
Bayesian network structure learning in the presence of data

noise

Yang Liu

School of Electronic Engineering and Computer Science

Queen Mary University of London

2023

Abstract

A Bayesian Network (BN) is a type of a probabilistic graphical model that captures conditional and

marginal independencies between variables. These models are generally represented by a Directed

Acyclic Graph (DAG), which is composed by nodes and arcs. The nodes represent variables and

the absence of arcs represent conditional or marginal independencies. When BNs are applied to

real-world problems, the structure of these models is often assumed to be causal (often referred to

as a causal BN), and is often constructed from either expert knowledge and Randomised Controlled

Trials (RCTs). However, these two approaches can be time-consuming and expensive, and it might

not always be possible or ethical to perform RCTs. As a result, structure learning algorithms that

recover graphical structures from observational data, which in turn could be used to inform causal

structures, have received increasing attention over the past few decades.

To be able to guarantee the correctness of a structure learnt from data, a structure learning

algorithm must rely on assumptions that may not hold in practice. One such crucial and commonly

used assumption is that the observed data are independently and identically sampled from the

underlying distribution, such that all statistical quantities of the distribution can be recovered

with no bias from the observed data when sample size goes to infinite. While such assumptions are

often needed to be able to devise theoretical guarantees, the impact of violating these assumptions

when working with real data tends to be overlooked. Empirical investigations show that structure

learning algorithms perform considerably worse on noisy data that violate many of their theoretical

assumptions, relative to how they perform on clean synthetic data that do not violate any of their

data-generating assumptions. However, there has been limited research on how to deal with these

problems effectively and efficiently. This thesis investigates this research direction and primarily

focuses on improving structure learning in the presence of measurement error and systematic

missing data, which are two of the most common types of data noise present in real data sets.

Acknowledgements

First and foremost, I am grateful to my primary supervisor Dr Anthony Constantinou who always

provided me with valuable and professional guidance to my research. He always supported me in

difficult and challenging times and motivated me throughout. His immense knowledge and rich

academic experience assisted and inspired me in all phases of my academic research and daily life.

With his professional supervision, I could figure out research problems, deal with the challenges,

and contribute to many publications. I would like to extend my sincere thanks to Prof Norman

Fenton, Prof Martin Neil and Prof William Marsh for their invaluable comments and discussions at

every stage of my PhD viva. Special thanks to my lab colleagues Kiattikun Chobtham, Dr Neville

Kenneth Kitson and Dr Zhigao Guo for their insightful comments and kind help. I hope our

friendships are long and amount to more collaborations in the future. I would like to thank Queen

Mary University of London for giving me the opportunity to complete my PhD studies. Finally,

I am also deeply grateful to my family and friends for their support, appreciation, encouragement

and keen interest in my academic achievements.

3

Contents

1 Introduction 14

1.1 Motivation . 14

1.2 Thesis structure and contributions . 15

1.3 Paper contributions . 16

2 Background 18

2.1 Bayesian Networks . 18

2.2 Structure Learning . 21

2.2.1 Evaluation metrics . 22

2.2.2 Score-based structure learning . 23

2.2.3 Constraint-based structure learning . 28

2.2.4 Hybrid structure learning . 35

2.2.5 Structure learning for functional causal models 36

3 The impact of data noise on structure learning, and learning structures from

noisy data with model averaging 39

3.1 Introduction . 39

3.2 Impact of data noise . 40

3.2.1 Case studies and synthetic data . 40

3.2.2 The investigated structure learning algorithms 41

3.2.3 Evaluation . 42

3.2.4 Results and discussion . 43

3.3 Handling data noise by model averaging . 46

3.3.1 The Model Averaging Hill-Climbing algorithm 46

3.3.2 Evaluation, results and discussion . 48

3.4 Concluding remarks . 50

4 Improving Structure Learning under Measurement Error 52

4.1 Introduction . 52

4.2 Relevant works . 53

4.3 Preliminaries . 53

4.4 Impact of measurement error on structure learning 55

4.5 The Spurious Edge Detection (SED) algorithm . 59

4.6 Empirical evaluation . 67

4.7 Conclusion . 74

4

5 Improving greedy search structure learning in the presence of systematic miss-

ing values 76

5.1 Introduction . 76

5.2 Relevant works . 77

5.3 Preliminaries . 78

5.3.1 Hill Climbing algorithm . 78

5.3.2 Missing data . 78

5.4 Handling systematic missing data with Hill-Climbing 80

5.4.1 Hill-Climbing with pairwise deletion . 80

5.4.2 Hill-Climbing with Inverse Probability Weighting 83

5.4.3 Hill-Climbing with adaptive Inverse Probability Weighting 87

5.5 Experiments . 90

5.5.1 Generating synthetic data and missingness 90

5.5.2 Evaluation metrics . 91

5.5.3 Results when the true DAG is sparse . 91

5.5.4 Results when the true DAG is dense . 93

5.5.5 Results when the true DAG is a real-world network 94

5.6 Conclusion . 96

6 Using Markov blanket to improve data imputation in the presence of systematic

missingness 99

6.1 Introduction and relevant works . 99

6.2 Preliminaries . 101

6.3 Markov Blanket based feature selection for imputation 101

6.4 Experiments . 106

6.4.1 Synthetic case studies based on real-world BNs 106

6.4.2 Evaluation process . 107

6.4.3 Results . 107

6.4.4 Real-world case study . 110

6.5 Conclusion . 111

7 Conclusions and directions for future work 113

7.1 Conclusion . 113

7.2 Future research . 114

5

List of Figures

2.1 An example of a DAG that is unfaithful to its probability distribution. V1 and V3 are

independent since P (V1, V3) = P (V1) · P (V3) for any value of V1 and V3; however,

V1 and V3 are not d-separated by any variable set in the DAG. 19

2.2 (a) A hypothetical DAG and (b) its corresponding CPDAG. 20

2.3 Lattice explored by dynamic programming. Each directed edge explores a sink node

and searches its optimal parent set. Each path from top to bottom represents a

node ordering. 27

2.4 The output of fGES when the true DAG contains unobserved common cause. . . . 36

3.1 The overall decrease in accuracy over all algorithms for each noisy experiment, with

respect to noise-free experiment. 46

3.2 The structure learning accuracy of the seven other algorithms, relative to the ac-

curacy of MAHC. A negative green score indicates that a particular algorithm per-

formed worse than MAHC, while a positive red score indicates that a specific algo-

rithm outperformed MAHC. 49

4.1 A hypothetical graph that illustrates the relationship between the error-free variables

V and the corresponding noisy variables V ∗ given the Independence rule, where a

noisy variable V ∗
i becomes independent of other variables in G∗ given Vi. 54

4.2 An example to illustrate how measurement error is represented for a discrete variable

Vi with four states. 54

4.3 Modelling the presence of measurement error on the two different causal equiv-

alence classes. Case (a) represents the common-effect class, where V1 and V2 are

d-connected conditional on either V3 or V ∗
3 , and (b) represents the causal-chain class

where V1 and V2 are d-separated conditional on V3, whereas they are d-connected

conditional on V ∗
3 (this also holds for the causal class of common-cause). 56

4.4 (a) A noisy graph that contains three error-free variables V1, V2 and V3, and a

noisy variable V ∗
3 . (b) The learnt graph that entails the same dependence and

independence relationships derived from the observed variables. 57

4.5 (a) The true Asia network. (b) The CPDAG learnt by PC-stable given the error-free

synthetic data set. (c) The CPDAG learnt by PC-stable given the same synthetic

data set but with 5% measurement error on variable bronc. 58

4.6 The average number of 3-vertex cliques in the ground truth graphs, the graphs learnt

from error-free data sets, and the graphs learnt from observed data sets with 10%

measurement error on each variable. 59

4.7 An example of a graph that contains 3-vertex cliques 60

6

4.8 The three reconstructed graphs for clique {bronc, dysp, smoke}, based on the learnt

graph in Figure 4.5c. Dotted nodes represent possible hidden error-free parents of

the suspected noisy node under assessment. 61

4.9 (a) A noisy graph with four variables that incorporate measurement error. (b) The

learnt graph with respect to (a). (c) The reconstructed graph that contains the

conditional independence V1 ⊥⊥ V3 | {V2, V4}. 63

4.10 Left: The Asia graph learnt by the HC algorithm from a synthetic data set with

10,000 samples and 5% measurement error on each observed variable. Right: the

candidate spurious edge-nodes pairs CSE of the learnt graph. 65

4.11 The average precision, recall and F1 scores of the graphs produced by the five al-

gorithms, where solid lines represent the results before SED modifications, dashed

lines represent the results after SED modifications, red lines the results based on

error-free data, green lines the results based on noisy data with 10% error rate, and

blue lines the results based on noisy data with 20% error rate. 69

4.12 The average number of false and true 3-vertex cliques produced by the learnt graphs

learnt from error-free data sets, the learnt graphs learnt from noisy data sets and

the modified graphs learnt from noisy data sets. 70

4.13 The average re-scaled SHD scores and its three components produced by the four

algorithms, where solid lines represent the results before SED modifies the graphs,

dashed lines represent the results after SED modifies the graphs, green lines the

results based on noisy data with 10% error rate, and blue lines the results based on

noisy data with 20% error rate. 72

4.14 Average execution time needed to produce the learnt and modified graphs for the

specified algorithms, across different error rate and sample size combinations. The

execution time of SED is based on the time it takes to modify graphs. 74

4.15 An example where SED fails to recover the true CPDAG. 75

5.1 The three possible m-graphs assuming three observed variables with structure V1 →
V2 → V3. Shaded nodes represent partially observed variables. 80

5.2 A hill-climbing illustration of the DAG considered in Example 5.4.2, discussed in

the main text. Shaded nodes represent partially observed variables. 84

5.3 Example of a searching step in HC-pairwise/HC-IPW. 88

5.4 Average F1 and re-scaled SHD scores learnt by HC-pairwise, HC-IPW, HC-aIPW

and Structural EM for sparse networks, under different assumptions of missingness

and sample sizes. Each score represents the average score over 50 CPDAGs. Note

the scores of HC-complete are based on complete data for benchmarking purposes;

i.e., the same scores are superimposed in all three missingness cases as a dashed line. 92

5.5 Average F1 and re-scaled SHD scores learnt by HC-pairwise, HC-IPW, HC-aIPW

and Structural EM for dense networks, under different assumptions of missingness

and sample sizes. Each score represents the average score over 50 CPDAGs. Note

the scores of HC-complete are based on complete data for benchmarking purposes;

i.e., the same scores are superimposed in all three missingness cases as a dashed line. 95

7

5.6 Average F1 and re-scaled SHD scores learnt by HC-pairwise, HC-IPW, HC-aIPW

and Structural EM for real-world networks, under different assumptions of missing-

ness and sample sizes. Each score represents the average score over 50 CPDAGs.

Note the scores of HC-complete are based on complete data for benchmarking pur-

poses; i.e., the same scores are superimposed in all three missingness cases as a

dashed line. 97

6.1 An example of m-graph. Shaded nodes represent partially observed variables. . . . 102

6.2 A hypothetical m-graph used to described the implications of violating Assump-

tion 5.3.1 of MBFS. Shaded nodes represent partially observed variables. 105

6.3 Average RMSE between complete and imputed data produced by the different al-

gorithms. A Lower score represents better performance. 108

6.4 Average F1 scores of the graphs learnt by GES from data imputed by the different

algorithms. A higher F1 score represents better performance. The dashed line

represents the performance of GES when applied to complete data. 109

6.5 Average execution time of MF and MBMF under different sample sizes, mechanisms

of missingness, and rates of missingness. 110

8

List of Tables

3.1 The description of the six case studies. 40

3.2 Experiment codes used to represent the 16 specified configurations of noisy data

investigated. 42

3.3 The 15 structure learning algorithms investigated, categorised by learning class. . . 42

3.4 The penalty weights assumed by the F1 and SHD metrics. 43

3.5 Average and overall ranked performance of the algorithms over all case studies and

sample sizes in experiment N (i.e., no noise), where the average rank is presented

with its standard deviation. 44

3.6 Average and overall ranked performance for each algorithm over all case studies and

sample sizes across all noisy experiments. The numbers in brackets represent the

difference in performance with respect to the clean experiments N. Green and red

text indicate increased and decreased relative ranked performance respectively. . . 45

4.1 The steps of the SED algorithm in modifying the Asia graph learnt by HC from

synthetic data of sample size 10,000 with 5% measurement error on all variables.

The red edges represent the edges classified as spurious in each iteration, whereas

the blue edges represent the edges being pruned (i.e., no longer being considered as

candidate spurious edges) after each iteration. 67

4.2 The number and percentage of modified graphs that are better, equal or worse than

the learnt graphs in terms of graphical accuracy, for each algorithm, error-rate, and

over different evaluation metrics. 73

5.1 Examples of necessary variables for each edge operation in HC, which we define as

the variables with different parent-sets between the current best and neighbouring

graphs, plus the parents that make up those parent-sets. 81

5.2 The properties of the six real-world BNs. 90

5.3 Mean and standard deviation of F1 scores produced by Structural EM, HC-pairwise,

HC-IPW and HC-aIPW for sparse networks, under the different assumptions of

missingness and sample sizes. 92

5.4 Mean and standard deviation of re-scaled SHD scores produced by Structural EM,

HC-pairwise, HC-IPW and HC-aIPW for sparse networks, under the different as-

sumptions of missingness and sample sizes. 93

5.5 Mean and standard deviation of execution times produced by Structural EM, HC-

pairwise, HC-IPW and HC-aIPW for sparse networks and relative to HC when

applied to complete data, under the different assumptions of missingness and sample

sizes. 94

9

5.6 Mean and standard deviation of F1 scores produced by Structural EM, HC-pairwise,

HC-IPW and HC-aIPW for dense networks, under the different assumptions of miss-

ingness and sample sizes. 95

5.7 Mean and standard deviation of re-scaled SHD scores produced by Structural EM,

HC-pairwise, HC-IPW and HC-aIPW for dense networks, under the different as-

sumptions of missingness and sample sizes. 96

5.8 Mean and standard deviation of F1 scores produced by Structural EM, HC-pairwise,

HC-IPW and HC-aIPW for real-world networks, under the different assumptions of

missingness and sample sizes. 97

5.9 Mean and standard deviation of re-scaled SHD scores produced by Structural EM,

HC-pairwise, HC-IPW and HC-aIPW for real-world networks, under the different

assumptions of missingness and sample sizes. 98

6.1 Summary of the real-world BNs used in Subsection 6.4.1. 106

6.2 Summary of the real-world data sets used in Subsection 6.4.4. 110

6.3 Average RMSE and PFC scores, and their standard deviations, for different impu-

tation algorithms and real-world data combinations. Lower RMSE and PFC scores

represent better performance. 111

10

List of abbreviations

BN Bayesian Network

DAG Directed Acyclic Graph

MEC Markov Equivalence Class

CPDAG Completed Partially Directed Acyclic Graph

RCTs Randomised Controlled Trials

ML Machine Learning

CI Conditional Independence

FCMs Functional Causal Models

SHD Structural Hamming Distance

BSF Balanced Scoring Function

KL Kullback-Leibler

SED Spurious Edge Detection

BIC Bayesian Information Criterion

BDe Bayesian Dirichlet equivalent

BDeu Bayesian Dirichlet equivalent uniform

qNML quotient Normalised Maximum Likelihood

LL Log-likelihood

NML Normalised Maximum Likelihood

HC Hill-Climbing

GES Greedy Equivalence Search

fGES fast Greedy Equivalence Search

OBS Ordering Based Search

ASOBS Acyclic Selection OBS

WINASOBS Window Acyclic Selection OBS

GOBNILP Globally Optimal Bayesian Network learning using Integer Linear Program-

ming

KCI-test Kernel-based Conditional Independence test

RKHS Reproducing Kernel Hilbert Space

FCI Fast Causal Inference

RFCI Really Fast Causal Inference

POIPG Partially Orientated Inducing Path Graph

ASP Answer Set Programming

GS Grow-Shrink

MB Markov Blanket

IAMB Incremental Association Markov Blanket

11

MMHC Max-Min Hill-Climbing

MMPC Max-Min Parents Children

H2PC Hybrid HPC

HPC Hybrid Parents and Children

GFCI Greedy Fast Causal Inference

BSC Bayesian Scoring of Constraints

LiNGAM Linear Non-Gaussian Acyclic Model

ICA Independent Component Analysis

ANM Additive Noise Model

GDS Greedy DAG Search

HSIC Hilbert Schmidt Independence Criterion

PNL Post-NonLinear

TIN Transformed Independent Noise

IN Independent Noise

GIN Generalised Independent Noise

SEMs Structural Equation Models

FCI Fast Causal Inference

ILP Integer Linear Programming

GFCI Greedy FCI

MAG Maximal Ancestral Graph

PAG Partial Acyclic Graph

FP False Positive

CSE Candidate Spurious Edge-nodes pair

EM Expectation-Maximisation

MLE Maximum Likelihood Estimation

MCAR Missing Completely At Random

MAR Missing At Random

MNAR Missing Not At Random

NAL Node-Averaging Likelihood

IPW Inverse Probability Weighting

m-graph missingness graph

MVNI Multivariate Normal Imputation

MICE Multiple Imputation by Chained Equations

ELM Extreme Learning Machine

ML Machine Learning

kNN k-Nearest Neighbour

RF Random Forest

GAIN Generative Adversarial Imputation Nets

MI Mutual Information

PCA Principle Component Analysis

MBMF Markov Blanket MissForest

MF MissForest

CMB Candidate Markov Blanket

MBFS Markov Blanket-based Feature Selection

RMSE Root Mean Squared Error

12

PFC Proportion of Falsely Classified entries

13

Chapter 1

Introduction

1.1 Motivation

Associational Machine Learning (ML), and particularly deep learning, are found to be highly

effective in areas with access to big data, such as in computer vision [Ho et al., 2020], natural

language processing [Stiennon et al., 2020], and sound information processing [Purwins et al.,

2019]. However, the success of deep learning has also revealed some of its drawbacks. A major

drawback is that deep learning solutions are widely considered to be black-box solutions, in that

they offer little interpretability in terms of how they arrive at a prediction outcome or explaining

a recommended decision [Geiger et al., 2021]. While interpretability may not be necessary in

all problems, it is necessary in many critical areas where decisions require justification. This

means that, in certain domains, the ability to elucidate the relationship between outcomes and

factors outweighs the importance of prediction accuracy. If we take healthcare as an example,

understanding the causal relationships between symptoms, diseases, and treatments is vital for

accurate diagnosis, effective treatment planning, and patient care. Uncovering accurate causal links

would enable healthcare professionals to make informed decisions about available interventions,

optimise treatment protocols, minimise potential risks or adverse effects, and formulate preventive

measures to improve patient outcomes.

A causal Bayesian Network (BN) is a probabilistic graphical model that provides a formal

framework for modelling and reasoning about causal relationships between variables. It allows for

a systematic representation of cause-and-effect relationships, enabling insights into how changes in

one variable propagate through the network affecting other variables, which enables the simulation

of hypothetical interventions to estimate their effect. This capability is particularly valuable in

domains where interpretability and transparency are crucial, such as in healthcare [McLachlan

et al., 2020, Stallman et al., 2021], government policy [Hakhverdian, 2012, Wang et al., 2022],

economics [Kragt et al., 2009, Tsagris, 2021], and education [Xenos, 2004, Almond et al., 2015].

An issue with utilising causal BNs is that they tend to require higher effort to develop com-

pared to associational ML models. Depending on the application area, causal BNs may also require

access to human expertise as part of their validation process in terms of capturing causal relation-

ships. Historically, the construction of causal models relied on expert knowledge or randomised

experiments and was associated with high costs, time constraints, and often feasibility challenges.

Causal knowledge elicitation was common in the past where access to data were sparse. However,

we nowadays have access to big and detailed data which diminishes the need for expert knowl-

14

edge and encourages the development of objective causal models from data. This has led to the

emergence of structure learning (or causal discovery) algorithms.

An important issue with structure learning algorithms is that it can be particularly difficult

to discover accurate cause-and-effect relationships from real-world data. These algorithms are

known to perform considerably better on clean synthetic experiments, where the input data satisfy

the underlying assumptions of the algorithms, compared to how they perform on real-world data

sets that tend to be noisy and to violate many of their underlying assumptions about the input

data [Scheines and Ramsey, 2016, Constantinou et al., 2021]. The majority of structure learning

algorithms do not consider the presence of noise in the data, and they tend to be evaluated with

clean synthetic data sets, which are i.i.d. samples from the underlying distribution. This practice

is known to overestimate their performance in real-world scenarios, which hinders the application

of structure learning algorithms to real-world problems.

Two common types of data noise in real-world data sets are measurement error and missing

data. Measurement error refers to the discrepancy between the true value of a variable and its

measured or observed value. It arises due to various factors such as systematic biases in the

measurement devices, mistakes in recording observations, and changes in environmental conditions.

These errors can occur in both experimental and observational data collection. Measurement errors

can have significant implications in scientific research and data analysis, since they could lead to

biased estimates, incorrect conclusions, and reduced accuracy in statistical models. Therefore, it

is essential to understand and account for measurement error to ensure the reliability and validity

of research findings.

Missing data is another common type of data noise which refers to the absence or unavailability

of certain values in a data set. It is a common issue that arises in data collection and can occur

due to various reasons. For example, in surveys or questionnaires participants may not to answer

certain questions, resulting in missing values. Besides, certain measurements may not always be

applicable or feasible for all subjects or variables. For example, laboratory tests may not be applied

to all participants, resulting in missing values. Ignoring the reasons behind why some values might

be missing would introduce bias in observed values and distort the results of data analysis. Dealing

with missing values is vital for ensuring data integrity, avoiding biased results, maximising sample

size, and maintaining statistical assumptions.

The primary goal of this thesis is to enhance the effectiveness of structure learning when applied

to real-world data. It aims to achieve this objective by improving the performance of structure

learning algorithms in the face of data noise, with a particular focus on measurement error and

systematic data missingness.

1.2 Thesis structure and contributions

This thesis investigates and provides improved solutions to the problem of recovering causal or

conditional independence relationships from noisy, rather than noise-free, data that better reflect

real data. Chapter 2 provides the necessary preliminary and background information, and Chapter

3 presents an empirical evaluation of structure learning in the presence of different types of data

noise, aiming to provide a clear picture of the issues dealt with in the thesis. The subsequent

chapters present new methods that provide improvements when learning primarily from data with

measurement error and missing values. The thesis is structured as follows:

15

Chapter 2 provides background information on Bayesian networks and structure learning algo-

rithms, and reviews important relevant works published in the academic literature. Some

of the material presented in this chapter is based on a paper published in the Artificial

Intelligence Review, where I contributed as a co-author [Kitson et al., 2023].

Chapter 3 investigates the impact of different types of data noise on structure learning. It also

explores model-averaging strategies that could be combined with structure learning to im-

prove learning in the presence of data noise. The main contributions of this chapter are a)

a large-scale empirical evaluation of structure learning algorithms with noisy data, and b) a

new algorithm that leverages model averaging to reduce sensitivity to data noise. The mate-

rial presented in this chapter is based on two papers published in the International Journal

of Approximate Reasoning (IJAR), where I contributed as a co-author [Constantinou et al.,

2021, 2022].

Chapter 4 focuses on structure learning in the presence of measurement error when the input

data are discrete. The main contribution of this chapter is a new algorithm which acts as

an add-on learning process for other structure learning algorithms, to identify and remove

spurious edges that are potentially caused due to measurement error. The material presented

in this chapter comes from a paper published in the Journal of Machine Learning Research

(JMLR), in which I am the leading author [Liu et al., 2022].

Chapter 5 focuses on structure learning from data that contain systematic missing values. The

main contribution of this chapter is a novel solution that adopts the Inverse Probability

Weighting (IPW) to maximally leverage the data samples used to train a greedy search

structure learning algorithm, and successfully reduces or eliminates potential bias caused by

systematic missingness. The material presented in this chapter comes from a paper published

in the Machine Learning journal, in which I am the leading author [Liu and Constantinou,

2022].

Chapter 6 focuses on the problem of imputing missing data under all types of missingness. The

main contribution of this chapter is a new imputation algorithm that employs the Markov

blanket discovery algorithm Grow-Shrink (GS) to efficiently and effectively find the variable

set that makes each variable in the data independent of the other variables given its Markov

blanket, and then applies MissForest to each variable by only considering its Markov blanket

to impute data. This process was found to improve imputation accuracy under all types of

missingness. The material presented in this chapter comes from a paper presented at the

International Conference on Learning Representations (ICLR), in which I am the leading

author [Liu and Constantinou, 2023].

Chapter 7 provides a summary of the findings and conclusions of this thesis, as well as outlines

several potential directions for future research. This chapter also highlights some open prob-

lems in causal structure learning, some of which are based on a paper that is currently under

review, in which I served as co-author [Constantinou et al., 2023].

1.3 Paper contributions

Part of the work presented in this thesis comes from the following publications:

16

1. Liu, Y., Constantinou, A.C. and Guo, Z., 2022. Improving Bayesian network structure learn-

ing in the presence of measurement error. Journal of Machine Learning Research, 23(324),

pp.1-28.

2. Liu, Y. and Constantinou, A.C., 2022. Greedy structure learning from data that contain

systematic missing values. Machine Learning, 111(10), pp.3867-3896.

3. Liu, Y. and Constantinou, A., 2023, February. Improving the imputation of missing data

with Markov Blanket discovery. In Proceedings of the Eleventh International Conference on

Learning Representations (ICLR-2023).

4. Constantinou, A.C., Liu, Y., Chobtham, K., Guo, Z. and Kitson, N.K., 2021. Large-

scale empirical validation of Bayesian Network structure learning algorithms with noisy data.

International Journal of Approximate Reasoning, 131, pp.151-188.

5. Constantinou, A.C., Liu, Y., Kitson, N.K., Chobtham, K. and Guo, Z., 2022. Effective

and efficient structure learning with pruning and model averaging strategies. International

Journal of Approximate Reasoning, 151, pp.292-321.

6. Kitson, N.K., Constantinou, A.C., Guo, Z., Liu, Y. and Chobtham, K., 2023. A survey of

Bayesian Network structure learning. Artificial Intelligence Review, pp.1-94.

7. Constantinou, A.C., Kitson, N.K., Liu, Y., Chobtham, K., Hashemzadeh, A., Nanavati,

P.A., Mbuvha, R. and Petrungaro, B., 2023. Open problems in causal structure learning: A

case study of COVID-19 in the UK. arXiv preprint arXiv:2305.03859.

My personal contributions are as follows:

• Publications 1, 2 and 3: I led the development and the implementation of the new algorithms,

the analysis and preparation of the results, as well as the writing of the first draft.

• Publications 4 and 7: I contributed to the implementation of the experiments and editing

and reviewing the papers.

• Publication 5: I contributed to editing and reviewing the paper.

• Publication 6: I contributed to writing parts of the draft paper as well as reviewing other

parts of the paper.

17

Chapter 2

Background

2.1 Bayesian Networks

A Bayesian Network (BN) is a probabilistic graphical model that captures conditional or causal

independence relationships between variables, and is typically represented by a Directed Acyclic

Graph (DAG). Each node in a BN graph represents a random variable, and the absence of an

edge represents conditional or marginal independence. The conditional probability distribution

associated with each node specify the probability distribution of that variable given the values of

its parent variables. A causal BN assumes that the edges represent causal relationships.

A BN can be formally defined as a pair ⟨G, P ⟩ which consists a DAG G = (V ,E) and a joint

probability distribution P defined over V , where V = {V1, . . . , Vn} represents a set of random

variables and E represents a set of directed edges between pairs of variables. In a DAG G, a

variable Vi is the parent of Vj if there is a directed edge from Vi to Vj , and Vj is called the child of

Vi. A variable is a neighbour of Vi if it is either a parent or a child of Vi. The indegree of a variable

is the number of its parents and the degree of a variable is the number of its neighbours. A path is a

sequence of distinct nodes in which every two consecutive nodes on the path are neighbours in the

graph. A directed path denotes that every variable in the sequence is the parent of the subsequent

variable. If there is a directed path from Vi to Vj , then Vj is a descendant of Vi, and Vi is an

ancestor of Vj . Given a DAG G, a node Vi is a collider in a path p if the neighbours of Vi in p are

both the parent of Vi. If the two parents are not neighbours, then such a node will be referred as

an unshielded collider or v-structure, otherwise, it will be referred as a shielded collider. A triple

of variables ⟨Vi, Vj , Vk⟩ is called unshielded triple in graph G if Vi, Vj and Vj , Vk are neighbours in

G, but Vi and Vk are not.

If a DAG is interpreted causally, it is called as a causal DAG in which a parent of a variable Vi

is assumed to be a direct cause of Vi. The conditional independence and dependence relationships

in a graph are defined by the following d-separation and d-connection criteria [Spirtes et al., 2000].

Definition 2.1.1 (D-separation). Given a graph G, two variables Vi and Vj are d-separated given

a variable set S if there is no path p between Vi and Vj such that (i) every collider in p belongs

either to S or an ancestor of a node in S, and (ii) no other variables on p are in S.

Definition 2.1.2 (D-connection). Given a graph G, two variables Vi and Vj are d-connected given

a variable set S if they are not d-separated by S.

If set S d-separates two variables Vi and Vj in a graph G, then it is referred to as the separating

18

V1

V2

V3

P (V1)

V1 = 0 0.3
V1 = 1 0.7

V1 = 0 V1 = 1

P (V3 | V1, V2) V2 = 0 V2 = 1 V2 = 0 V2 = 1

V3 = 0 0.7 0.3 0.4 0.2
V3 = 1 0.3 0.7 0.6 0.8

P (V2 | V1) V1 = 0 V1 = 1

V2 = 0 0.2 0.9
V2 = 1 0.8 0.1

Figure 2.1: An example of a DAG that is unfaithful to its probability distribution. V1 and V3 are
independent since P (V1, V3) = P (V1) · P (V3) for any value of V1 and V3; however, V1
and V3 are not d-separated by any variable set in the DAG.

set of Vi and Vj . Note that the above definition is made with reference to a single variable. If

there are two variable sets U and V such that every variable in U is d-separated or d-connected

with every variable in V given a variable set S, then U and V are also d-separated or d-connected

given S.

To associate the conditional independencies derived from distributions with those entailed by

a DAG structure, we need to adopt a set of assumptions. One such fundamental assumption is

Markov assumption:

Assumption 2.1.1 (The Markov assumption). Given a DAG G over a variable set V , every

variable in V is independent of its non-parental non-descendants conditional on its parents.

A distribution P (V) that follows the Markov assumption can be factorised as a product of a

series of conditional probabilities as:

P (V) =
∏

Vi∈V

P (Vi | Pai) , (2.1)

where Pai is the parents of Vi.

Given the Markov assumption, any probability distribution represented by a DAG can have its

conditional independences obtained by applying the d-separation criterion to the relevant DAG.

However, the Markov assumption does not prohibit probability distributions from having additional

conditional independences. For example, Figure 2.1 presents an example in which V1 and V3 are

independent, i.e., P (V1, V3) = P (V1) · P (V3) for any value of V1 and V3, but are not d-separated

by any variable set in the DAG. In this example, the effect of the direct path from V1 to V3 and

the effect of the indirect path from V1 to V3 via V2 cancel out the dependency between V1 and V3.

Under such a scenario, the probability distribution is called unfaithful to its DAG structure. The

faithfulness assumption assumes that the input data contain no such cases.

Assumption 2.1.2 (The faithfulness assumption). Given a DAG G over a variable set V , a prob-

ability distribution P (V) is faithful to G if and only if the conditional independence relationships

in P (V) are exactly the same as the independence relationships inferred by d-separation criterion

from G.

The faithfulness assumption implies that all marginal or conditional independences in the dis-

tribution are faithfully represented by the graphical structure via d-separation, rather than by

19

V1

V2

V3

V4

V5

V6

(a)

V1

V2

V3

V4

V5

V6

(b)

Figure 2.2: (a) A hypothetical DAG and (b) its corresponding CPDAG.

chance, as illustrated in Figure 2.1. Because the set of unfaithful distributions to a given DAG

has Lebesgue measure zero [Uhler et al., 2013], it can be argued that the faithfulness assumption

is a relatively weak and a reasonable assumption to make since almost all observed distributions

are expected to satisfy it. However, although the possibility of an exact unfaithful distribution

is infinitely small, the possibility of near unfaithful distributions is not [Weinberger, 2018]. In

real-world scenarios, near unfaithful distributions can cause the same problem as exact unfaithful

distributions.

Given the Markov and faithfulness assumptions, it is possible that multiple DAGs contain the

same set of d-separation relationships. Such set of DAGs form a Markov Equivalence Class (MEC)

which corresponds to a unique Completed Partially Directed Acyclic Graph (CPDAG) that contains

both directed and undirected edges. We denote a fully connected undirected graph as Gc, and an

empty graph as G∅. A directed edge in a CPDAG indicates that all Markov equivalent DAGs

have this directed edge in their structure, whereas an undirected edge in a CPDAG indicates that

this edge is present in all of the Markov equivalent DAGs but has inconsistent orientation. A

CPDAG can be obtained from a DAG by a) preserving all its v-structures, b) preserving all the

directed edges that would create a cycle or a new v-structure if reversed, and c) converting the

residual directed edges to undirected edges. Figure 2.2 presents a hypothetical DAG along with

its corresponding CPDAG. A more detailed conversion solution is described by Meek [1995].

Another commonly used assumption is causal sufficiency, which assumes that there are no

unobserved common causes and selection bias in the causal DAG.

Assumption 2.1.3 (Causal sufficiency). There are no unmeasured variables acting as a common

cause of any two or more observed variables.

When the causal sufficiency assumption is violated, it implies that there is at least one un-

observed common cause or selection bias in the input data. This would make it impossible to

recover a DAG structure that exactly expresses the causal relationships between the observed vari-

ables. In this case, a Maximal Ancestral Graph (MAG) can be used to express all possible causal

relationships between observed variables. A MAG is an extension of a DAG which may contain

both directed and bi-directed edges between observed variables, where the directed edges repre-

sent direct or ancestral relationships between connected nodes, and the bi-directed edges indicate

the presence of at least one latent confounder between the connected nodes. A Partial Ancestral

Graph (PAG) represents the Markov equivalent class of a set of MAGs, and is analogous to the

relationship between a CPDAG and its corresponding Markov equivalent DAGs. In addition to

the tail and arrowhead, a PAG may contain another endpoint for edges marked as ‘o’. An edge

20

V1o→ V2 implies that both V1 ↔ V2 and V1 → V2 are present in the Markov equivalent MAGs.

2.2 Structure Learning

BN models are constantly being published in the literature with application to diverse areas. The

structure of these models is often derived from a combination of data, expert knowledge, and results

from Randomised Controlled Trails (RCTs). However, knowledge elicitation can be expensive or

time-consuming, and RCTs are not always possible or ethical. Therefore, learning causal BN

structure from data, sometimes also referred to as causal discovery, has received increasing attention

during the past few decades. A formal definition of BN structure learning is given as follows:

Definition 2.2.1 (Structure learning). Given a data set D sampled from an unknown distribution

P , structure learning aims to recover a graph G that entails the conditional independencies as those

in P .

It is well-known that discovering the optimal structure from observational data is an NP-hard

problem even for a small number of variables [Chickering, 1996]. Therefore, structure learning algo-

rithms tend to offer approximate solutions, with the potential to offer exact solutions in problems of

lower dimensionality, such as when the number of variables is low or the graph tree-width is low. In

general, there are three types of structure learning algorithms; score-based, constraint-based, and

hybrid algorithms. Score-based algorithms search and compare different candidate graphs with an

objective function. These algorithms search through the space of possible graphical structures by

performing different edge configurations such as adding, removing or reversing edges, and assign a

model-selection score to each graph visited. The objective function determines the model-selection

score, where the aim is to find a balance between model fitting and model dimensionality. Different

search strategies and objective functions may lead to different learning effectiveness and efficiency,

and some algorithms are sensitive to the order of the variables read from data. Some of the most

important objective functions and score-based algorithms are covered in Subsection 2.2.2.

In contrast, constraint-based structure learning infers the structure of a graphical model based

on a series of conditional independence (CI) tests. Specifically, unlike score-based algorithms that

optimise an objective function, constraint-based algorithms recover structures that are consistent

with the CI tests derived from the input data. Constraint-based learning usually involves starting

from a fully connected graph and removing edges that contradict the results obtained from CI tests.

Then, conditional dependency tests and orientation rules that rely on the Markov, faithfulness

and causal sufficiency assumptions are used to orientate some of the remaining edges, leading

to a CPDAG output. We introduce several widely-used functions for CI and constraint-based

algorithms in Subsection 2.2.3.

Furthermore, hybrid algorithms combine the strengths, but also the limitations, of both score-

based and constraint-based learning. Hybrid learning typically involves two phases, where the first

phase uses CI tests to restrict the search space of graphs, and the second phase applies score-

based solutions to the restricted search space. Subsection 2.2.4 covers five classic hybrid structure

learning algorithms.

