n)) family of permu-

tations. We then consider the case where k = 3 and classify the size of f3(n, t) asymptot-

ically for all values of t ∈ [6]. We are able to show that there are three distinct regimes

depending on t:

Θ(log n), Θ(log log n), or constant.

We follow up with the extension to larger values of k. The same separation into three

distinct size categories follows over to the k > 3 cases, although in this setting there is

the possibility that another size class exists for t ∈ [k + 1, 2(k − 1)!].

17

1.3. STRUCTURE OF PART I

A natural question is then, whether or not fk(n, t) always one of the three sizes we see

here or if there is another class. This highlights the interesting question of how many

size classes there are for such shattering problems in general. We note that for all the

permutation shattering variants discussed above and in [12, 21, 28, 27], the smallest known

families realising each has size Θ(log n), Θ(log log n), or constant.

In Chapter 3 we move on to the fractional version of the problem. Again we focus on the

case where k = 3, the first interesting case is F3(n, 6) where we show that

17

42
≤ F3(n, 6) ≤

47

60
.

In fact our method gives a slightly stronger upper bound which is hard to quantify but

shows that the upper bound is in fact strict when n > 10. We also show that in general

the value of Fk(n,m) is decreasing in n. This means that the limit for Fk(n,m) exists for

fixed k, m and as n tends to infinity. We see that this limit lies strictly between 0 and 1

for all k and m.

We also look at a method of iterating small families in such a way as to give a family of

permutations on much larger n, that preserves most of the shattering conditions from the

initial family. We give some bounds using this method and some small starting families

we call perfect families.

A perfect family for k on n, denoted Qk(n), is a family of exactly k! permutations from

Sn which shatter every k-tuple in [n] (a realisation of the family giving Fk(n, k!) = 1). An

example of a family Q3(4) is given by the following:

Q1 = (1, 2, 3, 4) Q2 = (2, 4, 1, 3) Q3 = (3, 4, 1, 2)

Q4 = (1, 4, 3, 2) Q5 = (4, 2, 3, 1) Q6 = (3, 2, 1, 4).

We note that Levenshtein’s result in [18] can be expressed as showing a perfect family for

k on n exists whenever n = k + 1.

We also note that these perfect families are of interest in design theory with a more gen-

eralised notion of what it means to be perfect. In [31] Yuster defines a perfect shattering

family as one where each ordering of every k-tuple appears among the permutations ex-

actly λ times. Then our notion of a perfect family is the most natural instance of this

where λ = 1.

We then have a construction for the original total shattering problem, that is an upper

bound for fk(n). The best bound, of order log n, is given by a probabilistic argument

and no explicit construction of this size is known. Our construction gives a family with

18

1.4. USEFUL RESULTS

a power of log n permutations, this is above the known upper bound for fk(n) but is

constructive.

Finally we explore a question in the opposite direction - constructing the largest family

of permutations from Sn which does not shatter any triple. This is an analogue of the

VC-dimension of sets. In 2000 Raz [23] showed that, for some undetermined universal

constant C, the upper bound on a set that does not shatter any triple is Cn. It is suggested

in [23] that a possible bound is the Catalan number

Cn =
1

n+ 1

(
2n

n

)
.

This implies that a possible extremal example of such a non-shattering family is the

family that contains every permutation of [n] with no decreasing triple. In other words,

the family that contains all permutations of n except those that contain a copy of the

pattern (3, 2, 1). For background on this family see [5]. We introduce a construction

method for producing non-shattering families of this candidate extremal size, but which

have avoid different patterns and have different properties to the known example.

We finish with a summary and some concluding remarks, as well as a few open problems

about the topics covered.

1.4 Useful results

The following are well known but useful results that will be used throughout.

Theorem 1.8 (Erdős-Szekeres Theorem [9]). Let r, s ∈ N, then any sequence of real

numbers with length at least n = rs + 1 contains an increasing subsequence of length at

least r + 1 or a decreasing subsequence with length at least s+ 1.

Lemma 1.9. Let (A,B) be a partition of [n], so A∪B = [n] and A∩B = ∅. Any family

U of such partitions with the property that, for every x, y ∈ [n] there exists (A,B) ∈ U
where exactly one of x and y is in A and the other is in B, also satisfies |U| ≥ ⌈log n⌉.
Furthermore there exists such a family U where the bound holds with equality.

Lemma 1.10 (Chung, Graham, and Winkler [8]). Let (A,B) be a partition of [n], so

A ∪ B = [n] and A ∩ B = ∅. Any family U of these partitions with the property that,

for every x, y ∈ [n] there exists (A,B) ∈ U where x ∈ A and y ∈ B, must satisfy

19

1.4. USEFUL RESULTS

|U| ≥ ⌈log n +
(
1
2
+ o(1)

)
log log n⌉. Moreover, there exists such a family with |U| =

⌈log n+
(
1
2
+ o(1)

)
log log n⌉.

1.4.1 Levenshtein’s perfect family construction

Here we will outline the construction of a perfect family Qn(n+ 1) given by Levenshtein

in [18]. The inclusion of this is partly for completeness, and partly due to the fact that

the paper [18] is not readily available in an English translation.

The construction works by extending each element of Sn to a unique element of Sn+1,

therefore the resulting family of permutations has the correct size |Sn| = n!. In fact, the

construction partitions Sn+1 into n + 1 different perfect families. First we clarify some

notation for this section.

We denote continuous sections of any vector u = (u1, . . . , um) between coordinates i ≤ j

by ui, . . . , uj. Vectors composed of (possibly multiple) subsections of u may then be

written as (ui, . . . , uj) or (ui, . . . , uj, uk, . . . , uℓ) accordingly, where i ≤ j ≤ k ≤ ℓ. We

denote the number of 1s in a binary vector (z1, . . . , zj) ∈ [0, 1]j by

∥(zi, . . . , zj)∥1 =
j∑

k=i

zk,

and the number of 0s by

∥(zi, . . . , zj)∥0 = j − (i− 1)− ∥(zi, . . . , zj)∥1.

We will also use the value W (z) for a binary vector z = (z1, . . . , zn−1) ∈ [0, 1]n−1

where

W (z) =
n−1∑
k=1

kzk.

This construction partitions Sn+1 into n + 1 perfect families by choice of the value a ∈
[n+ 1]. So, for each choice of a ∈ [n+ 1], the construction of a perfect family Fa(n) is as

follows.

For each binary vector z = (z1, . . . , zn−1) we define

r(z) = a−W (z) mod n+ 1.

We also set the values σ(z) and j(z) by

σ(z) =

0 if 0 ≤ r(z) ≤ ∥z∥1

1 if ∥z∥1 < r(z) ≤ n,

20

1.4. USEFUL RESULTS

and

j(z) =

the largest j such that ∥(zj, . . . , zn−1)∥1 = r(z) when σ(z) = 0

the largest j such that ∥(zj, . . . , zn−1)∥0 = n− r(z) when σ(z) = 1.

Let ⌊Sn+1⌋ denote the set of n length vectors of distinct elements of [n − 1]. For any

v = (v1, . . . , vn) ∈ ⌊Sn+1⌋ let

R(v) = z = (z1, . . . , zn−1) ∈ {0, 1}n−1

be a binary vector which encodes the increases and decreases of v via

zi =

0 if vi < vi+1

1 if vi > vi+1.

Our perfect family will be given by extending each vector v ∈ Sn to a vector u ∈ Sn+1 by

adding the element n+ 1 in such a way that if R(v) = z and

x = (z1, . . . , zj(z)−1, σ(z), zj(z), . . . , zn−1),

then R(u) = x.

Moreover, this is equivalent to

Fa(n) = {u ∈ Sn+1 : W (R(u)) ≡ a mod n+ 1}.

Example 1.11. Let n = 4 and choose a = 5. Take the vector v = (2, 3, 1, 4) ∈ S4,

we will extend this vector to a vector of S5 by adding the element 5 to v following the

construction above.

First note that R(v) = (0, 1, 0) = z and hence ∥z∥1 = 1, W (z) = 2 and r(z) = 5 − 2

mod 5 = 3. Then we have that σ(z) = 1 and j(z) = 3, giving us the extended vector

x = (0, 1, 1, 0).

We must now choose a place to add the element 5 into v = (2, 3, 1, 4) such that the

resulting increase/decrease vector is x. Adding 5 into the position (2, ⋆, 3, 1, 4) does this,

giving u = (2, 5, 3, 1, 4), and hence R(u) = (0, 1, 1, 0) = x.

Note that no other placement of 5 allows the increase/decrease vector to equal x. Indeed,

R((5, 2, 3, 1, 4)) = (1, 0, 1, 0), R((2, 3, 5, 1, 4)) = (0, 0, 1, 0), R((2, 3, 1, 5, 4)) = (0, 1, 0, 1),

and R((2, 3, 1, 4, 5)) = (0, 1, 0, 0). Moreover, each of these extensions relate to a different

21

1.4. USEFUL RESULTS

choice of a ∈ [5]. We chose a = 5 and as a result we have that W (x) = 2+ 3 ≡ 0 mod 5.

Checking the W value for the other placements show that each extension corresponds to

a different a value. Observe, W ((1, 0, 1, 0)) ≡ 4, W ((0, 0, 1, 0)) ≡ 3, W ((0, 1, 0, 1)) ≡ 1,

and W ((0, 1, 0, 0)) ≡ 2.

The family of vectors from S5 generated by applying this method of extension to all

vectors of S4 with a = 5 gives us a family containing u = (2, 5, 3, 1, 4) which shatters

every 4-tuple and has size |S4| = 24. This family is found below.

(1, 2, 3, 4, 5) (2, 1, 3, 5, 4) (3, 1, 2, 5, 4) (4, 1, 2, 5, 3)

(5, 1, 2, 4, 3) (2, 1, 4, 5, 3) (3, 1, 4, 5, 2) (4, 1, 3, 5, 2)

(1, 5, 3, 2, 4) (2, 5, 3, 1, 4) (3, 5, 2, 1, 4) (4, 5, 2, 1, 3)

(5, 1, 3, 4, 2) (5, 2, 3, 4, 1) (3, 2, 4, 5, 1) (4, 2, 3, 5, 1)

(1, 5, 4, 2, 3) (2, 5, 4, 1, 3) (3, 5, 4, 1, 2) (4, 5, 3, 1, 2)

(1, 4, 3, 2, 5) (2, 4, 3, 1, 5) (3, 4, 2, 1, 5) (5, 4, 3, 2, 1).

In order to prove that the construction provided behaves the way we intend, we must

show three things:

• That the extension is well defined.

• That the family of extensions u is indeed equivalent to {u ∈ Sn+1 : W (R(u)) ≡ a

mod n+ 1}.

• That the deletion of any single element from a vector of Fa(n) gives a unique

permutation of the remaining elements (i.e. a permutation that cannot be found by

deleting an element of another vector of Fa(n)). This is enough to ensure that each

n-tuple is shattered.

We will first confirm that σ(z) and j(z) are well defined. For σ(z), note that ∥z∥1 is the

number of 1s in the binary vector z of length n−1, therefore ∥z∥1 is a non-negative integer
with value 0 ≤ ∥z∥1 ≤ n − 1. Now observe that r(z) is an integer modulo n + 1, and

therefore is a non-negative integer with value 0 ≤ r(z) ≤ n. Clearly σ(z) is well defined,

the range covers all possible values of r(z), and the strict inequality is unambiguous since

∥z∥1 < n.

To see that j(z) is well defined, note that if σ(z) = 0 then by definition r(z) ≤ ∥z∥1, and
j(z) is defined whenever there exists an integer j where ∥(zj, . . . , zn−1)∥1 = r(z). Clearly,

such a j must exist since ∥(z1, . . . , zn−1)∥ ≥ r(z) and ∥(zn−1)∥ ≤ 1. When σ(z) = 1, then

by definition we have ∥z∥1 < r(z) ≤ n. Rearranging gives n− ∥z∥1 > n− r(z) ≥ 0 which

22

1.4. USEFUL RESULTS

is equivalent to ∥z∥0 ≥ n− r(z) ≥ 0, and in this case j(z) is defined whenever there exists

an integer j where ∥(zj, . . . , zn−1)∥0 = n− r(z). The remainder of this case is analogous

to the first case and shows that j(z) is well defined for all values of σ(z).

We will now see that the set of all vectors u ∈ Sn+1 which are extended from a v ∈ Sn

such that R(u) = (z1, . . . , zj(z)−1, σ(z), zj(z), . . . , zn−1) where R(v) = z is equivalent to the

set {u ∈ Sn+1 : W (R(u)) ≡ a mod n+ 1}.

Let u and v be as above and observe that W (R(u)) ≡ a mod n+ 1,

W (x) =

j(z)−1∑
k=1

kzk + j(z)σ(z) +
n−1∑

k=j(z)

(k + 1)zk

= W (z) + j(z)σ(z) + ∥(zj(z), . . . , zn−1)∥1
= W (z) + r(z) ≡ a mod n+ 1.

Now let u′ ∈ Sn+1 and suppose W (R(u′)) ≡ a mod n. It is plain that u′ is an ex-

tension of some v ∈ Sn, where v is given by deleting the element n + 1. Therefore

we have that u′ = (v1, . . . , vk, n + 1, vk+1, . . . , vn) for some k ∈ [n] and hence R(u′) =

(z1, . . . , zk−1, 0, 1, zk+1, . . . , zn−1), where R(v) = z. Since we must have zk ∈ {0, 1} we see

that R(u′) is an extension of z by one element. So we write R(u′) = y = (y1, . . . , yn) and

moreover, we have

z = (y1, . . . , yi−1, yi+1, . . . , yn)

for some i ∈ [n]. We will show that y = x, where x = (z1, . . . , zj(z)−1, σ(z), zj(z), . . . , zn−1).

Moreover, this argument holds whenever y is an n length binary vector and z is given

by deleting a single element of y (not using properties inherited from v or u). This

means that (z1, . . . , zj(z)−1, σ(z), zj(z), . . . , zn−1) is the unique extension of any binary vec-

tor (z1, . . . , zn−1) such that W ((z1, . . . , zj(z)−1, σ(z), zj(z), . . . , zn−1)) ≡ a mod n+1.

Observe that

W (y) = W (z) + iyi + ∥(yi+1, . . . , yn)∥1 ≡ a mod n+ 1.

If yi = 0 the above gives ∥(yi+1, . . . , yn)∥1 = r(z). Clearly we have that ∥(yi+1), . . . , yn∥1 ≤
∥z∥1 since in this case we have ∥y∥1 = ∥z∥1. Meaning that, r(z) ≤ ∥z∥1 and hence

σ(z) = 0. By the definition of j(z) we have that j(z) ≥ i+1 and that zi+1, . . . , zj(z)−1 = 0,

therefore y = x. If yi = 1 we have that W (z) + n − ∥(yi+1, . . . , yn)∥0 ≡ a mod n which

gives n − ∥(yi+1, . . . , yn)∥0 = r(z). Clearly, ∥(yi+1, . . . , yn)∥0 ≤ ∥z∥0 = n − 1 − ∥z∥1,
meaning ∥z∥1 + 1 ≤ r(z). This gives σ(z) = 1 and by an analogous process as in the first

case this forces y = x.

23

1.4. USEFUL RESULTS

Let v ∈ ⌊Sn+1⌋, we will show that there is exactly one vector in Fa which is an extension

of v. This is equivalent to showing that Fa shatters all every n-tuple. Let R(v) =

z and let ⌈v, σ(z), j(z)⌉ be the set of all extensions u ∈ Sn+1 of v such that R(u) =

(z1, . . . , zj(z)−1, σ(z), zj(z), . . . , zn−1). First we will see that |⌈v, σ(z), j(z)⌉| = 1, and then

that ⌈v, σ(z), j(z)⌉ is exactly the set of all extensions of v which are in Fa which proves

the result.

Consider the segment of v given by vi, . . . , vj(z) where i ≤ j(z) is such that zi−1 ̸= σ(z)

and zi, . . . , zj(z)−1 = σ(z). Note that by definition we also have zj(v) ̸= σ(v). Since

v ∈ ⌊Sn+1⌋ the entries of v are n distinct elements of [n + 1], and hence there is some

b ∈ [n + 1] with vi ̸= b for all i ∈ [n]. To extend v to a vector from Sn+1 we must

add the element b to some position of v. We need this extension u to be such that

R(u) = (z1, . . . , zj(z)−1, σ(z), zj(z), . . . , zn−1), and therefore b must be added to the segment

vi, . . . , vj(z). Indeed, if b is added to the segment v1, . . . , vi−2 then we have that the ith

entry of R(u) is zi−1, but we require the ith entry to be σ(z). Similarly, if b is added to

the segment vj(z)+2, . . . , vn then the j(z)th entry is zj(z), but we require this entry to be

σ(z).

Then the value of |⌈v, σ(z), j(z)⌉| is exactly the number of ways to add b to (vi, . . . , vj(z))

such that the resulting vector w has R(w) = (σ(z), . . . , σ(z)). In other words w is either an

increasing or decreasing sequence (depending on the value of σ(z)), it is plain that there is

exactly one position to add b which results in such a sequence. Therefore |⌈v, σ(z), j(z)⌉| =
1.

It remains to show that the set of all vectors of Fa which are extensions of v, is the set

⌈v, σ(z), j(z)⌉. First, let u ∈ ⌈v, σ(z), j(z)⌉, then we have that

R(u) = (z1, . . . , zj(z)−1, σ(z), zj(z), . . . , zn−1).

Observe that

W (R(u)) = W (z) + j(z)σ(z) + ∥(zj(v), . . . , zn−1)∥1
= W (z) + r(z) ≡ a mod n+ 1

by definition of σ(z) and j(z). Since Fa(n) = {u ∈ Sn+1 : W (R(u)) ≡ a mod n+ 1} this

means that u ∈ Fa.

Now suppose that u is an extension of v and that u ∈ Fa. Since u extends v we may

write u = (v1, . . . , vh, b, vh+1, . . . , vn) where b ̸= vi for any i ∈ [n] and b ∈ [n + 1]. Let

R((vh, b)) = α and R((b, vh+1)) = β, then

R(u) = (z1, . . . , zh−1, α, β, zh+1, . . . , zn−1).

24

1.4. USEFUL RESULTS

It is plain that either zh = α or zh = β, and hence

R(u) =

(z1, . . . , zh, β, zh+1, . . . , zn−1) if zh = α,

(z1, . . . , zh−1, α, zh, . . . , zn−1) if zh = β.

So we can rewrite this as R(u) = (z1, . . . , zt−1, δ, zt+1, . . . , zn−1). Clearly this means that

R(u) is an extension of z by one element, and since u ∈ Fa we have that W (R(u)) ≡ a

mod n + 1. Recall that (z1, . . . , zj(z)−1, σ(z), zj(z), . . . , zn−1) is the unique extension of z

with W (x) ≡ a mod n+ 1. Therefore

R(u) = (z1, . . . , zj(z)−1, σ(z), zj(z), . . . , zn−1),

and u ∈ ⌈v, σ(z), j(z)⌉.

25

Chapter 2

Partially shattering every k-tuple

Recall that we have the following definition, where PX is the permutation pattern which

X follows in P .

Definition 1.4. We say that a family S ⊆ Sn t-shatters the k-tuple X ⊆ [n] if we have

|{PX : P ∈ S}| ≥ t. We define fk(n, t) to be the smallest integer such that there exists a

family S, with |S| = fk(n, t), that t-shatters every k-tuple in [n].

Our aim in this section is to prove the following results, showing that the behaviour of

f3(n, t) and fk(n, t) falls into distinct regimes.

Theorem 2.1. We have the following bounds on f3(n, t)

f3(n, t) =

t for t = 1, 2

Θ(log log n) for t = 3, 4

Θ(log n) for t = 5, 6.

Theorem 2.2. We have the following bounds on fk(n, t)

fk(n, t) =

t when t = 1, 2

Θ(log log n) when t ∈ [3, k]

Θ(log n) when t ∈ [2(k − 1)! + 1, k!].

The upper bound when t = k! comes from Spencer’s total shattering bound for fk(n) [27].

The value of fk(t) whenever t = 1, 2 is trivial. Indeed note that any one single permutation

requires each k-tuple to follow some pattern (not necessarily the same pattern). So we

26

2.1. LOWER BOUNDS

get that fk(n, 1) = 1 simply by choosing any P ∈ Sn. We call P the reverse permutation

of P if a <P b whenever b <P a. All k-tuples follow a different pattern in P than they do

in P , therefore we must have that fk(n, 2) = 2.

2.1 Lower bounds

We begin by providing a lemma which shows that whenever we require a family of per-

mutations to follow a fixed non-monotone pattern, that family has the same order of

magnitude as a totally shattering family. This is one of the reasons we have chosen to

define partially shattering as in Definition 1.4.

Lemma 2.3. Let n ≥ 3 and R ∈ Sk be any non-monotone permutation pattern. If S ⊆ Sn

is a family of permutations for which every k-tuple follows R in at least one P ∈ S, then
we must have |S| ≥ log(n− k + 2). Hence |S| = Ω(log n).

Proof. Let S and R be as described in the statement of the lemma. Note that whenever

R is non-monotone there is some element x ∈ [k] such that when R is restricted to

{x, x+ 1, x+ 2} the triple is non-monotone.

If R induces (x+1, x, x+2) or (x+2, x, x+1) then set y = x. If R induces (x, x+2, x+1)

or (x+ 1, x+ 2, x) then set y = n− k + x+ 2.

For each P ∈ S we generate a partition of the set W := [n]\ ([x−1]∪ [n−k+x+3, n]∪y)

into two parts AP and BP , where AP contains every w ∈ W such that y <P w and

BP = W \ AP .

Note that when y = x the setW contains only elements larger than or equal to y, and when

y = n− k + x+ 2 the set W only contains smaller or equal elements. Hence for any pair

a, b ∈ W we must have one of the orders (a, y, b) or (b, y, a) appearing in S since exactly

one of them follows R as part of the k-tuple {1, 2, . . . , x− 1, y, a, b, n− k + x+ 3, . . . , n}.
To see this note that the elements that correspond to {x, x+1, x+2} are exactly {y, a, b}.

The family of partitions {(AP , BP) : P ∈ S} satisfies the conditions for Lemma 1.9 and

we must have that |S| ≥ log |W |, which gives the result.

To get a lower bound for our partial shattering problem we need to work a little harder

when t ≥ 3. It does not complicate the method to consider the general k-tuples rather than

just triples so we proceed in this generality. Observe that taking P to be the increasing

permutation (1, 2, . . . , n−1, n) we get that P is the decreasing permutation. Now consider

27

2.1. LOWER BOUNDS

a third permutation P ′, any k-tuple contained in a monotone subpermutation of P ′ will

not follow a new pattern. We know by the Erdős-Szekeres Theorem that when n is large

we must have some reasonably large monotone subpermutation. We use this idea to get

the lower bound in this case.

Theorem 2.4. For any n ≥ 3 and every t ≥ 3, we have fk(n, t) ≥ log log n−C where C

is a constant dependant on k and t. More precisely we have

fk(n, t) ≥ log log(n− 1)− log log(k − 1) + t− 3.

Proof. Let S be a family of permutations of [n] that t-shatters every k-tuple. Suppose for

a contradiction that |S| ≤ log log(n− 1)− log log(k − 1) + t− 4.

Choose any t−3 permutations from S, and set S ′ to be the S with the chosen permutations

removed. This is a family of permutations from Sn that 3-shatters every k-tuple. Note

that |S ′| ≤ log log(n− 1)− log log(k − 1)− 1 = m.

Take any P1 ∈ S ′, then by the Erdős-Szekeres Theorem P1 must contain an increasing

subsequence of length r = ⌊(n−1)
1
2 ⌋+1 (or a decreasing subsequence of length r). Let the

elements in this monotone subsequence be written as X1 = {x1, . . . , xr}, and let P1(X1)

be the restriction of P1 to the elements of X1. Then P1(X1) is simply a permutation of

X1 where the elements appear in the same order that they appear in P1.

Look at another permutation P2 ∈ S ′ restricted to the elements of X1, P2(X1). Applying

Erdős-Szekeres again, this time to P2(X1), we see that there must be an monotonic sub-

sequence of length ⌊(r−1)
1
2 ⌋+1. Let X2 ⊆ X1 be the set of elements in this subsequence.

Then consider P3(X2) and generate X3 ⊆ X2 in an analogous manner.

Take each permutation from S ′ into consideration one by one, at step i generate a set of

‘bad’ elements Xi ⊆ Xi−1 by applying Erdős-Szekeres to Pi(Xi−1) and finding a monotone

subsequence of length at least ⌊(|Xi−1| − 1)
1
2 ⌋+ 1.

Consider the set Xm, it must contain elements that appear in a monotone subsequence of

every permutation in S ′. In other words, the elements of Xm appear in a maximum of 2

possible orders. Therefore if |Xm| ≥ k then Xm contains a k-tuple that does not appear

in 3 orders across S ′. Hence, from our initial conditions we must have |Xm| < k.

Note that the number of elements we are restricting to in the final stage is at most

(n− 1)(
1
2
)m + 1.

28

2.2. THE CASE k = 3

Then observe

(n− 1)
1

2m + 1 < k

log log(n− 1)− log log(k − 1) < m.

On the other hand, based on the assumed size of S we have that m = log log(n − 1) −
log log(k − 1)− 1, a contradiction. Therefore we must have

|S| ≥ log log(n− 1)− log log(k − 1) + t− 3.

From this we can see that if t ≥ 3 then fk(n, t) is always between Ω(log log n) and O(log n).

Recall that O(log n) is the bound for fk(n) - the total shattering problem.

2.2 The case k = 3

Recall we wish to prove the following.

Theorem 2.1. We have the following bounds on f3(n, t)

f3(n, t) =

t for t = 1, 2

Θ(log log n) for t = 3, 4

Θ(log n) for t = 5, 6.

We have seen the lower bounds for f3(n, t) when t = 1, 3 and the upper bounds when

t = 2, 6. It remains to lower bound f3(n, t) when t = 5 and upper bound f3(n, t) for

t = 4.

We are able to show that there are values of t ≥ 3 which allow f3(n, t) to match the order

of magnitude of Theorem 2.4.

The next result gives an upper bound on f3(n, 4), first we show the bound in Theorem

2.6 using the recursion of Lemma 2.5, then we give the construction that provides the

recursion.

Lemma 2.5. For n ≥ 3 we have that f3(n
n, 4) ≤ f3(n, 4)+log n+

(
1
2
+ o(1)

)
log log n+2.

Therefore we get the following bound.

29

2.2. THE CASE k = 3

Theorem 2.6. For large n we have log log n ≤ f3(n, 4) ≤ 2 log log n

Proof. The lower bound is directly from Theorem 2.4 with k = 3 and t = 4.

For the upper bound, write n = (mm)m
m
for some real number m, noting that m may not

be an integer. Then from Lemma 2.5 we have

f3(n, 4) ≤ f3(⌈mm⌉, 4) + log⌈mm⌉+
(
1

2
+ o(1)

)
log log⌈mm⌉+ 2

≤ f3((m+ 1)m+1, 4) + logmm + log logmm + 3

≤ f3(m+ 1, 4) + log(m+ 1) + log log(m+ 1) + 3 + logmm + log logmm + 3

≤ f3(m+ 1, 4) + logm+ log logm+ logmm + log logmm + 8

we can now use Tarui’s upper bound for f3(n) in [28]

≤ 2(log(m+ 1) + log log(m+ 1)) + log logmm + log log(mm)m
m

+ 8

≤ 2(logm+ log logm) + log logmm + log log(mm)m
m

+ 12

≤ 2 log logmm + log logmm + log log(mm)m
m

+ 12

≤ log log n+ 3 log logmm + 12

≤ 2 log log n.

Now we see the construction that gives the recursion.

Proof of Lemma 2.5. Let S be a 4-shattering family for triples in [n] with |S| = f3(n, 4).

We will use this family to construct a new family from Snn that 4-shatters every triple.

Assign each x ∈ [nn] to a unique string (x1, . . . , xn) ∈ [n]n, by equating the standard order

on [nn] with the lexicographic order on [n]n. That is, x = 1 is assigned to (1, 1, . . . , 1, 1, 1),

x = n is assigned (1, 1, . . . , 1, 1, n), x = n+ 1 is assigned (1, 1, . . . , 1, 2, 1), and so on. We

call (x1, . . . , xn) the code (or unique code) for x. Note that this is equivalent to the base

n notation of elements of [nn] but shifted by 1, this shift makes notation simpler later on.

Let d : [nn]2 → [n] be the function giving the first coordinate that differs between two

elements, so d(x, y) = min{i : xi ̸= yi}. We will use these unique codes to generate two

types of permutations on [nn].

Type 1. Here we apply permutations from S. We will generate one permutation P n of

[nn] from each permutation P ∈ S.

30

2.2. THE CASE k = 3

Consider any P ∈ S, we can apply P to any set of n objects. In particular we can

apply P to each coordinate of the unique code of every x ∈ [nn], call the resulting

string the P -permuted unique code of x. Having found the P -permuted unique code of

every x ∈ [nn], we get a permutation P n ∈ Snn by considering the order on [nn] given

by the lexicographic order on the P -permuted unique codes of each x ∈ [nn].

The result is that for elements x, y ∈ [nn] with d(x, y) = i, we have that x precedes y

in P n if and only if xi precedes yi in P . In other words, x <Pn y if and only if xi <P yi.

We do this for all P ∈ S which gives us |S| = f3(n, 4) permutations of [nn], call this

collection of permutations Sn.

To see which triples are now 4-shattered, consider the triple {x, y, z} with the codes

(x1, x2, . . . , xn), (y1, y2, . . . , yn) and (z1, z2, . . . , zn) respectively. Suppose all three elements

agree in the first k ∈ [0, n− 1] coordinates, so xi = yi = zi for i ≤ k, and further suppose

that none agree in coordinate k + 1, that is d(x, y) = d(x, z) = d(y, z) = k + 1. Then

note that the order of x, y, z in P n relies only on the order of xk+1, yk+1, zk+1 in P . Since

S 4-shatters triples in [n] there must be permutations P1, P2, P3, P4 ∈ S that 4-shatter

{xk+1, yk+1, zk+1}, hence P n
1 , P

n
2 , P

n
3 , P

n
4 must 4-shatter {x, y, z}

The only triples that do not have 4 orders covered by permutations in Sn are those that

have two elements that agree in the first k coordinates of their unique code and the

final element only agrees in the first r coordinates where r < k. This is equivalent to

triples {x, y, z} with d(x, y) = k and d(x, z) = d(y, z) = r, we will call such triples ‘bad’.

Note that for a ‘bad’ triple {x, y, z} where x < y < z we must have either d(x, y) = k

and d(x, z) = d(y, z) < k or d(y, z) = k and d(x, y) = d(x, z) < k. It cannot be that

d(x, z) = k and d(x, y) = d(y, z) = r < k because x < y < z means that xr < yr < zr but

d(x, z) = k implies xr = zr.

We can assume without loss of generality that S contains the monotone increasing or-

der, therefore we can assume Sn contains it. We now construct the other collection of

permutations to cover orders on these ‘bad’ triples.

Type 2. By Lemma 1.10 we are able to find ⌈log n+
(
1
2
+ o(1)

)
log log n⌉ partitions of [n]

into two sets I and D that satisfy the conditions in 1.10. In this section we will view

[n] as the set of coordinates for the unique codes, and therefore I and D as partitions

of the coordinates. For each partition we will define one permutation in Snn .

Let (I,D) be any of our partitions and start by considering the first coordinate. If

31

2.2. THE CASE k = 3

1 ∈ I then we order the elements increasing by coordinate 1, namely x will precede y

if x1 < y1. If 1 ∈ D then order elements with decreasing coordinates, meaning x will

precede y if x1 > y1. Next look at the second coordinate, if 2 ∈ I order such that x

precedes y if x2 < y2, otherwise order so x precedes y if x2 > y2. Continue in this

manner until the elements have been ordered with respect to each of their coordinates.

Formally, consider x, y ∈ [nn] and let d(x, y) = i, we have that x precedes y ifxi < yi and i ∈ I

xi > yi and i ∈ D.

We use the above process to construct ⌈log n+
(
1
2
+ o(1)

)
log log n⌉ permutations with

the property that for any coordinates i and j we can always find two permutations

such that one has i increasing and j decreasing and the other has i decreasing and j

increasing.

Let T be the set of these Type 2 permutations along with the permutation of [nn] that is

totally decreasing (if this is not already included by the two types), then |T | ≤ ⌈log n +(
1
2
+ o(1)

)
log log n⌉+ 1.

To identify the triples that are partially shattered by T , consider a triple {x, y, z} where

x < y < z which was not 4-shattered by Sn. As discussed after Type 1 there are two

cases, either d(x, y) = i and d(x, z) = d(y, z) = j where j < i, or d(y, z) = i and

d(x, y) = d(x, z) = j for j < i.

Suppose d(x, y) = i and d(x, z) = d(y, z) = j where j < i. We know from our assumption

that the order (x, y, z) appears in Sn, we also know that (z, y, x) appears in T since

we included the decreasing permutation here. Furthermore we know that there is some

permutation in T where i is increasing and j is decreasing. Since x < z and d(x, z) = j we

must have xj < zj from the construction of the unique codes, similarly we have xi < yi.

Then for any permutation with i increasing, x must appear before y, and j decreasing

means x (and y since xj = yj) comes after z. This means that the order (z, x, y) is

covered. Similarly there is a permutation where i is decreasing and j is increasing, giving

the order (y, x, z). By the same reasoning, if we are in the second case where d(y, z) = i

and d(x, y) = d(x, z) = j, then we find the orders (x, y, z), (z, y, x), (y, z, x) and (x, z, y).

We now have our desired partial shattering condition, the family Sn ∪ T covers 4 orders

for each triple in [nn].

32

2.3. THE CASE k > 3

Thus

f3(n
n, 4) ≤ |Sn|+ |T | = f3(n, 4) +

⌈
log n+

(
1

2
+ o(1)

)
log log n

⌉
+ 1.

We now have all the ingredients needed to prove Theorem 2.1.

Proof of Theorem 2.1. Clearly f3(n, 1) = 1 as any P ∈ Sn forces all triples from [n] to

appear in one order. Recall the reverse permutation pf P , P , then we must have that all

triples follow a different pattern in P as they did in P , hence f3(n, 2) = 2.

The lower bound f3(n, 3) ≥ log log(n − 1) comes directly from Theorem 2.4. The upper

bound f3(n, 4) ≤ 2 log log n comes directly from Theorem 2.6. This gives us f3(n, t) =

Θ(log log n) when t = 3, 4.

