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ABSTRACT

We present a model for category-agnostic 6D pose tracking.
We tackle object pose tracking as a 3D keypoint detection and
matching task that does not require ground-truth annotation of
the keypoints. Using RGB-D data and the target object mask
as inputs, we spatially segment the point cloud of the object
into clusters. Each 3D point in the cluster is characterised by
features encoding appearance and geometric information. We
use these features to detect a keypoint for each cluster and,
with the detected keypoint sets from two time instants, we
recover the pose change through least-squares optimisation.
The loss functions are designed to ensure that the detected
keypoints are consistent over time and suitable for pose track-
ing.

Index Terms— 6D pose tracking, keypoint detection,
category-agnostic

1. INTRODUCTION

6D pose tracking, the task of estimating the pose of an object
over time using an initial 6D pose [1, 2], is important for sev-
eral computer vision tasks, such as 3D scene understanding,
robotic manipulation and augmented reality. Traditional 6D
pose tracking methods [3–5] use Bayesian networks [6] to es-
timate a posterior distribution over the current object pose.
These methods require the design of handcrafted features.
Recently, machine learning techniques have been employed
for 6D pose tracking. Assuming that 3D object models are
available, SE(3)-TrackNet [7] uses a deep neural network to
detect the relative pose at the current frame and the frame
rendered by the previous pose detection. PoseRBPF [8] for-
mulates 6D pose tracking in a Rao-Blackwellized particle fil-
tering framework [9]. PoseRBPF [8] first uses the 3D transla-
tion to determine the target object bounding box in the image,
and then uses an autoencoder to estimate object feature em-
beddings to update the 3D rotation distribution. These models
only achieve instance-level 6D pose tracking, and thus require
accurate 3D shapes of the tracking instances, such as those
given by CAD models.

6D pose tracking can be performed for each object cate-
gory to track unseen (object) instances within a specific cat-
egory without the need of 3D shape information about the

target object (e.g. 6-PACK [1]). 6-PACK selects a detected
anchor closest to the object centroid and, from the selected
anchor, generates ordered 3D keypoints for tracking. Such
an approach requires multiple trained models on single ob-
ject categories to handle different object categories. Bundle-
Track [2], a category-agnostic model, uses pose graph op-
timisation for 6D pose tracking irrespective of object cate-
gories. BundleTrack uses an off-the-shelf keypoint detector,
LF-Net [10], with fixed pre-trained parameters.

In this paper, we propose a cluster-based keypoint detec-
tion module to be used in a generic, category-agnostic 6D
pose tracking pipeline. Given an RGB-D input and the corre-
sponding object mask, we convert the depth image into a 3D
point cloud of the target object. We then use the farthest point
sampling (FPS) algorithm [11] to sample initial points from
the point cloud. We group points closest to each initial point
into a cluster and get the feature map of each cluster. We then
detect a keypoint from the feature map of each cluster and use
the resulting keypoint set to represent the target object. Using
keypoint sets from two time instants, we estimate the pose
change by least-squares optimisation. Experimental results
on the NOCS-REAL275 dataset [12] show that our category-
agnostic model with detection of matched 3D keypoint sets
is competitive to category-specific state-of-the-art models for
6D pose tracking1.

2. PROPOSED MODEL

The 6D pose change, ∆pt, of the target object at time t with
respect to time t−1 consists of a 3D rotation, ∆Rt ∈ SO(3),
and a 3D translation, ∆T t ∈ R3:

∆pt = [∆Rt|∆T t]. (1)

To estimate ∆pt, we use the 3D keypoints at t corre-
sponding to those at t − 1 determined after solving a point
set alignment problem with least-squares optimisation [1,16].
After obtaining features for each 3D point using RGB, depth
and the target object segmentation mask, the 3D points are
grouped into clusters and each cluster is represented by a 3D
keypoint (see Fig. 1).

1Project page: https://eecs.qmul.ac.uk/˜coh/projects/
6D_CAPT.html

https://eecs.qmul.ac.uk/~coh/projects/6D_CAPT.html
https://eecs.qmul.ac.uk/~coh/projects/6D_CAPT.html
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Fig. 1. The overall pipeline of 3D keypoint detection, consisting of three modules: a feature estimation module, a split module,
and a 3D keypoint detection module. Given RGB and depth images, and a segmentation mask of the target object, the network
generates a 3D keypoint set, Kt = {kt1, kt2, ..., ktM}. We use ResNet [13] to extract the appearance feature of the object using
the RGB image and the segmentation mask. We also extract the geometric feature using the point cloud, after outlier removal,
as input to PointNet [14]. The appearance and geometric features are fused by an encoder, following the architecture from
DenseFusion [15]. The split module uses the farthest point sampling algorithm to sample initial points, finds Nc nearest 3D
points for each initial point, and groups the initial point and its neighbours into a cluster. For each of the M clusters a keypoint
is defined by the keypoint detection module.