Given the Markov, faithfulness, and causal sufficiency assumptions, the set of DAGs that belong

to the same MEC represent the same marginal probability distribution which makes them statisti-

cally indistinguishable given the observational data. This means that traditional structure learning

algorithms can identify structures only up to a Markov equivalence class, or the CPDAG of the

21

true DAG, from observational data. However, algorithms based on the Functional Causal Models

(FCM) assume a functional form of dependencies from observational data to enable them to iden-

tify a unique DAG. The functional equations or expressions used in FCMs describe how the value

of one variable depends on the values of its parents, plus a stochastic noise term. These additional

assumptions about the class of the dependency function and the noise term guide the FCMs-based

algorithms towards recovering a unique DAG structure from observational data, which is normally

unachievable for score-based and constraint-based algorithms that employ score-equivalent objec-

tive functions or CI tests. Subsection 2.2.5 describes some of the commonly used structure learning

algorithms that learn FCMs.

2.2.1 Evaluation metrics

Different methods exist to evaluate structure learning algorithms. The two main types of evaluation

are graph-based metrics and inference-based metrics. The former approach is generally used when

evaluating structure learning algorithms with synthetic data, where the purpose is to investigate

the capability of a structure learning algorithm in terms of recovering the underlying ground truth

graph that generated the data. On the other hand, the latter approach is more commonly used to

evaluate the performance of these algorithms when applied to real data where there is no access

to the ground truth graph.

Commonly used graph-based metrics include the Structural Hamming Distance (SHD) [Tsamardi-

nos et al., 2006] and the F1 score. The SHD metric reflects the number of edge additions, edge

removals and arc reversals required to move from the learnt graph to true graph. This means

that the SHD score grows with the number of the variables, which means that graphs learnt from

larger networks produce higher SHD scores. This scaling issue can be partly addressed by dividing

the SHD score by the number of the variables; often referred to as the re-scaled SHD score. On

the other hand, the F1 score ranges between 0 and 1 by combining Precision and Recall in the

following form:

F1 = 2
Precision ·Recall
Precision+Recall

=
2TP

2TP + FP + FN
, (2.2)

where TP is the number of edges that exist in both the learnt graph and true graph, FP is the

number of edges that exist in the learnt graph but not in true graph, and FN is the number of

edges that exist in the true graph but not in the learnt graph.

In contrast to the graphical metrics, inference-based metrics rely on measures of statistical

distance or model selection functions to evaluate learnt structures. An example of a measure

of statistical distance is the Kullback-Leibler (KL) divergence (or relative entropy), where a KL

divergence score of 0 indicates that the two distributions contain equal information [Kullback and

Leibler, 1951]. Model-selection functions include the Bayesian Information Criterion (BIC) and

the Bayesian Dirichlet equivalent uniform (BDeu), which are also used as objective functions in

score-based learning, and are covered in detail in Subsection 2.2.2. A limitation of inference-based

metrics is that they are influenced by both structure learning and parameter learning. Therefore,

evaluators such as the KL divergence and the BIC and BDeu scores judge the underlying model

as a whole rather than its structure alone. In this thesis, most of the results are evaluated using

the F1 and SHD scores since the performance of the proposed solutions is investigated primarily

with synthetic experiments, some of which are based on real-world graphical models and others on

randomly generated networks.

22

2.2.2 Score-based structure learning

Objective function

Objective functions are used for model-selection by score-based structure learning algorithms that

search for the optimal graph in the search-space of graphs. If an objective score can be written

as the sum of the local scores of every variable given its parents, it is called a decomposable

score. Most objective functions are decomposable, and include the BIC, the Bayesian Dirichlet

equivalent (BDe) [Heckerman et al., 1995], the BDeu, and the quotient Normalised Maximum

Likelihood (qNML) [Silander et al., 2018]. The BIC score of a DAG G given data D is defined as:

SBIC (G, D) =
∑
i

SBIC (Vi | Pai)

=
∑
i

SLL

(
Vi | Pai; Θ̂i

)
− log (N)

2
· |Θ̂i| ,

(2.3)

where SLL

(
Vi | Pai; Θ̂i

)
is the maximised value of the Log-Likelihood (LL) of Vi given Pai, Θ̂i is

the maximum likelihood estimates of the parameters of Vi in G, N is the sample size of D, and |Θ̂i|
is the number of free parameters in Θ̂i. If G is defined over a set of discrete multinomial variables

V = {V1, . . . Vn}, then the BIC score has the following form:

SBIC (G, D) =
1

N

n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk · log
Nijk

Nij
− log (N)

2
· (ri − 1)qi , (2.4)

where Nijk is the number of cases in data set D in which the variable Vi takes its kth value and

the parents of Vi take the jth configuration. Similarly, Nij is the number of cases in data set D

where the parents of Vi take their jth configuration and, therefore, Nij =
∑ri

k=1Nijk. Lastly, ri

represents the number of distinct values of Vi and qi represents the number of configurations of the

parents of Vi. Haughton [1988] has shown that BIC is a consistent objective score which means it

selects the true model with probability one as the sample size approaches infinity.

Definition 2.2.2 (Consistent score criterion). If data D contain n iid observations from distribu-

tion p, a score S is consistent if the following two conditions hold as the sample size n→∞.

1. For two DAGs G1 and G2, if there exists a parameterised BN (G1,θ1) that exactly represents

p but no such parameterised BN exists for G2 to represent p, then S (G1, D) > S (G2, D).

2. For two DAGs G1 and G2, if there exists parameterised BNs (G1,θ1) and (G2,θ2) that both

exactly represent p, and if G1 contains fewer parameters than G2, then S (G1, D) > S (G2, D).

Unlike the BIC score, the BDe score is specifically designed for discrete BNs. If data set

D contains only discrete values, we denote the ith column of D by Di, and the columns of D

that correspond to variable set U by DU . We also denote the entries, or rows, of column i by

Di,U=j when variable set U has configuration j. Assume the local distribution P (Vi | Pai,Θi) is

23

multinomial, and that each parameter Θi has a Dirichlet prior, the BDe score is:

SBDe (G, D) = logP (G) + logP (D | G)

= logP (G) +
n∑

i=1

qi∑
j=1

log

∫
P (Di,Pai=j | Θi)P (Θi) dΘi

= logP (G) +
n∑

i=1

qi∑
j=1

log
Γ
(
N ′

ij

)
Γ
(
Nij +N ′

ij

) + ri∑
k=1

log
Γ
(
Nijk +N ′

ijk

)
Γ
(
N ′

ijk

)
 ,

(2.5)

where P (G) is the prior probability of DAG G which is normally assumed to be uniform, N ′
ij =∑ri

k=1N
′
ijk, N

′
ijk = N ′·P (Vi = k,Pai = j | G) andN ′ is a hyperparameter called equivalent sample

size which controls the strength of the belief on the prior parameters. If we assume P (Vi,Pai | G)
is uniformly distributed, which means P (Vi = k,Pai = j | G) = 1

riqi
, then we have the BDeu score

as follow:

SBDeu (G, D) = logP (G) +
n∑

i=1

qi∑
j=1

log
Γ
(

N ′

qi

)
Γ
(
Nij +

N ′

qi

) +

ri∑
k=1

log
Γ
(
Nijk + N ′

riqi

)
Γ
(

N ′

riqi

)
 (2.6)

However, it has been shown that the BDe and BDeu scores are sensitive to the selection of the hy-

perparameter N ′ [Steck and Jaakkola, 2002, Silander et al., 2007]. Therefore, Silander et al. [2018]

proposed to use the Normalised Maximum Likelihood (NML) criterion to address this problem,

which is defined as:

PNML (Di,Pai=j ;G) =
P
(
Di,Pai=j | Θ̂i

)
∑

D′ P
(
D′

i,Pai=j | Θ̂i (D′)
) , (2.7)

where D′ is a data set with the same sample size and variables as in D, and Θ̂i (D
′) is the maximum

likelihood estimates of the parameters obtained from D′. Then, the hyperparameter-free qNML

score function is formally defined as:

SqNML (G, D) =

n∑
i=1

qi∑
j=1

log
PNML (Di,Pai=j ;G)
PNML (DPai=j ;G)

(2.8)

Score-based algorithms

One of the earliest and simplest score-based algorithm is the Hill-Climbing (HC) algorithm [Heck-

erman et al., 1995], which performs greedy search over the DAG space. HC is a heuristic iterative

algorithm which starts from a default graph (normally an empty graph). At each iteration, HC

explores all the neighbouring DAGs of the given DAG by inserting, deleting or reversing one di-

rected edge at a time. The pseudocode of the HC algorithm is provided in Algorithm 1. HC is

a highly efficient algorithm, especially when paired with a decomposable objective function that

would result in only one or two local scores re-computed at each iteration. However, HC is known

to terminate at a local optimal solution, and its solution may be inadequate when the search space

is large. Several techniques are proposed in the literature to improve its performance. For example,

Heckerman et al. [1995] proposed local restarts by adding random perturbations on the returned

24

DAG and restarting HC from the perturbed DAG. Bouckaert [1994] proposed tabu that permits

the algorithm to continue to explore graphical regions that minimally decrease the objective score,

and keeping track of a tabu list to prevent the algorithm from returning to a recently visited DAG.

Algorithm 1 The Hill-Climbing structure learning algorithm

1: procedure Hill Climbing
Input: data set D
Output: learnt DAG G

2: G ← empty graph
3: repeat
4: δ ← 0
5: repeat
6: construct a neighbouring DAG Gnei by adding, reversing or deleting an edge from

G
7: if S(Gnei | D)− S(G | D) > δ then
8: δ ← S(Gnei | D)− S(G | D)
9: Gupdate ← Gnei

10: end if
11: until all possible edge operations have been attempted
12: if δ > 0 then
13: G ← Gupdate
14: end if
15: until δ = 0
16: return G
17: end procedure

The Greedy Equivalence Search (GES) algorithm [Chickering, 2002] is a powerful greedy search

algorithm that guarantees to return the CPDAG of the ground truth DAG given the causal suf-

ficiency assumption, the causal faithfulness assumption, a consistent objective score, and when

sample size goes to infinity. By searching over the CPDAG space rather than DAG space, GES

significantly reduces the size of the search space and therefore prevents itself from becoming trapped

in local optima. In order to explore all possible neighbouring CPDAGs of the current CPDAG,

it implements the traditional insert, delete and reverse edge operations, but also some additional

operators such as inserting and deleting undirected edge and making v-structure. The author de-

rived an efficient method to compute the score change between the current best CPDAG and the

CPDAG explored by each edge operator, such that GES recomputes a maximum of two local scores

- for up to two nodes - at each iteration; similar to how other score-based algorithms compute the

DAG score when paired with a score-equivalent function. Later, Ramsey et al. [2017] proposed the

fast GES (fGES) algorithm that is a more efficient version of GES, aiming to expedite the structure

learning process on large data sets with millions of variables. This acceleration is accomplished

by leveraging parallel computing and reducing the search space. fGES achieves this improvements

in efficiency by also assuming that no edge exists between two uncorrelated variables, and so it

traverses a reduced search space of graphs. Unlike GES, when this assumption is violated, fGES

would fail to recover the true CPDAG even when given infinite sample size.

The Ordering Based Search (OBS) algorithm [Teyssier and Koller, 2005] is another greedy

search heuristic algorithm that searches over the node ordering space which has a size of 2O(nlogn)

and is significantly smaller than the size of DAG space 2Ω(n
2), where n is the number of variables.

OBS starts from a random node ordering and attempts to swap every pair of adjacent nodes in

25

the ordering at each iteration, and moves to the ordering with the highest score. The score of

an ordering is defined by the highest score of the graph that is consistent with the ordering. By

caching the visited ordering scores and pruning the parents set that are impossible to be in the

optimal graph, OBS tends to converge faster than HC.

Scanagatta et al. [2015] developed a variant of OBS named Acyclic Selection OBS (ASOBS)

which guarantees to return a graph that has a higher or equal score than the graph discovered by

OBS. ASOBS uses a more time-efficient pruning strategy that prunes off the parent sets that are

impossible to be optimal, without ever computing their score. Additionally, ASOBS allows the

presence of back-arcs, which are directed edges from a lower ordering node to a higher ordering

node, as long as it does not form cycles. Later, Scanagatta et al. [2017] developed another variant

of ASOBS called Window Acyclic Selection OBS (WINASOBS) which employs a more powerful

window operator that changes the position of a group of nodes in the node ordering, and uses the

same relaxation as ASOBS when generating a DAG given the ordering.

Next, we describe several exact algorithms which guarantee to return the highest scoring graph

from a given search space of graphs. One of the earliest learning strategies in this category is

dynamic programming [Ott et al., 2003, Koivisto and Sood, 2004] which recursively divides struc-

ture learning into several simpler sub-problems. Singh and Moore [2005] observed that every DAG

must have at least one sink node, i.e., node without children, thus the graph score S (G) can be

expressed as a recursive function:

S (G, D) = S (Vs | Pas) + S
(
G\s, D

)
, (2.9)

where Vs is a sink node in the graph G, Pas is the parent set of Vs in G and G\s is a sub-graph of G
that excludes Vs and all its connecting edges. They then developed a depth-first search algorithm

to find the optimal DAG over the node ordering space. Figure 2.3 illustrates the lattice searched

by dynamic programming, where each path from top to bottom represents a node ordering and

each edge explores a sink node and its optimal parent set. For example, the red path represents

the ordering {1, 2, 3, 4} and the blue path represents the ordering {4, 1, 3, 2}. The optimal DAG

can be constructed by identifying the path that maximises Equation 2.9.

However, dynamic programming is inefficient since it needs to explore all the possible parent

sets for every variable and has complexity of O (n2n), where n is the number of variables. Yuan

et al. [2011] formulate learning optimal DAG as a shortest path finding problem. They define the

cost of an edge from S1 to S2 in Figure 2.3 by BestMDL (X,S2), where X is the only node in S1

but not in S2, and BestMDL (X,S) is defined as follows:

BestMDL (X,S) = max
PaX⊆S

SBIC (X | PaX) (2.10)

Then, they employ A* search to find the shortest path from the top layer to the bottom layer with

the lowest cost. Moreover, they also propose several pruning rules to exclude those parent sets

that are impossible to be optimal, so that A* would not explore them.

Another exact algorithm is the Globally Optimal Bayesian Network learning using Integer Lin-

ear Programming (GOBNILP) [Cussens, 2011] which encodes structure learning as the following

26

{1, 2, 3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1} {2} {3} {4}

Figure 2.3: Lattice explored by dynamic programming. Each directed edge explores a sink node
and searches its optimal parent set. Each path from top to bottom represents a node
ordering.

constrained integer programming (IP) problem:

Instantiate the I (W → Vi) s to maximise
∑
Vi∈V

∑
W⊆V \{Vi}

S (Vi |W) I (W → Vi) ,

subject to I (W → Vi) s represent a DAG,

where I (W → Vi) is a binary variable with value 1 if and only if W is the parent of Vi in the

optimal DAG. The constraint can be formulated into two linear constraints called the convexity

constraint and the cluster-based constraint. The convexity constraint ensures that each variable

has exactly one parent set, whereas the cluster-based constraint rules out graphs with cycles.

Definition 2.2.3 (Convexity constraint).

∀Vi ∈ V :
∑

W⊆V \{Vi}

I (W → Vi) = 1

Definition 2.2.4 (Cluster-based constraint).

∀C ⊆ V ,∀k, 1 ≤ k ≤ |C| :
∑
Vi∈C

∑
W :W∩C=∅

I (W → Vi) ≥ 1

Since the number of cluster-based constraints is exponential to the number of the variables, it

is impossible to impose all constraints into the IP solver. GOBNILP constructs a sub-IP solver to

choose the constraint with the highest efficacy in the corresponding iteration. Even so, GOBNILP

still needs to place a limit on the number of parents for each node to be applicable in practice.

The aforementioned score-based algorithms are all based on combinatorial optimisation, i.e.,

finding a graph which optimises the objective function and satisfies the acyclic constraint. The

NOTEARS Zheng et al. [2018] algorithm is the first to convert structure learning into a continuous

optimisation problem. Assume the observed data is sampled from a linear model such that the

27

value of Vi is a linear combination of the values of its parents Pai and its own disturbance ϵi:

Vi =
∑

Vj∈Pai

wijVj + ϵi. (2.11)

Let W be the matrix composed by wij , the graph represented by W is acyclic if and only if

h (W) = Tr
(
eW◦W) − n = 0, where ◦ is Hadamard (element-wise) product, Tr is the trace

of matrix and n is the number of variables. This converts structure learning into the following

continuous optimisation problem:

min
W∈Rd×d

1

2N
∥V − VW∥+ λ∥W∥1, subject to h (W) = 0, (2.12)

whereN is the number of samples. Equation 2.12 can then be executed using a standard augmented

Lagrangian method [Fortin and Glowinski, 2000].

2.2.3 Constraint-based structure learning

Conditional independence tests

CI tests determine whether two variables are independent conditional on a variable set, including

an empty set. The most commonly used CI test for discrete data is the G test which is statistically

asymptotic to the χ2 test. Like most of the CI tests, the G test assumes a null hypothesis where

Vi and Vj are independent given S. The G test calculates the statistic G and the degree of freedom

df from data, and uses them to calculate the p-value, which is also known as significance value,

based on the χ2 distribution. If the p-value is below a predefined threshold, typically set to 0.01,

0.05 or 0.1, the null hypothesis is rejected and Vi and Vj are assumed to be dependent given S.

These are calculated as follows:

G = 2
∑
a∈Vi

∑
b∈Vj

∑
c∈S

Nabc log
NabcNc

NacNbc
, (2.13)

df = (|Vi| − 1) (|Vj | − 1)
∏

Sk∈S

|Sk| (2.14)

where Nabc is the number of cases with specific values Vi = a, Vj = b and S = c. Nac, Nbc and Nc

are defined analogously.

In the case of linear Gaussian data, Fisher’s Z-test is commonly used which assumes the partial

correlation coefficient is zero. The statistic of Fisher’s Z-test is based on Fisher’s Z-transformation

which is defined as:

Ẑ =
1

2
log

1 + ρ̂ViVj |S

1− ρ̂ViVj |S
, (2.15)

where ρ̂ViVj |S is the partial correlation coefficient between Vi and Vj given S. The transformed

partial correlation Ẑ follows a normal distribution with mean µ = 1
2 log

1+ρ̂ViVj |S

1−ρ̂ViVj |S
and standard

deviation σ = 1√
N−q−3

, where q is the number of variables in S. Therefore, we can use the normal

distribution Z, as described below, to compute the p-value given the null hypothesis of zero partial

correlation (Z0 = 0):

Z =
Ẑ − Z0

σ
=

1

2

√
N − q − 3 log

1 + ρ̂ViVj |S

1− ρ̂ViVj |S
(2.16)

28

If the functional form between variables is non-linear, the CI test based on zero partial correlation

might lead to incorrect conclusion. Zhang et al. [2011] proposed the Kernel-based Conditional In-

dependence test (KCI-test) which tests CI for continuous variables without assuming the functional

form between variables. Let (X ,B) be a measurable space, X a variable on X , and kX a positive

definite kernel defined on X . KCI-test constructs its test statistics using characteristic kernel. A

kernel kX is said to be characteristic if EX∼P [f (X)] = EX∼Q [f (X)] ,∀f ∈ HX
1 implies P = Q,

where P and Q are two probability distributions of X [Fukumizu et al., 2007].

We denote Ẍ = (X,Z) ,x = {x1, . . . , xn} ,y = {y1, . . . , yn} , z = {z1, . . . , zn} the i.i.d. sample

ofX, Y and Z respectively. KẌ is the kernel matrix of sample ẍ, and the corresponding centralised

kernel matrix is K̃Ẍ = HKẌH, where H = I − 1
n11

T , I is the identity matrix and 1 is the

vector of 1’s. KY , K̃Y ,KZ and K̃Z are defined analogously. We define K̃Ẍ|Z = RZK̃ẌRZ ,

where RZ = ϵ
(
K̃Z + ϵI

)−1

, ϵ is a small positive regularisation parameter [Schölkopf et al., 2002].

Furthermore, suppose we have the eigenvalue decomposition of K̃Ẍ|Z and K̃Y |Z , i.e., K̃Ẍ|Z =

Vẍ|zΛẍ|zVẍ|z and K̃Y |Z = Vy|zΛy|zVy|z, let ψẍ|z =
[
ψẍ|z,1 (ẍ) , . . . , ψẍ|z,n (ẍ)

]
= Vẍ|zΛ

1/2
ẍ|z and

ϕy|z =
[
ϕy|z,1 (y) , . . . , ϕy|z,n (y)

]
= Vy|zΛ

1/2
y|z. Then, under the null hypothesis (X ⊥⊥ Y | Z), the

statistic of KCI-test between X and Y given Z is defined as

TCI =
1

n
Tr
(
K̃Ẍ|ZK̃Y |Z

)
(2.17)

which has the same asymptotic distribution as

ŤCI =
1

n

n2∑
k=1

λk · z2k , (2.18)

where λk are the eigenvalues of w̌w̌T , w̌ = [w̌1, . . . , w̌n] with the vector w̌t obtained by stacking

M̌t =
[
ψẍ|z,1 (ẍt) , . . . , ψẍ|z,1 (ẍt)

]T · [ϕy|z,1 (yt) , . . . , ψy|z,1 (yt)
]
, and zk are i.i.d. χ2

1-distributed

variables. Therefore, we can obtain the Monte Carlo approximation of the null distribution ŤCI

by generating n2 samples from χ2
1 distribution and summing them up with weights λk/n. Finally,

the p-value of KCI-test can be estimated by the probability of samples from ŤCI exceeding TCI .

Constraint-based algorithms

One of the earliest constraint-based algorithms is the SGS algorithm [Spirtes et al., 1990]. SGS

is sound in that it guarantees to find the true CPDAG if the faithfulness and causal sufficiency

assumptions hold, and while sample size goes to infinite. SGS relies on the two following rules

about graph G, which is defined over variables V given the faithfulness and causal sufficiency

assumptions [Verma and Pearl, 1990]:

1. Two variables Vi and Vj are neighbours in graph G if and only if Vi and Vj are conditionally

dependent given any subset S ⊆ V \ {Vi, Vj}.

2. In graph G, if ⟨Vi, Vj , Vk⟩ is an unshielded triple, then Vi, Vj and Vk form a v-structure in G,
i.e., Vi → Vj ← Vk, if and only if Vi and Vk are dependent given any subset S ⊆ V \ {Vi, Vk}
such that Vj ∈ S.

1HX is the corresponding Reproducing Kernel Hilbert Space (RKHS) for kX

29

SGS initialises G as a fully connected undirected graph, and executes the following three learning

phases:

1. Adjacency phase: Based on rule 1, for every pair of variables Vi and Vj , SGS performs CI tests

between Vi and Vj conditional on every subset S ⊆ V \ {Vi, Vj}. If Vi and Vj are found to be

independent given at least one conditioning set, SGS removes the undirected edge between

Vi and Vj in graph G. The output of the adjacency phase is referred as skeleton C.

2. V-structure phase: Based on rule 2, for every unshielded triple ⟨Vi, Vj , Vk⟩ in skeleton C,
SGS performs CI tests between Vi and Vk conditional on every subset S ⊆ V \ {Vi, Vk} that
contains Vj . If Vi and Vk are dependent given any conditional set, then SGS orientates

Vi → Vj and Vj ← Vk in G.

3. Orientation propagation phase: For every remaining undirected edge, if one of the orienta-

tions introduces additional v-structures or cycles, SGS orientates that undirected edge in the

opposite direction in G.

Algorithm 2 The SGS algorithm

1: procedure SGS(D)
Input: data D
Output: CPDAG G
▷ Adjacency phase

2: G ← fully connected undirected graph
3: for each variable pair ⟨Vi, Vj⟩ do
4: if ∃S ⊆ V \ {Vi, Vj}, s.t. Vi ⊥⊥ Vj | S then
5: remove Vi − Vj from G
6: end if
7: end for

▷ V-structure phase
8: for each unshielded triple ⟨Vi, Vj , Vk⟩ ∈ G do
9: if Vi ⊥⊥ Vk | S ∪ {Vj} ,∀S ⊆ V \ {Vi, Vj , Vk} then

10: orientate Vi → Vj ← Vk in G
11: end if
12: end for

▷ Orientation phase
13: repeat
14: for each undirected edge Vi − Vj ∈ G do
15: if orientating Vi → Vj causes cycles or v-structures in G then
16: orientate Vi ← Vj in G
17: end if
18: end for
19: until G is unchanged
20: return G
21: end procedure

The pseudocode for SGS is shown in Algorithm 2. While SGS is sound in theory, it is time

consuming due to the high number of conditional independence tests it performs and, therefore,

inefficient. In the worst case, SGS requires n (n− 1) 2n−3 CI tests in the adjacency phase, where

n is the number of variables in V . To improve learning efficiency, Spirtes and Glymour [1991]

proposed the PC algorithm which requires fewer CI tests than SGS. PC also starts from a fully

connected undirected graph, and adopts the same three phases as SGS but modifies the adjacency

phase and v-structure phase as follows:

30

1. Adjacency phase in PC : For every ordered variable pair ⟨Vi, Vj⟩ adjacent in G, PC performs

CI tests conditional on the subsets S ⊆ Adj (G, Vi) \ {Vj} with increasing set size, where

Adj (G, Vi) represents the set of variables that are adjacent to Vi in the current graph G. If Vi
and Vj are found to be independent given such a conditioning set, PC removes the undirected

edge between Vi and Vj from G.

2. V-structure phase in PC : For every unshielded triple ⟨Vi, Vj , Vk⟩ in skeleton C, if the variable
set that makes Vi and Vk independent in the adjacency phase does not contain the variable

Vj , then PC orientates Vi → Vj and Vj ← Vk in G.

PC modifies the adjacency phase based on the Markov assumption which hypothesises that a

variable is independent of its non-descendants given its parents. Therefore, the minimal separating

set of Vi and Vj must be a subset of either Adj (G, Vi) or Adj (G, Vj). The maximal number of CI

tests required by PC during the adjacency phase is n2(n−1)k−1

(k−1)! , where k is the maximal degree of

any variable. Although PC suffers the same complexity bound as SGS in the worst case, it is more

efficient than SGS when the underlying true DAG is sparse. The pseudocode for PC is shown in

Algorithm 3.

Algorithm 3 The PC algorithm

1: procedure PC(D)
Input: data D
Output: CPDAG G
▷ Adjacency phase

2: G ← fully connected undirected graph
3: Sepset← ∅
4: l← −1
5: repeat
6: l← l + 1
7: for each ordered variable pair ⟨Vi, Vj⟩ adjacent in G do
8: if ∃S ⊆ Adj (G, Vi) \ {Vj}, s.t. Vi ⊥⊥ Vj | S and |S| = l then
9: remove Vi − Vj from G

10: Sepset (Vi, Vj) = Sepset (Vj , Vi) = S
11: end if
12: end for
13: until Every variable Vi satisfies |Adj (G, Vi)| ≤ l

▷ V-structure phase
14: for each unshielded triple ⟨Vi, Vj , Vk⟩ ∈ G do
15: if Vj ̸∈ Sepset (Vi, Vk) then
16: orientate Vi → Vj ← Vk in G
17: end if
18: end for

▷ Orientation phase
19: repeat
20: for each undirected edge Vi − Vj ∈ G do
21: if orientating Vi → Vj causes cycles or v-structures in G then
22: orientate Vi ← Vj in G
23: end if
24: end for
25: until G is unchanged
26: return G
27: end procedure

While the PC algorithm is theoretically sound and efficient, this theoretical strength does not

31

always translate into practical effectiveness, and this applies to most algorithms. For example, PC

is sensitive to the order of the variables as read from data and may return different results for

different orderings. Moreover, as we will later show, PC is also sensitive to data noise, and any

early mistakes PC might do will propagate to future independence or directionality decisions the

algorithm might make. Next, we will present several modifications of the PC algorithm that are

designed to enhance its performance in practical scenarios. Spirtes et al. [2000] proposed a variant

of PC called the Fast Causal Inference (FCI) algorithm which does not assume causal sufficiency.

FCI outputs a Partially Orientated Inducing Path Graph (POIPG) which is analogous to a PAG

but contains slightly less information. FCI adopts the same adjacency phase and v-structure phase

as PC but has another adjacency phase to discover the separating sets caused by unobserved

confounders. This is because when there are unobserved confounders, the separating set for two

observed variables may contain variables that are not neighbours of these two variables. Moreover,

FCI uses a more complicated orientation phase to include the possible unobserved confounder in

POIPG. Despite the presence of “Fast” in FCI’s name, its adjacency phase is typically far more

resource intensive than in the PC algorithm. Really Fast Causal Inference (RFCI) [Colombo et al.,

2012] seeks to address this by reverting back to having just one adjacency phase instead of two as in

FCI. The v-structure phase and one of the orientation rules are also modified to avoid orientation

errors that might occur due to the fact that the PC adjacency phase is used rather than the more

accurate FCI one.

Although PC is more efficient than SGS, its outcome is sensitive to the variable ordering read

from data. Specifically, in the adjacency phase, when searching for the possible separating set for

ordered variable pair ⟨Vi, Vj⟩, PC only explores the subsets of Adj (G, Vi). Therefore, an incorrect

edge removal might lead to further errors in subsequent steps. Colombo and Maathuis [2014]

found that the outcomes of all three phases in PC depend on the variable ordering, and proposed

a variant of PC called PC-stable to resolve this issue. Similar to SGS and PC, PC-stable starts its

learning phase from a fully connected graph G and uses the following three phases:

1. Adjacency phase in PC-stable: At each conditional set size l ranging from 0 to n − 1, for

every ordered variable pair ⟨Vi, Vj⟩, PC performs CI tests conditional on the subsets S ⊆
a (Vi) \ {Vj} with size l, where a (Vi) is the set of adjacent variables of Vi in G which is only

updated before processing all CI tests at conditional set size level l. If Vi and Vj are found

to be independent given such a conditioning set, PC-stable removes the undirected edge

between Vi and Vj in G. This phase terminates if all a (Vi) have size smaller than l.

2. V-structure phase in PC-stable: For every unshielded triple ⟨Vi, Vj , Vk⟩ in skeleton C, PC-
stable determines all subsets of Adj (G, Vi) or Adj (G, Vk) that d-separate Vi and Vk. If at

least one such separating set is found and Vj is in none of those sets, PC-stable orientates

Vi → Vj and Vj ← Vk in G. If Vi ← Vj or Vj → Vk is orientated in a previous iteration, then

PC-stable creates bi-directed edge Vi ↔ Vj or Vj ↔ Vk to ease conflicts.

3. Orientation propagation phase in PC-stable: For every remaining undirected edge, if one

of the orientations introduces additional v-structures or cycles, PC-stable orientates that

undirected edge in the opposite direction in G. If both orientations cause either additional

v-structures or cycles, PC-stable makes this edge bi-directional.

The pseudocode of PC-stable is shown in Algorithm 4. Ramsey [2016] proposed another variant

of PC called PC-MAX which interprets the p-value as the reliability of CI tests, and uses the

32

Algorithm 4 The PC-stable algorithm

1: procedure PC-stable(D)
Input: data D
Output: CPDAG G
▷ Adjacency phase

2: G ← fully connected undirected graph
3: Sepset← ∅
4: l← −1
5: repeat
6: l← l + 1
7: for each Vi ∈ G do
8: a (Vi)← Adj (G, Vi)
9: end for

10: for each ordered variable pair ⟨Vi, Vj⟩ adjacent in G do
11: if ∃S ⊆ a (Vi) \ {Vj}, s.t. Vi ⊥⊥ Vj | S and |S| = l then
12: remove Vi − Vj from G
13: Sepset (Vi, Vj) = Sepset (Vj , Vi) = S
14: end if
15: end for
16: until Every variable Vi satisfies |a (Vi) \ {Vj}| ≤ l

▷ V-structure phase
17: for each unshielded triple ⟨Vi, Vj , Vk⟩ ∈ G do
18: if ∃S ⊆ Adj (G, Vi) or S ⊆ Adj (G, Vk) , s.t. Vi ⊥⊥ Vk | S then
19: if All such S do not contain Vj then
20: orientate Vi∗ → Vj ← ∗Vk in G
21: end if
22: end if
23: end for

▷ Orientation phase
24: repeat
25: for each undirected edge Vi − Vj ∈ G do
26: if orientating Vi → Vj causes cycles or v-structures in G then
27: if orientating Vi ← Vj causes cycles or v-structures in G then
28: orientate Vi ↔ Vj in G
29: else
30: orientate Vi ← Vj in G
31: end if
32: end if
33: end for
34: until G is unchanged
35: return G
36: end procedure

33

separating set with the highest p-value to determine if an unshielded triple is a v-structure in the

v-structure phase. Similarly, Hyttinen et al. [2014] designed a weight scheme w (k) to reflect the

reliability for each conditional (in)dependence constraint k that is detected from data by CI tests.

They define the optimal graph G∗ as the graph that minimises the sum of weights of conditional

(in)dependence constraints not implied by G∗ as described in Equation 2.19, which can be solved

by applying the off-the-shelf Answer Set Programming (ASP) algorithm [Gelfond and Lifschitz,

1988, Niemelä, 1999, Simons et al., 2002]:

G∗ = argmin
G

∑
k∈K:k/∈G

w (k) , (2.19)

where K represents the set of all conditional (in)dependence constraints that are testable from

data. The weight w (k) for constraint k = Vi ⊥⊥ Vj | S given a data set D is defined as:

w (k) = logP (k | D)− log (1− P (k | D)) (2.20)

P (k | D) =
P (Vj | S)α

P (Vj | S)α+ P (Vj | Vi,S) (1− α)
, (2.21)

where α represents the prior of k, P (Vj | S) and P (Vj | Vi,S) correspond to the local scores used

in score-based algorithms for Vj given parents S and {Vi} ∪ S respectively.

Li et al. [2019] found that the separating set S of Vi and Vj detected by PC during the adjacency

phase is likely not to be consistent with the final learnt graph, and they call this set inconsistent

separating set in their paper. They propose another variant of PC that recursively executes a

modified version of PC-stable to ensure the discovered separating sets are consistent with the final

learnt graph. They modified the adjacency phase in PC-stable as follows:

1. Set the initial graph to G1.

2. Replace a (Vi) \ {Vj} by a (Vi) \ {Vj} ∩ Consist (Vi, Vj | G2), where Consist (Vi, Vj | G2) is de-
fined as:

Consist (Vi, Vj | G2) = {Z ∈ Adj (G2, Vi) \ {Vj} |1.At least one path γZViVj
exists in G2;

2.Z is not a child of Vi in G2},
(2.22)

where γZViVj
is a path between Vi and Vj through Z.

They name the above modified adjacency phase as NewStep1 (G1 | G2). Their modification first

calls NewStep1 (Gc | G∅) to obtain G0, and then recursively calls NewStep1 (G0 | Gk−1) based on

the graph Gk−1 obtained in previous iteration k − 1. Finally, they call the v-structure phase and

orientation phase of PC-stable and do a final consistency check to ensure all separating sets are

consistent with the final graph.

The Grow-Shrink (GS) algorithm [Margaritis and Thrun, 1999] is the first algorithm to utilise

the concept of Markov Blanket (MB) to reduce the possible number of CI tests. GS contains two

phases. In the first phase, the Grow phase, it dynamically adds variables to the candidate MB set

that are conditionally dependent with the target variable. In the second phase, the Shrink phase,

it removes the variables that do not belonging to the MB of the target variable. The pseudocode

of the GS algorithm is presented in the Algorithm 5.

34

Algorithm 5 The Grow-Shrink (GS) algorithm

1: procedure GS(X,S, D)
Input: target variable X, candidate variables set S, data D
Output: Candidate Markov Blanket CMB of X

2: CMB← ∅
▷ Grow Phase

3: repeat
4: if ∃Si ∈ S, s.t.X ⊥̸⊥ Si | CMB then
5: add Si to CMB
6: remove Si from S
7: end if
8: until CMB stays unchanged

▷ Shrink Phase
9: for each Y ∈ CMB do

10: if X ⊥⊥ Y | CMB\ {Y } then
11: remove Y from CMB
12: end if
13: end for
14: return CMB
15: end procedure

The Incremental Association Markov Blanket (IAMB) algorithm [Tsamardinos et al., 2003b]

optimises the GS algorithm so that it can handle thousands of variables. The authors argue that

GS’s Grow phase is suboptimal because it is slow to discover spouses in the MB since these often

have weak association. This, in turn, leads to more CI tests in the Grow and Shrink phases.

Instead, they propose using conditional mutual information to determine the order in which a

node is considered for inclusion into CMB during the Grow phase. They also propose a variant of

IAMB, called Inter-IAMB, which interleaves the Grow and Shrink phases.

2.2.4 Hybrid structure learning

The Max–Min Hill Climbing (MMHC) algorithm proposed by Tsamardinos et al. [2006] is one of

the earliest hybrid structure learning algorithms. It starts with the Max–Min Parents Children

(MMPC) [Tsamardinos et al., 2003a] to construct the graph skeleton. MMPC is a variant of

the constraint-based PC algorithm by prioritising the variable pair based on their strength of

association. In the subsequent score-based phase, MMHC uses HC to produce the DAG, but is

constrained to only consider edges that are present in the graph skeleton produced during the

constraint-based phase.

Gasse et al. [2014] introduced the Hybrid HPC (H2PC) algorithm which uses the Hybrid Parents

and Children (HPC) algorithm to construct the graph skeleton in the constraint-based phase, with

a specific focus on minimising false negative edges. HPC incorporates an ensemble of weak parent-

and-children algorithms to achieve this objective. In the score-based phase, H2PC employs tabu

search. Evaluations across 10 networks, ranging up to 1836 variables, demonstrate that H2PC

outperforms MMHC in terms of both structural accuracy and data fitting. However, it should be

noted that H2PC was shown to be considerably less efficient than MMHC, and approximately 10

times slower for larger sample sizes.