To see f3(n, 5) ≥ log(n − 1), let S be a family of permutations from Sn that 5-shatters

every triple. Consider any triple of the form {n, x, y}, we must have at least one of the

orders (x, n, y) and (y, n, x) appearing in some permutation from S otherwise we have at

most 4 orders for {n, x, y}. For each P ∈ S generate a partition of [n− 1] by having

AP := {x ∈ [n− 1] : x appears after n in P}

BP := {x ∈ [n− 1] : x appears before n in P}.

Then using Lemma 1.9 in order to ensure at least one of the orders (x, n, y) and (y, n, x)

is seen we must have at least log(n− 1) permutations in S.

Finally we have that f3(n, 6) ≤ (2 + o(1)) log n from [28] since f3(n, 6) = f3(n).

2.3 The case k > 3

For triples, the different values of t feed equally into the three size classifications. In

the general k-tuple case, we actually have that for most values of t we require O(log n)

permutations.

Theorem 2.2. We have the following bounds on fk(n, t)

fk(n, t) =

t when t = 1, 2

Θ(log log n) when t ∈ [3, k]

Θ(log n) when t ∈ [2(k − 1)! + 1, k!].

33

2.3. THE CASE k > 3

The value of fk(n, t) for t ∈ [k + 1, 2(k − 1)!] is unknown but does lie between log log n

and O(log n). An interesting further question here is if the cases always split into exactly

these three orders, or is there a different behaviour for some t ∈ [k + 1, 2(k − 1)!]?

We again have the trivial cases t = 1, 2. Since Theorem 2.4 was for general k that result

is still giving us the lower bound when t = 3.

It is a direct consequence of a result of Spencer [27] that fk(n, k) = O(log log n). In fact

Spencer proved the stronger claim that there exists a family F of permutations from Sn

with size O(log log n) such that for every k-tuple X, and every x ∈ X, there is some

P ∈ F with x <P y for all y ∈ X \ x. That is, not only does any k-tuple appear in at

least k orders, but each element in the k-tuple appears first in at least one order.

That leaves us with only the following result left to prove Theorem 2.2.

Theorem 2.7. For fixed k and when n is large, we have that fk(n, t) = Θ(log n) whenever

t > 2(k!)
k

.

Proof. Let S be a family that (2(k− 1)! + 1)-shatters every k-tuple. Consider k-tuples of

the form X := {x, y, n− k + 3, . . . , n− 1, n} for any x, y ∈ [n− k + 2].

Note that x and y must be split by at least one of {n − k + 3, . . . , n} in some P ∈ S.
Indeed, there are only 2(k − 1)! ways to order X such that x and y are consecutive, yet

we know that X appears in at least 2(k − 1)! + 1 orders in S.

Consider the following sets

Ai
x := {P ∈ S : x appears after i}

where i ∈ [n− k + 3, n]. Then for any x and y there exists an i ∈ [n− k + 3, n] such that

Ai
x ̸= Ai

y.

For each i ∈ [n− k+3, n] we define a partition of [n− k+2] into at most m parts, where

elements x, y ∈ [n − k + 2] are in the same part if and only if Ai
x = Ai

y. Label the parts

arbitrarily with labels Bi
1, . . . , B

i
m noting that some labels may not be used at all. Then

we must have that

mk−2 ≥ n− k + 2.

Indeed, we are able to write each element x uniquely as a k − 2 length string from [m],

x = (x1, x2, . . . , xk−2) where xi = r if x ∈ Bi
r. To see that this does create a unique

identification, consider a pair x, y with the same string. We must have that x and y are

34

2.3. THE CASE k > 3

in the same Bi part for all i, then from the definition of Bis that means Ai
y = Ai

x for all i.

We have already established that distinct x, y must have Ai
y ̸= Ai

x for some i so conclude

that y = x.

By choosing the smallest possible m we can assume that there is some i such that the

partition has exactly m parts, that is

|{Bi
1, . . . , B

i
m}| = m.

Notice that the set

{Ai
x : x ∈ [n− k + 2]}

must also have size m since each x ∈ Bi
r gives rise to the same set Ai

x. Therefore this set

has size at least (n− k + 2)
1

k−2 by our above bound on m and hence

(n− k + 2)
1

k−2 ≤ 2|S|.

Giving us the result

|S| ≥ 1

k − 2
log(n− k + 2).

35

Chapter 3

Totally shattering a fraction of all

k-tuples

For this problem we have a fixed number of permutations and wish to know the largest

proportion of k-tuples that can be shattered. Recall the definition.

Definition 1.6. Let Fk(n,m) be the largest α ∈ [0, 1] such that there exists a collection

R of exactly m permutations from Sn, with the property that α
(
n
k

)
k-tuples are totally

shattered by R. We call this fractional shattering of n with m permutations.

We first focus on the case where k = 3, the first interesting case is F3(n, 6) where we will

show the following bounds.

Theorem 3.1. For any n ≥ 10 we have

17

42
≤ F3(n, 6) ≤

47

60
.

We also show that in general the value of Fk(n,m) is decreasing in n.

Theorem 3.2. For fixed k and fixed m ≥ k! we have

Fk(n,m) ≥ Fk(n+ 1,m).

This means that the limit for Fk(n,m) exists for fixed k, m and as n tends to infinity, we

see that this limit lies strictly between 0 and 1 for all k and m.

36

3.1. UPPER BOUND

3.1 Upper bound

First we show that the function Fk(n,m) is weakly decreasing in n when k and m are

fixed such that m ≥ k!.

Theorem 3.2. For fixed k and fixed m ≥ k! we have Fk(n,m) ≥ Fk(n+ 1,m).

Proof. Suppose Fk(n,m) = α and consider a family S of m permutations from Sn+1. Let

X ⊆ [n + 1] with |X| = n, then by considering the permutations of S restricted to the

elements of X, we see there are at most α
(
n
k

)
k-tuples shattered. In other words, at least

(1− α)
(
n
k

)
k-tuples from X remain un-shattered by S. Since this is true for any such X

we get that the number of un-shattered k-tuples in [n+ 1] is at least

(1− α)
(
n
k

)(
n+1
n

)(
n+1−k
n−k

) = (1− α)

(
n+ 1

k

)
.

Therefore the number of k-tuples that are shattered by S is at most α
(
n+1
k

)
. Therefore,

Fk(n+ 1,m) ≤ α.

It is an easy observation that, for fixed k and m, we can always find a suitably large

value of n such that every family of m permutations from Sn fails to shatter one k-tuple.

Indeed, when n ≥ m2m we can apply the Erdős-Szekeres Theorem to see that there must

be at least one un-shattered k-tuple. Therefore the limit of Fk(n,m) in n lies strictly

between 0 and 1 for all k and m, it is an interesting question to determine the value of

this limit.

A direct consequence of this weakly decreasing behaviour is that the value of Fk(N,m)

for given fixed N provides an upper bound on Fk(n,m) where n ≥ N . Consider the case

when k = 3, in particular we fix our family size at m = 6 since this is the first non-trivial

case.

Theorem 3.3. For any n ≥ 10 we have that F3(n, 6) ≤ 47
60
.

Proof. We use the fact that a family of 6 permutations of [5] can shatter at most 8 triples,

so F3(5, 6) =
4
5
, which we have checked by hand (see Section 3.3). Applying Theorem 3.2

with F3(5, 6) =
4
5
gives us F3(n, 6) ≤ 4

5
for any n ≥ 5.

Note that the number of triples shattered must be an integer and is given by F3(n, 6)
(
n
3

)
.

So for any N with F3(N, 6) ≤ α where α
(
N
3

)
is not an integer we have at most ⌊α

(
N
3

)
⌋

37

3.2. LOWER BOUND

shattered triples. Using this and the weakly decreasing property we get a slightly lower

upper bound on any n > N .

In this case, when n = 8 we have F3(8, 6) ≤ 4
5
and the maximum number of triples

shattered by 6 permutations is given by F3(8, 6)
(
8
3

)
≤ 4

5
×56 = 44.8, then we must shatter

at most 44 out of a possible 56 triples, meaning F3(8, 6) ≤ 44
56

= 11
14

< 4
5
.

We note that we can repeat this rounding down argument indefinitely for a smaller upper

bound. The next step gives F3(n, 6) ≤ 47
60

whenever n ≥ 10 by observing that 11
14

(
10
3

)
is

not an integer. This along with Theorem 3.2 gives the desired result.

We remark the following, let α5 =
4
5
, α8 =

11
14
, and α10 =

47
60

be the fractions from the first

three steps in this process, and suppose αx is the proportion given in ith step. Then the

fraction given in the (i+ 1)th step will be one of αx+1, αx+2, or αx+3. In other words, for

at least one of N = x + 1, x + 2, x + 3 we have αx

(
N
3

)
is not an integer. This argument

therefore continues indefinitely. However the actual bound it gives is hard to pin down

and the numerical improvement is small and does not provide additional context, so we

leave it at this.

All our upper bounds come from analysing small n and the above rounding argument. To

improve these significantly seems to require a different and less case based approach.

3.2 Lower bound

To find a lower bound for Fk(n,m) we show that some initial family on small n can be

used in an iterative process, giving a family on nr which preserves much of the shattering

from the initial family. Specific lower bounds can then be given by choosing a suitable

initial family which shatters a high proportion of k-tuples.

Recall from the proof of Lemma 2.5 a method of upscaling permutations on N to per-

mutations on N r (for any integer r ≥ 1) known as Type 1 permutations, we will use this

method again in the next result.

Theorem 3.4. Suppose S is a family which shatters α
(
N
k

)
k-tuples from [N], then for

any integer r ≥ 1, the set of Type 1 permutations Sr = {P r : P ∈ S} shatters at least

α

(
N

k

)
N (r−1)k 1−N r(1−k)

1−N1−k
(3.1)

38

3.2. LOWER BOUND

k-tuples from [N r]. Hence, for all n ≥ N

Fk(n, |S|) ≥
α(N − 1)!

(N − k)!(Nk−1 − 1)
. (3.2)

Proof. Assign to each x ∈ [N r] a code (x1, x2, . . . , xr) ∈ [N]r by equating the standard

order on [N r] with the lexicographic order on [N]r (just as in the proof of Lemma 2.5).

Let P ∈ S and recall that P r is the permutation from SNr where x <P r y if and only if

xi <P yi where i = d(x, y) = min{i : xi ̸= yi}.

Note that any k-tuple whose elements have unique codes which differ for the first time in

the same coordinate i, is shattered by Sr = {P r : P ∈ S} if the k-tuple of ith coordinates

is shattered by S. Indeed, consider a1, . . . , ak ∈ [N r] and write (aj1, . . . , a
j
r) for the unique

code of aj for each j ∈ [k]. If there exists a coordinate i ∈ [r] such that a1ℓ = a2ℓ = · · · = akℓ

whenever ℓ < i and where a1i , a
2
i , . . . , a

k
i are all distinct, then the k-tuple {a1, . . . , ak} will

have its order in P r defined by the order of the {a1i , a2i , . . . , aki } in P . Hence such triples

where {a1i , a2i , . . . , aki } is shattered by S are shattered by Sr.

Therefore, we may count the minimum number of shattered k-tuples by counting exactly

those k-tuples whose codes have the above property. The number of such k-tuples is given

by
r∑

i=1

N i−1α

(
N

k

)
(N r−i)k = α

(
N

k

)
N (r−1)k

r−1∑
i=0

(
N1−k

)i
.

This proves the first statement.

The second statement follows by selecting an integer r such that n ≤ N r. We will show

that Fk(N
r, |S|) follows the statement whenever r ≥ 1, then the decreasing property of

Theorem 3.2 gives the statement for Fk(n, |S|).

Observe that equation (3.1) gives us the minimum number of k-tuples shattered, to get

an expression for the proportion Fk(N
r, |S|) we simply divide by the total number of

k-tuples.

Fk(N
r, |S|) ≥ α

(
N

k

)(
N r

k

)−1

N (r−1)k 1−N r(1−k)

1−N1−k

=
N rk(1−N r(1−k))

N r(N r − 1) · · · (N r − k + 1)
× α(N − 1)!

(N − k)!(Nk−1 − 1)

To prove the second statement of the theorem, it is enough to show that

N rk(1−N r(1−k))

N r(N r − 1) · · · (N r − k + 1)
≥ 1. (3.3)

39

3.2. LOWER BOUND

To do this we can use induction on k. Note that when k = 2 the left hand side of (3.3) is

equal to 1, so the statement holds for k = 2. Then note the difference in the expression

when considering k + 1

N r(k+1)(1−N r(1−(k+1)))

N r(N r − 1) · · · (N r − (k + 1) + 1)
=

N rk(1−N r(1−k))

N r(N r − 1) · · · (N r − k + 1)
× N rk − 1

(N r − k)(N r(k−1) − 1)
.

Then (3.3) must hold for all k > 2 as long as

N rk − 1

(N r − k)(N r(k−1) − 1)
≥ 1.

Observe that this holds whenever kN r(k−1) + N r ≥ k + 1, and since N r > 1 we have

satisfied all the conditions.

We know from Levenshtein [18] that a perfect family Qk(k + 1) exists. By setting S =

Qk(k + 1), we can apply Theorem 3.4 with n = k + 1 and α = 1 to get the following

result.

Corollary 3.5. For any n we have that

Fk(n, k!) ≥
k!

(k + 1)k−1 − 1
.

When k = 3 it is known that the largest value n for which a perfect family Qk(n) exists

is 4. Indeed, the family Q3(4) (Chapter 1) is perfect, but F3(5, 3!) =
4
5
(see Section 3.3)

and Fk(n,m) is decreasing (Theorem 3.2), meaning that Q3(n) does not exists whenever

n ≥ 5. However, in general it is not known which values (if any) of n > k + 1 admit a

perfect family for any given k. This is an interesting open question in its own right, but

perfect families for large values of n would give better lower bounds for Fk(N, k!) for all

N < n.

The family S used in Theorem 3.4 need not be perfect to give a lower bound. Note that

the bound of Corollary 3.5 when k = 3 gives F3(n, 6) ≥ 2
5
for all n. We can improve this

bound by using a non-perfect family on 8 points for S.

Corollary 3.6. For all n we have F3(n, 6) ≥ 17
42
.

Proof. Apply Theorem 3.4 with n = 8, k = 3, and S given by the 6 permutations below:

P1 = (6, 1, 2, 5, 8, 3, 4, 7) P2 = (5, 2, 1, 6, 7, 4, 3, 8)

P3 = (7, 3, 6, 2, 8, 4, 5, 1) P4 = (3, 7, 1, 5, 4, 8, 2, 6)

P5 = (8, 4, 5, 1, 7, 3, 6, 2) P6 = (4, 8, 2, 6, 3, 7, 1, 5).

Note that S shatters 34 out of 56 possible triples.

40

3.3. SHOWING THAT F3(5, 6) =
4
5

Combining the results of Theorem 3.3 and Corollary 3.6 gives Theorem 3.1, and we see

that limn→∞ F3(n, 6) lies in the interval [17
42
, 47
60
).

Theorem 3.1. For any n ≥ 10 we have

17

42
≤ F3(n, 6) ≤

47

60
.

3.3 Showing that F3(5, 6) = 4
5

Recall that F3(5, 6) ≥ 4
5
as seen in Example 1.7. It remains to show that F3(4, 5) ≤

4
5
.

To show that F3(5, 6) ≤ 4
5
we must show that any 6 permutations from S5 shatter at most

8 triples out of a possible 10. Therefore it is sufficient to show that in any 6 permutations

there are at least 2 distinct triples that are not shattered, and hence have a repeated

pattern.

So we look for a family of 6 permutations from S5 with at most 1 triple un-shattered

(i.e. with a pattern repeated), if there is no such family then we have proved the state-

ment.

If such a family exists, we may assume that the triple that is not shattered contains the

element 5. From this we see that the family of 6 permutations of S4 generated by omitting

5 must shatter every triple from [4]. Since the family Qk(4) is unique up to isomorphism,

to prove the statement we show that adding 5 in any position to permutations from Qk(4)

results in a family that leaves 2 triples un-shattered.

Here is the family Qk(4):

Q1 = (1, 2, 3, 4) Q2 = (2, 4, 1, 3) Q3 = (3, 4, 1, 2)

Q4 = (1, 4, 3, 2) Q5 = (4, 2, 3, 1) Q6 = (3, 2, 1, 4).

The permutation generated by adding 5 into Qi in some position will be denoted Q′
i.

We split into 5 cases, one for each location of element 5 in Q1.

Case 1: Q′
1 = (1, 2, 3, 4, 5).

So we have fixed Q′
1, consider the options for Q′

2.

If Q′
2 = (2, 4, 1, 3, 5) the triples {1, 3, 5} and {2, 4, 5} appear in the same order in both Q′

1

and Q′
2. Any family that contains Q′

1 and Q′
2 = (2, 4, 1, 3, 5) is not the family we search

for, so we look at a different option for Q′
2.

41

3.3. SHOWING THAT F3(5, 6) =
4
5

If Q′
2 = (2, 4, 1, 5, 3) then the triple {2, 4, 5} appears in the same order in Q′

1 and Q′
2.

Consider now Q′
3 = (3, 4, ⋆, 1, ⋆, 2, ⋆) where 5 appears in any location denoted by ⋆, the

triple {3, 4, 5} appears in the same order in Q′
1 and Q′

3. This forces both triples {2, 4, 5}
and {3, 4, 5} to repeat. So we assume instead that Q′

3 = (⋆, 3, ⋆, 4, 1, 2).

So we have fixed Q′
1 = (1, 2, 3, 4, 5), Q′

2 = (2, 4, 1, 5, 3), and Q′
3 = (⋆, 3, ⋆, 4, 1, 2) and

we know that {2, 4, 5} is repeated already. Consider Q′
5 = (4, 2, 3, ⋆, 1, ⋆), then {2, 3, 5}

appears in the same order in Q′
1 and Q′

5, meaning both {2, 4, 5} and {2, 3, 5} are not shat-

tered. Similarly if Q′
5 = (4, ⋆, 2, ⋆, 3, 1) the triple {3, 4, 5} is copied in Q′

2 and Q′
5, meaning

{2, 4, 5} and {3, 4, 5} are not shattered. Finally, if Q′
5 = (5, 4, 2, 3, 1) we have {1, 4, 5}

appearing in the same pattern in Q′
3 and Q′

5 giving the pair {2, 4, 5} and {1, 4, 5}.

We record the above information as follows.

Q′
2 = (2, 4, 1, 5, 3) {2, 4, 5}

Q′
3 = (3, 4, ⋆, 1, ⋆, 2, ⋆) {3, 4, 5}

Q′
3 = (⋆, 3, ⋆, 4, 1, 2)

Q′
5 = (4, 2, 3, ⋆, 1, ⋆) {2, 3, 5}

Q′
5 = (4, ⋆, 2, ⋆, 3, 1) {3, 4, 5}

Q′
5 = (5, 4, 2, 3, 1) {1, 4, 5}

This means that the family we search for cannot contain Q′
1 and Q′

2 = (2, 4, 1, 5, 3), so we

assume next that Q′
2 = (2, 4, 5, 1, 3). It happens that for Q′

2 = (2, 4, 5, 1, 3) the case is the

same as that of Q′
2 = (2, 4, 1, 5, 3).

For the remaining two options for Q′
2 we have the following.

Q′
2 = (2, 5, 4, 1, 3)

Q′
4 = (1, 4, 3, ⋆, 2, ⋆) {1, 4, 5}, {1, 3, 5}

Q′
4 = (1, 4, 5, 3, 2) {1, 4, 5}

Q′
5 = (4, 2, 3, ⋆, 1, ⋆) {2, 3, 5}

Q′
5 = (⋆, 4, ⋆, 2, ⋆, 3, 1) {3, 4, 5}

Q′
4 = (1, 5, 4, 3, 2) {3, 4, 5}

Q′
3 = (3, 4, 1, ⋆, 2, ⋆) {1, 2, 5}

Q′
3 = (3, 4, 5, 1, 2)

Q′
5 = (4, 2, ⋆, 3, ⋆, 1, ⋆) {2, 3, 5}

Q′
5 = (⋆, 4, ⋆, 2, 3, 1) {1, 4, 5}

Q′
3 = (⋆, 3, ⋆, 4, 1, 2) {1, 4, 5}

42

3.3. SHOWING THAT F3(5, 6) =
4
5

Q′
4 = (5, 1, 4, 3, 2) {3, 4, 5}, {1, 3, 5}

Q′
2 = (5, 2, 4, 1, 3)

Q′
4 = (1, 4, 3, ⋆, 2, ⋆) {1, 4, 5}, {1, 3, 5}

Q′
4 = (1, 4, 5, 3, 2) {1, 4, 5}

Q′
5 = (4, 2, 3, ⋆, 1, ⋆) {2, 3, 5}

Q′
5 = (4, 2, 5, 3, 1) {3, 4, 5}

Q′
5 = (⋆, 4, ⋆, 2, 3, 1) {1, 2, 5}

Q′
4 = (1, 5, 4, 3, 2) {3, 4, 5}

Q′
5 = (4, 2, 3, ⋆, 1, ⋆) {2, 3, 5}

Q′
5 = (4, 2, 5, 3, 1)

Q′
3 = (3, 4, 1, ⋆, 2, ⋆) {1, 2, 5}

Q′
3 = (⋆, 3, ⋆, 4, ⋆, 1, 2) {1, 4, 5}

Q′
4 = (5, 1, 4, 3, 2) {3, 4, 5}, {1, 3, 5}

These show that if Q′
2 = (2, 5, 4, 1, 3) or Q′

2 = (5, 2, 4, 1, 3), there is no position 5 can

take in Q′
4 without causing a pair of un-shattered triples. With all of these pieces we

see that no matter where 5 is found in Q′
2 it leads to a family with at most 8 triples

shattered.

We continue like this for the remaining cases, showing that there is no possible location

for 5 without having a pair of un-shattered triples. Therefore the family we search for

does not exist and we must have that F3(5, 6) =
4
5
.

Case 2: Q′
1 = (1, 2, 3, 5, 4)

Q′
6 = (3, 2, 1, 4, 5)

Q′
4 = (1, 4, 3, ⋆, 2, ⋆) {1, 4, 5}, {1, 3, 5}

Q′
4 = (1, ⋆, 4, ⋆, 3, 2) {1, 4, 5}

Q′
3 = (3, ⋆, 4, ⋆, 1, ⋆, 2, ⋆) {3, 4, 5}

Q′
3 = (5, 3, 4, 1, 2) {2, 3, 5}

Q′
4 = (5, 1, 4, 3, 2)

Q′
2 = (2, 4, 1, ⋆, 3, ⋆) {2, 4, 5}, {1, 2, 5}

43

3.3. SHOWING THAT F3(5, 6) =
4
5

Q′
2 = (2, 4, 5, 1, 3) {2, 4, 5}, {1, 3, 5}

Q′
2 = (⋆, 2, ⋆, 4, 1, 3) {3, 4, 5}, {1, 3, 5}

Q′
6 = (3, 2, ⋆, 1, ⋆, 4) {2, 4, 5}, {3, 4, 5}

Q′
6 = (3, 5, 2, 1, 4) {3, 4, 5}

Q′
4 = (1, 4, 3, ⋆, 2, ⋆) {1, 3, 5}

Q′
4 = (1, 4, 5, 3, 2)

Q′
3 = (3, 4, 1, 2, 5) {1, 2, 5}

Q′
3 = (⋆, 3, ⋆, 4, ⋆, 1, ⋆, 2) {2, 3, 5}

Q′
4 = (⋆, 1, ⋆, 4, 3, 2) {1, 4, 5}

Q′
6 = (5, 3, 2, 1, 4)

Q′
5 = (4, 2, 3, 1, 5) {2, 3, 5}

Q′
2 = (2, 4, 1, ⋆, 3, ⋆) {1, 4, 5}

Q′
2 = (2, 4, 5, 1, 3)

Q′
3 = (3, 4, 1, ⋆, 2, ⋆) {1, 3, 5}

Q′
3 = (3, 4, 5, 1, 2) {1, 4, 5}

Q′
3 = (3, 5, 4, 1, 2) {3, 4, 5}

Q′
3 = (5, 3, 4, 1, 2) {1, 3, 5}

Q′
2 = (⋆, 2, ⋆, 4, 1, 3) {2, 4, 5}

Q′
5 = (4, 2, 3, 5, 1) {2, 3, 5}

Q′
2 = (2, 4, 1, 3, 5) {1, 3, 5}

Q′
2 = (2, 4, 1, 5, 3)

Q′
3 = (3, 4, ⋆, 1, ⋆, 2, ⋆) {1, 4, 5}

Q′
3 = (⋆, 3, ⋆, 4, 1, 2) {3, 4, 5}

Q′
2 = (2, ⋆, 4, ⋆, 1, 3) {1, 2, 5}

Q′
2 = (5, 2, 4, 1, 3) {2, 4, 5}

Q′
5 = (4, 2, 5, 3, 1) {1, 3, 5}

Q′
2 = (2, ⋆, 4, ⋆, 1, ⋆, 3, ⋆) {2, 3, 5}

Q′
2 = (5, 2, 4, 1, 3) {2, 4, 5}

44

3.3. SHOWING THAT F3(5, 6) =
4
5

Q′
5 = (⋆, 4, ⋆, 2, 3, 1) {1, 2, 5}, {1, 3, 5}

Case 3: Q′
1 = (1, 2, 5, 3, 4)

Q′
4 = (1, 4, 3, 2, 5) {1, 2, 5}

Q′
2 = (2, 4, 1, 3, 5) {1, 3, 5}

Q′
2 = (2, ⋆, 4, ⋆, 1, ⋆, 3) {2, 3, 5}

Q′
2 = (5, 2, 4, 1, 3)

Q′
5 = (4, 2, ⋆, 3, ⋆, 1, ⋆) {2, 4, 5}

Q′
5 = (⋆, 4, ⋆, 2, 3, 1) {2, 3, 5}

Q′
4 = (1, 4, 3, 5, 2)

Q′
2 = (2, 4, 1, 3, 5) {4, 3, 5}, {1, 3, 5}

Q′
2 = (2, 4, 1, 5, 3) {2, 3, 5}, {1, 3, 5}

Q′
2 = (2, 4, 5, 1, 3) {2, 3, 5}

Q′
6 = (3, 2, ⋆, 1, ⋆, 4, ⋆) {2, 4, 5}

Q′
6 = (3, 5, 2, 1, 4)

Q′
3 = (3, 4, 1, 2, 5) {1, 2, 5}

Q′
3 = (3, 4, ⋆, 1, ⋆, 2) {2, 4, 5}

Q′
3 = (⋆, 3, ⋆, 4, 1, 2) {3, 4, 5}

Q′
6 = (5, 3, 2, 1, 4) {3, 4, 5}

Q′
2 = (2, 5, 4, 1, 3) {2, 3, 5}, {2, 4, 5}

Q′
2 = (5, 2, 4, 1, 3)

Q′
5 = (4, 2, 3, ⋆, 1, ⋆) {3, 4, 5}

Q′
6 = (3, 2, 1, 4, 5) {1, 4, 5}

Q′
6 = (3, 2, ⋆, 1, ⋆, 4) {2, 4, 5}

Q′
6 = (⋆, 3, ⋆, 2, 1, 4) {1, 2, 5}

Q′
5 = (4, 2, 5, 3, 1) {2, 3, 5}

Q′
3 = (3, 4, 1, 2, 5) {1, 2, 5}

Q′
3 = (3, 4, ⋆, 1, ⋆, 2) {2, 4, 5}

45

3.3. SHOWING THAT F3(5, 6) =
4
5

Q′
3 = (⋆, 3, ⋆, 4, 1, 2) {1, 4, 5}

Q′
5 = (⋆, 4, ⋆, 2, 3, 1) {1, 2, 5}, {2, 3, 5}

Q′
4 = (1, 4, 5, 3, 2) {1, 3, 5}

Q′
3 = (3, 4, 1, 2, 5) {1, 2, 5}

Q′
3 = (3, 4, ⋆, 1, ⋆, 2) {2, 4, 5}

Q′
3 = (3, 5, 4, 1, 2)

Q′
6 = (3, 2, 1, 4, 5) {1, 4, 5}

Q′
6 = (⋆, 3, ⋆, 2, ⋆, 1, ⋆, 4) {3, 4, 5}

Q′
3 = (5, 3, 4, 1, 2) {3, 4, 5}

Q′
4 = (1, 5, 4, 3, 2) {1, 3, 5}, {1, 4, 5}

Q′
4 = (5, 1, 4, 3, 2)

Q′
3 = (3, 4, 1, 2, 5) {1, 2, 5}

Q′
2 = (2, 4, 1, ⋆, 3, ⋆) {1, 4, 5}

Q′
2 = (⋆, 2, ⋆, 4, ⋆, 1, 3) {1, 3, 5}

Q′
3 = (3, 4, 1, 5, 2)

Q′
2 = (2, 4, 1, ⋆, 3, ⋆) {1, 4, 5}

Q′
6 = (3, 2, ⋆, 1, ⋆, 4, ⋆) {2, 4, 5}

Q′
6 = (⋆, 3, ⋆, 2, 1, 4) {2, 3, 5}

Q′
2 = (2, 4, 5, 1, 3) {1, 3, 5}, {2, 3, 5}

Q′
2 = (⋆, 2, ⋆, 4, 1, 3) {1, 3, 5}, {3, 4, 5}

Q′
3 = (⋆, 3, ⋆, 4, ⋆, 1, 2) {1, 2, 5}

Q′
2 = (2, 4, 1, 3, 5)

Q′
6 = (3, 2, ⋆, 1, ⋆, 4, ⋆) {2, 4, 5}

Q′
6 = (⋆, 3, ⋆, 2, 1, 4) {1, 4, 5}

Q′
2 = (2, ⋆, 4, ⋆, 1, ⋆, 3) {2, 3, 5}

Q′
2 = (5, 2, 4, 1, 3) {1, 3, 5}

46

3.3. SHOWING THAT F3(5, 6) =
4
5

Case 4: Q′
1 = (1, 5, 2, 3, 4)

Q′
4 = (1, 4, 3, 2, 5)

Q′
6 = (3, 2, 1, ⋆, 4, ⋆) {2, 3, 5}, {1, 4, 5}

Q′
6 = (3, 2, 5, 1, 4) {2, 3, 5}

Q′
2 = (2, 4, 1, ⋆, 3, ⋆) {1, 3, 5}

Q′
2 = (2, ⋆, 4, ⋆, 1, 3) {1, 2, 5}

Q′
2 = (5, 2, 4, 1, 3) {2, 4, 5}

Q′
6 = (3, 5, 2, 1, 4) {2, 4, 5}

Q′
3 = (3, 4, 1, 2, 5) {1, 2, 5}

Q′
3 = (3, ⋆, 4, ⋆, 1, ⋆, 2) {2, 3, 5}

Q′
3 = (5, 3, 4, 1, 2) {3, 4, 5}

Q′
6 = (5, 3, 2, 1, 4) {2, 4, 5}, {3, 4, 5}

Q′
4 = (1, 4, 3, 5, 2) {1, 2, 5}

Q′
3 = (3, 4, 1, 2, 5)

Q′
6 = (3, ⋆, 2, ⋆, 1, ⋆, 4, ⋆) {2, 3, 5}

Q′
6 = (5, 3, 2, 1, 4) {2, 4, 5}

Q′
3 = (3, ⋆, 4, ⋆, 1, ⋆, 2) {2, 3, 5}

Q′
3 = (5, 3, 4, 1, 2) {3, 4, 5}

Q′
4 = (1, ⋆, 4, ⋆, 3, 2) {1, 2, 5}, {1, 3, 5}

Q′
4 = (5, 1, 4, 3, 2)

Q′
6 = (3, 2, 1, 4, 5)

Q′
3 = (3, 4, 1, ⋆, 2, ⋆) {3, 4, 5}, {1, 3, 5}

Q′
3 = (3, 4, 5, 1, 2) {3, 4, 5}, {1, 2, 5}

Q′
3 = (⋆, 3, ⋆, 4, 1, 2) {2, 4, 5}, {1, 2, 5}

Q′
6 = (3, 2, ⋆, 1, ⋆, 4) {1, 4, 5}

Q′
3 = (3, 4, 1, 2, 5) {2, 3, 5}

Q′
3 = (⋆, 3, ⋆, 4, ⋆, 1, ⋆, 2) {1, 2, 5}

47

3.3. SHOWING THAT F3(5, 6) =
4
5

Q′
6 = (⋆, 3, ⋆, 2, 1, 4) {1, 4, 5}, {2, 4, 5}

Case 5: Q′
1 = (5, 1, 2, 3, 4)

Q′
2 = (2, 4, 1, 3, 5)

Q′
4 = (1, 4, 3, ⋆, 2, ⋆) {3, 4, 5}, {1, 3, 5}

Q′
4 = (1, 4, 5, 3, 2)

Q′
5 = (4, 2, 3, ⋆, 1, ⋆) {3, 4, 5}, {2, 3, 5}

Q′
5 = (4, ⋆, 2, ⋆, 3, 1) {3, 4, 5}

Q′
3 = (3, 4, 1, ⋆, 2, ⋆) {1, 4, 5}

Q′
3 = (⋆, 3, ⋆, 4, ⋆, 1, 2) {1, 2, 5}

Q′
5 = (5, 4, 2, 3, 1) {2, 3, 5}

Q′
3 = (3, 4, 1, ⋆, 2, ⋆) {1, 4, 5}

Q′
3 = (⋆, 3, ⋆, 4, ⋆, 1, 2) {1, 2, 5}

Q′
4 = (1, 5, 4, 3, 2)

Q′
5 = (4, 2, 3, ⋆, 1, ⋆) {3, 4, 5}, {2, 3, 5}

Q′
5 = (4, 2, 5, 3, 1)

Q′
6 = (3, 2, 1, 4, 5) {2, 4, 5}, {1, 2, 5}

Q′
6 = (3, 2, 1, 5, 4) {1, 4, 5}, {1, 2, 5}

Q′
6 = (3, 2, 5, 1, 4) {1, 4, 5}, {1, 2, 5}

Q′
6 = (⋆, 3, ⋆, 2, 1, 4) {1, 4, 5}, {2, 4, 5}

Q′
5 = (⋆, 4, ⋆, 2, 3, 1) {2, 3, 5}

Q′
6 = (3, 2, 1, 4, 5) {1, 2, 5}

Q′
6 = (⋆, 3, ⋆, 2, ⋆, 1, ⋆, 4) {1, 4, 5}

Q′
4 = (5, 1, 4, 3, 2) {1, 2, 5}, {1, 3, 5}

Q′
2 = (2, 4, 1, 5, 3)

Q′
3 = (3, 4, 1, 2, 5) {1, 4, 5}

Q′
6 = (3, 2, ⋆, 1, ⋆, 4, ⋆) {2, 3, 5}

Q′
6 = (⋆, 3, ⋆, 2, 1, 4) {2, 4, 5}

48

3.3. SHOWING THAT F3(5, 6) =
4
5

Q′
3 = (3, 4, 1, 5, 2) {1, 4, 5}

Q′
4 = (1, 4, 3, 2, 5)

Q′
6 = (3, 2, ⋆, 1, ⋆, 4, ⋆) {2, 3, 5}

Q′
6 = (⋆, 3, ⋆, 2, 1, 4) {2, 4, 5}

Q′
4 = (⋆, 1, ⋆, 4, ⋆, 3, ⋆, 2) {1, 2, 5}

Q′
3 = (3, ⋆, 4, ⋆, 1, 2) {1, 2, 5}

Q′
5 = (4, 2, 3, 1, 5) {1, 4, 5}

Q′
5 = (4, 2, 3, 5, 1) {1, 3, 5}

Q′
5 = (⋆, 4, ⋆, 2, ⋆, 3, 1) {2, 3, 5}

Q′
3 = (5, 3, 4, 1, 2) {1, 2, 5}, {3, 4, 5}

Q′
2 = (2, 4, 5, 1, 3) {1, 3, 5}

Q′
3 = (3, 4, 1, ⋆, 2, ⋆)

Q′
5 = (4, ⋆, 2, ⋆, 3, ⋆, 1, ⋆) {1, 4, 5}

Q′
5 = (5, 4, 2, 3, 1) {2, 3, 5}

Q′
3 = (⋆, 3, ⋆, 4, ⋆, 1, 2) {1, 2, 5}

Q′
2 = (2, 5, 4, 1, 3) {1, 3, 5}

Q′
3 = (3, 4, 1, ⋆, 2, ⋆)

Q′
6 = (3, 2, 1, 4, 5) {3, 4, 5}

Q′
6 = (⋆, 3, ⋆, 2, ⋆, 1, ⋆, 4) {2, 4, 5}

Q′
3 = (⋆, 3, ⋆, 4, ⋆, 1, 2) {1, 2, 5}

Q′
2 = (5, 2, 4, 1, 3) {1, 3, 5}, {2, 3, 5}

49

Chapter 4

Completely shattering

Recall that Spencer [27] gives a simple probabilistic argument showing that fk(n) =

O(log n), which is the best known upper bound for the total shattering problem. The

bound given is

fk(n) ≤
k

log k!− log(k!− 1)
log n.