2.1. 3D Point clustering

We use a deep neural network to fuse colour and geometric
information into a feature map for pose estimation [15]. We
first crop the RGB image by using the target object 2D bound-
ing box, and use the cropped image as input to ResNet [13]
to obtain the appearance feature of each pixel. We then use
the segmentation mask and the depth image to obtain the 3D
points of the target object. Since the obtained point cloud
may contain outliers due to sensor noise, we use a radius out-
lier removal algorithm from Open3D [17] to remove points
that have few neighbours in a certain sphere around them. We
use this point cloud as input for PointNet [14] to obtain the
geometric feature from each point. Note that the 2D bound-
ing box and the segmentation mask, generated using Mask
R-CNN [18], are given in the NOCS-REAL275 dataset [12].
Using the model in DenseFusion [15], we fuse the appear-
ance and geometric features to obtain a pixel-wise fused fea-
ture map vi = [xi, fi], i = 1, 2, ..., N , where N denotes the
number of points, xi ∈ R3 represents the point with XYZ
coordinates, and fi ∈ RC represents C-dimensional feature
vector, which encodes appearance and geometric information.

Directly detecting a set of 3D keypoints for pose tracking
is challenging due to the large output space to explore [1]. We
are inspired by PointNet++ [19] that splits the point cloud into
different clusters, and then capture each cluster features for
point cloud classification and semantic scene labelling. We
evenly split the target object into different clusters. Each clus-
ter includes the same number of points and the cluster feature
map contains appearance and geometric information. We then
detect a 3D keypoint from each cluster instead of directly de-
tecting keypoints from the whole point cloud. Such design not
only helps us improve the efficiency of keypoint detection, but
also makes us easily to find matched keypoints since we can

easily find corresponding clusters over times. Another benefit
is that our split module does not require knowledge of a spe-
cific category, allowing us to achieve category-agnostic key-
point detection. We sample M initial points and then group
the nearest points for each initial point as a cluster. As a re-
sult, we split the 3D point cloud of the target object into M
clusters. Specifically, we use the FPS algorithm to sample M
points from the point cloud, that is, sample M points from
{vi}Ni=1. The FPS algorithm is used to select points that are
farthest from each other in the 3D space, which is widely used
in point cloud related models [8, 19–21]. For each sampled
point, we calculate the Euclidean distance with its neighbours
in the 3D space, and group its Nc nearest neighbours into a
cluster. Note that some points can be included in two or more
clusters as our goal is to find the same number (Nc) of near-
est points to each cluster to be used as input for the keypoint
detection module.

2.2. Keypoint detection

The module to detect a 3D keypoint for each cluster is trained
without using ground-truth annotation of keypoints. We train
the module, consisting of a three-layer perceptron and two
fully connected layers, using as loss functions, a centre loss,
a multi-view consistency loss, a pose loss and a silhouette
consistency loss.

The centre loss, Lcen, ensures that the detected keypoints
are evenly distributed on the target object. This loss measures
the distance between the detected keypoint, kti , from the ith

cluster at t, and the cluster centre, cti:

Lcen =
1

M

M∑
i=1

∣∣||kti − cti||2 − δ
∣∣, (2)

where M is the number of clusters and δ can be considered as



a margin for kti to be around the cluster centre.
The multi-view consistency loss, Lmvc, measures the tem-

poral consistency between the keypoints:

Lmvc =
1

M

M∑
i=1

||kti − (∆Rt
gt · kt−1

i +∆T t
gt)||2, (3)

where ∆ptgt = [∆Rt
gt|∆T t

gt] is the ground-truth 6D pose
change between t− 1 and t.

Eq. 3 encourages keypoints consistency across two time
instants, but does not guarantee that these keypoints are op-
timal for pose tracking. To this end, we add a pose loss [1],
which measures the error between the 3D rotation and trans-
lation estimated from the keypoints and their corresponding
ground-truths, ∆Rt

gt and ∆T t
gt, respectively. This loss in-

cludes the rotation loss, Lrot, which measures the error be-
tween ∆Rt and ∆Rt

gt:

Lrot = 2arcsin

(
1

2
√
2
||∆Rt −∆Rt

gt||2
)
, (4)

and the translation loss, Ltra, which measures the error be-
tween ∆T t

gt and the translation vector computed by the cen-
troid of the detected keypoints, k̄t−1 and k̄t, at t− 1 and t:

Ltra = ||(k̄t − k̄t−1)−∆T t
gt||2. (5)

The clusters centres may not lie on the surface of a target
object (silhouette) due to the outliers in the point cloud. We
add a silhouette consistency loss [1,22], Lsil, which alleviates
the impact of outliers on the model. This loss encourages the
detected keypoints to be close to the object surface:

Lsil =
1

M

M∑
i=1

||kti − ui||2, (6)

where ui ∈ R3 is the nearest point to kti in the unit sphere2,
whose origin coincides with the centroid of the target object
point cloud.