Ogarrio et al. [2016] proposed a hybrid algorithm called Greedy Fast Causal Inference (GFCI)

to address the challenge of latent confounders and provide asymptotic guarantees of correctness.

35

V1

V2 L V3

V4

(a) True DAG with an unobserved
common cause L

V1

V2 V3

V4

(b) True PAG over observed vari-
ables

V1

V2 V3

V4

(c) Output of fGES

Figure 2.4: The output of fGES when the true DAG contains unobserved common cause.

They observed that constraint-based algorithms like FCI demonstrate asymptotic correctness when

assuming causal sufficiency, but exhibit poorer performance when sample size is low. On the other

hand, score-based algorithms like GES and fGES are asymptotically correct when assuming causal

sufficiency, but tend to introduce additional adjacencies and incorrect orientations in the presence

of latent variables [Ogarrio et al., 2016]. Figure 2.4 illustrates an example where fGES generates

CPDAG given data sampled from a system with an unobserved common cause. In this example,

fGES introduce extra adjacency, i.e., V1 → V3, and incorrect orientations, i.e., V1 − V2, V2 → V3,

because it is impossible to find a CPDAG without hidden variables while exactly representing

the conditional independencies among the observed variables in the true DAG. To overcome these

limitations, GFCI starts by employing GES to generate a CPDAG, and then utilises CI tests to

remove unnecessary adjacencies from the skeleton. Finally, modified FCI orientation rules are

applied to produce a PAG. The authors evaluate GFCI using synthetic Gaussian BNs with varying

numbers of variables (102 or 103) and different percentages (5% or 20%) of latent variables. The

results show that GFCI generally achieves better recall and precision in terms of adjacencies and

arrow end marks compared to FCI. In the cases where GFCI performed slightly worse, the difference

was negligible.

Jabbari et al. [2017] introduced a hybrid version of the RFCI constraint-based algorithm known

as RFCI-BSC. This variant incorporates a novel scoring approach called Bayesian Scoring of Con-

straints (BSC), which assigns a score to each CI test based on the probability of true conditional

independence. In RFCI-BSC, the RFCI algorithm is adapted to make stochastic decisions on the

truthfulness of each CI based on its corresponding BSC score. It is important to highlight that

RFCI-BSC operates in a non-deterministic manner as it utilises a different random seed for each

run.

Constantinou [2020] proposed the SaiyanH hybrid algorithm, which starts with constraint-based

learning to produce a skeleton with no disjoint subgraphs, which can be viewed as a denser version

of the maximum spanning tree. In the subsequent phase, it orientates all edges by combining CI

tests with BIC and a function that maximises the impact of hypothetical interventions. It then

applies tabu search to the resulting DAG, with the restriction not to eliminate edges that would

result in disjoing subgraphs, to ensure full propagation of evidence when converting the learnt

graph into a BN model.

2.2.5 Structure learning for functional causal models

This subsection describes algorithms that learn the structure of FCMs, which can be seen as a

special case of continuous BN that expresses the relationship between causes Pai and effects Vi

via the function:

Vi = f (Pai, ϵi) , (2.23)

36

where ϵi is the noise (disturbance) term of Vi which is assumed to be independent of Pai. Given

linear functions f and Gaussian noise terms ϵi, a FCM is equivalent to a general linear Gaussian BN.

If the function f is nonlinear or the noise ϵi is non-Gaussian, then the underlying FCM is possible

to be fully identified from observational data when the sample size moves to infitine [Shimizu et al.,

2006, Hoyer et al., 2008, Zhang and Hyvärinen, 2009].

One of the earliest structure learning algorithms for FCMs is the Linear Non-Gaussian Acyclic

Model (LiNGAM) [Shimizu et al., 2006] which assumes that the values of a variable are determined

by a linear function of its parents with additive non-Gaussian noise. Given this assumption, the

data generating process of Vi can be expressed as follows:

Vi =
∑

Vj∈Pai

bijVj + ϵi. (2.24)

The Equation 2.24 can be rewritten in matrix form as follows:

V = BV +E,

E = (I −B)V , (2.25)

where B is the matrix that contains the coefficients bij and E is the vector of independent noise

terms ϵi. By assuming that E is composed by non-Gaussian components, LiNGAM estimates the

coefficient matrixW from observed data in two steps. Firstly, LiNGAM applies standard Indepen-

dent Component Analysis (ICA) [Comon, 1994] on data V to extract non-Gaussian components

S:

S =WV . (2.26)

However, the order of S retrieved by ICA is not fixed and may not correspond to the variable

order in V , i.e., the i-th component in S may not be the noise term for Vi, such that one cannot

directly use W to reconstruct a BN. Therefore, LiNGAM permutes, normalises and re-scales W

to be as close as possible to a lower triangular matrix which becomes an estimation of B. Finally,

one can leverage the estimated B to derive the causal relationship between each pair of variables

and produce a learnt DAG.

Hoyer et al. [2008] generalises LiNGAM to nonlinear scenarios by assuming that causal rela-

tionships between variables might be nonlinear and that the noise term is additive, which is also

known as Additive Noise Model (ANM). The relationship between parents and children in an ANM

can be written as follows:

Vi = f (Pai) + ϵi, (2.27)

where f represents the possible nonlinear relationhips between parents Pai and children Vi. They

find that non-linearity of functions is also conducive to identification of causal directions which

is analogous to non-Gaussianity. Their theoretical results indicate that when the true DAG is

V1 → V2 and the noise terms for V1 and V2 are both Gaussian, then the causal direction V1 → V2

can be identified from observational data as long as the causal relationship between V1 and V2 is

nonlinear. Hoyer et al. [2008] then propose an exhaustive algorithm to find the optimal DAG by

searching all possible DAGs. For each DAG, they perform nonlinear regression for each variable

given its parents, and test if the residuals are mutually independent. If an independence test fails,

the corresponding DAG is rejected. However, this method is only feasible when the number of

37

variables is low (roughly less than or equal to 7).

Peters et al. [2014] propose the Greedy DAG Search (GDS) algorithm for ANM intended for

larger graphs. GDS assumes the noise term of a variable is independent with the noise terms of all

other variables. Therefore, it defines an objective function based on the measure of independence

between the residual of a variable and the residuals of all other variables, and then performs greedy

search in the search-space of DAGs like HC. The objective score of GDS can be described as:∑
i

DM
(
resGi , res

G
−i

)
+ λ#(edges) , (2.28)

where DM is a measure of dependence, resGi is the residual of Vi given its parents in G, and resG−i

is the residuals of all variables except Vi. GDS uses the minus logarithm of the p-value of Hilbert

Schmidt Independence Criterion (HSIC) as the dependence measure, and the Gaussian Process

regression as the regression model.

Zhang and Hyvärinen [2009] focus on another type of FCM, called Post-NonLinear (PNL)

causal model, and explore the conditions under which PNL is identifiable. PNL is a broader class

of FCM that includes both LiNGAM and ANM as two special cases. PNL expresses variable Vi as

follows:

Vi = fi,2 (fi,1 (Pai) + ϵi) , (2.29)

where fi,1 represents the possible nonlinear effect of Pai and fi,2 represents the possible post-

nonlinear distortion on Vi. It turns out that ANM is a special case of PNL when assigning fi,2

a linear function. Zhang and Hyvärinen [2009] found that PNL is generally identifiable in theory

except for five special situations including the well known linear Gaussian case.

38

Chapter 3

The impact of data noise on

structure learning, and learning

structures from noisy data with

model averaging

3.1 Introduction

Over the past few decades, various structure learning algorithms have been proposed with different

learning strategies and hypotheses. These algorithms typically assume that the observed data is

sampled from the true underlying causal graph and that the statistics derived from the data are

asymptotically equivalent to those obtained from the true distribution. However, these assumptions

are violated when learning from real-world data, resulting in a performance gap between synthetic

experiments and real-world applications. Nonetheless, it remains unclear to what extent this

performance gap exists.

One of the main challenges in measuring the performance of structure learning algorithms is

that the ground truth causal graph on which the data set is generated from is generally unknown

in practice. This limitation prevents us from assessing the capability of these algorithms in recon-

structing the true graph. There has been a growing interest in empirically evaluating structure

learning algorithms. Relevant studies include Djordjilović et al. [2017] who examine the perfor-

mance of PC, GOBNILP, and K2 in retrieving gene networks from transcription data, Scutari et al.

[2019] who analyse the differences in accuracy and speed of various structure learning algorithms

available in the bnlearn R package [Scutari et al., 2010], and Assaad et al. [2022] who evaluate

structure learning algorithms for time series problems using both synthetic and real-world data

sets.

In this Chapter, we broaden the scope of our investigation by examining a wider range of algo-

rithms from multiple structure learning packages, and specifically in the presence of data noise. We

simulate four different types of data noise, including measurement error, missing values, merging

states and latent variables, to investigate how data noise affects structure learning performance.

The aim is to better approximate the real-world performance of these algorithms by incorporating

39

Case study Description

Asia A BN that models the relationships between variables related to the diagnosis of
lung cancer [Lauritzen and Spiegelhalter, 1988].

Alarm A BN model for monitoring critically ill patients in intensive care units [Beinlich
et al., 1989].

Pathfinder A BN model designed to mimic the decision-making capabilities of a human expert
in diagnosing lymph-node diseases [Heckerman et al., 1992].

Sports A BN designed for modelling and predicting the outcomes of football matches
[Constantinou, 2022].

ForMed A BN model for risk assessment and risk management of violent reoffending
amongst mentally ill prisoners [Constantinou et al., 2015].

Property A BN designed for modelling the dynamics of the London buy-to-let property
market [Constantinou and Fenton, 2017].

Table 3.1: The description of the six case studies.

various types and levels of noise in the data that are assumed to be common in real data. We

evaluate the performance of algorithms that come from different classes of structure learning, with

and without data noise, and provide an overview of how different types of data noise impact their

performance. Once the impact of data noise is established, we then show that combining model

averaging with pruning and greedy search leads to improved structure learning performance when

the input data are noisy. This chapter is organised as follows: Section 3.2 presents an empirical

investigation regarding the impact of data noise on structure learning algorithms, Section 3.3 de-

scribes a novel model averaging algorithm suitable for learning BN structures in the presence of

data noise, and Section 3.4 concludes the chapter with our final remarks.

3.2 Impact of data noise

3.2.1 Case studies and synthetic data

We consider six discrete BNs to generate synthetic data. These are the widely-known Asia, Alarm

and Pathfinder networks, and three relatively recent case studies that come from real-world BN

applications. The case studies range from 8 to 109 variables. We provide a brief description of the

six BNs in Table 3.1. Note that while the parameters in the Asia, Alarm, and Pathfinder networks

are based on knowledge, the parameters in Sports and ForMed networks are learnt from real data,

whereas those in the Property network are derived from clearly defined tax rules and regulating

protocols.

We use the BN models described above to generate both clean (i.e., noise-free) and noisy

synthetic data. Noisy data are generated by making different assumptions about the type and

rate of noise in the data, resulting in multiple data sets for each case study. These categories are

listed below, where for each category we generate data sets with sample sizes 102, 103, 104, and

105. These data sets are classified under the category “No Noise” (N). Next, each of these N data

sets is manipulated with at least one type of data noise, resulting in the other five data categories

as follows:

• Noise-free (N): The traditional approach used in the structure learning literature to generate

40

noise-free synthetic data .

• Missing values (M): There is a probability of 5% or 10% (both percentages are tested) for

every data entry to be missing completely at random. Since most algorithms cannot handle

data sets that have empty cells, we introduce a new state called ”missing” to represent the

missing values.

• Incorrect values (I): There is a probability of 5% or 10% (both percentages are tested) for

every data entry to be substituted by one of the other available values in the same variable.

For example, if a variable has possible states {x, y, z}, a value x could be randomly changed

into either y or z.

• Merged states1 (S): There is a probability of 5% or 10% (both percentages are tested) for

every variable to have two of its states merged into one. For example, a variable with states

{a, b, c} would have two random states, such as a and b, both combined into a new state ab.

• Latent variables (L): There is a probability of 5% or 10% (both percentages are tested) for

every variable to be removed from data.

• Combo (C): Represents the case where two or more types of data noise occur simultaneously.

Due to the high computational complexity associated with all the experiments, we restrict

the rate of noise to 5% for each type of data noise considered in these experiments which

assume multiple types of data noise2.

The above categories lead to 16 different configurations of data noise, including the noise-free case,

as described in Table 3.2. Each configuration of data noise is applied to each of the 6 case studies,

and 5 different sample sizes are generated for each case, which leads to a maximum of 480 data

sets for each algorithm to be evaluated. Note that some of these categories cannot be applied to

all case studies. For example, experiment S could not have been applied to Boolean BNs, such as

the Asia BN, because a binary variable already contains the minimum number of possible states it

can have. Moreover, the Asia and Sports BNs incorporate eight and nine nodes respectively, which

means experiments S and L, which involve manipulation of variables rather than data values, could

be performed only at 10% level of randomisation, since manipulating just one variable corresponds

to a rate of >10% in both cases.

3.2.2 The investigated structure learning algorithms

We consider 15 structure learning algorithms that come from different classes of learning, including

constraint-based, score-based and hybrid learning algorithms. Some of the selected algorithms are

old and well-established in the literature, while others come from recently published papers. A list

of the selected algorithms is provided in Table 3.3. Please refer to Chapter 2 for the description of

each of these algorithms.

We utilised the R package r-causal [Wongchokprasitti, 2019] to test PC-stable, FCI, FGES,

GFCI and RFCI-BSC, the R package bnlearn [Scutari et al., 2010] to test GS, Inter-IAMB, HC,

1Missing values and merged states are sometimes regarded as a special case of ’coarsening’ in which the observa-
tions are not exact values of data but rather simplifications or summarisations of information [Heitjan and Rubin,
1991].

2The work in this section involved learning approximately 10,000 graphs with a total structure learning runtime
of seven months.

41

No Noise
Missing values Incorrect values Merged states Latent variables

5% 10% 5% 10% 5% 10% 5% 10%

1 N ✓
2 M5 ✓
3 M10 ✓
4 I5 ✓
5 I10 ✓
6 S5 ✓
7 S10 ✓
8 L5 ✓
9 L10 ✓
10 cMI ✓ ✓
11 cMS ✓ ✓
12 cML ✓ ✓
13 cIS ✓ ✓
14 cIL ✓ ✓
15 cSL ✓ ✓
16 cMISL ✓ ✓ ✓ ✓

Table 3.2: Experiment codes used to represent the 16 specified configurations of noisy data inves-
tigated.

Category Algorithm

Score-based HC, TABU, FGES, GOBNILP, WINASOBS, NOTEARS

Constraint-based PC-stable, FCI, GS, Inter-IAMB

Hybrid MMHC, H2PC, GFCI, RFCI-BSC, SaiyanH

Table 3.3: The 15 structure learning algorithms investigated, categorised by learning class.

TABU, MMHC and H2PC, the Bayesys software [Constantinou, 2019] to test SaiyanH, the GOB-

NILP software [Cussens, 2011] to test GOBNILP, the BLIP software [Scanagatta, 2019] to test

WINASOBS, whereas NOTEARS was tested using its original Python source code [Zheng et al.,

2018]. While many of the implementations mentioned here provide the option for users to modify

hyper-parameters that related to CI tests, objective functions, maximal in-degree, etc., there is

no definitive guideline to assist users in selecting the optimal settings. Given the large number

of experiments conducted in this Chapter, we opted to use the default settings for these hyper-

parameters in each implementation to avoid introducing further variability, under the assumption

that this is how many users would also apply these algorithms to real data.

3.2.3 Evaluation

In this study, we were interested in investigating the usefulness of these algorithms in real-world

settings where we tend to require causal BNs to answer interventional or counterfactual queries. On

this basis, the assessment is driven by how well the algorithms achieve this objective by recovering

the true causal DAG that was used to generate the data. Therefore, we evaluate the performance

of these algorithms in terms of recovering the true DAGs or MAGs, rather than recovering the

true CPDAGs or PAGs. When there are hidden variables in the input data, the algorithms are

evaluated with reference to the true MAG; otherwise, they are evaluated with reference to the true

42

True graph Learnt graph Weight Reasoning

Vi → Vj Vi → Vj , Vio→ Vj 0 Complete match
Vi → Vj Vi ↔ Vj , Vi − Vj , Vio− oVj , Vi ← Vj , Vi ← oVj 0.5 Partial match
Vi → Vj Vi ⊥⊥ Vj 1 No match
Vi ↔ Vj Any edge 0 Latent confounder
Vi ⊥⊥ Vj Vi ⊥⊥ Vj 0 Complete match
Vi ⊥⊥ Vj Any edge 1 Incorrect dependency

Table 3.4: The penalty weights assumed by the F1 and SHD metrics.

DAG. The differences between these two types of graphical representation can be found in Section

2.1.

We use the F1 and SHD graphical metrics to evaluate the accuracy of the learnt graphs with

reference to the true graphs. The description of these metrics can be found in Subsection 2.2.1.

We use the penalty weights depicted in Table 3.4 to score each of the learnt graphs. Note that the

original definition of SHD assumes that reversing an arc results in an increase of the SHD score by

1. However, in this Chapter, we halve the penalty under the assumption that the dependency has

been correctly identified, albeit with the wrong orientation. This assumption is consistent with

other SHD variants [de Jongh and Druzdzel, 2009].

3.2.4 Results and discussion

Because the results are collected from almost 105 individual runs, we introduce a runtime limit

of six hours per run. Algorithms that fail to return a result within this specified time limit are

assigned the lowest rank for that particular data set. For instance, if five out of the 15 algorithms

fail to return a graph for a given data set, then those five algorithms would be given rank 11

for that particular data set. However, the GOBNILP algorithm was an exception to this rule,

because it provides the option to users to stop the learning process within a given time and

retrieve the best graph discovered up to that point. This feature of GOBNILP, which is not offered

by other implementations, can be considered as an unfair advantage for GOBNILP in our results.

Additionally, algorithms that fail to generate a graph due to errors are also assigned the lowest

rank for that particular data set. While this was necessary to ensure the results remain unbiased

across all experiments, this assumption does negatively influence the rankings of the algorithms

that fail to produce a result. RFCI-BSC, FCI and PC-stable are the three algorithms that fail in

most cases. As shown later, RFCI-BSC ranks lowest across all algorithms and over all experiments,

whereas PC-stable and FCI rank in the middle of the ranking table, which means they are likely

to perform better in experiments that they do produce a result.

To measure the impact of data noise, we separate the results into those with no synthetic

noise (i.e., experiment N) which represents the typical approach to generating synthetic data, and

those with different types of synthetic noise (i.e., all other experiments) based on the methodology

described in Sections 2.2.2 to 2.2.4. This enables us to rank the algorithms over different case

studies, types of data noise, sample size, and evaluation metrics.

Table 3.5 reports the average and overall ranks achieved by each algorithm in experiments N, as

determined by each of the two scoring metrics. We report the overall rank rather than the overall

score since not all algorithms produce a result in every single experiment. Averaging across scores

that include missing scores would have biased the difference between scores, whereas assigning

43

Category Algorithm
F1 rank SHD rank

Average Overall Average Overall

Constraint-based

PC-stable 8.10± 3.83 11 6.83± 4.06 8
FCI 7.70± 3.92 9 6.57± 3.96 7
GS 11.87± 2.03 14 10.43± 3.36 13
Inter-IAMB 10.00± 2.94 12 8.60± 3.31 12

Score-based

HC 3.63± 3.72 2 4.77± 4.06 2
TABU 3.27± 3.07 1 4.43± 3.55 1
FGES 7.50± 2.38 8 7.83± 2.84 10
GOBNILP 4.80± 3.40 3 6.43± 4.55 5
WINASOBS 6.30± 3.85 6 5.87± 3.58 4
NOTEARS 12.00± 4.00 15 13.00± 2.00 15

Hybrid

GFCI 6.87± 2.28 7 6.87± 2.50 9
RFCI-BSC 11.50± 2.73 13 10.90± 3.56 14
MMHC 7.77± 2.74 10 6.47± 2.86 6
H2PC 6.13± 3.79 5 5.10± 4.00 3
SaiyanH 5.33± 2.26 4 8.00± 3.50 11

Table 3.5: Average and overall ranked performance of the algorithms over all case studies and
sample sizes in experiment N (i.e., no noise), where the average rank is presented with
its standard deviation.

ranks as discussed above avoids this bias. Overall, the results in Table 3.5 show that score-based

algorithms perform better in experiment N, compared to constraint-based and hybrid algorithms.

Table 3.6 shows the average and overall ranked performance for each algorithm over all the

15 noisy experiments, and with reference to their ranked performance in clean experiments N.

While in the clean experiments the TABU algorithm ranks first across both metrics, in the noisy

experiments the HC algorithm ranks 1st in terms of F1 and 2nd in terms of SHD score. This

is unusual given that TABU returns a graph that is expected to be at least as good as the HC

graph; although this is judged by the objective function. This observation suggests that data noise

distorts model fitting which in turn has a negative effect on algorithms that optimise for fitting.

On the other hand, the relative performance of SaiyanH - which also employs Tabu search- remains

unaffected by data noise, and this suggests that hybrid algorithms that employ multiple learning

strategies may be less sensitive to data noise.

It is worth noting that MMHC stands out as the only algorithm that has shown significant

improvement in relative ranking with noisy experiments. Specifically, its overall ranking increases

from 10th to 6th place in terms of F1 score, and from 6th to 1st place in terms of SHD score. How-

ever, it is important to mention that the algorithm’s high ranking in SHD score can be attributed to

its tendency to produce fewer edges than other algorithms, and the SHD metric is known to favour

sparse graphs. This partly explains why the F1 rankings contradict the SHD rankings. In contrast,

FCI experienced the largest decline in relative performance, despite the fact that it is designed

to handle latent variables; i.e., one of the types of data noise simulated. Interestingly, the results

for PC-stable highlight a contradiction between the two metrics. Specifically, while F1 suggests

that PC-stable has improved its relative performance under data noise, the SHD metric suggests

otherwise. This illustrates how different evaluation metrics can lead to varying conclusions.

Finally, Figure 3.1 presents the overall decrease in accuracy over all algorithms for each noisy

experiment, with respect to the clean experiments N. The impact of merging states and latent

44

Category Algorithm
F1 rank SHD rank

Average Overall Average Overall

Constraint-based

PC-stable 7.59 (+0.51) 10 (+1) 7.87 (-1.03) 10 (-2)
FCI 8.67 (-0.97) 11 (-2) 8.67 (-2.11) 12 (-5)
GS 11.74 (+0.12) 15 (-1) 9.54 (+0.89) 13 (+0)
Inter-IAMB 9.79 (+0.21) 12 (+0) 7.82 (+0.78) 9 (+3)

Score-based

HC 3.60 (+0.03) 1 (+1) 4.92 (-0.15) 2 (+0)
TABU 3.62 (-0.35) 2 (-1) 4.99 (-0.56) 4 (-3)
FGES 7.15 (+0.35) 8 (+0) 7.12 (+0.71) 8 (+2)
GOBNILP 5.17 (-0.37) 3 (+0) 6.72 (-0.28) 6 (-1)
WINASOBS 6.54 (-0.24) 7 (-1) 5.49 (+0.38) 5 (-1)
NOTEARS 11.65 (+0.35) 14 (+1) 12.83 (+0.17) 15 (+0)

Hybrid

GFCI 7.26 (-0.39) 9 (-2) 6.91 (-0.04) 7 (+2)
RFCI-BSC 11.50 (+0.00) 13 (+0) 11.05 (-0.15) 14 (+0)
MMHC 6.51 (+1.26) 6 (+4) 4.66 (+1.81) 1 (+5)
H2PC 5.66 (+0.47) 5 (+0) 4.96 (+0.14) 3 (+0)
SaiyanH 5.27 (+0.06) 4 (+0) 7.87 (+0.13) 11 (+0)

Table 3.6: Average and overall ranked performance for each algorithm over all case studies and
sample sizes across all noisy experiments. The numbers in brackets represent the dif-
ference in performance with respect to the clean experiments N. Green and red text
indicate increased and decreased relative ranked performance respectively.

variables is found to be minimal, resulting in a less than 10% decrease in overall accuracy for

the algorithms evaluated. However, missing values and incorrect values have a much stronger

impact on learning accuracy. For example, experiment I10 caused a decrease in learning accuracy

of approximately 27% according to the F1 metric, and a staggering 97% according to the SHD

metric. The decrease in accuracy was more pronounced in the SHD results than in the F1 results

since the SHD metric represents error whereas the F1 metric represents accuracy, and this led to

some inconsistent conclusions. For example, SHD suggests that experiments I5 and cMI have a

stronger negative impact than experiments cMISL which contain all types of noise. In contrast, the

F1 metric appears to have correctly identified that experiment cMISL causes the largest decrease

in performance amongst the 15 experiments tested.

In general, the results suggest that score-based algorithms perform better than constraint-based

and hybrid algorithms in both noise-free and noisy experiments, which is largely in agreement

with the findings reported by Scutari et al. [2019]. Specifically, the HC, TABU and GOBNILP

algorithms claimed the top three spots in terms of overall performance based on the F1 metric, with

or without data noise. However, other score-based algorithms, such as the FGES and WINASOBS

algorithms, were positioned in the middle or bottom in terms of overall performance in both

noise-free and noisy experiments.

The hybrid algorithms seemed to perform worse than score-based algorithms but better than

constraint-based algorithms. SaiyanH is the highest-performing hybrid algorithm and ranked 4th

in overall performance according to the F1 metric, with and without data noise (although the SHD

metric ranks it 11th). The rankings for H2PC, MMHC and GFCI are 5th, 6th to 10th and 7th

to 9th respectively in terms of the F1 score, with and without data noise, although they were

ranked 3rd, 1st to 6th and 7th to 9th respectively in terms of SHD score. RFCI-BSC, despite

being designed to account for latent variables during structure learning, performed poorly in the

45

Figure 3.1: The overall decrease in accuracy over all algorithms for each noisy experiment, with
respect to noise-free experiment.

experiments with and without data noise, and ranked 13th to 14th in terms of both metrics due

to a high number of failures.

Lastly, constraint-based algorithms performed relatively poor overall. Even the best-performing

constraint-based algorithms, PC-stable and FCI, ranked between 7th to 12th in all experiments

based on both metrics, whereas the other constraint-based algorithms generally ranked lower than

10th. This could be attributed to the fact that we assume undirected edges that are true edges,

to be equally wrong to true directed edges that are orientated in the wrong direction (i.e., a 0.5

penalty for both as indicated in Table 3.4), despite undirected edges having a 50% chance to be

orientated correctly (not accounting for MEC considerations that could increase the success rate

of the orientation).

3.3 Handling data noise by model averaging

In this section, we describe and evaluate the Model Averaging Hill-Climbing (MAHC) [Constanti-

nou et al., 2022] which combines novel model averaging and pruning strategies with hill-climbing

search to improve the reliability of structures learnt in the presence of data noise. Unlike con-

ventional score-based algorithms that employ model selection functions and aim for the highest

scoring graph, MAHC adopts a model averaging approach in which the learnt output reflects mul-

tiple candidate high-scoring graphs. While this is in direct contrast to exact structure learning

algorithms like GOBNILP which guarantee to recover the highest scoring graph (albeit with re-

strictions), the motivation not to seek the highest scoring graph in the presence of data noise is

supported by the results presented in the first part of this Chapter that highlight that maximising

fitting in the presence of data noise is less desirable. This is because the highest scoring graph

will be the one that best fits the data and the noise. Therefore, the hypothesis is that given the

objective function becomes less useful in the presence of data noise, a model-averaging approach

would be less sensitive to these errors.

3.3.1 The Model Averaging Hill-Climbing algorithm

The MAHC algorithm is an adaptation of the HC algorithm that incorporates two additional

learning strategies. To begin with, the algorithm applies pruning to restrict the search space of

46

DAGs. The pruning phase results in a set of pruned arcs and pre-processed local scores which

can be re-used during the subsequent phases of structure learning. The second extension involves

the application of model averaging within the hill-climbing search space, which can be viewed as

an extension of hill-climbing search where the depth level of the neighbouring graphs visited per

hill-climbing iteration is increased by one level. Each neighbouring graph is assigned an average

objective score, determined over the score of that graph and the scores of its valid neighbouring

graphs. In other words, the model averaging phase optimises for the neighbouring graph that

maximises the average score over a set of graphs, rather than the graph that has the highest score.

This process, however, results in many more graphs visited, which in turn increases computational

complexity substantially. This increase in computational complexity caused by the modified search

method makes pruning necessary.

A crucial differentiation amongst pruning strategies lies in their soundness. A sound pruning

strategy ensures that the pruned search space still includes the optimal graph. However, a sound

pruning strategy would often remove a relatively small number of potential parent-sets, posing

challenges for completing the model averaging process within a reasonable runtime. To address

this issue, we propose a pruning strategy that can be viewed as an aggressive version of the pruning

strategies that are typically applied to combinatorial optimisation structure learning problems, to

significantly reduce the search space in exchange for a small decrease in the expected objective score

of the learnt graph, which is less desired in the presence of data noise. Algorithm 6 outlines the

pseudocode of the pruning strategy for a given variable Vi. MAHC would explore edges entering

or leaving Vi consistent with those returned by Algorithm 6 for Vi.

Algorithm 6 The pruning strategy employed by MAHC

1: procedure Pruning(Vi, D,mid)
Input: variable Vi ∈ V , data set D, maximum in-degree for pre-processing mid
Output: candidate parents set CPSi for Vi

2: CPSi ← V \ {Vi}
3: C ← Ø
4: while |C| < mid do
5: for Vj ∈ CPSi\C do
6: if S (Vi | C) > S (Vi | C ∪ {Vj}) then
7: CPS ← CPS\ {Vj}
8: end if
9: end for

10: if |CPSi| > |C| then
11: Add variable Vl ∈ CPSi\C with the highest S (Vi | Vl) score to C
12: else
13: break
14: end if
15: end while
16: return CPSi

17: end procedure

Once the pruning phase completes, MAHC moves to the model averaging phase. As discussed

above, this phase involves visiting and evaluating valid neighbouring DAGs of a given valid neigh-

bouring DAG. We can express this process through the objective function:

SMA (G, D) =
1

|nei (G)|+ 1

S (G, D) +
∑

Gi∈nei(G)

S
(
G⟩, D

) , (3.1)

47

where nei (G) is the set of valid DAGs which can be reached by one edge modification from G.
Recall that edge modifications must adhere to the results obtained during the pruning phase. For

example, if variable V2 is pruned off from the candidate parent-set of V1, then DAGs containing

edge V2 → V1 will not be explored or considered as a valid neighbouring DAG.

3.3.2 Evaluation, results and discussion

In this subsection, we assess the performance of the MAHC algorithm relative to various other

structure learning algorithms across different case studies, sample sizes, data noises, and evaluation

metrics. We set the parameter mid in the pruning phase to 3; implying that pruning decisions will

be derived by exploring parent-sets up to size 3 (or maximum node in-degree of 3). We consider

seven algorithms for comparison; the constraint-based FCI and PC-stable, the exact score-based

learning GOBNILP, the approximate score-based learning HC and TABU, and the hybrid MMHC

and SaiyanH algorithms. A description of these algorithms is given in the Sections 2.2.2 to 2.2.4.

For data input, we consider both conventional clean data and the noisy dataset from experiment

cMISL described in Subsection 3.2.1. This means that we employ the same experimental settings

as those presented in Subsection 3.2.3. However, the evaluation in this section focuses on judging

the proposed algorithm in terms of how well it recovers the true CPDAG, whereas in Section 3.2.

we measured the impact of data noise in terms of recovering the true DAG structure.

Figure 3.2 presents the graphical accuracy as determined by F1 and SHD, with and without

data noise, across all case studies and sample sizes. The left charts focus on the results obtained

from clean data and the right charts on the results obtained from noisy data. The percentage

scores reflect the average relative difference in scores between the specified algorithm and MAHC

across all case studies and sample sizes. The green negative percentage values indicate that the

specified algorithm performed worse than MAHC. Conversely, the red positive percentage values

indicate that the particular algorithm outperformed MAHC.

Figure 3.2 provides empirical evidence supporting the average superiority of MAHC over HC

in terms of SHD and F1 metrics, for both clean and noisy data. This finding demonstrates the

advantages of model averaging in improving learning accuracy. Furthermore, the overall outcomes

indicate that MAHC performs slightly better than TABU and MMHC across both metrics in both

clean and noisy experiments. However, when compared to FCI, PC-stable and SaiyanH algorithms,

MAHC only outperforms them in terms of the SHD metric in noisy data, while showing less

favourable performance in other experimental settings. Finally, across both clean and noisy data,

MAHC demonstrated inferior performance in comparison to the exact GOBNILP algorithm, as

evaluated using both metrics.

Note that the results discussed in this subsection suggest that constraint-based learning per-

formed better than score-based learning, contradicting the results presented in the previous sub-

sections. This inconsistency occurs because here we compare the results between graphs for which

both algorithms (MAHC and the competing algorithm) returned a result within the specified run-

time limit, whereas in the previous subsections an algorithm that fails to produce a result within

the specified runtime limit is assigned the lowest rank. This means that the results presented in

this subsection are useful only in terms of comparisons with reference to MAHC, and not between

learning classes or other algorithms.

48

7.9%

2.9%

54.2%

−19.4%

−3.5%

−17.6%

12.8%

−20%

0%

20%

40%

FCI PC−stable GOBNILP HC TABU MMHC SaiyanH

SHD (Clean)

−12.87%
−10.10%

9.91%

−9.51%
−6.19%

−0.09%

−12.75%

−20%

0%

20%

40%

FCI PC−stable GOBNILP HC TABU MMHC SaiyanH

SHD (Noisy)

8.94%

12.77%

6.20%

−11.95%

−4.65%

−25.52%

6.69%

−20%

−10%

0%

10%

FCI PC−stable GOBNILP HC TABU MMHC SaiyanH

F1 (Clean)

1.3%

8.1%

4.6%

−8.1%

−2.3%

−15.8%

3.0%

−20%

−10%

0%

10%

FCI PC−stable GOBNILP HC TABU MMHC SaiyanH

F1 (Noisy)

Figure 3.2: The structure learning accuracy of the seven other algorithms, relative to the accuracy
of MAHC. A negative green score indicates that a particular algorithm performed worse
than MAHC, while a positive red score indicates that a specific algorithm outperformed
MAHC.

49

3.4 Concluding remarks

Structure learning algorithms are typically evaluated with synthetic data that satisfy the assump-

tions of the algorithms under evaluated. Some of these assumptions include causal sufficiency,

causal faithfulness, and the completeness of the input data. Because these assumptions are un-

realistic in practice, synthetic performance leads to an overestimation of the performance these

algorithms might produce in practice. This Chapter investigates this research question.

According to the results depicted in Figure 3.1, the impact of latent variables (experiment

L) and merging states (experiment S) on structure learning accuracy is relatively limited. In

contrast, the presence of missing and incorrect data values (experiments M and I, respectively)

have considerable impact on the performance of the structure learning algorithms. Specifically,

when 5% or 10% of the data values are missing, the reduction in accuracy ranges from 13% to

18%, whereas for 5% or 10% of incorrect data values the reduction in accuracy ranges from 18% to

28%. When both types of data noise are combined into a single dataset, the decrease in accuracy

ranges from 26% to 30%. When all four types of data noise are present in a single dataset, the

decrease in accuracy ranges from 30% to 37%. These results imply that the BN structure learning

accuracy reported in the literature, based on traditional synthetic data, overestimates real-world

performance to a greater extent than previously assumed. Nevertheless, traditional noise-free

synthetic experiments remain crucial in assessing BN structure learning algorithms under different

hypothetical scenarios.

It is important to acknowledge that different algorithms exhibit varying degrees of sensitivity

to different types of data noise. Initially, it was hypothesised that less complex or approximate

algorithms would be more robust to data noise compared to exact or more complex algorithms.

However, our findings (refer to Table 3.6) are mixed, with some results indicating that less complex

algorithms like HC are more resilient to data noise compared to more sophisticated algorithms such

as TABU, while other results indicate that data noise has a similar impact on the performance

of exact GOBNILP and other non-exact algorithms. Noteworthy observations include H2PC and

MMHC which appear to be less sensitive to data noise than other algorithms. Finally, while

algorithms specifically designed to handle causal insufficiency such as FCI, GFCI, and RFCI-BSC

perform well under noisy experiments that involve latent variables (i.e., experiments L), they do

not perform as well as other algorithms under other types of data noise.

We also explored the efficacy of model averaging in mitigating the impact of data noise. To

achieve this, we devised a novel objective function that involves averaging the scores of the evaluated

graph and its neighbouring graphs. Subsequently, we introduced a variant version of the HC

algorithm that utilises this objective function and incorporates a pruning phase to restrict the

search space. Our results indicate that the integration of model averaging and pruning with hill-

climbing search produce an algorithm that is less sensitive to data noise, and generates better

results than algorithms that search for graphs with higher model selection scores.

Lastly, this study comes with some limitations. Firstly, some types of data noise could not be

applied to all case studies. For example, merging states could not be applied to the Asia network

that consists of boolean variables only. Secondly, due to the large number of experiments (those

presented in Subsection 3.2.1 required a total structure learning runtime of seven months), all

structure learning algorithms were tested with their default hyperparameters as provided by the

software packages, under the assumption that this is how most users would employ them in practice.

This means that we did not explore how hyperparameter sensitivity might influence these results.