However, there is only a construction matching this size for k = 3, provided by Tarui [28].

This gives the bound

f3(n) ≤ 2 log n+ (1 + o(1)) log log n.

We have been unable to extend any of the separation ideas that work in the special k = 3

case to give a constructive proof that O(log n) for arbitrary values of k. Therefore finding

such a construction is still an open problem.

It is of particular interest to have constructions of small shattering families due to the

link with event sequence testing. In order to design a thorough test for any given process

in a practical setting, we must be able to provide each permutation so that the sequence

may be followed exactly.

The aim of this chapter is to give an iterative construction for small shattering families

that applies to any value of k. The main idea is to identify each element of [n] with a

point in the k-dimensional lattice, and take permutations by grouping the points in each

of the k directions. Unfortunately the bound this gives is a power of log n rather than the

known O(log n) bound. However, this is a constructive method which gives a relatively

small family which shatters every k-tuple.

50

4. COMPLETELY SHATTERING

Lemma 4.1. Given a family that shatters every k-tuple in [nk−1] and has size S, we can

give an explicit construction of a family that shatters every k-tuple from [nk] and has size

kS.

Proof. Let S be a shattering family for [nk−1], we use the permutations in this family to

construct permutations of [nk]. For simplicity, let m = nk−1.

We consider the elements of [nk] viewed geometrically as points on an integer lattice of

dimension k. Label each element x ∈ [nk] by a unique string (i1, . . . , ik) with all ij ∈ [n].

Without loss of generality, we may assume that all elements of [m] are labelled with

(1, i2, . . . , ik) and hence can be thought of instead as the k − 1 string (i2, . . . , ik). This

means every k − 1 string is associated to an element of [m].

Let rj(x) = (i1, . . . , ij−1, ij+1, . . . , ik) be x with the jth coordinate omitted. Note that

rj(x) is therefore associated to an element of [m].

For each P ∈ S we will create k permutations of [nk], P ′
1, . . . , P

′
k. To generate the

permutation P ′
j order x before y if and only if rj(x) appears before rj(y) in P , if rj(x) =

rj(y) then order arbitrarily.

This generates k|S| permutations of [nk], it is left to show that these are sufficient to

shatter all k-tuples.

Claim : Given k points in [n]k, A = {a1, . . . , ak}, there exists a direction j ∈ [k] such

that the projection of A in direction j has k points.

Indeed, suppose not for a contradiction. For all j ∈ [k] there is some pair aℓ, at ∈ A

such that rj(aℓ) = rj(aq). Define a graph G with vertex set A, and with one edge for

each direction j ∈ [k] between some pair of vertices u, v ∈ A with rj(u) = rj(z). By

our assumption there is at least one such pair for each j ∈ [k], if there is a choice then

pick arbitrarily. Note that if rj(u) = rj(z) for some j then we cannot have rℓ(u) = rℓ(v)

for any ℓ ∈ [k] \ j by definition, so we can never pick the same edge more than once.

Hence our graph on k vertices has exactly k edges, therefore G must contain a cycle. Let

v1, . . . , vt be a cycle in G, then the edge v1v2 demonstrates a change in one coordinate, say

j1. Similarly edge v2v3 demonstrates a change in coordinate j2. Observe that j1 and j2

are distinct since there is only one edge for each direction. Continuing, we find t distinct

directions j1, . . . , jt where jt is the direction of the edge vtv1. This is equivalent to starting

with v1, changing t different coordinates and ending up back at v1. Clearly this cannot

happen and therefore we have a contradiction. This proves the claim.

51

4. COMPLETELY SHATTERING

We have shown that for any k-tuple A = {a1, . . . , ak}, there is a coordinate j such that

rj(aℓ) ̸= rj(aq) for all ℓ, q ∈ [k]. Hence A is shattered by the collection of permutations of

the form P ′
j where P ∈ S.

Therefore our collection of P ′s does indeed shatter all the k-tuples in [nk], and we used

k|S| permutations in total.

Repeatedly applying the construction in 4.1 gives an upper bound fk(n) ≤ (log n)ck where

ck ≈ log k
log k−log(k−1)

.

52

Chapter 5

Families which shatter no triples

In this chapter we will consider the problem of constructing a family of permutations

which is as large as possible, yet does not shatter any triple. That is, we are interested

in the size of the largest F(n) ⊆ Sn where every triple {x, y, z} ⊆ [n] appears in at most

5 orders in F(n).

Definition 5.1. We will call a family of permutations non-shattering if there is no

triple which appears in all six orders.

The aim of this chapter is to introduce a method of constructing large non-shattering

families, as well as making a few observations about the pattern avoiding behaviour of

large non-shattering families.

The problem was introduced by Raz in [23], and is a reformulation of the VC-dimension

(see [29]) in terms of permutations. Raz was able to show the following about the size of

such families.

Theorem 5.2 (Raz [23]). There exists a universal constant C such that, for any non-

shattering family F(n) ⊆ Sn we have |F(n)| ≤ Cn.

The value of C is unknown and [23] does not attempt to quantify the value. However, it

is remarked by Raz that a possible bound is given by |F(n)| ≤ Cn = 1
n+1

(
2n
n

)
, the nth

Catalan number.

We remark that the analogous problem for k-tuples with k > 3 seems to have very different

behaviour, with constructions of non-shattering families reaching super-exponential size.

Raz notes that the methods in [23] do not give a similar bound to Theorem 5.2 when

53

5. FAMILIES WHICH SHATTER NO TRIPLES

k > 3. We will only consider the case k = 3 here.

Let A321(n) be the family of all permutations of Sn which contain no decreasing triple,

that is, the family that contains all permutations of [n] except those that contain a copy

of the pattern (3, 2, 1). It is well known that |A321(n)| = Cn (see [5]), and clearly the

family A321(n) is non-shattering. In fact if σ is any permutation of S3, and Aσ(n) is

the family containing all permutations of Sn which do not contain the order σ, then

|Aσ(n)| = Cn and plainly Aσ(n) is non-shattering (again see [5]). At present, there are

no known non-shattering families which are larger than Cn.

Every non-shattering family has at least one forbidden pattern of S3 for each triple. That

is, for every triple of [n] we must have one ordering that does not occur in a family

which is non-shattering, this order is described by one pattern from S3. This leads to

the following easy observation. Let F ⊆ Sn be a non-shattering family of maximum size,

and for every triple X ⊆ [n] let σ(X) ∈ S3 denote a forbidden pattern of X. Then

F = {P ∈ Sn : PX ̸= σ(X) for all triples X ⊆ [n]}.

In other words, when looking for the largest non-shattering family of [n], it is enough to

specify a single forbidden pattern of S3 for each triple in [n]. Note that if we forbid the

same pattern σ for every triple, then we end up with the family Aσ(n).

Let F ⊆ Sn be a non-shattering family (of any size), our main aim in this chapter is to

introduce a method of constructing a non-shattering family of Sn+1 from F . Therefore,

after recursively applying the construction we can generate a non-shattering family of [N]

from any non-shattering family on [n] where N > n. Using this we are able to construct

a range of different non-shattering families of size CN .

Definition 5.3. Let F = (f1, . . . , fn) be any permutation from Sn. We call the longest

final segment of F which is an increasing sequence the tail of F . More precisely, the

segment fi, . . . , fn is the tail if and only if fi < · · · < fn and fi−1 > fi or i = 1. We

denote the tail length of F by t(F), which is the number of elements in the tail of F .

Now we can construct a non-shattering family of permutations F ′ ⊆ Sn+1 from a non-

shattering family F ⊆ Sn by the following method. For each F ∈ F , generate t(F) + 1

permutations of F ′ by inserting the element n+1 into each of the final t(F)+1 positions

in F .

Example 5.4. Let n = 9 and F = (5, 7, 4, 1, 9, 2, 3, 6, 8). The tail of F is the segment

2, 3, 6, 8 and therefore t(F) = 4. We take 5 permutations of [10] by inserting the element

54

5. FAMILIES WHICH SHATTER NO TRIPLES

10 into the final 5 positions of F , giving us

(5, 7, 4, 1, 9, 2, 3, 6, 8, 10), (5, 7, 4, 1, 9, 2, 3, 6, 10, 8), (5, 7, 4, 1, 9, 2, 3, 10, 6, 8),

(5, 7, 4, 1, 9, 2, 10, 3, 6, 8), (5, 7, 4, 1, 9, 10, 2, 3, 6, 8).

Note that the tail each of these permutations has a distinct tail length from [5].

To see that this does indeed give us a non-shattering family, note first that we need only

consider triples which contain the element n + 1, since we have not changed any orders

given by the non-shattering family F . Then observe that we have added n+ 1 in such a

way as to avoid making any decreasing triple, and hence all triples containing n + 1 are

missing at least the order (3, 2, 1). Consider any triple {x, y, n + 1} with x < y < n + 1,

to get the order (n + 1, y, x) we need to have inserted n + 1 before the decreasing pair

(y, x) in F , but we have added n + 1 so that everything to the right of it is part of the

tail of F and is therefore increasing.

Further note that inserting n + 1 to any other position guarantees the formation of a

decreasing triple. Indeed, if fi, . . . , fn is the tail of F then fi−1 > fi, any placement of

n + 1 outside the final t(F) + 1 places puts n + 1 to the left of fi−1, forcing the triple

{fi, fi−1, n+ 1} to appear decreasing.

We also remark that the tail lengths of the new permutations generated by following the

above construction are entirely predictable. This means that all the necessary information

is contained in the tail length, and we do not need to know anything else about the

structure of the permutation in order to construct the non-shattering family F ′. We

formalise this in the following Lemma.

Lemma 5.5. Let F ⊆ Sn be a non-shattering family, and let F ′ be constructed from F
by the above process. Then we have that

|F ′| =
∑
F∈F

t(F) + 1,

and that the number of permutations F ′ ∈ F ′ with t(F ′) = t is given by the number of

F ∈ F with t(F) ≥ t− 1.

Proof. Let F ∈ F and note that F will generate one permutation with tail length i for

each i ∈ [t(F) + 1]. This is due to the tails being dictated by the element n + 1. Since

n+ 1 is always larger than any element of F , if F ′ ∈ F ′ is a permutation generated from

F , then F ′ has tail length t(F)+1 if and only if the last element of F ′ is n+1. If n+1 is

55

5. FAMILIES WHICH SHATTER NO TRIPLES

in any other position then the tail of any F ′ ∈ F ′ generated from F must be the segment

immediately to the right of n+1. Therefore, t(F ′) is simply equal to the number of entries

to the right of n+ 1. By the construction we take the permutations which have n+ 1 in

the last t(F) + 1 positions, giving the result.

Since both the input and output of the construction is a non-shattering family, we can

apply the method repeatedly to get a non-shattering family on [N] for any N > n. In

particular, since the construction forces all new triples to avoid the decreasing order,

setting F = A321(n) gives F ′ = A321(n + 1), and hence repeated application always

results in A321(N). However, Lemma 5.5 implies that the size of F ′ is determined only

by the tails lengths of F , meaning that starting with any F whose multiset of tail lengths

matches the multiset of tail lengths of A321(n), results in a non-shattering family of size

|A321(N)| = CN . Moreover, unless F = A321(n), the resulting family (after any number

of iterations of the construction) is not equal to Aσ(N) for any pattern σ ∈ S3.

Example 5.6. Consider F := A132(3) = {(1, 2, 3), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)} and

note that the multiset {t(F) : F ∈ A132(3)} = {3, 2, 1, 2, 1} = {t(F) : F ∈ A321(3)}. Let

F ′ be the non-shattering family generated by applying the construction to F . We have

F ′ = {(1, 2, 3, 4), (1, 2, 4, 3), (1, 4, 2, 3), (4, 1, 2, 3), (2, 1, 3, 4), (2, 1, 4, 3), (2, 4, 1, 3),

(2, 3, 1, 4), (2, 3, 4, 1), (3, 1, 2, 4), (3, 1, 4, 2), (3, 4, 1, 2), (3, 2, 1, 4), (3, 2, 4, 1)}.

Then the multiset {t(F) : F ∈ F ′} = {4, 1, 2, 3, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1} = {t(F) : F ∈
A321(4)}, and therefore the construction can be applied again to give a non-shattering

family of size |A321(5)| = C5 with the multiset of tail lengths being equal to {t(F) : F ∈
A321(5)}. Running multiple iterations of this gives the family defined by forbidding the

pattern σ(X) for each triple X where

σ(X) =

(1, 3, 2) if X = {1, 2, 3}

(3, 2, 1) otherwise.

In particular, for any n > 3 we have Cn size family from Sn which is non-shattering and

is distinct from Aσ(n).

In general, for any starting family F we remark that, a permutation F ∈ F with t(F) = t,

after one iteration of the construction F has contributed t + 1 permutations to the new

larger family. Each of these permutations has a distinct tail length from [t+1], therefore

after two iterations F will have contributed
∑t+2

i=2 i =
1
2
(t2 + 5t + 4). This information is

summarised in Table 5.1.

56

5. FAMILIES WHICH SHATTER NO TRIPLES

Tail length 1 iteration 2 iterations

t+ 2 0 1 =
∑1

i=1 1

t+ 1 1 2 =
∑2

i=1 1

t 1 3 =
∑3

i=1 1
...

...
...

3 1 t =
∑t

i=1 1

2 1 t+ 1 =
∑t+1

i=1 1 = T1

1 1 t+ 1 =
∑t+1

i=1 1 = T1

Total
∑t+1

i1=1 1 = t+ 1 := T1

∑t+1
i2=1

∑i2
i1=1 1 + T1 := T2

Table 5.1: Number of permutations after 1 and 2 iterations generated by a single permu-

tation depending on its tail length.

After three iterations we have a contribution of 1
6
(t3+12t2+41t+30) permutations. To see

this, note that the number of contributed permutations with tail length t+3 is exactly the

number of permutations from the previous iteration which have tail length t+2, of which

there was one. Continuing in the manner, we see that the number of new permutations

with tail length k ≥ 3 is exactly
∑t+4−k

i=1 i, and every previous permutation contributes

one new permutation of tail length 2 and 1 respectively. Similarly, we can calculate that

the number of contributions in the fourth iteration is 1
24
(17t4+162t3+547t2+834t+432).

This information is summarised in Table 5.2.

Tail length 3 iterations 4 iterations

t+ 4 0
∑1

i3=1

∑i3
i2=1

∑i2
i1=1 1

t+ 3
∑1

i2=1

∑i2
i1=1 1

∑2
i3=1

∑i3
i2=1

∑i2
i1=1 1

...
...

...

4
∑t

i2=1

∑i2
i1=1 1

∑t+1
i3=1

∑i3
i2=1

∑i2
i1=1 1

3
∑t+1

i2=1

∑i2
i1=1 1

∑t+1
i3=1

∑i3
i2=1

∑i2
i1=1 1 + T2

2
∑t+1

i2=1

∑i2
i1=1 1 +

∑t+1
i1=1 1 = T2 T3

1
∑t+1

i2=1

∑i2
i1=1 1 +

∑t+1
i1=1 1 = T2 T3

Total
∑t+1

i3=1

∑i3
i2=1

∑i2
i1=1 1 + 2T2 := T3

∑t+1
i4=1

∑i4
i3=1

∑i3
i2=1

∑i2
i1=1 1 + T2 + 2T3

Table 5.2: Number of permutations after 3 and 4 iterations generated by a single permu-

tation depending on its tail length.

In general, a formula for the number of contributions from F after k iterations is fairly

57

5. FAMILIES WHICH SHATTER NO TRIPLES

unwieldy and not particularly insightful, so we do not attempt to give such a formula here.

However, a key observation about these contributions is that the function which gives the

number of contributions is convex when t > 0. It is therefore possible that applying the

construction to two non-shattering families F and H, with |F| < |H|, achieves after k

iterations non-shattering families F ′ and H′ with |F ′| > |H′|, as long as F contains longer

tails.

This motivates finding non-shattering families which have a large number of permutations

with long tails.

Definition 5.7. Let F ⊆ Sn be any family of permutations and fix an integer k > 0. We

say the number of k+ tails of F to mean the quantity

Tk(F) := |{F ∈ F : t(F) ≥ k}|.

Let Tk(n) = max{Tk(F) : F ⊆ Sn is non-shattering}.

We wish to know how large Tk(F) can be for a non-shattering F . First observe that,

by this definition and the nature of tails, we have that T1(F) = |F| for all families

F . Therefore when k = 1 the problem is equivalent to the original problem of how

large F can be given that it is non-shattering. Secondly, note that there is exactly one

permutation of Sn with tail length n, namely the increasing permutation (1, 2, . . . , n−1, n).

Therefore, it is trivial that Tn(n) = 1. It is also trivial that Tn−1(n) = n, since the set

{F ∈ Sn : t(F) ≥ n− 1} is itself non-shattering and has size n.

We remark that Tk(A321(n)) = Tk(n) whenever k = n−1, n. However, if it is the case that

Tk(A321(n)) < Tk(n) for some k, then iterating the construction on a non-shattering family

F ⊆ Sn with Tk(F) = Tk(n) may, after a number of steps, lead to a non-shattering family

from SN which is larger thatA321(N) and therefore has more than CN permutations.

However, it may be the case that the largest non-shattering family of Sn really does have

size Cn. In particular, should it be the case that Tk(A321(n)) = Tk(n) for all values of k,

then there will be no counter-example found by iterating our construction. In this case,

it is valuable to have a wider range of non-shattering families with size Cn, not just the

six families of the form Aσ(n).

Recall that starting with some non-shattering F ⊆ Sn whose multiset of tail lengths

matches the multiset of tail lengths of A321(n), and repeatedly applying our construction

results in a non-shattering F ′ ⊆ SN with |F ′| = CN (see Lemma 5.5 and Example 5.6).

58

5. FAMILIES WHICH SHATTER NO TRIPLES

In particular, setting F to A132(n) or A231(n) produces non-shattering families distinct

from Aσ(N) but with the same size.

We are interested in finding such an F for n > 3. Due to the nature of the construction,

in F ′ the pattern (3, 2, 1) is forbidden for all triples with an element larger than n. We

would like to be able to choose the value of n which has a different pattern forbidden,

and to do this we must find a valid family F for arbitrary n. The next result does this, in

fact we find a family which not only has the same tail lengths as A321(n), but the same

tails.

Lemma 5.8. Let Fn ⊆ Sn be the non-shattering family which forbids the pattern (2, 3, 1)

for every triple containing n, and forbids (3, 2, 1) in all other cases. Then we have |Fn| =
Cn, and moreover, the multiset of tails of Fn is the same as the multiset of tails of A321(n).

Proof. Will will use induction on n. First note that the claim holds when n = 3.

F3 : (1, 2, 3) A321(3) : (1, 2, 3)

(1, 3, 2) (1, 3, 2)

(2, 1, 3) (2, 1, 3)

(3, 1, 2) (3, 1, 2)

(3, 2, 1) (2, 3, 1).

Assume that the statement holds for all values up to n− 1, we will show that it then also

holds for n. From our induction assumption we have that |Fn−1| = |A321(n−1)| and both

families have the same multiset of tails. Therefore there is a bijection from A321(n − 1)

to Fn−1 which preserves tails. Let g be such a function, then we have that g(P) and P

have the same tail whenever P ∈ A321(n− 1). To prove the statement holds for n we will

define a bijection f between A321(n) and Fn which also preserves tails.

First, for each x ∈ N we define a function hx which acts on segments of permutations of

any length, and increases by 1 the value of any element larger than x. More precisely, if

a1, . . . , am is a segment of a permutation from SM (where M > m) then we define

hx(a1, . . . , am) = b1, . . . , bm where bi =

ai when ai < x

ai + 1 when ai ≥ x.

We then also have the inverse, which acts on segments that do not contain the entry x,

formally let b1, . . . , bm be a segment of a permutation from SM where x ̸= bi for every

59

5. FAMILIES WHICH SHATTER NO TRIPLES

i ∈ [m], then define

h−1
x (b1, . . . , bm) = a1, . . . , am where ai =

bi when bi < x

bi − 1 when bi > x.

Now we will define the function f : A321(n) → Fn by the following, let P ∈ A321(n) and

f(P) =

P when P = (a1, . . . , an−2, n, n− 1)(
hn−1

(
g(P \ n)

)
\ x, n− 1, x

)
when P = (a1, . . . , an−2, n, x) x ̸= n− 1

P when P = (a1, . . . , an−1, n)(
hxt

(
g
(
h−1
xt
(P \ xt)

))
, xt

)
when P = (a1, . . . , ai, n, x1, . . . , xt).

Here we use the notation Q \ y where Q ∈ Sm and y ∈ [m] to mean the permutation of

the elements [m] \ {y} given by omitting y from Q.

First note that f is defined for every P ∈ A321(n). Indeed, let t(P) = t and note that P

must take one of the following forms

(a1, . . . , ai, n, x1, . . . , xt) or (a1, . . . , ai, x1, . . . , xt−1, n),

where x1 < · · · < xt. Since P ∈ A321(n) there can be no decreasing triples in P , therefore

everything to the right of n must be increasing. Then, either n is in the tail (and by

definition at the end) or the tail begins immediately after n.

Fist we will confirm that f is well defined and does indeed preserve tails, then we will

show that it is bijective. It is trivial that tails are preserved when f(P) = P .

When P = (a1, . . . , an−2, n, x) we have that the tail of P is just x, and that f(P) =

(hn−1(g(P \ n)) \ x, n− 1, x) which clearly also has tail x. Note that P \ n ∈ A321(n− 1),

then we are indeed able to apply g. Therefore f is well defined in this case.

When P = (a1, . . . , ai, n, x1, . . . , xt), we must have that x1 < · · · < xt and hence the

tail of P is x1, . . . , xt. By definition we have that f(P) = (hxt(g(h
−1
xt
(P \ xt))), xt). It

is plain that P \ xt does not contain the element xt and therefore h−1
xt
(P \ xt) is defined

and contains all the elements of [n − 1]. In fact (h−1
xt
(P \ xt)) ∈ A321(n − 1), otherwise

any decreasing triple (q, r, s) would appear as (hxt(q, r, s)) in P , (hxt(q, r, s)) can only

take the form (q + 1, r, s), (q + 1, r + 1, s), or (q + 1, r + 1, s + 1) all of which are also

decreasing. Moreover, (h−1
xt
(P \ xt)) has tail x1, . . . , xt−1, then g(h−1

xt
(P \ xt)) is defined

and also has tail x1, . . . , xt−1. Finally, (hxt(g(h
−1
xt
(P \ xt)))) must have tail x1, . . . , xt−1

too, since x1 < · · · < xt. Meaning that f(P) is well defined and has tail x1, . . . , xt.

60

5. FAMILIES WHICH SHATTER NO TRIPLES

It remains to check that f : A321(n) → Fn is bijective. First, let P,Q ∈ A321(n) and

suppose that f(P) = f(Q). We have seen that f preserves tails, so f(P) = f(Q) implies

that P and Q have the same tail. Suppose first that this tail is x1, . . . , xt−1, n, then we can

write P = (a1, . . . , ai, x1, . . . , xt−1, n) and Q = (b1, . . . , bi, x1, . . . , xt−1, n). Then, by the

definition of f we have f(P) = P and f(Q) = Q, hence P = Q. An analogous argument

applies when the tail of P and Q is just n− 1, so P = Q in this case too.

Now suppose that P and Q both have tail x where x ̸= n − 1, then we can write P =

(a1, . . . , an−2, n, x) and Q = (b1, . . . , bn−2, n, x). Observe that P \ n = (a1, . . . , an−2, x)

and Q \ n = (b1, . . . , bn−2, x), these may not have the same tail but both tails end in x.

Let g(P \ n) = R and g(Q \ n) = S, since g preserves tails we have that R and S both

have x as their final element.

The definition of f along with the fact that f(P) = f(Q) imply that hn−1(R) \ x =

hn−1(S) \ x. Since x < n− 1 and both R and S end in x, we must have that hn−1(R) and

hn−1(S) end in x, therefore if hn−1(R)\x = hn−1(S)\x we must have hn−1(R) = hn−1(S).

Since R, S ∈ Fn−1 ⊆ Sn−1, the contain the same elements and therefore we must have

R = S. This means g(P \n) = g(Q\n), and as g is bijective P \n = Q\n. Hence ai = bi

for all i ∈ [n− 2] and P = Q.

Suppose now that the tail of P and Q is x1, . . . , xt, then x1 < · · · < xt and we can write

P = (a1, . . . , ai, n, x1, . . . , xt) and Q = (b1, . . . , bi, n, x1, . . . , xt). Recall that (h−1
xt
(P \

xt)) ∈ A321(n − 1) and therefore R := g(h−1
xt
(P \ xt)) ∈ Fn−1 ⊆ Sn−1, similarly S :=

g(h−1
xt
(Q \ xt)) ∈ Sn−1. This means R and S contain the same elements.

From the definition of f and the fact that f(P) = f(Q), we have hxt(R) = hxt(S). Since

R and S contain the same elements this implies R = S, and as g is bijective we have

further that h−1
xt
(P \ xt) = h−1

xt
(Q \ xt). Then observe that

h−1
xt
(P \ xt) = h−1

xt
(a1, . . . , ai, n, x1, . . . , xt−1)

= h−1
xt
(a1, . . . , ai, n), x1, . . . , xt−1

since x1 < · · · < xt, and similarly for h−1
xt
(Q\xt). Therefore we must have h−1

xt
(a1, . . . , ai, n) =

h−1
xt
(b1, . . . , bi, n), again these are acting on the same elements and hence a1, . . . , ai, n =

b1, . . . , bi, n. This implies that P = Q. This means we have P = Q whenever f(P) = f(Q).

Finally, we show that for every Q ∈ Fn there is some P ∈ A321(n) such that f(P) = Q.

Let Q ∈ Fn and suppose first that Q has tail length one. Then Q must have one of the

following forms

(b1, . . . , bn−2, n, n− 1) or (b1, . . . , bi, n, bi+1, . . . , bk, n− 1, x).

61

5. FAMILIES WHICH SHATTER NO TRIPLES

Indeed, n cannot be the final element as it will always be larger than the element to its

left, meaning the tail length is at least two. Then we must have n − 1 to the right of n,

otherwise we will have a (2, 3, 1) pattern with n, n − 1, and anything to the right of n.

Finally, everything to the right of n − 1 must be increasing to avoid a decreasing triple

containing n − 1, since this will make the tail there can be at most one element to the

right of n− 1.

Note first that if Q = (b1, . . . , bn−2, n, n − 1), then Q ∈ A321(n) and f(Q) = Q. So

assume that Q = (b1, . . . , bi, n, bi+1, . . . , bk, n − 1, x) and consider h−1
n−1(Q \ n − 1) =

b1, . . . , bi, n − 1, bi+1, . . . , bk, x. We must have (h−1
n−1(Q \ n − 1)) ∈ Fn−1. Indeed, if

(r, n− 1, s) follows (2, 3, 1) in (h−1
n−1(Q\n− 1)), then (hn−1(r, n− 1, s)) = (r, n, s) appears

inQ and clearly still follows (2, 3, 1). Similarly, if (q, r, s) follows (3, 2, 1) in (h−1
n−1(Q\n−1))

with q, r, s < n− 1, then (hn−1(q, r, s)) = (q, r, s) appears in Q.

Since (b1, . . . , bi, n − 1, bi+1, . . . , bk, x) ∈ Fn−1 and g : A321(n − 1) → Fn−1 is a bijec-

tion, there exists a permutation R ∈ A321(n − 1) such that g(R) = (b1, . . . , bi, n −
1, bi+1, . . . , bk, x), moreover R ends with the element x since g preserves tails. Let P =

(R\x, n, x) and observe that P is simply R with the additional element n inserted between

the final two elements, it is plain that P ∈ A321(n). Observe

f(P) =
(
hn−1

(
g(P \ n)

)
\ x, n− 1, x

)
=
(
hn−1

(
g(R)

)
\ x, n− 1, x

)
=
(
hn−1

(
b1, . . . , bi, n− 1, bi+1, . . . , bk, x

)
\ x, n− 1, x

)
= (b1, . . . , bi, n, bi+1, . . . , bk, n− 1, x) = Q.

Now suppose that Q has tail length t, then it must take one of the following forms

(b1, . . . , bk, x1, . . . , xt−1, n) or (b1, . . . , bi, n, bi+1, . . . , bk, x1, . . . , xt),

where x1 < · · · < xt and b1, . . . , bi or bi+1, . . . , bk may be empty. We are not using any

properties of Q here, all permutations of Sn with tail length t must have the above forms

- either the tail contains n or it does not.

First note that if Q = (b1, . . . , bk, x1, . . . , xt−1, n) then Q ∈ A321(n) and f(Q) = Q.

Assume then that Q = (b1, . . . , bi, n, bi+1, . . . , bk, x1, . . . , xt) and consider h−1
xt
(Q \ xt).

Note that

h−1
xt
(Q \ xt) = h−1

xt
(b1, . . . , bi, n, bi+1, . . . , bk, x1, . . . , xt−1)

62

5. FAMILIES WHICH SHATTER NO TRIPLES

= h−1
xt
(b1, . . . , bi, n, bi+1, . . . , bk), x1, . . . , xt−1 =: S.

Since the tail of Q is x1, . . . , xt we must have that bk > x1, in particular we must also

have h−1
xt
(bk) > x1. Indeed, h

−1
xt
(bk) = bk if bk < xt, and if bk > xt then h−1

xt
(bk) = bk − 1 ≥

xt > x1. Therefore the tail of S is x1, . . . , xt−1.

Further note that S ∈ Fn−1. Indeed, if (r, n− 1, s) follows (2, 3, 1) in S, then (hxt(r, n−
1, s)) appears in Q. This can take only the forms (r, n, s), (r+ 1, n, s), or (r+ 1, n, s+ 1)

since n − 1 > r > s, each gives a triple containing n following (2, 3, 1) contradicting

Q ∈ Fn. Similarly, if (q, r, s) follows (3, 2, 1) in S with q, r, s < n − 1, then (hxt(q, r, s))

appears in Q. Again, this can only take the forms (q, r, s), (q+1, r, s), (q+1, r+1, s), or

(q + 1, r + 1, s+ 1) as q > r > s.

Having S ∈ Fn−1 implies there is an R ∈ A321(n − 1) such that g(R) = S and R has

tail x1, . . . , xt−1. Since R ∈ A321(n − 1), it must have the form R = (a1, . . . , ak, n −
1, x1, . . . , xt−1). Set P = (hxt(R), xt) = (hxt(a1, . . . , ak), n, x1, . . . , xt), and note that

P ∈ A321(n). Indeed, suppose (q, r, s) is found in P with q > r > s and xt /∈ {q, r, s},
then (h−1

xt
(q, r, s)) is found in R. This means ones of (q, r, s), (q− 1, r, s), (q− 1, r− 1, s),

or (q − 1, r − 1, s − 1) is in R, but all of these form a decreasing triple contradicting

R ∈ A321(n − 1). Suppose instead that (q, r, s) is found in P with q > r > s and

xt ∈ {q, r, s}, then since xt is the last element of P we must have s = xt. This means,

xt−1 /∈ {q, r, s} as q > r > xt > xt−1, and therefore (h−1
xt
(q, r), xt−1) is found in R. The

only forms (h−1
xt
(q, r), xt−1) can take are (q, r, xt−1),(q − 1, r, xt−1), (q − 1, r − 1, xt−1) all

of which are decreasing triples.

Since P = (hxt(R), xt) = (hxt(a1, . . . , ak), n, x1, . . . , xt) from the definition of f we have

that

f(P) =
(
hxt

(
g
(
h−1
xt
(P \ xt)

))
, xt

)
=
(
hxt

(
g
(
h−1
xt

(
hxt(R)

)))
, xt

)
=
(
hxt

(
g(R)

)
, xt

)
=
(
hxt

(
h−1
xt
(Q \ xt)

)
, xt

)
= (Q \ xt, xt) = (b1, . . . , bi, n, bi+1, . . . , bk, x1, . . . , xt−1, xt) = Q.

The above result, along with Lemma 5.5, gives the following.

63

5. FAMILIES WHICH SHATTER NO TRIPLES

Corollary 5.9. For any m ∈ [3, n], there is a non-shattering family F ⊆ Sn of size Cn

where each triple X ⊆ [n] avoids the pattern σ(X) given by

σ(X) =

(2, 3, 1) if max(X) = m

(3, 2, 1) otherwise.