We train our model combining the loss functions as:

L = λ1Lcen + λ2Lmvc + λ3(Lrot + Ltra) + λ4Lsil, (7)

where λ1, λ2, λ3 and λ4 are the hyperparameters that control
the effect of each loss.

To ensure the consistency of the keypoints from t− 1 and
t, we initialise the points for the FPS algorithm [11] at t us-
ing the detected keypoints at t − 1. Using the detected 3D
keypoint set at t− 1:

Kt−1 = {kt−1
1 , kt−1

2 , ..., kt−1
M }, (8)

2The unit sphere is from a resized 3D bounding box at initialisation and
is provided by 6-PACK [1].

and the 3D keypoint set at t:

Kt = {kt1, kt2, ..., ktM}, (9)

we estimate the change of 6D pose, ∆pt, by least-squares
optimisation [23]:

∆pt = argmin
∆Rt,∆T t

M∑
i=1

||kti − (∆Rt · kt−1
i +∆T t)||2. (10)

3. VALIDATION

We evaluate the models on the NOCS-REAL275 dataset [12],
which contains 3 categories of rotational symmetric objects
(bottle, bowl and can) and 3 categories of asymmetric ob-
ject (camera, laptop and mug). The training set has 7 real
videos with 3 instances of each category in total, annotated
with ground-truth poses. The testing set has 6 real videos with
3 different unseen instances within each category, resulting in
18 different object instances and 3,200 frames in total.

We compare our model (Ours-Agn) with other six models,
which are listed below3.

• NOCS [12], a category-level 6D pose estimation model
which employs a shared representation for all instances
within a category.

• ICP (iterative closest point) [24], a point-set alignment
model that can be used to obtain the 6D pose change
between two point clouds.

• KeypointNet [22], a category-level 3D keypoint detec-
tor that detects 3D keypoint from a point cloud, which
can be used to estimate the pose change between the
object in two different views.

• TEASER++ [25], a deep learning based model for
point cloud registration, which redesigns the least-
squares optimisation to mitigate the effect of outliers
on point cloud registration.

• MaskFusion [26], an object recognition, tracking and
reconstruction model.

• 6-PACK [1], a category-level 6D pose tracker. We con-
sider two versions of this tracker, namely 6-PACK-Spe,
a category-level model that trains one model for each
category; and 6-PACK-ASY, trained on the objects in
3 asymmetric categories, camera, laptop and mug. We
further train a single 6-PACK model on the objects of
multiple categories for fair comparison with Ours-Agn.
Noting that 6-PACK uses a different coordinate systems
for training models on the symmetric objects for sym-
metry invariance, we train the single 6-PACK model.

36D pose tracking results of NOCS [12], ICP [24] and KeypointNet [22]
are provided by [1], while 6D pose tracking results of TEASER++ [25] and
MaskFusion [26] are provided by [2].



We use four evaluation measures:

• the percentage of results with orientation error smaller
than 5° and translation error smaller than 5cm (5°5cm);

• the percentage of volume overlap between the detection
and ground-truth 3D bounding box that is larger than
25% (IoU25, or Intersection over Union);

• the orientation error in degrees (Rerr);

• the translation error in centimetres (Terr).

All modules in Ours-Agn are trained from scratch on
NOCS-REAL275. During training, we randomly select pairs
of consecutive images as input. The proposed model de-
tects matched keypoints from input images, and changes the
detected keypoint location during backpropagation to min-
imise the loss without requiring ground-truth annotation of
keypoints. We use the Adam [27] optimiser with an initial
learning rate of 0.00001 and 500 epochs, using PyTorch and
NVIDIA 1080Ti. During testing, we followed the 6-PACK
strategy, that is, given an initial 6D pose p0 = [R0|T 0]
of the target object, the 6D pose at t can be obtained by
Rt = R0 · ∆Rt,0 and T t = T 0 + ∆T t,0, where ∆Rt,0 and
∆T t,0 are estimated by matching keypoint set at 0 and t.