50

Finally, the results of structure learning algorithms were evaluated against the corresponding true

DAGs or MAGs. Since the true DAGs or MAGs are unlikely to be fully recoverable from pure

observational data, some of the results produced by these algorithms might be sensitive to the

order of the variables as read from data.

51

Chapter 4

Improving Structure Learning

under Measurement Error

4.1 Introduction

Structure learning algorithms that learn the structure of a BN from observational data often do

so by assuming the input data correctly reflect the true distribution of the variables. Most of the

algorithms covered in Chapter 2 make this assumption. However, this assumption does not hold

in the presence of measurement error, which can lead to spurious edges. This is one of the reasons

why the synthetic performance of these algorithms often overestimates real-world performance.

The assumption of an underlying measurement error has only recently attracted attention in

terms of its effect on BN structure learning. Scheines and Ramsey [2016] studied the effect of Gaus-

sian measurement error on score-based FGES [Ramsey et al., 2017] and showed that even minor

levels of measurement error can considerably deteriorate its accuracy. Traditionally, measurement

error is generated and modelled under the assumption of Normally distributed and continuous

data [Bollinger and van Hasselt, 2017]. In this Chapter, we assume the data are discrete and that

the variables with measurement error are children of their underlying error-free version, and not

parents of other variables. This assumption essentially makes them independent of other variables

in the graph given their error-free version, which is desired.

Based on the above assumptions, we propose a heuristic score-based correction method, called

the Spurious Edge Detection (SED) algorithm, for discrete BN structure learning. SED aims

to identify and remove potential False Positive (FP) edges learnt by other structure learning

algorithms, often in the presence of measurement error. SED can be added as an additional

learning phase at the end of any structure learning algorithm, and serves as a correction learning

phase that removes potential FP edges. The remainder of this Chapter is organised as follows: we

discuss relevant works about structure learning in the presence of measurement error in Section 4.2,

we provide the terminology and underlying assumptions relevant to this Chapter in Section 4.3,

Section 4.4 illustrates the impact of measurement error on structure learning, Section 4.5 describes

the proposed correction algorithm, Section 4.6 presents the results, and we provide our conclusions

along with future research directions in Section 4.7.

52

4.2 Relevant works

Zhang et al. [2018] examined the conditions for identifying the underlying causal structure in the

presence of measurement errors in observed data. They assumed that the error-free variables are

generated by a LiNGAM model and discovered that while the complete recovery of the underlying

LiNGAM was not feasible, a specific graphical structure called ordered group decomposition could

always be identified from the observed data using overcomplete ICA.

Similarly, Dai et al. [2022] investigated the problem of measurement in LiNGAM and proposed

the Transformed Independent Noise (TIN) condition to assess the independence between a linear

transformation between two sets of measured variables. The TIN condition can be considered as a

generalised version of the Independent Noise (IN) condition and the Generalised Independent Noise

(GIN) condition. Dai et al. [2022] demonstrated that the ordered group decomposition could also

be identified by employing an independence test based on the TIN condition.

Blom et al. [2018] proposed a method to estimate the upper bound of the variance of measure-

ment error by assuming a linear Gaussian model as the true underlying model. They then utilised

this estimated bound to determine the potential minimal and maximal values of partial correlations

between variables, aiming to correct the results of CI tests. In their evaluation, they demonstrated

that while there was a small difference between the baseline method and their correction approach,

the corrections improved precision at lower recall levels in CI testing.

Yang et al. [2022] investigated the identifiability of linear Structural Equation Models (SEMs)

when measurement error is present in data. They discovered a mapping between a linear SEM

with variables containing measurement errors and a linear SEM with hidden variables that have

no parents. Consequently, the identification of one model can be effectively applied to the other.

Additionally, they demonstrated that, with the assumption of separability and a stronger version

of the faithfulness assumption, it is possible to identify a linear SEM model from data even when

the input data contain measurement errors.

4.3 Preliminaries

This section presents the preliminaries and the necessary terminology and assumptions used in this

Chapter. We assume that the data are categorical and that every variable present in the data may

be subject to measurement error. We refer to variables with measurement error as noisy variables

and to variables without measurement error as error-free variables. Each noisy variable is assumed

to be derived from its error-free version which is not present in the data. We denote the error-free

variable as Vi where i represents the index of the error-free variable, and its corresponding noisy

variable as V ∗
i . When a variable is error-free, Vi is observed in the data, otherwise its noisy version

V ∗
i would be observed. We refer to observed variable as the one that is observed in the data. We

use lowercase letters to represent the assignment of states where vli denotes the lth state of variable

Vi or its corresponding V
∗
i . We define three types of graphs, i.e., error-free graph, noisy graph and

learnt graph based on different involved variables and edges.

• Error-free graph G (V ,E) is composed of the error-free variables V and edges E between V ,

and represents the true graph of the error-free variables V .

• Noisy graph G∗
(
V (∗),E(∗)) is composed of both error-free and noisy variables V (∗) = V ∪V ∗

and edges E(∗) between V (∗), and represents the true graph of both the error-free and noisy

53

V1

V ∗
1

V2

V ∗
2

V3

V ∗
3

G (V ,E)

G∗
(
V (∗),E(∗))

Figure 4.1: A hypothetical graph that illustrates the relationship between the error-free variables
V and the corresponding noisy variables V ∗ given the Independence rule, where a
noisy variable V ∗

i becomes independent of other variables in G∗ given Vi.

Vi

V ∗
i

P (V ∗
i | Vi) Vi = 1 Vi = 2 Vi = 3 Vi = 4

V ∗
i = 1 0.9 0.1 0.1 0.01
V ∗
i = 2 0.01 0.8 0.02 0.03
V ∗
i = 3 0.03 0.08 0.85 0.01
V ∗
i = 4 0.06 0.12 0.03 0.95

Figure 4.2: An example to illustrate how measurement error is represented for a discrete variable
Vi with four states.

variables V (∗) = V ∪ V ∗.

• learnt graph Gl (V ,E) is composed of error-free variables V and edges E between V , and

represents the graph learnt from observational data.

We assume that all graphs are DAGs and that the observed data are sampled from the observed

variables that make up the noisy graph, independently and identically. Note that the observed

data and learnt graphs are presented using the error-free variable names, since the algorithms are

not given any information about which variables incorporate measurement error. We adopt the

Markov, faithfulness and causal sufficiency assumptions introduced in Section 2.1. Additionally,

since the variables are assumed to be discrete, we assume that a noisy variable V ∗
i has only one

parent, and that this parent represents its error-free version Vi
1. This leads to the following

Independence rule:

Assumption 4.3.1 (Independence rule). In the presence of measurement error, a noisy variable

V ∗
i is independent of other variables conditional on its error-free version Vi.

Figure 4.1 presents a simple example that illustrates the relationship between error-free and

noisy variables given the Independence rule, where each V ∗
i becomes independent of the remaining

nodes given its corresponding error-free parent Vi.

Therefore, we can use the conditional probabilistic distribution between Vi and V
∗
i to represent

the measurement error in data. Assume there are ri states in Vi, then for each state vli ∈ Vi, it
has certain probability P

(
V ∗
i = vki | Vi = vli

)
to be recorded as another state vki in V ∗

i . Figure 4.2

presents an example to illustrate how the measurement error is represented for a discrete variable

with four distinct states.

1In continuous cases, the noisy variable V ∗
i is usually assumed to be dependent on two factors which are its error-

free version Vi and an error term ϵi that represents the measurement error. Their relationship can be expressed as
V ∗
i = f (Vi, ϵi).

54

We denote the error rate αl
i of state v

l
i for the noisy variable V ∗

i as follows:

αl
i = 1− P

(
V ∗
i = vli | Vi = vli

)
(4.1)

In other words, αl
i represents the rate of observing a value for V ∗

i that is not equal to the true

value vli of Vi. Note that it is possible for different states of V ∗
i to be subject to varying error rates

αl
i. We denote the error rate αi for variable V ∗

i in terms of its maximum error rate amongst all

states in Vi, i.e., αi = max
l
αl
i.

If the measurement error occurs randomly, we can assume the probability P
(
V ∗
i = vki | Vi = vli

)
is identical for all l ̸= k. Besides, if the values of a variable are collected by the same measurement

process, we can further assume the probability P
(
V ∗
i | Vi = vli

)
is identical for different values vli

in Vi. Then, the conditional probabilistic distribution P (V ∗
i | Vi) can be simplified as follows:

P (V ∗
i | Vi) =

αi

ri
, if V ∗

i has different value as Vi

1− αi, if V ∗
i has the same value as Vi

, (4.2)

where ri represents the number of states in Vi.

4.4 Impact of measurement error on structure learning

This section illustrates that measurement error generally causes the structure learning algorithms

to produce a higher number of spurious edges that tend to lead to a greater number of 3-vertex

cliques, compared to the true number of such cliques in the ground truth graph. A clique is

a set of nodes where each pair of nodes in the clique is adjacent. We first explain why this

phenomenon occurs in theory, and then present the effect in practise by illustrating the empirical

effect of measurement error on algorithms spanning all three classes of learning. Given the Causal

Faithfulness assumption, the dependencies between variables are consistent with those entailed

by applying d-separation rules on the BN. Therefore, we restrict the description about the effect

of measurement error on d-connections and d-separations. For the unconditional (i.e., marginal

(in)dependence) case, we derive Proposition 4.4.1.

Proposition 4.4.1. The d-connection and d-separation relationships between two error-free vari-

ables V1 and V2 in a noisy graph G∗ are consistent with the d-connection and d-separation rela-

tionships of their corresponding noisy versions V ∗
1 and V ∗

2 , given the Independence rule.

Proof

1. When V1 and V2 are d-separated, this implies that there is either no path or at least one

collider exists in every path between V1 and V2 in G∗. Given Independence rule, the only

neighbours of V ∗
1 and V ∗

2 are V1 and V2 who serve as their respective error-free parents. Thus,

when there is no path or at least one collider in every path between V ∗
1 and V ∗

2 , then V
∗
1 and

V ∗
2 are d-separated.

2. When V1 and V2 are d-connected, there must be a path p that does not contain a collider

between V1 and V2. Given Independence rule, V1 and V2 are the respective parents of V ∗
1 and

V ∗
2 . Thus, by combining V ∗

1 ← V1, p and V2 → V ∗
2 , we can get a path that does not contain

a collider between V ∗
1 and V ∗

2 , which would make V ∗
1 and V ∗

2 d-connected.

55

V1 V3

V ∗
3

V2

(a)

V1 V3

V ∗
3

V2

(b)

Figure 4.3: Modelling the presence of measurement error on the two different causal equivalence
classes. Case (a) represents the common-effect class, where V1 and V2 are d-connected
conditional on either V3 or V ∗

3 , and (b) represents the causal-chain class where V1 and
V2 are d-separated conditional on V3, whereas they are d-connected conditional on V ∗

3

(this also holds for the causal class of common-cause).

According to Proposition 4.4.1, the unconditional (in)dependence relationship between noisy vari-

ables should be consistent with the unconditional (in)dependence relationship of their correspond-

ing error-free variables given the Causal Faithfulness assumption. However, the conditional inde-

pendence between error-free variables may not always hold for their corresponding noisy versions.

Figure 4.3 illustrates two different causal classes with measurement error. Specifically, Figure 4.3a

represents the causal class of common-effect where V1 and V2 are d-connected conditional on ei-

ther V3 or its noisy version V ∗
3 . Figure 4.3b represents the causal class of causal-chain where V1

and V2 are d-separated conditional on V3, whereas they are d-connected conditional on V ∗
3 (this

observation also holds for the causal class of common-cause).

These lead to Propositions 4.4.2 and 4.4.3 which state that although the conditional d-connection

relations between noisy variables are consistent with those given by the error-free variables, it is

likely that some conditional d-separations will no longer hold when the observed variables incorpo-

rate measurement error, as in the causal-chain example illustrated in Figure 4.4. In other words,

under the large sample limit, the learnt graph will contain all the conditional dependence rela-

tionships that are entailed by the error-free graph, but may miss some conditional independence

relationships that appear in the error-free graph.

Proposition 4.4.2. In a noisy graph G∗, if two error-free variables V1 and V2 are d-connected

given a variable set S, this d-connection will also hold for the noisy variables V ∗
1 and V ∗

2 conditional

on the noisy variable set S∗.

Proof If V1 and V2 are d-connected given S, there must be a path p between V1 and V2 such

that (i) every collider in p has a descendant in S, and (ii) no other nodes in p are in S. Because

the nodes in S∗ are descendants of their corresponding error-free variables in S, the descendant of

every collider in p would be in S∗. Besides, since the nodes in S∗ are leaf nodes in G∗, no nodes

in p should be in S∗. By combining V ∗
1 ← V1, p and V2 → V ∗

2 , we can get a path p′ between V ∗
1

and V ∗
2 such that (i) every collider in p′ has a descendant in S∗, and (ii) no other nodes in p′ are

in S∗. Therefore, V ∗
1 and V ∗

2 are also d-connected conditional on S∗.

According to Propositions 4.4.1 and 4.4.2, if two nodes Vi and Vj are neighbours in the noisy graph,

they are d-connected conditional on any observed variable set in the noisy graph. Therefore, they

will be neighbours in the learnt graph given the Causal Faithfulness assumption, and under large

sample limit. However, some of the conditional independence relationships derived from the error-

free graph might not hold in the observed data that contain measurement error and hence, would

lead to spurious edges in the learnt graph.

56

V1 V2V3

V ∗
3

(a)

V1 V2

V3

(b)

Figure 4.4: (a) A noisy graph that contains three error-free variables V1, V2 and V3, and a noisy
variable V ∗

3 . (b) The learnt graph that entails the same dependence and independence
relationships derived from the observed variables.

Consider the simple noisy graph shown in Figure 4.4a which is composed by three error-free

variables V1, V2 and V3, and one noisy variable V ∗
3 . According to Propositions 4.4.1 and 4.4.2,

and with reference to the example in Figure 4.4a, the unconditional and conditional dependencies

between error-free variables V1 and V3 extent to their observed versions V1 and V ∗
3 . Therefore

structure learning algorithms tend to produce an edge between V1 and V3 in the graph learnt from

observed data under large sample limit and similarly for V2 and V3. However, the only conditional

independence relationship amongst the error-free variables, i.e., V1 ⊥⊥ V2 | V3 would not hold

when conditional on V ∗
3 . Therefore, we get V1 ⊥̸⊥ V2 | V ∗

3 and the incorrect fully connected graph

shown in Figure 4.4b as the learnt graph. In other words, the measurement error on an unshielded

non-collider misleads structure learning algorithms towards producing a spurious edge between its

neighbours, resulting in a 3-vertex clique. Note that structure learning can reconstruct up to the

CPDAG V1−V3−V2, or one of its corresponding DAGs, when the input data does not incorporate

measurement error.

We refer to a path p between error-free variables V1 and V2 in a noisy graph G∗ as a connecting

path if (i) there are no colliders in p and (ii) all intermediate nodes in p incorporate measurement

error.

Proposition 4.4.3. Given the causal faithfulness assumption and large sample limit, for any two

non-adjacent error-free variables V1 and V2 in a noisy graph G∗, if V1 and V2 are adjacent in the

learnt graph Gl, then there must be at least one connecting path p between V1 and V2 in G∗. Besides,
for each connecting path p, there is a 3-vertex clique {V1, V2, Vk} in the learnt graph Gl, where Vk
is a variable in p.

Proof Without loss of generality, we consider the situation where both V1 and V2 incorporate

measurement error in the observed data. Since V1 and V2 are adjacent in the learnt graph Gl but
not adjacent in the noisy graph G∗, there must be at least one path p between V1 and V2 in G∗ such

that (i) no node in p is a collider, and (ii) all intermediate nodes in p incorporate measurement

error. Otherwise, a set of observed variables could d-separate V ∗
1 and V ∗

2 in G∗, and this would

contradict with the adjacency between V1 and V2 in the learnt graph. If there is a connecting

path p = {V1, S1, S2, . . . , Sn, V2}, we can obtain another connecting path p′ = {V1, S1, S2, . . . , Sn}
between V1 and Sn. Thus, V ∗

1 and S∗
n would also be d-connected in the noisy graph given any

observed variable set which leads to the presence of an edge between V1 and Sn in the learnt

graph. Besides, V2 and Sn should still be adjacent in the learnt graph given the Proposition 4.4.1.

Therefore, V1, V2 and Sn form a 3-vertex clique in the learnt graph.

We, therefore consider a 3-vertex clique as a sign for the presence of measurement error in at least

one of the variables that make up the clique. When a learnt graph contains such a clique, we need

57

asia

tub

either

lung

smoke

bronc

dyspxray

(a)

asia

tub

either

lung

smoke

bronc

dyspxray

(b)

asia

tub

either

lung

smoke

bronc

dyspxray

(c)

Figure 4.5: (a) The true Asia network. (b) The CPDAG learnt by PC-stable given the error-free
synthetic data set. (c) The CPDAG learnt by PC-stable given the same synthetic data
set but with 5% measurement error on variable bronc.

to determine whether the clique is in the error-free graph or the outcome of measurement error. If

we could distinguish between these two possibilities, then we would be able to remove the spurious

edges in the graph learnt from noisy data. This challenge can be viewed as a type of a hidden

variable problem. In our case, a potential hidden variable represents the error-free parent of its

corresponding noisy version.

Figure 4.5 presents an example based on the PC-stable algorithm and the classic Asia network2.

Specifically, Figure 4.5a represents the true Asia network, Figure 4.5b represents the graph learnt

from the error-free data set, and Figure 4.5c represents the graph learnt from the noisy data set

with 5% measurement error on variable bronc, as defined by Equation 4.1, i.e., 5% of the value

in bronc data are recorded by another valid but incorrect state. This relatively small rate of

error has led to the spurious edge between smoke and dysp. This is because while smoke and

dysp are independent conditional on the error-free variables bronc and either, this conditional

independence is relaxed in the presence of measurement error on variable bronc and hence, the

algorithm produces the additional FP edge. Moreover, this additional edge produces the 3-vertex

clique {smoke, bronc, dysp} that does not exist in the true Asia network nor in the graph learnt

from the error-free data set.

To investigate the impact of measurement error on BN structure learning in general, we have

extended these experiments to four algorithms spanning different classes of learning. Namely, in ad-

dition to constraint-based PC-stable [Colombo and Maathuis, 2014], to the score-based HC [Bouck-

aert, 1994] and GOBNILP [Cussens, 2011], and to hybrid H2PC [Gasse et al., 2014]. We have used

each of these algorithms to reconstruct 50 randomly generated BNs consisting of 20 Boolean nodes,

using the method described in [Ide and Cozman, 2002]. Each random network was used to generate

two synthetic data sets of 10,000 sample size each; one error-free data set and another noisy data

set with 10% measurement error on each variable.

Figure 4.6 compares the average number of 3-vertex cliques produced by each of the algorithms

with and without measurement error, and with reference to the average number of 3-vertex cliques

present in the ground truth graphs. These initial empirical results show that structure learn-

ing algorithms tend to produce more 3-vertex cliques in the graphs learnt from noisy data sets

compared to both the true graph and the graphs learnt from error-free data sets. Moreover, score-

2The variables in the Asia network are all binary. This example assumes the sample size of the data is 10,000.

58

0

2

4

6

8

10

12

HC
(Score-based)

GOBNILP
(Score-based)

PC-stable
(Constraint-based)

H2PC
(Hybrid)

Ground truth
Learnt (error-free)
Learnt (10% error)

Figure 4.6: The average number of 3-vertex cliques in the ground truth graphs, the graphs learnt
from error-free data sets, and the graphs learnt from observed data sets with 10%
measurement error on each variable.

based learning seems to be more sensitive to the measurement error compared to constraint-based

learning, although this observation is based on the default hyperparameters as implemented in the

corresponding packages [Scutari et al., 2010, Wongchokprasitti, 2019, Cussens, 2011] that we have

used to test the algorithms. These results support our hypothesis that a 3-vertex clique can be

viewed as a sign for the presence of measurement error in the input data.

4.5 The Spurious Edge Detection (SED) algorithm

This section describes the Spurious Edge Detection (SED) algorithm which can be applied to the

output graph produced by any other BN structure learning algorithm to discover and eliminate

potential FP edges that tend to be the outcome of measurement error. The implementation of SED

is available online 3. Further to what has been discussed in Section 4.4, SED focuses its search for

FP edges on the induced subgraph of 3-vertex cliques.

We consider every edge that connects two variables Vi and Vj in a 3-vertex clique {Vi, Vj , Vk}
in the learnt graph Gl to be a candidate spurious edge. According to Proposition 4.4.3, the node

Vk is likely to be a variable on a connecting path between Vi and Vj in the underlying noisy graph

G∗, as long as Vi and Vj are not adjacent in G∗. Therefore, the conditional independence between

Vi and Vj is likely to be retrieved by introducing an error-free variable of Vk in the learnt graph,

and treat the observed data of Vk as the observation of its noisy version. We define the Candidate

Spurious Edge-nodes pair CSE (Ei) for a candidate spurious edge Ei as the set of nodes that are

3Our code is publicly available at https://github.com/Enderlogic/Spurious-Edge-Detection.

59

https://github.com/Enderlogic/Spurious-Edge-Detection

V1

V2

V3

V4 V5

Figure 4.7: An example of a graph that contains 3-vertex cliques

adjacent to both the endpoints of Ei. For instance, the CSE for Figure 4.7 is:

CSE =

V1 → V2 : {V3, V4} ,

V1 → V3 : {V2} ,

V1 → V4 : {V2} ,

V2 → V3 : {V1, V5} ,

V2 → V4 : {V1} ,

V2 → V5 : {V3} ,

V3 → V5 : {V2}

Next, let us revisit the Asia network example in Figure 4.5c to investigate the possibility of a

spurious edge in the presence of a single 3-vertex clique in the learnt graph. Recall that this is the

graph learnt by PC-stable in the presence of 5% measurement error on variable bronc. Since the

graph contains a single 3-vertex clique, the CSE for this graph is:

CSE =

bronc− dysp : {smoke} ,

smoke− dysp : {bronc} ,

smoke− bronc : {dysp}

We then perform three graphical reconstructions as shown in Figure 4.8, one for each candidate

spurious edge, given the Independence rule defined in Section 4.3, to identify and eliminate a spu-

rious edge. During the graph reconstruction process, we build the reconstructed graphs that entail

all the independences and conditional independences of the learnt graph, and test for an additional

conditional independence relationship between the endpoints of the candidate spurious edge. For

example, the graph in Figure 4.8a investigates the possibility of the edge bronc−dysp being spuri-

ous and of the variable smoke incorporating measurement error4, which is why it is replaced with

a hidden unmeasured variable representing its error-free version, with the noisy version smoke∗

restructured as a child of the hidden variable. Moreover, the edge between bronc and dysp is re-

moved such that the conditional independence bronc ⊥⊥ dysp | smoke is introduced in Figure 4.8a,

by assuming that the data for variable smoke are noisy, which could also explain the presence

of clique {bronc, dysp, smoke} in the learnt graph shown in Figure 4.5c. Similarly, Figures 4.8b

and 4.8c repeat this process for the remaining two variables in clique {bronc, dysp, smoke}.
4In assessing whether bronc − dysp is spurious, we do not check for measurement error on variables bronc and

dysp, and this is because we assume that measurement error on the endpoints of the spurious edge cannot be the
cause of that spurious edge. For example, if the error-free graph is A → B → C, measurement error on nodes A or
C would not produce a spurious edge between A and C in the learnt graph, whereas measurement error on node B
would do.

60

asia

tub

either

lung

smokesmoke∗

bronc

dyspxray

(a)

asia

tub

either

lung

smoke

bronc

bronc∗

dyspxray

(b)

asia

tub

either

lung

smoke

bronc

dysp

dysp∗

xray

(c)

Figure 4.8: The three reconstructed graphs for clique {bronc, dysp, smoke}, based on the learnt
graph in Figure 4.5c. Dotted nodes represent possible hidden error-free parents of the
suspected noisy node under assessment.

Each reconstructed graph is then evaluated in terms of model selection between the learnt and

observed distributions using the BIC score. While the true model is not present in the candidate

collection of graphs, the BIC function should still select the model that converges with probability

one to the quasi-true model as the sample size grows to infinite [Claeskens et al., 2008, Neath and

Cavanaugh, 2012]. The quasi-true model in a candidate collection is the most parsimonious model

that is closest to the true model, as measured by the Kullback-Leibler information. Therefore, when

a reconstructed graph obtains a higher BIC score than the learnt graph, we consider the removal

of that specific candidate spurious edge to produce a graph that is closer to the error-free graph.

Because the reconstructed graphs include additional hidden variables, we adopt the Expectation-

Maximization (EM) learning [Dempster et al., 1977] to compute the LL score of the BIC for each

of the reconstructed graphs. Note that EM only guarantees to converge to a local optimum. This

means that EM may perform arbitrarily poor in high dimensions and unable to find the best LL

score estimation for the reconstructed graph. In other words, the estimated BIC score of the

reconstructed graph might be lower than its true BIC score. If we assume that the measurement

error on variable Vi occurs with equal probability for all its values, then the conditional distribution

P (V ∗
i | Vi) contains only a single free parameter as shown in Equation 4.2, and this reduction in

dimensionality increases the chance of EM converging to the global optimum. In the experiments

carried out in this Chapter, we found that EM tends to converge to the global optimum when the

initial value of the conditional probability table is set to P (V ∗
i | Vi) as identity matrix.

The EM algorithm is an iterative process that computes the Maximum Likelihood Estimation

(MLE) of the parameters θ for a given structure and from incomplete data. Generally, The EM

algorithm can be decomposed in two steps, known as the Expectation step (E step) and the

Maximization step (M step). In the E step, the EM algorithm computes the expected LL function

Q (θ | θt) based on θt obtained with each sample (data row) in the data. Assuming X represents

a set of variables with missing values in data set D with sample size N , the expectation of the LL

function is:

Q
(
θ | θt

)
=

N∑
m=1

∑
x

P
(
X = x | Dm, θ

t
)
logP (X = x, Dm | θ) , (4.3)

where Dm represents the m-th case of data D. At the M step, the EM algorithm revises θ by

61

maximising the expected LL:

θt+1 = argmax
θ

Q
(
θ | θt

)
(4.4)

The EM algorithm starts from a random initialisation of θ and terminates when the LL converges

over a given threshold ϵ:

logP
(
D | θt

)
− logP

(
D | θt−1

)
< ϵ , (4.5)

where ϵ is a threshold for judging whether the process is converged.

Applying EM learning to a DAG requires that we compute:

Ñ t
ijk =

∑
m

P
(
Vi = k,Pai = j | Dm, θ

t
)

(4.6)

for the E step, where Ñ t
ijk represents the expected count of number of records where the value of

variable Vi = k and its parents Pai = j. For the M step, the solution of equation 4.4 has the

following form:

θt+1 =
Ñ t

ijk∑
k Ñ

t
ijk

(4.7)

Once the parameters of the model are estimated, we use the expected LL obtained by the final

M-step as the LL input in the BIC to measure the goodness-of-fit of a given reconstructed graph

Gr with respect to the observed data. Specifically, the BIC score of a reconstructed graph Gr and

data set D can be defined as:

SBIC (Gr, D) = Q
(
θt | θt

)
− 1

2
log (N) d , (4.8)

where N is the sample size of data set D and d =
∑
i

(ri − 1) qi estimates the number of free

parameters in Gr, considering both the hidden and observed variables, where ri represents the

number of states in variable Vi and qi represents the number of configuration of the parents of Vi.

Note that the above equation for computing d represents the upper bound of the number of

free parameters of graphs with hidden variables [Geiger et al., 1998, 2001]. Because there is no

closed form solution to compute the number of free parameters of the reconstructed graphs that

contain hidden variables, we assume the highest theoretical upper bound of the number of free

parameters, and this implies high dimensionality penalty which in turn decreases the likelihood that

the reconstructed graphs will outperform the learnt graphs in terms of the BIC score. Moreover,

if the learnt graph or a reconstructed graph is a CPDAG, we will randomly select a DAG from the

Markov equivalence class of the CPDAG and retrieve the BIC score of that DAG to represent the

BIC score of the CPDAG, since the BIC score is equivalent for Markov equivalent DAGs.

When the endpoints of an edge in the learnt graph are present in multiple 3-vertex cliques

simultaneously, it is possible that there is more than one connecting paths between them in the

underlying noisy graph, such that we may need to import multiple hidden variables in the re-

constructed graph to retrieve the missing conditional independence relationship. For example, in

Figure 4.9a, V1 and V3 are conditionally independent given V2 and V4. However, this conditional

independency does not hold in the corresponding observed data, and thus there is a spurious edge

between V1 and V3 in the learnt graph shown in Figure 4.9b. In order to identify the true condi-

tional independency between V1 and V3, i.e., V1 ⊥⊥ V3 | {V2, V4}, it requires that both the error-free

nodes V2 and V4 are included in the reconstructed graph, as illustrated in Figure 4.9c.

62

V1

V ∗
1

V2

V ∗
2

V3

V ∗
3

V4

V ∗
4

(a)

V1 V2 V3

V4

(b)

V1 V2 V3

V4

V ∗
2

V ∗
4

(c)

Figure 4.9: (a) A noisy graph with four variables that incorporate measurement error. (b) The
learnt graph with respect to (a). (c) The reconstructed graph that contains the condi-
tional independence V1 ⊥⊥ V3 | {V2, V4}.

The process we have used to reconstruct graphs is described in Algorithm 7, that takes as input

a learnt graph Gl, a set of noisy variables V , a candidate spurious edge E, and a data set D. As

described by Algorithm 7, a reconstructed graph is produced for each candidate spurious edge by

replacing each involved noisy variable with an error-free variable, and adding the noisy variable

as a child of its corresponding error-free variable. The hidden error-free variable has the same

state space as the corresponding noisy variable. Moreover, the candidate spurious edge is removed

from the reconstructed graph. Therefore, a reconstructed graph entails all the independences of

the learnt graph, plus an additional independency corresponding to the endpoints of the candidate

spurious edge. The output of Algorithm 7 represents the difference in BIC score between the

reconstructed graph and the input learnt graph. If the input graph is a CPDAG, we compute the

BIC score of that graph based on one of its valid DAGs, since all the DAGs that are part of the

same Markov equivalence class would return the same BIC score. If the input graph is a PDAG

which has no consistent DAG extensions, Algorithm 7 returns 0.

Algorithm 7 Graph reconstruction procedure

1: procedure Reconstruction(Gl, E,V , D)
Input: learnt graph Gl, candidate spurious edge E, noisy variables V , data D
Output: difference in BIC score between reconstructed graph and input graph

2: Compute the BIC score scoreo of the input learnt graph Gl
3: Create a copy of graph Gl as Gr
4: Replace each observed variable V in V in Gr with a hidden error-free variable that preserves

the state space of V
5: Reintroduce the observed variables V as noisy variables V ∗ in Gr, as the child of their

corresponding error-free variables
6: Remove edge E from Gr
7: Compute the BIC score scoreo of the reconstructed graph Gr
8: return scorer − scoreo
9: end procedure

Next, we introduce the complete SED algorithm, which represents an iterative process that

searches for spurious edges by recursively executing the aforementioned Algorithm 7, and pro-

duces a modified graph that does not contain the edges identified as possible false positives. The

pseudocode of the SED algorithm is described in Algorithm 8. Firstly, SED initialises the modified

63

graph Gmod as a copy of the learnt graph Gl, and generates the candidate spurious edge-nodes pairs

CSE from Gl. Then, SED recursively removes the candidate edges ordered by the highest positive

output as determined by Algorithm 7 given the modified graph, and by assuming that there are

l connecting paths between the endpoints of the candidate edge in the underlying noisy graph,

where l is initially set to 1 and iteratively increased by 1 when no more edges can be identified as

spurious give the current value of l. Therefore, SED is able to explore multiple connecting paths

between the endpoints of every candidate spurious edge. The whole process is terminated when l

is larger than the maximal size of CSE (Ei). Note that when an edge between V1 and V2 in the

learnt graph is detected as spurious by assuming that there is a connecting path between V1 and

V2 via V3 in the underlying noisy graph, it implies that V1 and V3 are either adjacent or connected

through another connecting path that does not contain V2. If V1 and V3 are adjacent in the noisy

graph, it is not necessary to test whether the edge between them is spurious in the learnt graph. If

there is a connecting path between V1 and V3 that does not contain V2, then conditioning on the

error-free variable V2 will not d-separate V1 and V3 in the noisy graph. Therefore, SED will check

for multiple connecting paths between V1 and V3.

Algorithm 8 Spurious Edge Detection (SED) algorithm

1: procedure SED(Gl, D)
Input: learnt graph Gl, data set D
Output: modified graph Gmod

2: Gmod = Gl
3: initialise CSE from Gl
4: l = 1
5: repeat
6: CSEl = {}
7: for Ei ∈ CSE do
8: CSEl (Ei) = all subsets of CSE (Ei) with length l
9: end for

10: while max
Ei∈CSE,Vj∈CSEl(Ei)

Reconstruction
(
Gl, Ei,Vj , D

)
> 0 do

11: Em,Vm = argmax
Ei∈CSE,Vj∈CSEl(Ei)

Reconstruction
(
Gl, Ei,Vj , D

)
12: remove Em from Gmod

13: remove Em from CSE
14: if l == 1 then
15: prune the edges between each endpoint of Em and Vm from CSEl

16: end if
17: end while
18: l = l + 1
19: until l > max

Ei∈CSE
|CSE (Ei)|

20: return Gmod

21: end procedure

Table 4.1 presents a worked example that illustrates the different steps of SED when applied

to the graph shown in Figure 4.10. This experiment is based on the Asia network learnt by the

HC algorithm from a synthetic data set with 10,000 samples and 5% measurement error on each

observed variable. In Table 4.1, the modified graph represents the state of modified graph at

the given iteration, the optimal reconstructed graph represents the reconstructed graph with the

highest positive output, and CSE represents the candidate spurious edge set that contains edges

that continue to be tested for false positives. The red edges depicted in Table 4.1 represent the

64

asia

tub

either

lung

smoke

bronc

dyspxray

CSE =

tub→ either : {xray} ,
tub→ xray : {either} ,
smoke→ lung : {either, dysp} ,
smoke→ either : {lung, dysp} ,
smoke→ bronc : {dysp} ,
smoke→ dysp : {lung, either, bronc} ,
lung → either : {smoke, dysp} ,
lung → dysp : {smoke, either} ,
bronc→ dysp : {smoke} ,
either → xray : {tub, dysp} ,
either → dysp : {smoke, lung, xray} ,
xray → dysp : {either}

Figure 4.10: Left: The Asia graph learnt by the HC algorithm from a synthetic data set with

10,000 samples and 5% measurement error on each observed variable. Right: the
candidate spurious edge-nodes pairs CSE of the learnt graph.

edges classified as spurious by SED, whereas the blue edges represent the edges pruned (i.e., no

longer being considered as candidate spurious edges) after each iteration. A candidate spurious

edge is pruned when no valid reconstructed graph is found to have a score that is higher than the

score of the learnt graph.

Iteration Modified graph
Optimal

reconstructed graph
CSE

1

asia

tub

either

lung

smoke

bronc

dyspxray

asia

tub

either

either∗

lung

smoke

bronc

dyspxray

tub→ either : {xray}

tub→ xray : {either}

smoke→ lung : {either, dysp}

smoke→ either : {lung, dysp}

smoke→ bronc : {dysp}

smoke→ dysp : {lung, either, bronc}

lung → either : {smoke, dysp}

lung → dysp : {smoke, either}

bronc→ dysp : {smoke}

either → xray : {tub, dysp}

either → dysp : {smoke, lung, xray}

xray → dysp : {either}

65

2

asia

tub

either

lung

smoke

bronc

dyspxray

asia

tub

either

lung

smoke

bronc

dyspxray

lung∗

smoke→ lung : {either, dysp}

smoke→ either : {lung, dysp}

smoke→ bronc : {dysp}

smoke→ dysp : {lung, either, bronc}

lung → either : {smoke, dysp}

lung → dysp : {smoke, either}

bronc→ dysp : {smoke}

either → xray : {tub, dysp}

either → dysp : {smoke, lung, xray}

xray → dysp : {either}

3

asia

tub

either

lung

smoke

bronc

dyspxray

asia

tub

either

either∗

lung

smoke

bronc

dyspxray

smoke→ lung : {either, dysp}

smoke→ bronc : {dysp}

smoke→ dysp : {lung, either, bronc}

lung → either : {smoke, dysp}

lung → dysp : {smoke, either}

bronc→ dysp : {smoke}

either → xray : {tub, dysp}

either → dysp : {smoke, lung, xray}

xray → dysp : {either}

4

asia

tub

either

lung

smoke

bronc

dyspxray

asia

tub

either

either∗

lung

smoke

bronc

dyspxray

smoke→ lung : {either, dysp}

smoke→ bronc : {dysp}

smoke→ dysp : {lung, either, bronc}

lung → either : {smoke, dysp}

bronc→ dysp : {smoke}

either → xray : {tub, dysp}

either → dysp : {smoke, lung, xray}

xray → dysp : {either}

5

asia

tub

either

lung

smoke

bronc

dyspxray

asia

tub

either

either∗

lung

smoke

bronc bronc∗

dyspxray

smoke→ lung : {either, dysp}

smoke→ dysp : {lung, either, bronc}

lung → either : {smoke, dysp}

either → xray : {tub, dysp}

either → dysp : {smoke, lung, xray}

66

Table 4.1: The steps of the SED algorithm in modifying the Asia graph learnt by HC from syn-
thetic data of sample size 10,000 with 5% measurement error on all variables. The red
edges represent the edges classified as spurious in each iteration, whereas the blue edges
represent the edges being pruned (i.e., no longer being considered as candidate spurious
edges) after each iteration.