This observation opens the question: How many forbidden patterns can a non-shattering

family from Sn have while still having size Cn?

We are able to find small cases with a large number of forbidden patterns, indeed the

following family from S4 is non-shattering and has size C4 = 14.

(2, 1, 3, 4) (1, 4, 2, 3) (2, 4, 1, 3) (4, 3, 1, 2) (2, 1, 4, 3) (1, 4, 3, 2) (4, 1, 3, 2)

(4, 1, 2, 3) (2, 3, 1, 4) (4, 2, 1, 3) (1, 3, 4, 2) (3, 1, 4, 2) (2, 4, 3, 1) (4, 2, 3, 1)

Here each triple avoids a different pattern, meaning four patterns are forbidden. This is

the maximum possible for a family on this many elements. Observe that

{1, 2, 3} avoids (3, 2, 1) {1, 2, 4} avoids (1, 2, 3)

{1, 3, 4} avoids (2, 3, 1) {2, 3, 4} avoids (2, 1, 3).

However, the multiset of tail lengths of the above is not the same as the tail lengths of

A321(4), and therefore using our construction on this family will produce a non-shattering

family smaller than Catalan size. In fact, the above family contains a high proportion of

short tailed permutations and is missing those with the longest tails. It is therefore still

an open problem to find a non-shattering family from Sn with size Cn and more than two

forbidden triple patterns when n is arbitrary. It is also open to find any Catalan sized

non-shattering family with more than four forbidden patterns regardless of n, although it

is plain that n > 4.

64

Chapter 6

Summary and open problems

We have investigated a problem of set theoretical origin expressed in terms of permu-

tations, thinking of a permutation as an ordering of a set of elements. We touched on

the differences between the two versions of the problem and how the permutation version

allows for some interesting variations on what it means to shatter a k-tuple. We intro-

duced two different relaxations of the problem, partial and fractional shattering, as well

as outlining the general behaviour of each.

We also saw a construction for a completely shattering family, which is the purest trans-

lation of shattering into the world of permutations. The study of this, in particular

constructions of such families, is an ongoing area of research in this topic. We were also

able to consider an inverted formulation of this problem, rather than a small family which

shatters everything we look for a large family which shatters nothing. Again we were able

to add new construction technique, which allows many different non-shattering families

to be generated with the same size as the conjectured extremal family.

In the course of our investigation into this topic we opened up many interesting open

problems and areas for further study which we will now discuss in more detail.

For the partial shattering variant, does the size of fk(n, t) always fall into one of the three

sizes as classified in Theorem 2.1 and 2.2? We know that there are values of t that put

fk(n, t) in each of these regimes, but is there another size bracket in between log log n and

log n? In particular we ask the following question.

Question 6.1. When k > 3, what is the value of fk(n, t) for k + 1 ≤ t ≤ 2(k − 1)!?

It is not difficult to see that when t is odd we can bound fk(n, t+1) ≤ 2fk(n, t) by taking

65

6. SUMMARY AND OPEN PROBLEMS

the family that realises fk(n, t) along with all its reverse permutations. This means that

for odd k we know fk(n, k + 1) is O(log log n). We also ask the following, slightly weaker

question.

Question 6.2. Is it true that fk(n, t) is one of three sizes Θ(log n), Θ(log log n), or

constant for all values of t?

We remark that in all the previous work on permutation shattering and in the literature,

the size of the smallest family which ‘shatters’ all k-tuples falls into one of these size

brackets. Here we use ‘shatters’ to mean any altered formulation of shattering, including

the original version, where some prescribed covering of orders is achieved. Examples of

this from this thesis are the partial shattering we are discussing, but also the families

where all k-tuples follow a fixed order. Recall Lemma 2.3 where we saw that a family

which covers the order R ∈ Sk for each k-tuple has size Θ(log n), unless R is monotone in

which case trivially the family size is constant. Examples from outside this thesis include,

but are not limited to, the original completely shattering problem and the problem of

Spencer [27] in which each element of the k-tuple must appear before the other k − 1 in

some permutation.

Moving on to fractional shattering, where α
(
n
k

)
k-tuples are completely shattered, we ask

the following.

Question 6.3. For fixed k and m, what is the limit of Fk(n,m) as n increases?

We saw that Fk(n,m) is decreasing, and by choosing m ≥ k! we know that the limit as n

increases exists and is strictly between 0 and 1. Progress on this question seems to require

a method which does not just rely on using fixed small n. It would be interesting to find

another method for finding upper bounds on Fk(n,m) using an alternative approach. The

first interesting case of Question 6.3 is the following.

Question 6.4. What is limn→∞ F3(n, 6)?

We saw in Chapter 3 that we can use perfect families to give lower bounds for Fk(n, k!).

Knowing more about when perfect families occur is not only useful for bounds on Frac-

tional Shattering, but is also interesting and worthwhile in its own right. We therefore

highlight the question below.

Question 6.5. For which values of n ≥ k does the perfect family Qk(n) exist? In partic-

66

6. SUMMARY AND OPEN PROBLEMS

ular, what is the largest value of n for which it exists?

We have seen that trivially the families Qk(k) = Sk exist, and also it is plain that they

exist whenever k = 2 since at most two permutations are required for any n. We also

saw in Section 1.4.1 that Levenshtein [18] showed that the families Qk(k + 1) exist. So

the question is answered in the positive whenever n = k, k + 1, however, Levenshtein

conjectured that in general no perfect family will exist when n > k + 1. A counter

example was found by Mathon and Van Trung [19] in that Q4(6) exists. In fact the

authors show that two non-equivalent such families exist, however this is the only known

counterexample. By a computer search it was found in [19] that Q4(7) does not exist.

See below the the two families realising Q4(6), firstly

(1, 2, 3, 4, 5, 6) (6, 1, 2, 5, 4, 3) (5, 1, 4, 6, 2, 3) (4, 1, 5, 2, 6, 3)

(1, 5, 3, 6, 2, 4) (1, 6, 3, 5, 4, 2) (1, 4, 3, 2, 6, 5) (5, 6, 4, 1, 3, 2)

(6, 5, 2, 1, 3, 4) (2, 1, 6, 4, 5, 3) (2, 4, 6, 1, 3, 5) (4, 2, 5, 1, 3, 6)

(2, 5, 6, 3, 1, 4) (2, 3, 6, 5, 4, 1) (5, 2, 4, 3, 1, 6) (6, 4, 2, 3, 1, 5)

(3, 5, 1, 2, 6, 4) (3, 6, 1, 4, 5, 2) (3, 4, 1, 6, 2, 5) (4, 6, 5, 3, 1, 2)

(3, 2, 1, 5, 4, 6) (6, 3, 2, 4, 5, 1) (5, 3, 4, 2, 6, 1) (4, 3, 5, 6, 2, 1).

Secondly,

(1, 2, 3, 4, 5, 6) (6, 1, 2, 5, 4, 3) (1, 5, 3, 2, 6, 4) (3, 4, 1, 2, 6, 5)

(1, 6, 3, 5, 4, 2) (6, 3, 2, 4, 5, 1) (4, 3, 5, 2, 6, 1) (5, 1, 4, 2, 6, 3)

(2, 1, 6, 4, 5, 3) (1, 4, 3, 6, 2, 5) (5, 3, 4, 6, 2, 1) (4, 3, 5, 2, 6, 1)

(2, 3, 6, 5, 4, 1) (4, 1, 5, 6, 2, 3) (3, 5, 1, 6, 2, 4) (1, 5, 3, 2, 6, 4)

(3, 2, 1, 5, 4, 6) (5, 1, 4, 2, 6, 3) (4, 1, 5, 6, 2, 3) (3, 5, 1, 6, 2, 4)

(3, 6, 1, 4, 5, 2) (3, 4, 1, 2, 6, 5) (1, 4, 3, 6, 2, 5) (5, 3, 4, 6, 2, 1).

In general it is possible to get a non-existence result by application of the Erdős-Szekeres

Theorem, meaning we know there is no perfect family whenever n > k4. However, this is

weak and clearly far from the conjectured bound.

In Chapter 4 we saw a construction of a completely shattering family. As discussed in the

chapter, this construction offers a small shattering family but does not match the best

known size of such a family, which is O(log n). No known construction offers this value,

and so it is an open problem to find one.

Question 6.6. Is there a construction which shows fk(n) = O(log n)?

Finally, there are a number of interesting questions pertaining to the VC-dimension and

non-shattering families. Firstly, we saw a way of constructing non-shattering families

67

6. SUMMARY AND OPEN PROBLEMS

which have size Cn = 1
n+1

(
2n
n

)
, but are not equal to Aσ for any pattern σ ∈ S3. In their

paper [23], Raz conjectures that Aσ is the largest non-shattering family for any n. If

this is the case, then using our construction gives lots of examples of maximumly sized

non-shattering families which are non-equivalent. Since there are so many of these non-

shattering families with size Cn, it might suggest that this is not in fact the extremal

solution.

Question 6.7. Is there a non-shattering family F ⊆ Sn with |F| > Cn?

As an intermediate step for Question 6.7, we noted the relationship between our con-

struction and the tail lengths of the initial family. In particular, the convex nature of

the number of permutations supplied by a given starting permutation after k iterations

of the construction. This observation suggest that our construction could, after enough

iterations, produce a non-shattering family with size larger than Cn, as only as some

properties about the tails in the original family are satisfied. This motivates the following

question.

Question 6.8. How large can Tk(F) be for a non-shattering family F?

In Chapter 5 we also discussed the number of different patterns of S3 that can be avoided

by at least one triple of [n] in a non-shattering family of size Cn. Corollary 5.9 tells us

that we can find a non-shattering family of Catalan size which forbids two patterns of S3

and where we have a certain degree of choice over which triples avoid which pattern. We

also saw an example of a non-shattering family of S4 which has four forbidden patterns

and has size C4, but this could not be extended to family on larger n. This gives us the

following open questions.

Question 6.9. For any n, is there a non-shattering family of Sn with size Cn that avoids

5 or 6 patterns of S3?

Question 6.10. How many distinct patterns of S3 can be avoided by a non-shattering

family of Sn which has size Cn?

68

Part II

Separating

69

Chapter 7

Introduction

7.1 Background and definitions

The study of separation problems was initiated by Rényi in the 1960s [24]. The problem

is to find a minimal family F of subsets of ground set [n] = {1, 2, . . . , n}, so that for every

ordered pair of distinct x, y ∈ [n] there is some F ∈ F with either x ∈ F and y /∈ F , or

y ∈ F and x /∈ F .

It is trivial that in this case |F| = ⌈log2(n)⌉. However, by applying some structure to our

ground set or various restrictions to the members of F , the question opens up to be an

interesting problem. One particularly interesting way of doing this is to have the ground

set be vertices or edges of a graph, and the separators inherit certain properties from the

graph (see [2], [3], [4], [6], [7], [10], [11], [17]).

Here we will focus on separation in the context of a ground set of graph edges, and

where all separators are restricted to being paths on these edges. Problems with such a

focus were introduced by Balogh, Csaba, Martin, and Pluhár [3] as well as Falgas-Ravry,

Kittipassorn, Korándi, Letzter, and Narayanan [10]. We begin by outlining exactly what

we mean to separate a graph by paths.

Definition 7.1. Let G be a graph and e, e′ ∈ E(G), and let P ⊆ E(G). We say that P

separates e and e′ if we have e ∈ P and e′ /∈ P , or e′ ∈ P and e /∈ P . Let S be a family

of subsets of E(G) such that for any distinct edges e, e′ ∈ E(G) there is some P ∈ S
which separates e and e′, then we say that S is a separating system for G. If we also

have the condition that every element of S is a path in G, then we call S a separating

path system of G.

70

7.1. BACKGROUND AND DEFINITIONS

Example 7.2. Here the base graph G is shown in black, together the three coloured

paths form a separating path system of G.

1

2

34

5
5, 1, 2, 3

1, 5, 4, 3, 2

4, 3, 2, 5

The definition naturally leads to questions about the size of the set S. We will use the

notation f(G) to mean the size of the smallest path separating system for a graph G. It

is immediate that E(G) is itself a separating path system where all the paths consist of

a single edge. So in particular we get the bound f(G) ≤ |E(G)|. We can also ‘forget’ the

structure of the paths and consider this separating problem in a purely set theoretical way,

giving us the lower bound f(G) ≥ log2(|E(G)|) as discussed earlier for the set case.

There are several key observations from the definition that highlight the structure of small

separating path systems. Let S be a separating path system for a graph G. Firstly, there

can be no more than one edge that is not found in any P ∈ S. This means our family

of paths must cover all but one of the edges of G. Looking at Example 7.2 we see that

the edge (2, 4) is not covered by the system, yet it is separated from each other edge by

a path which covers the other.

Secondly, at most one edge in G can appear in every path of S. If not, say e, f ∈ P for

all P ∈ S, then there is clearly no P that separates e and f , therefore S cannot be a

separating path system for G. Again in Example 7.2 the edge (2, 3) is the only one to

appear in every path.

Finally, looking at some path P in S, if any two edges appear exclusively in P then they

cannot be separated by S. Hence, for any path in S there is at most one unique edge,

that is, at most one edge which does not appear in any other path. Note in Example 7.2

the edges (1, 2), (4, 5), and (5, 2) are unique to their paths.

71

7.2. WEAK SEPARATION AND STRONG SEPARATION

7.2 Weak separation and strong separation

In the literature, two different varieties of separating system exist, we have defined above

what is sometimes known as ‘weak separation’. The case where we have all pairs x, y

separated by two separators in an identical way is referred to as ‘strong separation’.

Equivalently, unordered distinct x, y ∈ [n] are strongly separated by F⋆ if there exists

F, F ′ ∈ F⋆ with x ∈ F , y /∈ F and y ∈ F ′, x /∈ F ′. For paths this gives us the

following.

Definition 7.3. Let G be a graph and e, e′ ∈ E(G), and let P, P ′ ⊆ E(G). We say that P

and P ′ strongly separate e and e′ if we have e ∈ P and e′ /∈ P , and e′ ∈ P ′ and e /∈ P ′.

Let S⋆ be a family of subsets of E(G) such that for any distinct edges e, e′ ∈ E(G) there

exists P, P ′ ∈ S⋆ which separate e and e′, then we say that S⋆ is a strongly separating

system for G. If we also have the condition that every element of S⋆ is a path in G, then

we call S⋆ a strongly separating path system of G.

It is plain that a strong separating system is also a weak separating system, and therefore

any constructions or upper bounds for the strong variant provide bounds for the weak

formulation of the problem. We denote the smallest size of a strongly separating path

system of a graph G by f ′(G), so we have that f(G) ≤ f ′(G).

To consider the differences between the two problems, we will go back to the basic set

setting first. Let F = {F1, F2, . . . , Fk} be a family of subsets of [n] which (weakly)

separates all pairs in [n]. We can assign to each element of [n] a k-tuple which encodes

which sets from F contain it. Consider x ∈ [n], let x be represented by the vector

(x1, x2, . . . , xk) where xi = 1 if x ∈ Fi and otherwise xi = 0. Then the necessary and

sufficient condition for F to be a (weakly) separating system for [n] is that each x ∈ [n]

is assigned a unique vector. Indeed, if any pair of elements are assigned the same vector

then they agree on their inclusion or exclusion of all the sets in F and are therefore not

separated. We conclude that n ≤ 2k since there are at most 2k distinct binary k length

vectors. This gives us the bound

|F| = k ≥ log n.

Now consider the strong version, let F⋆ = {F1, F2, . . . , Fk} be a family of subsets of [n]

which strongly separates all pairs in [n]. It is no longer enough that each element receives

a unique vector encoding the inclusions. Instead, for any pair x, y ∈ [n] we must have

72

7.3. PREVIOUS RESULTS

that {i : xi = 1} ̸⊆ {i : yi = 1} and {i : yi = 1} ̸⊆ {i : xi = 1}. To bound the size of this

we can directly apply a result of Chung, Graham and Winkler [8], Lemma 1.10.

More precisely, if Ax = {i : x ∈ Fi} then A1, . . . , An must be an antichain of subsets from

[k]. Therefore, n is restricted by the size of the largest antichain of [k]. By Sperner’s

Theorem, the size of the largest antichain is
(

k
⌊ k
2
⌋

)
and therefore the necessary condition

for F⋆ to be a strong separating system is
(

k
⌊ k
2
⌋

)
≥ n.

Using a well known lower bound from Stirling’s formula we have that

|F⋆| = k ≥ log n+ log log n.

In both cases these bounds are attainable and therefore give the smallest possible size of

a separating system.

Clearly, the two problems are very similar, and there is no great discrepancy between

the sizes of the smallest separating systems for the two versions. It is more natural to

consider the weak version in this setting, where one classification covers one object and

not the other thereby setting them apart. In this thesis we will keep in line with the

set-separating inspiration and focus on the weak version.

However, we should note that for separating path systems the two versions of the problem

do have some more significant differences. Most of these differences affect the way certain

techniques or constructions work, meaning that many techniques that work well for the

weak problem do not work as efficiently in the strong variation. Crucially the impact and

importance of covering edges varies between the two. The occurrence of uncovered edges

and path-unique edges cannot happen in a strong system. We will touch more on the

impact of this when we see the techniques later.

7.3 Previous results

There are many ways to give the ground set or separators additional structure. For

instance, staying within set theory, restricting the size of the separating sets (see [13],

[16], [22], [30]). There are also examples of graph structure being imposed on separating

systems that do not take the form of the separating path systems we have defined. In

particular we could set up an analogous system with vertices being separated rather

than edges, or use some sub-graph which is not a path as the separator (see [2], [4], [7],

[11]).

73

7.3. PREVIOUS RESULTS

The first to formulate the problem in terms of graph edges and separating paths were

Falgas-Ravry, Kittipassorn, Korándi, Letzter, and Narayanan [10] and independently at

the same time Balogh, Csaba, Martin, and Pluhár [3]. The authors of [10] focus on the

weak variant of separation, while the paper [3] investigates strong separation.

In [10] the authors find bounds on f(G) for a selection of graphs G including trees and

certain random graphs. For a tree T, they show the following.

Theorem 7.4 (Falgas-Ravry, Kittipassorn, Korándi, Letzter, and Narayanan [10]). Let

T be a tree on n ≥ 4 vertices. Then⌈
n+ 1

3

⌉
≤ f(T) ≤

⌊
2(n− 1)

3

⌋
.

Furthermore, these bounds are best possible.

The extremal tree for the upper bound is the star of order n, which is simply a vertex with

n− 1 neighbours and no other edges. The longest possible path in the star has length 2,

and each path of a separating path system contains an edge that must appear in another

path in the system. We can cover and separate any three edges of a star from all edges

by taking two paths which share exactly one edge. A separating path system can then

be made by partitioning the edges of the star into triples and for each triple covering and

separating them in two paths.

The extremal tree for the lower bound is the ‘hair comb’ of order 3n. This graph is made

up of an n− 1 length path for the ‘spine’ of the comb, and from each vertex of the spine

there is a ‘tooth’ which is path of length 2. A separating path system for this tree consists

of n− 1 equivalent paths of length 4, each containing two edges from a single tooth, one

spine edge, and one edge from the next tooth. Plus a further two paths, one consisting of

the spine edges and nothing else, the other containing a further edge from the first tooth

and another from the last.

The other results of [10] work towards answering a very nice conjecture made by Falgas-

Ravry, Kittipassorn, Korándi, Letzter, and Narayanan in the same paper.

Conjecture 7.5 (Falgas-Ravry, Kittipassorn, Korándi, Letzter, and Narayanan [10]).

There exists and absolute constant C such that, for every graph G on n vertices, f(G) ≤
Cn.

They prove that the conjecture holds for graphs with linear minimum degree as well as

random graphs. The strategy for proving these graphs have a separating path system of

74

7.3. PREVIOUS RESULTS

linear size involves partitioning the edges of G between two subgraphs G1 and G2. We

then take a path decomposition of G1, and find a decomposition into matchings where

no two edges from the same path are in the same matching. The matching can then be

extended into a path in G using edges from G2. The process is then done with G1 and

G2 swapped, giving a separating path system of G.

The authors in fact suggest that the value of C could in fact be arbitrarily close to 1.

There is no graph known to have f(G) > n, and the best known methods yield a lower

bound of f(G) ≥ n− 1

The strong version of the problem was introduced at the same time by Balogh, Csaba,

Martin, and Pluhár in [3]. In this paper the authors also work towards identifying the size

of the smallest (strongly) separating path system for various classes of graph including

trees, complete graphs, hypercubes, and random graphs.

In [3] the value of f ′(T) for a tree T is given directly for T based on the vertex degrees

within the graph, rather than bounds for all trees given by Theorem 7.4 in [10].

Theorem 7.6 (Balogh, Csaba, Martin, and Pluhár [3]). Let F be a forest with vi vertices

of degree i, and p path-components. Then f ′(F) = v1 + v2 − p.

This puts the smallest possible size of a strongly separating path system for a tree T on

n vertices at f ′(T) = ⌈n
2
⌉ + 1. This is achieved when T only has vertices with degree 1

or 3, unless n is odd in which case there is also a single vertex of degree 2 or 4. On the

other hand, f ′(T) can be as large as n − 1. Just as in the weak case (Theorem 7.4) the

extremal example for this largest case is again the star on n vertices. The difference here

is that for each path in the star, there are at most two edges and both must appear in a

further path of the separating system. Therefore simply taking each path to be a single

edge is the most efficient.

Interestingly, the authors of [3] also conjecture that the every graph on n vertices admits

a (strongly) separating path system with size O(n). Meaning that although the problems

exhibit different behaviours (as seen by the difference between Theorems 7.4 and 7.6)

overall the values of f(G) and f ′(G) have the same order of magnitude.

Conjecture 7.7 (Balogh, Csaba, Martin, and Pluhár [3]). There exists a constant C

such that, for every positive integer n and for every graph G on n vertices, f ′(G) ≤ Cn.

The authors of [3] prove that Conjecture 7.7 holds for complete graphs, hypercubes, and

75

7.3. PREVIOUS RESULTS

random graphs by providing upper bounds in these cases. They use a range of probabilistic

and entropy arguments to achieve these bounds. In particular we highlight the bound on

the complete graph, since this is the only previous work towards separating path systems

of the complete graph which we will see in Chapter 8.

Theorem 7.8 (Balogh, Csaba, Martin, and Pluhár [3]). For n ≥ 10 we have f ′(Kn) ≤
4⌈n

2
⌉+ 2 ≤ 2n+ 4.

Both of the papers [10] and [3] state that the best known upper bound for f(G) or f ′(G)

when G is any n vertex graph is O(n log n). This can be seen easily using set separation

of trivial size (log(|E(G)|)) and path decompositions of size n. Neither paper make any

improvement to this general bound beyond providing improved bounds for a range of

graphs G. More recently, Letzter further developed the methods of [10] to provide an

improved general upper bound. In [17], Letzter shows the following.

Theorem 7.9 (Letzter [17]). Let G be an n vertex graph, then f ′(G) = O(n log⋆ n).

Where log⋆ n is the minimum number of times the logarithm must be applied iteratively,

in order to get a result less than 1.

Shortly after, a further improvement was given by Bonamy, Botler, Dross, Naia, and

Skokan in [6]. This breakthrough construction proves Conjectures 7.5 and 7.7 with a

constant of C = 19.

Theorem 7.10 (Bonamy, Botler, Dross, Naia, and Skokan [6]). Every graph on n vertices

has a strongly separating path system of size 19n.

This construction makes use of Pósa rotation–extension and induction techniques. A key

part of the proof is being able to partition the edges of G, using Pósa rotation–extension

to get a class of edges which are suited to being covered efficiently by a clever path system,

and using induction on the remaining part.

Finally, the most recent work on this problem can be found in [2], where Arrepol, Asenjo,

Astete, Cartes, Gajardo, Henŕıquez, Opazo, Sanhueza-Matamala, and Thraves Caro pro-

vide further bounds for trees in the weak setting. They prove a result which directly

gives the size of f(T) based on the number of 1 and 2 degree vertices, similar to Theorem

7.6.

Theorem 7.11 (Arrepol, Asenjo, Astete, Cartes, Gajardo, Henŕıquez, Opazo, Sanhueza-

76

7.4. STRUCTURE OF PART II

-Matamala, and Thraves Caro [2]). Let T a be the binary tree of depth 2, then f(T a) = 4.

Let T ̸= T a be a tree with vi vertices of degree i, then

f(T) = max

{⌈
2v1 + v2

3

⌉
,

⌈
v1 + v2

2

⌉}
.

The authors also investigate trees in the analogous problem of vertex separation, where

the aim is that every pair of vertices of the graph is separated by a path which contains

one vertex and not the other. They provide a similar result in this case.

7.4 Structure of Part II

The remainder of Part II will be structured as follows. Each chapter will be concerned

with finding bounds for f(G) for a particular graph G. Chapter 8 will focus on the the

complete graph on n verticesG = Kn, Chapter 9 will consider the complete bipartite graph

G = Kn,n, and finally Chapter 10 will focus on graphs with lattice structure - primarily

ladders and grids. We finish with some open problems and directions for further study in

Chapter 11.

Chapter 8 will begin by formalising the problem and showing the lower bound given in

[10]. We then move on to the upper bound in Section 8.2, first focusing on construction

methods which utilise the symmetric nature of Kn in order to improve the upper bound

of [3] (Theorem 7.8).

A key tool for our methods is the notion of generator paths, a special path in Kn with

nice properties that allow us to create a separating path system by taking only rotated

copies of the generator. We formally define this in Section 8.2 and show that they exist

for small values of n. We show that existence of such a path gives rise to a separating path

system of size n. In Section 8.3 we show that these paths exist whenever n is prime, and

therefore a separating path system of Kn with size n exists when n is prime. Moreover,

we show that a separating path system of Kn with size n exists whenever n = p + 1 for

all odd primes p.

Our generalised upper bound given in Section 8.4 comes from constructing an approximate

version of this special generator path, and correcting any problems with a small number

of additional paths. The bulk of the work is in finding this approximation path, which is

the content of Section 8.5.

We finish this chapter with some discussion about the methods and potential extensions

we considered. This is the content of Section 8.6.

77

7.4. STRUCTURE OF PART II

In Chapter 9 we consider additional uses of generator paths, in particular how they relate

to the complete bipartite graph. We first consider the lower bound of f(Kn,n) in before

moving on to provide an upper bound which shows a separating path system of Kn,n

with size smaller than 2n exists. This shows that in the weak setting, complete graphs

are ‘worse’ than complete bipartite graphs in terms of efficient separating families of

paths.

Finally, in Chapter 10 we consider the other extreme of the problem. Graphs which admit

a separating path system with the smallest possible order of magnitude. We have already

seen that in set theoretic terms with no structure on the separators or ground set, a

separating system must have size at least log n where n is the size of the ground set. We

look at constructions for separating path systems on certain graphs which have size very

close to this log |E(G)| value.

78

Chapter 8

Complete graphs

In [10] the authors find bounds on f(G) for a selection of graphs G including trees and

certain random graphs. They also ask about the case where G is the complete graph on n

vertices, that is to determine the exact value of f(Kn). The current best known bounds

are

n− 1 ≤ f(Kn) ≤ 2n+ 4.

The lower bound is a simple counting argument found in [10], and the upper bound

here is from Theorem 7.8. The upper bound is given by a probabilistic argument and

is actually an upper bound on the strong version of the problem. So there is a strongly

separating path system for Kn with size at most 2n+4. However, there has been no other

work towards an upper bound for the complete graph for either variation of the problem.

Currently there are no results, or works toward a result, for the complete graph based in

the weak setting.

In this chapter we will consider separating path systems on complete graphs. This class

of graphs is a natural case to consider for this problem. Firstly, not that much is known

about the problem for complete graphs beyond two very simple arguments giving the

above bounds. Given that complete graphs are a very well studied and often interesting

class of graphs it is very natural to want to explore this case deeper.

Secondly, it is unclear at first glance whether complete graphs should be efficient or not in

terms of the size of a separating path system. On one hand, there are many more edges for

the number of vertices when compared to other graphs, from a counting standpoint this

could indicate that complete graphs might require a large number of paths to separate

its edges. On the other hand, every possible path between vertices is available to use,

there are no limits at all on where the paths can go or how long/short they must be. This

79

8.1. LOWER BOUND

flexibility might imply that we are able to choose paths very cleverly and optimally in

order to form a small separating path system.

8.1 Lower bound

As discussed, a firm lower bound is the set theoretic minimum of log2
(
n
2

)
. Currently, the

best method for getting lower bounds is to use relatively simple counting arguments. We

will only be able to make use of one property from the restriction that our separators

must be paths, which is the number of edges that a path may have.

Recall the simple observations about separating path systems made in the introduction.

In particular the fact that there is at most one edge of the base graph that may be left out

of all paths, and the fact that each path has up to one unique edge. We will use these to

form an argument giving the lower bound, the authors of [10] use an equivalent method

to give this bound. This version is slightly more expanded in order to demonstrate the

properties small separating path systems should have.

Lemma 8.1 (Falgas-Ravry, Kittipassorn, Korándi, Letzter, and Narayanan [10]). For

the complete graph on n vertices, the minimum size of a path separating system is at least

n− 1. That is, f(Kn) ≥ n− 1.

Proof. Let n ∈ N and suppose for a contradiction that S is a separating path system for

Kn such that |S| ≤ n− 2.

Each P ∈ S has at most 1 unique edge, therefore at most n−2 edges of Kn appear exactly

once in S. Recall that there is at most 1 edge that appears exactly 0 times in S. We use

this to count the number of edges that appear at least twice in S, the number of such

edges is at least (
n

2

)
− (n− 2)− 1 =

1

2
(n− 2)(n− 1).

On the other hand, as the maximum length of any P ∈ S is n− 1, we have that the total

number of edges used (with multiplicity) is at most (n− 1)(n− 2). The number of edges

in Kn appearing in S is at least
(
n
2

)
− 1. We can count the edges that appear twice using

these values, this is at most

(n− 2)(n− 1)−
((

n

2

)
− 1

)
=

1

2
(n− 2)(n− 3).

This is a contradiction since S cannot satisfy both conditions, hence f(Kn) ≥ n− 1.

80

8.2. SYMMETRIES AND GENERATOR PATHS

This proof demonstrates the importance of long paths in separating systems. To get an

upper bound matching this lower bound of n − 1, we must construct families with full

length paths. In fact any separating path system for Kn with size n − 1 must have the

following properties:

• Each path has length n− 1,

• Every path in the system has one unique edge,

• All other edges appear in exactly two paths.

With this in mind it is easy to construct separating path systems of size n − 1 by hand

for small values of n, showing this lower bound is tight for small n.

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Figure 8.1: Example of a separating path system of size n− 1

It should also be noted that the only property of paths used in the proof of Lemma 8.1

is the fact that a path contains at most n − 1 edges. Since this is true of many graphs

it can be used in other separation contexts. For example, any tree which is a subgraph

of Kn has at most n− 1 edges, so this lower bound holds for trees in general. In fact, by

taking a family of n − 1 stars, each centred around a different vertex of Kn, we create a

separating tree system for Kn of size exactly n− 1. So the lower bound of n− 1 is tight

for separating tree systems.

8.2 Symmetries and generator paths

Thinking of the vertices of Kn as vertices of a regular polygon, we may take any path P

and create a new path P ′ by rotating each edge of P one vertex clockwise. In this way

we can find n paths that are isomorphic copies of each other. If our initial path P has

some carefully chosen properties forcing each rotation to share exactly one edge with P ,

81

8.2. SYMMETRIES AND GENERATOR PATHS

then we may have a family of separating paths generated by a single path. This reduces

the problem to looking for one path rather than a whole system of paths. We need to

be careful when choosing our path so that the rotations overlap each other in the right

way.

To set it up, label the vertices 1, . . . , n and arrange them clockwise on a regular polygon.

It is helpful to think of our edges by the distance they travel rather than endpoints here.

We call an edge at vertex v an x-type edge if its other endpoint is v+x for 1 ≤ x ≤ ⌊n
2
⌋,

where all calculations are done modulo n. Note that there are precisely n edges in Kn

that have type x for 1 ≤ x < n
2
, and in the case where n is even there are precisely n

2

edges that have type n
2
.

1

2

34

5

P

P ′

Figure 8.2: Rotations inK5

In Figure 8.2 we have an example of a path P = (4, 1, 2, 5)

in K5. This path contains two 2-type edges, at vertices 4

and 5, and one 1-type edge at vertex 1. Consider the path

P ′ = (5, 2, 3, 1), it also contains two 2-type edges, this time

at vertices 5 and 1, and one 1-type edge at vertex 2. This

new path is simply P rotated once clockwise. Note that the

edge types appear in the same order and at the same distance

from each other, this is because edge type is unchanged by

rotation. If we take the family consisting of all 5 rotations

of P , we get a separating path system for K5.

Naturally we wish to pin down the properties a path must have in order to generate a

separating path system entirely on its own. But first we clarify some terminology and

notation. For any x-type edge e = (v, v + x) we call v the starting vertex of e. Note

that every edge has a unique starting vertex unless it is of type n
2
, in which case either

endpoint can be considered as the starting vertex. We define the clockwise distance

(on Kn) between vertices v and u to be the value min(|v − u|, n − |v − u|) and write

cd(v, u) for this. Similarly, we say the clockwise distance (on Kn) between two edges

e and e′ to mean the clockwise distance between the starting vertices of e and e′ and we

write cd(e, e′) for this value. In particular, if e = (v, v + x) has type x and e′ = (u, u+ y)

has type y, then cd(e, e′) = cd(v, u) = min(|v − u|, n− |v − u|).

Firstly, note that if any x-type edge is included in P , then all n x-type edges of Kn appear

among the n rotations of P . Similarly, if there are no edges of type x in P , then none of

the rotations of P will contain an x-type edge and therefore none of the n x-type edges

of Kn will be covered by the family of rotations of P . We are permitted a single edge

82

8.2. SYMMETRIES AND GENERATOR PATHS

of Kn to stay uncovered by the family, but clearly this cannot happen in a family of n

rotations of a single path, therefore we must cover all the edges of Kn with our rotations.

This means that there must be at least one edge of each of the ⌊n
2
⌋ types in P .

It quickly becomes obvious at this point that we have to treat Kn differently depending

on whether n is odd or even. If n is even then we have that an n
2
-type edge at any vertex

v is the same as an n
2
-type edge at v + n

2
. This, along with some other properties of even

n, means more care is required when dealing with even n and the two cases will have

slightly different properties for the path P .

Now, we want the edges of our path to be separated from each other by the family of

rotations, and recall that at most one edge can be unique to P . Therefore, we need all

edges (except at most one) in the original path P to appear separately in the subsequent

rotations. Note that if there is exactly one edge of type x in P , then this edge is unique

to P and in turn each rotation of P has a unique x-type edge. Clearly then we require

that at most one edge type appears exactly once in P , the remaining types must all have

at least two edges in P .