We follow the evaluation protocol defined in 6-PACK [1]
and used a perturbed ground-truth object pose for initiali-
sation. The perturbation adds a uniformly sampled random
translation within a 4cm range to evaluate robustness against
a noisy initial pose. We sample 500 points for the target object
in each frame of the RGB-D image. We set δ = 0.15, M = 8,
Nc = 64, λ1 = 0.2, λ2 = 0.3, λ3 = 0.3 and λ4 = 0.2. Our
model includes 20.51M parameters and can run at 35 frames
per second for 640 × 480 images.

To compare with 6-PACK-ASY, we train our pipeline on
the objects in 3 asymmetric categories (camera, laptop and
mug), and term the resulting model Ours-ASY. The parameter
settings are the same with Ours-Agn.

Table 1 shows the 6D pose estimation results of the mod-
els under analysis. Ours-Agn outperforms in most cases
ICP, KeypointNet, NOCS, MaskFusion, and TEASER++.
TEASER++ achieves good tracking performance. 6-PACK-
Spe has a marginally better performance than Ours-Agn.
However, 6-PACK-Spe is a category-level model that trains
one model for each category, whereas Ours-Agn trains one
model to track the objects regardless of their categories. Fur-
thermore, 6-PACK-Spe requires target object centroid as an
anchor for keypoint detection, whereas Ours-Agn does not
require any ground-truth of keypoints or object centroid.
Ours-ASY outperforms 6-PACK-ASY, and 6-PACK-ASY is
worse than 6-PACK-Spe.

4. CONCLUSION

We presented a model for category-agnostic 6D pose track-
ing. The key idea is to separate the target object into parts

Table 1. Evaluation of 6D pose estimation on the NOCS-
REAL275 dataset.

Category Measure NOCS ICP KN TE MF 6-PACK Ours

Spe ASY Agn ASY

5°5cm ↑ 5.5 10.1 5.9 13.9 15.5 24.5 - 22.3 -
IoU25 ↑ 48.7 29.9 23.1 100.0 51.4 91.1 - 88.7 -
Rerr ↓ 25.6 48.0 28.5 17.0 36.7 15.6 - 16.2 -bottle

Terr ↓ 14.4 15.7 9.5 2.7 11.3 4.0 - 5.2 -

5°5cm 62.2 40.3 16.8 35.5 32.3 55.0 - 54.1 -
IoU25 99.6 79.7 74.7 99.9 71.4 100.0 - 97.5 -
Rerr 4.7 19.0 9.8 10.6 12.3 5.2 - 6.2 -bowl

Terr 1.2 4.7 8.2 1.8 5.3 1.7 - 2.1

5°5cm 0.6 12.6 1.8 10.7 11.7 10.1 9.2 11.2 11.9
IoU25 90.6 53.1 30.9 99.9 60.8 87.6 87.1 88.6 90.1
Rerr 33.8 80.5 45.2 18.8 43.0 35.7 36.2 40.8 38.1camera

Terr 3.1 12.2 8.5 2.8 11.1 5.6 6.1 6.2 5.7

5°5cm 7.1 17.2 4.3 11.7 8.8 22.6 - 23.4 -
IoU25 77.0 40.5 42.6 100.0 49.7 92.6 - 91.1 -
Rerr 16.9 47.1 28.8 20.4 34.9 13.9 - 14.2 -can

Terr 4.0 9.4 13.1 2.7 9.3 4.8 - 4.7 -

5°5cm 25.5 14.8 49.2 40.9 73.9 63.5 61.7 62.5 64.2
IoU25 94.7 50.9 94.6 99.9 99.9 98.1 97.2 96.2 98.8
Rerr 8.6 37.7 6.5 7.2 3.4 4.7 5.5 5.2 4.8laptop

Terr 2.4 9.2 4.4 2.6 3.5 2.5 2.8 2.7 2.2

5°5cm 0.9 6.2 3.1 7.5 16.4 24.1 23.9 25.3 26.0
IoU25 82.8 27.7 52.0 99.9 56.2 95.2 94.1 97.2 97.5
Rerr 31.5 56.3 61.2 23.0 40.6 21.3 22.4 22.3 21.5mug

Terr 4.0 9.2 6.7 2.4 9.2 2.3 2.5 2.1 2.0

6-PACK-Spe is trained on each specific category and tested on the data of the same
category. Ours-Agn is trained by using all categories and tested on each category.
KEY – MF: MaskFusion [26]; TE: TEASER++ [25]; KN: KeypointNet [22].

and to train a cluster-based keypoint detection network with-
out the need of ground-truth annotation of the keypoints.
These keypoints are evenly distributed on the object and
therefore suitable for pose estimation. The results of the
proposed category-agnostic model are competitive to those
of category-level 6D pose tracking. Future work includes
addressing pose tracking under heavy occlusions and using,
as post-processing, pose graph optimisation [2].
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