The illustration in Table 4.1 starts by initialising the modified graph as a copy of the learnt

graph shown in Figure 4.10, and determining the CSE based on that graph. Then, SED iterates

over the candidate spurious edges by assuming that there is one connecting path between the

endpoints of the candidate edges, i.e., assuming one variable which is adjacent to the endpoints of

the candidate spurious edge as noisy, and importing its error-free parent in the reconstructed graph.

During the iterative process, SED first identifies tub → xray as spurious since the reconstructed

graph that does not contain tub→ xray returns the highest score. SED then removes tub→ xray

from the modified graph and further prunes tub→ either from CSE (i.e., it is no longer considered

as a candidate spurious edge). This is because SED finds that there is a connecting path between

tub and xray via either, which in turn implies that tub and either are either adjacent or connected

through a connecting path that does not contain xray in the true noisy graph. Therefore, it is not

necessary to examine whether tub→ either is spurious under the assumption of a single connecting

path between tub and either via xray.

In the following iterations, SED repeats the above process and detects another three spurious

edges smoke → either, lung → dysp and xray → dysp. At that point, no further edges are

identified as spurious under the assumption that the cause is a single noisy variable. SED continues

assessing the remaining candidate spurious edges by assuming there are two connecting paths

between the endpoints, i.e., assuming two noisy variables which are both adjacent to the endpoints

of the candidate spurious edge, and importing their error-free parents in the reconstructed graph.

At that stage, SED discovers one more spurious edge, smoke → dysp, and prunes smoke →
lung, lung → either and either → xray from CSE since no other higher scoring reconstructed

graphs can be found given l = 2. Then, l increases to 3 and SED prunes the last candidate spurious

edge either → dysp from CSE, since no other reconstructed graph can further increase BIC. SED

then terminates the search process since, at this point, all candidate spurious edges are pruned

from CSE.

4.6 Empirical evaluation

We validate the effectiveness of the SED algorithm, which can be viewed as a structure learning

addon, by applying it to five well-established structure learning algorithms spanning different

classes of learning. These are the score-based HC, GES and GOBNILP, the constraint-based PC-

stable and the hybrid H2PC. We use the bnlearn R package [Scutari et al., 2010] to test the effect

on HC and H2PC, the rcausal R package [Wongchokprasitti, 2019] for PC-stable and GES, and

the pygobnilp python package [Cussens, 2011] for GOBNILP. The evaluation does not consider the

algorithms mentioned in Section 4.2 because those algorithms assume continuous data, whereas

here we focus on categorical data.

We use the BIC score as the objective function for the three score-based HC, GES and GOB-

NILP algorithms, and for the score-based phase of H2PC. For the constraint-based algorithm

PC-stable, including the constraint-based phase in H2PC, we use the G-square test as the sta-

67

tistical test and set the threshold for rejecting the null hypothesis at 0.05. Lastly, GOBNILP’s

maximum in-degree is set to 3 (default hyperparameter). Because BIC is a score-equivalent objec-

tive function, HC, GES, GOBNILP and H2PC produce a DAG from a Markov Equivalent Class of

DAGs, and which we convert into the corresponding CPDAGs to be used as the input of the SED

algorithm; i.e., input graph G in Algorithm 8. Recall that when the constraint-based PC-stable

returns a PDAG that cannot be converted into a DAG, SED makes no modifications since the

BIC score cannot score that PDAG and hence, Algorithm 7 returns 0 in this case. We employ two

metrics to evaluate the learnt CPDAGs which are the F1 score and the re-scaled SHD score.

The experiments are based on synthetic data generated from seven real-world BN models that

are publicly available in the bnlearn repository [Scutari, 2020]. These are the Asia, Alarm, Child,

Insurance, Mildew, Water and Hailfinder networks. For each network, we generated seven error-

free data sets with the sample sizes ranging from 100 to 100,000. Moreover, for each error-free data

set we generate two noisy data sets by setting the error rate αi for every variable Vi in a network

to 0.1 and 0.2 respectively. Specifically, for each state vli of an error-free variable Vi, we assign a

randomised error rate αl
i, with an upper bound of αi, where the probability of the error for each

state vli follows a Dirichlet distribution. This process produces the corresponding noisy conditional

probability distribution of each noisy variable V ∗
i based on the following equation:

P
(
V ∗
i | Vi = vli

)
=

αl
i1, V ∗

i = v1i

αl
i2, V ∗

i = v2i
...

...

1− αl
i, V ∗

i = vli
...

...

αl
iri
, V ∗

i = vrii

(4.9)

where the parameters
(
αl
i1, α

l
i2, · · · , αl

iri

)
∼ αl

iDir (1, . . . , 1)︸ ︷︷ ︸
ri−1

such that αl
i =

∑ri
j=1 α

l
ij , ri represent

the number of states in Vi.

We explore the performance of the SED algorithm on both error-free and noisy data sets.

Figure 4.11 presents the F1, precision and recall scores produced by the five algorithms averaged

across all seven networks, on both the error-free and noisy data sets, with and without SED

modifications. Note that in the case of error-free data sets, there is no visible difference in the

precision, recall and F1 scores between the learnt graphs and the graphs modified by SED. From

this, we can conclude that SED performs largely insignificant modifications to the graphs learnt

from error-free data sets. On the other hand, the modifications made on graphs learnt from noisy

data have led to noticeable improvements in terms of the precision and F1 metrics, and particularly

in cases where data have higher sample size. This can be explained by the fact that the structure

learning algorithms generally tend to produce more edges when the input data contain higher

samples, such that more false positive 3-vertex cliques that could be detected and corrected by

SED. We present the results of 3-vertex cliques in Figure 4.12. Another explanation is that the

EM learning used by SED is less effective when the sample size of the input data is low.

Specifically, the results show that SED improves the average precision and F1 scores across all

the five algorithms, when the data contain measurement error (both 10% or 20%) and when the

sample size is larger than 1,000. This suggests that the edges removed by SED are mainly false

68

HC GES GOBNILP PC−stable H2PC

P
recision

R
ecall

F
1

102 103 104 105102 103 104 105102 103 104 105102 103 104 105102 103 104 105

0.25

0.50

0.75

0.0

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

sample size

Output Learnt graph Modified graph Error rate 0% 10% 20%

Figure 4.11: The average precision, recall and F1 scores of the graphs produced by the five algo-
rithms, where solid lines represent the results before SED modifications, dashed lines
represent the results after SED modifications, red lines the results based on error-free
data, green lines the results based on noisy data with 10% error rate, and blue lines
the results based on noisy data with 20% error rate.

69

HC GES GOBNILP PC−stable H2PC

True 3−
vertex cliques
10%

False 3−
vertex cliques
10%

True 3−
vertex cliques
20%

False 3−
vertex cliques
20%

10
0

50
0

10
00

50
00

10
00

0

50
00

0

10
00

00
10

0
50

0
10

00
50

00
10

00
0

50
00

0

10
00

00
10

0
50

0
10

00
50

00
10

00
0

50
00

0

10
00

00
10

0
50

0
10

00
50

00
10

00
0

50
00

0

10
00

00
10

0
50

0
10

00
50

00
10

00
0

50
00

0

10
00

00

0.0

0.5

1.0

1.5

0

10

20

30

0.0

0.5

1.0

1.5

0

10

20

30

sample size

Output Learnt graph (error−free) Learnt graph (noisy) Modified graph (noisy)

Figure 4.12: The average number of false and true 3-vertex cliques produced by the learnt graphs
learnt from error-free data sets, the learnt graphs learnt from noisy data sets and the
modified graphs learnt from noisy data sets.

70

positives, even though SED would occasionally also remove some true positive edges which causes

recall to drop slightly for some of the experiments. When the sample size is less than 1,000, the

learnt graphs tend to contain a small number of 3-vertex cliques (refer to Figure 4.12), and this

gives little to no opportunity to SED to make modifications. The results also show that there is no

apparent difference in the gain in score over the two different levels of measurement error tested.

Interestingly, the improvements on graphs produced by score-based HC, GES and GOBNILP are

somewhat stronger compared to the improvements on graphs produced by PC-stable and H2PC,

based on the hyperparameter defaults of these algorithms. These results are consistent with the

empirical analysis presented in Figure 4.6, which shows that score-based learning is more sensitive

to measurement error compared to constraint-based learning.

Figure 4.13 repeats these results for the re-scaled SHD score. While the results are largely

consistent with those based on the F1 score, the improvements appear to be major and more

consistent in terms of the SHD score. Specifically, Figure 4.13 shows that after applying SED

to the graphs learnt from noisy data by all five structure learning algorithms, the number of

removed and re-orientated edges required to convert the learnt graphs to true graphs is significantly

reduced, and this reinforces the observation that SED is effective at removing false positive edges.

Figure 4.13 also shows that the number of edges produced by the algorithms increases slightly

with measurement error as expected. This implies that SED is likely to have more opportunities

to remove edges as the rate of measurement error increases. Overall, the SHD results suggest that

the SED algorithm improves the graphs learnt by the structure learning algorithms by successfully

eliminating many more false positive, rather than true positive, edges.

Table 4.2 presents the number and percentage of modified graphs that are better, equal or

worse than the learnt graphs, under different experimental settings and evaluation metrics. The

results show that when no measurement error exists in the input data (i.e., error-free case), the

SED algorithm preserves the learnt graph in around 90% of the cases, and improves or decreases

the performance approximately in equal proportions for the remaining 9% of cases. Specifically,

without measurement error in the data, the modifications increased the F1 score in 11 (5%) graphs

and decreased it in 10 (4%) graphs. Similarly, the modifications increased the SHD score in 10

(5%) graphs and decreased it in 9 (4%) graphs.

On the other hand, when measurement error exists in the input data (i.e., noisy cases), the

SED modifications improve considerably more graphs than the graphs worsened. According to

the SHD score, the SED modifications improve 120 (49%) and 130 (53%) learnt graphs and only

worsen just 9 (4%) and 10 (4%) learnt graphs when the error rate is 10% and 20% respectively.

In terms of the F1 score, the SED modifications improve 93 (38%) and 109 (44%) learnt graphs

and worsen 51 (21%) and 48 (20%) learnt graphs when the error rate is 10% and 20% respectively.

These percentages are generally consistent across all five algorithms irrespective of their class of

learning.

Lastly, Figure 4.14 presents the average execution time needed to produce the learnt and the

modified graphs, across the different algorithms and over different error rates and sample sizes.

The execution time for the modified graphs refers to the time it takes SED to modify the learnt

graphs. The five structure learning algorithms used to produce the learnt graphs spent similar time

learning the graphs from error-free data and noisy data with 10% error rate, and were slightly faster

(in general) when learning from noisy data with 20% error rate. When it comes to SED, because

the number of 3-vertex cliques tends to increase with both the measurement and the sample size of

the input data (see Figure 4.12), it naturally spends more time to process learnt graphs produced

71

HC GES GOBNILP PC−stable H2PC

A
dd

R
em

ove
R

eorient
S

H
D

102 103 104 105102 103 104 105102 103 104 105102 103 104 105102 103 104 105

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.1

0.2

0.3

0.4

0.25

0.50

0.75

1.00

1.25

sample size

Output Learnt graph Modified graph Error rate 0% 10% 20%

Figure 4.13: The average re-scaled SHD scores and its three components produced by the four
algorithms, where solid lines represent the results before SED modifies the graphs,
dashed lines represent the results after SED modifies the graphs, green lines the results
based on noisy data with 10% error rate, and blue lines the results based on noisy
data with 20% error rate.

72

Algorithm
Modified graph

vs
learnt graph

Error rate

0% 10% 20%

F1 SHD F1 SHD F1 SHD

HC
Better 7/14% 7/14% 25/51% 30/61% 25/51% 28/57%
Equal 38/78% 39/80% 16/33% 18/37% 18/37% 19/39%
Worse 4/8% 3/6% 8/16% 1/2% 6/12% 2/4%

GES
Better 0/0% 0/0% 20/41% 26/53% 21/43% 27/55%
Equal 45/92% 45/92% 17/35% 21/43% 18/37% 20/41%
Worse 4/8% 4/8% 12/24% 2/4% 10/20% 2/4%

GOBNILP
Better 0/0% 0/0% 14/28% 23/47% 18/37% 25/51%
Equal 48/98% 48/98% 19/39% 25/51% 19/39% 22/45%
Worse 1/2% 1/2% 16/33% 1/2% 12/24% 2/4%

PC-stable
Better 2/4% 1/2% 13/27% 16/33% 25/51% 26/53%
Equal 47/96% 48/98% 30/61% 29/59% 15/31% 21/43%
Worse 0/0% 0/0% 6/12% 4/8% 9/18% 2/4%

H2PC
Better 2/4% 2/4% 21/43% 25/51% 20/41% 24/49%
Equal 46/94% 46/94% 19/39% 23/47% 18/37% 23/47%
Worse 1/2% 1/2% 9/18% 1/2% 11/22% 2/4%

Overall
Better 11/5% 10/4% 93/38% 120/49% 109/44% 130/53%
Equal 224/91% 226/92% 101/41% 116/47% 88/36% 105/43%
Worse 10/4% 9/4% 51/21% 9/4% 48/20% 10/4%

Table 4.2: The number and percentage of modified graphs that are better, equal or worse than the
learnt graphs in terms of graphical accuracy, for each algorithm, error-rate, and over
different evaluation metrics.

73

Output Learnt graph Modified graph Error rate 0% 10% 20%

10−1

100

101

102

103

102 103 104 105

sample size

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(a) HC

10−1

100

101

102

103

102 103 104 105

sample size

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b) GES

10−1

100

101

102

103

104

102 103 104 105

sample size

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(c) GOBNILP

10−1

100

101

102

102 103 104 105

sample size

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(d) PC−stable

10−1

100

101

102

103

102 103 104 105

sample size

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(e) H2PC

Figure 4.14: Average execution time needed to produce the learnt and modified graphs for the
specified algorithms, across different error rate and sample size combinations. The
execution time of SED is based on the time it takes to modify graphs.

with higher error rate and/or sample size. When the sample size is less than or equal to 10,000,

the execution time spent by SED is generally less than the time spent by the structure learning

algorithms, whereas the execution time is similar to that of the structure learning algorithms when

the sample size is larger than 10,000.

4.7 Conclusion

This Chapter described the SED algorithm that can be viewed as a structure learning addon which

can be incorporated as an additional learning phase to discrete BN structure learning algorithms.

The purpose of SED is to discover and eliminate potential false positive edges that structure

learning algorithms tend to produce when learning graphs from data that contain measurement

error, irrespective of their class of learning.

We have applied SED modifications to graphs produced by algorithms spanning different classes

of learning (i.e., score-based, constraint-based and hybrid learning). The results are based on both

error-free and noisy synthetic data that vary in sample size, and which have been generated from

real-world BN models that also greatly vary in terms of the size of network. SED is a heuristic

algorithm that may lack the theoretical guarantees of asymptotic correctness of its results. On this

basis, we derive our conclusions solely on the basis of the empirical investigation, which shows that

SED generally maintains, or slightly improves, the graphs produced by other algorithms when these

graphs are learnt from error-free data, and effectively improves the graphs learnt from noisy-data.

A limitation of our work is that SED is restricted to discrete data. While extending SED to

continuous data might be a sensible direction for future work, it should be noted that working

with continuous data is likely to introduce further challenges, and this is because the computa-

tional complexity of EM learning tends to increase substantially when applied to continuous data.

74

V1 V2 V3

V4

V ∗
4

(a) True DAG with measurement
error on V4

V1 V2 V3

V4

(b) Learnt CPDAG

V1 V2 V3

V4

(c) Recovered CPDAG by SED

Figure 4.15: An example where SED fails to recover the true CPDAG.

Another limitation is that the proposed algorithm relies on the assumption that a noisy variable

is independent of other variables in the network conditional on its error-free version, and this as-

sumption is often considered to be too strong in some fields [Hu, 2008]. For example, a survey

on unemployment data by Bound et al. [2001] shows that unemployment rate is underestimated,

and the underestimation error appears to be dependent on the demographic characteristics of the

respondent, such as age and sex.

The spurious edges will often cause true unshielded colliders to become shielded colliders in

the learnt CPDAG. Therefore, in order to recover the underlying true CPDAG, we have to not

only eliminate the spurious edges, but also to reorientate some of the (un)directed edges to be

able to recover the v-structures distorted by spurious edges caused by measurement error. Figure

4.15 presents an example where SED fails to recover the true v-structure V1 → V2 ← V3. This

happens because, after eliminating the spurious edge V1 − V3, SED preserves the remaining edges

and converts the graph into a CPDAG without checking the possibility of v-structures in the

unshielded triple ⟨V1, V2, V3⟩. Future research works could include this additional learning phase

in SED to ensure the true CPDAG is recoverable under this scenario.

Moreover, since the problem of measurement error can be viewed as a special case of a hid-

den variable problem, future work could extend the application of this approach to structure

learning algorithms designed to learn graphical structures under the assumptions of causal insuf-

ficiency [Zhang, 2008, Ogarrio et al., 2016].

75

Chapter 5

Improving greedy search structure

learning in the presence of

systematic missing values

5.1 Introduction

Learning from data that contain missing values represents a common phenomenon in many do-

mains. While numerous BN structure learning algorithms have been proposed in the literature

over the past few decades, relatively few of them account for missing data, and those that do

tend to rely on standard approaches that assume missing data are missing at random, such as

the Expectation-Maximisation algorithm. This hinders the application of structure learning to

real-world problems, since missing data represents a common issue in most applied areas including

medicine and healthcare [Constantinou et al., 2016], clinical epidemiology [Pedersen et al., 2017],

traffic flow prediction [Tian et al., 2018], anomaly detection [Zemicheal and Dietterich, 2019], and

financial analysis [John et al., 2019]. Therefore, there is a greater need for structure learning al-

gorithms that account for potential data bias due to systematic missing values, without having

significant impact on the computational efficiency of structure learning.

According to Rubin [1976], missing data problems can be categorised into three classes. These

are the Missing Completely At Random (MCAR), the Missing At Random (MAR) and the Missing

Not At Random (MNAR). Specifically, MCAR denotes that the observed variables are marginally

independent of the indicator of observability. Here, the indicator of observability is an auxiliary

variable to represent the missingness of partially observed variables. This type of missingness

is usually caused by technical error that would not bias the analysis. The definition of MAR,

on the other hand, is somewhat counterintuitive in its name and assumes that missing data are

independent of indicators of observability given observed data. For example, in an investigation

between age and frequency of smoking, missing data are MAR if younger respondents are more

likely to not disclose their smoking frequency. Lastly, data missingness are said to be MNAR if it

is not MAR. In the above example, the missingness are MNAR if data on respondent’s age also

contains missing values.

Methods that deal with missing data typically include näıve approaches such as the complete

case analysis (a.k.a list-wise deletion) and multiple imputation [Rubin, 2004]. Complete case anal-

76

ysis involves removing the data cases that contain missing values and hence, restricting learning

to complete data cases. Clearly, while this approach is easy to implement, it can be sample ineffi-

cient and may yield bias when missingness are not MCAR [Graham, 2009]. Multiple imputation,

on the other hand, fills - rather than ignoring - the missing values and takes the uncertainty of

imputation into consideration by repeating imputation over different possible values [Azur et al.,

2011]. However, multiple imputation is built under the assumption of MAR which means it may

also produce biased outcomes when data are MNAR.

In this Chapter, we propose three variants of the greedy search Hill-Climbing algorithm to

investigate how they handle missing data values under different assumptions of missingness. These

variants can be viewed as fusions between greedy search score-based learning, and the pairwise

deletion and IPW methods discussed above that have been previously applied to constraint-based

learning. The contribution of this Chapter is a novel structure learning algorithm suitable for

structural learning from data that contain systematic missingness, and is organised as follows:

Section 5.2 reviews relevant works about structure learning under the presence of missing values,

Section 5.3 provides necessary preliminary information that includes notation and background

information, Section 5.4 describes the proposed algorithm, Section 5.5 presents the results, and we

provide our concluding remarks in Section 5.6.

5.2 Relevant works

One of the earliest advanced approaches for dealing with missing data is the EM algorithm, which

was also later adopted by the structure learning community. The Structural EM algorithm [Fried-

man et al., 1997] is an iterative process which consists of two steps: the Expectation (E) step and

the Maximisation (M) step. In E step, Structural EM makes inferences on the missing values and

computes the expected sufficient statistics based on the graph learnt in previous iteration. The M

step follows where the current state of the learnt graph is revised based on the sufficient statistics

obtained at step E. An advantage of Structural EM is that it can be combined with different struc-

ture learning algorithms. A disadvantage, however, is that it is computationally inefficient due to

the inference process that takes place at step E. Therefore, in practice, the E step of the Structural

EM algorithm is usually implemented with single imputation, i.e., imputing the expectation of the

missing values derived from the observed values. Ruggieri et al. [2020] compared the performance

of the original Structural EM to that of the imputed-based Structural EM, and found that the

latter achieves better performance in most of the simulation scenarios.

An increasing number of algorithms are recently proposed to improve structure learning from

data containing missing values. In the case of score-based learning, two model selection methods

have been proposed based on the likelihood function called Node-Average Likelihood (NAL) for

discrete [Balov et al., 2013] and conditional Gaussian BNs [Bodewes and Scutari, 2021]. NAL is

a decomposable function which computes local likelihood for each variable based on the locally

complete data set. The formal definition of NAL can be written as:

SNAL (G, D) =
∑
i

1

|Di|
SLL

(
Vi | Pai; Θ̂i (Di)

)
, (5.1)

where Di is the locally complete data set for Vi in which Vi and its parents Pai are all observed,

and θ̂i (Di) is the maximum likelihood estimates of the parameters obtained from Di. Note that

although the NAL score is consistent under MCAR, it is not consistent under MAR or MNAR.

77

In the case of constraint-based learning, Strobl et al. [2018] treated missing values as a type

of selection bias and showed that performing test-wise deletion during CI tests represents a sound

solution for the FCI algorithm [Spirtes et al., 2000]. In the context of constraint-based learning,

test-wise deletion is a process that deletes the data cases with missing values amongst the variables

involved in a given CI test. Gain and Shpitser [2018] later show that replacing the standard CI

test in PC with an Inverse Probability Weighting (IPW) [Horvitz and Thompson, 1952] based CI

test, enables PC to be applied to data sets which contain systematic missing values without loss

of consistency. IPW is an approach to alleviate bias in data distributions by reweighting the data

cases which we will describe in detail in Section 5.4. However, IPW based CI testing assumes

sufficient information of missingness, such as information about the parents of missingness and the

total ordering of the missing indicators, which is unlikely to be known in practise. Tu et al. [2019]

tried to address this issue by making additional assumptions about the type of missingness, to

find the parents of missingness from the restricted search space. They first predict the parents of

missingness using a constraint-based learning process, for every observed variable that contained

missing values, and then apply the IPW based CI tests using the sufficient information obtained

during the constraint-based learning phase. In this chapter, we adopt the same assumptions (i.e.,

Assumptions 5.3.1 and 5.3.2) as those used in [Tu et al., 2019], but introduce a new solution for

greedy search score-based algorithms to handle systematic missingness.

5.3 Preliminaries

In this Chapter, we consider discrete variables which we denote with uppercase letters (e.g., U, V),

and the assignment of variable states with lowercase letters (e.g., u, v). We denote a set of variables

with bold uppercase letters (e.g., U ,V), and the assignment of a set of variable states with bold

lowercase letters (e.g., u,v). We also adopt the Markov assumption, the faithfulness assumption

and the causal sufficiency assumption previously introduced in Section 2.1.

5.3.1 Hill Climbing algorithm

For simplicity, we focus on the Hill-Climbing (HC) structure learning algorithm [Heckerman et al.,

1995] described in Subsection 2.2.2. As with most other structure learning algorithms, HC is

usually paired with a decomposable score function to evaluate each graph explored relative to the

input data. A score function S (G, D) is decomposable if it can be written as the sum over a set

of local scores, each of which corresponds to a variable and its parents in G. While all score-based

algorithms can use a decomposable score, this property is particular efficient in the case of HC

search since it explores one or two graphical modifications at a time; i.e., one in case of edge

addition or removal, and two in the case of edge reversal. Therefore, the objective score for each

neighbouring graph Gnei can be obtained efficiently by only recomputing the local scores of up to

two nodes whose parent-set has changed, and obtaining the local scores of the remaining nodes

whose parent-set remains intact from the current best graph G.

5.3.2 Missing data

Given the definition from Rubin [1976], missing data can be categorised into three classes based

on their randomness.

78

1. Missing Completely At Random (MCAR): MCAR refers to the situation where the missing-

ness of data is unrelated to both observed and unobserved variables. In other words, the

missingness occurs randomly and has no systematic relationship with the data.

2. Missing At Random (MAR): MAR occurs when the missingness can be explained by the

observed variables in the data set but not by the unobserved variables. The missingness is

related to the observed data, but not to the missing values themselves. Theoretically, when

data is MAR, the missing values can be estimated without bias using the observed variables,

ensuring that no information is lost in the data.

3. Missing Not At Random (MNAR): MNAR refers to a situation where the missingness in

a data set depends on the unobserved variables or the missing values themselves. In other

words, the probability of missingness is related to the values that are missing and cannot

be explained by the observed variables alone. MNAR is the most intricate yet realistic

assumption regarding missing data, as it implies that the missing values cannot be accurately

identified from the existing data. Mishandling such missing values can lead to erroneous

outcomes and misleading results.

Recently, Mohan et al. [2013] proposed a graphical model called missingness graph (or m-graph)

to capture both the data and missing value generation mechanisms simultaneously. Daniel et al.

[2012], Martel Garćıa [2013], Thoemmes and Rose [2014] also propose graphical models for missing

data. In this thesis, we adopt the m-graph model since the marginal distribution represented

by a m-graph is identifiable under certain conditions. The m-graph contains both fully observed

variables and partially observed variables, and use the connections between fully observed variables

and partially observed variables to imply different missingness scenarios.

We denote the set of fully observed variables (i.e, variables without missing values) as V o and

the set of partially observed variables (i.e., variables with at least one missing values) as V m.

For every partially observed variable Vi ∈ V m, we define an auxiliary variable Ri called missing

indicator to reflect the missingness in Vi, where Ri takes the value of 0 when Vi is recorded and the

value of 1 when Vi is missing. Then an m-graph G (V,E) is composed by variables V = V o∪V m∪R
and edges E between V. A m-graph assumes that the observed variable V cannot be the child of

any missing indicator R. Given the m-graph, we can redefine the three missing assumptions as

follows:

1. MCAR: variables in R are not influenced by any observed variables in the m-graph, such

that R ⊥⊥ V o ∪ V m.

2. MAR: variables in R could only be influenced by the fully observed variables but not by the

partially observed variables in the m-graph, such that R ⊥⊥ V m | V o.

3. MNAR: variables in R could be influenced by both fully observed variables and partially

observed variables in the m-graph.

Figure 5.1 presents the three possible m-graphs assuming three observed variables with structure

V1 → V2 → V3, depicting the MCAR, MAR and MNAR assumptions respectively. Note that

the missingness assumptions defined by the m-graph approach are stronger than the assumptions

defined by Rubin [1976]. This is because the m-graph approach considers missingness based on

variables rather than individual values. However, the m-graph approach offers a more explainable

and transparent method for encoding missing patterns, which is why it is employed in this thesis.

79

V1 V2 V3

R2

(a) MCAR m-graph

V1 V2 V3

R2

(b) MAR m-graph

V1 V2 V3

R1 R2

(c) MNAR m-graph

Figure 5.1: The three possible m-graphs assuming three observed variables with structure V1 →
V2 → V3. Shaded nodes represent partially observed variables.

Mohan et al. [2013] show that, given the causal sufficiency assumption and Assumption 5.3.1,

the population distributions are identifiable from the observed data if and only if there is no

variable that is also a parent of its own missingness indicator. We, therefore, adopt the following

two assumptions needed to ensure the identifiability of the underlying data population.1

Assumption 5.3.1. There are no edges between variables in R.

Assumption 5.3.2. No partially observed variable can be the parent of its own missingness indi-

cator.

Although Mohan et al. [2013] show that systematic missingness can be handled effectively by

IPW in theory, it is not convenient to apply IPW to the entire observed data in practice since

this will significantly reduce the sample size, which in turn will negatively affect the results (this is

further discussed in Subsection 5.4.3). Studies that apply IPW to constraint-based learning do so by

restricting the application of IPW to the parts of data involved in the CI test. However, this concept

cannot be extended to score-based learning, where no related solution exists. The subsequent

subsections introduce three variants of the HC algorithm, and describe how to incorporate IPW

to score-based greedy search algorithms, while aiming to maximally leverage observed data.

5.4 Handling systematic missing data with Hill-Climbing

This section describes the three HC variants that we explore in extending the learning process

towards dealing with systematic missing data. Specifically, subsection 5.4.1 describes HC with

pairwise deletion which we call HC-pairwise, subsection 5.4.2 describes HC with both pairwise

deletion and Inverse Probability Weighting which we call HC-IPW, and subsection 5.4.3 describes

an improved version of HC-IPW, the HC-aIPW, that prunes off less data samples compared to

HC-IPW. The first two HC-variants can be viewed as sub-versions of HC-aIPW, but are important

in their own in illustrating the successive improvements in learning accuracy.

5.4.1 Hill-Climbing with pairwise deletion

Recall that, at each iteration, HC moves to the neighbouring graph that maximally improves the

objective score, and that performing HC search with a decomposable scoring function means that

there is no need to recompute the local score of variables whose parent-set remains unchanged

across graphs. Therefore, an efficient (but not necessarily effective) way of applying HC to missing

data is to ignore data cases that contain missing values in variables that form part of the set

of variables considered when exploring local score changes to a DAG. We refer to this process as

1We do not check whether these assumptions hold because they are not testable in the presence of missing values.

80

Current DAG state G Edge operation Neighbouring DAG Gnei Necessary variables

V1 V2 V3

add V1 → V3 V1 V2 V3 {V1, V3}

add V2 → V3 V1 V2 V3 {V2, V3}

add V3 → V1 V1 V2 V3 {V1, V3}

add V3 → V2 V1 V2 V3 {V1, V2, V3}

reverse V1 → V2 V1 V2 V3 {V1, V2}

delete V1 → V2 V1 V2 V3 {V1, V2}

Table 5.1: Examples of necessary variables for each edge operation in HC, which we define as the
variables with different parent-sets between the current best and neighbouring graphs,
plus the parents that make up those parent-sets.

pairwise deletion, where “pair” refers to the current pair of candidate DAGs (the current best DAG

and neighbouring DAG), and this deletion process may involve more than two variables. When

comparing the current best DAG against a neighbouring DAG, the necessary variables would be

the nodes with unequal parent-sets between the two graphs, plus the parents of those nodes in the

two graphs. Formally, when exploring a neighbouring DAG Gnei from the current best DAG G,
the set of necessary variables W between G and Gnei can be described as:

W = ∪Vi∈Vd

{
Vi,Pai,Pa

nei
i

}
, (5.2)

where Vd is the set of variables that have different parent-sets between G and Gnei, and Pai and

Panei
i are the parent-sets of Vi in G and Gnei respectively. For simplicity, we refer to the data set

obtained after applying pairwise deletion as the pairwise deleted data set.

Example 5.4.1. Assume that, during HC, the current state of DAG G is a graph containing three

variables {V1, V2, V3} and the edge V1 → V2, as illustrated in Table 5.1. Given DAG G, there
are six possible edge operations each of which produces a neighbouring graph Gnei. Operation

add V1 → V3, for example, can be evaluated by assessing the change in the local score of V3, i.e.,

S (V3 | V1)−S (V3), since V3 is the only variable with different parents between G and Gnei. When

the data set contains missing values, we can apply pairwise deletion to data given {V1, V3} in order

to obtain a complete data set that will enable us to assess the neighbouring graph resulting from

this edge operation. However, there is a risk that this action may lead to biased estimates when

missingness is not MCAR.

Because pairwise deletion leads to edge operations that are assessed based on different subsets

of the data, it is possible to get stuck in an infinite loop where previous neighbouring graphs are

constantly revisited and re-selected as a higher scoring graph. This can happen when, for example,

DAG G2 returns a higher score than G1 based on pairwise deleted data set D1, G3 returns a higher

score than G2 based on pairwise deleted data set D2, and G1 returns a higher score than G3 based

on pairwise deleted data set D3. In this example, HC with pairwise deletion would identify the

graphical scores as G1 < G2 < G3 < G1 and never converge to a maximal solution. We address this

81

issue by restricting HC search to neighbours not previously identified as the optimal graph. We

call this variant of HC as HC-pairwise, and present its pseudo-code in Algorithm 9.

Algorithm 9 The HC-pairwise algorithm

1: procedure HC-pairwise
Input: data set D
Output: learnt DAG G

2: G ← empty graph
3: Grecord ← {G}
4: repeat
5: δ ← 0
6: repeat
7: construct a neighbouring DAG Gnei by adding, reversing or deleting an edge from

G
8: if Gnei ̸∈ Grecord then
9: construct Dpw by pairwise deleting D given the necessary variables W

10: if S(Gnei | Dpw)− S(G | Dpw) > δ then
11: δ ← S(Gnei | Dpw)− S(G | Dpw)
12: Gupdate ← Gnei
13: end if
14: end if
15: until all possible edge operations have been attempted
16: if δ > 0 then
17: G ← Gupdate
18: Grecord = Grecord ∪ {G}
19: end if
20: until δ = 0
21: return G
22: end procedure

When data are MCAR on the basis of R ⊥⊥ V , the distribution entailed by any pairwise deleted

data set is an unbiased estimate of the underlying true distribution:

P (Vi | Pai,Rs = 0) = P (Vi | Pai) , (5.3)

where Rs can be any subset of R.

From this, we derive Proposition 5.4.1, which states that, when the missingness is MCAR, the

DAG learnt by HC-pairwise is a local maximum graph, at least when BIC is used as the objective

function. We define the local maximum graph as the graph with an objective score not lower

than the scores of all its valid neighbouring graphs, when these scores are derived from the fully

observed data set; i.e., it is independent of missingness generated.

Proposition 5.4.1. Assume data D is MCAR and sample size N →∞, for any DAG G and one

of its neighbouring DAG Gnei

SBIC (Gnei | Dpw) > SBIC (G | Dpw) , iff SBIC (Gnei | Df) > SBIC (G | Df) ,

where Dpw is the pairwise deleted data set which is derived from D by removing the data cases with

missing values amongst the necessary variablesW , and Df is the corresponding fully observed data

set.

Proof We define the variables used in proof as follows: Vd is the set of variables with different

parent-sets between a given DAG G and its neighbouring DAG Gnei, W is a set of the necessary

82

variables as defined in Equation 5.2, and N and Npw are the sample sizes of the partially observed

data set D and pairwise deleted data set Dpw respectively. Then, we have

SBIC (Gnei | Df)− SBIC (G | Df)

=

n∑
i=1

(
SBIC(Vi | Panei

i)− SBIC(Vi | Pai)
)

=
∑

i:Vi∈Vd

(
SBIC(Vi | Panei

i)− SBIC(Vi | Pai)
)

=
∑

i:Vi∈Vd

(∑
Df

(
logP (Vi | Panei

i)− logP (Vi | Pai)
)
+

log (N)

2

(
|Θ̂nei

i | − |Θ̂i|
))

=
N

Npw

∑
i:Vi∈Vd

(∑
Dpw

(
logP (Vi | Panei

i ,RW = 0)− logP (Vi | Pai,RW = 0)
)

+
log (Npw)

2

(
|Θ̂nei

i | − |Θ̂i|
)
+

log (N/Npw)

2

(
|Θ̂nei

i | − |Θ̂i|
))

(5.4)

=
N

Npw

(
SBIC (Gnei | Dpw)− SBIC (G | Dpw) +

log (N/Npw)

2

∑
i:Vi∈Vd

(
|Θ̂nei

i | − |Θ̂i|
))

∝ SBIC (Gnei | Dpw)− SBIC (G | Dpw) +O(1). (5.5)

Equation 5.4 follows from Equation 5.3 given the MCAR assumption and large sample limit. Equa-

tion 5.5 is due to the missing rate of data D, i.e., Npw/N , does not relate to the sample size N

and remains constant with the increase of N .

5.4.2 Hill-Climbing with Inverse Probability Weighting

Although HC-pairwise will progressively learn a better DAG after each iteration when missingness

is MCAR, this property does not necessarily hold when missingness is MAR or MNAR, since

systematic bias in the data might produce

P (Vi | Pai,R = 0) ̸= P (Vi | Pai) . (5.6)

To diminish data biases caused by potential dependencies between missing and observed data, we

further explore applying the IPW method to the pairwise deleted data set.