The last thing to ensure is that no two edges in P appear together later on in a different

rotation, otherwise they will not be separated. This means if some rotation Pr of P covers

two edges of P we have a problem. In terms of edge types, we need to look at the pairs

of edges in P with the same type. So in order to avoid this double copying we must have

that the distance between two edges of type x must not appear at the same clockwise

distance as two edges of type y in P .

These are the necessary conditions for the family of rotations of P to be a separating

path system of Kn. We formalise these below (with a few more conditions for ease) in

the definition of a generator path.

Definition 8.2. A path P on the complete graph Kn is called a generator path for n

if it satisfies the following conditions. For odd n:

(GP1) P contains at least one edge of each of the n−1
2

types.

(GP2) There is at most one edge type that appears exactly once, and there are no edge types

that appear more than twice in P .

(GP3) Let e and e′ be x-type edges in P , and let cd(e, e′) = d. If there are two other edges

h, h′ ∈ P , such that both have type y ̸= x, then cd(h, h′) ̸= d.

For even n:

83

8.2. SYMMETRIES AND GENERATOR PATHS

(GP1) P contains at least one edge of each of the n
2
types.

(GP2) There is at most one edge type from [n
2
− 1] that appears exactly once, and there are

no edge types that appear more than twice in P .

(GP3) Let e and e′ be x-type edges in P , and let cd(e, e′) = d. If there are two other edges

h, h′ ∈ P , such that both have type y ̸= x, then cd(h, h′) ̸= d. Additionally, no pair

of edges in P with the same type are at distance n
2
.

Example 8.3. Consider K7, and the paths P = (1, 3, 4, 2, 5, 6) and Q = (1, 2, 7, 3, 5, 4).

Let P be the family of rotations of P , and similarly Q the rotations of Q.

1

2

3

45

6

7

P

1

2

3

45

6

7

Q

P is a generator path for K7, it has two 1-type edges (3, 4) and (5, 6), two 2-type edges

(1, 3) and (2, 4), and a single 3-type edge (2, 5). The clockwise distance between 1-type

edges is 2 and the distance between 2-types is 1. The edge (2, 5) is unique to P in the

system P , and similarly all the 3-type edges will be unique in their paths. P is a separating

path system of K7.

Like P , Q has two 1-type edges (1, 2) and (5, 4), two 2-type edges (2, 7) and (3, 5), and a

single 3-type edge (7, 3). However, Q is not a generator path since the clockwise distance

between the 1-type edges and the distance between the 2-type edges is 3 in both cases,

thereby not obeying (GP3). Let Qi = (1 + i, 2 + i, 7 + i, 3 + i, 5 + i, 4 + i) be the ith

clockwise rotation of Q (so Q = Q0), and observe that the edges (5, 4) and (3, 5) both

appear in Q3. Since (5, 4) and (3, 5) only appear in two rotations of Q, Q0 and Q3, it is

clear that they are not separated by Q. Therefore Q is not a separating path system of

K7.

Now consider an even case, the graph K8. This time let P = (1, 4, 3, 5, 6, 2, 8) and

Q = (1, 2, 7, 5, 6, 4, 8), and again let P be the family of rotations of P and similarly Q for

Q.

84

8.2. SYMMETRIES AND GENERATOR PATHS

1

2

3

4

5

6

7

8

P

1

2

3

4

5

6

7

8

Q

In this example we can see why even values of n are slightly more complex. P is a

generator path with two 1-type edges (3, 4) and (5, 6), two 2-type edges (8, 2) and (3, 5),

one 3-type edge (1, 4), and 4-type edge (2, 6). The edge (1, 4) is unique to P in P since

there is only one edge of this type and the type is not n
2
. Since n = 8 is even we have that

the 4-type edge (2, 6) will appear in the path P4 = (1+4, 4+4, 3+4, 5+4, 6+4, 2+4, 8+4)

despite there only being one 4-type edge in P . We can think of the distance between the

4-type edges in P as being 4 since both vertices of (2, 6) are starting vertices. Then the

distance between the pairs of edges with the same type are all distinct, 1-types at distance

2, 3-types at distance 2, 4-types at distance 4. P is a separating path system for K8.

Q has two 1-type edges (1, 2) and (5, 6), two 2-type edges (4, 6) and (5, 7), one 3-type

edge (7, 2), and 4-type edge (4, 8). But the distances between the 1-type edges is n
2
= 4,

therefore Q is not a generator path for failing (GP3). Note that the edges (5, 6) and (4, 8)

both appear in the path Q4 = (1 + 4, 2 + 4, 7 + 4, 5 + 4, 6 + 4, 4 + 4, 8 + 4) and do not

appear in any other path of Q. Hence, Q is not a separating path system of K8.

We will now see formally that taking the family of rotations of a generator path will

always give a separating path system.

Theorem 8.4. If P is a generator path for n, then the family of all n rotations of P is

a separating path system for Kn. Hence, if such a path P exists then f(Kn) ≤ n.

Proof. Let P be a generator path for n, and S be the family generated by taking all the

rotations of P . In particular, let P = P0 and Pi = {(u + i, v + i) : (u, v) ∈ P} be the

path generated by rotating P clockwise by i. Since P is a path in Kn we have that every

Pi ∈ S is a path in Kn. It is left only to show that every pair of edges in Kn is separated

by some path in S.

Consider edges e = (v, v+ x) and e′ = (v′, v′ + y) in Kn, where e is an x-type edge and e′

85

8.2. SYMMETRIES AND GENERATOR PATHS

is a y-type edge.

By (GP1), P contains at least one edge of type x, therefore there is some i ∈ [0, n − 1]

such that e ∈ Pi. If e
′ /∈ Pi then the edges are separated by Pi, so assume otherwise.

Suppose first that y = x. Let cd(e, e′) = d, without loss of generality we can assume

that v′ = v + d. Consider the path Pi+d, where calculations are modulo n, we must have

e′ ∈ Pi+d. Note that v′ + d = v + 2d ̸= v. Indeed, this is only true when 2d = n, since

P is a generator path we have d ̸= n
2
by (GP3). Therefore, e /∈ Pi+d since Pi does not

contain any additional x-type edges (by (GP2)). Hence, e and e′ are separated by Pi+d.

Now suppose that y ̸= x. We first consider the case where n is even and x = n
2
. If x = n

2
,

then we have that e ∈ Pi+n
2
. Since e′ ∈ Pi in order for e′ to be in Pi+n

2
we must have that

Pi contains another y-type edge h′ = (u′, u′ + y), such that u′ + n
2
= v′ or u′ − n

2
= v′.

In other words we must have cd(e′, h′) = n
2
, this cannot happen by (GP3). Similarly, if

y = n
2
then e and e′ are separated by S.

Finally we suppose that y ̸= x and x, y ̸= n
2
. Then by (GP1), P contains two edges of

one of the types x or y. Without loss of generality assume that P contains two x-type

edges. Let h = (u, u + x) ∈ Pi be the other x-type edge, and let cd(e, h) = d. We have

that e ∈ Pj for one of j = i+d or j = i−d. The only way for e′ ∈ Pj is if there is another

y-type edge h′ = (u′, u′ + y) ∈ Pi such that cd(e′, h′) = d. This clearly cannot happen by

(GP3). So we have that e and e′ are separated by Pj.

So if we can find a generator path, then we can find a separating path system of Kn with

size n. The next question is therefore whether generator paths exist in general. It is fairly

straightforward to find generator paths for small values of n, in fact we can find generator

paths for all n ≤ 20 by hand. Examples of generator paths for n = 2, 3, 4 are trivial,

examples of generator paths P (n) for other values of n ≤ 20 are given below:

P (5) = (1, 3, 2, 5),

P (6) = (1, 5, 4, 3, 6),

P (7) = (1, 2, 3, 5, 7, 4),

P (8) = (1, 3, 5, 2, 6, 7, 8),

P (9) = (1, 5, 9, 3, 4, 6, 8, 2),

P (10) = (1, 4, 7, 6, 5, 9, 3, 8, 10),

P (11) = (1, 3, 5, 10, 4, 11, 7, 8, 9, 6),

P (12) = (1, 2, 11, 9, 10, 3, 7, 4, 8, 6, 12, 5),

P (13) = (1, 3, 4, 13, 11, 6, 10, 7, 12, 5, 8, 9),

86

8.2. SYMMETRIES AND GENERATOR PATHS

P (14) = (1, 3, 6, 9, 10, 11, 2, 7, 13, 5, 12, 8, 4),

P (15) = (1, 14, 15, 5, 10, 3, 12, 6, 9, 13, 2, 4, 11, 8, 7),

P (16) = (1, 11, 13, 15, 14, 3, 8, 12, 16, 9, 2, 10, 7, 4, 5),

P (17) = (1, 3, 5, 16, 10, 11, 12, 9, 6, 15, 7, 14, 4, 17, 13, 8),

P (18) = (1, 15, 10, 5, 13, 3, 12, 9, 6, 7, 8, 2, 14, 16, 18, 11, 4),

P (19) = (1, 3, 5, 18, 12, 11, 10, 13, 16, 7, 17, 6, 14, 9, 4, 19, 15, 8),

P (20) = (1, 5, 10, 15, 18, 8, 17, 6, 20, 14, 7, 19, 2, 4, 16, 9, 13, 12, 11).

It is worth noting that there is no reason for a generator path to be unique. In fact for

many of the above examples there are a number of suitable generator paths to choose

from.

It should also be noted that there is an easy adaptation to the definition of a generator

path which would allow for a strongly separating path system to be produced via rotations.

Indeed, if we combine and strengthen (GP1) and (GP2) to say that P must contain exactly

two edges of every type (except n
2
in the even case), and keep (GP3) the same in both

cases, then the path will generate a strong separating system. This can be seen with an

easy variant of the argument in the proof of Theorem 8.4. Then if a strong generator

path can be found it would also give an upper bound of n for the strong version. In fact,

P (12) and P (15) above are both generators of strongly separating path systems.

Definition 8.5. A path P on the complete graph Kn is called a strong generator path

for n if it satisfies the following conditions.

(SGP:1) P contains exactly two edges of each type from [n−1
2
], and exactly one edge of type

n
2
when n is even.

(SGP:2) Let e and e′ be x-type edges in P , and let cd(e, e′) = d. If there two other edges

h, h′ ∈ P , such that both have type y ̸= x, then cd(h, h′) ̸= d. Additionally, no pair

of edges in P with the same type are at distance n
2
.

It is also worth noting that the definition given in 8.2 is a little more strict than needed

for generating a separating path system. For n odd, let P be a path in Kn that contains 3

edges of type x such that P \{e} (which is not necessarily a path) satisfies (GP1), (GP2),

and (GP3), where e is one of the x-types in P . Then the rotations of P give a separating

path system for Kn as long as cd(e, e′) and cd(e, e′′) are not both equal to n
3
, where e′ and

e′′ are the other x-type edges in P . There is also an equivalent condition for even values

of n, with more care taken when x = n
2
. Since the conditions for these paths are slightly

more relaxed they are possibly easier to find, but we do not make use of them here and

87

8.3. THE CASE WHERE n IS PRIME

the simplified version given allows for cleaner notation and arguments.

8.3 The case where n is prime

As well as the small examples, we can also find generator paths for prime values of n.

The construction uses the properties of primitive roots, an integer g is a primitive root

modulo n if for every integer h which is co-prime to n there is some integer i such that

h ≡ gi mod n.

Theorem 8.6. There exists a generator path for n whenever n is an odd prime.

Proof. Let p be an odd prime, then it is known that there exists a primitive root g modulo

p. We can therefore write every integer in [p− 1] in the form gi for i ∈ [p− 1].

Consider the path on Kp given by P = (p, g, g + g2, g + g2 + g3, . . . ,
∑p−2

i=1 g
i), which is

the path starting at vertex p and taking a g length edge, followed by a g2 length edge,

followed by a g3 length edge, and so on until there are p− 2 edges in the path. Here we

use ‘length’ to avoid confusion, an x-type edge may have length x or n − x. We claim

that this path is a generator path for n = p.

We must check that P is indeed a path in Kp, and that it satisfies (GP1), (GP2), and

(GP3).

First we show that P is indeed a path. To see this note that P is a path as long as none

of the vertices p, g, g + g2, g + g2 + g3, . . . ,
∑j

i=1 g
i, . . . ,

∑p−2
i=1 g

i are congruent modulo p.

Suppose that
m∑
i=1

gi ≡
j∑

i=1

gi mod p

for some m, j ∈ [p− 2]. Then we must have that

gm+1 − g

g − 1
≡ gj+1 − g

g − 1
mod p

and hence

gm−j ≡ 1 mod p.

Since g is a primitive root we know that gp−1 ≡ 1 mod p and gi ̸≡ 1 mod p whenever

i < p− 1. Therefore we must have

m ≡ j mod p− 1.

88

8.3. THE CASE WHERE n IS PRIME

Clearly this means m = j since m, j ∈ [p− 2]. Now we must also check that the vertex p

is distinct from the others. For a contradiction suppose that

m∑
i=1

gi ≡ p mod p

for some m ∈ [p− 2]. This gives

gm ≡ 1 mod p

so we must have m ≡ 0 mod p− 1, a contradiction of m ∈ [p− 2].

We conclude that P is indeed a path in Kp. It remains to show that P satisfies the three

conditions.

Let k = p−1
2

and note that since g is a primitive root and p is prime, we have that gk ≡ −1

mod p and gi ̸≡ −1 mod p whenever i < k. This means that gi + gk+i ≡ 0 mod p. In

other words an edge in P with length gi and an edge with length gk+i have the same edge

type.

Observe that the first k edges of P each have unique edge type, and the (k+ i)th edge of

P has the same type as edge i. Thus P contains two edges of every type except type 1,

since the kth edge in P is the unique 1-type edge. Hence, P satisfies (GP1) and (GP2).

For any pair of same type edges in P one edge will be length gj and the other will be

length gk+j for j ∈ [k]. Since gi ̸≡ gk+i mod p this means we have one of two cases, either

1. the starting vertex of the gj edge will be
∑j−1

i=1 g
i and the starting vertex of the gk+j

edge will be
∑k+j

i=1 g
i, or

2. the starting vertex of the gj edge will be
∑j

i=1 g
i and the starting vertex of the gk+j

edge will be
∑k+j−1

i=1 gi.

Note that the clockwise distance between the edges for the first case is given by

k+j∑
i=1

gi −
j−1∑
i=1

gi ≡ gk+j+1 − gj

g − 1
mod p or − gk+j+1 − gj

g − 1
mod p

whichever is in [k], and in the second case it is given by

k+j−1∑
i=1

gi −
j∑

i=1

gi ≡ gk+j − gj+1

g − 1
mod p or − gk+j − gj+1

g − 1
mod p.

Since we know the additive inverse of gj is −gj ≡ gk+j mod p we can see that the

distances in the two cases are equivalent. So we assume we are in case 1.

89

8.3. THE CASE WHERE n IS PRIME

We must now show that the clockwise distance between pairs of same type edges are not

repeated, (GP3).

Consider edges in P given by gj,gk+j,gm, and gk+m. Suppose that

gk+j+1 − gj

g − 1
≡ gk+m+1 − gm

g − 1
mod p.

Then we have that

gk+j+1(1− gm−j) ≡ gj(1− gm−j) mod p

and hence

gk+1 ≡ 1 mod p.

This is a contradiction as we know that gp−1 ≡ 1 mod p and gi ̸≡ 1 mod p whenever

i < p−1. The proof when we take one or both of the clockwise distances to be −gk+i+1−gji
g−1

mod p is equivalent.

Therefore P is indeed a generator path for n = p.

This gives us an upper bound for f(Kn) when n is a prime number.

Corollary 8.7. We have f(Kp) ≤ p whenever p is prime.

We can also use the structure of the generator path in Theorem 8.6 along with the

properties of primes to give an upper bound for f(Kn) when n = p+ 1.

Theorem 8.8. Let p be an odd prime, then we have f(Kp+1) ≤ p+ 1.

Proof. Let K ′ be the complete graph on p vertices given by removing the vertex p + 1

from Kp+1. Let P be the generator path for p given in the proof of Theorem 8.6, and let

P = {Pi : 0 ≤ i ≤ p− 1} be the family of rotations of P , where Pi is P rotated clockwise

by i. Recall that the edge h = (
∑k−1

i=1 g
i,
∑k

i=1 g
i) where k = p−1

2
is the unique 1-type

edge in P .

Let T = {(1, 2), (2, 3), . . . , (p− 1, p), (p, 1)} be the set of all 1-type edges in K ′, and note

that T \ {h} is a path in K ′ and also in Kp+1.

Let P ′
i = Pi ∪ {(i, p + 1)} for every 1 ≤ i ≤ p − 1. Since each Pi has the vertex i as an

endpoint, each P ′
i is a path in Kp+1 and contains Pi as a sub-path.

Define S = {P0, P
′
1, P

′
2, . . . , P

′
p−1, T \ {h}}. We claim that S is a separating path system

for Kp+1.

90

8.3. THE CASE WHERE n IS PRIME

Clearly all elements of S are paths in Kp+1, so it remains to check that any two edges are

separated by some path in S. Let e, e′ ∈ E(Kp+1), suppose first that e, e
′ ∈ E(K ′). Then

e and e′ are separated by {P0, P
′
1, P

′
2, . . . , P

′
p−1} since we know they are separated by P .

Suppose instead that e′ ∈ E(K ′) and e /∈ E(K ′). Then e must be of the form (v, p+1) for

some v ∈ [p]. Let x ∈ [p−1
2
] be the edge type of e′ in K ′, and note that if x ̸= 1 there exists

0 ≤ i, j ≤ p− 1 such that e′ ∈ Pi, Pj. Therefore we have e
′ ∈ P ′

i , P
′
j . Clearly e = (v, p+1)

cannot be in both of these paths, therefore the edges e and e′ must be separated by S.
Now, if x = 1 note that either e′ ∈ P0 or e′ ∈ T \ {h}, and since e cannot be in either of

these paths, the edges are again separated by S.

Finally, suppose e, e′ /∈ E(K ′). Then we can write them in the form e = (v, p + 1) and

e′ = (u, p + 1) where u, v ∈ [p]. Since u ̸= v we must have that at least one of u and v

lies in [p − 1], without loss of generality assume v ∈ [p − 1]. Then we have that e ∈ P ′
v,

and clearly u /∈ P ′
v. Hence the edges are separated by S.

It is worth noting here that the above proof highlights one of the major differences when

working in the weak case as opposed to the strong version. It is reasonably easy to adapt

a path system based on rotations of a path to work in additional cases, as we just saw.

This is usually takes the form of using a path system based on a generator path and

changing the paths slightly while adding some additional ‘fixing’ paths. This technique

works well for the weak variation of the problem, however, attempting something similar

in the strong case often increases the size of the new path system significantly.

Take for example the above argument of Theorem 8.8. We used a one step induction by

removing a vertex from Kn and adding all the incident edges to the end of paths in Kn−1.

This works because we only need to cover all the edges, and ensure that every edge from

Kn−1 appears in two paths. In the strong version we would need to not only cover all the

edges at the removed vertex, but also ensure they appear in two paths that share no other

edges. Since the edges incident form a star, this very path-intensive to achieve directly.

This leads to even more complicated adaptation of the original paths which cannot always

be achieved.

We will discuss adapting Theorem 8.6 to the strong version later on in Section 8.6.2.

91

8.4. GENERAL UPPER BOUND

8.4 General upper bound

Our aim in this section is to prove the following upper bound.

Theorem 8.9. For n ≥ 44, there exists a separating path system for Kn with size at most

21n+ 16 log2 n+ 232

16
.

The general framework for achieving this is to construct path which is almost a generator

path but fails some conditions in a small number of cases, then take the family of rotations

of this not-quite generator. We can then examine the edges which are not separated by

this, which will hopefully be small in number, and construct some additional paths we

can add into our system to fix or patch up these problem edges.

Note that, as the conditions for a generator path are all based on edge types, any path P

which is not a generator path fails the conditions for at least one type. In other words, we

can separate the edge types of P into two classifications, those that follow (GP1), (GP2),

and (GP3), F , and those that do not, D. Formally we have the following definition.

Definition 8.10. A set of edges A is an F -separator for Kn if we can partition the edge

types of Kn into sets F and D such that the following holds.

1. A contains at least one y-type edge for every y ∈ F ∪D.

2. A contains exactly two x-type edges for every x ∈ F .

3. AF satisfies (GP3), where AF = {e ∈ A : the edge type of e is in F}.

If A is a path in Kn, we call it an F -separator path. Whenever we have an F -separator

we will use D := [n
2
] \ F to mean the other half of the partition.

Note that a generator path is an F -separator path, where F = [n−1
2
]\{x} with x the edge

type that appears exactly once (of which there is at most one).

It is plain to see by the argument in the proof of Theorem 8.4, the family of paths

constructed by taking all the rotations of an F -separator path P will separate all edges

with type in F from each other. This means if we can find some P which is an F -separator

path for some large set F , then we can find a family of n paths that separates most of

the edges in Kn. We are then able to use a number of ‘fixing’ paths that will separate

edges with type in D. The family containing the two types of path gives a separating

path system of Kn.

92

8.4. GENERAL UPPER BOUND

Our aim for the rest of this chapter is as follows. We first define these fixing paths, giving

a separating path system based on any path (Theorem 8.12). We then construct an F -

separator path P with large F (and hence small D) to use as the base (Theorem 8.13).

Our construction only works when n ≡ 3 mod 6 or n ≡ 5 mod 6. The final step is to

use the construction of P and the family based on it to give separating path systems for

other values of n (Theorem 8.9).

Note that the rotation construction method naturally forces edges of the same type to be

separated from each other. Indeed, looking at the proof of Theorem 8.4 we see that for

the case x = y the only condition needed was that cd(e, e′) ̸= n
2
. This is always the case

when n is odd since n
2
is not an integer. So as long as there is no edge type appearing

more than twice in P , and n is odd, we have that all edges of the same type are separated

from each other. In general, if P contains exactly m edges of the same type e1, . . . , em,

then they are separated from each other by the rotations of P unless cd(ei, ei+1) =
n
m

for

all i ∈ [m−1]. We say that any P with such edges of type x has equally spaced x-type

edges. This leads us to Theorem 8.12, but before we state this we need the following

result.

Lemma 8.11. For all n and each edge type x except x = n
2
, there exist two paths in Kn,

Qx and Q′
x, such that Qx∪Q′

x covers all x-type edges in Kn and all edges in Qx∪Q′
x have

type from {1, x}.

Proof. Let f be the highest common factor of n and x, and let a ∈ N be such that af = n.

Consider the subgraph of Kn containing only x-type edges, we have exactly f isomorphic

cycles of length a. Let C1, C2, . . . , Cf be the cycles labelled so that a vertex i will be

contained in cycle Ci mod f . We now describe a path in Kn using sections of each Ci and

some linking 1-type edges.

The path Qx starts at vertex 1, and follows C1 for a− 1 edges, before moving to C2 with

a 1-type edge. It then follows C2 for a − 1 edges. This continues until a − 1 edges from

each of the cycles C1, C2, . . . , Cf have been followed. Formally, set v1 = 1 and recursively

define v′i = vi−x mod n and vi+1 = v′i+1 for i ∈ [f]. Note that for each i ∈ [f] the edge

(vi, v
′
i) ∈ Ci and therefore has type x. Also note that the edges (v′i, vi+1) are 1-type edges

for all i ∈ [f]. We define the path Qx as follows,

Qx :=

(
f⋃

i=1

Ci \ {(vi, v′i)}

)
∪ {(v′i, vi+1) : i ∈ [f − 1]} .

93

8.4. GENERAL UPPER BOUND

Note this is indeed a path since the cycles C1, C2, . . . , Cf are pairwise vertex disjoint, and

each edge (v′i, vi+1) links Ci to Ci+1.

Then we define Q′
x to be

Q′
x := {(vi, v′i) : i ∈ [f]} ∪ {(v′i, vi+1) : i ∈ [f − 1]}.

Thus all the x-type edges are covered in two paths using only x-type and 1-type edges.

Now we can give our result.

Theorem 8.12. Let n ∈ N be odd, and P an F -separator path for Kn with no equally

spaced x-type edges. Then P ∪D is a separating path system for Kn where D = {Qx, Q
′
x :

x ∈ D ∪ {1}} (with Qx and Q′
x as in Lemma 8.11 and D = [n

2
] \ F), and P is the family

of n rotations of P . In particular f(Kn) ≤ n+ 2|D ∪ {1}|.

Proof. Consider a pair of edges e, e′ ∈ E(Kn). Suppose first that e and e′ have the

same type, x. Then P separates e and e′. Indeed, if e, e′ ∈ Pi (the rotation of P by i

vertices clockwise), and cd(e, e′) = d then one of Pi+d, Pi+2d, Pi+3d, . . . contains e but not

e′. Otherwise we would have a collection of n
d
edges e1, . . . , en

d
(which includes e and e′),

all with type x and such that cd(ei, ei+1) = d. This cannot be, since we have no equally

spaced x-type edges in P .

Suppose instead that e has type x and e′ has type y. If x, y ∈ F then e and e′ are

separated by P since P is an F -separator path. The paths Q1, Q
′
1 ∈ D contain only

1-type edges and together cover all 1-types in Kn. Therefore if x = 1 then one of these

two paths separates e and e′. So assume x, y ̸= 1, and that x /∈ F . Then Qx and Q′
x

contain only x-type and 1-type edges and together cover all x-types in Kn. One of these

paths separates e and e′.

To prove Theorem 8.9 it is left to find some path P with small D and no equally spaced

edges of the same type.

Theorem 8.13. When n ≡ 3 mod 6 or n ≡ 5 mod 6, there is an F -separator path P

for Kn, with no equally spaced x-type edges and with |D∪{1}| ≤ 1
32
(5n+16 log2 n+167).

Where D = [n
2
] \ F .

The construction of this path is rather involved and makes up the bulk of the argument,

the proof can be found in Section 8.5. We first show how to use this result to get separating

94

8.4. GENERAL UPPER BOUND

path systems for all sufficiently large values of n. The methods for extending paths that

are used here are similar to those used in the proof of Theorem 8.8.

Theorem 8.9. For n ≥ 44, there exists a separating path system for Kn with size at

most
21n+ 16 log2 n+ 232

16
.

Proof. Case 1 : n is odd and n−1
2

is not a multiple of 3.

Let P be the path from Theorem 8.13, and D its associated set of badly behaved edge

types. Then by 8.12 there is a separating path system for Kn with size at most

n+ 2 · 5n+ 16 log2 n+ 167

32
.

Case 2 : n− 1 is odd and n−2
2

is not a multiple of 3.

Consider the complete graph on n − 1 vertices formed by removing vertex v from Kn.

Then Kn−1 fits the conditions for Case 1, let P and D be as in Case 1. Use 8.12 to give

a separating path system for Kn−1 of the form P ∪D, where P is the rotations of P and

D = {Qx, Q
′
x : x ∈ D ∪ {1}}. Then |P ∪ D| ≤ n− 1 + 2|D ∪ {1}| where

|D ∪ {1}| ≤ 5(n− 1) + 16 log2(n− 1) + 167

32
.

Let Pi denote the rotation of P by i vertices clockwise on Kn−1, and similarly wi for

the vertex of Kn−1 which is i clockwise vertices on from w. Let u be an endpoint of

the path P = P0. Then the family P ′ ∪ D is a separating path system for Kn where

P ′ = {Pi ∪ {(ui, v)} : i ∈ [0, n− 2]}.

Indeed, any pair of edges from E(Kn−1) are separated since they are separated by P ∪D.

So let e = (w, v) for some w ∈ V (Kn−1), and consider any edge e′ ∈ E(Kn−1). The edge

e only appears in one path from P ′ ∪ D, namely the path Pi ∪ {(ui, v)} where ui = w.

Therefore if e′ appears in any other path, then we are done. Clearly this is the case if e′

has type x ∈ D. Suppose that e′ has type x ∈ F , then by definition P must have two

x-type edges, therefore e′ appears in two rotations of P .

Finally if e′ is also an edge at v, then clearly it is not contained in the path Pi ∪{(ui, v)},
and the two edges must be separated.

Note that |P ′| = |P| = n− 1, and |D| = 2|D ∪ {1}|.

Case 3 : n is odd and n−1
2

is a multiple of 3.

Consider the complete graph on n− 2 vertices given by removing vertices v and v′ from

95

8.4. GENERAL UPPER BOUND

Kn. Clearly Kn−2 satisfies the conditions for Case 1, so let P ∪ D be the corresponding

separating path system for Kn−2 given by Theorem 8.12. We will take each path from P
and adapt it to a path on Kn, we will also add some edge types to the set D and create

additional paths for our family this way.

Let u be any endpoint of P . Select some edge g ∈ P such that if xg is the edge type of g,

then P contains at least one other edge with type xg. Set g = (p, q) for p, q ∈ V (Kn−2),

and let gi = (pi, qi) be the rotation of g in Kn−2 by i vertices. We fix the new paths

P ′
i = (Pi \ {gi}) ∪ {(pi, v), (v, qi), (ui, v

′)}, and let P ′ = {P ′
i : i ∈ [0, n− 3]}.

If there are edges h, h′ ∈ P with the same edge type xh ∈ F , such that cd(h, h′) = xg

on Kn−2, then define D′ = D ∪ {xg, xh}. Note that there can be at most one such pair

since xh ∈ F . Otherwise define D′ = D ∪ {xg}. Let D′ = {Qx, Q
′
x : x ∈ D′ ∪ {1}} be the

family of fixing paths on each type in D′ (such paths described in 8.11). Then P ′ ∪D′ is

a separating path system for Kn.

Let e, e′ be any two edges in Kn. If e, e′ ∈ E(Kn−2) \ {gi : i ∈ [n − 2]} then the edges

are separated by P ∪ D and hence by P ′ ∪ D′. Suppose e′ = gi for some i ∈ [n− 2], and

let xe be the edge type of e. Since xg ∈ D′ we have that the path Q ∈ {Qxg , Q
′
xg
} ⊆ D′

contains the edge gi. The path Q separates gi from e unless xe = xg or xe = 1. If xe = 1

then one of Q1, Q
′
1 ∈ D′ separates the pair. If xe = xg then, since there is still an xg-type

edge in P ′ and there are no equally spaced edge types, P ′ separates the pair.

Suppose then that e = (v, w) for some w ∈ V (Kn−2), and e′ ∈ E(Kn−2), then the edges

are separated if e′ is in some D′ path, otherwise there is some other edge in Pi with the

same type as e′. The distance between these edges cannot be the same as the distance

between the two edges at v since xh ∈ D′, therefore the edges must be separated by the

rotations (as in 8.4). If e = (v, w) and e′ = (v, w′), then let i be such that wi = w′. We

have that if e, e′ ∈ P ′
j then e′ ∈ Pj+i, the only other edge at v in Pj+i is (v, w

′
i). Therefore

the edges are separated. Finally, if e = (v′, w) then note that it is the unique edge a path

in P ′, since every other edge type either appears twice in P ′ or in D′, there are no other

unique edges. Therefore the edges are separated.

Note that |P ′| = |P| = n− 2, and |D′| = 2|D′ ∪ {1}| = 2(|D ∪ {1}|+ 2).

Case 4 : n− 1 is odd and n−2
2

is a multiple of 3.

This case is very similar to Case 3. We consider the family P ∪D from 8.12 on the Kn−3

obtained by removing the vertices v, v′ and v̄ from Kn. Then we adapt the paths P and

add to the set D to obtain a new family.

96

8.5. PROOF OF THEOREM 8.13

Let u be any endpoint of P , and let g = (p, q), g′ = (p′, q′) ∈ P be edges with type

xg and x′
g respectively such that xg ̸= x′

g and P \ {g, g′} still contains an edge of

type xg and and edge of type x′
g. Set the new paths to be P ′

i = (Pi \ {gi, g′i}) ∪
{(pi, v), (v, qi), (p′i, v′), (v′, q′i), (w, v̄)} and P ′ = {P ′

i : i ∈ [0, n− 4]}.

If there are edges h, h′ ∈ P both with edge type xh ∈ F such that the clockwise distance

between them on Kn−3 is equal to xg, then set D′ = D ∪ {xg, x
′
g, xh}. If there is also a

pair of edges with type x′
h ∈ F with clockwise distance equal to x′

g then set D′ = D ∪
{xg, x

′
g, xh, x

′
h}. Note that there can be at most one of each since xh, x

′
h ∈ F . Otherwise,

set D′ = D ∪ {xg, x
′
g}. Then by the same reasoning as for Case 3, the family P ′ ∪D′ is a

separating path system for Kn.

Note that |P ′| = |P| = n− 3, and |D′| = 2|D′ ∪ {1}| = 2(|D ∪ {1}|+ 4).

8.5 Proof of Theorem 8.13

The aim now is to construct an F -separator path with many edge types in F . We will

start by defining three sets of edges (M0, R, and B) which together form a linear forest.

This linear forest will almost follow (GP1), (GP2), and (GP3). We will then add certain

joining edges to connect our forest into a single path. The types associated to the special

edges in the linear forest will end up in F and the types associated to the joining edges

will end up in D.

Step 1 : Defining the linear forest

Let n ∈ N be such that n ≡ 3 mod 6 or n ≡ 5 mod 6. For the remainder of this

section we label the vertices of Kn slightly differently for ease of notation. First label any

vertex 0, from here label vertices clockwise following the order 1, 2, . . . , n−1
2
,−n−1

2
,−(n−1

2
−

1), . . . ,−2,−1. Now we define three sets of edges from Kn which we will combine to make

an approximation of a generator path.

First we define a set containing one edge of each type,

M0 =

{
(−i, i) : i ∈

[
n− 1

2

]}
.

Note that M0 is a maximal matching in Kn and that the vertex 0 is the only vertex which

is not an endpoint of an edge in M0. We also use Mk to denote the rotation of M0 in

which vertex k has no incident edges. See Figure 8.3.

97

8.5. PROOF OF THEOREM 8.13

0

1

2

3

−1

−2

−3

M3

M2

M1

M0

M−1

M−2

M−3

Figure 8.3: An example with n = 7 showing the vertex labels and matchings Mk

Next we define an edge set containing only the largest edge types. Let R = R1 ∪ R2

where

R1 =

{(
1,−n− 3

2

)
,

(
−1,−n− 1

2

)}
,

and

R2 =

{(
−3− 2k,

n− 1

2
− k

)
: 0 ≤ k ≤ r − 1

}
,

where r = n−7
4

for when n−1
2

is odd, and r = n−9
4

otherwise.