According to Mohan et al. [2013, Theorem 2] and Tu et al. [2019], when the causal sufficiency

assumption and Assumptions 5.3.1 and 5.3.2 hold, the joint distribution of variables V can be fully

identified from the observed part of the data set (i,e., the data after applying pairwise deletion) by

P (V) =
P (V ,R = 0)∏

Ri∈R P
(
Ri = 0 | PaRi

,RPaRi
= 0

) , (5.7)

where PaRi
is the set of parents of missing indicator Ri, and RPaRi

is the set of missing indicator

83

V1 V2 V3

(a) Current best DAG

V1 V2 V3

(b) Neighbouring DAG

Figure 5.2: A hill-climbing illustration of the DAG considered in Example 5.4.2, discussed in the
main text. Shaded nodes represent partially observed variables.

of the partially observed variables in PaRi
. Then, we have

P (V) =
P (V ,R = 0)∏

Ri∈R P
(
Ri = 0 | PaRi ,RPaRi

= 0
)

=
P (V | R = 0)P (R = 0)∏

Ri∈R P
(
Ri = 0 | PaRi

,RPaRi
= 0

)
= P (V | R = 0) · P (R = 0)∏

Ri∈R

P
(
PaRi

|Ri=0,RPaRi
=0

)
P
(
Ri=0|RPaRi

=0
)

P
(
PaRi

|RPaRi
=0

)
= P (V | R = 0) ·

P (R = 0)∏
Ri∈R P

(
Ri = 0 | RPaRi

= 0
)︸ ︷︷ ︸

c

∏
Ri∈R

P
(
PaRi

| RPaRi
= 0

)
P
(
PaRi

| Ri = 0,RPaRi
= 0

)︸ ︷︷ ︸
βRi

. (5.8)

Since the term c in Equation 5.8 represents a constant value, we can apply pairwise deletion to the

missing data cases of variables V and weight the pairwise deleted data set by
∏

Ri∈R βRi
. This

will produce a weighted data set that approximates the unbiased distribution P (V). We call this

HC variant HC-IPW, and can be viewed as an extension of HC-pairwise that incorporates both

the pairwise deletion and IPW methods. Unlike HC-pairwise, the HC-IPW algorithm can be used

under the assumption the input data are MAR or MNAR, in addition to MCAR, to diminish data

bias caused by systematic missing values.

It should be noted that when PaRi
contains partially observed variables, Equation 5.8 implies

that PaRi
⊆ V ; otherwise, the columns of PaRi

in the pairwise deleted data set may contain

missing values that will render the calculation of βRi
invalid. The following example shows that it

might be impossible to recover the underlying true distribution if any PaRi
̸⊆ V .

Example 5.4.2. Consider that Figure 5.1c is the true m-graph, the current best DAG G in HC

search is the one shown in Figure 5.2a, and Figure 5.2b presents one of its neighbouring DAGs,

Gnei. Since the difference in score between Gnei and G is S (V3 | V1)−S (V3), we need to ensure that

missingness does not bias the estimate of distribution P (V1, V3) when computing distributional

score difference. If we apply pairwise deletion directly on the necessary variables {V1, V3} and use

Equation 5.8 to recover P (V1, V3). This will result in the following equation:

P (V1, V3) = P (V1, V3 | R1 = 0)
P (R1 = 0)

P (R1 = 0)

P (V2 | R2 = 0)

P (V2 | R1 = 0, R2 = 0)︸ ︷︷ ︸
βR1

.

However, the problem in the above equation is that we cannot compute the weight term βR1
for

data cases that contain missing values in V2.

To avoid this, when assessing the edge operations from G to Gnei in HC-IPW, the pairwise

84

deletion for Equation 5.8 should be performed on sufficient variables U , which is a variable set

that contains the necessary variables W plus the parents of missing indicators of all variables in

U :

U = ∪Vi∈Vd

{
Vi,Pai,Pa

nei
i

}
∪ PaRU

, (5.9)

where Vd is the set of variables that have different parent-sets between G and Gnei, and Pai and

Panei
i are the parent-sets of Vi in G and Gnei respectively. It is worth noting that Equation 5.9

represents a recursive process that iterates over the parents of missing indicators for all involved

variables, i.e., not only W but also U\W should be included in U in order to resolve the issue

illustrated in Example 5.4.2.

Another potential issue with Equation 5.8 is that the parents PaRi
of each missing indicator

Ri are generally unknown. Tu et al. [2019] used constraint-based learning to discover the parents of

each missing indicator, and this approach has been proven to be sound when the causal sufficiency

assumption and Assumptions 5.3.1 and 5.3.2 hold. We have, therefore, adopted the constraint-

based approach proposed by Tu et al. [2019] to discover the parents of the missing indicators in

applying HC-IPW. The intention here is that this approach can be used to exclude variable Vj as

the parent of Ri, if Ri is found to be independent of Vj given any variable set S, given the pairwise

deleted data set for {Vj} ∪ S. Algorithm 10 provides the pseudo-code.

Algorithm 10 Discovering the parents of the missing indicators using constraint-based learning

1: procedure Detecting parents of missing indicators
Input: data set D
Output: the parents of missing indicators PaR

2: for each Vi ∈ Vm do
3: PaRi ← V \Vi
4: for each Vj ∈ V \Vi do
5: remove Vj from PaRi

if Ri ⊥⊥ Vj | S, Rj = 0,RS = 0, for any S ⊆ PaRi

6: end for
7: end for
8: return PaR

9: end procedure

Algorithm 11 describes the HC-IPW algorithm, where lines coloured in blue represent the

difference in pseudo-code between HC-IPW and HC-pairwise. Note that when computing the

objective score for HC-IPW, the weighted statistics Ñijk, Ñij are used instead of the standard

Nijk, Nij used in HC, and which are defined as follows:

Ñijk =

|Dpw|∑
s=1

1ijk (d
s) · βs, (5.10)

Ñij =

ri∑
k=1

Ñijk, (5.11)

where 1ijk is the indicator function of the event (Vi = k,Pai = j) which returns 1 when the

combination of Vi = k,Pai = j appears in the input data case, and returns 0 otherwise, ds is the

sth record in pairwise deleted data set Dpw, and β
s is the weight corresponding to ds. Therefore,

85

Algorithm 11 The HC-IPW algorithm

1: procedure HC-IPW
Input: data set D
Output: learnt DAG G

2: G ← empty graph
3: Grecord ← {G}
4: retrieve the parents of missing indicators via Algorithm 10
5: repeat
6: δ ← 0
7: repeat
8: construct a neighbouring DAG Gnei by adding, reversing or deleting an edge from

G
9: if Gnei ̸∈ Grecord then

10: construct Dpw by pairwise deleting D given the sufficient variables U
11: compute weight β by Equation 5.8 for Dpw

12: if S(Gnei | Dpw, β)− S(G | Dpw, β) > δ then
13: δ ← S(Gnei | Dpw, β)− S(G | Dpw, β)
14: Gupdate ← Gnei
15: end if
16: end if
17: until all possible edge operations have been attempted
18: if δ > 0 then
19: G ← Gupdate
20: Grecord = Grecord ∪ {G}
21: end if
22: until δ = 0
23: end procedure

we define the BIC score for pairwise deleted data set Dpw given β as follows:

SBIC (G | Dpw, β) =

n∑
i=1

 qi∑
j=1

ri∑
k=1

Ñijk · log
Ñijk

Ñij

− log (Npw)

2
· (ri − 1)qi

 ,

where Npw represents the sample size of Dpw, Ñijk and Ñij represent the weighted statistics as

defined in Equation 5.10 and 5.11, and β is used for computing the weighted Ñijk and Ñij .

The following proposition shows that HC-IPW converges to a local optima when BIC is used as

the score function, when the causal sufficiency assumption and Assumptions 5.3.1 and 5.3.2 hold,

and when sample size N →∞.

Proposition 5.4.2. Given the causal sufficiency assumption, Assumptions 5.3.1 and 5.3.2, assume

data D is partially observed and sample size N →∞, for any DAG G and one of its neighbouring

DAG Gnei

SBIC (Gnei | Dpw, β) > SBIC (G | Dpw, β) , iff SBIC (Gnei | Df) > SBIC (G | Df) ,

where Dpw is the pairwise deleted data set which is derived from D by removing data cases with

missing values amongst sufficient variables U , β =
∏

Ri∈RU
βRi , and Df is the corresponding fully

observed data set.

Proof We define the variables used in this proof as we did in the proof of Proposition 5.4.1. We

86

also define W as a set of the necessary variables as introduced in Equation 5.2. Then, we have

SBIC (Gnei | Df)− SBIC (G | Df)

=
∑

i:Vi∈Vd

(∑
Df

(
logP (Vi | Panei

i)− logP (Vi | Pai)
)
+

log (N)

2

(
|Θ̂nei

i | − |Θ̂i|
))

=
∑

i:Vi∈Vd

(∑
Df

(
log

P (Vi,Pa
nei
i)∑

Vi
P (Vi,Panei

i)
− log

P (Vi,Pai)∑
Vi
P (Vi,Pai)

)
+

log (N)

2

(
|Θ̂nei

i | − |Θ̂i|
))

=
N

Npw

∑
i:Vi∈Vd

(∑
Dpw

(
log

P (Vi,Pa
nei
i | RU = 0)β∑

Vi
P (Vi,Panei

i | RU = 0)β
− log

P (Vi,Pai | RU = 0)β∑
Vi
P (Vi,Pai | RU = 0)β

)

+
log (N)

2

(
|Θ̂nei

i | − |Θ̂i|
))

(5.12)

=
N

Npw

∑
i:Vi∈Vd

(|Panei
i |∑

j=1

|Vi|∑
k=1

Ñijklog
Ñijk

Ñij

−
|Pai|∑
j=1

|Vi|∑
k=1

Ñijklog
Ñijk

Ñij

+
log (N)

2

(
|Θ̂nei

i | − |Θ̂i|
))

=
N

Npw

∑
i:Vi∈Vd

(|Panei
i |∑

j=1

|Vi|∑
k=1

Ñijklog
Ñijk

Ñij

−
|Pai|∑
j=1

|Vi|∑
k=1

Ñijklog
Ñijk

Ñij

+
log (Npw)

2

(
|Θ̂nei

i | − |Θ̂i|
)

+
log (N/Npw)

2

(
|Θ̂nei

i | − |Θ̂i|
))

=
N

Npw

(
SBIC (Gnei | Dpw, β)− SBIC (G | Dpw, β) +

log (N/Npw)

2

∑
i:Vi∈Vd

(
|Θ̂nei

i | − |Θ̂i|
))

∝ SBIC (Gnei | Dpw, β)− SBIC (G | Dpw, β) +O(1).

In the above equations, β =
∏

Ri∈RU
βRi

, Ñijk and Ñij are defined by Equation 5.10 and 5.11.

Equation 5.12 is a consequence of the identifiablity of P (U) given Equation 5.8.

5.4.3 Hill-Climbing with adaptive Inverse Probability Weighting

Although HC-IPW diminishes potential data bias caused by systematic missing values, the learning

approach achieves this by removing a greater number of data cases compared to those removed by

HC-pairwise when PaRW
contains partially observed variables, which is likely to happen when

the missingness are MNAR. This can be a problem when data cases are limited. We illustrate this

phenomenon with an example.

Example 5.4.3. Suppose graph (a) in Figure 5.3 represents the ground truth m-graph in which

the variables in shaded backcolour V1, V4 and V6 are partially observed whose missingness are

caused by V4, V5 and V1 respectively, as illustrated with the missing indicators R1, R4 and R6

corresponding to the missingness of V1, V4 and V6. Let us assume graph (b) represents the current

state of the optimal DAG in the HC-pairwise/HC-IPW search process, and that graphs (c) and

(d) represent two of the possible neighbouring graphs. When HC-pairwise compares G with Gn1, it
applies pairwise deletion to cases in which the necessary variablesW = {V5, V2, V6} contain missing

values. Since only V6 is partially observed out of the three necessary variables, HC-pairwise removes

data cases when the value of V6 is missing. In contrast, when HC-IPW is applied to this case,

87

V1
V2

V3

V4
V5

V6

R1

R4

R6

(a) Ground truth m-graph

V1
V2

V3

V4
V5

V6

(b) Current optimal DAG G

V1
V2

V3

V4
V5

V6

(c) Neighbouring DAG Gn1

V1
V2

V3

V4
V5

V6

(d) Neighbouring DAG Gn2

ad
d
V6
→
V5

add
V
2 →

V
4

Figure 5.3: Example of a searching step in HC-pairwise/HC-IPW.

and assuming it correctly learns the parents of missingness via Algorithm 10, it computes the

weights of the pairwise deleted data set through pairwise deletion based on the sufficient variables

U = {V5, V2, V6} ∪ {V1, V4, V5}. Thus, HC-IPW removes data cases whenever any of the variables

in U contain a missing value (in this example, V1, V4 and V6 do). Therefore, HC-IPW performs

learning on a smaller set of data cases compared to those in the case of HC-pairwise.

When PaRW
(refer to Equation 5.2 and Algorithm 11) does not contain any partially observed

variables, the HC-IPW algorithm will perform learning on the same number of data cases as in

HC-pairwise. This can happen in cases such as when comparing neighbouring DAG Gn2 against

G in Figure 5.3, where the set of necessary variables W in HC-pairwise contains {V4, V2, V5} and
the set of sufficient variables U in HC-IPW is {V4, V2, V5} ∪ {V5}. In this case, because V5 is fully

observed, applying pairwise deletion given W and U would result in the same pairwise deleted

data set.

Because the effectiveness of a scoring function increases with sample size, the scoring efficiency

of HC-IPW can decrease considerably when missingness are MNAR for multiple variables. This

is because both the number of partially observed variables and MNAR missingness increase the

number of data cases removed during the learning process. It is on this basis we investigated a

third variant, called the adaptive IPW-based HC (HC-aIPW), and which can be viewed as an

extension of HC-IPW. The pseudo-code of HC-aIPW is shown in Algorithm 12. The highlighted

section represents the part of the code that differs from HC-IPW.

In essence, HC-aIPW aims to maximise the samples taken into consideration during the learn-

ing process. When there are partially observed variables in PaRW
, HC-aIPW applies pairwise

deletion given W and computes the difference in score between the current optimal DAG and the

neighbouring DAG using the original pairwise deleted data set and standard scoring function. This

is the only difference between HC-aIPW and HC-IPW. When there are no partially observed vari-

ables in PaRW
, HC-aIPW uses the same IPW procedure as in HC-IPW to compute the difference

in score between the current optimal DAG and the neighbouring DAG given the weighted pairwise

deleted data set.

88

Algorithm 12 The HC-aIPW algorithm

1: procedure HC-aIPW
Input: data set D
Output: learnt DAG G

2: G ← empty graph
3: Grecord ← {G}
4: retrieve the parents of missing indicators via Algorithm 10
5: repeat
6: δ ← 0
7: repeat
8: construct a neighbouring DAG Gnei by adding, reversing or deleting an edge from

G
9: if Gnei ̸∈ Grecord then

10: if PaRW
∩ Vm ̸= Ø then

11: construct Dpw by pairwise deleting D given the necessary variables W
12: if S(Gnei | Dpw)− S(G | Dpw) > δ then
13: δ ← S(Gnei | Dpw)− S(G | Dpw)
14: Gupdate ← Gnei
15: end if
16: else
17: construct Dpw by pairwise deleting D given the sufficient variables U
18: compute weight β by Equation 5.8 for Dpw

19: if S(Gnei | Dpw, β)− S(G | Dpw, β) > δ then
20: δ ← S(Gnei | Dpw, β)− S(G | Dpw, β)
21: Gupdate ← Gnei
22: end if
23: end if
24: end if
25: until all possible edge operations have been attempted
26: if δ > 0 then
27: G ← Gupdate
28: Grecord = Grecord ∪ {G}
29: end if
30: until δ = 0
31: return G
32: end procedure

89

Name Number of variables Average degree Number of states

Asia 8 2.00 2
Alarm 37 2.49 2 ∼ 4

Pathfinder 109 3.58 2 ∼ 63
Sports 9 3.33 3 ∼ 8
ForMed 88 3.14 2 ∼ 10
Property 27 2.30 2 ∼ 7

Table 5.2: The properties of the six real-world BNs.

5.5 Experiments

The learning accuracy of each of the three algorithms described in Section 5.4 is investigated and

evaluated with reference to the Structural EM algorithm when applied to the same data. We were

unable to include the other algorithms mentioned in Section 5.2 as part of the evaluation, since

their implementations are not made publicly available. The Structural EM algorithm represents a

state-of-the-art score-based approach for structure learning from missing data, and also explores

the search space of graphs using HC. Since all the involved algorithms are based on HC, we

measure their learning accuracy with reference to the results obtained when applying standard

HC on complete, rather than incomplete, data. Results from complete data give us the empirical

maximum performance we can achieve on these data sets using HC, before making part of the

data missing. The HC and Structural EM algorithms used in this Chapter are those available in

the bnlearn R package [Scutari et al., 2010]. It is worth noting that the Structural EM algorithm

implemented in bnlearn R package is based on single imputation rather than belief propagation.

Therefore, the results presented in this Chapter approximate the difference between the proposed

methods and Friedman’s Structural EM. The implementations of the three HC variants described

in Section 5.4 are available online at https://github.com/Enderlogic/HC-missing-data.

5.5.1 Generating synthetic data and missingness

To illustrate the performance of the algorithms under different settings, we consider three types

of ground truth DAGs: sparse networks, dense networks and real-world networks. We have con-

structed 50 random sparse and 50 random dense DAGs. Each network contains 20 to 50 nodes

with two to six states per node. A sparse DAG G with n variables is generated from a randomly

ordered variable set V1 < V2 < . . . < Vn, where directed edges are sampled from lower ordered vari-

ables to higher ordered variables with probability 2/ (n− 1). Dense DAGs are generated with the

same procedure, but the probability of drawing an edge between variables increases to 4/ (n− 1).

The conditional probability distribution of variable Vi in sparse and dense DAGs is parameterised,

given any configuration of its parents, by drawing a random number from the Dirichlet distribution

Dir (α), where α = {1, . . . , 1}︸ ︷︷ ︸
ri

, and ri is the number of states in Vi. For real-world DAGs, we use

the six real-world BNs investigated in Subsection 3.2.1. The structure and parameters of these

BNs are set by either real data observations or prior knowledge as defined in the original studies.

The properties of these BNs are provided in Table 5.2.

We generate complete and incomplete synthetic data using the DAGs introduced above. The

complete data sets are provided as input to the standard HC algorithm, whereas the correspond-

ing incomplete data sets are provided as input to the Structural EM and the three HC vari-

90

https://github.com/Enderlogic/HC-missing-data

ants described in Section 5.4. We generate five complete data sets per DAG with sample sizes

N ∈ {100, 500, 1000, 5000, 10000}. Each complete data set is then used to construct further three

data sets with missing values; one per missingness assumption, MCAR, MAR or MNAR. For the

MCAR case, we randomly select 50% of the variables to represent the partially observed variables,

and we then remove observed data of these variables with probability p, where p represents a

random value between 0.1 and 0.6. For case MAR, we had to ensure missingness are dependent

on a subset of the fully observed variables, and this is done as follows:

1. Randomly select 50% of the variables as partially observed variables (same process as in

MCAR);

2. Randomly assign a fully observed variable as the parent of missingness of a partially observed

variable (repeat for all partially observed variables);

3. Remove observations in partially observed variables with probability p = 0.6 when the parent

of their missingness is at its highest occurring state; otherwise, remove the observation with

probability p = 0.1.

Generating MNAR data also involves the above 3-step procedure, but step 2 is modified as follows:

2. Randomly select 50% of the partially observed variables and randomly assign a fully observed

variable as the parent of their missingness. For the remaining 50% partially observed vari-

ables, randomly assign another partially observed variable as the parent of their missingness.

5.5.2 Evaluation metrics

The structure learning performance is assessed using the F1 score and the re-scaled SHD score.

Because the experiments are based on observational data, multiple DAGs can be statistically

indistinguishable due to being part of the same Markov Equivalence class. On this basis, we

compare the CPDAGs between the learnt and true graphs to measure both the F1 and SHD

graphical scores.

5.5.3 Results when the true DAG is sparse

Figure 5.4 presents the average accuracy of the algorithms when the true DAGs are sparse. Each

averaged score is derived from 50 CPDAGs, corresponding to each of the 50 randomly generated

sparse DAGs. Tables 5.3 and 5.4 provide the mean and standard deviation of the scores. The results

suggest that the two evaluation metrics are generally consistent in ranking the algorithms from best

to worst performance. Both metrics suggest that all of the three proposed HC variants outperform

the Structural EM algorithm when the sample size is greater than 1,000, under all three missingness

scenarios MCAR, MAR and MNAR. Interestingly, the HC-aIPW algorithm almost matches the

performance of HC which is applied to complete data (denoted as HC-complete in Figures 5.4),

particularly for experiments with 10,000 sample size, and this observation is consistent across all

three missingness assumptions. The three variants, HC-pairwise, HC-IPW and HC-aIPW, produce

very similar results under MCAR, and this is because missingness under MCAR has no pattern

that could be identified by the HC-IPW and HC-aIPW variants. That is, when HC-IPW and HC-

aIPW do not discover any parent of missingness, they follow the search process of HC-pairwise.

Under MAR, however, both HC-IPW and HC-aIPW outperform HC-pairwise as well as Structural

91

MCAR MAR MNAR

0.2

0.4

0.6

F
1

100 500 1000 5000 10000 100 500 1000 5000 10000 100 500 1000 5000 10000

0.5

0.7

0.9

sample size

S
H

D

Algorithm

HC−pairwise

HC−IPW

HC−aIPW

Structural EM

HC−complete

Figure 5.4: Average F1 and re-scaled SHD scores learnt by HC-pairwise, HC-IPW, HC-aIPW and
Structural EM for sparse networks, under different assumptions of missingness and
sample sizes. Each score represents the average score over 50 CPDAGs. Note the
scores of HC-complete are based on complete data for benchmarking purposes; i.e., the
same scores are superimposed in all three missingness cases as a dashed line.

Data Sample size Structural EM HC-pairwise HC-IPW HC-aIPW

MCAR

100 0.122± 0.088 0.158± 0.108 0.150± 0.104 0.159± 0.107
500 0.325± 0.139 0.356± 0.139 0.349± 0.133 0.355± 0.139
1000 0.410± 0.141 0.430± 0.149 0.417± 0.143 0.431± 0.150
5000 0.642± 0.149 0.659± 0.144 0.654± 0.160 0.658± 0.144
10000 0.682± 0.135 0.700± 0.140 0.697± 0.143 0.700± 0.137

MAR

100 0.117± 0.097 0.152± 0.102 0.143± 0.102 0.142± 0.101
500 0.281± 0.119 0.355± 0.117 0.369± 0.140 0.369± 0.138
1000 0.354± 0.136 0.409± 0.152 0.423± 0.150 0.423± 0.149
5000 0.543± 0.119 0.583± 0.137 0.671± 0.147 0.671± 0.150
10000 0.505± 0.141 0.580± 0.121 0.695± 0.136 0.690± 0.138

MNAR

100 0.127± 0.094 0.164± 0.098 0.143± 0.103 0.165± 0.099
500 0.285± 0.122 0.335± 0.129 0.242± 0.091 0.336± 0.131
1000 0.328± 0.123 0.413± 0.142 0.308± 0.113 0.419± 0.148
5000 0.488± 0.137 0.602± 0.164 0.503± 0.124 0.624± 0.150
10000 0.473± 0.148 0.613± 0.144 0.575± 0.157 0.662± 0.146

Table 5.3: Mean and standard deviation of F1 scores produced by Structural EM, HC-pairwise, HC-
IPW and HC-aIPW for sparse networks, under the different assumptions of missingness
and sample sizes.

92

Data Sample size Structural EM HC-pairwise HC-IPW HC-aIPW

MCAR

100 0.978± 0.063 0.975± 0.095 1.004± 0.107 0.978± 0.093
500 0.784± 0.121 0.756± 0.127 0.766± 0.120 0.757± 0.127
1000 0.700± 0.133 0.677± 0.147 0.694± 0.140 0.676± 0.147
5000 0.465± 0.181 0.439± 0.178 0.444± 0.191 0.441± 0.179
10000 0.424± 0.178 0.392± 0.182 0.398± 0.183 0.392± 0.178

MAR

100 0.975± 0.086 0.969± 0.094 1.007± 0.101 1.007± 0.101
500 0.814± 0.103 0.756± 0.108 0.755± 0.131 0.754± 0.129
1000 0.748± 0.123 0.692± 0.160 0.681± 0.156 0.682± 0.154
5000 0.609± 0.158 0.543± 0.174 0.430± 0.186 0.430± 0.189
10000 0.690± 0.188 0.563± 0.161 0.404± 0.181 0.411± 0.184

MNAR

100 0.984± 0.068 0.963± 0.078 1.051± 0.129 0.970± 0.082
500 0.836± 0.102 0.776± 0.114 0.980± 0.116 0.777± 0.115
1000 0.810± 0.119 0.691± 0.140 0.904± 0.163 0.684± 0.149
5000 0.721± 0.184 0.513± 0.201 0.676± 0.177 0.483± 0.185
10000 0.774± 0.201 0.513± 0.185 0.588± 0.203 0.444± 0.184

Table 5.4: Mean and standard deviation of re-scaled SHD scores produced by Structural EM, HC-
pairwise, HC-IPW and HC-aIPW for sparse networks, under the different assumptions
of missingness and sample sizes.

EM when the sample size is larger than 100 and the improvement in performance increases with

sample size. From this observation, we can conclude that the IPW method successfully eliminates

most of the distributional bias. Interestingly, although the construction of the Structural EM

algorithm is based on the MAR assumption, its performance under MAR is considerably lower

than its performance under MCAR. A possible explanation is that the single imputation process

the bnlearn R package employs during the E step of Structural EM, instead of belief propagation,

is unable to capture the uncertainty of the missing values.

Lastly, the results under MNAR suggest that HC-IPW generally performs worse than HC-

pairwise across most sample sizes. This observation can be explained by the reduced sample size

on which HC-IPW operates, relative to HC-pairwise, as discussed in subsection 5.4.3. Specifically,

when the parents of missingness of necessary variables W contain partially observed variables (i.e.,

MNAR case), HC-IPW applies pairwise deletion by taking into consideration a higher number

of variables compared to those considered by HC-pairwise. This means that, compared to HC-

pairwise, the HC-IPW algorithm typically evaluates edge operations based on smaller samples when

missingness are MNAR, which tends to yield less accurate results. From this, we can also conclude

that the negative effect resulting from HC-IPW further pruning samples has not been offset by the

data bias adjustments applied by the IPW method. On the other hand, the HC-aIPW algorithm

which is designed to apply the IPW method only when no additional samples would be deleted

compared to HC-pairwise, generally outperforms all other algorithms under MNAR, particularly

under higher sample sizes.

5.5.4 Results when the true DAG is dense

In this subsection we investigate the performance of the algorithms when applied to data sets

sampled from dense networks. The performance of each algorithm is depicted in Figure 5.5, and

detailed results are provided in Tables 5.6 and 5.7. An important distinction between sparse and

dense networks is that learning from data sampled from dense networks makes it more likely that

93

Data Sample size Structural EM HC-pairwise HC-IPW HC-aIPW

MCAR

100 161.29± 54.37 1.55± 0.68 8.02± 2.27 8.30± 1.95
500 423.61± 146.51 1.55± 0.43 6.28± 1.50 6.89± 1.47
1000 556.72± 178.34 1.54± 0.36 5.88± 1.68 6.44± 1.78
5000 739.52± 269.94 1.73± 0.70 8.76± 2.48 9.24± 2.38
10000 642.91± 254.91 1.63± 0.42 11.46± 3.45 11.90± 3.57

MAR

100 164.96± 46.26 1.64± 0.51 8.33± 2.15 9.14± 2.29
500 421.37± 144.99 1.62± 0.42 7.50± 2.00 8.42± 2.09
1000 554.72± 186.89 1.55± 0.34 7.73± 2.29 8.62± 2.47
5000 740.71± 275.59 1.59± 0.32 14.81± 5.49 15.33± 5.24
10000 657.52± 313.70 1.73± 0.53 22.49± 7.52 22.75± 7.20

MNAR

100 154.04± 44.86 1.54± 0.56 8.80± 3.27 8.79± 2.67
500 419.91± 145.50 1.62± 0.44 8.18± 3.58 7.90± 2.47
1000 552.16± 181.62 1.58± 0.41 7.69± 3.05 7.56± 2.06
5000 776.32± 359.57 1.87± 0.87 13.29± 5.93 12.89± 7.74
10000 615.91± 271.88 1.86± 0.77 20.07± 9.38 17.93± 8.38

Table 5.5: Mean and standard deviation of execution times produced by Structural EM, HC-
pairwise, HC-IPW and HC-aIPW for sparse networks and relative to HC when applied
to complete data, under the different assumptions of missingness and sample sizes.

local parts of the graph will involve learning from partially observed variables. In other words,

the effect of missing values is more severe on dense, compared to sparse, networks as shown in

Subsection 5.5.3.

The results show that the HC-aIPW algorithm continues to perform best in the case of denser

graphs, in terms of overall performance and over the different missingness and sample size assump-

tions. Specifically, HC-aIPW achieves the highest accuracy in 11 and 8 cases in terms of F1 and

SHD measures respectively, out of the 15 experiments conducted in this subsection. In contrast,

the Structural EM algorithm performs best in just two experiments and only in terms of the SHD

score. However, compared with the results in subsection 5.5.3, the divergence in score between

Structural EM and HC-based variants is much smaller.

The performance across the three HC-based variants appears to be similar to that obtained

under sparse graphs. When data are MCAR, HC-IPW and HC-aIPW produce scores that are

similar to those produced by HC-pairwise, and this is expected since no observed variables should

be detected as the parents of missing indicators when missingness is MCAR. When data are MAR,

both HC-IPW and HC-aIPW outperform HC-pairwise since, unlike HC-pairwise, they can detect

and reduce bias caused by missing values. Lastly, when data are MNAR, HC-IPW performs worst

amongst all algorithms, particularly when the sample size is lowest, and this is because it tends

to remove a large number of data cases when computing the local scores. On the other hand,

HC-aIPW (which aims to resolve this specific drawback of HC-IPW) performs best in almost all

the MNAR experiments. The consistency of the results across sparse and dense networks suggests

that the performance of HC-aIPW, relative to the other algorithms considered in this study, is not

sensitive to the sparsity of the network that generates the input data.

5.5.5 Results when the true DAG is a real-world network

Lastly, we apply the algorithms to data sets sampled from the six real-world networks. Figure 5.6

shows the average performance of the algorithms across all the six real-world networks and over

94

MCAR MAR MNAR

0.2

0.4

0.6

F
1

100 500 1000 5000 10000 100 500 1000 5000 10000 100 500 1000 5000 10000
0.5

0.6

0.7

0.8

0.9

1.0

sample size

S
H

D

Algorithm

HC−pairwise

HC−IPW

HC−aIPW

Structural EM

HC−complete

Figure 5.5: Average F1 and re-scaled SHD scores learnt by HC-pairwise, HC-IPW, HC-aIPW and
Structural EM for dense networks, under different assumptions of missingness and
sample sizes. Each score represents the average score over 50 CPDAGs. Note the
scores of HC-complete are based on complete data for benchmarking purposes; i.e., the
same scores are superimposed in all three missingness cases as a dashed line.

Data Sample size Structural EM HC-pairwise HC-IPW HC-aIPW

MCAR

100 0.052± 0.043 0.059± 0.046 0.060± 0.045 0.060± 0.046
500 0.148± 0.070 0.166± 0.077 0.160± 0.071 0.166± 0.076
1000 0.217± 0.094 0.248± 0.089 0.242± 0.088 0.245± 0.092
5000 0.457± 0.136 0.474± 0.124 0.461± 0.115 0.474± 0.124
10000 0.525± 0.140 0.541± 0.151 0.534± 0.147 0.544± 0.148

MAR

100 0.042± 0.048 0.050± 0.052 0.058± 0.053 0.058± 0.051
500 0.138± 0.071 0.170± 0.081 0.181± 0.081 0.180± 0.078
1000 0.220± 0.109 0.250± 0.095 0.262± 0.086 0.265± 0.088
5000 0.460± 0.124 0.461± 0.121 0.488± 0.129 0.488± 0.128
10000 0.498± 0.118 0.508± 0.126 0.552± 0.132 0.552± 0.133

MNAR

100 0.036± 0.040 0.054± 0.053 0.051± 0.054 0.054± 0.052
500 0.143± 0.066 0.172± 0.083 0.155± 0.064 0.177± 0.084
1000 0.207± 0.087 0.239± 0.093 0.208± 0.077 0.254± 0.100
5000 0.440± 0.123 0.446± 0.118 0.434± 0.126 0.455± 0.124
10000 0.490± 0.125 0.508± 0.115 0.515± 0.127 0.526± 0.127

Table 5.6: Mean and standard deviation of F1 scores produced by Structural EM, HC-pairwise, HC-
IPW and HC-aIPW for dense networks, under the different assumptions of missingness
and sample sizes.

95

Data Sample size Structural EM HC-pairwise HC-IPW HC-aIPW

MCAR

100 0.999± 0.033 1.013± 0.036 1.029± 0.046 1.015± 0.037
500 0.924± 0.047 0.911± 0.053 0.915± 0.050 0.911± 0.053
1000 0.876± 0.068 0.853± 0.072 0.857± 0.071 0.855± 0.074
5000 0.687± 0.137 0.674± 0.131 0.685± 0.118 0.675± 0.131
10000 0.626± 0.156 0.605± 0.175 0.611± 0.169 0.603± 0.173

MAR

100 1.010± 0.032 1.013± 0.031 1.033± 0.050 1.031± 0.045
500 0.928± 0.049 0.912± 0.056 0.913± 0.062 0.913± 0.062
1000 0.863± 0.089 0.852± 0.076 0.848± 0.067 0.845± 0.070
5000 0.680± 0.133 0.695± 0.133 0.665± 0.141 0.665± 0.140
10000 0.661± 0.144 0.656± 0.154 0.601± 0.157 0.601± 0.158

MNAR

100 1.011± 0.035 1.003± 0.037 1.053± 0.064 1.011± 0.041
500 0.928± 0.044 0.910± 0.052 0.948± 0.052 0.908± 0.053
1000 0.879± 0.064 0.862± 0.073 0.898± 0.062 0.851± 0.079
5000 0.704± 0.129 0.709± 0.119 0.720± 0.134 0.698± 0.127
10000 0.668± 0.142 0.657± 0.135 0.643± 0.144 0.633± 0.151

Table 5.7: Mean and standard deviation of re-scaled SHD scores produced by Structural EM, HC-
pairwise, HC-IPW and HC-aIPW for dense networks, under the different assumptions
of missingness and sample sizes.

all the five sample sizes. Tables 5.8 and 5.9 list the detailed results of the experiments. When

the missingness is MCAR, the three HC-based variants achieve similar accuracy, as expected,

and generally outperform the Structural EM algorithm when the sample size is larger than 500.

When the missingness is MAR or MNAR, the performance of HC-aIPW improves over the other

algorithms, especially when the sample size is larger than 500. These results are consistent with

those obtained from the randomised sparse and dense networks presented in subsections 5.5.3

and 5.5.4 respectively.

5.6 Conclusion

Learning accurate BN structure from incomplete data remains a challenging task. Most BN struc-

ture learning algorithms do not support learning from incomplete data, and this is partly explained

by the considerable increase in computational complexity when dealing with incomplete data. The

increased computational complexity caused by missing data adds to a problem that is NP-hard

even when data are complete. This challenge is even greater when missing values are systematic

rather than random.

This Chapter investigated three novel HC-based variants that employ pairwise deletion and

IPW strategies to deal with random and systematic missing data. The HC-pairwise and HC-IPW

variants can be viewed as subversions of HC-aIPW, which is the most complete and best performing

variant described in this Chapter. All of the three variants have been applied to different cases

of data missingness, and their performance was compared to the state-of-the-art Structural EM

algorithm that is available in the bnlearn R package. Moreover, all performances under missingness

have been compared to HC when applied to the corresponding complete data sets. The empirical

results show:

1. Pairing HC with pairwise deletion (i.e., the HC-pairwise variant) is enough to learn graphs

that are more accurate, as well as less computationally expensive, compared to the graphs

96

MCAR MAR MNAR

0.2

0.4

0.6

F
1

100 500 1000 5000 10000 100 500 1000 5000 10000 100 500 1000 5000 10000
0.6

0.8

1.0

1.2

sample size

S
H

D

Algorithm

HC−pairwise

HC−IPW

HC−aIPW

Structural EM

HC−complete

Figure 5.6: Average F1 and re-scaled SHD scores learnt by HC-pairwise, HC-IPW, HC-aIPW and
Structural EM for real-world networks, under different assumptions of missingness and
sample sizes. Each score represents the average score over 50 CPDAGs. Note the scores
of HC-complete are based on complete data for benchmarking purposes; i.e., the same
scores are superimposed in all three missingness cases as a dashed line.

Data Sample size Structural EM HC-pairwise HC-IPW HC-aIPW

MCAR

100 0.112± 0.103 0.078± 0.048 0.072± 0.046 0.079± 0.050
500 0.325± 0.268 0.319± 0.273 0.305± 0.279 0.321± 0.272
1000 0.312± 0.265 0.365± 0.220 0.367± 0.216 0.365± 0.220
5000 0.391± 0.248 0.444± 0.213 0.438± 0.219 0.444± 0.213
10000 0.426± 0.246 0.458± 0.196 0.463± 0.192 0.458± 0.196

MAR

100 0.043± 0.037 0.048± 0.039 0.050± 0.041 0.047± 0.039
500 0.173± 0.149 0.258± 0.338 0.152± 0.121 0.243± 0.342
1000 0.264± 0.303 0.348± 0.352 0.362± 0.313 0.363± 0.311
5000 0.298± 0.340 0.321± 0.256 0.394± 0.266 0.413± 0.261
10000 0.237± 0.326 0.315± 0.247 0.469± 0.349 0.474± 0.343

MNAR

100 0.055± 0.047 0.106± 0.095 0.127± 0.153 0.140± 0.149
500 0.234± 0.240 0.135± 0.079 0.244± 0.234 0.239± 0.236
1000 0.249± 0.271 0.271± 0.256 0.220± 0.120 0.294± 0.243
5000 0.276± 0.253 0.339± 0.236 0.224± 0.107 0.335± 0.241
10000 0.270± 0.217 0.353± 0.231 0.237± 0.105 0.382± 0.242

Table 5.8: Mean and standard deviation of F1 scores produced by Structural EM, HC-pairwise,
HC-IPW and HC-aIPW for real-world networks, under the different assumptions of
missingness and sample sizes.

97

Data Sample size Structural EM HC-pairwise HC-IPW HC-aIPW

MCAR

100 1.129± 0.098 1.145± 0.137 1.180± 0.160 1.151± 0.136
500 0.921± 0.287 0.928± 0.284 0.950± 0.303 0.927± 0.284
1000 1.008± 0.434 0.883± 0.303 0.878± 0.298 0.883± 0.303
5000 0.975± 0.437 0.869± 0.310 0.882± 0.321 0.869± 0.310
10000 0.909± 0.368 0.856± 0.296 0.854± 0.291 0.856± 0.296

MAR

100 1.157± 0.137 1.161± 0.150 1.189± 0.129 1.189± 0.128
500 1.096± 0.217 0.963± 0.438 1.125± 0.189 0.999± 0.451
1000 1.070± 0.443 0.937± 0.472 0.950± 0.415 0.942± 0.411
5000 1.126± 0.597 1.027± 0.453 0.970± 0.444 0.937± 0.436
10000 1.224± 0.551 1.095± 0.466 0.868± 0.609 0.856± 0.599

MNAR

100 1.190± 0.115 1.160± 0.155 1.122± 0.229 1.108± 0.214
500 1.065± 0.313 1.169± 0.154 1.111± 0.288 1.097± 0.277
1000 1.065± 0.385 1.064± 0.356 1.125± 0.179 1.045± 0.344
5000 1.139± 0.424 1.035± 0.389 1.182± 0.206 1.061± 0.379
10000 1.158± 0.359 1.073± 0.394 1.222± 0.218 1.012± 0.413

Table 5.9: Mean and standard deviation of re-scaled SHD scores produced by Structural EM,
HC-pairwise, HC-IPW and HC-aIPW for real-world networks, under the different as-
sumptions of missingness and sample sizes.

produced by the Structural EM algorithm.

2. Combining HC with both pairwise deletion and IPW techniques (i.e., the HC-IPW variant)

further improves learning accuracy under MCAR and MAR, in general, but decreases accu-

racy under MNAR due to aggressive pruning employed by HC-IPW on the data cases (refer

to subsection 5.4.3). Moreover, HC-IPW becomes considerably slower than HC-pairwise,

although it remains an order of magnitude faster than Structural EM.

3. The HC-aIPW takes advantage of both strategies, as in HC-IPW, but relaxes the pruning

strategy on the data cases and returns the overall best performance, especially under MNAR

which represents the most difficult case of missingness.

4. All three HC variants described in this chapter outperform Structural EM in most cases.

Importantly, the performance of HC-aIPW on missing data approaches the performance of

HC on complete data when sample size is 10,000 and the ground truth graph is sparse, and

this observation is consistent under all three cases of missingness.

A possible future research direction is to investigate the application of these learning strategies to

search algorithms that are more complex than HC, such as Tabu, or other variants of HC such as the

GES algorithm [Chickering, 2002] which explores the CPDAG, rather than DAG, space. Another

possible research direction would be to combine the IPW method with the NAL score [Balov et al.,

2013], which is a scoring function intended for missingness under MCAR, and further investigate

the possibility of a new decomposable scoring function under systematic missingness cases of MAR

and MNAR.

98

Chapter 6

Using Markov blanket to improve

data imputation in the presence of

systematic missingness

6.1 Introduction and relevant works

Generally, the problem of missingness is typically handled by imputation approaches which estimate

the missing values, often using regression or generative models, to obtain a complete data set. As a

result, a general method to deal with incomplete data for structure learning is to execute structure

learning algorithms on the imputed data. This approach is straightforward to implement but

highly dependent on the quality of the imputed data. Therefore, this chapter investigates ways to

improve imputation of systematic missingness.

The imputation algorithms are often classified as either statistical or machine learning meth-

ods [Lin and Tsai, 2020]. Statistical imputation methods include Mean/Mode, which is one of the

simplest methods where the imputation is derived by the mean or mode of the observed values

found in the same data column. Mean and Mode yield valid statistical inferences only when miss-

ingness is MCAR. It has been shown that the missingness mechanism is ignorable if i) the data is

MAR and ii) the parameters that govern the data generation model and missingness mechanism

are distinct [Little and Rubin, 2019]. In practice, condition (ii) for ignorability is almost always

true. Therefore, MAR and ignorability are usually viewed as equivalent [Allison, 2009]. Besides,

if the missingness mechanism is ignorable, we could estimate the model of interest by ignoring the

missingness mechanism and retrieving the likelihood of the observed part of data [Rabe-Hesketh

and Skrondal, 2023]. Therefore, in the context of data imputation, the property of ignorability is

critical because it implies the data generation model is identifiable, i.e., the joint distribution of

the model can be uniquely determined by the observed distribution, so that we can use the model

trained on the observed data to impute the missing values. In the discussion that follows, we will

introduce methods that assume MAR.

A more advanced statistical method is the EM algorithm [Honaker et al., 2011]. EM com-

putes the expectation of sufficient statistics given the observed data at the E-step (Expectation),

and then maximises likelihood at the M-step (Maximisation). It iterates over these two steps

until convergence, at which point the converged parameters are used along with the observed

99

data to impute missing values. Another statistical algorithm is the one proposed by Hastie et al.

[2015], called softImpute, which treats imputation as a matrix completion problem and solves it

by finding a rank-restricted singular value decomposition. Multiple imputation is another pop-

ular statistical method for handling missing data, and considers the uncertainty of missing val-

ues. Some classic multiple-imputation algorithms include the Multivariate Normal Imputation

(MVNI) [Lee and Carlin, 2010], Multiple Imputation by Chained Equations (MICE) [Van Buuren

and Groothuis-Oudshoorn, 2011], and Extreme Learning Machine (ELM) [Sovilj et al., 2016].

On the other hand, one of the earliest imputation methods that come from the Machine Learn-

ing (ML) field include the k-Nearest Neighbour (k-NN) [Zhang, 2012], which imputes empty cells

according to their k-nearest observed data points. A well-established ML imputation algorithm

is MissForest [Stekhoven and Bühlmann, 2012], which trains a Random Forest (RF) regression

model recursively given the observed data, for every variable containing missing values, and uses

the trained RF model to impute missing values. Recently, deep generative networks have also been

used for imputing missing data values. Yoon et al. [2018] proposed the Generative Adversarial

Imputation Nets (GAIN) algorithm which trains the generator to impute missing data and the dis-

criminator to distinguish original data and imputed data, and was shown to have higher imputation

accuracy compared to previous approaches. Other ML techniques used for imputation include the

optimal transport [Muzellec et al., 2020], a neural network with causal regulariser [Kyono et al.,

2021], and automatic model selection [Jarrett et al., 2022].

All of the aforementioned algorithms assume that all the variables in the data correlate with

each other, and use all the variables to impute the missing values. Considering all of the data

variables increases the risk of over-fitting, but which can be minimised through L1 and L2 reg-

ularisation methods often employed by ML algorithms. However, regularisation leads to models

that tend to lack interpretability and theoretical guarantees of correctness. Because this Chapter

focuses on interpretable models, such as those produced by structure learning algorithms, we shall

focus on causal feature selection which maintains interpretability, rather than regularisation. This

is also partly motivated by Dzulkalnine and Sallehuddin [2019] who showed that using uncorre-

lated variables to impute missing values not only decreases learning efficiency, but also degrades

imputation accuracy. On this basis, it has recently been suggested to include a feature selection

phase that prunes off potentially unrelated variables, for each variable containing missing values,

prior to imputation [Bu et al., 2016, Liu et al., 2020, Hieu Nguyen et al., 2021].

Relevant studies that focus on feature selection for imputation include the work by Doquire

and Verleysen [2012] who used Mutual Information (MI) to measure the dependency between

variables. They used a greedy forward search procedure to construct the feature subset, which is

an iterative process that constructs feature sets that maximise MI with the dependent variable.

Sefidian and Daneshpour [2019] also estimate the dependency between variables using MI, and

chose to select a set of variables that increase MI above a given threshold, as the features of a given

dependent variable. On the other hand, the algorithm proposed by Dzulkalnine and Sallehuddin

[2019] applies a fuzzy Principle Component Analysis (PCA) approach to the complete data cases to

remove irrelevant variables from the feature set, followed by a SVM classification feature selection

task that returns the set of features that maximise accuracy on the dependent variable. Lastly,

evolutionary optimisation algorithms have also been adopted for feature selection in imputation,

and include differential evolution [Tran et al., 2018], genetic algorithms [Awawdeh et al., 2022],

and particle swarm optimisation [Jin et al., 2022].

Recently, causal information has also been adopted to feature selection for missing data im-

100

putation. Kyono et al. [2021] proposed to impute missing values of a variable given its causal

parents derived from the weights of the input layer in the neural network. Similarly, Yu et al.

[2022] proposed the MimMB framework that learns MBs to be used for feature selection in im-

putation, which is an iterative process that learns MBs from the imputed data and updates the

learnt MB after each iteration. Note that while MimMB is related to our work, since we also use

MB construction for feature selection, an important distinction between the two is that MimMB

combines MBs with imputed data whereas, as we later describe in Section 6.3, the learning phase

of MBs that we propose is separated from imputation, accounts for partially observed variables

and improves computational efficiency.

In this Chapter, we use the graphical expression of missingness proposed by Mohan et al.

[2013], as we did in Chapter 4, known as m-graph to capture the relationship between missingness

and observed variables. We first show that an original version of the GS algorithm is capable of

discovering the MBs in m-graphs containing partially observed variables, when applied to test-wise

deleted data. Because this approach relies on CI tests with large conditioning sets, we modify GS

such that the number of conditioning sets considered for CI tests is reduced. We provide proof that

the modified GS is capable of discovering the MBs of partially observed variables in m-graphs, under

the same assumptions as with the original GS. We then propose a new imputation algorithm, which

we call Markov Blanket MissForest (MBMF), that combines the modified GS with the state-of-

the-art MissForest (MF) imputation algorithm. The Chapter is organised as follows: Section 6.2

provides necessary preliminary information that includes notation and background information,

Section 6.3 describes the proposed algorithm, Section 6.4 presents the experimental results, and

we provide our concluding remarks in Section 6.5.

6.2 Preliminaries

Consistent with Chapter 5, we denote the set of fully observed variables as V o and the set of

partially observed variables as V m. For every partially observed variable Vi ∈ V m, we define

an auxiliary variable Ri to reflect the missingness in Vi, where Ri takes the value of 0 when Vi

is recorded and the value of 1 when Vi is missing. We also adopt the Markov assumption, the

faithfulness assumption and the causal sufficiency assumption, as well as the Assumption 5.3.1 and

Assumption 5.3.2 that relate to m-graphs.

Given the faithfulness assumption, a variable is conditionally independent of all the other

variables given its MB, which contains all its parents, children and parents of its children. We

denote MB of a variable Vi as MB (Vi). We also define the intrinsic MB of a variable Vi as the set

of variables that are still in the MB of Vi after removing all indicator variables from G. We denote

the intrinsic MB of Vi by iMB (Vi). Note that iMB (Vi) is not necessarily equivalent to the set of

observed variables in MB (Vi). This is because the missing indicators might be a common effect

of two observed variables. For example, the intrinsic MB of V1 in Figure 6.1 is {V2, V3, V4, V5},
whereas the standard MB would have also included V6 and R3.

6.3 Markov Blanket based feature selection for imputation

Given the description of the m-graph and causal faithfulness assumption, the problem of feature

selection under incomplete data can be converted into a MB discovery problem over m-graphs that

101

V2

V1

V3

V4

V5V6

R3

R1

Figure 6.1: An example of m-graph. Shaded nodes represent partially observed variables.

contain partially observed variables and missing indicators1. Specifically, the task in this chapter

is to find the MB for each partially observed variable Vi ∈ V m from the m-graph that is assumed

to be faithful to the underlying probability distribution p (V o,V m,R), given Assumptions 5.3.1

and 5.3.22. Because of the possible causal links between partially observed variables V m and

indicator variables R (i.e., in the case of MNAR), the MB of a partially observed variable is likely

to contain both observed and indicator variables. For example, in Figure 6.1, the MB of V1 is

{V2, V3, V4, V5, V6, R3}.
Next, we show that the GS algorithm with test-wise deletion is capable of discovering the m-

graph MB of any variable from incomplete data. Here, unlike list-wise deletion which removes all

data rows containing at least one missing value, we use test-wise deletion which removes data cases

containing missing values in any of the variables involved in the current CI test. The pseudo-code

of GS with test-wise deletion is presented in Algorithm 13. Note that we slightly modify the Grow

phase, i.e., line 5, of GS to eliminate its dependency on the order of the variables in the data [Kitson

and Constantinou, 2022].

Given the faithfulness assumption, Assumption 5.3.1 and Assumption 5.3.2, Proposition 6.3.1

describes the modified GS with test-wise deletion.

Proposition 6.3.1. Given the faithfulness assumption, Assumption 5.3.1 and Assumption 5.3.2,

for any observed variable Vi in a m-graph G, the output of GS(Vi, V
o ∪ V m ∪R\ {Vi, Ri} , D) is

the MB (Vi) in G.

Proof Given Assumption 5.3.1 and Assumption 5.3.2, Ri is not a child of Vi nor a parent of any

other variables. Therefore, we do not need to consider Ri when learning MB (Vi).

We firstly show that the output Candidate Markov Blanket (CMB; i.e., the output of Algorithm

1) set learnt at the Grow phase contains all the variables of MB (Vi). Assume Y is a parent

or a child of Vi, given the faithfulness condition, Vi ⊥̸⊥ Y | CMB,R{Vi,Y }∪CMB = 0 for any

CMB ⊆ V o ∪ V m ∪ R\ {Vi, Ri}. Therefore, Y will always be added to CMB during the Grow

phase. Assume Z is a parent of Y and Y is a child of Vi. Once Y is added to CMB, Vi and Z will

not be d-separated by CMB ∪R{Vi,Y }∪CMB and thus, Z will also be added to CMB.

Lastly, we show that the Shrink phase preserves the variables in MB (Vi) only. Let us assume

that T is the first variable in MB (Vi) when the algorithm enters the Shrink phase and attempts

to remove variables in CMB, which have already been added during the Grow phase. Because

1To impute the missing values of an incomplete variable, we consider its MB, rather than only its parent variables,
for two reasons. Firstly, the parents of an incomplete (or even a complete) variable are not guaranteed to be
identifiable from observational data. Secondly, the MB contains the set of nodes that can make the given variable
independent over all other variables present in the input data.

2While the Assumptions 5.3.1 and 5.3.2 restrict the possible graphs that explain the missingness mechanism
p (R | V o ∪ V m), the true graph remains unknown and needs to be inferred from data by the algorithm.

102

Algorithm 13 The Grow and Shrink (GS) algorithm with test-wise deletion

1: procedure GS(X,S, D)
Input: target variable X, candidate variables set S, data D
Output: Candidate Markov Blanket CMB of X

2: CMB← ∅
▷ Grow Phase

3: repeat
4: if ∃Si ∈ S, s.t.X ⊥̸⊥ Si | CMB,R{X,Si}∪CMB = 0 then
5: add Si with the lowest p-value to CMB
6: remove Si from S
7: end if
8: until CMB stays unchanged

▷ Shrink Phase
9: for each Y ∈ CMB do

10: if X ⊥⊥ Y | CMB\ {Y } ,R{X}∪CMB = 0 then
11: remove Y from CMB
12: end if
13: end for
14: return CMB
15: end procedure

MB (Vi) \ {T} ⊆ CMB, irrespective of T being a neighbour or a parent of a child of Vi, we always

have Vi ⊥̸⊥ T | CMB\ {T} ,R{Vi}∪CMB = 0 given the faithfulness condition. Therefore, no variable

in MB (Vi) will be removed during the Shrink phase. On the other hand, if we assume T ̸∈ MB (Vi),

since MB (Vi) ⊆ CMB∪R{Vi}∪CMB\ {T}, we have Vi ⊥⊥ T | CMB\ {T} ,R{Vi}∪CMB = 0 given the

faithfulness condition and thus, T will be removed from CMB.

Therefore, an intuitive way to determine the relevant features for a given variable is to apply

the function GS(Vi, V
o ∪ V m ∪R\ {Vi, Ri} , D) on every Vi ∈ V m. However, this is impractical

since the maximum size of the conditioning sets used for CI testing is |V o| + 2|V m| − 3. In

practice, the accuracy of CI tests drops dramatically as we increase the size of the conditional

set [Tsamardinos et al., 2003b]. To address this, we propose the Markov Blanket Feature Selection

(MBFS, Algorithm 14) that aims to restrict the maximum size of the conditional set used by CI

tests to |V o|+ |V m| − 1.

MBFS involves two phases, where the first phase involves learning the intrinsic MB of each

partially observed variable. Given a m-graph G, we define the intrinsic MB of a variable Vi as

the set of variables that are still in the MB of Vi after removing all indicator variables from G.
We denote the intrinsic MB of Vi by iMB (Vi). Note that iMB (Vi) is not necessarily equivalent

to the set of observed variables in MB (Vi). This is because the missing indicators might be a

common effect of two observed variables. For example, the intrinsic MB of V1 in Figure 6.1 is

{V2, V3, V4, V5}, whereas the standard MB would have also included V6 and R3. It is worth noting

that, during phase 1, some nodes that do not belong in iMB (Vi) may still be included in the

output CMB. However, as we show in the proof of Proposition 6.3.2, these nodes are still in the

MB (Vi) in m-graph. The phase 2 aims to learn all the parents of the missing indicators, in order

to complete the feature set of MB (Vi). Proposition 6.3.2 states that MBFS is capable of learning

MB (Vi) from missing data for any Vi ∈ V m in a m-graph and thus, it could serve as an effective

feature selection approach for imputation algorithms.

Proposition 6.3.2. Given the faithfulness condition, Assumption 5.3.1 and Assumption 5.3.2,

103

Algorithm 14 The Markov Blanket-based Feature Selection (MBFS) algorithm

1: procedure MBFS(Vi, D)
Input: partially observed variable Vi, data D
Output: candidate Markov Blanket CMB of Vi
▷ Phase 1 (discover intrinsic MB)

2: CMB← GS (Vi,V
o ∪ V m\ {Vi} , D)

▷ Phase 2 (discover other variables in MB caused by indicators)
3: for each Rj ∈ R\ {Ri} do
4: CPS← V o ∪ V m\ {Vj}
5: for each Vk ∈ CPS do
6: if Rj ⊥⊥ Vk | S,R{Vk}∪S = 0 for any S ⊆ CPS then
7: remove Vk from CPS
8: end if
9: end for

10: if Vi ∈ CPS then
11: CMB← CMB ∪ {Rj} ∪ CPS
12: end if
13: end for
14: return CMB
15: end procedure

for any observed variable Vi in a m-graph G, MBFS(Vi, D) returns MB(Vi) in G.

Proof For convenience, we denote path p as the path being blocked by a variable set S if there is

at least one node on p that satisfies either 1) it is a non-collider and in S or 2) it is a collider and

neither it nor any of its descendants are in S. Thus, if all paths between Vi and Vj are blocked by

S, Vi and Vj are d-separated by S.

We first show that the CMB returned by GS (Vi,V
o ∪ V m\ {Vi} , D) (phase 1 of MBFS) con-

tains all but only variables in iMB (Vi), in addition to some other observed variables belonging

to MB (Vi). For the Grow phase in GS (Vi,V
o ∪ V m\ {Vi} , D), assume that Y is a parent or a

child of Vi, and that given the faithfulness condition, Vi ⊥̸⊥ Y | CMB,R{Vi,Y }∪CMB = 0 for any

CMB ⊆ V o ∪ V m\ {Vi}. Therefore, Y will be added in CMB. Assume that Z is a parent of an

observed variable Y , which is a child of Vi. After Y is added to CMB, Vi and Z can no longer be

d-separated by CMB∪R{Vi,Y }∪CMB. Thus, Z will also be added to CMB eventually. As a result,

all variables in iMB (Vi) will be included in CMB at the end of the Grow phase.

For the Shrink phase, we prove two things: 1) that all the variables in iMB (Vi) will remain in

CMB, and 2) that all the variables not in the MB (Vi) will be removed from CMB.

1. Suppose that T is the first variable in iMB (Vi) that the algorithm attempts to remove from

CMB, and that Vi and T are connected by either a direct edge or a path through a collider

in iMB (Vi). Therefore, T and Vi cannot be d-separated by CMB ∪R{Vi}∪CMB\ {T}, since
iMB (Vi) ⊆ CMB ∪R{Vi}∪CMB\ {T}. Then, we have Vi ⊥̸⊥ T | CMB\ {T} ,R{Vi}∪CMB = 0

given the faithfulness condition.

2. Suppose that T is an observed variable in CMB such that T /∈ MB (Vi). Given the faithfulness

condition, all we need to prove is that all paths between Vi and T are blocked by CMB ∪
R{Vi}∪CMB\ {T}.

• For a path p between Vi and T composed by observed variables only, there is at least

one non-collider node on p that belongs to iMB (Vi), such that p is blocked by CMB ∪
R{Vi}∪CMB\ {T}, since iMB (Vi) ⊆ CMB ∪R{Vi}∪CMB\ {T}.

104

V1V2

V3

V4

V5

V6

R1

R4

R5

Figure 6.2: A hypothetical m-graph used to described the implications of violating Assump-
tion 5.3.1 of MBFS. Shaded nodes represent partially observed variables.

• For a path p between Vi and T contains indicator variables, when an observed node

Vj is adjacent to Vi on p, at least one non-collider (either Vj or the parent of Vj) on

p will also be in iMB (Vi). This is because no indicator variable can be a parent of Vj

according to Assumption 5.3.1, which implies that p will be blocked by iMB (Vi) as well

as CMB ∪ R{Vi}∪CMB\ {T}. If the adjacent node of Vi on p is an indicator variable

Rj , then according to Assumption 5.3.1 and Assumption 5.3.2, Rj ̸= Ri and it must

have another parent Vk /∈ {T, Vj} on p since T /∈ MB (Vi). If Rj /∈ RCMB, path p

is blocked by CMB ∪R{Vi}∪CMB\ {T}. If Rj ∈ RCMB, Vk must be included in CMB

during the Grow phase, and cannot be removed during the Shrink phase since Vi and

Vk cannot be d-separated by CMB−{Vk}∪R{Vi}∪CMB. Therefore, p is still blocked by

CMB ∪R{Vi}∪CMB\ {T} since Vk is a non-collider on p in CMB ∪R{Vi}∪CMB\ {T}.

In phase 2 of MBFS, all the parents of each Rj should remain in CPS as they cannot be d-

separated from Rj given any set composed of observed variables. Besides, all of the other variables

should be removed from CPS as they can be d-separated from Rj given any set that contains all

the parents of Rj . As a result, CMB should return MB (Vi) at the end of phase 2.

If Assumption 5.3.1 is violated (e.g., when an indicator variable is also a parent of some other

variable), then both phases of MBFS may produce redundant variables in the CMB set. Suppose

that the true m-graph is the one shown in Figure 6.2. If we use MBFS to learn the MB of V1, then

V2 will be included in the CMB set of Phase 1, and this is because V1 and V2 are independent only

when conditioning on R4, whereas V4 and V1 are always independent. This implies that MBFS

will never test V1 and V2 for CI conditional on R4 during Phase 1. In Phase 2, V6 will be included

in the CPS set of R5 and thus, it will also be added in CMB of V1.

If Assumption 5.3.2 is violated (e.g., when a partially observed variable Vi is also the parent of

its own missingness indicator Ri), this will cause MBFS not to include Ri in the CMB of Vi, since

MBFS would not consider Vi as a candidate variable in the CPS of Ri during Phase 2.

We then propose a modified version of MissForest that incorporates MBFS as a feature selection

process. The modified version of MissForest, which we call Markov Blanket MissForest (MBMF),

takes the feature setMBFS (Vi, D) for each partially observed variable Vi, as opposed to considering

all of the other observed variables as the explanatory features of Vi in the Random Forest regression

model used in MissForest. In other words, MBMF accounts for the possible causal relationships

between partially observed variables and the missing indicators, to minimise the risk of considering

irrelevant observed variables for imputation by MissForest.

105

Number of variables Number of edges Data type

ECOLI70 46 70 Continuous
MAGIC-IRRI 64 102 Continuous
ARTH150 107 150 Continuous

Table 6.1: Summary of the real-world BNs used in Subsection 6.4.1.

6.4 Experiments

We evaluate the proposed MBMF algorithm with reference to the standard version of MissFor-

est (MF), the commonly used imputation algorithms Mean and Mode, the K-Nearest Neighbour

(KNN), and two state-of-the-art algortihms; the softImpute and GAIN algorithms. While the eval-

uation includes experiments on both continuous and categorical data, some of the other algorithms

can only process one of the two types of input data and hence, their application is restricted to

continuous data (Mean and GAIN) or categorical data (Mode). We use the scikit-learn python

package [Pedregosa et al., 2011] to test the Mean, Mode and KNN algorithms, the MissForest R

package [Stekhoven and Stekhoven, 2013] to test MF, the softImpute R package [Hastie et al.,

2015] to test SoftImpute, and the publicly available source code of GAIN. The implementation of

MBMF, described in this paper, is available at: https://github.com/Enderlogic/Markov-Blanket-

based-Feature-Selection.

MBMF is applied to continuous data using the Pearson’s correlation test for CI tests, and to

categorical data using the G-test statistic, both of which are the default choices for GS. We also

consider the default threshold for independence, which is 0.1 for CI p-value tests. The other algo-

rithms are also tested with their default hyper-parameters as implemented in their corresponding

packages discussed above.

6.4.1 Synthetic case studies based on real-world BNs

We first apply the algorithms to synthetic data sampled from three continuous BNs, ECOLI70,

MAGIC-IRRI and ARTH150, taken from the bnlearn repository [Scutari et al., 2010]. Details

about these graphical networks can be found in Table 6.1.

We generate complete data sets for each network with sample sizes 500, 1000, 2000 and 3000.

Then, for each complete data set, we create nine incomplete data sets composed of different com-

binations of missingness rates (i.e., 10%, 30% and 50%) and missingness assumptions (i.e., MCAR,

MAR and MNAR). We randomly choose 50% of the variables to be made partially observed. We

use α to represent the rate of missingness for each of those variables. This process differs depending

on the underlying assumption of missingness. Specifically,

1. For the MCAR condition, a value in Vi is removed with probability P (Ri = 1) = α.

2. For the MAR condition, a fully observed variable Vj ∈ V o is randomly assigned as the

parent of Ri. For continuous data, we denote the highest 10th-quantile of Vj as qj , and

remove values in Vi with the following conditional probabilities: P (Ri = 1 | Vj > qj) = 2α,

P (Ri = 1 | Vj <= qj) = 8
9α. For categorical data, we select a set of states vj of Vj such

that α < P (Vj = vj) < 1. Then we remove values in Vi with the following conditional

probabilities: P (Ri = 1 | Vj ̸= vj) = 2α, P (Ri = 1 | Vj = vj) = 2α− α
P (Vj=vj)

.

106

https://github.com/Enderlogic/Markov-Blanket-based-Feature-Selection
https://github.com/Enderlogic/Markov-Blanket-based-Feature-Selection

3. For the MNAR condition, a partially observed variable Vj ∈ V m\ {Vi} is randomly assigned

as the parent of Ri. Variable values are then removed for each Vi using the same strategy as

in the case of MAR.

6.4.2 Evaluation process

The imputation accuracy is evaluated using two different approaches. The first approach involves

retrieving the Root Mean Squared Error (RMSE) between imputed data and complete data. Be-

cause RMSE is sensitive to the discrepancy between absolute data values, we normalise the com-

plete data column-wise and re-scale the imputed data with the same normalisation parameters to

eliminate bias.

The second approach involves assessing the impact of imputation on structural learning accu-

racy. We do this by comparing the CPDAGs learnt by the state-of-the-art GES causal structure

learning algorithm [Chickering, 2002] from imputed data sets produced by the different imputation

algorithms. The second approach is helpful because, while it is reasonable to assume that higher

imputation accuracy helps causal machine learning, it is possible that some imputed values are

more important than others. Causal structure learning represents a good approach to test this,

and we use the F1 score to measure the accuracy of graphical structures learnt by GES.

6.4.3 Results

Figure 6.3 depicts the average RMSE of imputed data produced by the different algorithms under

different sample sizes. Note that the results we report on GAIN are, to some degree, inconsistent

with the results presented in the original paper [Yoon et al., 2018], but are consistent with the

results presented in follow-up studies [You et al., 2020, Nazabal et al., 2020, Kyono et al., 2021,

Jarrett et al., 2022]. In general, the proposed MBMF algorithm is found to outperform the baseline

MF under all scenarios of missingness. Specifically, for MCAR and MAR scenarios with missing

rate 10%, MBMF provides a considerable improvement over MF, but this improvement diminishes

with the higher missing rates of 30% and 50%. This is because a higher missing rate tends to

decrease the sample size of the test-wise deleted data, which in turn reduces the accuracy of CI

tests and the discovered MB set by MBFS. Importantly, MBMF outperforms MF considerably

under all MNAR settings, which better reflect real-world missingness that is generally systematic.

None of the other imputation algorithms provide satisfactory performance in terms of RMSE; at

least relative to the MBMF and MF algorithms.

Figure 6.4 presents the average F1 scores corresponding to the graphs learnt by GES, given the

imputed data sets produced by the different imputation algorithms, and across the different sample

sizes. While this evaluation approach decreases the discrepancy in performance scores between the

top performing imputation algorithms, the results are consistent with those presented in Figure 6.3

since MBMF and MF are found to perform better than the other algorithms in almost all cases,

and MBNF performs better than MF in most experiments. Specifically, MBMF and MF produce

similar performance when the rate of missingness is lowest at 10%, with their performance being

close to that produced with complete data (dashed line). These results serve as empirical evidence

that both MFBF and MF imputation algorithms perform exceptionally well with relatively low

rates of missingness. When the rate of missingness increases to 30%, MBMF performs better than

MF in most cases. However, when the rate of missingness is highest, at 50%, there is no clear

winner between MBMF and MF.

107

MCAR MAR MNAR

M
issing rate

10%
M

issing rate
30%

M
issing rate

50%

1000 2000 3000 1000 2000 3000 1000 2000 3000

0.10

0.12

0.14

0.16

0.12

0.15

0.18

0.21

0.100

0.125

0.150

0.175

0.200

Data size

R
M

S
E

MF

MBMF

Mean

KNN

GAIN

SoftImpute

Figure 6.3: Average RMSE between complete and imputed data produced by the different algo-
rithms. A Lower score represents better performance.

108

MCAR MAR MNAR

M
issing rate

10%
M

issing rate
30%

M
issing rate

50%

1000 2000 3000 1000 2000 3000 1000 2000 3000

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

Data size

F
1

MF

MBMF

Mean

KNN

GAIN

SoftImpute

Complete

Figure 6.4: Average F1 scores of the graphs learnt by GES from data imputed by the different al-
gorithms. A higher F1 score represents better performance. The dashed line represents
the performance of GES when applied to complete data.

109

MF MBMF Feature selection phase Imputation phase

0

200

400

600

500 1000 2000 3000
Data size

0

100

200

300

MCAR MAR MNAR
Missing mechanism

0

100

200

300

10% 30% 50%
Missing rate

E
xe

cu
tio

n
tim

e
/ s

ec
on

ds

Figure 6.5: Average execution time of MF and MBMF under different sample sizes, mechanisms
of missingness, and rates of missingness.

Number of variables Number of instances Data type

Iris 4 150 Continuous
Breast 30 569 Continuous
Wine 11 1599 Continuous
Game 10 958 Categorical
Car 7 1728 Categorical
Mushroom 22 8124 Categorical

Table 6.2: Summary of the real-world data sets used in Subsection 6.4.4.

Lastly, we evaluate the computational efficiency of MBMF relative to the original MF. As

shown in Figure 6.5, MBMF is generally more efficient than MF. Note that while MBMF involves

an additional phase needed to perform feature selection, the additional time spent by MBMF in

that phase is countered by the reduced time MBMF spends to actually impute values. This is

because MBMF will almost always consider less features than MF during the imputation phase.

Specifically, MBMF is slower than MF at the lowest sample size, but becomes increasingly faster

than MF with increasing sample size. Averaging the results across the different mechanisms of

missingness and missing rates also shows that MBMF is, in general, more efficient than MF. Note

that MF is slightly more efficient when the rate of missingness is at its highest, 50%, since MF trains

its RF regression model on observed data rows only; implying that a higher rate of missingness

decreases the training data passed to the RF. The impact of the rate of missingness is higher

on MF than MBMF since the number of independent features considered by MF is, in general,

considerably higher than those considered by MBMF.

6.4.4 Real-world case study

We repeat the evaluation by applying the imputation algorithms to six real-world data sets retrieved

from the UCI data repository [Dua and Graff, 2017]. A summary of these data sets is given in

Table 6.2. We simulate missingness using the same strategy as described in Subsection 6.4.1.

Specifically, for each complete real data set, we generate nine incomplete data sets composed of

different rates and assumptions of missingness.

We use RMSE to evaluate the imputation accuracy when the algorithms are applied to contin-

uous data, and the Proportion of Falsely Classified entries (PFC) when applied to categorical data.

110

Mean/Mode KNN SoftImpute GAIN MF MBMF

Iris .284± .085 .103± .029 .198± .055 .164± .060 .092± .026 .092± .025
Breast .149± .012 .113± .009 .140± .040 .098± .029 .057± .009 .054± .009
Wine .123± .009 .109± .013 .101± .010 .106± .009 .039± .013 .040± .013
Game .563± .020 .501± .072 - - .505± .064 .496± .070
Car .675± .074 .613± .073 - - .655± .107 .593± .061
Mushroom .443± .062 .294± .083 - - .207± .060 .203± .058

Table 6.3: Average RMSE and PFC scores, and their standard deviations, for different imputation
algorithms and real-world data combinations. Lower RMSE and PFC scores represent
better performance.

Note that the second evaluation approach, which involves investigating the impact of imputation

accuracy on causal structure learning as described in subsection 6.4.2, is unsuitable here since we

do not have a ground truth causal graph.

Table 6.3 presents the average scores and standard deviation. The results show that MBMF

and MF continue to outperform the other algorithms, and that MBMF continues to outperform

MF in most of the experiments. On this basis, we conclude that the results obtained from the

real-world data sets are consistent with the results obtained from the synthetic data sets.

6.5 Conclusion

This Chapter described a novel feature selection algorithm, called MBFS, that recovers the Markov

Blanket of partially observed variables based on the graphical expression of missingness known as

the m-graph, which captures observed variables together with missingness indicators and the possi-

ble causal links between them. We incorporated MBFS into the imputation process of MissForest,

to formulate a new algorithm suitable for imputation under both random and systematic missing-

ness, which we call MBMF.

Empirical experiments based on both synthetic and real-world data sets show that MBMF out-

performs the baseline MissForest in most of the experimental settings, and outperforms consider-

ably other well-known or state-of-the-art imputation algorithms under both random and systematic

missingness. Moreover, while MBMF incorporates an additional learning phase needed to perform

feature selection for each partially observed variable found in the input data, the results show that

MBMF is generally more efficient than the baseline MissForest, especially at larger sample sizes

where efficiency matters the most. This is because the time saved during imputation due to prior

feature selection is higher than the additional time spent determining the best features for each

partially observed variable.

Because the feature selection phase can be independent of the imputation phase (i.e., by using

the MBFS algorithm alone), future research works could extend this work to different relevant di-

rections where feature selection is deemed to be important. For example, MBFS could be combined

with other imputation algorithms, including those based on deep learning [Mattei and Frellsen,

2019, Fortuin et al., 2020, Lin et al., 2022] which are generally powerful but which tend to be

time consuming and to overfit the data, since they typically process large numbers of uncorrelated

features. Moreover, since each MB discovered by MBFS could be used to construct the complete

m-graph of the input data set, a rather different possible direction for future research would be to

investigate the capability of MBFS in recovering the entire m-graph of the input data. This task

111

would require structural rules to deal with collisions between MBs as well as cycles, and would

essentially convert MBFS into a structure learning algorithm.

112

Chapter 7

Conclusions and directions for

future work

7.1 Conclusion

This thesis focuses on data noise and the negative repercussions it has on structure learning.

We investigate new approaches and algorithms aimed at mitigating the impact of data noise on

structure learning. The thesis focuses on two types of data noise that are commonly found in real

data; namely measurement error and systematic missing data, but the investigations extent to

other types of data noise.