Note that R1 consists of a
n−1
2
-type edge and a n−3

2
-type edge. Further, note that (−3, n−1

2
)

has type n−5
2
, and that if an edge (−3− 2k, n−1

2
− k) is x-type, then (−3− 2(k+1), n−1

2
−

(k + 1)) is an (x− 1)-type edge. Thus, R contains the largest r + 2 edge types.

Define r(i) = n+2+i
2

for every i = −3 − 2k where 0 ≤ k ≤ r − 1, and r(i) = −n−2−i
2

for

i = −1, 1. Then we can write each edge in R as (i, r(i)). Similarly let r−1(i) = 2i− n− 2

for i = n−1
2

− k where 0 ≤ k ≤ r − 1, and r−1(i) = 2i + n− 2 for i = −n−3
2
,−n−1

2
. Then

we can also write R edges in the form (r−1(i), i).

The contents of the final edge set depend on the edges in R as well as the properties of
n−1
2
. We define this set so that it continues with the large edge types roughly where R left

off, containing approximately types n
4
down to n

8
. Choose ib even and as large as possible

such that (−ib, ib + 3) is an edge with odd type at most n−1
4
. Set b = (−ib, ib + 3) and

denote xb = 2ib + 3 as the edge type of b. Note that b ∈ M−n−3
2

and

xb ∈
{⌊

n− 1

4

⌋
,

⌊
n− 1

4

⌋
− 1,

⌊
n− 1

4

⌋
− 2,

⌊
n− 1

4

⌋
− 3

}
.

98

8.5. PROOF OF THEOREM 8.13

Then we can define the final edge set as

B =

{(
−xb − 3

2
+ 2k,

xb + 3

2
+ k

)
: 0 ≤ k ≤ t− 1

}
,

where t = xb+1
2

.

Let b(i) = 3xb+3+2i
4

for each i = −xb−3
2

+ 2k where 0 ≤ k ≤ t − 1. Also, let b−1(i) =

−3xb+3−4i
2

for every i = xb+3
2

+ k where 0 ≤ k ≤ t− 1. Then we can write B edges in the

form (i, b(i)) and (b−1(i), i).

See Figure 8.4 for an example of the edge sets M0, R, and B.

Let L = M0 ∪ R ∪ B denote this collection of edges. Our task now is to extend L to a

path. In order to do this we must have that L is acyclic, and that the maximum degree

of any vertex is 2.

0 1
2

3
4

5

6

7

8

9

10

11

12

13

14
15

1617

−1−2
−3

−4

−5

−6

−7

−8

−9

−10

−11

−12

−13

−14
−15

−16 −17

R

B

Figure 8.4: The linear forest L for n = 35

Claim 8.14. L is a linear forest.

Proof. First we consider the degree condition. Observe that M0 is a maximal matching

and therefore no M0 edges share vertices. It is clear from the constructions of R that no

two R edges share a vertex, similarly no two B edges share a vertex. This means all edges

99

8.5. PROOF OF THEOREM 8.13

of high degree must be an endpoint of an edge in each of M0, R, and B. As usual we

write [a, b] = {c ∈ N : a ≤ c ≤ b} where a and b are non-negative integers with a ≤ b. We

also write [−a, b] = {c ∈ Z : −a ≤ c ≤ b} where a and b are non-negative integers, and

[−a,−b] = {c ∈ Z : −a ≤ c ≤ −b} where a and b are non-negative integers and a ≥ b.

Let I1 = [−2, 1] = {−2,−1, 0, 1} and I2 = [−n−5
2
,−3], then each R edge has one vertex in

the set I = I1∪I2, moreover this vertex is odd. Let I ′1 = [−n−1
2
,−n−3

2
] and I ′2 = [n+9

4
, n−1

2
],

then each R edge has one vertex in the set I ′ = I ′1 ∪ I ′2. Similarly, let J = [−xb−3
2

, xb+1
2

]

and J ′ = [xb+3
2

, xb + 1], each B edge has exactly one vertex in J , which is even, and one

vertex in J ′.

Using the fact that all R endpoints in I are odd and every B endpoint in J is even together

with the fact that I ∩ J ′ = ∅, we have that no vertex in I is the endpoint of both a B

and an R edge. Then the only candidates for a vertex of high degree must be found in

I ′. Note first that I ′1 ∩ (J ∪ J ′) = ∅, so any high degree vertex must come from I ′2. The

largest vertex which is also an endpoint in B is xb + 1. Recall that xb ≤ n−1
4
, therefore

xb + 1 ≤ n+3
4

< n−1
2

− k for all 0 ≤ k ≤ r − 1. Therefore there are no vertices of degree

greater than 2 in L.

It is left to show that L is acyclic. Suppose for a contradiction that C is a cycle in M0∪R,

clearly C must alternate between M0 edges and R edges. Let e = (−i, i) be the edge in

C ∩M0 such that i ∈ [n−1
2
] is maximal. Let r+, r− ∈ C ∩ R be edges with an endpoint

at i and −i respectively. Observe that if i = n−1
2

then r+ = (−3, n−1
2
) ∈ R2 and so

(−3, 3) ∈ C. Since 3 /∈ I ∪ I ′ there is only one edge in M0 ∪ R at 3, meaning C cannot

be a cycle. Further note that the edge (−n−3
2
, n−3

2
) is in the same path as (−n−1

2
, n−1

2
)

by edges in R1, therefore i < n−3
2
. This means that r+, r− ∈ R2, so let r+ = (r−1(i), i)

and r− = (−i, r(−i)). Suppose that |r−1(i)| < r(−i), then after r+ the cycle C must

follow an M0 edge to ℓ = |r−1(i)| where there must be another R edge (r−1(ℓ), ℓ) for C to

continue. Since ℓ < r(−i), the construction of R2 means we have r−1(ℓ) < −i. Since all

R vertices in I2 are negative this means |r−1(ℓ)| > i. The next edge in C after (r−1(ℓ), ℓ)

must be in M0, so we have that (r−1(ℓ), |r−1(ℓ)|) ∈ C where |r−1(ℓ)| > i contradicting the

maximality of i. The case where |r−1(i)| > r(−i) is analogous.

So every cycle must contain a B edge. Again, for a contradiction, let C be a cycle in L,

then C must alternate between M0 edges and R∪B edges. Let (i, b(i)) ∈ B ∩C and note

that by definition of B we have |i| < b(i). The edge (−b(i), b(i)) must appear in C. Since

b(i) ∈ J ′ we have that −b(i) /∈ J ∪ J ′, this means there is no B edge at −b(i). So there

must be an R edge at −b(i) to continue the cycle, in particular we must have −b(i) ∈ I.

100

8.5. PROOF OF THEOREM 8.13

In order to have C be a cycle, we must be able to continue in this direction along C and

end up back at the vertex i.

Let ℓ = r(−b(i)), then the edge (−b(i), ℓ) must be in C. Note that ℓ ∈ I ′ and therefore

ℓ > |i| since i ∈ J . C must continue after (−b(i), ℓ) ∈ R with the edge (−ℓ, ℓ) ∈ M0.

Since −ℓ ̸= i we have not connected C. The next edge must be from R ∪ B, and since

ℓ /∈ J∪J ′ this must be another R edge. In particular (−ℓ, r(−ℓ)). Note that as r(−ℓ) ∈ I ′

we must have that r(−ℓ) > |i|. Again, the next edge in C must be (−r(−ℓ), r(−ℓ)) ∈ M0.

Since r(−ℓ) > |i| we have −r(−ℓ) ̸= i and we have not completed C.

We can continue with this same argument, but at each stage we go through a vertex in

I ′ then to a vertex in −I ′ via M0, then back to I ′ with an R edge. This means we can

never get back to the vertex i since |i| is smaller than all vertices in I ′.

Claim 8.15. L satisfies (GP1) and (GP3). Moreover, the sub-forest of L which contains

all edges of type matching those in R ∪B satisfies (GP2).

Proof. For (GP1), note that n is odd and M0 contains exactly one edge of every type.

Clearly then, L contains at least one edge of each type.

Recall that each edge in R has a different type from [⌈n−1
4
⌉, n−1

2
], and that each B edge

has a different type from [xb+3
2

, xb] where xb ≤ ⌊n−1
4
⌋. This means that there is no edge

type that appears more than twice in L. Moreover, for any edges e, e′ ∈ L that have the

same type, we have e ∈ M0 and e′ ∈ R∪B. This means the restriction of L to edges with

type found in R ∪B contains exactly two edges of each type, hence satisfies (GP2).

Since M0 contains exactly one of each edge type, the family of rotations of M0 must cover

the edges ofKn. In other words, any edge in R∪B is found inMi for some i ∈ [−n−1
2
, n−1

2
].

Let e ∈ M0 and e′ ∈ R ∪ B both be x-type edges. Then e′ ∈ Mi for some i, and since

Mi is a rotation of M0 by |i| we must have that cd(e, e′) = |i|. This means that (GP3) is

equivalent to the conditions

M0 ∩ (R ∪B) = ∅ and |(Mi ∪M−i) ∩ (L)| ≤ 1

for every i ∈ [n−1
2
].

We associate to the edges of Kn a number from [0, n−1
2
] called the crossing number. Each

Mi (except M0) contains a single edge ei at the vertex 0, define the crossing number of all

edges in Mi to be the type of the edge ei. We define the crossing number of edges in M0

to be 0. Note that by this definition the crossing number of edges in Mi is the same as the

101

8.5. PROOF OF THEOREM 8.13

crossing number of M−i edges, we also have that any pair Mi,Mj with |i| ̸= |j| contain
edges with different crossing numbers. Therefore, to show the conditions above hold, it

is sufficient to show that no two edges from R ∪ B have the same crossing number, and

that no edge in R ∪B has crossing number 0.

Consider the edge e = (1,−n−3
2
) ∈ R1, let Mℓ be the matching containing e. Then Mℓ

must also contain the edge (0,−n−5
2
) and hence e has crossing number n−5

2
. Similarly we

see that (−1,−n−1
2
) has crossing number n−1

2
. Now, for edges in R2 we first note that

(−3, n−1
2
) has crossing number m = n−7

2
. Then observe that (−3−2, n−1

2
−1) has crossing

number m− 3, and similarly (−3− 2k, n−1
2

− k) has crossing number |m− 3k|. Note that
|m − 3k| ̸= |m − 3k′| for any k ̸= k′, so no edges in R2 have the same crossing number.

Further note that m is not a multiple of 3 since n−1
2

is not a multiple of 3, this means no

R2 edge has crossing number 0.

Since r ≤ n−7
4

we have that |m− 3k| < n−5
2

for all 0 ≤ k ≤ r − 1, meaning that there are

no edges in R2 with the same crossing number as an edge in R1. In particular this means

that no two edges in R have the same crossing number, and no edge in R has a crossing

number which is 0 or a multiple of 3.

0 1
2

3

4

5

6

7

8
9

−1

−2

−3

−4

−5

−6

−7

−8
−9 P0 ∩R ̸= ∅

0
1

2

3

4

5

6

7

−1

−2

−3

−4

−5

−6

−7

Figure 8.5: Examples of R when n−1
2

is and is not a multiple of 3

We now consider edges in B. Recall that the edge b = (−xb−3
2

, xb+3
2

) ∈ M−n−3
2

and

therefore has crossing number 3. Note also that (−xb−3
2

+2, xb+3
2

+1) has crossing number 6

and in general the edge (−xb−3
2

+2k, xb+3
2

+k) has crossing number 3(k+1) for 0 ≤ k ≤ t−1.

Recall also that t ≤ n+3
8
, therefore 3(k + 1) ≤ n−1

2
for all n ≥ 13. In particular we have

that no edges in B have crossing number 0, and clearly no two edges from B have the

102

8.5. PROOF OF THEOREM 8.13

same crossing number. We saw earlier that no edges in R have a crossing number which

is a multiple of 3, since edges in B only have crossing numbers which are multiples of 3

we see that there are no two edges in R ∪B with the same crossing number.

The above tells us that the only edge types that fail the conditions of Definition 8.2 are

those that appear only once (and hence fail (GP2)). These are exactly the types that do

not appear in R ∪B. In other words, let

FL = {x : there is an e ∈ R ∪B with edge type x}

be the set of edge types from edges in R ∪B, then L is an FL-separator. Note that FL is

close to the set [n
8
, n−1

2
], possibly with a small number of elements missing.

We now must connect our L into a single path without using too many edges with type

in FL.

Step 2 : Finding connecting edges to join the linear forest into a path

0 1
2

3
4

5

6

7

8

9

10

11

12

13

14
15

1617

−1−2
−3

−4

−5

−6

−7

−8

−9

−10

−11

−12

−13

−14
−15

−16 −17

T− T+

M− M+

U− U+

Figure 8.6: The segments of L for n = 35

103

8.5. PROOF OF THEOREM 8.13

We can do this by adding edges between endpoints of paths in L, but it is in our interests

to keep these joining edges as short as possible to avoid using edges from FL. In this

step we will find a set of edges C such that L ∪ C is a path and where the edge types

in C do not overlap too much with those in FL. To do this, we need to know where the

endpoints of paths in L appear, and a little more about the behaviour of each path in

L. We partition the non-zero vertices of Kn into sets depending on their label. First set

T+ = [xb +1] , M+ = [xb +2, n−1
2

− r] and U+ = [n−1
2

− r+1, n−1
2
], then T−,M− and U−

contain the respective negative vertices (see Figure 8.6).

First consider vertices in U+, note that each vertex in U+ is an I ′ vertex of an R2 edge.

Since these vertices also all have an incident M0 edge we conclude that there are no

endpoints in U+.

Next M+, since all vertices in M+ are larger than xb + 1 and smaller than n−1
2

− r + 1

there can be no incident B or R edges here. Hence every vertex in M+ is an endpoint of

a path in L. Note that |M+| = n−1
2

− r − xb − 1, then due to the values of xb and r, we

must have that 1 ≤ |M+| ≤ 4.

For T+ note that every vertex in J ′ ⊆ T+ is an endpoint of a B edge, therefore the only

vertices in T+ with degree 1 must be in [xb+1
2

]. In particular, by the construction of B,

these endpoints must all be odd vertices since −xb−3
2

+ 2k ∈ J is even for 0 ≤ k ≤ t− 1.

Further note that there is an R1 edge at vertex 1, but this is the only R edge with an

endpoint in T+. Together this means all odd vertices in [3, xb−1
2

] are endpoints in L, this

is xb−3
4

vertices since (ib + 3)− 1 = xb+1
2

is even.

For the negative side, we know that all odd vertices have an incident R edge, so the only

endpoints on this side must be even. For U− note that −n−3
2

and −n−1
2

are both vertices

with edges from R1, so the endpoints in U− are all even vertices in [−n−5
2
,−n−1

2
+ r− 1].

For M− this means that all even vertices are endpoints. In particular each endpoint is

from a path consisting of one edge and terminating in M+, there are ⌊ |M+|
2

⌋ such vertices

(this is at most 2). Finally for T− we have that even vertices in J are endpoints of B

edges, therefore the only vertices with degree 1 are in [−xb − 1,−xb−3
2

− 2]. This is xb+5
4

vertices. This information is summarised below in Table 8.1.

In total we have n−2xb+1
2

vertices in L with degree 1 when n−1
2

is even, and n−2xb−1
2

otherwise. This means L consists of

n− 2xb + (−1)
n−1
2

4

paths. We now look at the behaviour of each path.

104

8.5. PROOF OF THEOREM 8.13

Set Range in which endpoints lie Endpoint type Number of endpoints

{0} - all 1

U+ - none 0

M+ [xb + 2, n−1
2

− r] all 1 to 4

T+ [3, xb−1
2

] odd xb−3
4

U− [−n−5
2
,−n−1

2
+ r − 1] even ⌈n−17

8
⌉ to ⌊n−15

8
⌋

M− [−n−1
2

− r,−xb − 3] even 0 to 2

T− [−xb − 1,−xb−3
2

− 2] even xb+5
4

Table 8.1: Endpoints in each segment of L

Claim 8.16. Any path in L with an endpoint in T− must have its other endpoint in

T− ∪ {0}.

Proof. Recall that all endpoints in T− are in the set [−xb − 1,−xb−3
2

− 2], and that only

even vertices are endpoints. Set a1 = −xb − 1 and a2 = −xb−3
2

− 2, so our interval of

endpoints can be written as [a1, a2]. We will work in stages, checking the largest endpoint

in our interval at each step. We will show that the path from this largest vertex terminates

at the smallest endpoint in our interval (or at 0). We then remove these endpoints from

our interval and start again, checking the largest endpoint, continuing until we have found

all the paths with endpoints in T−. We will start with step 0.

0

−a1a1

−a2a2

−(a1 + 2)a1 + 2

−(a2 − 2)a2 − 2

a2 − 4

Figure 8.7: Example of endpoints in T−

Step 0, our interval is [a1, a2] and we check the path at the largest vertex, a2 = −xb−3
2

−2.

105

8.5. PROOF OF THEOREM 8.13

We know there is an M0 edge at a2, so our path must go through the vertex −a2 =
xb−3
2

+ 2 = −xb−3
2

+ 2(t − 1). From the construction of B, we see that there is a B

edge at this vertex which our path must follow next. This takes the path to the vertex

b(−a2) = xb + 1, where we must again follow an M0 edge to −(xb + 1) = a1. We know

that a1 is even and is the smallest vertex in our interval [a1, a2], so the path terminates

here.

Every remaining endpoint is an even vertex in [−xb + 1,−xb−3
2

− 4]. Indeed, our original

interval was [−xb − 1,−xb−3
2

− 2] and we found −(xb + 1) and −xb+1
2

to be endpoints of

the first path. Since −(xb + 1) + 1 and −xb+1
2

− 1 are odd, they cannot be endpoints of a

path in L. Hence our new interval is [a1 + 2, a2 − 2]. This completes step 0.

Step k, our interval is [a1 + 2k, a2 − 2k], note that k ≤ xb+1
8

. We check the largest

vertex in our interval, −v = a2 − 2k. We know −v has an edge to v via M0, and since

v > xb+3
2

we have that v ∈ J ′ has an incident B edge. In particular this B edge is

(−xb−3
2

+ 2(2k − 1), xb+3
2

+ 2k − 1) where v = xb+3
2

+ 2k − 1.

We know that b−1(v) is even, if b−1(v) = 0 then the path must end here since there is only

one edge at vertex 0. Also note that when b−1(v) = 0 we have k = xb+1
8

and hence our

interval consists of a single vertex, therefore we must be on the final step. Assume then

that b−1(v) ̸= 0. In this case we have that b−1(v) < 0 since we are assuming k < xb+1
8

.

From b−1(v) we move along the path to |b−1(v)|, since this is an even vertex and as

|b−1(v)| < | − xb−3
2

|, there must be another B edge here. Since b−1(v) is even, there are

exactly |b−1(v)| − 1 even vertices between b−1(v) to |b−1(v)| (not inclusive). This means

there are |b−1(v)|−1 B edges between those at b−1(v) and |b−1(v)|. In other words, the B

edge at |b−1(v)| must be (−xb−3
2

+2(ℓ− 1), xb+3
2

+ ℓ− 1) where xb+3
2

+ ℓ− 1 = v+ |b−1(v)|.
Now, recall that |b−1(v)| = xb−3

2
− 2(2k − 1), and that v = xb−3

2
+ 2 + 2k. Using these

we get xb+3
2

+ ℓ− 1 = xb + 1 − 2k. We then follow the M0 edge at xb + 1 − 2k to get to

−(xb + 1− 2k) = a1 + 2k.

Clearly then a1 + 2k is even and inside the interval [a1 + 2k, a2 − 2k]. So it must be an

endpoint in L, and therefore our path ends in T− as claimed. We remove vertices from

our interval to give the new interval of [a1 + 2k + 2, a2 − 2k − 2].

We can repeat the above process until we have seen that all paths with endpoints in T−

have their other endpoint at 0 or in T−.

Note that due to the structure shown in the above, it is easy to join these paths into a

single path using short edges.

106

8.5. PROOF OF THEOREM 8.13

Claim 8.17. We can use only 2-type edges to connect the paths with endpoints in T−

into a single path.

Proof. Use the connecting edges

CB =

{(
−xb − 3

2
− 2,−xb − 3

2
− 4

)
, (−xb + 1,−xb + 3), . . . ,

(
−xb − 3

2
− 2− 4k,−xb − 3

2
− 4− 4k

)
, (−xb − 1 + 2 + 4k,−xb − 1 + 4 + 4k), . . .

}
.

Note that this connected path has one end vertex at (−xb − 1), which is the vertex with

the smallest label in T−, and the other end is either 0 or the vertex −3xb+7
4

∈ T−.

By doing this, we have replaced ⌈xb+5
8

⌉ paths with a single path.

Now we consider vertices in T+. Firstly, for n ≥ 44 we have that vertices 3 and 5 are

endpoints of the same path, this path uses the all R1 edges along with the first two edges

of R2. When n < 44 there is a B edge at vertex 5 meaning it cannot be an endpoint.

This leaves us to check odd vertices in [7, xb−1
2

].

Claim 8.18. Every odd vertex in [7, xb−1
2

] is the beginning of a path in L that terminates

in U−.

Proof. Every vertex v ∈ [7, xb−1
2

] has an incident M0 edge to −v ∈ T−, since v is odd −v

has an incident R2 edge. By the definition of the R2 edges and of U+, this edge must be

(−v, r(−v)) where r(−v) ∈ U+. Again from r(−v) the path must follow the M0 edge to

−r(−v) ∈ U−. Now we have two cases, either r(−v) is even and hence there is no R edge

at −r(−v) (also clearly no B in U−), or r(−v) is odd and there is another R edge that

leads to a vertex in U+.

For the case where r(−v) is even, since there are no other edges at −r(−v) the path must

terminate here. This follows the claim as −r(−v) ∈ U−. So we assume r(−v) is odd and

that (ℓ, r(ℓ)) is the R edge with −r(−v) = ℓ. By definition of U+ we have that r(ℓ) ∈ U+,

so the path must continue via M0 to −r(ℓ) ∈ U−. Once again, if r(ℓ) is even the path

terminates here and proves the claim. So we must assume r(ℓ) is odd, in which case we

follow the path to another vertex in U+ via R as before, returning to U− via M0. Here

we are faced again with termination of the path at an even vertex, or continuing to U+

and subsequently back to U− at odd vertex. Since the graph is finite this process must

end, clearly the only location the process finishes is at an even vertex in U−.

107

8.5. PROOF OF THEOREM 8.13

Once again we can use this structure to join together the above paths into fewer longer

paths. Indeed, using the edges (5, 7), (9, 11), (13, 15), . . . for all odd vertices in [7, xb−1
2

]

immediately halves the number of paths. But we can do better than this.

Claim 8.19. We can use only 2-type edges to connect the paths with endpoints in T+

into at most 1
2
(⌈log2(xb−11

4
)⌉+ 1) paths.

Proof. Recall that we are considering n ≥ 44.

Consider the path P1 from vertex 7, and P2 from vertex 9. After three edges (M0, R, and

M0), P1 must go through vertex −n−5
2
, and P2 through −n−7

2
. Clearly, one of −n−5

2
and

−n−7
2

is even and therefore is the endpoint of the path. Let v = 7 if n−5
2

is even, and v = 9

otherwise, and let −u be the other endpoint of the path at v. Then we must have that

the path from v + 4 terminates at −u + 2, and in general the path at v + 4k ∈ [7, xb−1
2

]

terminates at −u+ 2k for k ∈ N.

Similarly, consider the paths from vertices v+2 and v+6, P3 and P4. After 3 edges, both

paths are at an odd vertex in U−, in particular, P3 is on −u + 1 and P4 is on −u + 3.

This means they are on odd vertices in U− and hence the next edge in both paths is an

R edge to U+. Let w = r(−u + 1), then we must have that (−u + 3, w + 1) is the R

edge at −u + 3. The paths P3 and P4 must then follow M0 edges to −w and −w − 1

respectively. Once again, one of −w and −w − 1 is even and hence the path terminates

here, the other must continue along another R edge. Let w′ be the even vertex out of w

and w+ 1, and let v′ be the vertex in T+ on the path to w′ (either v + 2 or v + 6). Then

we have that the path from v′+8 must terminate at −w′−2, and similarly the path from

vertex v′ + 8k ∈ [7, xb−1
2

] terminates at vertex −w′ − 2k.

In the first stage we found that paths from every other vertex in [7, xb−1
2

] terminate at

consecutive endpoints in U−. Let T1 ⊆ [7, xb−1
2

] be those vertices. Then we looked at

[7, xb−1
2

] \ T1 and found that half of these vertices lead a path that terminates after 5

edges and have consecutive endpoints in U−. Let T2 ⊆ [7, xb−1
2

] \ T1 be those vertices

found to be in paths of length 5. Then we can continue and consider odd vertices in

[7, xb−1
2

] \ (T1 ∪ T2). By using the same argument as above we find again that half of

these vertices are endpoints to paths that have 7 edges and with the U− endpoints all

consecutive.

By the end of this process we have at most ⌈log2(xb−11
4

)⌉+ 1 sets Ti. For each set Ti, let

Ui be the set of vertices in U− which are endpoints of paths starting in Ti.

108

8.5. PROOF OF THEOREM 8.13

We are now ready to define our connecting edges. First we use the edges

C0 = {(9, 11), (13, 15), . . . }

for all odd vertices in [9, xb−1
2

]. Since every path starting in T+ terminates in U− adding

these edges does not create any cycles. In particular, these edges connect a vertex in T1

with a vertex in Ti where i ̸= 1. This means that the new path has one endpoint in U1

and the other in Ui. After adding these edges, the vertex 7 remains an endpoint in T+,

but the only other possible endpoint is the vertex xb+3
2

− 2 = xb−1
2

.

Let Ti = {vi1, vi2, . . . , viℓi} where vij < vik whenever j < k. Similarly, we let Ui =

{ui
1, u

i
2, . . . , u

i
ℓi
} where the path from vij ends at ui

j. The next connecting edges we add

will be

C1 = {(u1
1, u

1
2), (u

1
3, u

1
4), . . . }.

Again, this cannot create a cycle since no path begins and ends in U1. Observe that the

edge (u1
2i−1, u

1
2i) joins a path through vertex v12i−1 with a path through v12i. If v12i−1 = k

then v12i = k + 4, meaning that k is joined to k′ ∈ {k − 2, k + 2} by an edge in C0 (or

k = 7 has degree 1) and k + 4 is joined to k′ + 4 by a C0 edge (unless k + 4 = xb−1
2

has

degree 1). Since k′ and k′ + 4 differ by 4 and neither are in T1 we must have that either

k′ ∈ T2 or k′ + 4 ∈ T2 but cannot have both. This means that the new path containing

the edge (u1
2i−1, u

1
2i) cannot have both endpoints in U2.

Again, we now do an analogous process for connectors in T2. That is, we use connectors

C2 = {(u2
1, u

2
2), (u

2
3, u

2
4), . . . }, noting that we have not created a cycle since no path has

two endpoints in U2. Using an analogous argument to the above we also have that no

new path has two endpoints in U3. We continue this way until we have defined connector

sets C0, C1, . . . , Cℓ where ℓ ≤ ⌈log2(xb−11
4

)⌉+ 1.

Finally we add the special connecting edge (5, 7).

It is left to count the number of paths we now have, as well as the number of paths we

replaced. Recall that there were xb−11
4

endpoints in [7, xb−1
2

] and hence xb−11
4

paths from

T+ to U−, along with the path from 3 to 5. We count the new number of paths by again

counting the number of endpoints. Note that the vertex 3 is an endpoint and xb−1
2

may

also be an endpoint (if it is 1 mod 4). There are now no other endpoints in T+. Since

we connected vertices in Ui by pairing them, there can be at most 1 endpoint in each Ui,

and hence at most ⌈log2(xb−11
4

)⌉ + 1 endpoints in ∪1≤i≤ℓUi. Therefore, in total we have

replaced xb−7
4

paths with at most

⌈log2(xb−11
4

)⌉+ 1

2

109

8.5. PROOF OF THEOREM 8.13

new paths. It is left only to note that we have only used 2-type edges in this construction

as we have connected consecutive odd vertices in T+ and consecutive even vertices in each

Ui.

At this point, the total number of paths in L ∪ CB ∪ C0 ∪ · · · ∪ Cℓ ∪ {(5, 7)} is given

by

n− 2xb + (−1)
n−1
2

4
−
⌈
xb + 5

8

⌉
+ 1− xb − 7

4
+

⌈
log2(

xb−11
4

)
⌉
+ 1

2
.

This is at most
n+ 16 log2 n+ 163

32
.

Let L′ = L ∪ CB ∪ C0 ∪ · · · ∪ Cℓ ∪ {(5, 7)} be the linear forest at this point. Finally we

will connect L′ using any suitable edges, call the set of these additional edges CA. Let P

be the path P = L ∪ C, where C = CB ∪ C0 ∪ · · · ∪ Cℓ ∪ {(5, 7)} ∪ CA.

Note that |CA| ≤ 1
32
(n + 16 log2 n + 131) by the number of paths remaining in L′. Fur-

thermore, we are able to choose the edges of C in such a way that for any x, if there

are more than two x-type edges in P then they are not spaced out evenly on Kn. This

ensures that all edges of the same type are separated from each other by the rotations of

P . All the edge types in CA will end up in D, so apart from ensuring the edges are not

equally spaced there are no other conditions for these edges to follow.

Claim 8.20. We can join the paths in the linear forest L′ into a single path P such that

there are no evenly spaced x-type edges in P .

Proof. Consider the linear forest L′ and its endpoints (see summary in Table 8.2).

Set Endpoints in set Other endpoint of path Reference

{0} all −xb − 1 or U− Claim 8.17

U+ none - See Table 8.1

M+ all U− and possibly M− See M−

T+ 3 and possibly xb−1
2

U− or the pair {3, xb−1
2

} Claim 8.19

U− some evens U−, M+, and possibly T+ and 0 See M+, T+, {0}
M− all evens M+ Length 1 paths

T− −xb − 1 and possibly −3xb+7
4

0 or the pair {−xb − 1,−3xb+7
4

} Claim 8.17

Table 8.2: Path connections between each segment of L′

110

8.5. PROOF OF THEOREM 8.13

Starting with CA empty, we add edges as follows. First add the edge (0, 3), note that this

is a 3-type edge. Since R and B only contain edges of large type, there is only one 3-type

edge in L′. In particular, since n is odd, L′ ∪ {(0, 3)} does not have evenly spaced 3-type

edges.

Next, suppose the vertex v = −3xb+7
4

is indeed and endpoint. This means that the distance

from v to some endpoint in U− is at most 3n−29
16

< n−1
4
. Indeed, in L there was an endpoint

at every even vertex of [−n−5
2
,−n−1

2
+ r− 1] until we added C0 ∪ · · · ∪Cℓ ∪ {(5, 7)}. This

left at least n+3
16

vertices in U−. Further note that any edge from v to an endpoint in U−

must have even edge type since both endpoints are on even vertices. Let ev be any such

edge, note that L′ ∪ {(0, 3), ev} is still a linear forest.

We now move on to the vertices in M+. If |M+| = 1 leave this vertex as an endpoint. If

|M+| = 2 then use a 1-type edge e+ to join them, noting that this creates a path with one

vertex in M− and the other in U−. This cannot create a cycle since we have not added

any edges to vertices in M−. If |M+| = 3, join with e+ as in the previous case, and leave

one as an endpoint. Finally, if |M+| = 4 join with two 1-type edges e+ and e′+, again this

does not create a cycle. Denote by EM the set of edges added within M+, so EM depends

on |M+| and is equal to one of ∅, {e+} or {e+, e′+}. Note that L′ ∪ EM does not contain

evenly spaced 1-type edges. Indeed, when EM = ∅, {e+} then L′ ∪ EM contains at most

2 type 1 edges, and therefore they cannot be evenly spaced. When EM = {e+, e′+} there

are exactly three 1-type edges in L′ ∪ EM and two of them, e+ and e′+, have clockwise

distance 2 between them. Therefore there are no evenly spaced 1-type edges.

At this point CA = {(0, 3), ev} ∪ EM .

Now, L′ ∪ CA is a linear forest and has at most two endpoints outside of U− ∪ M− ∪
{−xb−1}, the vertices xb−1

2
, and some vertex u ∈ M+. Since u and xb−1

2
are not endpoints

of the same path (see construction in 8.19), we simply need to join all endpoints within

U−∪M−∪{−xb−1} to create our path P . Note that since all endpoints in this region are

even vertices, this will only require edges of even edge type. Moreover it only requires edges

of type n−1
4

or shorter. Indeed, the longest possible edge in this interval is (−xb−1,−n−5
2
),

which has type at most n+1
4
, but since there are at least n+3

16
− 1 endpoints remaining in

U− (as we saw earlier in this proof) we do not need to use this longest edge. All other

edges in the interval have type at most n−1
4

as required.

We add as many of these short even edges to CA as required, until L′ ∪ CA is a path.

Then we set P = L′ ∪ CA.

111

8.5. PROOF OF THEOREM 8.13

It is left to check that P has no evenly spaced edge types. Note that L clearly does not

since L contains at most 2 edges of each type. So we only need to check the edge types

appearing in C. Note that among all the edges in C, the only edges that are not even

are the edges in EM and the edge (0, 3). The remaining edges in C are all even and have

edge type at most n−1
4
. We have seen that the 3-type edge and the 1-type edges do not

create a problem, it is left to check the even edges of C.

Consider edges of even type in the linear forest L, with starting vertex in [xb+3
2

, n−1
2
] ∪

[−n−1
2
,−n−3

2
]. Such edges must all be from R. Indeed, even-type M0 edges all start

on a negative vertex, and in particular the M0 edges at −n−1
2

and −n−3
2

both have odd

type. Also all B edges have their starting vertex in the interval J , which does not intersect

[xb+3
2

, n−1
2
]∪[−n−1

2
,−n−3

2
]. We also know that all edges in R have a type from [⌈n−1

4
⌉, n−1

2
].

The only edges added to this interval to create P are the edges in EM . We know that

EM only contains edges with odd type. In other words, in P no edges of even type from

[2, n−1
4
] has a starting vertex in the interval [xb+3

2
, n−1

2
] ∪ [−n−1

2
,−n−3

2
]. This means that

if e1, . . . , em are all the x-types in P with even x ∈ [2, n−1
4
], and cd(ei, ei+1) = n

m
then

n
m

≤ 3n+17
8

. This forces m < 3, since n is odd we cannot have any evenly spaced x-type

edges when m = 2.

Therefore there are no evenly spaced x-type edges in P .

We use P as the base path for Theorem 8.12 to give a separating path system for Kn.

The size of this family is dependent on the size of D = [n
2
] \ F .