Chapter 3 begins with an empirical evaluation that examines the impact of data noise on 15

structure learning algorithms that come from different classes of learning. This evaluation considers

four types of data noise: missing values, measurement error (or incorrect values), merging states,

and latent variables. The findings highlight the considerably impact of data noise on the accuracy

of structure learning algorithms. Specifically, missing values and measurement error are found to

strongly influence on the accuracy of structure learning, surpassing the impact of latent variables

and merging states. Chapter 3 also introduces a novel structure learning algorithm called MAHC,

which combines model averaging and pruning strategies with hill-climbing search, aimed at learning

in the presence of data noise. The results demonstrate that MAHC performs competitively when

the input data are clean, and better than most algorithms in the presence of multiple types of

data noise. There results highlight the importance of model averaging over maximising the score

of individual graphical structures, particularly when the input data are imperfect.

Chapter 4 introduces the SED algorithm which is a heuristic post-processing algorithm that can

be directly applied to the learnt graph produced by other structure learning algorithms. The aim of

SED is to discover and eliminate spurious (i.e., false positive) edges that are often produced in the

presence of measurement error. The evaluation demonstrates that, in the absence of measurement

error, SED generally preserves or slightly enhances the learnt graphs. When measurement error

is present in the input data, however, SED considerably improves the learnt graphs, leading to

enhanced accuracy and reliability.

In Chapter 5, a modified version of the HC algorithm, referred to as HC-aIPW, is presented

to handle missing values in discrete data sets. HC-aIPW considers all three assumptions of miss-

ingness; namely MCAR, MAR and MNAR, and employs pairwise deletion to efficiently leverage

113

the observed part of the input data, and an IPW approach to eliminate the potential bias caused

by missing values when data are not MCAR. The empirical investigations show that HC-aIPW

outperforms the commonly used and state-of-the-art Structural EM algorithm, both in terms of

learning accuracy and efficiency, as well as both when data are missing at random and not at

random.

Chapter 6 focuses on data imputation. The state-of-the-art assumes that all the variables in the

data are relevant in imputing all missing values. In contrast, this Chapter describes a novel Markov

blanket-based feature selection algorithm, called MBFS, that identifies the set of the variables that

are relevant in imputing the missing values for each partially observed variable. Each set of related

variables identified is then used as the set of independent variables in regression or generative

models for each corresponding partially observed variable during the imputation process. MBFS

is then combined with the MissForest imputation algorithm, to form the MBMF algorithm that

performs imputation by restricting the set of variables considered for imputation to those identified

as relevant by Markov blanket discovery. The results demonstrate that MBMF outperforms the

state-of-the-art imputation algorithms both in terms of accuracy and efficiency, especially in the

case where missing data are not missing at random.

7.2 Future research

Drawing upon the research conducted in this thesis, several future research directions emerge.

Firstly, the approaches proposed in Chapter 4 and 5 focus on addressing a single type of data

noise. However, in practice, real data are likely to contain multiple types of data noise. Approaches

designed to account for multiple types of data noise are overlooked in the literature and thus, future

work in this area would help in constructing structure learning algorithms that are more effective

in practice.

Secondly, the sample size of the input data is also important in determining structure learning

performance. Generative models have demonstrated their effectiveness in producing images and

text. However, the potential of generative models remain underinvestigated in creating tabular

data that may complement existing data, to address issues related with limited sample size. Xu

et al. [2019] introduced a method that generates synthetic data to complement real data with high

fidelity. However, the variables in the data set generated by their method tend to be correlated,

rendering it unsuitable for structure learning. Developing generative models capable of capturing

the independence relationships between variables could enable more effective structure learning in

the presence of limited sample size.

Lastly, while synthetic experiments are important, they do not accurately reflect the effective-

ness of these algorithms in practice. Therefore, it is imperative to adjust expectations of structure

learning performance for real-world data sets. In [Constantinou et al., 2023] we investigate how 29

different structure learning algorithms behave when applied to COVID-19 data. We assessed the

graphs produced by each structure learning algorithm independently, as well as in groups using

model averaging. Specifically, we grouped algorithms in terms of their learning class or input data

format, which includes discrete, continuous, and mixed data of the same information. The findings

highlight the following open problems:

• The learnt graphs are highly sensitive to the selection of the algorithm and input data format

combination. For example, graphs learnt with continuous data are found to be much denser

114

than graphs learnt with discrete data, even for the same structure learning algorithms. The

high inconsistency between the results suggests that continuous data may violate additional

assumptions made by some algorithms, such as that continuous data follow linear Gaussian

distributions. Considering score functions with weaker assumptions[Huang et al., 2018], or

conditional independence tests [Zhang et al., 2011], might be more appropriate for real-world

data. The high variability between algorithms also makes a case, in practice, for model

averaging that would consider the results obtained over a set of algorithms, rather than

focusing on the results obtained by a single algorithm.

• The different learnt graphical structures are found to have minor impact on predictive accu-

racy, and yet considerable differences arise when evaluating these graphs in terms of inter-

ventional or sensitivity analysis. These empirical findings further highlight the inability of

predictive validation in providing meaningful answers to questions about causal reasoning.

• While model averaging is found to indeed reduce variability, we also find that the average

graphs for each group of learnt structures (e.g., score-based vs constraint-based, or discrete vs

continuous) are all very different from one another. Future studies could focus on developing

more sophisticated approaches to model averaging. For instance, our results assume equal

contribution from each structure learning algorithm in the average graph. However, it may

be beneficial to assume a weighted average that prioritises edges learnt by algorithms known

to be more accurate than others.

• The COVID-19 data set contains temporal dependencies that shift over time. For example,

the effect of lockdown cannot be effectively measured between variables unless we account for

its lag effect. We note that the traditional causal structure learning algorithms investigated

in this thesis are oblivious to distribution shifts that may occur over time. Few studies

have investigated how this might influence structure learning[Gong et al., 2017, Huang et al.,

2020, Löwe et al., 2022] and hence, the problem of structure learning from time-varying data

remains underinvestigated.

115

References

Paul D Allison. Missing data. The SAGE handbook of quantitative methods in psychology, pages

72–89, 2009.

Russell G Almond, Robert J Mislevy, Linda S Steinberg, Duanli Yan, and David M Williamson.

Bayesian networks in educational assessment. Springer, 2015.

Charles K Assaad, Emilie Devijver, and Eric Gaussier. Survey and evaluation of causal discovery

methods for time series. Journal of Artificial Intelligence Research, 73:767–819, 2022.

Shatha Awawdeh, Hossam Faris, and Hazem Hiary. Evoimputer: An evolutionary approach for

missing data imputation and feature selection in the context of supervised learning. Knowledge-

Based Systems, 236:107734, 2022.

Melissa J Azur, Elizabeth A Stuart, Constantine Frangakis, and Philip J Leaf. Multiple imputation

by chained equations: what is it and how does it work? International Journal of Methods in

Psychiatric Research, 20(1):40–49, 2011.

Nikolay Balov et al. Consistent model selection of discrete Bayesian networks from incomplete

data. Electronic Journal of Statistics, 7:1047–1077, 2013.

Ingo A Beinlich, Henri Jacques Suermondt, R Martin Chavez, and Gregory F Cooper. The alarm

monitoring system: A case study with two probabilistic inference techniques for belief networks.

In Proceedings of the Second European Conference on Artificial Intelligence in Medicine, pages

247–256, 1989.

Tineke Blom, Anna Klimovskaia, Sara Magliacane, and Joris M Mooij. An upper bound for

random measurement error in causal discovery. In Proceedings of the Thirty-Fourth Conference

on Uncertainty in Artificial Intelligence, 2018.

Tjebbe Bodewes and Marco Scutari. Learning Bayesian networks from incomplete data with the

node-average likelihood. International Journal of Approximate Reasoning, 138:145–160, 2021.

Christopher R Bollinger and Martijn van Hasselt. Bayesian moment-based inference in a regression

model with misclassification error. Journal of Econometrics, 200(2):282–294, 2017.

Remco R Bouckaert. Properties of Bayesian belief network learning algorithms. In Proceedings of

the Tenth Conference on Uncertainty in Artificial Intelligence, pages 102–109, 1994.

John Bound, Charles Brown, and Nancy Mathiowetz. Measurement error in survey data. In

Handbook of econometrics, volume 5, pages 3705–3843. Elsevier, 2001.

116

Fanyu Bu, Zhikui Chen, Qingchen Zhang, and Laurence T Yang. Incomplete high-dimensional

data imputation algorithm using feature selection and clustering analysis on cloud. The Journal

of Supercomputing, 72(8):2977–2990, 2016.

David Maxwell Chickering. Learning bayesian networks is np-complete. Learning from data:

Artificial intelligence and statistics V, pages 121–130, 1996.

David Maxwell Chickering. Optimal structure identification with greedy search. Journal of Machine

Learning Research, 3(Nov):507–554, 2002.

Gerda Claeskens, Nils Lid Hjort, et al. Model selection and model averaging. Cambridge Books,

2008.

Diego Colombo and Marloes H Maathuis. Order-independent constraint-based causal structure

learning. The Journal of Machine Learning Research, 15(1):3741–3782, 2014.

Diego Colombo, Marloes H Maathuis, Markus Kalisch, and Thomas S Richardson. Learning high-

dimensional directed acyclic graphs with latent and selection variables. The Annals of Statistics,

pages 294–321, 2012.

Pierre Comon. Independent component analysis, a new concept? Signal Processing, 36(3):287–314,

1994.

Anthony C Constantinou. The Bayesys user manual. Queen Mary University of London, London,

England, UK, http://bayesian-ai. eecs. qmul. ac. uk/bayesys, 2019.

Anthony C Constantinou. Learning Bayesian networks that enable full propagation of evidence.

IEEE Access, 8:124845–124856, 2020.

Anthony C Constantinou. Investigating the efficiency of the asian handicap football betting market

with ratings and Bayesian networks. Journal of Sports Analytics, 8(3):171–193, 2022.

Anthony C Constantinou and Norman Fenton. The future of the london buy-to-let property market:

Simulation with temporal Bayesian networks. PLoS ONE, 12(6):e0179297, 2017.

Anthony C Constantinou, Mark Freestone, William Marsh, Norman Fenton, and Jeremy Coid.

Risk assessment and risk management of violent reoffending among prisoners. Expert Systems

with Applications, 42(21):7511–7529, 2015.

Anthony C Constantinou, Norman Fenton, William Marsh, and Lukasz Radlinski. From complex

questionnaire and interviewing data to intelligent Bayesian network models for medical decision

support. Artificial Intelligence in Medicine, 67:75–93, 2016.

Anthony C Constantinou, Yang Liu, Kiattikun Chobtham, Zhigao Guo, and Neville K Kitson.

Large-scale empirical validation of Bayesian network structure learning algorithms with noisy

data. International Journal of Approximate Reasoning, 131:151–188, 2021.

Anthony C Constantinou, Yang Liu, Neville K Kitson, Kiattikun Chobtham, and Zhigao Guo.

Effective and efficient structure learning with pruning and model averaging strategies. Interna-

tional Journal of Approximate Reasoning, 151:292–321, 2022.

117

Anthony C Constantinou, Neville K Kitson, Yang Liu, Kiattikun Chobtham, Arian Hashemzadeh

Amirkhizi, Praharsh A Nanavati, Rendani Mbuvha, and Bruno Petrungaro. Open problems in

causal structure learning: A case study of covid-19 in the uk. Expert Systems with Applications,

234:121069, 2023.

James Cussens. Bayesian network learning with cutting planes. In Proceedings of the Twenty-

Seventh Conference on Uncertainty in Artificial Intelligence, pages 153–160, 2011.

Haoyue Dai, Peter Spirtes, and Kun Zhang. Independence testing-based approach to causal discov-

ery under measurement error and linear non-gaussian models. In Proceedings of the Thirty-Fifth

Conference on Neural Information Processing Systems, 2022.

Rhian M Daniel, Michael G Kenward, Simon N Cousens, and Bianca L De Stavola. Using causal

diagrams to guide analysis in missing data problems. Statistical methods in medical research, 21

(3):243–256, 2012.

Martijn de Jongh and Marek J Druzdzel. A comparison of structural distance measures for causal

Bayesian network models. Recent advances in intelligent information systems, challenging prob-

lems of science, computer science series, pages 443–456, 2009.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological),

39(1):1–22, 1977.

Vera Djordjilović, Monica Chiogna, and Jǐŕı Vomlel. An empirical comparison of popular structure

learning algorithms with a view to gene network inference. International Journal of Approximate

Reasoning, 88:602–613, 2017.

Gauthier Doquire and Michel Verleysen. Feature selection with missing data using mutual infor-

mation estimators. Neurocomputing, 90:3–11, 2012.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.

ics.uci.edu/ml.

Mohamad Faiz Dzulkalnine and Roselina Sallehuddin. Missing data imputation with fuzzy feature

selection for diabetes dataset. SN Applied Sciences, 1(4):1–12, 2019.

Michel Fortin and Roland Glowinski. Augmented Lagrangian methods: applications to the numer-

ical solution of boundary-value problems. Elsevier, 2000.

Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. Gp-vae: Deep proba-

bilistic time series imputation. In Proceedings of the Twenty-Third International Conference on

Artificial Intelligence and Statistics, pages 1651–1661, 2020.

Nir Friedman et al. Learning belief networks in the presence of missing values and hidden variables.

In Proceedings of the Fourteenth International Conference on Machine Learning, pages 125–133,

1997.

Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, and Bernhard Schölkopf. Kernel measures of

conditional dependence. In Proceedings of the Twentieth Conference on Neural Information

Processing Systems, 2007.

118

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Alexander Gain and Ilya Shpitser. Structure learning under missing data. In Proceedings of the

Ninth Conference on Probabilistic Graphical Models, pages 121–132, 2018.

Maxime Gasse, Alex Aussem, and Haytham Elghazel. A hybrid algorithm for Bayesian network

structure learning with application to multi-label learning. Expert Systems with Applications,

41(15):6755–6772, 2014.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. Causal abstractions of neural

networks. In Proceedings of the Thirty-Fourth Conference on Neural Information Processing

Systems, pages 9574–9586, 2021.

Dan Geiger, David Heckerman, and Christopher Meek. Asymptotic model selection for directed

networks with hidden variables. In Learning in Graphical Models, pages 461–477. Springer, 1998.

Dan Geiger, David Heckerman, Henry King, and Christopher Meek. Stratified exponential families:

graphical models and model selection. The Annals of Statistics, 29(2):505–529, 2001.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. In

ICLP/SLP, volume 88, pages 1070–1080. Cambridge, MA, 1988.

Mingming Gong, Kun Zhang, Bernhard Schölkopf, Clark Glymour, and Dacheng Tao. Causal

discovery from temporally aggregated time series. In Proceedings of the Thirty-Third Conference

on Uncertainty in Artificial Intelligence, volume 2017, 2017.

John W Graham. Missing data analysis: Making it work in the real world. Annual Review of

Psychology, 60:549–576, 2009.

Armen Hakhverdian. The causal flow between public opinion and policy: government responsive-

ness, leadership, or counter movement? West European Politics, 35(6):1386–1406, 2012.

Trevor Hastie, Rahul Mazumder, Jason D Lee, and Reza Zadeh. Matrix completion and low-

rank svd via fast alternating least squares. The Journal of Machine Learning Research, 16(1):

3367–3402, 2015.

Dominique MA Haughton. On the choice of a model to fit data from an exponential family. The

annals of statistics, pages 342–355, 1988.

David Heckerman, Dan Geiger, and David M Chickering. Learning Bayesian networks: The com-

bination of knowledge and statistical data. Machine learning, 20(3):197–243, 1995.

David Earl Heckerman, Eric J Horvitz, and Bharat N Nathwani. Toward normative expert systems:

Part i the pathfinder project. Methods of Information in Medicine, 31(02):90–105, 1992.

Daniel F Heitjan and Donald B Rubin. Ignorability and coarse data. The annals of statistics,

pages 2244–2253, 1991.

Minh Hieu Nguyen, Jimmy Armoogum, and Emeli Adell. Feature selection for enhancing purpose

imputation using global positioning system data without geographic information system data.

Transportation Research Record, 2675(5):75–87, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Proceed-

ings of the Thirty-Third Conference on Neural Information Processing Systems, pages 6840–6851,

2020.

119

James Honaker, Gary King, and Matthew Blackwell. Amelia ii: A program for missing data.

Journal of Statistical Software, 45:1–47, 2011.

Daniel G Horvitz and Donovan J Thompson. A generalization of sampling without replacement

from a finite universe. Journal of the American statistical Association, 47(260):663–685, 1952.

Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear

causal discovery with additive noise models. In Proceedings of the Twenty-First Conference on

Neural Information Processing Systems, 2008.

Yingyao Hu. Identification and estimation of nonlinear models with misclassification error using

instrumental variables: A general solution. Journal of Econometrics, 144(1):27–61, 2008.

Biwei Huang, Kun Zhang, Yizhu Lin, Bernhard Schölkopf, and Clark Glymour. Generalized score

functions for causal discovery. In Proceedings of the 24th ACM SIGKDD international conference

on knowledge discovery & data mining, pages 1551–1560, 2018.

Biwei Huang, Kun Zhang, Jiji Zhang, Joseph Ramsey, Ruben Sanchez-Romero, Clark Glymour,

and Bernhard Schölkopf. Causal discovery from heterogeneous/nonstationary data. The Journal

of Machine Learning Research, 21(1):3482–3534, 2020.

Antti Hyttinen, Frederick Eberhardt, and Matti Järvisalo. Constraint-based causal discovery:

Conflict resolution with answer set programming. In Proceedings of the Thirtieth conference on

Uncertainty in artificial intelligence, pages 340–349, 2014.

Jaime S Ide and Fabio G Cozman. Random generation of Bayesian networks. In Brazilian Sym-

posium on Artificial Intelligence, pages 366–376. Springer, 2002.

Fattaneh Jabbari, Joseph Ramsey, Peter Spirtes, and Gregory Cooper. Discovery of causal models

that contain latent variables through Bayesian scoring of independence constraints. In Machine

Learning and Knowledge Discovery in Databases: European Conference, pages 142–157, 2017.

Daniel Jarrett, Bogdan C Cebere, Tennison Liu, Alicia Curth, and Mihaela van der Schaar. Hy-

perimpute: Generalized iterative imputation with automatic model selection. In Proceedings of

the Thirty-Ninth International Conference on Machine Learning, pages 9916–9937, 2022.

Heejin Jin, Surin Jung, and Sungho Won. missForest with feature selection using binary particle

swarm optimization improves the imputation accuracy of continuous data. Genes & Genomics,

44(6):651–658, 2022.

Chisimkwuo John, Emmanuel J Ekpenyong, and Charles C Nworu. Imputation of missing values

in economic and financial time series data using five principal component analysis approaches.

CBN Journal of Applied Statistics, 10(1):51–73, 2019.

Neville K Kitson and Anthony C Constantinou. The impact of variable ordering on bayesian

network structure learning. arXiv preprint arXiv:2206.08952, 2022.

Neville K Kitson, Anthony C Constantinou, Zhigao Guo, Yang Liu, and Kiattikun Chobtham. A

survey of Bayesian network structure learning. Artificial Intelligence Review, pages 1–94, 2023.

Mikko Koivisto and Kismat Sood. Exact Bayesian structure discovery in Bayesian networks. The

Journal of Machine Learning Research, 5:549–573, 2004.

120

ME Kragt, LTH Newham, AJ Jakeman, et al. A Bayesian network approach to integrating eco-

nomic and biophysical modelling. In Proceedings of the Eighteenth World IMACS/MODSIM

Congress on Modelling and Simulation, pages 2377–2383. Citeseer, 2009.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The Annals of Mathe-

matical Statistics, 22(1):79–86, 1951.

Trent Kyono, Yao Zhang, Alexis Bellot, and Mihaela van der Schaar. Miracle: Causally-aware im-

putation via learning missing data mechanisms. In Proceedings of the Thirty-Fourth Conference

on Neural Information Processing Systems, pages 23806–23817, 2021.

Steffen L Lauritzen and David J Spiegelhalter. Local computations with probabilities on graphical

structures and their application to expert systems. Journal of the Royal Statistical Society:

Series B (Methodological), 50(2):157–194, 1988.

Katherine J Lee and John B Carlin. Multiple imputation for missing data: fully conditional

specification versus multivariate normal imputation. American Journal of Epidemiology, 171(5):

624–632, 2010.

Honghao Li, Vincent Cabeli, Nadir Sella, and Hervé Isambert. Constraint-based causal structure

learning with consistent separating sets. In Proceedings of the Thirty-Second Conference on

Neural Information Processing Systems, 2019.

Wei-Chao Lin and Chih-Fong Tsai. Missing value imputation: a review and analysis of the litera-

ture (2006–2017). Artificial Intelligence Review, 53(2):1487–1509, 2020.

Wei-Chao Lin, Chih-Fong Tsai, and Jia Rong Zhong. Deep learning for missing value imputation

of continuous data and the effect of data discretization. Knowledge-Based Systems, 239:108079,

2022.

Roderick JA Little and Donald B Rubin. Statistical analysis with missing data, volume 793. John

Wiley & Sons, 2019.

Chia-Hui Liu, Chih-Fong Tsai, Kuen-Liang Sue, and Min-Wei Huang. The feature selection effect

on missing value imputation of medical datasets. Applied Sciences, 10(7):2344, 2020.

Yang Liu and Anthony Constantinou. Improving the imputation of missing data with markov

blanket discovery. In The Eleventh International Conference on Learning Representations, 2023.

Yang Liu and Anthony C Constantinou. Greedy structure learning from data that contain system-

atic missing values. Machine Learning, 111(10):3867–3896, 2022.

Yang Liu, Anthony C Constantinou, and Zhigao Guo. Improving Bayesian network structure

learning in the presence of measurement error. Journal of Machine Learning Research, 23(324):

1–28, 2022.

Sindy Löwe, David Madras, Richard Zemel, and Max Welling. Amortized causal discovery: Learn-

ing to infer causal graphs from time-series data. In Proceedings of the First Conference on Causal

Learning and Reasoning, pages 509–525, 2022.

Dimitris Margaritis and Sebastian Thrun. Bayesian network induction via local neighborhoods. In

Proceedings of the Twelfth Conference on Neural Information Processing Systems, 1999.

121

Fernando Martel Garćıa. Definition and diagnosis of problematic attrition in randomized controlled

experiments. Available at SSRN 2302735, 2013.

Pierre-Alexandre Mattei and Jes Frellsen. Miwae: Deep generative modelling and imputation of

incomplete data sets. In Proceedings of the Thirty-Sixth International Conference on Machine

Learning, pages 4413–4423, 2019.

Scott McLachlan, Kudakwashe Dube, Graham A Hitman, Norman E Fenton, and Evangelia

Kyrimi. Bayesian networks in healthcare: Distribution by medical condition. Artificial In-

telligence in Medicine, 107:101912, 2020.

Christopher Meek. Causal inference and causal explanation with background knowledge. In Pro-

ceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pages 403–410,

1995.

Karthika Mohan, Judea Pearl, and Jin Tian. Graphical models for inference with missing data. In

Proceedings of the Twenty-Sixth Conference on Neural Information Processing Systems, pages

1277–1285, 2013.

Boris Muzellec, Julie Josse, Claire Boyer, and Marco Cuturi. Missing data imputation using

optimal transport. In Proceedings of the Thirty-Seventh International Conference on Machine

Learning, pages 7130–7140, 2020.

Alfredo Nazabal, Pablo M Olmos, Zoubin Ghahramani, and Isabel Valera. Handling incomplete

heterogeneous data using vaes. Pattern Recognition, 107:107501, 2020.

Andrew A Neath and Joseph E Cavanaugh. The Bayesian information criterion: background,

derivation, and applications. Wiley Interdisciplinary Reviews: Computational Statistics, 4(2):

199–203, 2012.

Ilkka Niemelä. Logic programs with stable model semantics as a constraint programming paradigm.

Annals of Mathematics and Artificial Intelligence, 25:241–273, 1999.

Juan Miguel Ogarrio, Peter Spirtes, and Joe Ramsey. A hybrid causal search algorithm for latent

variable models. In Proceedings of the Eighth Conference on Probabilistic Graphical Models,

pages 368–379, 2016.

Sascha Ott, Seiya Imoto, and Satoru Miyano. Finding optimal models for small gene networks. In

Biocomputing, pages 557–567, 2003.

Alma B Pedersen, Ellen M Mikkelsen, Deirdre Cronin-Fenton, Nickolaj R Kristensen, Tra My

Pham, Lars Pedersen, and Irene Petersen. Missing data and multiple imputation in clinical

epidemiological research. Clinical Epidemiology, 9:157, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-

hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,

and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning

Research, 12:2825–2830, 2011.

Jonas Peters, Joris M Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery with

continuous additive noise models. The Journal of Machine Learning Research, 15(1):2009–2053,

2014.

122

Hendrik Purwins, Bo Li, Tuomas Virtanen, Jan Schlüter, Shuo-Yiin Chang, and Tara Sainath.

Deep learning for audio signal processing. IEEE Journal of Selected Topics in Signal Processing,

13(2):206–219, 2019.

Sophia Rabe-Hesketh and Anders Skrondal. Ignoring non-ignorable missingness. psychometrika,

88(1):31–50, 2023.

Joseph Ramsey. Improving accuracy and scalability of the PC algorithm by maximizing p-value.

arXiv preprint arXiv:1610.00378, 2016.

Joseph Ramsey, Madelyn Glymour, Ruben Sanchez-Romero, and Clark Glymour. A million vari-

ables and more: the fast greedy equivalence search algorithm for learning high-dimensional

graphical causal models, with an application to functional magnetic resonance images. Interna-

tional Journal of Data Science and Analytics, 3(2):121–129, 2017.

Donald B Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976.

Donald B Rubin. Multiple imputation for nonresponse in surveys, volume 81. John Wiley & Sons,

2004.

Andrea Ruggieri, Francesco Stranieri, Fabio Stella, and Marco Scutari. Hard and Soft EM in

Bayesian Network Learning from Incomplete Data. Algorithms, 13(12):329, 2020.

Mauro Scanagatta. Bayesian network learning improved project. https://github.com/

mauro-idsia/blip, 2019.

Mauro Scanagatta, Cassio P de Campos, Giorgio Corani, and Marco Zaffalon. Learning Bayesian

networks with thousands of variables. In Proceedings of the Twenty-Eighth Conference on Neural

Information Processing Systems, 2015.

Mauro Scanagatta, Giorgio Corani, and Marco Zaffalon. Improved local search in Bayesian net-

works structure learning. In Advanced Methodologies for Bayesian Networks, pages 45–56, 2017.

Richard Scheines and Joseph Ramsey. Measurement error and causal discovery. In CEUR workshop

proceedings, volume 1792, page 1, 2016.

Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. Learning with kernels: support vector

machines, regularization, optimization, and beyond. MIT press, 2002.

Marco Scutari. Bayesian network repository, 2020. https://www.bnlearn.com/bnrepository/.

Marco Scutari, Catharina Elisabeth Graafland, and José Manuel Gutiérrez. Who learns better

Bayesian network structures: Accuracy and speed of structure learning algorithms. International

Journal of Approximate Reasoning, 115:235–253, 2019.

Marco Scutari et al. Learning Bayesian Networks with the bnlearn R package. Journal of Statistical

Software, 35(i03), 2010.

Amir Masoud Sefidian and Negin Daneshpour. Missing value imputation using a novel grey based

fuzzy c-means, mutual information based feature selection, and regression model. Expert Systems

with Applications, 115:68–94, 2019.

123

https://github.com/mauro-idsia/blip
https://github.com/mauro-idsia/blip
https://www.bnlearn.com/bnrepository/

Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, Antti Kerminen, and Michael Jordan. A linear

non-gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7(10),

2006.

Tomi Silander, Petri Kontkanen, and Petri Myllymäki. On sensitivity of the map Bayesian network

structure to the equivalent sample size parameter. In Proceedings of the Twenty-Third Conference

on Uncertainty in Artificial Intelligence, pages 360–367, 2007.

Tomi Silander, Janne Leppä-Aho, Elias Jääsaari, and Teemu Roos. Quotient normalized maximum

likelihood criterion for learning Bayesian network structures. In Proceedings of the Twenth-First

International Conference on Artificial Intelligence and Statistics, pages 948–957, 2018.

Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and implementing the stable model

semantics. Artificial Intelligence, 138(1-2):181–234, 2002.

Ajit P Singh and Andrew W Moore. Finding optimal Bayesian networks by dynamic programming.

Carnegie Mellon University. Center for Automated Learning and Discovery, 2005.

Dušan Sovilj, Emil Eirola, Yoan Miche, Kaj-Mikael Björk, Rui Nian, Anton Akusok, and Amaury

Lendasse. Extreme learning machine for missing data using multiple imputations. Neurocom-

puting, 174:220–231, 2016.

Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal graphs. Social

Science Computer Review, 9(1):62–72, 1991.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causality from probability. In Proceedings

of the Conference on Advanced Computing for the Social Sciences, 1990.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation, prediction,

and search. MIT press, 2000.

Helen M Stallman, Denise Beaudequin, Daniel F Hermens, and Daniel Eisenberg. Modelling

the relationship between healthy and unhealthy coping strategies to understand overwhelming

distress: A Bayesian network approach. Journal of Affective Disorders Reports, 3:100054, 2021.

Harald Steck and Tommi Jaakkola. On the dirichlet prior and Bayesian regularization. In Pro-

ceedings of the Fifteenth Conference on Neural Information Processing Systems, 2002.

Daniel J Stekhoven and Peter Bühlmann. Missforest—non-parametric missing value imputation

for mixed-type data. Bioinformatics, 28(1):112–118, 2012.

Daniel J Stekhoven and Maintainer Daniel J Stekhoven. Package ‘missforest’. R package version,

1, 2013.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Rad-

ford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. In

Proceedings of the Thirty-Third Conference on Neural Information Processing Systems, pages

3008–3021, 2020.

Eric V Strobl, Shyam Visweswaran, and Peter L Spirtes. Fast causal inference with non-random

missingness by test-wise deletion. International Journal of Data Science and Analytics, 6(1):

47–62, 2018.

124

Marc Teyssier and Daphne Koller. Ordering-based search: a simple and effective algorithm for

learning Bayesian networks. In Proceedings of the Twenty-First Conference on Uncertainty in

Artificial Intelligence, pages 584–590, 2005.

Felix Thoemmes and Norman Rose. A cautious note on auxiliary variables that can increase bias

in missing data problems. Multivariate Behavioral Research, 49(5):443–459, 2014.

Yan Tian, Kaili Zhang, Jianyuan Li, Xianxuan Lin, and Bailin Yang. Lstm-based traffic flow

prediction with missing data. Neurocomputing, 318:297–305, 2018.

Cao Truong Tran, Mengjie Zhang, Peter Andreae, Bing Xue, and Lam Thu Bui. Improving

performance of classification on incomplete data using feature selection and clustering. Applied

Soft Computing, 73:848–861, 2018.

Michail Tsagris. A new scalable Bayesian network learning algorithm with applications to eco-

nomics. Computational Economics, 57(1):341–367, 2021.

Ioannis Tsamardinos, Constantin F Aliferis, and Alexander Statnikov. Time and sample efficient

discovery of markov blankets and direct causal relations. In Proceedings of the Ninth ACM

SIGKDD international conference on Knowledge discovery and data mining, pages 673–678,

2003a.

Ioannis Tsamardinos, Constantin F Aliferis, Alexander R Statnikov, and Er Statnikov. Algorithms

for large scale markov blanket discovery. In FLAIRS Conference, volume 2, pages 376–380, 2003b.

Ioannis Tsamardinos, Laura E Brown, and Constantin F Aliferis. The max-min hill-climbing

Bayesian network structure learning algorithm. Machine Learning, 65(1):31–78, 2006.

Ruibo Tu, Cheng Zhang, Paul Ackermann, Karthika Mohan, Hedvig Kjellström, and Kun Zhang.

Causal discovery in the presence of missing data. In Proceedings of the Twenty-Second Interna-

tional Conference on Artificial Intelligence and Statistics, pages 1762–1770, 2019.

Caroline Uhler, Garvesh Raskutti, Peter Bühlmann, and Bin Yu. Geometry of the faithfulness

assumption in causal inference. The Annals of Statistics, pages 436–463, 2013.

Stef Van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation by chained

equations in r. Journal of Statistical Software, 45:1–67, 2011.

Thomas Verma and Judea Pearl. Equivalence and synthesis of causal models. In Proceedings of

the Sixth Conference on Uncertainty in Artificial Intelligence, pages 255–270, 1990.

Feng Wang, Xing Ge, and Danwen Huang. Government intervention, human mobility, and covid-

19: a causal pathway analysis from 121 countries. Sustainability, 14(6):3694, 2022.

Naftali Weinberger. Faithfulness, coordination and causal coincidences. Erkenntnis, 83(2):113–133,

2018.

Chirayu Wongchokprasitti. R-causal r wrapper for tetrad library, v1.2.1. https://github.com/

bd2kccd/r-causal/, 2019.

Michalis Xenos. Prediction and assessment of student behaviour in open and distance education

in computers using Bayesian networks. Computers & Education, 43(4):345–359, 2004.

125

https://github.com/bd2kccd/r-causal/
https://github.com/bd2kccd/r-causal/

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tab-

ular data using conditional gan. In Proceedings of the Thirty-Second Conference on Neural

Information Processing Systems, 2019.

Yuqin Yang, AmirEmad Ghassami, Mohamed Nafea, Negar Kiyavash, Kun Zhang, and Ilya Sh-

pitser. Causal discovery in linear latent variable models subject to measurement error. In

Proceedings of the Thirty-Fifth Conference on Neural Information Processing Systems, 2022.

Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data imputation using gener-

ative adversarial nets. In Proceedings of the Thirty-Fifth International Conference on Machine

Learning, pages 5689–5698, 2018.

Jiaxuan You, Xiaobai Ma, Yi Ding, Mykel J Kochenderfer, and Jure Leskovec. Handling missing

data with graph representation learning. In Proceedings of the Thirty-Third Conference on

Neural Information Processing Systems, pages 19075–19087, 2020.

Kui Yu, Yajing Yang, and Wei Ding. Causal feature selection with missing data. ACM Transactions

on Knowledge Discovery from Data (TKDD), 16(4):1–24, 2022.

Changhe Yuan, Brandon Malone, and Xiaojian Wu. Learning optimal Bayesian networks using

A* search. In Proceedings of the Twenty-Second International Joint Conference on Artificial

Intelligence, 2011.

Tadesse Zemicheal and Thomas G Dietterich. Anomaly detection in the presence of missing values

for weather data quality control. In Proceedings of the Second ACM SIGCAS Conference on

Computing and Sustainable Societies, pages 65–73, 2019.

Jiji Zhang. On the completeness of orientation rules for causal discovery in the presence of latent

confounders and selection bias. Artificial Intelligence, 172(16-17):1873–1896, 2008.

K Zhang and A Hyvärinen. On the identifiability of the post-nonlinear causal model. In Proceedings

of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages 647–655, 2009.

Kun Zhang, Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Kernel-based conditional

independence test and application in causal discovery. In Proceedings of the Twenty-Seventh

Conference on Uncertainty in Artificial Intelligence, pages 804–813, 2011.

Kun Zhang, Mingming Gong, Joseph Ramsey, Kayhan Batmanghelich, Peter Spirtes, and Clark

Glymour. Causal discovery with linear non-Gaussian models under measurement error: Struc-

tural identifiability results. In Proceedings of the Thirty-Fourth Conference on Uncertainty in

Artificial Intelligence, pages 1063–1072, 2018.

Shichao Zhang. Nearest neighbor selection for iteratively knn imputation. Journal of Systems and

Software, 85(11):2541–2552, 2012.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Con-

tinuous optimization for structure learning. In Proceedings of the Thirty-First Conference on

Neural Information Processing Systems, 2018.

126

	Introduction
	Motivation
	Thesis structure and contributions
	Paper contributions

	Background
	Bayesian Networks
	Structure Learning
	Evaluation metrics
	Score-based structure learning
	Constraint-based structure learning
	Hybrid structure learning
	Structure learning for functional causal models

	The impact of data noise on structure learning, and learning structures from noisy data with model averaging
	Introduction
	Impact of data noise
	Case studies and synthetic data
	The investigated structure learning algorithms
	Evaluation
	Results and discussion

	Handling data noise by model averaging
	The Model Averaging Hill-Climbing algorithm
	Evaluation, results and discussion

	Concluding remarks

	Improving Structure Learning under Measurement Error
	Introduction
	Relevant works
	Preliminaries
	Impact of measurement error on structure learning
	The Spurious Edge Detection (SED) algorithm
	Empirical evaluation
	Conclusion

	Improving greedy search structure learning in the presence of systematic missing values
	Introduction
	Relevant works
	Preliminaries
	Hill Climbing algorithm
	Missing data

	Handling systematic missing data with Hill-Climbing
	Hill-Climbing with pairwise deletion
	Hill-Climbing with Inverse Probability Weighting
	Hill-Climbing with adaptive Inverse Probability Weighting

	Experiments
	Generating synthetic data and missingness
	Evaluation metrics
	Results when the true DAG is sparse
	Results when the true DAG is dense
	Results when the true DAG is a real-world network

	Conclusion

	Using Markov blanket to improve data imputation in the presence of systematic missingness
	Introduction and relevant works
	Preliminaries
	Markov Blanket based feature selection for imputation
	Experiments
	Synthetic case studies based on real-world BNs
	Evaluation process
	Results
	Real-world case study

	Conclusion

	Conclusions and directions for future work
	Conclusion
	Future research