Claim 8.21. Let P be the path defined in this section. Then P is an F -separator path,

where D satisfies the following.

|D ∪ {1}| ≤ 5n+ 16 log2 n+ 167

32

Proof. From 8.15 we know that in L all edge types in R ∪ B appear exactly twice, and

the remainder appear exactly once. This means there are at most

n− 1

2
− n− 9

4
− 2− xb + 1

2
≤ n+ 9

8

edge types in L that appear exactly once. We put all of these edge types into D. Note

that, by the construction of R and B, these are the shortest ≈ n
8
edge types. In particular

1, 2 ∈ D.

Moreover, we know by 8.15 that L is an FL-separator where FL = {x : there is an e ∈
R ∪ B with edge type x}. To turn L into P we added various connecting edges C. The

112

8.6. SPECULATIONS ON GENERATOR PATH CONSTRUCTION

only way an edge type can be in FL but not in F is if some edge in C has edge type from

FL. Therefore, for the path P , the types associated with these C edges must also appear

in D, and the remaining types in F .

All edges in CB ∪ C0 ∪ · · · ∪ Cℓ ∪ {(5, 7)} have type 2, which are already accounted for.

We used a final 1
32
(n+ 16 log2 n+ 131) edges in CA. This means D contains at most

n+ 9

8
+

n+ 16 log2 n+ 131

32
=

5n+ 16 log2 n+ 167

32

edge types.

We remark that the methods in this section do not adapt too well to the strong version

of the problem. Indeed, the way to adapt the path system given in Theorem 8.9 using

these methods would be to use more fixing paths (as in Lemma 8.11). However, this gives

an upper bound of approximately 2n, which is not an improvement from the previously

known result of [3] - although it would be constructive.

8.6 Speculations on generator path construction

The complete graphs Kn with the smallest known separating path system all have values

of n for which there exists a generator path. While we are able to use and adapt the

structure of generator paths to give a bound in general, it is still valuable to investigate

when generator paths exist or even if they do not exist for some values of n.

The question is still open as to exactly which values of n there is a generator path.

Our motivation for this question comes from separating path systems, but the question

of existence of paths containing specific arrangements of edge types seems tricky and

interesting in its own right. For instance, McKay and Peters investigate which multisets

of edge types are realisable as a path in [20].

In this section we will have a brief look at two directions for answering this question which

arise from the methods used in the previous sections of this chapter.

8.6.1 Zig-Zag

When trying to construct a generator path, the most basic properties we need to ensure

are (GP1) and (GP2). A very useful and symmetric path in any Kn, is one that zig-zags

back and forth, each new edge being one type larger than the previous, before working

back down. When n is even this takes the form of the standard Hamilton path which,

113

8.6. SPECULATIONS ON GENERATOR PATH CONSTRUCTION

when rotated, provides a Hamilton decomposition of Kn. These paths always satisfy

(GP1) and (GP2), but fail at being generator paths through (GP3). In actual fact these

paths put all same type edge pairs at the same distance from each other.

Formally, we call the zig-zag path for n the path which follows

P =
(
1, 2, n, 3, n− 1, 4, n− 2, . . . ,

⌈n
2

⌉
+ 1
)
.

1

2

3

4

56

7

8

9

Figure 8.8: The zig-zag path P on

K9, with the P ′ shown as dashed

When we refer to the first half of this path, we mean

the first ⌊n
2
⌋ edges of P . Note that P has exactly

two edges of each edge type except n
2
if n is even, in

which case there is exactly one such edge. Moreover,

the first half of P contains exactly one edge of each

type. Note that this means the n rotations of the

the first half of P cover every edge of Kn. Let P ′

denote the first half of a zig-zag path for n.

Clearly these paths are not generators, but it seems

reasonable that we might be able to borrow some

of the structure to build a path, ensuring we fulfil

(GP1) and (GP2). In this section, we will show that

this is not the case, and in fact any generator path

for n cannot contain P ′ as a subgraph. Assume for

ease that n is odd, we will build our path in the following way which makes clear that a

generator path cannot contain P ′.

Let E be the set of edges we add to P ′ to get our generator path, meaning P ′ ∪ E is a

generator path for n. Then P ′ ∪ E must be a path and also P ′ ∪ E must follow (GP1),

(GP2) and (GP3). Since P ′ contains one edge of each type we have satisfied (GP1)

already. In order to satisfy (GP2), E must contain no more than one edge of each type,

and at most one edge type can be missing from E.

Note that when considering edges to add to E, each addition forms a pair of same type

edges in P ′ ∪ E and therefore the pair must be checked against (GP3).

Let L be the subset of E(Kn)\P ′ containing only legal extra edges, that is, for any e ∈ L

we have that P ′∪e is a linear forest. We will colour the edges of L in such a way that any

two edges which have different colours can be added to E without breaching (GP3).

Let e ∈ L and say e has type x. Since the n rotations of P ′ (P ′
0, . . . , P

′
n−1) cover all the

114

8.6. SPECULATIONS ON GENERATOR PATH CONSTRUCTION

1

2

3

4

5

6

78

9

10

11

12

13 1
2

3

4

5

6
7

8

9

10

11

Figure 8.9: Example of the complete colouring showing P ′
0 in black, with n = 11 and

n = 13

edges of Kn, we have that there is an i ∈ [n− 1] such that e ∈ P ′
i . Note that i ̸= 0 since

P ′
0 = P ′ and e ∈ L cannot belong to P ′.

Any edge e′ ∈ P ′
i ∩L must be the same colour as e. This is because the distance between

e and the x-type of P ′ is i, and clearly the distance between the y-type of P ′ and the

y-type of P ′
i is also i.

Similarly, all edges in P ′
n−i must be the same colour as each other, moreover this must be

the same colour as those in P ′
i . So for each i ∈ [n−1

2
] colour the edges of P ′

i colour ci, and

the edges of P ′
n−i colour ci.

Now we need to choose the edges of E from L in such a way that we do not take more

than one edge of any type or colour. As we can see in Figure 8.9, this is easily done when

n = 11 by taking E = {(4, 5), (5, 9), (9, 7), (1, 6)}, we have that P ′ ∪ E is a generator

path.

It is equally easy to see however, that this is not the case for n = 13. There are five

colours for this case and to have P ′∪E be a generator path for n we require E to contain

an edge from every one of the 5 colours. Clearly this can not be done, by looking at vertex

1, two colours appear only at this vertex and therefore only one of these colours can be

used to extend P ′.

Formally, let n > 13 be odd. There are at most n−1
2

colours used as all edges in P ′
i and

P ′
n−i have the same colour for each i ∈ [n−1

2
]. E must not contain more than one edge of

115

8.6. SPECULATIONS ON GENERATOR PATH CONSTRUCTION

each colour, and must contain at least n−1
2

− 1 edge types. Therefore, edges from n−1
2

− 1

different colour classes must be selected.

First note that (P ′
1 ∪ P ′

n−1) ∩ L = ∅, and hence the colour c1 is not used. Indeed, note

that there are no edges in L at vertices 2, . . . , ⌊n−1
4
⌋ + 1 because these all have degree 2

in P ′. Similarly there are no L edges with vertices at n− (⌈n−1
4
⌉ − 2), . . . , n. All edges in

P ′
1∪P ′

n−1 have at least one endpoint at these vertices and hence cannot belong to L.

In the same way, consider P ′
i ∪ P ′

n−i. When i ∈ [⌊n−1
4
⌋+ 1, n−1

2
], L definitely contains an

edge with colour ci since the 1-type edge in P ′
i is also in L. Let k = ⌊1

2
(⌈n−1

4
⌉+ 1)⌋, then

when i ∈ [k, ⌊n−1
4
⌋] the colour ci is found in L since long edges at vertex 1 belong to these

rotations. No other colours are found in L.

This means the colouring contains only n−1
2

− (k − 1) ≈ 7n
8

colours. We must choose at

least n−1
2

− 1 edges of different colours to complete E in the appropriate way. Clearly,

there are not enough different colour edges to choose from, and therefore E cannot be

completed in such a way that P ′ ∪ E is a generator path.

If we are able to add one edge from each colour class to E so that P ′ ∪E is a path, then

we can use the rotations of this along with any fixing paths (from Lemma 8.11) for the

edge types missing from E. This would give a separating path system for Kn, but the

best possible bound this method can give is

f(Kn) ≤ n+
n− 5

2
=

3n− 5

2

for odd values of n.

For example, in the Figure 8.9 when n = 13, we can extend the path by four edges,

E = {(5, 11), (5, 6), (1, 10), (8, 10)}, getting a separating path system of size n+2+2 = 17

(n rotations, and two each for the missing edge types from the extension E).

8.6.2 Primitive roots

The only known values of n which admit a generator path are n ≤ 20 and n = p for all

odd primes p. Since we know that generator paths exist for all primes, we know there are

infinitely many values of n which admit a generator path, and also that we are able to

find generator paths for arbitrarily large values of n. The proof of this (Theorem 8.6) is

both constructive and concise, but crucially the method uses algebraic properties, unlike

other constructions of separating path systems discussed in this thesis.

The proof of Theorem 8.6 relies on some of the properties of primitive roots, and constructs

116

8.6. SPECULATIONS ON GENERATOR PATH CONSTRUCTION

a path using a single arbitrary primitive root of n. Upon first glance it appears that we

only use the property that we can write the elements of [n − 1] in the form gi where g

is a primitive root modulo n and i ∈ [n − 1]. We then take the path given by v, v +

g1, v + g1 + g2, . . . , where v is some arbitrary vertex to begin the path, typically we

choose v = n. It is therefore reasonable to ask whether any special integer h which gives

[n − 1] = {hi : i ∈ [n − 1]} can also give rise to a generator path. For example, if there

exists a finite field on n elements, then its multiplicative group is cyclic and generated by

some h.

The trouble with this is because h is not necessarily an integer. This would not be a

problem if we were using the his to label the vertices, since these are only labels. The

way the path is structured means that the elements hi are giving us the edge types of all

our path edges, and not the vertices as we might assume. What it means to be an hi-type

edge, when hi is not an integer, is undefined. Choosing some equivalence between the

integers and his is essentially the same as choosing the correct order of vertices to make

a generator path, and we are no better off.

So the proof of Theorem 8.6 does rely on primitive root properties beyond having a

generating element. But there are other known values of n where a primitive root modulo

n exists, for example it is known that pk and 2pk, where p is an odd prime, both have

primitive roots. What can be said about using the method of Theorem 8.6 for these other

values of n.

Recall that g is a primitive root modulo n if for every integer x which is co-prime to n

there is some integer i such that x ≡ gi mod n. When n is not prime, those x which are

co-prime to n do not cover the whole of [n−1]. This becomes a problem when considering

(GP1) and (GP2). Indeed, the values of each gi give us the edge type of the ith edge in

our path P . Since edge types belong to [n
2
] and the gis belong to [n− 1], we use the fact

that an edge which travels x many vertices has the same edge type as one which travels

n−x vertices. So we have that gi and gj such that gi ≡ n− gj will give edges of the same

type.

If we have some x ∈ [n − 1] which shares at least one factor with n, which we do in the

case where n is not prime, then there will be no x-type edges in P . This means P does

not satisfy (GP1).

One final remark on the primitive root strategy is that the paths constructed in Theorem

8.6 do not give a strongly separating path system for any of the prime values. Recall

that for a generator path to be useful in the strong variation of the problem, we require

117

8.6. SPECULATIONS ON GENERATOR PATH CONSTRUCTION

that each edge type appears exactly twice as well as (GP3). The path we take is P =

(p, g, g + g2, g + g2 + g3, . . . ,
∑p−2

i=1 g
i), note that this path has p − 2 edges and therefore

cannot contain two of each edge type. In fact, it is a 1-type edge which is missing.

We note that the edge e = (
∑p−2

i=1 g
i,
∑p−1

i=1 g
i) is a one type edge, but that P ∪ {e} is

a cycle with exactly two edges of each type. This means that we are able to strongly

separate the edges of Kn by n cycles whenever n is an odd prime. But clearly this means

that no path constructed in the proof of Theorem 8.6 will generate a strongly separating

path system.

118

Chapter 9

Balanced complete bipartite

graphs

9.1 Generalising generator paths

Taking multiple rotations of some structure within a graph to give a family of substruc-

tures is not unique to complete graphs. In fact the driving force behind the constructions

in Chapter 8 and generator paths themselves is just the symmetry of the base graph. It is

therefore reasonable to consider these techniques applied to other symmetric base graphs,

and give a more generalised notion of a generator path.

It is particularly unwieldy to directly define a generator path in this generalised sense,

along with all the associated notions such as edge types. The definition would be too

complex to be helpful in understanding, so we do not attempt to formalise this idea in a

thorough definition - but rather give a short explanation.

Observe that the rotation of a path as used in Chapter 8 is nothing more than an auto-

morphism. That is, we can think of the rotation as a permutation of the vertices. We tend

to consider all n rotations of any path, which translates to the cyclic group generated by

the chosen permutation (or automorphism). Therefore, any graph with an automorphism

can use the technique. Simply choose a automorphism and consider the cyclic group

generated by that permutation.

In order to understand which edges are separated by these path automorphisms, we must

have some notion of edge types. These will be a class of edges which are closed under the

automorphism group.

119

9.1. GENERALISING GENERATOR PATHS

In this chapter we develop this approach for balanced complete bipartite graphs. The

results of this provide the following bounds for f(Kn,n).

Theorem 9.1. We have that 1.16n− 1
2
≤ f(Kn,n) ≤ 5n+5

4
.

We will first see the lower bound which will be given in Lemma 9.3. The upper bound

from Lemma 9.4 will be constructive, and use a rotation technique. We begin by clarifying

some notation and defining our rotation.

Let Kn,n denote the complete bipartite graph on vertex classes A = {a1, . . . , an} and

B = {b1, . . . , bn}. Let Q be a path in Kn,n, we define a (clockwise) rotation in Kn,n of Q

by r as the path Qr which contains the edge (a + r, b) if and only if (a, b) ∈ Q. In other

words, only the vertices in class A are shifted and all vertices in class B are fixed.

In complete graphs, we have the concept of edge types, which are unchanged under ro-

tation. The conditions of a generator path for n are all related to the edge types and in

particular the relationship between two edges of the same type. A similar notion arises

in paths on Kn,n, and in fact we can adapt a path from Kn to a path in Kn,n in such a

way that each class of edge types from Kn gives rise to a class of similarly behaved edges

in Kn,n.

Indeed, any path on Kn may be adapted to a path on Kn,n by associating each vertex

of Kn to a unique vertex in class A of Kn,n, and associating each edge on the path to

a unique vertex in class B. More precisely, if P = (v1, v2, . . . , vk) is a path in Kn, then

P ′ = (a1, b1, a2, b2, . . . , ak) is a path in Kn,n where ai ∈ A and bi ∈ B for every i and ai

represents the vertex vi of Kn and bi represents the edge (vi, vi+1). Then the pair of edges

(ai, bi) and (ai+1, bi) are descended from the edge (vi, vi+1) of Kn, moreover they retain

the information about the edge type and starting vertex of (vi, vi+1).

For ease of notation we will write all edges in Kn,n in the form (a, b) with first coordinate

a ∈ A and b ∈ B second. We will denote a path Q = (a1, b1, a2, b2, . . . , ak, bk) in Kn,n by

listing alternate edges starting with the first edge, that is Q = (a1, b1), (a2, b2), . . . , (ak, bk).

This is both to clearly distinguish paths in Kn,n from paths in Kn, and to avoid confusion

over vertices in A with the same labels as those in B.

In adapting P to P ′ we effectively take each edge and replace it with two edges which

divert the path to B before returning to A. This means that any x-type edge will be

transformed into a pair of edges with a common vertex in B and with their A vertices at

a distance of x. Meaning that, for a path P ′ = (a1, b1), (a2, b2), . . . , (ak) where (vi, vi+1)

120

9.2. LOWER BOUND

is an x-type edge of P , the path P ′ rotated by x will contain the edge (ai+1, bi) if the

starting vertex (in Kn) was vi, or the edge (ai, bi) if the starting vertex was vi+1. We call

the edge (ai, bi) a leading edge and (ai+1, bi) the trailing edge if vi was the starting

vertex, similarly we call (ai+1, bi) the leading edge and (ai, bi) the trailing edge if vi+1 is

the starting vertex.

9.2 Lower bound

Just as for complete graphs, to get a lower bound for f(Kn,n) we use a counting argument.

Recall that the argument of Lemma 8.1, providing the lower bound for f(Kn), only used

two properties of Kn: the number of edges, and the length of the longest path. We can

use the same argument to give a lower bound in terms of these to properties for any graph

G.

Lemma 9.2. Let G be a graph with e edges and where the length of the longest path is p.

Then we have that f(G) ≥ 2(e−1)
p+1

.

The proof of this is identical to the proof of Lemma 8.1.

There are n2 edges in Kn,n, and the length of the longest path is 2n−1. Applying Lemma

9.2 with these values gives us a lower bound of f(Kn,n) ≥ n. However, we can adapt

the ideas from Lemma 9.2 to give a better bound in this case. For Kn,n we can push the

steps a little further due to the difference in number of edges and path lengths in Kn,n

compared to those of Kn.

Lemma 9.3. For the complete bipartite graph Kn,n with vertex classes A and B each of

size n, the minimum size of separating path system is at least (
√
10 − 2)n − 1

2
. Giving

f(Kn,n) ≥ (
√
10− 2)n− 1

2
≥ 1.16n− 1

2
.

Proof. Let S be a family of paths on Kn,n where |S| = s. In order for S to be a separating

path system, S must cover n2−1 edges of Kn,n. In other words, there is at most one edge

of Kn,n which appears 0 times in S.

Since there can be at most one unique edge per path, we must have that at most s edges

in Kn,n appear exactly 1 time in S.

Note that the maximum length of any P ∈ S is 2n−1. Of these 2n−1 edges, at most one

may be unique to P , the remaining 2n−2 edges must all appear in at least one additional

121

9.2. LOWER BOUND

path from S. In other words, we have 2n− 2 edges distributed across s− 1 paths. Note

that if k of these edges are found in the same additional path, then at least k − 1 of the

k must be found in yet another path of S in order them to be separated. Clearly then, of

these 2n− 2 edges, at most s− 1 appear in exactly one additional path and hence appear

exactly twice in S. Since this is true of all paths P ∈ S, there are at most (s−1)s
2

edges in

Kn,n which appear exactly twice in S.

We can use this to calculate the minimum number of edges which must appear in S three

or more times. Indeed, the number of edges covered by S is at least n2 − 1. Of these at

most s appear once and at most (s−1)s
2

appear twice. Therefore,

n2 − 1− s− (s− 1)s

2

edges of Kn,n must appear at least three times.

We need to have enough paths in S to ensure that these edges get covered as many times

as required. Observe then

(2n− 1)s︸ ︷︷ ︸
edges used

with multiplicity

− (n2 − 1)︸ ︷︷ ︸
first copy of edges

− (n2 − 1− s)︸ ︷︷ ︸
second copy of edges

≥ n2 − 1− s− (s− 1)s

2

s2 + s(4n+ 1)− 6(n2 − 1) ≥ 0

s ≥
√

10n2 + 2n− 23

4
− 2n− 1

2
.

Which gives |S| = s ≥ (
√
10− 2)n− 1

2
as required.

In the lower bound above, we consider the edges which appear exactly 0, 1, and 2 times

in S and count these edges in two different ways. It is reasonable to ask if this method

can be extended by considering more edges, for example edges which appear 3 times in

S.

In the case of Kn,n, it turns out that that considering these edges does not help. The

above method works by counting the minimum number of edges which need to appear

exactly 3 times in order for a system of size s to be separating. We then balance this

against the amount of ‘space’ we have available by considering the length of the paths

and multiplicity of the edges. When all paths have length 2n−1 there is enough available

space to have 1 edge appear 0 times, s edges to appear once, (s−1)s
2

edges to appear twice,

and the remaining edges to all appear three times exactly. Since there is no requirement

for any edge to appear 4 times (or more), we do not gain anything from trying to consider

these.

122

9.3. UPPER BOUND

To see this, recall that in any P ∈ S there is at most one edge unique to P and at most

s− 1 edges which appear in exactly one other path of S. Additionally, there are at most
(s−1)(s−2)

2
edges of P which can appear in exactly two other paths. Indeed, consider edges

e, e′ ∈ P which each appear in exactly two other paths, if the pair of extra paths that

contains e is the same as the pair of paths containing e′, then e and e′ are not separated

by S. Therefore the pair of paths from S \ {P} which contain e must be distinct from

the pair that contain e′. In other words, the number of edges of P which can appear in

two other paths is at most the number of different pairs from S \ {P}, which is (s−1)(s−2)
2

.

Observe that

1 + s− 1 +
(s− 1)(s− 2)

2
≥ 2n− 1

holds if s ≥ n. Since the maximum length of a path is 2n − 1, this shows that no path

needs to contain any edges which appear 4 or more times in S.

9.3 Upper bound

We will use a construction based on rotations of paths in Kn,n which have been adapted

from paths in Kn in the manner discussed earlier in this chapter. This will provide the

upper bound for f(Kn,n).

Lemma 9.4. For the complete bipartite graph Kn,n, there exists a separating path system

of size at most 5n+5
4

. This gives f(Kn,n) ≤ 5n+5
4

.

Proof. Consider the zig-zag paths of Kn (see Section 8.6.1) of the form P = (1, 2, n, 3, n−
1, 4, n− 2, . . . ,

⌈
n
2

⌉
+ 1). Recall that these paths contain exactly one n

2
-type if n is even,

and exactly two of each other edge type. Moreover, each pair of same type edges appear

at a set distance from each other, distance n
2
in all cases when n is even, and otherwise

n−1
2

for odd edge types and n+1
2

for even.

We consider the path P0 on Kn,n, which is adapted from P using the above method, and

where the first x-type edge in P is bisected in P0 by the B vertex 2x− 1 and the second

x-type edge is bisected by 2x. We also include in P0 an additional final edge between the

vertex in A representing the final vertex of P , and the vertex n in B.

See Figure 9.1 for an example of the path P0.

Let P = {Pi : i ∈ [n − 1]} be all n rotations of P0 = (a1, b1), (a2, b2), . . . , (an, bn), where

Pi = (a1 + i, b1), (a2 + i, b2), . . . , (an + i, bn) is the rotation of P0 by i. Note that P covers

every edge of Kn,n. Indeed, each vertex in B has at least one incident edge in P0, the

123

9.3. UPPER BOUND

1

2

3

45

6

7
1

1

2

2

3

3

4

4

5

5

6

6

7

7

A

B

1-type 2-type 3-type

Figure 9.1: The zig-zag path of K7 and the path P0 adapted from it in K7,7

rotations fix B vertices and cycle through n different endpoints for edges at B vertices,

therefore each B vertex has n incident edges covered by P .

Consider two edges e1 and e2 in Kn,n, we make the following claim.

Claim : e1 and e2 are separated by P unless they originate from two different edges of

the same type in P , and there is some Pi in which both are leading edges.

To see this, let e1 ∈ Pi and note that if e2 /∈ Pi then the edges are separated and we are

done. Suppose then that e1, e2 ∈ Pi, and let e1 = (ai, bj) and e2 = (ar, bs). Suppose first

that bj = n then e1 is the unique edge in Pi (i.e. e1 /∈ Pj whenever j ̸= i), since there is

only one incident edge at n in P0. Note that every other B vertex has two incident edges

in P0, therefore all edges at these vertices appear in more than one rotation of P0, which

means there is a j ∈ [0, n− 1] with j ̸= i such that e2 ∈ Pj.

We may now suppose that bj ̸= n and similarly bs ̸= n. Then we must have that e1

originated from an x-type edge in Kn, and e2 from a y-type edge. As we saw earlier, this

means that Pi−x contains e1 if it is a leading edge in Pi, and Pi+x contains e1 if it is a

trailing edge in Pi, where i ± x is calculated modulo n. Similarly, e2 is found in either

Pi−y or Pi+y depending on whether it is a leading edge in Pi.

Since there are two incident edges at both bj and bs in P0 we know that every edge incident

to bj or bs in Kn,n appears in exactly two rotations of P0. In other words e2 cannot be

found in Pi−x or Pi+x unless x = y, meaning that e1 and e2 are separated if they originate

from edges of different types. In fact, in order for the pair of edges to not be separated by

P we must have that they are both contained in Pi−x or both in Pi+x, that is, they must

both be leading or both be trailing in Pi. Note that if both are trailing in Pi then we have

124

9.3. UPPER BOUND

that both are leading in Pi+x. Further note that in all rotations of P0 the vertices bj and

bs have exactly one incident leading edge and one trailing edge, therefore bj ̸= bs. During

the adaptation of P to P0 we bisect each P edge with a unique vertex from B, therefore

any edges in P0 (or its rotations) which are incident to different B vertices must originate

from different edges. This proves the claim.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

A

B

P0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

A

B

P1

Figure 9.2: Two trailing 1-type edges in P0 appearing together as leading 1-type edges in

P1, note that these are the only edges common to both paths

The remaining paths will separate pairs of edges which originate from two different edges

of the same type in P which are both leading edges in some Pi. Let Q = {Qi : i ∈ [⌈n
4
⌉]}

be the family of paths with

Qi = (2i− 1, 1), (2i, 2), (2i+ 1, 3), . . . , (2i+ n− 3, n− 1), (2i+ n− 2, n).

The family Q can also be thought of as the first ⌈n
4
⌉ rotations by an even integer of the

path Q1 = (1, 1), (2, 2), (3, 3), . . . , (n− 1, n− 1), (n, n).

1

1

2

2

3

3

4

4

A

B

n− 2

n− 2

n− 1

n− 1

n

n

. . .

. . .

Q1

Figure 9.3: The path Q1

Now consider two edges of Kn,n, e1 and e2, which originate from distinct x-type edges of

P and are both leading edges in Pi. Note that, by the construction of P0, one must have

its B endpoint at 2x− 1 and the other at 2x. Without loss of generality we may assume

that e1 = (a, 2x− 1), and therefore e2 = (a′, 2x) where

a′ =

a+ n

2
when n even

a+ n+1
2

when n odd and x even

a+ n−1
2

when n odd and x odd.

125

9.3. UPPER BOUND

Recall that leading edges in Kn,n are descended from x-type edges in Kn and correspond

to the starting vertex the x-type edge. Therefore, the distance in A between leading edges

is the same as the clockwise distance on Kn between the two x-type edges from which

the leading edges originate. This distance has nothing to do with the placement of edges

within any path, or the order in which vertices appear in a path.

We first claim that if there exists i ∈ [1, ⌈n
4
⌉] such that a can be written in the form

a = 2x− 1 + 2i− 2 or a = 2x− 1 + 2i− 1,

then e1 ∈ Qi and e2 /∈ Qi.

It is easy to see that e1 ∈ Qi, by noting that all edges in Qi have the form (b+ 2i− 2, b)

or (b + 2i − 1, b), since the B vertex of e1 is 2x − 1 the statement follows. To see that

e2 /∈ Qi, consider the B edges at 2x in Qi, they must be of the form (2x + 2i− 2, 2x) or

(2x+ 2i− 1, 2x). Hence, if e2 ∈ Qi we must have either

2x+ 2i− 2 =

a+ n

2
when n even

a+ n+1
2

when n odd and x even

a+ n−1
2

when n odd and x odd,

or

2x+ 2i− 1 =

a+ n

2
when n even

a+ n+1
2

when n odd and x even

a+ n−1
2

when n odd and x odd.

Rearranging gives this

a =

2x+ 2i− 2− n

2
when n even

2x+ 2i− 2− n+1
2

when n odd and x even

2x+ 2i− 2− n−1
2

when n odd and x odd,

which are clearly all contradictions, or this

a =

2x+ 2i− 1− n

2
when n even

2x+ 2i− 1− n+1
2

when n odd and x even

2x+ 2i− 1− n−1
2

when n odd and x odd,

which are also contradictory to the known possible values of a. Therefore, we know that

e2 /∈ Qi and hence the two edges are separated. It remains to show that the edges are

126

9.3. UPPER BOUND

separated when a cannot be written in this form. Since we have just seen that e1 ∈ Qi

implies e2 /∈ Qi, it is sufficient to show that e2 ∈ Qi for some i ∈ [1, ⌈n
4
⌉].

Note first that if a cannot be written in the appropriate form we must have that a ∈
[2x−1+2⌈n

4
⌉, 2x−1+n−1]. It is clear that a may therefore be written as a = 2x−1+k

where k ∈ [2⌈n
4
⌉, n− 1]. Note that the value of 2⌈n

4
⌉ varies with the divisibility of n, but

is always one of the four cases: n
2
, n

2
+ 1, n−1

2
+ 1, n−1

2
+ 2.

Case 1 : 2⌈n
4
⌉ = n

2
.

This means that a = 2x− 1+ k for k ∈ [n
2
, n
2
+ n

2
− 1]. Also note that n must be even and

therefore a′ = a+ n
2
. This gives

a′ = 2x− 1 + k +
n

2

= 2x− 1 +
n

2
− 1 + j +

n

2
where j ∈

[
1,

n

2

]
= 2x+ j − 2.

Then there exists an i ∈ [1, ⌈n
4
⌉] such that a′ can be written in the form

a′ = 2x+ 2i− 2 or a = 2x+ 2i− 1,

whenever j ∈ [2, n
2
]. This means that as long as a′ ̸= 2x− 1, we have that e2 ∈ Qi. This

means that e1 and e2 are separated by Qi unless a
′ = 2x−1. To separate these final edges

we consider a single path Q+ = (1, 2), (3, 4), . . . , (2x−1, 2x), . . . , (n−1, n). Note that Q+

clearly contains e2 = (a′, 2x) when a′ = 2x− 1, and cannot contain e1 since there are no

edges at odd B vertices in Q+.

Then the collection P ∪Q∪{Q+} clearly separates all edges of Kn,n. Moreover, there are

|P|+ |Q|+ 1 = n+
⌈n
4

⌉
+ 1 =

5n+ 4

4

paths.

Case 2 : 2⌈n
4
⌉ = n

2
+ 1.

This means that a = 2x − 1 + k for k ∈ [n
2
+ 1, n

2
+ n

2
− 1]. Again n must be even and

therefore a′ = a+ n
2
. This gives

a′ = 2x− 1 + k +
n

2

= 2x− 1 +
n

2
+ j +

n

2
where j ∈

[
1,

n

2
− 1
]

= 2x+ j − 1.

127

9.3. UPPER BOUND

Then there exists an i ∈ [1, ⌈n
4
⌉] such that a′ can be written in the form

a′ = 2x+ 2i− 2 or a = 2x+ 2i− 1,

whenever j ∈ [1, n
2
− 1]. Therefore, we have that e2 ∈ Qi and hence the edges e1 and e2

are separated by Qi.

Clearly the collection P ∪Q separates all edges of Kn,n. Observe that this collection has

|P|+ |Q| = n+
⌈n
4

⌉
=

5n+ 2

4

paths.

Case 3 : 2⌈n
4
⌉ = n−1

2
+ 1.

This means that a = 2x − 1 + k for k ∈ [n−1
2

+ 1, n−1
2

+ n−1
2
]. This time n must be odd

and therefore a′ = a + n+1
2

if x is even and a′ = a + n−1
2

when x is odd. First suppose x

is even, then

a′ = 2x− 1 + k +
n+ 1

2

= 2x− 1 +
n− 1

2
+ j +

n+ 1

2
where j ∈

[
1,

n− 1

2

]
= 2x+ j − 1.

As in Case 2, this means that there is an i ∈ [1, ⌈n
4
⌉] such that e2 ∈ Qi and the pair of

edges is separated. Now suppose that x is odd, we have

a′ = 2x− 1 + k +
n− 1

2

= 2x− 1 +
n− 1

2
+ j +

n− 1

2
where j ∈

[
1,

n− 1

2

]
= 2x+ j − 2.

As in Case 1, there is an i ∈ [1, ⌈n
4
⌉] such that e2 ∈ Qi except when a′ = 2x − 1. To

remedy this we again use the path Q+ as in Case 1. The collection P∪Q∪{Q+} separates

all edges of Kn,n with

|P|+ |Q|+ 1 = n+
⌈n
4

⌉
+ 1 =

5n+ 5

4

paths.

Case 4 : 2⌈n
4
⌉ = n−1

2
+ 2.

128

9.3. UPPER BOUND

This means that a = 2x− 1+k for k ∈ [n−1
2

+2, n−1
2

+ n−1
2
]. Again n is odd and therefore

a′ = a+ n+1
2

if x is even and a′ = a+ n−1
2

when x is odd. First suppose x is even, then

a′ = 2x− 1 + k +
n+ 1

2

= 2x− 1 +
n+ 1

2
+ j +

n+ 1

2
where j ∈

[
1,

n− 1

2
− 1

]
= 2x+ j.

Then there exists an i ∈ [1, ⌈n
4
⌉] such that a′ can be written in the form

a′ = 2x+ 2i− 2 or a = 2x+ 2i− 1,

whenever j ∈ [1, n−1
2

− 1]. This means that e2 ∈ Qi and hence the edges e1 and e2 are

separated by Qi. Now suppose x is odd, and observe

a′ = 2x− 1 + k +
n− 1

2

= 2x− 1 +
n+ 1

2
+ j +

n− 1

2
where j ∈

[
1,

n− 1

2

]
= 2x+ j − 1.

As in Case 2, this means there exists an i ∈ [1, ⌈n
4
⌉] such that e2 ∈ Qi and hence the edges

e1 and e2 are separated. In this case we have the collection P ∪ Q separating all edges

with

|P|+ |Q| = n+
⌈n
4

⌉
=

5n+ 3

4

paths.

The bound of Lemma 9.4 is best possible for the generator path method using the def-

inition of rotation we have used. Meaning that any separating path system of Kn,n

constructed by using n rotations of a single path P (any path) must always have at least
n
4
additional paths which are not rotations of P .

Lemma 9.5. Let P0 be a path in Kn,n and let S be a separating path system of Kn,n. If

P0, . . . , Pn−1 ∈ S, where Pi is the rotation of P0 by i, then we have that |S| ≥ 5n
4
.

Proof. Consider any path P0 on Kn,n and its n rotations P0, . . . , Pn−1. We will consider

the edges that are separated by P0, . . . , Pn−1. Since P0 is a path, at most two vertices

in Kn,n have exactly one incident edge in P0, the remaining vertices all have exactly two

incident edges or none at all.

129

9.3. UPPER BOUND

Vertices of B with no incident edges in P0 will have none of their n incident edges of Kn,n

covered by P0, . . . , Pn−1. If there is any vertex b ∈ B with only one incident edge in P0,

then all edges incident to b in Kn,n are covered by P0, . . . , Pn−1 and each edge will appear

in exactly one unique path from the collection. If b ∈ B has two edges in P0, then every

edge incident to b in Kn,n will appear in exactly two of the paths from P0, . . . , Pn−1.

Any vertex of B which has no incident edges in P0 contributes n edges which are not

separated from each other. Since these edges all share a vertex, it will require at least

⌊n
2
⌋ additional paths to cover these for separation. So we can assume that there are no

vertices of B which have no incident edges in P0.

Suppose the edges (a1, b1) and (a2, b2) are in P0 and that b1 and b2 are the endpoints of

P0. Then the edges (a1, b1) and (a2, b2) are both unique to P0, they do not appear in any

Pi where i ∈ [1, n−1]. In particular, the edges (a1, b1) and (a2, b2) are not separated from

each other. Similarly, the edges (a1 + 1, b1) and (a2 + 1, b2) are both unique to P1 and

hence not separated, and in general (a1 + i, b1) and (a2 + i, b2) are unique to Pi and not

separated.

The minimum number of additional paths required to separate these edges is ⌈n
4
⌉. Indeed,

there are n pairs of edges that require separation, each pair has one edge at b1 and the

other at b2. At most two edges at each vertex can be covered with a single path, we require

one edge from each pair to be covered by the additional paths in order to separate. So at

most four pairs may be separated by a single path by choosing two edges at b1 and two

edges from different pairs at b2.

Finally, suppose that bn ∈ B is the only vertex of B with a single incident edge in P0,

and all other vertices in B have two incident edges in P0. Then P0 must be a maximum

length path, and all edges of Kn,n are covered by P0, . . . , Pn−1. Note that every edge,

except those at bn, appears in exactly two paths from P0, . . . , Pn−1. This means that each

edge at bn a unique edge in its path Pi, and is therefore separated from everything.

Let P0 = (a1, b1), (a2, b2), . . . , (an−1, bn−1), (an, bn), and consider the path on Kn given by

P = (a1, a2, . . . , an). Just as before, edges are not separated by P0, . . . , Pn−1 if and only

if they both originate from edges of the same type in P and are both leading in some Pi.

Since P is a maximum length path in Kn, there must be at least two edges in P that have

the same edge type, x. Therefore, there are two vertices in B, bi and bj, that are only

incident to edges originating from x-types. This means that for every edge at bi, there is

an edge at bj which it is not separated from. This is the same situation as in the previous

case, that is, there are n pairs of edges that require separation, each pair has one edge at

130

9.3. UPPER BOUND

bi and the other at bj. We will require an additional ⌈n
4
⌉ paths to separate all of these

pairs by the same argument as above.

131

Chapter 10

Ladders and grids

Recall that f(G) lies between log |E(G)| and 19n for any graph G on n vertices. Indeed,

the upper bound comes from Theorem 7.10 which is the recent result of [6], moreover

this is a strongly separating path system. The lower bound of log |E(G)| comes directly

from the trivial bound for the base version of the problem, that is the problem where the

ground set and separators are just sets with no additional structure or constraints.

Recall also that the conjectured upper bound for all graphs G on n vertices is f(G) ≤ n.

So far, the graphs we have considered have had f(G) much closer to this top upper bound.

It is entirely possible that the complete graph Kn is an extremal example, making it the

least efficient graph to have a separating path system for. In any case, it is certainly true

that any separating path system for Kn has the same order of magnitude as the worst

case graph.

While these extremes are clearly important areas of study, it is also interesting and worth-

while to investigate the other extreme - graphs which can be efficiently separated with a

path system as small as possible. The authors of [10] remark that ladders are such a class

of graph, where a ladder can admit a separating path system of size O(log |E(G)|).

In this chapter, we will discuss these ladder graphs and other graph classifications which

admit separating path systems of size close to log |E(G)|, with the aim of extending the

known graphs with small f(G).

10.1 Ladders

A ladder graph is defined as follows.

132

10.1. LADDERS

Definition 10.1. Let Ln be a graph with 2n vertices and 3n− 2 edges. The vertex set is

given by {1a, 2a, . . . , na, 1b, 2b, . . . , nb}. The edge set consists of the edges (ia, ib) for every

i ∈ [n], and for every i ∈ [n− 1] the edges (ia, (i+ 1)a) and (ib, (i+ 1)b). We call this the

ladder of order n.

Note that this is the cartesian product of a path of length n − 1 and a single edge.

Alternatively, it can be thought of as the graph on 2n vertices and 3n − 2 edges where

n edges make a perfect matching, splitting the vertices into two classes A and B each

class containing one vertex from every matching edge. The remaining edges form an

n − 1 length path in A and and n − 1 length path in B, where the order of the vertices

corresponding to matching edges is the same in both paths.

In [10], the authors point out that it is easy to show that f(Ln) ≤ 3 log n+1 by equating

a subset of [n− 1] to a path in Ln. Using this method with a little more care we are able

to get a slightly improved bound.

Lemma 10.2. We have that f(Ln) ≤ 2 (log n+ 2).

Proof. Let us view the ladder as two paths A and B, each of length n− 1, and a perfect

matching as the ‘rungs’ of the ladder. Then 1a, . . . , na are the vertices of path A and

1b, . . . , nb are the vertices of B. The matching edges are those of the form (ia, ib) for

i = 1, . . . , n.

Given any subset F of [n − 1], we construct a path P 1(F) by taking edges (ia, (i + 1)a)

for all i /∈ F and taking (jb, (j + 1)b) for all j ∈ F . We also take any edge (ia, ib) if both

i − 1 /∈ F and i ∈ F , similarly we take (ia, ib) if both i − 1 ∈ F and i /∈ F . This does

indeed make a path in Ln, see Figure 10.1 for an example of this.

1 2 3 4 5 6 7 8
A

B

Figure 10.1: Example on L8 with the path P 1(F) where F = {2, 3, 5, 7}

Let F be a separating system for [n − 1] of size |F| = ⌈log(n − 1)⌉. We know such a

system exists as this is the trivial set version of the separating problem. Let P1(F) =

{P 1(F) : F ∈ F} be the family of paths given by constructing paths as described above

for each set in F .

133

10.1. LADDERS

It is plain that the edges of A are separated from each other by P1(F). Indeed, consider

edges (ia, (i + 1)a) and (ja, (j + 1)a) where i, j ∈ [n − 1]. Since F separated all pairs

from [n − 1], we have that there is some F ∈ F where, without loss of generality, i ∈ F

and j /∈ F . Then P 1(F) ∈ P1(F), and by the construction of P 1(F) we have that

(ia, (i+ 1)a) /∈ P 1(F) and (ja, (j + 1)a) ∈ P 1(F). Similarly, the edges of B are separated

from each other by P1(F).

We can use a similar method to equate subsets of [n] to paths in Ln. Let F ′ ⊆ [n], we

construct the path P 2(F ′) by taking edges (ia, ib) for all i ∈ F ′, we make it a path by

using any required edges from A and B. See Figure 10.2 for an example.

1 2 3 4 5 6 7 8
A

B

Figure 10.2: Example on L8 with the path P 2(F ′) where F ′ = {2, 3, 5, 7}

Let F ′ be a separating system for [n] of size |F| = ⌈log n⌉. Let P2(F ′) = {P 2(F ′) : F ′ ∈
F ′} be the family of paths given by constructing paths as described above for each set in

F ′.

Then P2(F ′) separates all matching edges from each other. Indeed, consider (ia, ib) and

(ja, jb) and note that there is some F ′ ∈ F ′ such that (without loss of generality) i ∈ F ′

and j /∈ F ′. Then clearly we have that (ia, ib) ∈ P 2(F ′) and (ja, jb) /∈ P 2(F ′) and

P 2(F ′) ∈ P2(F ′).

It is left only to separate edges in A from those in B and the matching, as well as separate

edges in B from the matching edges. This can easily be done with the two paths A and

B. Since any two edges e ∈ A and e′ /∈ A are clearly separated by A, and similarly any

two edges e ∈ B and e′ /∈ B are separated by B.

Hence, the total number of paths used to separate the ladder Ln is at most

|P1(F)|+ |P2(F ′)|+ 2 = ⌈log(n− 1)⌉+ ⌈log n⌉+ 2.

This gives the result.

Given that a Ladder has 3n−2 edges, the set theoretic lower bound for f(Ln) is ⌈log(3n−
2)⌉ = log n+c, for some small constant c. Comparing this to the upper bound obtained in

Lemma 10.2, we see that there is only a factor of 2 difference. There is a certain amount

of wastage in the method of 10.2. By considering the matching edges and A/B edges

134

10.2. LADDER-TUBES

separately, we do not gain anything from the matching edges which appear in P1(F) nor

the A/B edges which appear in P2(F ′). It is therefore reasonable to expect the true

value of f(Ln) to be less than 2 log n, although a different construction method would be

required.

We remark that, using the above construction, we may assume that a separating path

system for Ln covers all edges of the graph. Recall that there is an allowance in the

definition of a separating path system for a single edge of the graph to not be contained

in any path in the system. For these ladders and the method above, note that the

uncovered edge must be one of the matching edges since the paths A and B appear in

the system. Further note that we can assume from a relabelling of the edges, that the

uncovered edge is (1a, 1b) inherited from the fact that the element 1 does not appear in

any sets of F ′. Then we can always extend any single path P 1(F) ∈ P1(F) with the edge

(1a, 1b) without compromising the separation or the fact that P 1(F) is a path.

10.2 Ladder-Tubes

We have seen that ladders are approximately optimal graphs in terms of size of a separat-

ing path system. We extend the idea behind ladders to something we call a ladder-tube,

which attempts to preserve the structure and ability to equate sets to paths, but increases

the proportion of edges to vertices.

Definition 10.3. Let L2
n be a graph with 4n vertices and 8n− 4 edges. The vertex set is

{1a, . . . , na, 1b, . . . , nb, 1c, . . . , nc, 1d, . . . , nd}. We define 4n of the edges by (ia, ib), (ib, ic),

(ic, id) and (id, ia) for each i ∈ [n]. The remaining edges are of the form (ia, (i + 1)a),

(ib, (i + 1)b), (ic, (i + 1)c), (id, (i + 1)d) for all i ∈ [n − 1]. We call this the ladder tube

of order n.

See Figure 10.3 for an example of this graph.

1 2 3 4 5 6 7 8
A

B
C

D

Figure 10.3: Example of the graph L2
8

When it comes to determining a bound for f(L2
n) we first note that L

2
n can be thought of

135

10.2. LADDER-TUBES

as two copies of Ln joined by a perfect matching, one copy between A and B the other

between C and D. We know from Lemma 10.2 that we can cover and separate edges in

ladders with 2(log n + 2) paths. If we consider the perfect matching to be split into two

parts, one between A and C, the other between B and D, then we can use log n paths of

the form P 2(F ′) to separate edges in the AC matching and similarly in the BD matching.

This gives us

4(log n+ 2) + 2 log n = 6 log n+ 8.

But we can do better than this.

Lemma 10.4. We have that f(L2
n) ≤ 4 log2(n) + 10.

Proof. Consider the family of paths, S, made up of the following. The paths A, B, C and

D respectively, along with two paths Ra and Rd where

Ra = {(1a, 1b), (1b, 1c), (1c, 2c), (2c, 2b), (2b, 2a), (2a, 3a), (3a, 3b), . . . , (na, nb), (nb, nc)}

and

Rd = {(1d, 1c), (1c, 1b), (1b, 2b), (2b, 2c), (2c, 2d), (2d, 3d), (3d, 3c), . . . , (nd, nc), (nc, nb)}.

1 2 3 4 5 6 7 8
A

B
C

D

Figure 10.4: An example of L2
8 and the paths Ra in blue and Rd in red

Given any subset F of [n− 1], let P 1
AB(F) be the path containing edges (ia, (i + 1)a) for

all i /∈ F and (jb, (j + 1)b) for all j ∈ F , as well as edges (ia, ib) if both i − 1 /∈ F and

i ∈ F and edges (ia, ib) if both i − 1 ∈ F and i /∈ F . Such paths are equivalent to those

in Lemma 10.2 and an example can be seen in Figure 10.1.

Define paths P 1
CD(F) equivalently, and let P1

AB(F) = {P 1
AB(F) : F ∈ F} and equivalently

for P1
CD(F) where F is a separating system for [n− 1] of size |F| = ⌈log(n− 1)⌉.

We also want S to contain the following ⌈log n⌉ paths. Let F ′ be a separating system

for [n] of size ⌈log n⌉. For each F ′ ∈ F ′ define paths P 2(F ′) to contain the edges (ia, ib),

(ib, ic), (ic, id) for each i ∈ F ′ along with any required edges from A and D. Call this

collection of paths P2(F ′).

136

10.2. LADDER-TUBES

1 2 3 4 5 6 7 8
A

B
C

D

Figure 10.5: An example of L2
8 and the path P 2(F ′) where F ′ = {2, 4, 5}

Finally, we want S to further contain the paths P2
AD(F ′) = {P 2

AD(F
′) : F ′ ∈ F ′} where

P 2
AD(F

′) contains edges (id, ia) for every i ∈ F ′ along with any required edges of A and

D.

Then we can define

S = {A,B,C,D,Ra, Rd} ∪ P1
AB(F) ∪ P1

CD(F) ∪ P2(F ′) ∪ P2
AD(F ′).

In total the number of paths we have is

|S| = 6 + 2⌈log(n− 1)⌉+ 2⌈log n⌉ ≤ 4 log2(n) + 10.

It remains to check that these paths do in fact separate the edges of L2
n. Take any two

edges e and e′. Let X ∈ {A,B,C,D}, without loss of generality we have three cases:

e ∈ X and e′ /∈ X; e, e′ ∈ X; e, e′ /∈ A,B,C,D.

First consider e ∈ X and e′ /∈ X. Clearly the path X ∈ S separates e and e′.

Next assume e, e′ ∈ X and first consider X = A, then we can write e = (ia, (i+ 1)a) and

e′ = (ja, (j + 1)a). Since F is a separating system for [n − 1], there is some F ∈ F with

i /∈ F and j ∈ F . Then P 1
AB(F) ∈ S is such that e ∈ P and e′ /∈ P . The case is identical

when X = B, and using P 1
CD(F) instead when X = C,D.

Finally then, assume e, e′ /∈ A,B,C,D. Then we may write e = (ik, iℓ) and e′ = (jr, js)

where k, ℓ, r, s ∈ {a, b, c, d}. First note that if i ̸= j then the edges are separated by

P2(F ′) ∪ P2
AD(F ′). Indeed, since F ′ is a separating system for [n], there is some F ′ ∈ F ′

such that i ∈ F ′ and j /∈ F ′. If {k, ℓ} = {a, d} then e ∈ P 2
AD(F

′) and e′ /∈ P 2
AD(F

′),

otherwise e ∈ P 2(F ′) and e′ /∈ P 2(F ′).

Assume then that e = (ik, iℓ) and e′ = (ir, is), in particular this means that {k, ℓ} ≠ {r, s}
since e and e′ are distinct. If {k, ℓ} = {a, d} then e /∈ Ra ∪ Rd, but clearly e′ ∈ Ra ∪ Rd.

We may suppose that {k, ℓ} = {a, b} without loss of generality since the case is equivalent

when {k, ℓ} = {c, d}, and one of {k, ℓ} and {r, s} must be equal to {a, b} or {c, d}. So,

e = (ia, ib) therefore e ∈ Ra. If e′ ∈ Ra then we must have that e′ = (ib, ic) and hence

e′ ∈ Rd, but clearly e /∈ Rd.

137

10.3. GRIDS

10.3 Grids

The final class of graph we will consider is the grid.

Definition 10.5. Let L(m,n) be the graph with a vertex at each coordinate (i, j) where

i ∈ [n] and j ∈ [m]. There is an edge between vertices (i, j) and (r, s) if either |i− r| = 1

or |j − s| = 1, but not both. We call L(m,n) the m × n grid.

Let L(m,n) be the grid, we denote the edge between vertices (i, j) and (i + 1, j) by

(i, j :→) and the edge between (i, j) and (i, j + 1) by (i, j :↑).

Define for each i ∈ [n] the path Ni = {(i, 1 :↑), (i, 2 :↑), . . . , (i,m − 1 :↑)}, which is the

vertical path containing every edge in vertex column i. Similarly, we define the path

Mj = {(1, j :→), (2, j :→), . . . , (n − 1, j :→)} for each j ∈ [m] to be the horizontal path

consisting of all the edges in vertex row j.

The aim will again be to define a system for equating subsets of [n] and [m] to paths on

L(m,n).

Lemma 10.6. We have that f(L(m,n)) ≤ 3 log(nm) + 7.

Proof. First consider the case where n and m are both even.

We are able to equate a subset of [m
2
(n − 1)] with a path in L(m,n) in the following

way. Let F ⊆ [m
2
(n− 1)], and observe that each element of F can be written in the form

x(n − 1) + y where y ∈ [n − 1] and x ∈ [0, m
2
]. We will define a path P (F), where the

elements of [m
2
(n−1)] are represented by squares on the grid between an odd bottom row

and an even top row, then inclusion in F will be represented by P (F) travelling along the

even row over the corresponding section, and exclusion represented by travelling the odd

route. Various vertical edges will be used to connect these sections.

To see an example of such a path, see Figure 10.6 which shows that for each i ∈ F , P (F)

travels along the even top row of the square corresponding to i, and for j /∈ F the path

travels below on the odd row. The only vertical edges used in P (F) are the necessary

links between the odd and even rows (e.g. where i /∈ F and i + 1 ∈ F such as 8 and 9),

and the edges in N1 and Nn linking the next pair of odd and even rows.

138

10.3. GRIDS

1 2 3 4 5 6 7 8

2

3

4

5

6

7

8

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

Figure 10.6: Example of the grid L(8, 8) and the path P (F) where F ⊆ [28] given by

F = {6, 9, 10, 11, 14, 15, 16, 18, 20, 23, 25, 27, 28}.

Formally, let P (F) be a path containing the following edges for each x(n− 1) + y /∈ F

(y, 2x+ 1 :→)

(y, 2x+ 1 :↑) when i− 1 ∈ F and y > 1

(n, 2x+ 1 :↑), (n, 2x+ 2 :↑) when y = n− 1 and x even

(n, 2x+ 3 :↑) when y = n− 1 and x even and i+ n− 1 ∈ F

(1, 2x+ 1 :↑), (1, 2x+ 2 :↑) when y = 1 and x odd

(1, 2x+ 3 :↑) when y = 1 and x odd and i+ n− 1 ∈ F.

And for each x(n− 1) + y ∈ F , the edges

(y, 2x+ 2 :→)

(y, 2x+ 1 :↑) when i− 1 /∈ F and y > 1

(n, 2x+ 2 :↑) when y = n− 1 and x even

(n, 2x+ 3 :↑) when y = n− 1 and x even and i+ n− 1 ∈ F

(1, 2x+ 2 :↑) when y = 1 and x odd

(1, 2x+ 3 :↑) when y = 1 and x odd and i+ n− 1 ∈ F.

Let F be a separating system for [m
2
(n− 1)], and consider P = {P (F) : F ∈ F}. Notice

that any pair of edges of the form e = (a, b :→) and e′ = (c, d :→), are separated by

139

10.3. GRIDS

P as long as b and d have the same parity. Indeed, suppose b and d are both odd and

b ≤ d, and consider integers i = b−1
2
(n − 1) + a and j = d−1

2
(n − 1) + c, both of which

belong to [m
2
(n − 1)] and are distinct if and only if e and e′ are distinct. We have that

there is some F ∈ F which separates i and j, assume that i ∈ F . Then observe that the

path P (F) contains e but not e′, and therefore separates them. An equivalent argument

setting i = b−2
2
(n − 1) + a and j = d−2

2
(n − 1) + c shows separation when both b and d

are even.

A single additional path R = M2∪M4∪· · ·Mn∪{(n, 2 :↑), (n, 3 :↑), (1, 4 :↑), (1, 5 :↑), . . . },
separates e and e′ when b and d have differing parity. So the family of paths P ∪ {R}
separates all horizontal edges from each other.

To separate all vertical edges from each other we can apply an analogous argument to get

a path family Q from a separating system for [n
2
(m− 1)]. Let F ′ be a separating system

for [n
2
(m−1)], and paths Q(F ′) for each F ′ ∈ F ′ defined as for P (F) with the coordinates

inverted. Just as in the horizontal case we will require an additional path R′ made up of

the paths Ni for even i and connecting edges in the top and bottom row.

The family P∪Q∪{R,R′} separates all horizontal edges from each other, and all vertical

edges from each other and has size |F|+|F ′|+2. It is left to separate horizontal edges from

vertical edges. Note that R contains half of all the horizontal edges, and only contains

vertical edges from N1 and Nn. Let O = M1 ∪M3 ∪ · · ·Mn−1 ∪ {(n, 1 :↑), (n, 2 :↑), (1, 3 :↑
), (1, 4 :↑), . . . } be a path that covers all remaining horizontal edges and only contains

vertical edges from N1 and Nn. Then note that all vertical edges are separated from

horizontal edges by the paths R and O, unless the vertical edges lie in N1 and Nn. An

easy way to separate these edges from all horizontal ones is by using the two paths N1

and Nn.

In other words the family P ∪Q∪ {R,R′, O,N1, Nn} separates all edges of L(m,n). The

size of this family is

|F|+ |F ′|+ 5 =

⌈
log(

m(n− 1)

2
)

⌉
+

⌈
log(

n(m− 1)

2
)

⌉
+ 5 ≤ 2 log(nm) + 5.

Suppose now that m is odd. This causes a problem when trying to define the paths P (F),

for every odd row of the grid the horizontal edges represent elements that are not included

in F and the even rows represent those that are included in F . This means each odd row

is paired with an even row with one row indicating ‘out’ and the other indicating ‘in’.

When n is odd, we have an additional row with no partnering row to indicate ‘in’.

140

10.3. GRIDS

In order to use the same technique as in the even case, we construct Q and R′ as in the

even case, and produce P and R for the sub-grid L(m−1, n). Note that Q and R′ separate

all vertical edges of L(m,n) from each other, just as they did before. The majority of

horizontal edges are separated from each other by P and R, just the edges of Mm need

to be separated from the other edges of Mm. This can be done by taking paths of the

form P1(H) from Lemma 10.2, considering the ladder with A = Mm−1 and B = Mm, and

where H is a small separating system for [n − 1]. This is |H| = ⌈log(n − 1)⌉ additional

paths.

With Q, P , P1(H), and {R,R′} all horizontal edges are separated from other horizontal

edges, and vertical edges are separated from other verticals. We separate horizontal from

vertical edges in an analogous way to the even case. We define the path O to contain

all edges from Mi for odd i (including i = m), this ensures that all horizontal edges are

covered by R and O, which only contain vertical edges from N1 and Nn. Then the family

Q∪P ∪P1(H)∪ {R,R′, O,N1, Nn} separate all edges of L(m,n). The size of this family

is

|F ′|+ |F|+ |H|+ 5 ≤ 2 log(nm) + log n+ 6.

It is plain that we can we can achieve an equivalent family when m is even and n is odd,

with this case giving us a family of size at most 2 log(nm) + logm+ 6.

And of course we can apply the same adaptation to the case where both n and m are

odd, giving us a separating path family of size at most

2 log(nm) + log n+ logm+ 7 = 3 log(nm) + 7.

We remark that if we consider the torus, T , formed from L(m,n) by equating N1 with Nn

and M1 with Mm, then the method of Lemma 10.6 may be used to provide a separating

path system for T with size at most 3 log(nm) + 7. That is, the problem does not change

significantly when considering the torus.

141

Chapter 11

Summary and open problems

We have investigated the value of f(G) in the cases where G is the complete graph and

the complete bipartite graph. Both of these are interesting classifications of graph to

consider in their own right, but also they are good candidates for extremal graphs which

require the largest separating path system of any graph on n vertices. The symmetry of

these graphs also allow us to consider the use of generator paths for both, and we are able

to compare this technique in the two cases.

We also considered the value of f(G) for graphs which admit a very small separating path

system. The ladders, ladder-tubes, and grids all allow for very efficient separating path

systems due to the ability to equate unstructured subsets to the edges of G. These graphs

are interesting because they admit such small separating path systems.

There are still many open problems within this topic, we finish by discussing these areas

of further study.

First recall Conjectures 7.5 and 7.7, which assert that there is some universal constant C

such that any graph on n vertices has a (weakly or strongly) separating path system of

size Cn. These conjectures were proved by Bonamy, Botler, Dross, Naia, and Skokan in

Theorem 7.10 with a constant of C = 19. However, in their paper [6] the authors state

that the value of 19 is likely far from best possible. In fact, the authors of [10] suggest

that (in the weak setting) a constant as low as C = 1 + o(1) may be enough. There are

certainly no counterexamples known that show otherwise.

Question 11.1. Is it true that for every graph G on n vertices f(G) ≤ (1 + o(1))n?

Observe that, to answer this question in the negative, it suffices to find a single graph G

142

11. SUMMARY AND OPEN PROBLEMS

on k vertices with f(G) = k + 1. Then simply taking n
k
disjoint copies of G provides a

graph on n vertices which requires at least (1+ 1
k
)n paths in any separating path system.

Indeed, since no connected path can cover edges in more than one copy of G, we must

be able to partition the family into n
k
separating path systems each for a distinct copy of

G.

We note that, if Question 11.1 is true, the complete graph Kn is certainly an extremal

example since f(Kn) ≥ n− 1 (Lemma 8.1). We have also seen that f ′(Kn) = n for some

values of n and it is likely that f ′(Kn) may be close to n in general. To understand both

of the problems better, it would be useful to pin down the exact values of f(Kn) and

f ′(Kn).

Question 11.2. Is it true that f(Kn) ≤ n for all values of n? Could it be the case that

f ′(Kn) ≤ n for all n?

Finding generator paths and strong generator paths is one way of answering this. We

know from Theorem 8.4 that existence of a generator path for n gives us f(Kn) ≤ n, and

also that existence of a strong generator path for n gives f ′(Kn) ≤ n.

Question 11.3. For which values of n do generator paths exist? For which values of n

do strong generator paths exist?

We have shown in Theorem 8.6 that generator paths exist whenever n is prime. This

means that we know that f(Kn) ≤ n for infinitely many values of n. It would be very

interesting to have an analogous result in the case of strong separation.

Question 11.4. Do we have f ′(Kn) ≤ n for infinitely many n?

Using generator paths and rotations in general naturally give an upper bound of n rather

than n−1 to match the lower bound of Lemma 8.1. There are constructions of separating

path systems of Kn for small values of n which have n− 1 paths, but a different approach

is needed to have a general construction of this size.

Question 11.5. Is there a different approach which gives f(Kn) ≤ n−1 for many values

of n (e.g. even/odd n, or sufficiently large n)?

For bipartite graphs, we saw that 1.16n − 1
2
≤ f(Kn,n) ≤ 5n+5

4
in Theorem 9.1. We also

saw that an upper bound of 5n
4

is best possible for the method of construction we used

143

11. SUMMARY AND OPEN PROBLEMS

(Lemma 9.5). Interestingly, we get a similar result when we change the automorphism

and define rotation of path Q by r as Qr where (a+r, b+r) ∈ Qr if and only if (a, b) ∈ Q.

That is, a family containing all n rotations (as defined above) of a path Q which is a

separating path system for Kn,n must have size at least 5n
4
. We omit the details as they

are similar to the proof of Lemma 9.5. This points to the upper bound of Theorem 9.1

being closer to the truth, opening up the following questions.

Question 11.6. How can we improve the lower bound from f(Kn,n) ≥ (
√
10− 2)n− 1

2
?

Question 11.7. Is it the case that f(Kn,n) ≥ 5n
4
?

In the opposite direction, since using a different automorphism provided a similar bound

it is reasonable to think that any serious improvements to the upper bound must come

from a method which does not use rotations at all.

Question 11.8. Are there non rotation based methods that match or improve the upper

bound of f(Kn,n) ≤ 5n+5
4

?

Finally, we saw that there is a graph which admits a separating path system with size

within a factor of 2 of the optimal set theoretic bound of f(G) ≥ log(|E(G)|) - the Ladder
Ln. But is there a different graph for which the exact optimal bound is achieved.

Question 11.9. Is there a family of graphs such that f(G) = (1 + o(1)) log(|E(G)|) for

every G in the family?

Of course it is still possible that G = Ln, as improving the lower bound of f(Ln) seems

difficult. In general we do not have many good ways of finding lower bounds for path

separation problems, only the set theoretic bound or simple counting arguments. In the

case of ladders, the counting arguments do not give good bounds at all since the number

of edges in the graph is small compared to the length of the longest path. In this case

then, there might be a better set-theoretical method to give a lower bound. The upper

bound given in Lemma 10.2 also has room for improvement, by considering the horizontal

and vertical edges separately we end up needing to use two different styles of separating

system which gives us the factor of 2 in the result. An improved method may be able to

make use of the edges which are wasted by considering them separately.

Question 11.10. What is the exact value of f(Ln)?

144

References

[1] N. Alon. Explicit construction of exponential sized families of k-independent sets.

Discrete Mathematics 58.2 (1986): 191-193.

[2] F. Arrepol, P. Asenjo, R. Astete, V. Cartes, A. Gajardo, V. Henŕıquez, C.

Opazo, N. Sanhueza-Matamala, C. Thraves Caro. Separating path systems in trees.

arXiv:2306.00843 [math.CO] (2023+).

[3] J. Balogh, B. Csaba, R. Martin, and A. Pluhár. On the path separation number of

graphs. Discrete Applied Mathematics, 213 (2016): 26-33.

[4] B. Bollobás, A. Scott. Separating systems and oriented graphs of diameter two. Journal

of Combinatorial Theory, Series B 97.2 (2007): 193-203.

[5] M. Bóna. Combinatorics of Permutations. Discrete mathematics and its applications

3rd edition (2022). Chapman and Hall/CRC.

[6] M. Bonamy, F. Botler, F. Dross, T. Naia, J. Skokan. Separating the edges of a graph

by a linear number of paths. arXiv:2301.08707 [math.CO] (2023+).

[7] M. Cai. On separating systems of graphs. Discrete Mathematics 49 (1984): 15-20.

[8] F. Chung, R. Graham, and P. Winkler. On the Addressing Problem for Directed

Graphs. Graphs and Combinatorics 1 (1985): 41-50.

[9] P. Erdős, and G. Szekeres. A combinatorial problem in geometry. Compositio Mathe-

matica 2 (1935): 463-470.

[10] V. Falgas-Ravry, T. Kittipassorn, D. Korándi, S. Letzter, and B. Narayanan. Sepa-

rating path systems. Journal of Combinatorics, 5.3 (2014): 335-354.

[11] F. Foucaud, M. Kovše. Identifying path covers in graphs. Journal of Discrete Algo-

rithms 23 (2013): 21-34.

145

REFERENCES

[12] Z. Füredi. Scrambling permutations and entropy of hypergraphs. Random Structures

and Algorithms 8.2 (1996): 97-104.

[13] G. O. H. Katona. On separating systems of a finite set. Journal of Combinatorial

Theory, Series A 1 (1966): 174-194.

[14] D. Kleitman, and J. Spencer. Families of k-independent sets. Discrete Mathematics

6.3 (1973): 255-262.

[15] D. Kuhn, J. Higdon, J. Lawrence, R. Kacker, and Y. Lei. Combinatorial methods

for event sequence testing. IEEE Fifth International Conference on Software Testing,

Verification and Validation (2012): 601-609.

[16] A. Kündgen, D. Mubayi, and P. Tetali. Minimal completely separating systems of

k-sets. Journal of Combinatorial Theory, Series A 93 (2001): 192–198.

[17] S. Letzter. Separating paths systems of almost linear size. arXiv:2211.07732

[math.CO] (2022+).

[18] V. Levenshtein. Perfect codes in the metric of deletions and insertions. Diskretnaya

Matematika 3.1 (1991): 3-20. (English Translation: Discrete Mathematics and Appli-

cations 2.3 (1992): 241-258.)

[19] R. Mathon, T. Van Trung. Directed t-Packings and Directed t-Steiner Systems. De-

signs, Codes and Cryptography 18 (1999): 187-198.

[20] B. D. McKay, and T. Peters. Paths through equally spaced points on a circle. Preprint

2022. arXiv:2205.06004 [math.CO]

[21] J. Radhakrishnan. A note on scrambling permutations. Random Structures and Al-

gorithms 22.4 (2003): 435-439.

[22] C. Ramsay and I. T. Roberts. Minimal completely separating systems of sets. Aus-

tralasian Journal of Combinatorics 13 (1996): 129–150.

[23] R. Raz. VC-Dimension of Sets of Permutations. Combinatorica 20 (2000): 241–255.

[24] A. Rényi. On random generating elements of a finite Boolean algebra. Acta Sci. Math.

Szeged 22 (1961): 75-81.

[25] N. Sauer. On the Density of Families of Sets. Journal of Combinatorial Theory Series

A, 13 (1972): 145-147.

146

REFERENCES

[26] S. Shelah. A Combinatorial Problem; Stability and Order for Models and Theories

in Infinitary Languages. Pacific Journal of Mathematics 41 (1972): 247-261.

[27] J. Spencer. Minimal scrambling sets of simple orders. Acta Mathematica Academiae

Scientiarum Hungaricae 22 (1971): 349-353.

[28] J. Tarui. On the minimum number of completely 3-scrambling permutations. Discrete

Mathematics 308.8 (2008): 1350-1354.

[29] V. Vapnik, and A. Chervonenkis On the Uniform Convergence of Relative Frequencies

of Events to Their Probabilities. Theory of Probability and its Applications 16.2 (1971):

264-280.

[30] I. Wegener. On separating systems whose elements are sets of at most k elements.

Discrete Mathematics 28.2 (1979): 219-222.

[31] R. Yuster. Perfect sequence covering arrays. Designs, Codes and Cryptography 88

(2020): 585–593.

147

	Statement of Originality
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Part I Shattering
	Introduction
	Background and previous work
	Partial and fractional shattering
	Structure of Part I
	Useful results
	Levenshtein's perfect family construction

	Partially shattering every k-tuple
	Lower bounds
	The case k=3
	The case k>3

	Totally shattering a fraction of all k-tuples
	Upper bound
	Lower bound
	Showing that F3(5,6)=4/5

	Completely shattering
	Families which shatter no triples
	Summary and open problems

	Part II Separating
	Introduction
	Background and definitions
	Weak separation and strong separation
	Previous results
	Structure of Part II

	Complete graphs
	Lower bound
	Symmetries and generator paths
	The case where n is prime
	General upper bound
	Proof of Theorem 8.13
	Speculations on generator path construction
	Zig-Zag
	Primitive roots

	Balanced complete bipartite graphs
	Generalising generator paths
	Lower bound
	Upper bound

	Ladders and grids
	Ladders
	Ladder-Tubes
	Grids

	Summary and open problems

	References

